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Is autophagy an elective strategy to protect neurons 
from dysregulated cholesterol metabolism?

Introduction
Apoptosis and autophagy are both considered forms of pro-
grammed cell death. They actually represent the main cellu-
lar processes to respond to an external damage. Indeed, both 
mechanisms allow to eliminate damaged cells and organelles 
in a “physiological” way. Also necroptosis, that shares some 
typical features of apoptosis leads to the rapid demolition of 
cellular structures and organelles after activation of catabolic 
enzymes.

All these mechanisms of programmed cell death are 
fundamental to maintain the homeostasis of tissues. As an 
example, during developments, programmed cell death al-
lows the cells to form the correct architecture of tissues and 
organs (Meier et al., 2000) and, in particular, autophagy, can 
predicts which parts of the cytoplasm and organelles should 
be blocked and directed to lysosomes for degradation.

The functional relationship between apoptosis and auto-
phagy is complex because in many conditions, autophagy 
is a process of adaptation to stress that protects against cell 
death; other times, however, autophagy becomes an alterna-
tive way of cell death (Maiuri et al., 2007).

Recent evidences have identified the alterations in the bal-
ance between apoptosis and autophagy as the causes of the 
pathogenesis of various neurodegenerative diseases and in 
particular the interest is focused on the cellular responses 
caused by alterations in the metabolism of cholesterol as a 

cause triggering the disequilibrium (Marcuzzi et al., 2015; Mi-
ettinen and Bjorklund, 2016; Suárez-Rivero et al., 2018). Cho-
lesterol is a lipidic macro-molecule fundamental to ensure 
the homeostasis of the organism. It plays an essential role in 
the construction of cell membranes, in the production of hor-
mones and vitamin D and it is an essential component of the 
central nervous system and peripheral nervous system (Zhang 
and Liu, 2015). About 25% of all the human body’s choles-
terol is contained in the brain, even though it represents only 
2% of body weight. Cholesterol is a fundamental constituent 
of cell membranes, in which together with the phospholipids 
it forms the lipid leaf that regulates the imbibition of the cell 
and the transport of the liposoluble molecules (Pfrieger and 
Ungerer, 2011). It is also present in the mitochondrial mem-
brane and in the endoplasmic reticulum structures.

The supply of cholesterol depends on the balance between 
dietary intake and de novo synthesis. The liver distributes 
cholesterol to other organs by lipoproteins. However, blood-
brain barrier does not allow the passage from the blood-
stream to the brain of the cholesterol-containing lipoprotein 
complexes and thus the brain supply of cholesterol depends 
almost only on de novo synthesis: 99% of brain cholesterol is 
contained in non-esterified form (Lim et al., 2016; Moutinho 
et al., 2017). During embryogenesis and the first years of life, 
the cells responsible for the synthesis of cerebral cholesterol 
are neurons. Subsequently, in adulthood, when the processes 
of myelination and cerebral maturation are terminated, the 
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neurons become the main “users” of cholesterol, demanding 
its synthesis to glial cells, in particular to microglia, astro-
cytes and, to a lesser extent, oligodendrocytes.

Brain cholesterol is abundant in myelin, where it is in-
volved in synaptic mechanisms. Moreover, this lipid is an 
essential component of neuronal cell membranes, involved 
in the maturation process of the central nervous system, in 
synaptogenesis, in signal transduction processes and in ve-
sicular traffic.

As for monogenic disorders of the cholesterol (such as 
mevalonate kinase deficiency, Smith-Lemni-Opitz disease, 
Niemann-Pick disease), also in several neurodegenerative 
disease (such as Parkinson’s disease, multiple sclerosis, Alz-
heimer’s disease) recent evidences link the pathogenesis to 
alteration in autophagy (Moloudizargari et al., 2017; Cerri 
and Blandini, 2018; Obergasteiger et al., 2018). Different in 
vitro models of diseases reproduce the defective synthesis 
or regulation of cholesterol and the following reduction of 
oxysterols, which may be in part responsible for the neuro-
degeneration that characterizes these pathologies (Jira, 2013; 
Marcuzzi et al., 2015, 2018; Arenas et al., 2017).

Although clinically different, these disorders share the 
progressive accumulation of cellular materials as a patho-
genic mechanism impairing tissue and cell homeostasis and 
possibly leading to cell loss by apoptosis, necroptosis and 
neuronal inflammation. Conversely, a proper clearance of 
damaged cell components and aggregated proteins by auto-
phagy can preserve the viability and function of cells. Thus, 
both in monogenic that neurodegenerative diseases, phar-
macological approaches promoting effective autophagy may 
represent a possible therapeutic strategy to prevent neuronal 
cell loss and improve neurological function in these disor-
ders (Lim et al., 2016).

The articles used in this review were retrieved by replicat-
ing the following search terms. An electronic search of the 
Medline database for literature describing the role of dereg-
ulation of cholesterol associated to neuroinflammation from 
2003 to 2018 was performed using the following conditions: 
cholesterol (MeSH Terms) AND neuroinflammatio (MeSH 
Terms) OR neurons (MeSH Terms) OR central nervous 
system (MeSH Terms). The results were further screened by 
title and abstract to only present monogenic disorders and 
chronic disease associated to deregulation of cholesterol 
pathaway. Other multifactorial disease and other genetic dis-
ease articles were also excluded.

In addition, an electronic search of the Medline database 
for programmed cell death linked to these diseases was 
completed. This included publications prior to May, 2018, 
with the following search criteria: autophagy, apoptosis, 
necroptosis, pyroptosis, mitochondria. Subsequent search-
es were completed that were specifically relevant to each 
programmed cell death type discussed in this article. The 
articles that did not correspond to human models of selected 
disease were excluded.

Different Strategy to Respond to a Cellular 
Damage
Autophagy
The word autophagy was coined by Christian de Duve in 
1963, it derives from the Greek and means “eating himself” 
(Klionsky, 2008). Autophagy is a lysosomal catabolic pro-
cess, it is ubiquitous and evolutionarily conserved. Autoph-
agy is responsible for the degradation of damaged or aggre-
gated proteins and aged organelles, with the aim of clearance 
of damaged cellular compartments and recycling cytoplas-
mic contents (Ward et al., 2016; Giampieri et al., 2018). The 
process is stimulated in response to various kinds of cellular 
stress such as nutrient deprivation, oxidative stress, hor-
monal signals, shortage of growth factors, and accumulation 
of damaged proteins (Rusmini et al., 2018). The mechanism 
of autophagy requires the interaction of two main pathways: 
the first, regulated by a molecular platform that include the 
ULK (Unc-51-like autophagy-activating kinase) complex 
and the second, connected to the pathway of mammalian 
target of rapamycin (mTOR) and phosphatidylinositol 3-ki-
nase (Kim et al., 2011; Lazarus et al., 2015; Park et al., 2016; 
Singh et al., 2017). The entire process of autophagy involves 
many steps including formation and elongation of the iso-
lation membrane (phagophore), cargo loading (inclusion of 
proteins or organelles, such as damaged mitochondria), for-
mation of autophagosome and fusion with lysosome to form 
autolysosome (Shintani and Klionsky, 2004; Axe et al., 2008; 
Hayashi-Nishino et al., 2009; Tanida, 2011; Chan and Tang, 
2013; Wu et al., 2014).

Apoptosis 
Apoptosis is well known as a process of programmed cell 
death, also identified as a “suicide” of the cell. It differs from 
the “passive” mechanism of death, the necrosis, since apop-
tosis involves a complex and controlled series of molecular 
events requiring energy. Apoptosis is triggered by different 
stimuli, which can initiate the intrinsic, extrinsic or perfo-
rin/granzyme pathway that, anyway, drive the cell to death 
via caspase-3 (Kerr et al., 1972; Riedl and Shi, 2004). The 
extrinsic pathway is activated by the binding between death 
ligand and receptors (such as tumor necrosis factor receptor 
1 and tumor necrosis factor-α); this binding activates the 
signalling that brings to the activation of caspase-8 (initia-
tor caspase), which, in turn, cleaves and activates caspase-3 
(executioner caspase) (Beaudouin et al., 2013). Once activat-
ed, caspase-3 leads to the typical phenomena of apoptosis, 
including cell shrinking and condensation of chromatin, 
blebbing and formation of apoptotic bodies which allow a 
removal of the dead content without onset of inflammation 
(Mills et al., 1998; Croft et al., 2005; Iwasaki et al., 2013).
 
Necroptosis 
Apoptosis and necrosis are the better clarified mechanisms 
involved in cell death, but recently other subclasses of these 
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Figure 1 Link between cholesterol deregulation and programmed cell death mechanisms.
Chronic impaired cholesterol synthesis due to mutations in enzymes of the metabolic pathway, as occur in MKD or SLOS, causes a dysfunction of 
mitochondria. Organelles suffer from alterations of metabolism, mainly due to accumulation of ROS, that induce modifications of the morphology 
with shrunken shape and condensed cristae. Damaged mitochondria are usually removed by autophagy mechanisms, but accumulation of dam-
aged organelles or mutations in such mechanism (as occur in NPC) cause a failed clearance with further accumulation of damaged mitochondria. 
As effect of this accumulation, the cell is driven toward programmed cell death. Caspase 8 is recognized as a modulator of the different fates of the 
cell: its activation leads to apoptosis or pyroptosis via NLRP3 inflammosome formation; when inactive or partially activated, it allows the forma-
tion of necroptosome consisting in RIP1, RIP3 and MLKL complex. 7DHC: 7-Dehydrocholesterol; HMG CoA: β-hydroxy β-methylglutaryl-co-
enzyme A (HMG-CoA); MKD: mevalonate kinase deficiency; MLKL: mixed lineage kinase domain like pseudokinase; NLRP3: NACHT, LRR and 
PYD domains-containing protein 3; NPC: Niemann-Pick disease type C; RIP: receptor-interacting serine/threonine-protein kinase; ROS: reactive 
oxygen species; SLOS: Smith-Lemli-Opitz syndrome; TNF-α: tumor necrosis factor α; TNFR1: tumor necrosis factor receptor 1; IL: interleukin.

mechanisms have been identified (Davidovich et al., 2014). 
Among these, necroptosis has been recently associated to 
neurodegenerative disorders as a key mechanism worthy of 
being considered as a potential therapeutic target (Funakoshi 
et al., 2016; Zhang et al., 2017).

As the term itself suggests, necroptosis shares some fea-
tures of the necrosis associated to a highly regulated process 
seen in apoptosis. When apoptosis failed to be carried for-
ward, necroptosis will be engaged. Tumor necrosis factor-α 
is the main signal for necroptosis and it drives the pathways, 
shared with apoptosis and nuclear factor-kappa B signalling, 
which include the trimerization of the tumor necrosis factor 
receptor and the formation of the intracellular complex-I 
that involves TRADD (tumor necrosis factor receptor as-
sociated death domain protein) and the kinase receptor-in-
teracting protein (RIP)1. Complex-I recruits other factors, 
such as caspase-8, which initiates the apoptotic cascade. 
When caspase-8 resulted incompletely activated or blocked, 
the kinase RIP3 is recruited to form the necrosome, leading 
to the necroptotic cell death (Newton et al., 2014). The re-
cruitment of RIP3 causes the engagement and subsequent 
phosphorylation of the pseudokinase MLKL (mixed lineage 
kinase domain-like). Although the molecular mechanisms of 
RIP1, RIP3 and MLKL is not completely depicted, it is clear 

that the pathway of necrosome leads to some characteristic 
features of this programmed cell death: cell and organelles 
swelling with membrane rupture that results in the release of 
intracellular content and DAMPs (damage associated mo-
lecular patterns) (Moriwaki and Chan, 2016). This implies 
the activation of the immune system, as occur in necrosis.
 
Inherited Diseases Related to Cholesterol 
Metabolism
Genetic disorders with dysregulation of cholesterol metabo-
lism provide valuable models to study therapeutic approaches 
aimed at preventing neuronal dysfunction. Impaired choles-
terol metabolism can be caused either by enzymatic defects 
of the mevalonate pathway, as in the mevalonate kinase defi-
ciency and Smith-Lemli-Opitz syndrome, or by defects in the 
lysosome trafficking and function, as occurs in Niemann-Pick 
disease (Jira, 2013). These diseases show a very heterogeneous 
phenotypic spectrum but share various features of neuronal 
dysfunction (Figure 1).

Mevalonate kinase deficiency 
Mevalonate kinase deficiency is a rare metabolic and au-
toinflammatory disorder caused by mutation of the MVK 
(mevalonate kinase) gene (Muller and Freed, 2017). Caus-
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ative mutations result in reduced enzymatic activity of me-
valonate kinase, with accumulation of mevalonate, which 
can be found in plasma and urine during acute phases, and 
shortage of downstream compounds, including isoprenoid 
intermediates and sterols. The onset of the disease usually 
occurs in the first year of life and presents a continuum 
spectrum with different levels of severity, ranging from the 
milder form called hyperimmunoglobulinemia D (OMIM 
#260920) to the most severe form known as mevalonic ac-
iduria (OMIM #610377) (van der Burgh et al., 2013). Com-
mon symptoms includ periodic attacks of fever associated 
with systemic inflammatory symptoms. Patients with hyper-
immunoglobulinemia D present headaches, splenomegaly, 
adenopathy, pharyngitis, abdominal and musculoskeletal 
pain, while patients with mevalonic aciduria also present a 
significant psycho-motor and neurological involvement.

The most reliable hypothesis regarding the pathogenesis of 
mevalonate kinase deficiency is that its typical inflammatory 
phenotype is caused by the lack of pre-squalene isoprenoid 
intermediates, with reduced prenylation of the small GT-
Pases that would consequently lose their membrane localiza-
tion (van der Burgh et al., 2014). The final events lead to the 
activation of NLRP3 (NACHT, LRR and PYD domains-con-
taining protein 3)-inflammasome that triggers the process of 
pyroptosis with the secretion of the inflammatory cytokines 
(interleukin-1β, interleukin-6, tumor necrosis factor-α). 
Furthermore, the incorrect post-translational prenylation of 
the small GTPase (for example Ras, Rho and Rac), does not 
allow the formation of autophagosome, and therefore the 
mitophagy is damaged, with potential consequences on the 
neurological damage observed in the most severe forms of 
the disease (van der Burgh et al., 2013). Shortage of choles-
terol in immune cells may also play a role in some features 
of the disease, such as IgA and IgD hypergammaglobulin-
emia, due to reduced conversion to 25 hydroxycholesterol, a 
molecule affecting membrane function and antiviral defense 
(Simon, 2014). 

Smith-Lemli-Opitz syndrome  
The Smith-Lemli-Opitz syndrome (OMIM #270400) de-
scribed by Smith et al. (1964) is a congenital syndrome 
characterized by multiple anomaly and intellectual disabil-
ity caused by an inborn error of cholesterol metabolism. 
It is caused by genetic deficiency of 7-dehydrocholesterol 
(7DHC) reductase, encoded by DHCR7, that leads to toxic 
effects that can depend both on reduced synthesis of choles-
terol and total sterols and on the accumulation of 7DHC-de-
rived compounds (Nowaczyk and Irons, 2012; Ramachandra 
Rao et al., 2018).

The deficiency of cholesterol synthesis can account for a 
wide spectrum of clinical manifestations involving the ner-
vous system, which include prenatal and postnatal growth 
retardation, microcephaly, intellectual disability (Kelley and 
Hennekam, 2000).

The potential Smith-Lemli-Opitz syndrome therapy aims 
to prevent the formation or neutralization of the most toxic 
7DHC-derived oxysterols (Korade et al., 2010).

Experimental data show that Smith-Lemli-Opitz syn-
drome cells display an elevated autophagy activity, likely in 
response to the toxic effect of 7DHC accumulation resulting 
in excessive mitochondrial oxidative stress and activation 
of mitophagy (Saffari et al., 2017). However, in vitro studies 
have demonstrated that the accumulation of dysfunctional 
mitochondria is concomitant with a defective autophagic 
system which would interfere with the role of mitophagy 
to clear the defective proteins and organelles (Chang et al., 
2014). Thereby, the protective function of the autophagy is 
altered by the co-existence of dysfunctional mitochondria 
and impairment in the autophagy process (Chang et al., 
2014).

Niemann-Pick disease  
Niemann-Pick disease is a very severe rare genetic disorder, 
which belongs to the family of lysosomal storage diseases, 
a condition that affects many body systems. Patients with 
Niemann-Pick disease cannot metabolize cholesterol and 
other lipids properly, leading to abnormal accumulation of 
these substances in liver, spleen and other organs (Guo et 
al., 2016). 

Niemann-Pick disease presents a broad clinical spectrum, 
depending on the degree of defect in lipid trafficking. The 
onset can be at birth with a fatal disorder, or in children or 
even adults, with milder phenotypes characterized by pro-
gressive psychomotor impairment, in addition to liver and 
spleen enlargement. The defect of cholesterol trafficking to 
mitochondria is associated to mitochondrial dysfunction 
and impairment in antioxidant defense strategies. More-
over, besides the neurodegenerative aspect of the disease, 
Niemann-Pick disease phenotype implies systemic features 
since non-esterified cholesterol accumulate also in liver and 
spleen (Vanier, 1999, 2010; Patterson et al., 2012). Different 
genetic forms of Niemann-Pick disease are known and, in 
particular, Niemann-Pick disease type C (NPC) is caused by 
mutations in NPC1 (OMIM #257220, 95% of cases) (Carstea 
et al., 1993, 1997) and NPC2 genes (OMIM #607625, 5% 
of cases) (Naureckiene et al., 2000) resulting in functional 
defects of proteins with lysosomal localization (Torres et al., 
2017; Liu and Lieberman, 2018) that trigger an accumulation 
of non-degraded substrates that interferes with different cel-
lular functions (Sarkar et al., 2013). These molecular mech-
anisms are not fully elucidated yet, and a deepen knowledge 
of these processes is of crucial importance because each step 
of the pathogenetic cascade in Niemann-Pick disease may 
be a potential target of therapy (Schultz et al., 2018; Wang 
et al., 2018). Moreover, given the role of autophagy in the 
clearance of damaged cellular components, the impairment 
of autophagy itself can contribute in a vicious circle to lipid 
accumulation and cell injury (Platt et al., 2012; Osellame 
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and Duchen, 2014). The neuronal manifestations of NPC 
are related to a selective damage of neurons that have a 
stronger spontaneous activation of autophagy, if compared 
to systemic compartments (i.e., fibroblasts), and a block 
of autophagic progression leads to an exceptionally severe 
mitochondrial fragmentation. For this reason patients with 
NPC1 may benefits from the treatment with autophagy in-
hibitors (such as 3-methyladenine) or with drugs that mo-
bilize cholesterol from the lysosomal compartment (such as 
cyclodextrin) (Davidson et al., 2016).

Conclusions  
Mevalonate kinase deficiency, Smith-Lemli-Opitz syn-
drome and Niemann-Pick disease are monogenic disorders, 
extremely various as regard pathogenesis and molecular 
mechanisms of onset, but they share some features that 
can be useful to unravel possible therapeutic targets. First, 
the onset of these disorders is related with a dysfunctional 
metabolism of cholesterol; second, recent insights suggest 
that the dysfunctional cholesterol metabolism, at the basis 
of disease onset, is related to altered autophagy and other 
programmed cell death processes; third, all the diseases 
show an important involvement of the central nervous sys-
tem related to altered mechanisms of clearance because of 
impaired autophagy. Thus, autophagy could be a keystone 
in the treatment of this rare disorders. Indeed, nowadays, all 
these pathologies can benefit from only a small repertoire of 
therapeutics, and none of them are able to completely con-
trol the neuronal aspect of the disease. Therefore, it is essen-
tial to know the mechanisms that regulate neuronal loss, to 
evaluate the most suitable pharmacological treatments able 
to protect from neurodegeneration or prevent the effect of 
the extended activation of the inflammatory response.
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