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Abstract— The problem of rejection of sinusoidal distur-
bances with known frequencies acting on an unknown single-
input single-output linear system is addressed in this note.
We present a new approach that does not require knowledge
of the frequency response of the transfer function over the
frequency of interest. The proposed methodology reposes upon
the combination of the classic feedforward control algorithm
and logic-based switching. The use of three different switching
logics is proposed in this paper, namely: pre-routed, dwell-time
and hysteresis switching. A comparative evaluation of the three
switching strategies is performed via a simulation study.

I. INTRODUCTION AND PROBLEM FORMULATION

Rejection of harmonic disturbances occurring in a control
system remains a central theme in control, fueled by a large
number of technological applications, from vibration sup-
pression [1] to active noise control [2], to wave attenuation in
marine systems [3]. A common thread across the different ap-
proaches pursued by the control community to the solution of
various manifestations of the harmonic disturbance rejection
problem is the ubiquitous internal model principle [4], which
prescribes that a suitable copy of the system generating the
disturbance must be embedded in the controller to ensure
robust regulation in the presence of model uncertainties.
While the harmonic disturbance rejection problem is sub-
sumed by the more general output regulation problem [5], in
its prototypical form for SISO LTI plant models, the former
problem is cast into the following setup

ẋ = A(µ)x+B(µ)[ d̂(t)− d(t)] , x(0) = x0 ∈ Rr

y = C(µ)x (1)

where (1) is an r-dimensional realization of the internally
stable interconnection of an uncertain plant model and a
robust stabilizer. System (1) is driven by the difference
between a sinusoid of known frequency, ω? ∈ R>0

d(t) = ψ1 cos(ω?t) + ψ2 sin(ω?t) (2)

and an estimate of the disturbance, d̂(t) ∈ R, generated by
a feedforward regulator. The vectors µ ∈ Rp and ψ :=
col(ψ1, ψ2) ∈ R2 collect the uncertain parameters of the
plant model and the disturbance, respectively. It is assumed
that µ ranges on a given known compact set, P ⊂ Rp. For
future use, we let Wµ(s) := C(µ)(sI−A(µ))−1B(µ) denote
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the transfer function of system (1). System (1) is assumed
to be internally stable, robustly with respect to µ ∈ P:

Assumption 1.1: There exist constants a1, a2 > 0 such
that the parameterized family Px : Rp → Rr×r of solutions
of the Lyapunov equation Px(µ)A(µ) +AT (µ)Px(µ) = −I
satisfies a1I ≤ Px(µ) ≤ a2I for all µ ∈ P . /

The sinusoidal disturbance in (2) can be represented as the
output of an exosystem of the form

ω̇ = Sω, ω(0) = ω0 = ψ ∈ R2

d = Γω (3)

where S =

(
0 ω?

−ω? 0

)
, Γ = (1 0). As a consequence,

the original problem is cast into the framework of output
regulation [4], [6], with the additional assumption of internal
stability of the plant model:

Problem 1: (Output Regulation Problem) For system (1),
design a dynamic output-feedback controller of the form

ξ̇ = fa(ξ, y) , ξ(0) = ξ0 ∈ Rm

d̂ = ha(ξ, y), (4)

with fa(·, ·) : Rm × R 7→ Rm and ha(·, ·) : Rm × R 7→ R,
such that the trajectories of the closed-loop system (1), (3)
and (4) originating from all initial conditions x0 ∈ Rr, ω0 ∈
R2 and ξ0 ∈ X , where X ⊂ Rm is a set to be determined,
are bounded and satisfy limt→∞ y(t) = 0 for all µ ∈ P . /

Necessary and sufficient conditions of solution of Problem 1
have been known for a long time [5]–[7]. Specialized to the
case of SISO systems, these conditions are hereby assumed:

Assumption 1.2: (i) System (1) is controllable and observ-
able for any µ ∈ P; (ii) Over the range of frequencies of
interest, Wµ(jω?) 6= 0 for all µ ∈ P .

Early work in the realm of adaptive feedforward con-
trol (AFC) assume knowledge of Re{Wµ(jω?)} and
Im{Wµ(jω?)} as a prerequisite for the controller design [1],
[8]–[10], such a condition is usually termed an SPR-like
condition. Subsequent works have attempted an adaptive
estimation of said quantities within AFC schemes [11],
[12]; however, issues related to asymptotic convergence and
interaction with the plant dynamics were left open. The
recent contribution [13], has shown that given the knowledge
of either sign Re{Wµ(jω?)} or sign Im{Wµ(jω?)}, one or
both of the two following dynamic feedback controllers with
d̂ = ω̂1 solves the Problem 1 for sufficient small values of
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Fig. 1. Multi-Controller set up for output regulation problem.

the controller gain k > 0:{
˙̂ω1 = ω?ω̂2 − ksign Re{Wµ(jω?)}y
˙̂ω2 = −ω?ω̂1

(5)

{
˙̂ω1 = ω?ω̂2

˙̂ω2 = −ω?ω̂1 − ksign Im{Wµ(jω?)}y
(6)

In [14], the authors have proposed an adaptive control
scheme that completely removes the necessity of knowing a
priori the sign of the real and imaginary parts of Wµ(jω?).
The controller in [14] is characterized by a relatively high
dimensionality, due to the necessity to employ a multiple
model adaptive control scheme. In this paper, we propose an
alternative design, where multiple-model adaptive techniques
are replaced by switching mechanisms among fixed con-
trollers. Several different switching strategies are proposed,
within a common baseline control architecture. It is shown
that the proposed approach removes some of the pitfalls of
the multiple-model adaptive controller of [14], albeit still
requiring a relatively large-dimensional state space for the
overall controller.

The paper is organized as follows: The structure of the
multi-controller employed in this paper is given in Section II.
In Section III, a brief overview of the switching strategies
relevant to the approach pursued in this paper is presented,
based on the lucid exposition found in [15]. The analysis
of the proposed design is presented in Section IV, whereas
a comparative simulation study is reported in Section V.
Concluding remarks are offered in Section VI.

Notation: We denote with ‖ · ‖ both the Euclidean vector
norm and the corresponding induced matrix norm.

II. STATE-SHARING MULTI-CONTROLLER

The overall control architecture, depicted in Fig.1, fol-
lows the general paradigm of state-shared multi-controllers
proposed by Morse [15] [16]. The control signal applied
to the plant is d̂(t) := d̂η(t)(t), where η : [0,∞) 7→ I is
a piecewise-constant switching signal taking values in the
index set of the family of the candidate controllers I :=
{1, 2, · · · , n}. The system that generates the switching signal
is referred to as the supervisory system. In the architecture
of Fig. 1, the candidate controllers Ci, i ∈ I, are selected as

˙̂wi = Sŵi − kϑ̂iy , ŵi(0) = ŵi0

d̂i = Γŵi , i ∈ I (7)

where ϑ̂i is a constant estimate of the plant response
at the frequency of excitation, ϑ(µ) :=

(
ϑ1 ϑ2

)T
=(

Re{Wµ(jω?)} Im{Wµ(jω?)}
)T

. The parameter ϑ ∈ R2 is
unknown, but assumed to range in a known set. Specifically,
let the set Θ ⊂ R2 be the annular region defined, for given
real numbers 0 < δ1 < δ2, as

Θ :=
{
ϑ ∈ R2 | δ21 ≤ ϑ21 + ϑ22 ≤ δ22

}
(8)

and consider the following assumption:
Assumption 2.1: The unknown parameter vector ϑ(µ) sat-

isfies ϑ(µ) ∈ intΘ for all µ ∈ P . /

It is noted that the set Θ is not convex. The family of the
candidate controllers is designed in such a way that ϑ̂i ∈ Θ
for all i ∈ I, and there exists at least one controller Cj , j ∈ I
with parameter estimate ϑ̂j satisfying

||ϑ̂j − ϑ|| ≤ ρ, (9)

where ρ is a constant to be selected. In the following sections,
it will be shown that, for an appropriate choice of ρ and
k, (9) ensures that there exists a subset of the family of
the candidate controllers, with index set denoted by I? that
solves the output regulation problem for any µ ∈ P .

To reduce the dimension of the overall controller, a dif-
ferent parameterization of the controller is first employed by
way of the coordinate change ŵic := T ic ŵ

i, i ∈ I, where

T ic :=
1

||ϑ̂i||

(
ϑ̂i1 −ϑ̂i2
ϑ̂i2 ϑ̂i1

)
and ϑ̂ij , j = 1, 2 represents the j-th element of the vector
ϑ̂i. This yields the set of state-sharing controllers [15]
(equivalent to (7))

˙̂wc = Sŵc − kGcy , ŵc(0) = ŵc0 ∈ R2

d̂i = θ̂iT ŵc , i ∈ I (10)

with Gc = ΓT and θ̂i =
(
ϑ̂i1 −ϑ̂i2

)T
. Since each member

of (10) has the same structure of either (5) or (6), the
existence of a controller that solves the problem is guaranteed
for a suitable value of k. Also, note that (10) reduces
the dimension of the controller from 3n to 2 + n for a
single frequency. Clearly, Assumption 2.1 holds for the re-
parameterized vector θ :=

(
ϑ̂i1 − ϑ̂i2

)T
, whereas condition

(9) needs to be revised for the re-parameterized estimates θ̂i.
Remark 2.1: While the multi-controller (10) is used for

the implementation of the algorithm, we sometimes refer to
its equivalent form for the ease of analysis (7).
The control problem is thus reformulated as follows:

Problem 2: (Switching Logic Design Problem) For sys-
tem (1), (3) and (10), design a supervisor that generates
a suitable switching signal η with a selection for k > 0
and ρ > 0 such that trajectories of the closed-loop system
originating from any x0 ∈ Rr, ω0 ∈ R2 and ω̂c0 ∈ R2 are
bounded and satisfy limt→∞ y(t) = 0 for all µ ∈ P . /
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Fig. 3. Flowchart of the scheduling function Σσ in Fig. 2

III. SWITCHING LOGIC

This section presents the development of the supervisor
system in Fig. 1 by using three different switching logics:
Pre-routed, Hysteresis and Dwell-time switching [15], [17].

A. Non-estimator-based Supervisor: Pre-routed Switching

The non-estimator-based supervisor is the cascade con-
nection of a scheduling logic Σσ and a routing function
β(·) : {1, 2, 3, · · · ,+∞} 7→ I, as shown in Fig. 2. The
output σ(·) : [0,+∞) 7→ Z+ is a piecewise-constant signal
to be determined. The routing function β(·) is constructed
to fulfill the following revisitation property [15]:

Property 3.1 (Revisitation Property): For any q ∈ I and
any i ∈ N, there exists an integer j ≥ i at which β(j) = q.
Essentially, along the pre-routed path β(σ) each candi-
date controller is revisited infinitely often. Here, we define
β(σ) := mod(σ, n) + 1. The flow chart of the scheduling
logic Σσ is given in Fig. 3, where τD is a predefined time
constant. During the first τD time units after a switch is
initiated, τ is increased form 0 to τD, while J(t) evolves
according to

J̇(t) = (y(t))2. (11)

At the end of this interval of time, the timer τ is turned off
and JP is set to be equal to the present value of J . So long
as J(t) remains smaller or equal than σJP , J(t) is updated
continuously according to (11). If and when J(t) > σJP , σ
is incremented by 1, meanwhile τ, J and JP are set to zero,
and the entire process is repeated. Note that, thanks to τD,
infinitely fast switching is avoided and the solutions to the
differential equations involved exist and are unique.

B. Estimator-based Supervisor

Alternative switching strategies considered herein (hys-
teresis and dwell-time) require a multi-estimator controller
architecture as shown in Fig. 4. In this scheme, ΣS represents
the switching logic, whose function is to determine η based
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Fig. 4. Estimator-based supervisor system.
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on Ji, i ∈ I. Following [14], let Π(µ) ∈ Rr×2 be the unique
solution of the Sylvester equation Π(µ)S = A(µ)Π(µ) +
B(µ)Γ and change coordinates in (1) and (7) as ζ := ŵη−w
and z := x−Π(µ)ζ to obtain

ż = A(µ)z + kΠ(µ)ϑ̂ηy , z(0) = z0 ∈ Rr

ζ̇ = Sζ − kϑ̂ηy , ζ(0) = ζ0 ∈ R2

y = C(µ)z + ϑT (µ)ζ , (12)

where ϑT(µ)=C(µ)Π(µ). To define the performance index
for each candidate controller, we design the adaptive observer

˙̂
ζ = Sζ̂ − kϑ̂ηy − εϑ̂η(ϑ̂ηT ζ̂ − y) , ζ̂(0) = ζ̂0 ∈ R2

ŷi = ϑ̂iT ζ̂ , i ∈ I (13)

where ε ∈ R>0. For each i ∈ I, the performance signal
generator Σi

J is defined as J̇i = −λJi+(ỹi)2 , with Ji(0) =
Ji0, ỹ := ŷi − y and λ ∈ R>0 is a forgetting factor. Given
Ji, the design of the supervisor system is completed by the
selection of a suitable switching logic ΣS . In what follows,
we give a brief account of the two switching strategies.

1) Hysteresis Switching [17]: The mechanism behind
hysteresis switching is shown in Fig. 5. Let h ∈ R>0,
called the hysteresis constant, be given. Assume that that
at certain time tn, the value of η(tn) switches to some
j ∈ I. Then the value of η is kept constant until the time
tn+1 ≥ tn when (1 + h) min

i∈I
{(Ji(tn+1)} < Jj(tn+1), at

which point η(tn+1) is set as η(tn+1) = arg min
i∈I
{Ji(tn+1)}.

Repeating the above steps, a piecewise-constant signal η is
generated, which is continuous from the right. The selection
Ji0 > 0 avoids infinitely fast switching in the initialization
of the algorithm. Possible non-uniqueness in the selection
of arg min

i∈I
{Ji(tn+1)} is resolved by an arbitrary assignment

among the available choices.
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2) Dwell Time Switching [18]: the mechanism is il-
lustrated in Fig.6. Let τD > 0 be a chosen dwell-time
constant, and assume that at a time tn, η switches to
some j ∈ I. The value of η is then kept constant until
a time tn+1 ≥ tn occurs such that tn+1 − tn ≥ τD
and min

i∈I
{(Ji(tn+1)} < Jj(tn+1). At that point, η(tn+1)

is set as η(tn+1) = arg min
i∈I
{Ji(tn+1)}. Similarly to the

hysteresis switching, when arg min is not unique, η can be
arbitrarily selected among those available choices. τD avoids
the occurrence of infinitely fast switching.

IV. STABILITY ANALYSIS

In this section, we provide a concise treatment of the sta-
bility and convergence analysis for the multi-controller (10)
(equivalently, (7)) for each of the considered switching logic.
To begin, we establish properties of a certain Lyapunov func-
tion candidate that are instrumental in the ensuing analysis.
Details are given in [14].

Property 4.1: There exist a scalar k̄ > 0 and constants
0 < c1 < c2 ≤ c3 such that the solution Po : (ϑ, k) 7→ R2×2

of the parameterized family of Lyapunov equations

Po
[
S−k ϑϑT

]
+
[
S−k ϑϑT

]T
Pok) = −k ϑTϑI (14)

satisfies c1I ≤ Po(ϑ, k) ≤ c2I and ‖Po(ϑ, k)‖ ≤ c3 for all
(ϑ, k) ∈ Θ × [0, k̄].

Let the time sequence {Tn}Nn=1 denote the instants at which
switching takes place, and consider in any time interval t ∈
[Tn−1, Tn) the LTV system (12), which can be seen as the
feedback interconnection of the two linear systems :

Σ1 : ζ̇ =
[
S − k ϑϑT

]
ζ − kϑ̃ηϑT ζ − kϑ̂ην1, y1 = θT ζ

Σ2 : ż = Az + kΠθ̂ηCz + kΠθ̂η ν2, y2 = Cz

with the interconnection structure ν1 = y2, ν2 = y1 and
ϑ̃η := ϑ̂η − ϑ. For each system Σi, i = 1, 2, the following
intermediate results hold, due to the fact that there exists at
least one candidate controller with θ̂i verifying (9):

Lemma 4.2: There exist scalars γ?1 > 0, ρ? > 0 and k?1 ∈
(0, k̄] such that system Σ1 is strictly dissipative with respect
to the supply rate q1(ν1, η1) = γ?1

2|ν1|2 − |y1|2 for all k ∈
(0, k?1) and ||ϑ̃η|| ≤ ρ?, with quadratic, positive definite and
decrescent storage function V1(ζ) = 2k−1ζTPo(θ, k)ζ. /

Lemma 4.3: There exist scalars γ?2 > 0 and k?2 ∈ R>0

such that Σ2 is strictly dissipative with respect to the supply
rate q2(ν2, η2) = k2γ?2

2|ν2|2 − |y2|2 for all k ∈ (0, k?2),
with quadratic and positive definite storage function V2(z) =
zTPx(µ)z. /

The proofs of the lemmas follow from elementary Lyapunov
arguments. It is worth noticing that, since the interconnected
system is globally Lipschitz uniformly in t, solutions exist
uniquely on [0,∞).

Non-estimator based controller

Next, we establish the stability property of the overall
system with the non-estimator based switching mechanism.

Theorem 4.4: Given system (1), there exist scalars k? ∈
R>0 and ρ? ∈ R>0 such that, for all the state-sharing mulit
controller (10) with k ∈ (0, k?) and ρ ∈ (0, ρ?), the non-
estimator based supervisor system described in Section III-A
solves the problem defined in Problem 2.

Proof: Applying Lemmas 4.2 – 4.3 and combining
the L2 gains of the single subsystems, Letting k? :=
min{k?1 , k?2 , (γ?1γ?2)−1}, it follows that system (12) is a
small-gain interconnection (with respect to the L2-norm) for
all k ∈ (0, k?). Since ρ ∈ (0, ρ?), there exists a subset of the
family of the candidate controllers, with index set denoted
by I?, whose members solve the output regulation problem.
This implies that y ∈ L2 if η ∈ I?. Assume that at t = Tm
η(t) switches to some q ∈ I?. As shown in [15, Section
4.2], there exists an integer σ̄(q) > 0, which depends only
on the parameters of the controller, satisfying

J(t) =

∫ t

Tm

(y(τ))2dτ ≤ σ̄(q)

∫ Tm+τD

Tm

(y(τ))2dτ (15)

for all t ∈ [Tm, Tm+1). Resorting to the revisitation Property
3.1, and due to the fact that σ will increment by 1 after
each switch, there always exists an instant Tm at which
σ(Tm) > σ̄(q). This indicates that no more switching will
occur beyond this point and Tm+1 = +∞. Consequently,
limt→∞ y(t) = 0.

Estimator-based controllers

For the estimator-based supervisor system, the dynamics
of the observation error, ζ̃ := ζ̂ − ζ, are given by

˙̃
ζ = (S − εϑ̂ηϑ̂ηT )ζ̃ − εϑ̂η(ϑ̃ηT ζ − C(µ)z) (16)

Resorting to Property 4.1, one can verify that there ex-
ists a positive definite symmetric matrix-valued function
Pe : (ϑ̂η, ε) 7→ R2×2 solving the parametrized family of

Lyapunov equations Pe

[
S− εϑ̂ηϑ̂ηT

]
+
[
S−εϑ̂ηϑ̂ηT

]T
Pe =

−ε ϑ̂ηT ϑ̂ηI. Over any time interval t ∈ [Tn−1, Tn), the
overall system can be written in the following form

ξ̇ = F (k, ε, ϑ̂η)ξ +Hθũη, y = Cpξ (17)

with state ξ :=
(
ζT zT ζ̃T

)T
and input error ũη := ϑ̃ηT ζ.

In (17), H is a constant matrix of suitable dimension, and
Cp = [ϑT , C(µ), 0, 0] ∈ Rr+4. Using arguments similar
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Fig. 7. System response using the pre-routed switching mechanism
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Fig. 8. System response using the hysteresis switching mechanism

to those employed in the proof of Theorem 4.4, it can
be verified that F (k, ε, ϑ̂η) is a Hurwitz matrix for any
k ∈ (0, k?) and ||ϑ̃η|| ≤ ρ?.

The estimator-based switching scheme consists in mon-
itoring the performance indexes at each instant. After a
switch has occurred, a period called waiting time of length
τmin is allowed to elapse before the next switch can take
place. The waiting time is essential to prevent arbitrarily
fast switching. Note that the waiting time for the dwell-time
switching is equal to τD, whereas for the hysteresis switching
the waiting time is proportional to the hysteresis constant h.
The following theorem establishes the stability properties of
the closed-loop system with estimator-based switching logic:

Theorem 4.5: For the system (17) and the switching logic
described in Section III-B, there exist positive numbers
τs, k?, ρ? and a function ρs(µ, τmin) > 0 such that if
the waiting time τmin satisfies τmin ∈ (0, τs) and ρ ≤
min{ρ?, ρs(µ, τmin)}, then the trajectories of the closed-
loop system originating from any initial conditions x0 ∈ Rr,
ω0 ∈ R2, ω̂0 ∈ R2 and ζ̂0 ∈ R2 are bounded and satisfy
limt→∞ y(t) = 0 for all µ ∈ P and k ∈ (0, k?).
The proof is carried out by contradiction and can be found
in [19]. Given τs, one can accordingly choose the waiting
time τmin, then select τD = τmin for the dwell-time logic
and a sufficiently small h for the hysteresis switching such
that the condition τmin ∈ (0, τs) is verified.

V. ILLUSTRATIVE EXAMPLE

In this section, we provide a simulation study to show
the effectiveness of the proposed algorithms and com-
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Fig. 9. System response using the dwell-time switching mechanism
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Fig. 10. System response with additional input noise: Pre-routed switching

pare the performance of the three different switching log-
ics. Consider the stable non-minimum phase plant model
W (s) = 2(s−1)

s2+2s+5 , and let the disturbance signal be given
by d(t) = 2 sin(2t). The frequency response of the plant
at the frequency of excitation yields the parameter vector
θ = (0.8235,−0.7059)T . The family of the candidate
controllers are chosen as I := {1, 2, 3, 4} with corresponding
parameter estimates : θ̂1 = (1, 0)T , θ̂2 = (0,−1)T , θ̂3 =
(−1, 0)T , θ̂4 = (0, 1)T . Note that the considered family
corresponds to four different controllers of the type proposed
in [13]. To examine the worst case scenario, we choose
the third controller as the initial controller, whose parameter
estimate is located at the furthest location from the true value.
The gain parameters for all three switching mechanisms are
k = 0.5, τD = 1, h = 0.35, ε = 0.1, λ = 1e− 3.

The time history of the plant output and that of the
switching signal are reported in Fig. 7 through Fig. 9
for each of the three switching logic. It is observed that
the proposed multiple controller with all three switching
mechanisms succeed in cancelling the periodic disturbance
with comparable convergence speed and transient behavior.
It is seen that each switching logic is capable of selecting the
most appropriate controller (θ̂1 in this case). It is noted that
the hysteresis switching approach can be tuned to achieve
a faster response; however, the tuning parameters have been
purposefully selected to enforce a similar convergence speed
for all three systems to facilitate a comparative analysis.

Next, the robustness of the switching mechanisms is tested
by adding additive noise at the plant input. Specifically,
the sinusoidal disturbance is replaced by the signal d(t) =
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Fig. 11. System response with additional input noise: Dwell-time switching
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Fig. 12. System response with additional input noise: Hysteresis switching

2 sin(2t) + n(t), where n(t) is uniformly distributed in
[−2, 2]. Note that this is a stringent test, as the magnitude of
the noise is comparable to that of the sinusoidal signal. The
same selection of controller parameters has been adopted
for the simulations. As seen in Fig. 10 and Fig. 11, the
behavior the pre-routed and dwell-time switching controller
has worsened considerably due to the effect of the input
noise, especially for the pre-routed scheme. On the other
hand, the hysteresis-based switching method demonstrates
better robustness properties.

VI. CONCLUDING REMARKS

A state-sharing multi-controller architecture has been pro-
posed to overcome the necessity of knowing the parameters
related to the frequency response of the stabilized plant
(or their sign) in the adaptive feedforward approach to
the harmonic disturbance rejection problem. The rationale
behind the method is to design a sufficient large number of
multiple model-based controllers such that there exist models
with constant parameter estimates that are sufficiently close
to the unknown parameter vector of the plant. Then, using a
suitable performance criterion and proper switching logic,
one can eventually find the most appropriate model, and
consequently activate the corresponding controller.

The obvious drawback of the algorithm is its low effi-
ciency due to the possible high dimension of the multiple
models, notwithstanding the reduction allowed by using a
state-shared technique. While in the single harmonic case
the order of these controllers compares very favorably with
the order of the multiple-model adaptive controller proposed
in [14], this advantage disappears quickly in a more general

case when multiple harmonics are considered. At this point
it is unclear whether the switching strategies proposed here
are advantageous from the dimensionality standpoint versus
a multi-frequency version of the adaptive controller proposed
in [14]. It appears that a judicious combination of the method
proposed in this paper with the multiple-model adaptive
control of [14] is perhaps the winning strategy to obtain a
“universal” adaptive feedforward regulator with the smallest
possible dimension. This avenue is currently being pursed
and extended to the case of multiple harmonics.
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