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‘There is a pleasure in the pathless woods

There is a rapture on the lonely shore

There is society where none intrudes

By the deep Sea, and music in its roar:

I love not Man the less, but Nature more’

George Byron
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Abstract

Floods are one of the most devastating natural disasters, with strong impacts on

both society and economy. Flood hazard estimation is an essential tool for protecting

the population from floods both financially, via insurance policies, and physically,

via water management and engineering. In Europe, different kinds of flood maps

are usually produced with different methods by governments, regional agencies, or

insurance and re-insurance companies. In the last decades, however, new approaches

based on hydrological and hydraulical modelling emerged as viable, which allows for

a more robust and reproducible physically-based estimation of flood extent and water

level. In this work a multimodel approach has been adopted, with a hydrological

model driven by multiple sources of precipitation input data, generating discharge

data for a given region or basin for a long time period. The discharge is then fed

to a hydrodynamic model which produces of flood extents and, if necessary, other

variables such as flood depth or flow speed. Extreme value analysis is also used to

derive any Return Period value (ranging from 10 to 500 years) starting from a shorter

observational record, by assuming a given distribution for extreme events.

Over Italy, flood hazard has not yet been evaluated using a unified method. We

propose a methodology to simulate flood hazard for any return period, based on a

model chain comprised of three models: the Regional Climate Model RegCM, the

hydrological model CHyM and the hydraulical model CA2D. For the time being only

domains covering the complete Italian territory were simulated, but no limitation

is in place that would prevent this technique from being applied to any domain

worldwide, provided that the necessary input data is available.

In order to provide observed precipitation data as input to the hydrological model,

we created a new product called GRIPHO (GRidded Italian Precipitation Hourly

Observations), which consists of quality checked hourly precipitation observations

over the complete Italian territory. We validate GRIPHO against other state-of-the-art

precipitation datasets over Italy, showing good performance in reproducing both

mean and extreme precipitation: GRIPHO is comparable with the high resolution

ARCIS and EURO4M-APGD datasets in Northern Italy, and shows finer spatial details

and more consistent extremes than E-OBS in the rest of the domain.

Two regional climate simulations, one run in perfect boundary mode (with ERA-

Interim) and one a scenario simulation (driven with HadGEM, RCP8.5), are described

and validated over the Italian territory. Both simulations show good agreement with

observation in several precipitation and temperature metrics, for both extreme and

mean climate. The projected climate change signal is also evaluated, finding, on

average, increased extreme precipitation even in areas where mean precipitation

decreases.
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Three hydrological simulations, driven by both observations and regional climate

model outputs, are described. Validation is carried out against a set of discharge sta-

tions, finding generally good performance of the CHyM model for the regions where

observations are available. Using different metrics, we assess the future changes

in mean and extreme discharge for the Italian territory, finding strong increases in

possible flood proxies. In particular, mean discharge is projected to increase (de-

crease) in Northern Italy in winter (summer), which is directly linked to changes

in mean precipitation over the Po river basin. In winter and autumn, maximum

yearly discharges increase by 50% in several Italian regions, with summer and spring

showing more mixed results. 100-year Return Period discharges are projected to

increase over most of Italy by more than 100% by the end of the century. Similarly,

the frequency of exceedance of extreme discharge thresholds drastically increases in

the future scenario compared to the reference period, with changes for the 100-year

threshold exceeding 500% for several rivers in Italy, including the Po river.

Finally, we present preliminary results over the whole Italian territory for flood maps

for different Return Periods, as produced by a hydraulic model fed by simulated

discharge data. The resulting maps are compatible with the currently available

products obtained from regional environment agencies, but have the advantage of

being produced with a coherent, scientific methodology.
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Chapter 1

Introduction

1.1 Project objectives and overview

The aim of this thesis is to assess flood hazard over the complete Italian domain for

both the present day climate and for future projections. Due to the requirements of a

strictly physically-based reproducible scientific approach, a framework consisting

in a model chain of three tried-and-tested models, spanning climate, hydrology,

and hydraulics, was developed. This thesis thus describes a truly inter-disciplinary

approach to flood hazard modelling. The work described here was partially funded

by the Allianz Insurance Company.

In order to obtain a reliable representation of flood hazard, model calibration and

evaluation were performed using several observational datasets of precipitation,

discharge and flood extent. In particular, a new gridded hourly precipitation dataset

for the complete Italian territory was developed in conjunction with the University

of L’Aquila, Italy. The development of such dataset represents an important step in

the scientific process described in this thesis since, to our knowledge, no database

suitable for driving a high-resolution hourly hydrological model is currently available

over Italy. Both flood proxies consisting in several extreme discharge metrics and

simulated floods extents are analysed in this work.

1.1.1 Scientific significance and research questions

The impact of climate change on atmospheric Essential Climate Variables (ECVs),

such as temperature and precipitation, has been subject of several studies in the last

decades, and is relatively well-known. As detailed in section 1.3, under a business-

as-usual scenario, precipitation extremes are generally projected to increase both

in frequency and in intensity. However, how changes in atmospheric ECVs affect

derived variables is less clear, especially for extreme events at small spatial and

temporal scales. Flooding, in particular, is one archetype of extreme event which

might be significantly affected by changes in climate patterns, due to the simple fact

that increased extreme precipitation leads to increased flooding; the link between

precipitation and floods is not necessarily linear: due to the complexities derived
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from snow accumulation and melting, underground water flow and local channel

characteristics, the change in flood hazard might differ in pattern and intensity

compared to that of extreme precipitation. Assessing the spatial and temporal change

patterns of these two variables is a research topic of great interest, and one which

requires high resolution data to be able to decode the signal at small spatial scales.

In this work, we look not only at how these factors change in a climate scenario, but

also at how they are related to each other.

Flooding strongly affects society and economy, both on the large and small scales, and

flood hazard is increasingly taken into consideration by policymakers and companies,

which require up-to-date historical data and future projections. For this reason, the

interest in flood hazard studies has been soaring in the last decades, and recently

a new model chain approach has emerged as viable, at least on the continental

scale. Here, climate, hydrological and hydraulic models work in concert to provide

physically-based flood hazard projections for possible future scenarios. In this regard,

several studies improved the knowledge of the projected changes over large basins,

especially over Europe. These works, however, rarely offer enough insight over

future small scale flood hazards over specific areas, and studies focusing on changes

for any individual European country are quite rare. In fact, the model chain approach

is rarely employed for high resolution analysis due to the sheer size of the domains

and the resulting computing challenges. By focusing on a single country, however,

computational requirements become manageable, which allows the testing of this

methodology at unprecedented spatial and temporal scales.

Therefore, this thesis focuses on one specific region (Italy) with the aim of providing

high resolution, usable information to companies and policymakers alike. In this

sense, this work represents an advancement in large scale flood hazard projection

compared to previous studies, being the first application of the model chain approach

over a single European country.

In short, the main research questions addressed by this work are:

• Can a model chain of climate, hydrological and hydraulic models reliably

reproduce flood hazard at high resolution over the selected domain?

• How does climate change impact flood hazard over Italy, in terms of intensity,

frequency and seasonality?

• Is the change in flood hazard linearly connected with changes in precipitation

extremes, or are the spatial or temporal patterns different between the two?

1.1.2 The structure of this thesis

This thesis is structured in 6 chapters. In the upcoming sections of the current

chapter a general overview on flood risk, flood hazard and flood modelling is given,

including a discussion on the current knowledge of flood hazard in the study domain.

Chapter 2 details the different types of observational dataset used through this project,
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with particular attention to precipitation. A new hourly precipitation dataset over

Italy, named GRIPHO, is presented in chapter 3, where it is described and validated.

Chapter 4 describes the methodologies and models used to produce precipitation,

discharges and flood extents. The results of the simulations with the three models are

presented and discussed in chapter 5. Finally, chapter 6 gives a summary of the work

done and of the future prospects.

1.2 Flood hazard: an overview

Floods are some of the most devastating natural disasters, with severe negative

impacts on both the societal and economic scale. According to the Centre for Research

on the Epidemiology of Disasters, several thousand people are killed every year by

floods worldwide, with a yearly average of about 5700 deaths and 82.6 million people

affected in the period 2006–2015 (Guha-sapir et al., 2011). Flood-related damages, up

to $34 billion yearly, account for one third (Munich RE, 2000) to one quarter (Guha-

sapir et al., 2011) of the total disaster damage claimed worldwide, with damages

amounting to billion $15.45 in the USA alone in 2016. For Europe in particular, floods

have caused about billion e100 in damages in the period 1986–2006 (CEA, 2007).

For these reasons, flood forecasting and risk estimation are an essential tool for

protecting the population from flood-related damages both financially, via insurance

policies, and physically, via water management and engineering.

1.2.1 Flood types, risk and hazard

According to the European Union Floods Directive, a flood is defined by the ‘tem-

porary covering by water of land not normally covered by water’ (European Union

Floods Directive, 2007). Three main types of floods are usually recognised (see Kron,

2005), each having its own characteristics:

Storm surge Storm surges can occur when low pressure systems, strong winds

and/or high tides combine to cause high waters in coastal areas. This type of

floods is especially frequent in regions where strong cyclonic development can

take place.

Flash floods Flash floods are extremely fast floods that are characterised by a short

timescale, usually below 6 hours. They can be caused by very strong, sud-

den precipitation (especially in urban areas where waterways are severely

constrained) or by catastrophic events, such as dam failures and landslides.

River floods River floods, associated with unusually strong and persistent precip-

itation and snow melt, are instead characterised by a longer life cycle, up to

several days. They are usually caused by the gradual increase in river discharge,

to the point where water level overtops levees or overflows river banks. The

time scale of riverine floods is usually dependant on the size of the catchment.
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River floods are the only type of floods considered in this work.

The impact of floods on society can be evaluated statistically via the concepts of risk

and hazard. Despite being often used as interchangeable terms, risk and hazard have

very different meanings in scientific language. Risk is usually defined as the product

of the probability of an event happening (the hazard) with its possible consequences

(see e.g. De Moel et al., 2009; Kron, 2002; Merz et al., 2007). These can be further split

into two different aspects, exposure and coping factor, so that (IPCC, 2012):

RISK =

RETURN PERIOD
︷ ︸︸ ︷

HOW OFTEN
︸ ︷︷ ︸

HAZARD

×
EXPOSURE
︷ ︸︸ ︷

WHAT ×
COPING
︷ ︸︸ ︷

HOW
︸ ︷︷ ︸

CONSEQUENCES

Exposure refers to the amount and value of physical and societal goods at risk; the

coping factor instead relates to the capability of dealing with the effects of the event.

A very rich and populated area, for example, might have very high exposure to

flood damages (large population displaced and physical damage) but also very high

capacity to manage floods (thanks, for example, to well-devised evacuation plans

and physical protection infrastructure). Conversely, a poor region, in which damages

are going to be lower, might also have poorly implemented contingency plans and

infrastructure, resulting in more severe consequences.

While policymakers tend to focus the efforts of risk mitigation mainly towards the

reduction of exposure and improvements in the coping factor, in this thesis we are

primarily concerned with flood hazard, usually measured by its Return Period RP:

RP =
∆t + 1
Nevents

Statistically, the Return Period of any event can be considered as the inverse of the

probability that the event will occur in any year. As an example, a 100-year flood is a

flood that has a probability of occurring of 1% in any given year.

1.2.2 Methods of flood hazard estimation

Flood hazard can be assessed via proxies, such as the recurrence of extreme discharge

events, as well as by creating simulated flood maps. Different kinds of flood maps

are usually produced with different methods by governments, regional agencies, or

insurance and re-insurance companies. The resulting fragmentation often makes it

hard to distinguish between solid, scientifically-based approaches and less reliable

methods, especially since the level of uncertainty is rarely provided. Especially

in the case of private companies, the methods and input data used for obtaining

flood maps are often undisclosed, resulting in products that cannot be considered

scientifically-based and reproducible (De Moel et al., 2009).

Historically, flood hazard was estimated via the analysis of historical discharge

and flooding records and by surveying local people. The statistical analysis of
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these observations can however be misleading, as extreme floods are exceptionally

rare events and long observational periods, in excess of a few tens of years, have

little chance of being available. This major limitation can be partially addressed by

researching into documentary evidence of past floods (Kjeldsen et al., 2014; Reed,

2002), but these are often equally hard to come by and can be hard to properly

interpret.

In the last decades, however, new approaches based on hydrological and hydraulic

modelling emerged as viable (Alfieri et al., 2014; Barredo et al., 2007; Bell et al., 2007;

Dankers and Feyen, 2009; De Moel et al., 2009; Demir and Kisi, 2016; Feyen et al.,

2011; Merz et al., 2014; Paprotny et al., 2017; Rojas et al., 2012; Serinaldi and Kilsby,

2017; Van Alphen et al., 2009; Veijalainen et al., 2010). In this model chain approach, a

hydrological simulation, driven by precipitation data, generates discharge data for a

given region or basin for a long period of time; this discharge is then fed to a second

hydrodynamic model which reproduces hypothetical flood extents and, if necessary,

other variables such as flood depth or flow speed. In order to extend the analysis

to long Return Periods, extreme value analysis can be applied to the simulated

discharge, assuming a given distribution for extreme events and performing a fit

over the available data. This model chain approach has the advantage of being very

flexible, potentially requiring precipitation data instead of discharge data, which are

generally less readily available. Additionally, this technique can work on virtually

any domain including ungauged ones, if precipitation data from large scale datasets

is used as input. This opens the door for multi-regional and cross-catchment analysis.

Of course, there are downsides to this approach too: a large amount of observational

data, for calibration and evaluation, is still advisable (the larger, the better); moreover,

having a model working off another model’s output, in what constitutes an offline

model chain, can make the estimation of the uncertainty of the final output more

difficult.

As stated, uncertainties arise from the driving data, from the model configurations

and choice, and from insufficiently precise description of the physical phenomena

object of investigation. In the case of flood hazard estimation, one more important

source of uncertainty is the generally followed assumption that flood defences and

river levees and banks will not fail; additionally, for heavily managed rivers, water

management can reduce flood hazard by diverting additional water to reservoirs

(Alfieri et al., 2016; Huntjens et al., 2010, see e.g. ), other rivers, or agricultural areas.

As is the case for most similar studies (Alfieri et al., 2014, see e.g.), water management

was not taken into consideration in this work.

1.2.3 Different kinds of flood maps

As highlighted in the previous section, the generic term ‘flood maps’ can refer to

several different products, from historical “flooded point” references, to extreme
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discharge estimations, to economic risk maps. De Moel et al. (2009) gives an overview

of 6 different types (see figure 1.1):

A) Flooded points in historical records

B) Flooded area probability, each year, for different Return Periods (10, 100 and

500 years)

C) Flooded area water depth for a given Return Period

D) Qualitative flood danger, usually calculated as a combination of Return Period,

depth, flow speed or other factors

E) Qualitative flood risk, including information on population density and other

societal variables

F) Quantitative flood risk, showing information on direct economic damage

In this thesis work the focus is on producing Return Period and flood depth maps,

which are the variables usually necessary for modelling flood impact and thus re-

quired by policymakers, modellers and insurance companies. Extreme discharge and

precipitation are also analysed as proxies for floods.

1.3 Past, present and future of extreme climatological and hy-

drological events

In the last century little to no change in average river runoff occurred for unmanaged

rivers (Dai, 2016; Dai et al., 2009), and despite few studies indicating an increase in

observed extreme streamflows and river flooding (Mallakpour and Villarini, 2015;

Stevens et al., 2016), these results can vary wildly from region to region (see e.g. Do

et al., 2017). Due to uncertainties in both the driving and the hydrological models

(Donnelly et al., 2017; Gosling et al., 2017), there is no general agreement on the

observed changes (Hall et al., 2014; Kundzewicz, 2012; Kundzewicz et al., 2010;

Robson, 2002). In Europe, recent changes in flood timings in winter and spring have

been highlighted by Blöschl et al. (2017), although the spatial variability of the signal

is high, with ‘earlier spring snowmelt floods in northeastern Europe, later winter

floods around the North Sea and parts of the Mediterranean coast owing to delayed

winter storms, and earlier winter floods in western Europe caused by earlier soil

moisture maxima’.

Summing up the observed trends in flood hazard, the IPCC Fifth Assessment Report

(Jiménez Cisneros et al., 2014, section 3.2.7) states: ‘There is low confidence, due

to limited evidence, that anthropogenic climate change has affected the frequency

and magnitude of floods at global scale (Kundzewicz et al., 2013). The strength

of the evidence is limited mainly by lack of long-term records from unmanaged

catchments.’.
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FIGURE 1.1: A depiction of 6 different flood map types, from De Moel
et al. (2009), Figure 2. Refer to section 1.2.3 for description of the

panels.
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The Earth is currently undergoing a relatively rapid warming period which is, accord-

ing to climate scientists, primarily linked to anthropogenic activity (Anderegg et al.,

2010; IPCC WG1, 2013). Climate change affects all aspects of the atmospheric system,

including the events which are usually associated with floods, such as extremely

strong or prolonged periods of rain. Increases in heavy precipitations are more

correlated with the total amount of moisture in the air (growing by approximately

7% ◦C−1 according to the Clausius-Clapeyron equation) than with changes in mean

precipitation (Allen and Ingram, 2002), so that increases in extreme rainfall might

happen even in regions with decreasing total precipitation.

In the Fifth Assessment Report (IPCC WG1, 2013, section 12.4.5.5), the IPCC Working

Group 1 stated regarding extreme precipitation events:

Return Periods are projected to be reduced by about 10 to 20% ◦C−1 over

the most of the mid-latitude land masses with larger reductions over

wet tropical regions (Kharin et al., 2013). Hence, extreme precipitation

events will very likely be more intense and more frequent in these re-

gions in a warmer climate. Reductions in return values (or equivalently,

increases in Return Period) are confined to convergent oceanic regions

where circulation changes have reduced the available water vapour.

This projected increase in extreme precipitation events all over the globe (see figure 1.2

for a map of changes) and in Europe in particular is supported by numerous studies

(e.g. Christensen and Christensen, 2004; Durman et al., 2001; Fowler and Kilsby, 2003;

Frei et al., 2006; Gobiet et al., 2014; Goubanova and Li, 2007; Klein Tank and Können,

2003; Pal et al., 2004; Púčik et al., 2017; Rajczak et al., 2013; Roudier et al., 2016;

Tramblay and Somot, 2018) showing high likelihood of increasing frequency and/or

intensity of such events before the end of the century, even in regions where the total

precipitation is supposed to decrease. As a consequence of the projected increment in

extreme precipitation events, however, floods and flood-related damages are destined

to rise in most areas of the world, despite improving flood protection infrastructures.

The increase in risk is primarily due to higher exposure in flood-prone areas, which

are on average very attractive for socioeconomic human activities (Alfieri et al., 2016;

Barredo, 2009; Hirabayashi and Kanae, 2009; Kron, 2005; Mitchell, 2003; Munich RE,

2015 and IPCC, 2014, section 3.4.8).

Jongman et al. (2012) calculated that the total exposure to flood disasters, which is

reported at $27 to 46 T globally in 2010, is going to more than triple (to $80 to 158 T)

in 2050. In Europe, according to some studies ( Alfieri et al., 2015b; Forzieri et al.,

2017; Rojas et al., 2013 and Valentini et al., 2014, section 23.3.1.2), the current annual

population affected is expected to significantly increase by the 2080s, with annual

damages growing up to 20-fold, if no change occurs in the current climate mitigation

politics. Forzieri et al. (2017) specifically estimates casualties related to river flood

events to increase by 54% (106 more lives claimed per year) under the A1B emission

scenario (IPCC, 2000). Multiple sectors are going to be affected, with worsening
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(a) (b)

FIGURE 1.2: Annual maximum daily precipitation changes in an en-
semble median of all CMIP5 models, according to IPCC WG1 (2013,

section 12.4.5.5, figure 12.27).
In panel a, percent change in 20-year return values per 1 ◦C of local

warming, 2081–2100 relative to the 1986–2005 reference period.
In panel b, the average 2081–2100 Return Period (in years) corres-
ponding to the typical 1986–2005 20-year return values; regions of no

change would have Return Periods of 20 years.

conditions in particular for electricity transport, road infrastructure and water and

waste management (Forzieri et al., 2018).

As stated, the strongest driver for increasing flood risk is high exposure primarily due

to growing population density. The other main factor, flood hazard, is also generally

projected to increase according to the majority of studies, with the recently published

IPCC Special Report “Global Warming of 1.5 ◦C” stating (IPCC, 2018, section 3.3.5): ‘A

global warming of 1.5°C would also lead to an expansion of the global land area with

significant increases in runoff (medium confidence) as well as to an increase in flood

hazard in some regions (medium confidence) compared to present day conditions.’

The projections are, however, very dependant on the region (or even basin) of interest,

as local flood-related climatic characteristic can differ greatly from one location to

another. Global studies (Alfieri et al., 2017; Arnell and Gosling, 2016; Dankers et al.,

2014; Hirabayashi et al., 2008, 2013; Milly et al., 2002), for example, generally agree in

finding increasing likelihood of flood events in the future for Southern Asia, Western

Russia, Canada and the Northern Andes, but some highlight decreasing likelihood for

most of Europe and the Amazon Basin (see e.g. Arnell and Gosling (2016), Dankers

et al. (2014) and Hirabayashi et al. (2013) and figure 1.3). The resolution of such

large scale studies, however, is usually not fine enough to resolve the details of some

river catchments (Gosling et al., 2011; Whitfield, 2012) especially for European basins,

which are typically small in size.

Smaller scale studies over the European continent (e.g. Alfieri et al., 2015a; Alfieri

et al., 2018; Dankers and Feyen, 2009; Feyen et al., 2011; Prudhomme et al., 2003)

generally find increasing flood hazard in most basins, especially in terms of higher

frequency more than of higher magnitude (Alfieri et al., 2015a; Lehner et al., 2006),

but large regional variations can be found due to different climatic characteristics.
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FIGURE 1.3: Future world flood hazard map: 1971–2000 to 2071–2100
change as estimated by Hirabayashi et al. (2013), using 11 Coupled
Model Intercomparison Project Phase 5 (CMIP5) models under the
RCP8.5 (“business-as-usual”) scenario. Figure taken from IPCC (2014,

section 3.4.8).

As can be expected, the changes generally show strong seasonality, with increased

discharges and frequency of flood events mostly concentrating in autumn and winter,

and shifts in the flood regimes usually towards earlier and stronger winter floods

(e.g. Arheimer and Lindström, 2015; Coppola et al., 2014; Middelkoop et al., 2001).

1.4 Flood hazard in the study domain

This thesis focuses its attention specifically on flood hazard in Italy. The region is

frequently affected by severe inundation events, with 584 reported casualties, 50

missing, 462 injured and 168254 evacuees in the last 50 years due to flooding only

(excluding flood-induced landslides, see Istituto di Ricerca per la Protezione Idrolo-

gica and Consiglio Nazionale delle Ricerche, 2018). Observed heavy precipitation

trends in the last century indicate a general decrease of total precipitation, but an

increase in extreme events (Brunetti, 2004; Brunetti et al., 2001, 2004). Recent flood

events with several casualties, caused primarily by the inundation include floods in

Polesine (1951, 84 casualties), Salerno (1954, 318), Tuscany (1966, 34), Piedmont (1994,

70), Campania (1998, 159), Piedmont (2000, 34), Liguria (2011, 13), Sardinia (2014, 18)

and Tuscany (2017, 9).
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Figure 1.4, obtained from the Polaris 2017 Periodic Report on Landslide and Flood

Risk for the Italian Population (Istituto di Ricerca per la Protezione Idrologica and Con-

siglio Nazionale delle Ricerche, 2018), shows the human costs (in terms of casualties

and evacuees) in the period 1967–2016. The most affected regions is the North-West,

but catastrophic flood events occur all over Italy, having severely affected 920 out of

7982 municipalities in the last 50 years.

Despite the significant impact on the area, scientific studies concerning flood hazard

estimation over the complete Italian domain are few: most works focus specifically

on examining limited areas or basins (Di Salvo et al., 2017; Marchesini et al., 2016;

Morelli et al., 2014; Sole et al., 2008), specific past events (Amadio et al., 2013; Marchi

et al., 2010; Masoero et al., 2013; Norbiato et al., 2007; Santo et al., 2012), or target

flood risk rather than hazard (Albano et al., 2017; Dottori et al., 2016; Salvati et al.,

2010).

Some Italian regional protection agencies and basin authorities provide open-access

flood hazard maps for their specific basin of interest. The Po River Basin Authority

(AdbPo), for example, provides flood hazard maps for the whole Po basin (figure 1.5).

These maps, however, have a few limitations for scientific work: they are rarely

provided with accompanying vector data, the methodology is generally undisclosed,

and maps from neighbouring agencies often do not agree with each other. Addition-

ally, maps are often provided in numerous, separated image files with small extents,

such as the maps provided by the Tevere River Basin Authority (ABTevere), which

are comprised of 100 extremely small areas (figure 1.6). This fragmentation, while

useful for small-scale studies, makes large-scale analysis much more difficult.

A national, complete, and scientifically-based homogenised flood hazard map over

Italy does not exist. The only nation-wide flood hazard product available is the report

Dissesto idrogeologico in Italia: pericolosità e indicatori di rischio (Trigila et al., 2018) from

ISPRA, the Italian Superior Institute for the Ambient Protection and Research, in

which the data from the single local agencies (often computed using undisclosed

techniques) is merged and provided as vector data. Fluvial floods and storm surges

are both considered, but no distinction is made in the output product.

Figures 1.7a to 1.7c show the ISPRA maps for high, medium and low hazard. The most

affected areas are the Romagna, Valle D’Aosta, Piedmont, Lombardy and Tuscany

regions, while the hazard is significantly lower towards the South and North-East of

Italy. It is hard to discern whether regional differences (such as the increased risk in

Valle D’Aosta compared to the neighbouring Piedmont or the relatively low hazard

in the North-Eastern regions) come from real physical and meteorological diversities

or from discrepancies in methodology and underlying data. Figure 1.7d shows

the population count under a medium hazard category, grouped by municipality.

Neighbourhoods of major cities, such as Turin, Milan, Venice and Rome, concentrate

a large number of people in areas at risk of flooding, highlighting the importance,

in these areas, of suitable emergency procedures and plans based on reliable data.
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[%] Hazard N-W N-E Centre South Islands
Whole
Italy

Population
High 2.9 7.1 3.6 2.2 1.2 3.5

Medium 5.9 29.1 10.9 3.9 1.8 10.4
Low 15.1 28.2 23.5 5.1 4.3 15.7

Families
High 3.0 7.1 3.5 2.2 1.2 3.6

Medium 6.1 29.6 10.9 3.8 1.9 10.8
Low 15.3 28.7 23.7 5.0 4.4 16.3

Buildings
High 2.9 6.6 3.8 2.4 1.3 3.4

Medium 5.9 25.8 10.7 3.4 2.0 9.3
Low 16.0 25.7 22.1 4.6 4.2 14.1

Companies
High 3.8 7.3 4.0 2.2 1.6 4.1

Medium 7.1 29.9 13.2 4.4 2.4 12.4
Low 16.3 27.7 28.5 5.8 5.2 18.4

Cultural
heritage

High 9.8 11.9 3.2 2.5 2.4 6.8
Medium 14.2 33.7 8.4 3.3 3.0 15.3

Low 23.7 34.4 14.0 4.0 4.8 19.4

TABLE 1.1: Estimated percentage of population, families, buildings,
companies and cultural heritage at three flood hazard levels, divided
by Italian macroregion. High hazard corresponds to an estimated
Return Period of 20–50 years; medium to 100–200 years; low to “ex-

tremely rare events”. Macroregions are defined as follows:
N-W: Piedmont, Valle D’Aosta, Lombardy and Liguria; N-E: Trentino–
Alto Adige, Veneto, Friuli–Venezia Giulia, Emilia–Romagna; Centre:
Tuscany, Umbria, Marche, Lazio; South: Abruzzo, Molise, Campania,

Puglia, Basilicata, Campania; Islands: Sicily, Sardinia.
Data from Trigila et al. (2018).

ISPRA estimates (table 1.1) 10.4% of the population, 12.4% of the companies, 15.3% of

the cultural heritage and 8.4% of the surface area of Italy to be currently at medium

risk of inundation (Return Period of 100 to 200 years), with higher values in the North

and significantly lower hazard in the South and Isles.

Although no official national study on the topic is available, in the future flood hazard

is generally projected to increase in the region by several European-wide studies, in

contrast with the results of some global studies (see figure 1.3), albeit strong differ-

ences exist among the available studies. Most works focus on estimating the change

in flood hazard by focusing on the intensity or recurrence time of extreme discharges,

most often Q100, the typical 100 year Return Period discharge.

Rojas et al. (2012) uses an ensemble of 12 bias-corrected simulations from the EN-

SEMBLES project to drive a single calibrated hydrological model (LISFLOOD) over all

of Europe. Due to the large spatial extent, the study resolution is relatively low (5 km),

thus reproducing only major rivers, which are not necessarily those contributing





Chapter 1. Introduction 16

the most to flood hazard. The results (figure 1.8) generally indicate an increase in

100 year Return Period peak discharges (and thus flood intensity) under a climate

change scenario (SRES A1B), when comparing the future (2071–2100) to the control

period (1961–1990). The change is, however, strongly dependent on the model and

the region of interest. In Italy, the rivers showing the greatest increase (and agreement

between the 12 simulations) are those located in the North and fed by the Alpine

range; changes in the Centre and South (both positive and negative) show lower

agreement between models.

In a similar study, Thober et al. (2018) employs a multi-model ensemble of three

hydrological models forced by five Global Climate Models under three different

warming levels (1.5, 2 and 3 ◦C). The climate change results are generally in agree-

ment with (Rojas et al., 2012) (despite some differences, especially in Scandinavia and

the Baltic Republics), finding reduced flood hazard for Eastern Europe and Mediter-

ranean regions, but increased hazard for North Italy (figure 1.9).

Dankers and Feyen (2009) and Feyen et al. (2011) show more conflicting results for

Italy, with only the Po river seemingly subject to increased extreme peak discharges.

In some studies (Alfieri et al., 2015a; Alfieri et al., 2015b; Donnelly et al., 2017; Roudier

et al., 2016), on the other hand, a more uniform increase in high runoff events all over

Western and Southern Europe and the Mediterranean is found (see e.g. figures 1.11

and 1.10). In these studies, the whole Italian territory shows a marked increase in

flood-related variables, although the change in the Northern basins remains more

evident.

The spatial (usually 5 km) and temporal (daily) resolution of the cited works is

generally too low to capture the details of smaller river basins: the maps reported

in these studies in fact only show major rivers in Italy. In this thesis work, which

focuses only on the Italian domain, higher resolutions are possible while keeping the

computational costs reasonable.
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(a)

(b)

FIGURE 1.8: Change in extreme discharge (Q100: peak annual dis-
charge with 100 year Return Period), extracted from Rojas et al. (2012,
figures 5 and 6). In the upper panels, the number of models agreeing
in a decrease (left) or increase (right) in Q100 discharges by the end
of the century, compared to the control period. In the lower panels,
ensemble average of the change (left) and p-value of the signal (right).
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FIGURE 1.11: Change in high runoff (mean annual maximum runoff),
extracted from Donnelly et al. (2017, figure 4). The four columns
represent the four warming scenarios considered: +1.5 ◦C with RCP
2.6 and 4.5, +2 ◦C with RCP 2.6 and 4.5, +2 ◦C with RCP 4.5 and 8.5,

+3 ◦C with RCP 4.5 and 8.5.
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Chapter 2

Observational data

The main observational data used within this thesis are of four different kinds:

precipitation, discharge, flood extent and terrain elevation. Due to the different

peculiarities of each variable, they are treated separately in the following sections.

Section 2.1 will give an overview of precipitation datasets available over the study

domain, including a brief analysis of precipitation uncertainty employing eight

different datasets (section 2.1.4). Sections 2.2 and 2.3 will describe the available

discharge and flood observations, while in section 2.4 the choice of Digital Elevation

Model for the subsequent hydrological and hydraulic simulations will be discussed.

2.1 Precipitation observations

Precipitation is probably the most difficult of all atmospheric climate variables to

measure reliably, due to the huge spatio-temporal variability (especially in summer)

and to the physical difficulty of setting up and maintaining a dense network of high-

maintenance sensors. In our multi-model approach (see section 4.3), however, it is

vital that the precipitation input data is of sufficient quality and resolution to provide

information even about very local, fast thunderstorms, which can trigger flooding

in smaller catchments. Moreover, it is important to analyse the longest time series

possible, so that rare events, which by definition have a long Return Period, can be

properly represented.

In this project, precipitation observations are utilised for calibration, for validation

and for driving the hydrological model CHyM (see section 4.2).

2.1.1 Types of precipitation measurements

Precipitation measurements come from essentially three distinct sources:

In-situ Station observations are widely regarded to be the most reliable source of

information for precipitation observations (Hughes, 2006). Several types of rain

gauges exist, with the most common type of instrument being the tipping bucket

rain gauge (figure 2.1). It consists of a small bucket of fixed size which fills up

with precipitation and mechanically tips and empties, triggering a counting
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switch, every (usually) 0.1 mm of rain. The buckets are usually heated, so

that solid precipitation (snow, ice) is melted and correctly registered. Having

moving parts means that most in-situ precipitation stations require constant

and attentive maintenance, as ill-maintained sensors can easily get stuck (see

figure 3.5a for an example). In general, in-situ precipitation measurements

suffer greatly from the problem of gauge undercatch (see section 2.1.2), in

which, due to strong winds, a smaller amount of precipitation than expected

enters the measuring funnel. In-situ data usually offer the longest time-series of

all precipitation measurements techniques, with some datasets reconstructing

rainfall back to the 19th century: the HISTALP project (Auer et al., 2007),

for example, provides rainfall on the Alpine range using data as old as the

1800; (Brunetti et al., 2006) goes as far as 1750 with monthly precipitation data

over Italy. Uncertainties in in-situ data are mostly related with low station

density and choice of gridding technique, so that different datasets can have

significantly different climatology, especially in areas of low data availability

(Prein and Gobiet, 2017). Additional details on station-based precipitation

datasets, such as E-OBS and EURO4M-APGD, can be found in section 2.1.3.

Ground radar Available since the mid ’80s, ground radar observations are obtained

from data on the reflectivity of the atmosphere. Rain and water vapour reflect

radar waves, and the analysis of this effect allows for estimation of precipita-

tion and wind speed; however, the displayed data can differ from the rainfall

actually measured at the surface by in-situ gauges, especially in areas of com-

plex topography, where the radio waves can easily be shielded or reflected by

mountain ranges (Germann et al., 2006; Wüest et al., 2010). On the other hand,

the time and space resolution of radar-based datasets cannot be matched by

in-situ data. Overall, radar observations are primarily used for weather pre-

diction and analysis and for studying specific events (e.g. Bertato et al., 2003),

but are sometimes also used as a tool for filling or extending other kinds of

measurements.

Satellite Space-borne precipitation measurements (see Kidd and Levizzani, 2011,

for an overview) have been available since the mid ’70s and have been on the

rise in both availability and reliability ever since. Much like radars, they scan

the atmosphere with several frequencies (microwave and radio), and interpret

the reflected waves according to specific algorithms. Their main advantage is

the relatively high resolution and very large coverage, being available even in

regions where no station or radar is in place. However, the physical limitations,

different measurement techniques and algorithms used to retrieve precipitation

from interferometry data introduce large uncertainties (Bartsotas et al., 2018;

Bytheway and Kummerow, 2013; Maggioni et al., 2016; Sarachi et al., 2015; Tian

and Peters-Lidard, 2010). Large advancements have occurred in satellite-based

precipitation measurements since the early days of remote sensing from space,
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FIGURE 2.1: A tipping bucket rain gauge, the most common type of
precipitation measuring instrument, with the buckets exposed.

and there is no doubt that this data source is essential for global datasets; it

is however generally found and agreed upon (Bowman, 2005; Gao and Liu,

2013; Prein and Gobiet, 2017; Rossi et al., 2017) that in regions where in-situ

data is available (such as most of Europe) station-based datasets still provide

more reliable data. Examples of global satellite-based precipitation datasets are

PERSIANN, CMORPH, TRMM, GPCP and GPM (see table 2.1 for citations).

2.1.2 Gauge undercatch

The main source of uncertainty for in-situ precipitation observations is the phe-

nomenon of gauge undercatch. This term indicates the underestimation of precipita-

tion due to local turbulent effects around the gauge caused by the wind interacting

with the sides of the instrument, as seen in figure 2.2. Gauge undercatch is hard to

quantify, but it can severely impact the measurements of precipitation, especially for

solid precipitation in windy days. According to some studies, underestimation of

total precipitation can be as high as 30 to 40 % for some winter stations (Adam and

Lettenmaier, 2003; Isotta et al., 2014; Kochendorfer et al., 2017a), with peaks of 80% in

some cases (Kochendorfer et al., 2017b; Wolff et al., 2015). Shielded gauges, in which

the collector is partially shielded from the wind (see figure 2.3), reduce, but do not

eliminate this problem (Duchon and Essenberg, 2001).

Correcting precipitation datasets for gauge undercatch is possible, but detailed in-

formation about local station exposure and sensor type are necessary to perform

reasonable estimates (see e.g. Adler et al., 2018; Johansson, 2002; Mohr, 2009). In the

Norwegian observational dataset created by Mohr (2009), for example, the correction
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FIGURE 2.2: Wind velocity vectors around an unshielded gauge. Wind
blowing precipitation away from the collector is the main cause of

gauge undercatch. From Nešpor and Sevruk (1999).

method from Førland et al. (1996), is applied: each station is associated with an expos-

ure index, and a correction factor ranging from 1.02 to 1.8 (depending on precipitation

type and exposure) is applied. Observational datasets which are produced through

data assimilation via a meteorological model (see e.g. Landelius et al., 2016; Vidal

et al., 2010) often implicitly include correction factors.

Due to the complexity and variability of the datasets used through this thesis, and

especially for the dataset described in chapter 3, no attempt at correcting for gauge

undercatch was performed.

2.1.3 Precipitation datasets available over Italy

Table 2.1 lists some of the currently available gridded precipitation datasets cover-

ing the Italian territory. Two high-resolution, high-quality precipitation datasets for

the Alps and Northern Italy (EURO4M-APGD and ARCIS) are available for a long

observational period (38 and 55 years respectively); Central and Southern Italy, how-

ever, are only covered by European-wide and World-wide datasets, such as E-OBS,

CHIRPS and the HMR reanalysis. In section 2.1.4, a few of these datasets will be

compared.

Of those listed in table 2.1, only three high-resolution datasets provide sub-daily

accumulations (PERSIANN-CDR, GPM and the UERRA reanalysis); of these, the

PERSIANN-CDR reanalysis has been shown to perform poorly over Europe (Prein
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FIGURE 2.3: 7 different rain gauges. a) and b) are unshielded, the rest
show an array of different shielding methods. From Kochendorfer

et al. (2018).

and Gobiet, 2017), GPM is available only since 2014, and UERRA-HARMONIE is

a relatively new reanalysis which has so far seen little use and validation. The pre-

cipitation dataset described in chapter 3 thus represents, to the author’s knowledge,

the first attempt at creating a sub-daily precipitation dataset deriving from in-situ

observations specifically for the Italian territory.

2.1.4 Uncertainty in precipitation datasets

Due to low station density, gauge undercatch and homogenisation problems, precip-

itation datasets can show large differences between each other. In a study utilising

seven regional high-resolution datasets, two gauge-based European-wide datasets,

and seven global low-resolution datasets, Prein and Gobiet (2017) show large variabil-

ity between different products, both in terms of mean and extreme precipitation; with

correlations between different datasets sometimes lower than 0.5. Higher uncertain-

ties are found, as can be expected, for extreme events and on the short-term temporal

variability, while higher agreement is found on the shape of the annual cycle and on

inter-annual and spatial variability.

As a brief assessment of precipitation uncertainty over Italy, in this section eight

different daily precipitation datasets are compared under four different aspects: mean

and extreme precipitation, precipitation distribution (probability density function)

and annual cycle. The standard R95ptot and R99ptot indexes are used to assess ex-

treme precipitation. They represent, for each grid point, the percentage of the total

precipitation due to events higher than the 95th and 99th percentile of wet days
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Dataset name Period Spatial res. Data source

E-OBS 2000–2016 0.25° Station data
EURO4M-APGD 2000–2008 5 km Station data
HMR 2000–2013 5.5 km Reanalysis
ARCIS 2000–2015 ~ 5 km Station data
CHIRPS 2000–2016 0.05° Station data + satellite
CPC 2000–2016 0.5° Station data
CMORPH 2000–2016 0.25° Satellite
PERSIANN-CDR 2000–2016 0.25° Satellite

TABLE 2.2: List of datasets used in the analysis of daily precipitation
uncertainty carried over in section 2.1.4. At Italian latitudes, 0.25°
corresponds to about 20 km. See table 2.1 for additional details and

references.

respectively:

R95ptot =
∑PR>q95 PR

∑PR>1 mm d−1 PR
, (2.1)

where q95 is the 95th percentile of the daily precipitation PR for wet days.

Table 2.2 lists the eight datasets used for this analysis, with their respective time

period, data source and resolution; further datasets and indices to be included in

this study, such as drought metrics, are being considered for the final version of this

analysis (Fantini and Coppola, 2019, in preparation). Of the available datasets, only

ARCIS and EURO4M-APGD have a station density that can be considered dense

compared to other high-resolution regional datasets over Europe (see Fantini et al.,

2016; Prein and Gobiet, 2017). None of the station-based datasets considered in the

analysis is gauge-corrected. The Italian territory is split into four distinct regions:

North, Centre, South and Islands, which have distinct climatic characteristics. The

analysis periods, for all datasets, start from 2000 and go up to the latest available

data at the moment of this analysis. Since different remapping procedures can impact

negatively on data quality (Diaconescu et al., 2015), in order to minimise uncertainties

due to data manipulation all the datasets were analysed and plotted on their own

original grid.

Figure 2.4 shows the seasonal average precipitation for the eight datasets; the extent

of the four regions is highlighted in different colours in the maps. In Northern

Italy, the two datasets with the highest station density, ARCIS and EURO4M-APGD,

show similar patterns and precipitation intensities. Compared to these, the HMR

reanalysis overestimates SON precipitation in the North-Eastern Alpine region, while

consistently underestimating the precipitation in the Liguria region, which is an area

of strong cyclogenesis and one of the most rainy in Italy. E-OBS, while spatially

coherent with the high-resolution Northern datasets, cannot resolve the same fine

scale details and generally underestimates average precipitation in the Northern

region.

In Central and Southern Italy and in the Islands, no high-density station-based dataset
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is available (but the one which will be presented and validated in chapter 3), so the

E-OBS and HMR datasets represent the benchmark against which the other datasets

must perform. Here, the CPC and CHIRPS datasets show similar patterns, with

precipitation averages generally slightly above those of E-OBS, but in line with HMR.

A precipitation high point is found in Calabria in winter in HMR, CPC and CHIRPS,

but less in E-OBS. The CMORPH dataset shows particularly low precipitation in

the colder months over the whole peninsula, underestimating precipitation in all

seasons but JJA. PERSIANN-CDR, on the contrary, show extremely high precipitation

averages across the whole period, similarly to the findings of Prein and Gobiet (2017).

The annual cycle (figure 2.5) confirms the previous findings, with similar cycles across

the four regions for E-OBS, HMR, CHIRPS, CPC, ARCIS and EURO4M-APGD, but

extremely high precipitation for PERSIANN-CDR, with the opposite happening for

CMORPH.

The spatial distribution of extreme precipitation can be assessed by figures 2.6 and 2.7.

The three high resolution ARCIS, EURO4M-APGD and HMR datasets capture similar

spatial details and amount of extremes in the North, with HMR slightly underestimat-

ing. In the other regions, large variability is present: CHIRPS almost completely lacks

extremes, while CPC and PERSIANN-CDR show limited spatial variability across the

regions. CMORPH, on the other hand, presents spatial patterns that are completely

different from those obtained by the other products.

The Probability Density Functions of rainy days (figures 2.8 and 2.9) confirms the

ability of ARCIS and HMR, in the North, to reproduce precipitation extremes not

available in the other datasets. In the other regions, no clear picture seems to be

discernible from the PDF data, with CHIRPS, CMORPH and HMR generally showing

more intense extremes. In the South and in the Islands, E-OBS shows the least amount

of extremes, while CMORPH continues to show much stronger seasonal variations

compared to the other datasets.

These results show that the uncertainty associated with precipitation observations is

often large, especially when it comes to precipitation extremes. In this analysis, two

of the eight datasets considered (CMORPH and PERSIANN-CDR), both of which

solely based on satellite data, showed very large biases (one underestimating, one

overestimating) even in average precipitation, indicating that the performance of

satellite-based products is insufficient in this specific region. Additionally, gauge

undercatch is not taken into consideration in any of the station-based datasets em-

ployed in this brief analysis, thus uncertainty, especially for winter extreme events in

mountainous regions, might be very large. On the positive side, the two Northern

high-resolution datasets (EURO4M-APGD and ARCIS) show good agreement, with

the HMR European reanalysis also showing good performance for mean precipitation

(but a general underestimation of extremes compared to other datasets).
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FIGURE 2.4: Average precipitation for the datasets in table 2.2. The
four summarising regions for the annual cycle (figure 2.5) and the PDFs
(figures 2.8 and 2.9) are highlighted in green (North), red (Centre),

purple (South) and blue (Islands).



Chapter 2. Observational data 29

FIGURE 2.5: Annual cycle for average precipitation for the datasets in
table 2.2. The four summarising regions are highlighted in figures 2.4,

2.6 and 2.7.
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FIGURE 2.6: Extreme R95ptot precipitation for the datasets in table 2.2.
R95ptot represents the percentage of precipitation due to precipitation

events above the 95th percentile.
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FIGURE 2.7: As figure 2.6, but for R99ptot.
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2.2 Discharge observations

River discharge observations are necessary to evaluate the performance of hydro-

logical models. For a given river location, discharge is calculated from water level

observations assuming a given stage-discharge (or rating) curve (Braca, 2008), which

takes into account riverbed shape and water speed. Stage-discharge curves are ex-

tensively used in hydrology, but they necessitate constant updates due to the fact that

stream channels constantly change due to erosion, deposition of debris, vegetation

growth and presence of ice. As a consequence, despite being an irreplaceable tool,

discharge measurements can sometimes be somewhat unreliable, especially for high

flows (Di Baldassarre and Montanari, 2009).

In this thesis work, datasets of discharge from several sources are considered. Simil-

arly to the precipitation dataset exposed in chapter 3, three hourly discharge datasets

were provided by Prof. Marco Verdecchia1, from the University of L’Aquila; to these,

the standard European Water Archive (EWA, 2014), containing daily data from a col-

lection of sources over Europe, was added. Due to the low number of daily discharge

stations over Italy (only three according to the official reference2), the Global Runoff

Data Centre (GRDC) database was not selected for use in this study.

Table 2.3 shows information about the four available datasets, while figure 2.10 shows

the number of valid data years over Italy for each station, prior to any data checking.

The coverage of the Italian territory is not complete, with two regions (Veneto and

Puglia) being completely devoid of stations, and other areas (e.g. Trentino–Alto

Adige) where temporal station coverage is low, often less than five years. Some

stations even have no valid data at all. Station density and time availability are

highest in Central Italy.

It has to be stressed that, in many cases, station locations were found to be erroneous

(especially for the EWA dataset in Southern Italy); additionally, the time range with

available observations varies wildly not only from dataset to dataset, but also within

the same dataset. Data quality problems, ranging from stuck sensors (see e.g. fig-

ure 2.11) to extreme outliers, are present in all datasets.

For these reasons, when performing data analysis and validation, care has to be taken

to select only stations that have a sufficiently long time range, without any noticeable

systematic error. To this end, manual controls using several metrics (among which

interquartile range, standard deviation to mean ratio, frequency of most common

values, number of outliers) and comparison of nearby timeseries are carried out.

However, only the most conspicuous errors are guaranteed to be removed by this

procedure, and many inhomogeneities and suspicious timeseries remain in the data-

sets.

Similarly to all the other data sources used in this thesis, the four discharge datasets

1http://www.dsfc.univaq.it/it/ricercatori/44-verdecchia-marco.html
2ftp://ftp.bafg.de/pub/REFERATE/GRDC/website/grdc_referencestations_summary_

countries.pdf
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FIGURE 2.12: All areas in Italy affected by a flood event, as provided
by the Dartmouth Flood Observatory (DFO). Areas are coloured by

their DFO ID.

2013; Schlaffer et al., 2015; Smith, 1997; Westerhoff et al., 2013).

The Dartmouth Flood Observatory (DFO, G.R.Brakenridge, 2015), for example,

provides metadata for all major events worldwide from 1985 to present, includ-

ing shapefiles indicating affected areas. These are, however, extremely approximate

and do not help in the precise identification of flooded areas (see figure 2.12); addi-

tionally, only 37 events are reported in Italy in the period 1985–present, in comparison

with several hundred events listed by IRPI for the period 1967–present (figure 1.4).

The DFO also provides in-depth analysis for specific large events via the NASA-

supported Global Flood Monitoring System (GFMS). Figure 2.13, for example, shows

the November 2018 flooding in Northern Italy as detected by the DFO algorithms

from satellite data: comparing with reported flooding by news sources, only a small

part of the flooded areas in Northern Veneto and Liguria is included, and the Sicily

flash flooding that caused 9 casualties is not reported at all. For comparison, the

NASA NRT Global Flood Mission (Nigro et al., 2014) shows even less flooding for

the same period and area (figure 2.14).

Several challenges in flood mapping still need to be overcome in order to provide
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FIGURE 2.13: Flooded areas in Northern Italy for the Novem-
ber 2018 event, from the DFO archive (DFO event number 4699).
Blue is reference water extent, grey is maximum water extent
in the archive, and red is peak flooding for this event. Im-
age from http://floodobservatory.colorado.edu/Events/4699/

2018Italy4699.html.

reliable flood extent dataset for all major events. For example, small rivers often

cannot be mapped or are severely underestimated by satellites due to the shielding

effect of vegetation (Smith, 1997); algorithm details and calibration also add an

additional level of uncertainty which is often difficult to quantify (Stephens et al.,

2012).

Due to these challenges, the current focus of companies and research scientists seems

to be mainly on near-real-time flood monitoring, short-term forecasting and long-

term flood hazard mapping, rather than on validation of specific events. As such,

few detailed observations of flood events are available over the Italian territory; tools

such as the Aqueduct Global Flood Analyzer (Luo, 2015) from the World Resources

Institute, the Web Portal from DFO3 and the Global Surface Water Explorer (Pekel

et al., 2016) from the European Joint Research Centre focus mainly on long-term

flood hazard mapping and/or large scale events only. The Copernicus Global Flood

Awareness System (GLOFAS Alfieri et al., 2013), instead, provides daily flood extents

and short-term flood forecasts. The COSMO-SkyMed stellite constellation (Covello et

al., 2010) has been used for evaluation of specific flood events (see e.g. Pierdicca et al.,

2013; Pulvirenti et al., 2011; Refice et al., 2014), but the data availability seems to be

limited. In short, very little information is currently available to validate inundation

models against specific events over Italy: in this work, information from all of the

above sources was taken into account and used when possible, given the above

3https://diluvium.colorado.edu/arcgis/apps/Viewer/index.html?appid=

759d697577dd438ab7f2d48f605593d5
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FIGURE 2.14: Flooded areas (or absence thereof) in North-
Eastern Italy for the November 2018 event from the
MODIS NASA NRT Global Flood Mission . Image from
https://floodmap.modaps.eosdis.nasa.gov/getTile.php?

location=010E050N&day=305&year=2018&product=3.
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mentioned caveats.

2.4 Elevation observations

Elevation information for each location in the study area is necessary for the hydrolo-

gical (CHyM, section 4.2) and hydraulic (CA-2D, section 4.4) models: the former uses

elevation to reconstruct a realistic river network; the latter, instead, uses it to know

where and how water can propagate in case of flooding. For both of these applica-

tions, high vertical accuracy, proper river routing and high horizontal resolution are

necessary.

Satellite-based remote sensing techniques are the most common source of elevation

data over the whole globe. Several publicly available datasets, such as SRTM, ASTER,

TanDEM-X, GTOPO30 and AW3D30 use satellite sensing to infer terrain elevation

and provide world coverage at resolutions ranging from 30 m to 1 km. Due to the

nature of remote sensing via satellite, all of these datasets are affected by relatively

large errors in the elevation, with vertical accuracies often of the order of several tens

of meters. This makes them unsuitable for flood mapping especially of smaller basins

and in flatlands.

A possible alternative is represented by datasets obtained by scanning the Earth’s

surface via LiDAR-equipped planes: these datasets, albeit very accurate, are usually

very expensive for the end user (upwards of $10 km−2), especially if a large area is

required.

A third option for hydrologists and flood modellers is to use specifically conditioned

Digital Surface Models (the term is sometimes used interchangeably with Digital

Elevation Models, or DEMs) which include information on the position and depth of

rivers. This is the course taken within this thesis work.

2.4.1 The HydroSHEDS Digital Elevation Model

In this thesis, the HydroSHEDS4 dataset (Lehner et al., 2013; Lehner et al., 2008)

was selected to provide information not only about elevation data, but also river

network and river depth. HydroSHEDS is based on different versions of NASA’s

3 arc-second (about 90 m at the equator) SRTM satellite-based elevation data, with

several other datasets used for control and void filling. Being a DSM, and not a DTM

(Digital Terrain Model), HydroSHEDS, like most satellite-only products, is affected

by surface features such as buildings, major roadways and vegetation. The DEM is

hydrologically conditioned to reproduce river networks all over the globe using a

mixture of automatic and manual techniques. In particular, the following algorithms

are applied in order:

Deepening of open water surfaces Open waters such as lakes and oceans are deepened

to insure proper flow towards them.
4Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales
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Weeding of coastal zone Coastal areas are lowered to account for higher vegetation

height near the sea.

Stream burning Major river courses are carved into the surface to ensure proper

river flow. A 500 m buffer is also carved around rivers to avoid sudden el-

evation changes and shape a smoother transition between the rivers and the

surrounding areas.

Filtering Local filtering with a 3 × 3 kernel size to remove high points blocking the

flow path.

Molding of valley courses Additional local algorithm to identify valley direction,

using a 5 × 5 kernel.

Sink filling Filling of non-natural sinks which can impede river flow.

Carving through barriers Final step to ensure continuous flow through natural (e.g.

lakes) and man-made (e.g. dams) objects.

Second conditioning After the barrier carving procedure, second application of the

first six conditioning steps.

HydroSHEDS is particularly suited to the creation of a reliable river network for the

CHyM model (see section 4.2.1), resulting in higher accuracy compared to the default

300 m Italian DEM that comes with the model. Additionally, an advantage of using a

global DEM is that it is easy to extend the flood mapping procedure to any area of

the world, without the need to have any additional data requirement.

At the time of writing, the CHyM model is also being tested for running directly

on the HydroSHEDS river network, without any further conditioning procedure as

carried out by the model by default.

HydroSHEDS comes as ESRI binary .bil files, and was converted to appropriate

formats to use with our models (NetCDF for CHyM and ASCIIgrid for CA2D) using

GDAL’s gdal_translate tool (GDAL/OGR contributors, 2018).

2.4.2 Alternative elevation models

Several DEMs are publicly available under no fee for research use, both for specific

regions and with worldwide extent. Table 2.4 shows a non-comprehensive list of

commonly-used DEMs, with their availability, references and maximum resolution.

In figure 2.15 and 2.16, six of them are compared for a small (0.3°× 0.3°) mountainous

region in North-Eastern Italy, with reference to the Italian official PCN20 20 m DEM

(whose elevation is displayed in figure 2.15). The region of choice, centred around the

town of Belluno, includes deep valleys, a major lake towards the East and a large river

(for the standards of the region) flowing through from North towards South-West.

Table 2.5 shows mean, standard deviation, median and 5–95% quantile ranges for

the bias with the reference dataset. Large variations of up to several tens of meters
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FIGURE 2.15: Elevation of the Italian PCN DEM at 20 m resolution;
detail of a selected North-Eastern Italian region centred around the
town of Belluno. Rivers (dark blue) and lakes (bright blue) are from
the Interregional Centre for Information, Geographical and Statistical

Systems (CISIS) DBPrior10K project5.

can be found between the datasets (figure 2.16); additionally, one dataset (Nasa’s

SRTM) shows large no-data regions which would need to be filled in before usage

with a hydrological model was possible. The conditioned version of HydroSHEDS

is, on average, several meters deeper than the other datasets (18.4 m deeper than the

non-conditioned version), with a 5–95% bias quantile range of −86 to 29 m, the widest

among those considered. Carved flow paths are evident along the main course of the

river and in the largest lake.

In general, the choice of Digital Elevation Model must be driven by the project’s

requirements, and not by average bias. In this case, a reliable river network repres-

entation was paramount, leading us to settle with HydroSHEDS as terrain model

DEM Mean StdDev Q05 Median Q95

ASTER 3.9 30.1 -21 1 36
HydroSHEDS Void Filled 0.4 57.8 -52 0 51
HydroSHEDS VF + Cond. -16.4 59.7 -86 -11 29
JAXA AW3D30 5.0 19.6 -14 3 26
SRTM 4.7 14.1 -14 3 25
TINITALY/01 -0.6 14.1 -19.3 -0.6 17.7

TABLE 2.5: Statistics for the DEM comaparison of figure 2.16. All
values are in meters.
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FIGURE 2.16: Example comparison of 6 DEMs (see table 2.4) over a
small region in North-Eastern Italy centred around the town of Belluno.
Elevation biases are calculated with reference to the national PCN20
DEM displayed in figure 2.15. Red means the DEM is higher than
PCN20, green indicates the opposite. For the purpose of this example,
all grids were warped to a common 300 × 300 0.001° resolution grid
using bilinear resampling. Overlaid simplified rivers (dark blue) are
obtained from the Italian Superior Institute for the Ambient Protection
and Research (ISPRA) online catalogue SINAnet6; lakes (bright blue)

are the same as figure 2.15.
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of choice. Other global and regional elevation datasets were tested by attempting

to reconstruct a reasonable river network via the hydrological model CHyM (sec-

tion 4.2.1), but none allowed to reconstruct the rivers as well as the hydrologically

conditioned HydroSHEDS.
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Chapter 3

GRIPHO: developing an Italian

high-resolution hourly

precipitation dataset

In order to simulate flood hazard on the scale of a small catchment, high resolution

precipitation data is needed. This is because the time scale for floods in small areas

can be very short, due to the limited ability of small rivers to displace the large

amounts of water that can fall in a relatively brief timespan. While model output

can be easily obtained for this scope, observations provide a very important tool

for validation and evaluation of the methodology. Therefore, in this thesis project,

observations are used to drive some of the simulations described in the next chapter.

Most observational datasets over Italy and Europe are daily (see section 2.1.3 and

table 2.1), which implies that very rapid precipitation extremes, which often occur

in a few hours, are necessarily smoothed out when upscaled to a daily time scale.

Analysing these extremes on an hourly time scale has the potential to provide better

results for flood hazard analysis, especially for small catchments with a short water

residence time. For this reason, one of the objectives of this thesis work was the

creation of an hourly precipitation dataset that could serve as input to CETEMPS Hy-

drological Model (CHyM, Coppola et al., 2006; Tomassetti et al., 2005, see section 4.2

for details), the hydrological model of our choice, which is designed to easily digest

hourly data as input and has been doing so operationally for quite some time at the

CETEMPS Center of Excellence1.

We thus developed what can be considered, as far as we know, the first hourly pre-

cipitation database over Italy using exclusively in-situ precipitation data as input.

The dataset is named GRIPHO (GRidded Italian Precipitation Hourly Observations).

This chapter will outline the work undergone in analysing, cleaning, gridding and

validating GRIPHO. The resulting dataset is deemed of sufficient quality to be used

in this project.

1http://cetemps.aquila.infn.it/
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Later in the project, GRIPHO was used for driving the CHyM model simulations

(section 4.2) and to validate the RegCM simulations (section 4.1.4).

3.1 Original input data

The first challenge when developing such a dataset is collecting the data: not always

a single national agency can provide all the necessary information. Fragmentation of

data sources, different input formats and different levels of quality checks are the main

problems that need to be addressed. As previously mentioned, Italy lacks a national

repository for meteorological data: regional agencies each have their own station

network, data collection and cleaning procedures. Retrieving and homogenising all

the necessary information from all regional agencies can prove to be a difficult task.

In this case, the input data are provided by the CETEMPS Center of Excellence of

the University of L’Aquila, as part of an agreement with the International Centre for

Theoretical Physics. The dataset is the result of integration between different data

sources; observations from 3712 precipitation stations located in all of Italy over the

period from 2001 to 2016 are collected, validated and filtrated by different algorithms

and then provided as a collection of yearly time series. Using this input data, a

gridded hourly dataset was created and validated.

The input data is provided as yearly Fortran-style binary files. The time step is quarter-

hourly, and the unit of measure reportedly mm h−1. A single, separate metadata text

file contains the following fields for each station:

• Station number [int]

• Station name [char]

• Province [char]

• Municipality [char]

• Latitude [dbl]

• Longitude [dbl]

No information on station type, height, exposure or any other metadata is provided.

Due to the severe lack of metadata, correcting for gauge undercatch (see section 2.1.2)

is deemed too complex for the scope of this project.

Any value less than 0 is considered to be a filling value (most often, this is the case

with -10, -999 and -9999). The total size of the input database is about 3.9 GB for the

period 2001 to 2016. In absence of any additional information, the first timestep of

each yearly file is assumed to be at time January 1, 00:00:00 UTC, with the following

timesteps separated by 15 minutes each.
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3.1.1 Conversion to NetCDF

The first step for making use of this data is the conversion to a more user-friendly

format. NetCDF2 is chosen primarily due to its widespread use across all fields of

climate science and to its ease of use and metadata integration. All modern pro-

gramming languages offer one or more interfaces capable of reading self-describing

NetCDF data. Additionally, NetCDF offers advanced options such as transparent

compression and chunking, which can speed up reading and writing significantly.

The latter, chunking, is a netCDF-4 feature which allows to tune a dataset for faster

access along a specific dimension: this allows for two versions of the dataset to be

created as separate files, one that assures very fast reads for the complete time-series

of one single station, and one that optimised the reading of all station values for a

single time-step. The industry-standard CF conventions (Eaton et al., 2009) version

1.7 are followed for the storing of metadata inside the files, the total size of which

resulted to be around 650 MB.

3.1.2 Station spatial and temporal availability

Figure 3.1 shows the station distribution over the study area. The coverage of the

Italian territory is very complete, with an average density of one station per 9 × 9

km2, which is on par with most European high resolution observational datasets (see

section 2.1.3 and Prein and Gobiet, 2017, for details). The overall spatial distribution

is quite uniform over the complete Italian teritory, with generally lower density over

less climatologically complex areas, such as the Po Plain.

Figure 3.2 shows the height distribution of the dataset, with station height values

extracted from the HydroSHEDS void-filled Digital Elevation Model (Lehner et al.,

2013; Lehner et al., 2008, also see section 2.4) at 0.000 83° (about 90 m) resolution, as

opposed to the spatial distribution of all of the Italian territory. All elevations are well

represented in the dataset, except very high elevations (above 3000 m), which is to be

expected due to the difficulty in setting up and maintaining such stations. Such small

underrepresentation of very high elevations should not impact the precipitation field

in a noticeable way.

In figure 3.3, the number of available stations (stations whose value is not one of the

possible NaN values) is plotted over each timestep for the whole Italian territory.

Station availability grows significantly within the 16-year period, which implies

that the total station density is not constant. While a variable number of stations is

common for all station-based datasets (see for example Haylock et al., 2008, figure

2), in this case it is particularly evident, with the actual number of active stations

growing from about 500 in 2001 to about 2600 in 2012. Moreover, in some timesteps

(e.g. at the beginning of 2012) the number of stations falls momentarily close to zero

and little to no data is reported. In order to keep the dataset as close as possible to

2https://www.unidata.ucar.edu/software/netcdf/
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FIGURE 3.1: Station spatial distribution for the Italian in-situ hourly
precipitation dataset. All 3712 stations in the dataset are shown, re-

gardless of their temporal availability.

FIGURE 3.2: Station height distribution for the Italian in-situ hourly
precipitation dataset (red), compared to all of the Italian territory
(blue). Bin size is 120 m. Data from the HydroSHEDS void-filled

Digital Elevation Model (Lehner et al., 2013; Lehner et al., 2008).
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FIGURE 3.3: Timeseries of the number of available stations for each
timestep in the input data for the Italian in-situ dataset GRIPHO.

raw station data, in the final product these voids are not filled in with alternative

datasets or via interpolation, but are rather left as missing values.

Maps of the number of stations and valid timesteps per Italian region (figure 3.4)

show very low data availability for some regions, likely as a result of some regional

agencies providing only a few years of data to the original data collector. While some

regions provided 12 or even 13 years (Piemonte, Calabria) of data, one region (Sicily)

only has 3 valid years in total (figure 3.4b). When taking into account the total number

of timesteps and the station density (figure 3.4f), Liguria and Friuli–Venezia Giulia

come on top, with about 2000 valid values/km2, in contrast with Trentino–Alto Adige

and Sicily, both with less than 300 values/km2.

As result of this initial analysis a large variability in the data availability is evident.

Subsequent analysis (section 3.2) confirms the lack of station coverage for some

regions, especially in the early 2000s. Once again, due to the lack of suitable hourly

backup data for the whole period and region, these gaps are purposefully left in

GRIPHO without any attempt at filling them.

3.2 Data checking, flagging and cleaning

Due to the fragmented nature of the data, which comes from a plethora of different

regional agencies, the original data provider could not guarantee that any quality

control procedure or checks were performed on the station data. As a result, under-

standing which eventual problems affect the input data represents the first priority in

order to reduce the bias in the final product.

Several procedures are carried out in order to identify and remove errors and incon-

sistencies, such as:
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3.4: Analysis of station availability for the Italian in-situ
hourly precipitation dataset GRIPHO; refer to the titles for the contents

of each panel
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• analysing spatial and temporal distribution of the stations (figures 3.2 and 3.3),

also separated by region (figure 3.4);

• producing precipitation maps for each timestep and assembling into videos;

• manually analysing single station timeseries;

• automatic flagging of suspicious events in single station timeseries;

• automatic removal of extremely suspicious events;

• manual checking of monthly precipitation maps and statistics over the whole

time period;

Due to the complexity of such procedure, no correction is attempted for those values

that resulted to be erroneous or suspicious; additionally, no undercatch correction

(see section 2.1.2) is applied due to the lack of the sufficient station metadata.

3.2.1 Station-by-station timeseries analysis and flagging

A manual temporal analysis was carried out independently for all 3712 stations in

the original dataset. During this process several inconsistencies were discovered, in

particular:

• the vast majority of data points are stored in round hours timesteps (timestamps

ending in ‘:00’ minutes), with only a handful values (less than 0.1%) stored

in between. This indicates that most of the data is actually hourly, and not

sub-hourly.

• Some stations (see e.g. figure 3.5a) seem to suffer from issues with stuck sensors,

causing constant values to be reported for very long periods of time. This

occurs most often with the 0 mm h−1 value, but some instances of constant

values differing from zero (most often values close to zero) are present.

• A sizeable amount of extremely high outliers (see e.g. figure 3.5b) was detected.

Sometimes this affects only a single station in a given area, indicating a fluke or

error in the instrumentation; other times several neighbouring stations appear

to show the same behaviour, indicating an issue in the data collection and

processing.

To mitigate these problems, a multi-step approach of manual checking, driven by

different metrics, is devised, comprising of 4 different steps:

1. Flagging of suspicious events using several metrics obtained from the literature

(World Meteorological Organization, 2008). The description of the metrics can

be found in table 3.1.

2. Identification of values above the historical maxima for the region of interest,

which are considered erroneous and removed. Three different thresholds are

used, one for hourly values (200 mm h−1), one for monthly sums (1800 mm month−1),
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(a)

(b)

(c)

FIGURE 3.5: Three example precipitation timeseries from stations loc-
ated in (top to bottom) Arienzo (Naples), Ala di Stura (Turin) and
Maiori (Salerno). In panel a, the continuous zero values in 2003 indic-
ate a stuck sensor. In panel b, a clear outlier at the end of 2005 can
be considered an instrumental fluke with high certainty, due to the
extremely high value above historical records. Panel c instead shows a
station remarkable for its consistency and quality. Tables with some of
the statistics computed for each station are also shown at the top of

each panel.
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FIGURE 3.6: Example screenshot of one of the steps in the manual
cleaning procedure for the hourly precipitation dataset GRIPHO. Here,
for each month, stations are plotted on an interactive map coloured
by their total precipitation amount. Clicking on a station pops up a
timeseries plot for that station (figure 3.7), so that several neighbouring
stations can be easily compared; clicking the blue circle surrounding a

station selects it for exclusion from the dataset.

and one for extreme step changes with the previous/next timestep (100 mm h−1).

If these thresholds are exceeded more than 100 times in any given year, the

entire year is removed. This filtering are carried out by the data provider, Marco

Verdecchia, on the original binary data.

3. Second flagging of the values identical to step 1, to verify changes after the

filtering occurred in 2. The results, shown in table 3.2, show that the vast

majority of suspicious values are removed after the initial cleaning procedure.

In particular, 99.7% of precipitation events above 100 mm h−1 are found to be

unrealistic; the reduction drops to 76.3% for events between 50 and 100 mm h−1.

In total, 82.1% of the total flags are removed by applying this simple technique.

4. Visualisation and selection of problematic months for each station using some

of the metrics of point item 1, aggregated on monthly scale and displayed

via 192 (16 years × 12 months) interactive web maps (figures 3.6 and 3.7), in

which suspicious stations for each month are manually compared with their

neighbours and, if considered unreliable, removed.

As a result of this cleaning process, the reduction in the total number of valid data

points results to be modest and especially concentrated in the last few years (fig-

ure 3.8). A brief overview of the improvement on the data quality obtained thanks to

these simple procedures will be presented in section 3.4.
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FIGURE 3.7: Example precipitation timeseries for May 2012 for a
station in Southern Italy. Graphs like this are used to compare neigh-
bouring stations in the procedure of figure 3.6. About 360000 of these

graphs were generated.
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Metric Meaning

Total valid values Number of values in the whole time series which are not
one of the strings considered NA or negative

pr > Mean + nSD Number of values greater than n standard deviations from
the mean; n = 10, 15, 20

pr > Median + nIQR Number of values greater than n interquartile ranges from
the median; n = 10, 15, 20

100 > pr > 50 mm/h Number of values greater than 50 mm h−1, but smaller than
100 mm h−1

pr > 100 mm/h Number of values greater than 100 mm h−1

%Top n Percentage of values among the top n most common values,
excluding 0; n = 1, 5, 10

% valid values Total percentage of valid values
% valid values 6= 0 Total percentage of valid values which are not equal to 0

TABLE 3.1: Description of all the metrics used for flagging suspicious
values before and after the first automated cleaning procedure, and
for selecting complete months to remove in the last manual process.

Metric Original Filtered % change

Total valid values 250M 244M -2,6%
Total flags 324468 58008 -82.1%
pr > Mean + 20SD 3240 2538 -21.7%
pr > Median + 20IQR 49753 22519 -54.7%
100 > pr > 50 mm/h 21758 5171 -76.3%
pr > 100 mm/h 221822 711 -99.7%

TABLE 3.2: Selected metrics for suspicious values before and after
automatic first stage filtering. See table 3.1 for a description of all

metrics.
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FIGURE 3.8: Timeseries of the number of available stations for each
timestep in the input data for the Italian in-situ dataset, before and

after the first-stage filtering.

3.3 Gridding and output format

To be able to compare the precipitation data with other similar products and with

models, interpolating the station point data onto a grid is a necessary step. Our

first approach to this issue uses a simple interpolation method; different techniques

are currently being tested. The upcoming sections consist of a general view of the

challenges that had to be faced, and the technical choices that were consequently

made, while gridding the precipitation dataset described in this chapter.

3.3.1 Overview of gridding techniques

The interpolation of sparse data is a vast topic, with tens of different methods avail-

able, each with its own advantages and disadvantages. There is no general consensus

on which is the best method for precipitation, which is particularly difficult to treat

due to the extremely local aspect of the phenomena, both in time and in space (this is

especially true in summer, when most precipitation is of convective nature). The pre-

cipitation datasets available over Europe (including those in table 2.1) use a plethora

of different gridding techniques, some of which are listed in the following.

The de-facto standard E-OBS dataset (Haylock et al., 2008) uses a three step process:
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daily anomalies are applied with kriging over a monthly field obtained by spatial

splines, taking into account the station elevation for the monthly averages. The

high-resolution EURO4M-APGD Alpine dataset (Isotta et al., 2014) opts for a similar

approach with a base field calculated with an adapted PRISM method (Daly et

al., 1994; Schwarb et al., 2001) and daily values obtained via a modified version

of the SYMAP algorithm, which is a form of inverse distance weighting (Shepard,

1984); this algorithm (adapted by Antolini et al., 2016) is also used to produce the

ARCIS dataset (Pavan et al., 2018). KLIMAGRID (Mohr, 2008, 2009) instead chooses

an approach based on Delaunay triangulation, in order to minimise smoothing at

station points and keep extremes intact. The HYRAS (Rauthe et al., 2013) high-

resolution dataset over Germany uses the REGNIE method (Weerts et al., 2008):

for each different climatological area, mean fields and climatologies are calculated

using least-squares multiple linear regression (against location, slope, height and

exposition) and inverse distance weighting. The Austrian dataset SPARTACUS (Hiebl

and Frei, 2017) calculates a base field with kriging and topographic predictors, to

which SYMAP daily anomalies are applied.

To our knowledge, there is limited literature comparing the performance of these

interpolation methods for high-resolution gridded precipitation data. A general

validation was carried over by Hofstra et al. (2008), which ultimately resulted in the

choice of interpolation technique for the E-OBS dataset mentioned above.

3.3.2 The chosen spatial grid

The choice of grid is dictated by station density and convenience. With an average

station spacing of about 10 km, the grid choice fell on the 12 km EURO-CORDEX one

used by the Regional Climate Model RegCM. The resulting 95 × 110 grid (figure 3.9)

has a constant grid spacing of 12 km on a Lambert Conformal Conic projection. Unlike

more common regular latitude-longitude grids, using a curvilinear grid preserves

constant grid cell areas, which simplifies later calculations.

3.3.3 Gridding procedure

In this work, due to technical constraints, a simple interpolation technique (which

minimises the smoothing of extreme phenomena) is chosen to regrid the cleansed sta-

tion data obtained after the manual and automatic filtering steps seen in section 3.23.

The method is based on SciPy’s (Jones et al., 2007) interpolate.griddata, which

employs the Qhull library4 (Barber et al., 1996). Both the linear and the cubic variant

were taken into consideration, but since no significant climatological difference was

found between the two methods, the linear version was employed. This method

3 The regridding software was adapted for use on this project from a program provided by Graziano
Giuliani from Earth System Physics (ESP) section of the International Centre for Theoretical Physics
(ICTP), who also helped at various stages of this project with general software consulting. Graziano’s
help was irreplaceable and greatly appreciated.

4http://www.qhull.org
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FIGURE 3.10: Voronoi diagram corresponding to the Delaunay tri-
angulation of all stations. Example given for the timestep with the
highest number of valid stations for the gridded Italian station-based

precipitation dataset GRIPHO.

performs a Delaunay triangulation (Aurenhammer, 1991) on all the available points

separately for each timestep, creating a grid of triangular cells whose corner values

are linearly interpolated to evaluate the cell values on the underlying rectangular grid.

In this sense, this procedure is similar to the works of Mohr (2008) and Velasquez et al.

(2011), which also used Delaunay triangles to perform interpolation of sparse rainfall

data sources. An example Voronoi diagram associated to the Delaunay triangulation

of the timestep containing the highest number of stations is showed in figure 3.10.

After the interpolation, values over the sea are forcefully set to missing. The result of

the interpolation is, of course, more reliable for periods and regions with high station

density; for this reason regions with low station density are also set to missing during

the interpolation procedure. This results in a dataset which can have both spatial and

temporal empty zones, which is similar to what other station-based datasets have

(the E-OBS dataset from Hofstra et al., 2008, for example, also has varying missing

values). The interpolation was separately carried out in parallel for each time slice,

with no information crossing time boundaries. Figure 3.11 shows the Probability

Density Function of GRIPHO in its gridded and non-gridded (raw) form: as expected,
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FIGURE 3.11: Comparison of the precipitation distributions from the
gridded (teal) and raw (red) hourly precipitation datasets. As is to be
expected, gridding introduces a general smoothing of precipitation

extremes.

gridding introduces a general smoothing of precipitation extremes. The effect is

however quite small, thanks to the choice of interpolation method, and most extreme

events are retained. Compared to most of the techniques seen in section 3.3.1, this

approach is much faster but also more basic; improving this method will certainly be

the goal of future research. Additional information on the interpolation methodology,

including tests with different algorithms, are presented in (Fantini et al., 2019, in

preparation).

3.3.4 Output format

Once again, the chosen output format is CF-compliant losslessly-compressed netCDF-

4. The complete GRIPHO dataset resulted in 192 monthly files, for a total of 561021
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quarter-hourly timesteps over the 95× 110 grid. The total size of the dataset is 647 MB

when adding up the sizes of each separate month, or 507 MB if considering a single

aggregated file; the two sizes differ because of the higher compression efficiency

resulting from compressing the single, larger file. For the aggregated file, the com-

pression ratio, when compared to an uncompressed dataset, is 44x.

Due to the aforementioned low amount of sub-hourly values an additional, hourly

dataset was created by aggregating sub-hourly data. This version has 140256 timesteps

and is 404 MB in size.

For ease of use and download, both these versions were also further compressed by

applying a lossy procedure, reducing data precision to 0.1 mm h−1. In these versions,

the data is stored as short (16-bit) integers, instead of 32-bit floats; a CF-standard

scale_factor attribute indicates these are to be rescaled to floats when read. This

further reduces the size of the dataset to 248 MB, or 184 MB for the hourly version.

An additional GRIPHO version, containing a variable optimised for reading along

the time axis, one timeseries at a time, was also produced. These multiple versions

should cover all possible needs and requirements of potential users, and exceed the

technical standards usually followed in producing observational datasets for climate.

3.4 Validation against other precipitation datasets

In this section, the new gridded hourly precipitation product presented in this chapter

is validated against some of the datasets available over the Italian territory (see

section 2.1.3 and table 2.1). Only a basic validation is presented herein, further

analysis is described in detail in Fantini et al. (2019, in preparation).

3.4.1 Methodology and metrics

Due to the lack of a suitable reference hourly dataset, the validation is carried out

solely on the daily scale; analysis on the hourly scale is planned as a future research

path. As reported in section 3.2, the GRIPHO dataset had several optimisations: in

the following sections GRIPHO will be analysed both in its final form and in a version

obtained after the first, automated cleaning (but without the subsequent manual

procedures), in order to evaluate the effectiveness of these procedures. In the figures,

this version is referred to as “Station (interp.)”

Four main metrics are presented here: annual cycle, mean seasonal precipitation,

extreme seasonal precipitation (R95ptot and R99ptot, see section 2.1.4) and precipitation

distribution (Probability Density Functions). Similarly to the analysis carried out

in section 2.1.4, annual cycles and PDFs are subdivided by region: North, Centre,

South and Islands. Other than the product presented here, the datasets taken into

consideration are EURO4M-APGD and ARCIS (only available in the North) and E-

OBS and the HMR reanalysis (for the whole Italian territory). The nominal resolution

of EURO4M-APGD, ARCIS and HMR is superior to that of GRIPHO. The ability to
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reproduce fine spatial details is however linked with station density: the EURO4M-

APGD dataset, for example, is estimated to have an actual resolution of 15 km or less

(Isotta et al., 2014). Similarly to section 2.1.4, an observational period of 2000 to 2016

is considered, limited to 2008, 2013 and 2015 in the case of EURO4M-APGD, HMR

and ARCIS respectively due to limited data availability.

3.4.2 Results

The annual cycle of precipitation (figure 3.12) has a similar shape in all six datasets,

with differences in precipitation intensity: E-OBS usually results the driest, and

GRIPHO the wettest. The filtering procedure of section 3.2 successfully removes a

spurious peak in the August in the Islands, but has little to no impact on the average

annual cycle of the other regions.

Figure 3.13 shows the spatial distribution of mean seasonal precipitation. The spatial

patterns and precipitation amounts in Northern Italy are remarkably similar to those

from ARCIS and EURO4M-APGD. In the other regions, GRIPHO results wetter than

E-OBS and HMR, while showing similar spatial patterns with the latter. The filtering

process successfully removes some suspicious high precipitation values in Veneto

(north-east, DJF) and (centre-east, JJA), but does not filter out an excessive high value

in the Southern tip of Sicily.

Extreme precipitation metrics (figure 3.14, R99ptot not shown) once again show similar

spatial patterns in the North compared with ARCIS and EURO4M-APGD and for

the whole Italian region, especially compared with HMR especially. Several extreme

precipitation highs, such as the East coast of Sardinia in winter and parts of Calabria

in autumn, are reproduced by both GRIPHO and HMR, but not as much by E-OBS.

The comparison of the first two rows of each plot shows that the manual filtering

managed to significantly reduce what appears to be extreme precipitation excess in

several areas, such as Abruzzo, Veneto, Valle d’Aosta, Sicily and Tuscany. However,

some extremes, most notably in Sicily and in Abruzzo, seem to have escaped the

manual checking. For these, a second manual check will be necessary in a future

version of GRIPHO.

The analysis of precipitation PDFs (figures 3.15 and 3.16) shows how GRIPHO con-

tains more extreme events, compared to E-OBS and HMR, in all four regions. In

the North, the difference with ARCIS and EURO4M-APGD is less striking, and all

the datasets perform similarly, albeit GRIPHO seems to show some slightly more

intense events than the ones in the other observational datasets. Considering that

none of these datasets include any kind of undercatch correction, this increase in

extreme events is hard to evaluate. This metric also shows very well how the filtering

procedure significantly reduces the amount of extremely high precipitation events.

For the North, Centre and Isles the maximum amounts are decreased in all seasons,

while no change is detected for the South of Italy.
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FIGURE 3.12: Average precipitation annual cycle for for the validation
of the gridded hourly precipitation dataset. The four summarising

regions are highlighted in figures 3.13 and 3.14.
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FIGURE 3.13: Average precipitation for the validation of the gridded
hourly precipitation dataset. The four summarising regions for the
annual cycle (figure 3.12) and the PDFs (figures 3.15 and 3.16) are
highlighted in green (North), red (Centre), purple (South) and blue

(Islands).
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FIGURE 3.14: Extreme R95ptot precipitation for the validation of the
gridded hourly precipitation dataset. R95ptot represents the percentage
of precipitation due to precipitation events above the 95th percentile.



Chapter 3. GRIPHO: developing an Italian high-resolution hourly precipitation

dataset
67

D
J
F

M
A

M
J
J
A

S
O

N

NORTH

0
2

5
0

5
0

0
7

5
0

0
2

5
0

5
0

0
7

5
0

0
2

5
0

5
0

0
7

5
0

0
2

5
0

5
0

0
7

5
0

1
0

−
6

1
0

−
4

1
0

−
2

1
0

0

P
re

c
ip

it
a
ti
o
n
 (

m
m

/d
a
y
)

Frequency

D
a
ta

s
e
t

A
R

C
IS

E
−

O
B

S
E

U
R

O
4

M
G

R
IP

H
O

H
M

R
S

ta
ti
o

n
 (

in
te

rp
.)

D
J
F

M
A

M
J
J
A

S
O

N

CENTRE

0
2

5
0

5
0

0
7

5
0

0
2

5
0

5
0

0
7

5
0

0
2

5
0

5
0

0
7

5
0

0
2

5
0

5
0

0
7

5
0

1
0

−
6

1
0

−
5

1
0

−
4

1
0

−
3

1
0

−
2

1
0

−
1

1
0

0

P
re

c
ip

it
a
ti
o
n
 (

m
m

/d
a
y
)

Frequency

D
a
ta

s
e
t

E
−

O
B

S
G

R
IP

H
O

H
M

R
S

ta
ti
o

n
 (

in
te

rp
.)

F
IG

U
R

E
3.

15
:

D
ai

ly
p

re
ci

p
it

at
io

n
P

ro
ba

bi
lit

y
D

en
si

ty
Fu

nc
ti

on
s

fo
r

th
e

va
lid

at
io

n
of

th
e

gr
id

d
ed

ho
u

rl
y

p
re

ci
p

it
at

io
n

d
at

as
et

fo
r

th
e

N
or

th
an

d
C

en
tr

e
re

gi
on

s.
T

he
fo

u
r

su
m

m
ar

is
in

g
re

gi
on

s
ar

e
hi

gh
lig

ht
ed

in
fi

gu
re

s
3.

13
an

d
3.

14
.



Chapter 3. GRIPHO: developing an Italian high-resolution hourly precipitation

dataset
68

D
J
F

M
A

M
J
J
A

S
O

N

SOUTH

0
1

0
0

2
0

0
3

0
0

0
1

0
0

2
0

0
3

0
0

0
1

0
0

2
0

0
3

0
0

0
1

0
0

2
0

0
3

0
0

1
0

−
6

1
0

−
4

1
0

−
2

1
0

0

P
re

c
ip

it
a
ti
o
n
 (

m
m

/d
a
y
)

Frequency

D
a
ta

s
e
t

E
−

O
B

S
G

R
IP

H
O

H
M

R
S

ta
ti
o

n
 (

in
te

rp
.)

D
J
F

M
A

M
J
J
A

S
O

N

ISLANDS

0
2

5
0

5
0

0
7

5
0

1
0

0
00

2
5

0
5

0
0

7
5

0
1

0
0

00
2

5
0

5
0

0
7

5
0

1
0

0
00

2
5

0
5

0
0

7
5

0
1

0
0

0

1
0

−
6

1
0

−
5

1
0

−
4

1
0

−
3

1
0

−
2

1
0

−
1

1
0

0

P
re

c
ip

it
a
ti
o
n
 (

m
m

/d
a
y
)

Frequency

D
a
ta

s
e
t

E
−

O
B

S
G

R
IP

H
O

H
M

R
S

ta
ti
o

n
 (

in
te

rp
.)

F
IG

U
R

E
3.

16
:

D
ai

ly
p

re
ci

p
it

at
io

n
P

ro
ba

bi
lit

y
D

en
si

ty
Fu

nc
ti

on
s

fo
r

th
e

va
lid

at
io

n
of

th
e

gr
id

d
ed

ho
u

rl
y

p
re

ci
p

it
at

io
n

d
at

as
et

fo
r

th
e

So
u

th
an

d
Is

la
nd

s
re

gi
on

s.
T

he
fo

u
r

su
m

m
ar

is
in

g
re

gi
on

s
ar

e
hi

gh
lig

ht
ed

in
fi

gu
re

s
3.

13
an

d
3.

14
.



Chapter 3. GRIPHO: developing an Italian high-resolution hourly precipitation

dataset
69

3.5 Summary and outlook

The hourly precipitation dataset GRIPHO represents a first of its kind for the Italian

territory. The somewhat limited time availability of the dataset (little more than 15

years) is unfortunate, but no additional data was available for before 2000. The high

spatial and temporal resolution are superior to those of E-OBS, which is still the only

observation-based dataset available over the whole Italian region. Compared to the

ARCIS and EURO4M-APGD datasets, which are only available in Northern Italy, the

effective spatial resolution is similar, but the hourly temporal resolution is much finer.

Thanks to the high station density, reproduction of extreme events is improved, in

particular if compared to E-OBS. The GRIPHO dataset has shown sufficient quality

for it to be used to drive the hydrological model CHyM, which is at the core of this

thesis work, and to validate the climate simulations performed by RegCM, as detailed

in the upcoming chapters.

Availability and additional details on this dataset will be made available in an up-

coming paper (Fantini et al., 2019, in preparation), where

• the unexpected behaviour of extreme events in Sicily and Abruzzo will be fixed

by applying a further manual conditioning step;

• an analysis of hourly precipitation will be included;

• the choice of interpolation method will be discussed further;

• validation against further datasets available for the area only on a monthly

timescale (e.g. the ISAC/CNR dataset) will be included.
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Chapter 4

Methods and models

The aim of this project is to evaluate flood hazard in Italy, and to project this evaluation

in a possible future scenario. In order to obtain discharge and flood information a

hydrological model is used to simulate runoff over the domain. Runoff can then

be analysed statistically to provide proxies for floods (such as metrics of extreme

discharge) or to drive hydraulic floodplain simulations, capable of spreading the

water over the terrain and produce flood extents and water depths.

Figure 4.1 shows flow chart of the thesis work.

The precipitation data that are the main input needed to run hydrological simulations

come from two different sources:

High-resolution observations the GRIPHO dataset, described in chapter 3, which

provide high-resolution hourly precipitation data.

Regional Climate Model simulations two climate simulations, one run in perfect

boundary mode and one with a climate projection.

Section 4.1 will detail the RCM model and simulations, while section 4.2 will describe

the hydrological model of choice and its three simulations. Section 4.3 will delineate

the statistical procedure used to derive the extreme discharge statistics from the

discharge timeseries. Finally, section 4.4 will present the hydraulic model and its

simulations.

4.1 The RegCM Regional Climate Model

The ICTP RegCM is a Regional Climate Model developed at the ICTP and maintained

primarily by Graziano Giuliani. The project is under very active development and

new features, options and schemes are routinely added. RegCM is used by several

institutions and research groups worldwide.

The RegCM model was the first limited area model to be developed for long-term

climate simulations (Dickinson et al., 1989; Giorgi and Bates, 1989). The model went

through the second (Giorgi et al., 1993), third (Pal et al., 2007) and fourth (Giorgi et al.,

2012) major revisions and is currently at version 4.7.0.
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FIGURE 4.1: A schematic description of the methodology employed in
this study.

RegCM is a compressible, terrain-following sigma-vertical coordinate model, offering

a large selection of physical parameterisations. The dynamics are essentially the

same as the NCAR Mesoscale Model 4 or 5, depending on the versions and settings

(MM4, MM5, Grell et al., 1994). Recently, the implementation of a non-hydrostatic

core from MM5 has allowed to run in convection-permitting mode. RegCM is mainly

written in the Fortran programming language and is compliant with the Fortran 2003

ANSI standard; as most other climate models do, RegCM reads and writes files in the

netCDF format.

4.1.1 Regional Climate Models: an overview

Regional Climate Models (RCMs) are Limited Area Models (LAMs) usually nested on

larger datasets. RCMs are the most common tool used to “zoom in” on a specific area

by dynamically downscaling lower-resolution climate data. They do this by processing

the information provided by the driving dataset at the domain boundaries, adding

value thanks to the higher resolution and consequent more accurate representation of

physical processes.

The first Regional Climate Models were initially developed in the late ´80s (Dickinson

et al., 1989; Giorgi, 1990; Giorgi and Bates, 1989) to perform short, few-days simu-

lations at best. In subsequent years, their use was extended to perform multi-year

simulations (Giorgi et al., 1993; Jones et al., 1995). In the last two decades, several
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research programs utilising RCMs were put forward to advance the knowledge of

climate at small spatial scales: of these, the most recent is the Coordinated Regional

Climate Downscaling eXperiment (CORDEX, section 4.1.2).

In the nesting regional climate modelling technique, large scale (atmospheric and

oceanic) time-dependent fields drive a higher resolution model over a limited do-

main. The driving data acts as boundary condition to the driven model and provides

the initial conditions. In most cases a one-way nesting scheme is used: the nested

model does not influence the boundary driving data, i.e. there is no feedback from

the nested model to the coarser model. However, two-way coupled simulations, in

which feedback from the driven model is incorporated in the boundary conditions,

can be performed with some models (Inatsu and Kimoto, 2009; Lorenz and Jacob,

2005).

By design, RCMs necessitate of external forcings that act as boundary conditions.

These are usually of three kinds:

• Model reanalysis, such as ERA-Interim (Dee et al., 2011), are weather model sim-

ulations of the past which are constrained by a plethora of observed quantities

through a complex process of data assimilation. The resulting dataset is uni-

form in time and space, consistent with observations, physically coherent, and

provides all the necessary variables to drive an RCM. Such “perfect boundary

condition” simulations are usually performed to validate the ability of an RCM

to reproduce a reliable climate.

• Global Climate Models (GCMs) are physical simulations of the general circula-

tion, much like RCMs, however with global extent and, thus, no external forcing

other than the initial conditions. GCMs are the most natural choice for long

climate projections; they usually have a resolution which, due to computational

constraints, is significantly lower than that of RCMs.

• RCMs themselves can be used as driving data for even higher resolution simula-

tions, in what is usually called a multi-nesting simulation. Such simulations are

becoming more and more common thanks to the development of convection-

permitting models (Clark et al., 2016; Prein et al., 2015), which often have a

resolution of 2 km or less and require high-resolution driving data.

Due to the presence of lateral boundary conditions, RCMs necessarily need to take

into consideration a so-called buffer zone: a number of cells close to the domain edge

in which the dynamical equilibrium between the driver and the driven model can be

reached and smaller-scale features can develop. The same is true for an initial spin-up

period, usually of up to one or two years, which is excluded from analysis.

4.1.2 The CORDEX project

In order to properly validate whether climate models perform well, and whether

RCMs add value to GCMs and reanalysis, a large number of ensemble simulations,
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FIGURE 4.2: The approximate EURO–CORDEX domain, from http:

//www.cordex.org/domains/cordex-region-euro-cordex/

performed on common domains, is advisable. Several international projects have

historically provided the basis for this kind of analysis. Some of these are PIRCS,

START, CECILIA, CLIM-RUN, MICE, STARDEX, PRUDENCE, SPECS, EUPORIAS,

ENSEMBLES, and CORDEX. CORDEX1 (Giorgi and Gutowski, 2015; Giorgi et al.,

2009; Gutowski et al., 2016), a World Climate Research Programme (WCRP) sponsored

project, is a framework for downscaling a large number of GCMs using both dy-

namical and statistical downscaling techniques. 14 common domains are specified

(Africa, MENA, North, Central and South America, Antarctica, Arctic, EURO, MED,

Australasia, East, Central, South and South-East Asia), mostly covering areas from

previous intercomparison projects, with pre-defined resolutions and projections. Two

European domains are defined, one covering all of the continent (Jacob et al., 2014,

EURO–CORDEX) and one focusing on the Mediterranean (Ruti et al., 2016, Med–

CORDEX). Institutions are asked to provide data with a grid resolution of around 12,

25 or 50 km; as will be shown in section 4.1.4, the domain chosen in this work covers

the EURO–CORDEX area (figure 4.2) at a resolution of 12 km.

4.1.3 Added value of RCMs

Why use Regional Climate Models, when Global Climate Models are a ever-improving,

tried-and-tested approach to simulating climate? The answer is that, even with

1CORDEX stands for Coordinated Regional Climate Downscaling eXperiment
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today’s increasingly powerful computational resources, GCMs are still run at a

resolution of several tens of kilometers: for example, the latest Coupled Model In-

tercomparison Project 6 (CMIP6, Eyring et al., 2016) includes the High Resolution

Model Intercomparison Project (HighResMIP, Haarsma et al., 2016), whose sim-

ulations are supposed to run with a resolution of “at least 50 km”. By contrast,

convection-permitting RCM simulations with spatial resolutions close to that at which

the hydrostatic approximation starts failing (about 10 km Giorgi and Mearns, 1999)

are not a rarity anymore (e.g. Clark et al., 2016; Coppola et al., 2018; Prein et al., 2015).

Thanks to the increased resolution, the main added value of RCMs is connected with

their ability to reproduce otherwise unattainable small scale features (figure 4.3). This

is possible because of the better representation of:

Orographic forcing Increased resolution means increased ability to represent slopes,

peaks and valleys. Variables that show a pronounced elevation dependency,

such as precipitation, temperature and wind speed, greatly benefit from higher

ground resolution. This is especially true for complex mountain areas (see e.g.

Fischer et al., 2014; Giorgi and Bates, 1989).

Direct representation of processes Some parametrisations can be eliminated alto-

gether at very high resolutions, opting instead for direct representation of the

processes. This is the case with the already mentioned convection-permitting

models, in which convection is resolved explicitly.

RCMs, thus, usually add information to the global models which they are driven, if

there are available observations of sufficient quality and resolution to assess this. This

added information, if correct, is referred to as “Added Value”. It may seem obvious

that increasing the resolution will improve the skill in reproducing climate. However,

added value is often hard to predict and identify, as it does not vary linearly with

grid size nor is equal on different domains. As the IPCC (IPCC WG1, 2013, section

9.6.3) puts it:

Although there are indications that model skill increases with higher res-

olution, it does not do so linearly. Rojas (2006) found more improvement

when increasing resolution from 135 km to 45 km than from 45 km to

15 km. Walther et al. (2013) found that the diurnal precipitation cycle

and light precipitation improved more when going from 12 km to 6 km

resolution than when going from 50 km to 25 km or from 25 km to 12 km.

Higher resolution does enable better simulation of extremes (Seneviratne

et al., 2012). For example, Pryor et al. (2012) noted that an increase in

RCM resolution from 50 km to 6 km increased extreme wind speeds more

than the mean wind speed. Kawazoe and Gutowski (2013) compared six

RCMs and the two GCMs to high resolution observations, concluding

that precipitation extremes were more representative in the RCMs than

in the GCMs. Vautard et al. (2013) found that warm extremes in Europe
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were generally better simulated in RCMs with 12 km resolution compared

to 50 km. Kendon et al. (2012) and Chan et al. (2012) found mixed results

in daily precipitation simulated at 12 km and 1.5 km resolution, although

the latter had improved sub-daily features, perhaps as convection could

be explicitly resolved.

Due to the importance of a reliable representation of extreme precipitation events

for flood hazard, the added value that high resolution can provide for this variable

deserves greater attention. In a recent study, Fantini et al. (2016) compared 9 EURO–

and Med–CORDEX RCMs against high resolution regional observations for several

metrics, of which two are extreme precipitation metrics. The performance of the

models was assessed at two different resolutions (0.11° and 0.44°). In most regions,

the higher resolution RCMs showed better ability to reproduce extreme precipitation

compared to the lower resolution ones: in the daily precipitation Probability Density

Functions (figure 4.4), for example, the only case in which the performance was

clearly degraded (when going from the 0.44° to the 0.11° ensemble) also coincided

with the region characterised by the lowest density of stations (the Carpathians);

other regions mostly showed better performance on part of the 0.11° ensemble. RCMs

performed also significantly better than the driving ERA-Interim (Dee et al., 2011) in

all metrics (and in particular in extreme precipitation).

The results of this work are in general agreement, for what concerns extreme precipit-

ation, with other similar works, such as Casanueva et al. (2016), Di Luca et al. (2011),

Lucas-Picher et al. (2017), Prein et al. (2016) and Torma et al. (2015), reinforcing the

evidence supporting the presence of strong added value for extreme precipitation

events in high-resolution RCM simulations. As a result of these considerations, the

ICTP RegCM Regional Climate Model was selected to drive the hydrological simula-

tions, both in the present day and in a future scenario. Due to limitations in time and

computational resources, no additional model was selected to perform an ensemble

simulation in order to reduce uncertainty; this, however, might be an interesting topic

for future research.

4.1.4 RegCM experiments

In the framework of this thesis, two regional climate simulations with the ICTP

RegCM Regional Climate Model are carried out, both on the complete European

continent. One simulation is driven by the European Centre for Medium-range

Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011) and spans

1979–2016, the other is driven by the Met Office Hadley Centre HadGEM2 CMIP5

Global Climate Model (Collins et al., 2011) and covers the period 1971–2099, under

the IPCC Representative Concentration Pathway 8.5 (RCP8.5, IPCC, 2008; Riahi et al.,

2007). This business-as-usual scenario represents the worst-case future, in which no

climate change mitigation measures are taken. This second simulation is part of the
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PRINCIPLES2 project.

In order to avoid the several pitfalls in defining a domain and to keep the simulation

within the CORDEX project, the EURO-CORDEX domain (figure 4.2) was chosen,

with a model resolution of 12 km on a Lambert Conformal Conic projection. RegCM

has been run on this domain before, so no adjustment to the domain position, size,

and resolution was needed. The initial testing started with the tagged version 4.5.0,

but, after subsequent versions were released, the latest (at the time of starting the

runs) RegCM 4.6.1 was selected for both simulations.

Model tuning was manually performed by simulating 3-year chunks and comparing

them, after removal of a 1-year spinup period, with precipitation and temperature

observations from the E-OBS dataset (Haylock et al., 2008). In the case of the simula-

tion driven by the ERA-Interim reanalysis, the first one to be submitted, 92 different

tests had to be performed before choosing the final configuration. The simulation

driven by HadGEM2, which was started later and whose tuning started off of the

first simulation’s parameters, required 43 calibration iterations3.

The first simulation ran on the ICTP ARGO cluster4 using, on average, 200 processors,

for a total actual runtime of about 2500 hours (0.5 million core-hours) for its 38 years

of simulation. The second simulation, which extended to 2099 with about 130 years

of simulation, was run on the CINECA MARCONI cluster5 Skylake partition using

an average of 816 processors per run, for a total actual runtime of about 3000 hours

(2.5 million core-hours) and 90 TB of disk usage before post-processing.

The analysis of the two RegCM simulations will be presented in section 5.1.1.

4.2 The CETEMPS Hydrological Model CHyM

The CETEMPS Hydrological Model (CHyM6, Coppola et al., 2007; Tomassetti et al.,

2005) is a distributed (gridded) hydrological model which simulates surface water

runoff, evapotranspiration, percolation, infiltration, melting and return flow. The

model uses information from a Digital Elevation Model (section 2.4) to reconstruct

a D8 river network employing cellula automata algorithms (Coppola et al., 2006,

2007), and works by assimilating input precipitation from different sources. Routing

water through each grid cell is achieved using continuity and momentum equations

based on the kinematic shallow water wave approximation of Lighthill and Whitham

(1955). The current implementation, provided the necessary input data (at least soil

type, elevation, precipitation and temperature), can run on any domain and at any

2Producing RegIoNal ClImate Projections Leading to European Services, https://www.gerics.de/
science/projects/detail/071974/index.php.en

3 After the testing phase and the simulation of the historical period, James Ciarlo‘ from the Earth
System Physics (ESP) section of the International Centre for Theoretical Physics (ICTP), took charge of
the RegCM simulation driven by HadGEM. Thanks James!

4http://argo.ictp.it/
5https://www.cineca.it/it/content/marconi
6http://cetemps.aquila.infn.it/chym/
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resolution.

CHyM was previously used for assessing the hydrological conditions of the Po basin

under global warming (Coppola et al., 2014), and is currently used operationally7 at

the CETEMPS Center of Excellence to forecast potential floods using stress indexes

(Tomassetti et al., 2005; Verdecchia et al., 2008). The nine Italian domains on which

CHyM is operationally run are the same that will be employed in this thesis.

Although part of the model database is stored in Fortran-style binary files, the model

was recently updated by Fabio Di Sante and Graziano Giuliani to produce output in

the netCDF format, which facilitates postprocessing and analysis. In order to ease

the simulation setup, analysis, and monitoring, several tools were put into place to

postprocess CHyM output. These include:

• a graphical tool named chymview to quickly and effectively visualise simulation

outcome;

• automatic tools for the submission of cluster jobs;

• parallel programs for the final postprocessing and rechunking of time-slice

netCDF data, for fast reading of discharge timeseries.

4.2.1 Domains and river networks

The first step in simulating the hydrology of the Italian territory is the division

in subdomains and the creation of a reliable and plausible river network for each

region. As mentioned in the previous section, Italy is already fully covered by nine

operational CHyM domains, on which the model has already been run and calibrated

over several years of operational work. The domains cover, approximately:

• the Po river basin

• Liguria

• Central Italy

• North-Eastern Italy

• Central-Southern Italy

• Calabria

• Sicily

• Sardinia

• Central-Northern Italy

Figure 4.5 shows the nine domains over the complete Italian territory; some overlap

between the domains is necessary in order to include all basins of interest for each

7See http://cetemps.aquila.infn.it/chym/newoper/, where the current situation is updated
daily
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Driver Period Cluster Disk usage

Observations 2001–2016 ARGO 5.6TB
RegCM (ERA-Interim) 1979–2016 ARGO 7.2TB
RegCM (HadGEM) 1971–2099 MARCONI 21TB

TABLE 4.1: Details on the three CHyM simulations. The disk usage
refers to the final usage of the postprocessed output.

Discharge stations (see section 2.2) have been manually repositioned on the simulated

river network to insure proper comparison between model and observations.

4.2.2 The three simulations

Three CHyM simulations were run using the same configuration. They differed in

the driving component: one was driven by the GRIPHO observational data presented

in chapter 3, one by the ERA-Interim-driven RegCM simulation, and one by the

HadGEM-driven RegCM simulation (see table 4.1). Each simulation was run on

all the nine regions, for a total of 27 simulations. GRIPHO’s spatial and temporal

coverage of the domains is not complete due to periods where station data is missing:

the regions of Sicily and Puglia, in particular, are only covered for around 60% of

the timesteps over the 2001–2016 period. For any timesteps and areas with missing

data, daily weather forecasts performed with the operational MM5 model (Grell et al.,

1994) were used to fill in the gaps. The MM5 model has been in use at CETEMPS for

this particular purpose for almost two decades; for what concerns validation on the

specific domain of application see, for example, Bianco et al. (2006).

The computational requirements necessary to run CHyM are much lower than those

of RegCM, but running on a cluster is still advisable. The HadGEM-based simulation

was run, similarly to its RegCM driver (see section 4.1.4), on the CINECA MARCONI

cluster, while the other two simulations were run on the local ICTP ARGO cluster.

Although the CHyM model is parallel, its scaling is weak: for this reason, it was

run limiting to one single compute node in both clusters (20 and 48 cores for ARGO

and MARCONI SKL respectively). However, the nine separate domains were run

in parallel, effectively greatly reducing simulation time, which amounted in total to

approximately 3000 runtime hours (or about 100000 core-hours) and almost 35 TB of

postprocessed output data.

4.3 The climatological-hydrological-hydraulic approach

The flood hazard estimation method developed in this project follows the footsteps of

similar approaches as illustrated in section 1.2.2: a hydrological model (section 4.2),

driven by observations (chapter 3) or by a Regional Climate Model (section 4.1),

reproduces discharge data over several different Italian domains and for a period

of several years; these discharges are then fitted statistically to an extreme value
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distribution which allows to extend the simulation of extreme events to any Return

Period, with decreasing accuracy as the rarity of the event increases. The typical

discharge for a selected number of Return Periods for each point is then modelled

via a hydraulic model ((section 4.4)) to produce flood extent maps. In our case, the

statistical procedure, studied and devised by Francesca Raffaele from the ICTP’s

ESP section, is based on the work of Maione et al. (2003), who present a procedure

for the construction of “typical” flood discharge curves (called Synthetic Design

Hydrographs) for any point of a river. Maione et al. (2003) derive their methodology

by estimating SDHs for gauged sites in the Po river basin, and extending the SDH

definition to ungauged sites with a relation depending on the drained area. This

allows for a unique, consistent methodology to be applied across the whole catchment

for every river cell — in our case, the derivation of the SDHs is performed for selected

locations along the river network (see section 4.4), starting from CHyM discharge

data (section 4.2). In the following, the technical details and the formulae necessary

to perform the calculations which result in the input data for the hydraulic model are

described.

Given any river or station point, from model or observed data, the input to the

statistical analysis is the complete timeseries of discharge for that specific location.

Other than this, the analysis we performed is completely independent of location,

albeit a few assumptions had to be made to generalise the process.

The aim is to obtain curves describing, for the given Return Period, the typical

discharge timeseries of the event at that river point. These QRP(t) curves will be

called Synthetic Design Hydrographs (SDHs) and give the discharge (Q) of a typical

extreme event as a function of the Return Period (RP) and the time (t). SDHs are

required by the hydraulic model (see section 4.4) to simulate flood extent.

We start by defining the Flow Duration Frequency reduction curve (FDF) (QD (RP),

which is the discharge averaged over a duration D (usually in hours) around the

flood peak with Return Period RP. As a consequence, the instantaneous FDF (D = 0)

represents the peak flood discharge Q0 (RP). The FDF is usually obtained from

statistical analysis of historical hydrographs, but its formulation, as we shall see, can

be generalised.

Similarly to the work of Maione et al. (2003), we perform with the reasonable assump-

tion that the reduction ratio (εD), which is the ratio of the FDF and the peak flood

discharge (Q0 (RP)), is constant for any Return Period RP, so that:

εD = εD (RP) =
QD (RP)

Q0 (RP)
, (4.1)

which means that the reduction ratio only depends on the duration D, as also reported

by the Natural Environment Research Council (Great Britain) NERC (1975). As

in Maione et al. (2003), when performing the calculation of the FDF around each

historical flood peak, the centring of the duration window of width D is chosen as to
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maximise the average computed discharge QD:

FDF = QD =
1
D

max
∫ t+D

t
Q (τ) dτ , (4.2)

where t and τ represent time. Note that the product QD × D represents in fact

the volume of water flowed in the duration D. The shape of the final synthetic

hydrograph will be determined by the peak-duration ratio rD: the ratio of the time

before the peak and the total duration D of the averaging window. The smaller the

rD, the more skewed the hydrograph will be towards steeper (flatter) rising (falling)

limbs of the hydrograph. An example is given in figure 4.7, which shows a possible

high discharge event and the graphical representation of the FDF.

Centring on t = 0 as the peak flood timing, the two limbs of the hydrograph can be

described as: ∫ t=0

−rD D
Q (τ) = rDDQD (RP) (4.3)

and
∫ (1−rD)D

t=0
Q (τ) = (1 − rD) DQD (RP) , (4.4)

where QD (RP) is the typical FDF curve for the Return Period RP. The SDH is

constructed imposing that the maximum discharges for each duration coincides with

the value obtained from FDF curves. Differentiating with respect to D we get, for the

falling limb:

SDH = Qt (RP) =
d/dD [(1 − rD) DQD (RP)] |D=D(t)

d/dD [(1 − rD) D] |D=D(t)
, (4.5)

where t = (1 − rD) D. Once the reduction ratio (rD) and the FDF (QD (RP)) are

known, this formula will allow to calculate the SDH.

In the context of this work, similarly to Alfieri et al. (2014), we chose to assume

symmetry of the hydrograph, that is:

rD =
1
2

, (4.6)

meaning that the duration windows are always centered on the flood peak and that

the peak is in the centre of the hydrograph. Additionally, by definition, this also

results in t = 1
2 D.

The maximum flood discharge Q0 (RP) for any given Return Period RP must then

be calculated by fitting an appropriate extreme distribution. Following Alfieri et al.

(2015a) and Maione et al. (2003), we chose the Gumbel distribution, so that:

Q0 (RP) = u − α ln
[

− ln
(

1 − 1
RP

)]

, (4.7)

where the parameters u and α are estimated from the fit. Given the timeseries of
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FIGURE 4.7: Example for the calculation of the Flow Duration Fre-
quency curve, from (Maione et al., 2003, figure 1). D is the chosen
duration (60 h in this image), rD the peak-duration ratio, Q60 the value
which maximises the integral of the discharge (or running average, for

discrete data) for the given D.

yearly discharge maxima Qy, the parameters are estimated by fitting equation (4.7)

for the selected Return Period, using the following initial parameters for scale (α) and

location (u):

α =

√
6

π
σ
(
Qy

)
; u = µ

(
Qy

)
− γα , (4.8)

where γ is the Euler-Mascheroni constant (equal to approximately 0.5772) and µ and

σ the mean and standard deviation operators respectively. Different fitting methods

did not provide significantly different results in initial testing, so a simple maximum

likelyhood method was selected.

We resort to the following approximation for the reduction ratio εD :

εD ≃
√

p2

[

2 + p1 −
3
2

p2 (1 − p1)

]

, (4.9)

where

p1 = e−4D/θ and p2 =
θ

2D
(4.10)

and θ, the scale of fluctuation, is a parameter which, in our case, is considered to

have a linear relationship with the drained area, as in Maione et al. (2003). The

approximation in equation (4.9) is suited for large catchments; in this work, however,

it is assumed to hold reasonably well for smaller basins. Differentiating equation (4.5),
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the falling limb of the SDH can be expressed as:

SDH = Qt (RP) =
Qo (RP) (p2 − p1 − p2 p1)

εD

=
{u − α ln

[
− ln

(
1 − 1

RP

)]
} (p2 − p1 − p2 p1)

√

p2
[
2 + p1 − 3

2 p2 (1 − p1)
]

(4.11)

This equation allows us to calculate a typical flood event discharge timeseries for any

location and Return Period, starting only from the timeseries of yearly maximum

discharges Qy.

Tuning and testing for the method was carried over on the upper Po basin. The region

was chosen due to previous experience with the hydrological model on this domain

(Coppola et al., 2014), availability of reliable observed discharge data, and lack of

large water management structures. Due to the relatively small size of the simulated

domains, the calculation was carried over for durations up to 240 h. As highlighted,

this approach requires some strong assumptions; the results however are reasonable

despite these approximations. Estimating and reducing the uncertainty deriving from

the mentioned assumptions would certainly be a possible avenue for future work. An

example SDH, obtained from discharge data from the European Water Archive (see

section 2.2) for a station on the Tevere river, is shown in figure 4.8; figure 4.9 instead

shows the SDHs for the seven discharge stations in the MV1 dataset (which covers

the Po river, see figure 2.10). The SDHs are similar to those produced by Maione et al.

(2003), indicating that the procedure is correct.

This procedure, as shown in the following chapters, was applied both with obser-

vational data and with data coming from a Regional Climate Model. 9 domains

covering the complete Italian territory were simulated, but no limitation is in place

that would prevent this technique to be applied to any domain worldwide. For each

domain, a large number of small flood simulations was performed in order to cover

all segments of the river courses.

4.4 The CA2D hydraulic model

Floodplain hydraulic simulations are modelled with a modified version of the CA2D

hydraulic model, initially introduced in Dottori and Todini (2010) and described

and validated in great detail in Dottori and Todini (2011). CA2D is based on the

LISFLOOD-FP model (Bates et al., 2005), a a coupled 1D/2D hydraulic model based

on a raster grid which has been extensively used in flood hazard mapping (see

e.g. Neal et al., 2011; Skinner et al., 2015; Thomas Steven Savage et al., 2016). In-

stead of solving the full shallow water equations, CA2D is a reduced complexity

model which uses a 2D cellular automata approach. It is significantly faster than

LISFLOOD-FP thanks to a number of optimisations and assumptions: in particular,

an inertial formulation (Bates et al., 2010) for the computation of discharges and
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FIGURE 4.8: Example Synthetic Design Hydrograph computed follow-
ing the procedure described in section 4.3 for a station on the Tevere
River, in Central Italy. Seven Return Periods (1.5, 10, 50, 100, 250, 500
and 1000 years) are shown. Discharge data taken from the European

Water Archive; see section 2.2 for additional details.
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FIGURE 4.9: Synthetic Design Hydrographs for the seven discharge
stations in the MV1 dataset (see table 2.3), which covers the Po river;

the results are in line with Maione et al. (2003).
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the use of a local adaptive timestep (Zhang et al., 1994) enabled a 97 % reduction in

computation time compared to LISFLOOD-FP (Dottori and Todini, 2011). This makes

high-resolution simulations possible even on a large scale. The model was modified

by Rita Nogherotto from the ICTP’s ESP section to run in parallel, further speeding

up the computation. Rita also took care of running, organising and postprocessing all

of the CA2D simulations. The model uses as input the Synthetic Design Hydrographs

created starting from CHyM-simulated discharge data using the procedure described

in the previous section.

A 90 m resolution, corresponding to the resolution of the underlying HydroSHEDS

void-filled DEM (see section 2.4), is selected for all simulations. Due to its high

resolution, CA2D cannot be run for the whole domain in a single simulation. To

overcome this, a large number of small scale simulations, evenly spaced along the

river network, is run in parallel for each of the nine CHyM domains (see section 4.2.1

and figure 4.5). Each of these simulations includes exactly one “virtual station”,

which represents the water source. Each water source itself corresponds to a specific

SDH (figure 4.8) generated from CHyM discharge data for the corresponding river

cell. Practical and computational considerations led to the choice of a spacing among

stations varying linearly with the drained area of each point and capped between 5

and 10 km. This resulted in a total of 5548 simulations with an extent of 0.2° × 0.2°.

The connection between CHyM’s river network and CA2D’s “virtual stations” is

performed automatically with a nearest neighbour method, and is manually checked

for accuracy. This approach allowed the creation of a ensemble of small, high res-

olution hydraulic simulation covering the complete river network over each of the

nine CHyM domains, while remaining computationally feasible; figures 4.10 and 4.11

show example distributions and density for the “virtual stations”.

The outputs of these small-scale simulations, once converted to netCDF, are merged

together to create a large scale flood hazard map for each Return Period. This im-

plies an assumption of independence between simulations which, while strong, is

necessary to this approach.

Further details regarding the choice of DEM, the conditioning it requires and the

spacing of “virtual station” are provided in Nogherotto et al. (2019, in preparation).

Currently, only the simulation driven by the CHyM (GRIPHO) has been completed,

while other runs driven by RegCM (ERA-Interim and HadGEM) are currently ongo-

ing. All simulations are run on the ICTP ARGO cluster.
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Chapter 5

Results

This chapter will discuss the results obtained during the development of this PhD

project. As described in the previous chapter, a cascade of three modelling tools

were employed: a climate model (RegCM, section 4.1), a hydrological model (CHyM,

section 4.2) and a hydraulic model (CA2D, section 4.4). The three models were applied

in sequence, with the hydrological model utilising rainfall from the RCM, and the

hydraulic model taking as input the discharge data processed with the procedure

described in section 4.3.

In the following, the RegCM simulations driven by ERA-Interim and HadGEM will

be referred to as RegCM-ERA and RegCM-HAD respectively. Similarly, the CHyM

simulations driven by RegCM-ERA and RegCM-HAD are called CHyM-ERA and

CHyM-HAD, while the simulation driven by GRIPHO is referred to as CHyM-OBS.

The four climatological seasons displayed are defined as DJF, MAM, JJA and SON,

which refers to the initials of their respective months; in the following, they are

referred as winter, spring, summer and autumn. Whenever possible, the analysis

was split by four macroregions with different climatic characteristics: North, Centre,

South and Islands. These macroregions are identical to those used in the validation

of the GRIPHO dataset (section 3.4).

Five different timeslices are used through this analysis:

2001–2016 Validation period for CHyM-OBS.

1980–2016 Validation period for RegCM-ERA and CHyM-ERA.

1976–2005 Validation period for RegCM-HAD and CHyM-HAD. This period is also

used as reference period for change assessment against the future scenario and

is referred to as historical or reference.

2020–2049 First time slice for the future scenario simulated by RegCM-GEM and

CHyM-HAD. Referred to as near future.

2070–2099 Second time slice for the future scenario simulated by RegCM-HAD and

CHyM-HAD. Referred to as far future or end of century.
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The chapter is organised as follows. In section 5.1 the validation and future change

of mean and extreme precipitation in the RegCM simulations will be presented and

discussed. Section 5.2 will describe the results from the hydrological simulations for

both the present day and for the future scenario, including several proxies for future

changes in flood hazard. Section 5.3 will present the preliminary results obtained in

creating flood hazard maps for the entire Italian territory, together with a case study

regarding a flooding event in north-western Italy.

5.1 Validation and future changes of precipitation in the RegCM

simulations

The two climate simulations described in section 4.1.4 are here analysed with particu-

lar attention towards extreme precipitation events. The same precipitation metrics

described in section 3.4 are employed. They are: annual cycle, mean seasonal precip-

itation, extreme seasonal precipitation (R95ptot and R99ptot) and daily precipitation

distribution (Probability Density Functions). Both a present day evaluation and an

assessment of future changes (only for the HadGEM-driven simulation) are carried

out. When calculating R95ptot and R99ptot metrics for the future scenario, the 95th

and 99th percentile thresholds of the reference period have been used, to provide a

uniform reference value.

5.1.1 Validation of present-day model performance

Figure 5.1 shows the annual cycle of precipitation over the four macroregions. the

performance of the models in reproducing the precipitation annual cycle and the

seasonal precipitation respectively, compared against the best available precipitation

datasets (see sections 2.1.4 and 3.4 for a comparison of observations). The annual

cycle is approximately correct in the models, with a underestimation (overestimation)

of average precipitation occurs in both simulations in the North in autumn (spring).

In particular, the RegCM-ERA simulation is capable of reproducing the November

precipitation peak in the Centre, South and Islands.

Figure 5.2 Average precipitation peaks over the Alps are correctly reproduced, al-

though the models show a tendency to create isolated precipitation hot-spots. Au-

tumn and winter precipitations over the west coast of Central and Southern Italy

(present in GRIPHO, but not in E-OBS) are correctly reproduced, while an underestim-

ation is present in winter over Liguria and the Gulf of Genoa; an underestimation in

the Po plain in winter is present, compared to all the observational datasets. Overall,

the performance of the two RegCM simulations with mean precipitation metrics is

good. The climatologies of the two RegCM simulations are very similar, indicating

that a stable equilibrium is reached and that the model is able to create its own cli-

matic features, independently of the driving data. This gives us confidence in using

the RegCM model in future climate projections.
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FIGURE 5.1: Annual cycle of precipitation as reproduced by obser-
vations (see section 3.4) and models (section 4.1.4). The time period
for each dataset varies according to availability. The four macrore-
gions selected are the same as for previous evaluations (sections 2.1.4

and 3.4).

Extreme precipitation is assessed via maps of R95ptot (figure 5.3) and R99ptot (not

shown, but similar to R95ptot), where the spatial features are well reproduced. The

models tend to slightly overestimate extreme precipitation hot-spots especially over

the Alps and the prealpine areas of North-Eastern Italy, while slightly underestimating

in the South when compared to GRIPHO. Of the two simulations, the ERA-Interim-

driven one usually produces more extreme precipitation. PDFs of daily precipitation

(figures 5.4 and 5.5) for the four regions and seasons generally show a slight under-

estimation of extremely strong events compared to the GRIPHO gridded dataset

presented in chapter 3, with intermediate values lower than 200 mm d−1 slightly more

underestimated. In the North, the PDFs of the models resemble more closely the high

resolution datasets (GRIPHO, ARCIS, EURO4M) than the lower resolution E-OBS. In
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FIGURE 5.2: Average seasonal precipitation for the two climate model
simulations (top two rows) and five selected precipitation datasets.
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FIGURE 5.3: Seasonal R95ptot maps for the two climate model simula-
tions (top two rows) and five selected precipitation datasets.
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Central Italy in summer RegCM-HAD slightly underestimates extreme precipitations

compared to GRIPHO, which however is likely affected by erroneous station data

for a few grid points in summer over that region (see section 3.4). Neither model

can reproduce the high precipitations found in winter and spring on the east coast

of Sardinia, which both GRIPHO and HMR (but not E-OBS) show. The extreme

precipitation over Mount Etna in Sicily, reported by HMR, is also underestimated.

Comparing RegCM-ERA and RegCM-HAD reveals a difference in the extreme tail of

the distribution, where the former generally produces more precipitation extremes

(except in summer in the South). Compared to E-OBS and HMR extremes are system-

atically overestimated, which is likely due to the low station density of these datasets.

This underlines the necessity of high-resolution datasets with a large number of

stations in order to properly validate extreme precipitations. Similar conclusions

were reached before in other studies (Fantini et al., 2016; Prein et al., 2016; Prein and

Gobiet, 2017).

Evaluation of simulated temperature, which is not as strongly linked to flood events

as precipitation, is presented in appendix A. Both model simulations show good

ability to simulate temperature patterns and averages across the complete study

domain.

5.1.2 Changes in future climate in the RegCM (HadGEM) simulation

As seen in section 1.3, future precipitation is projected to move towards fewer, more

extreme precipitation events. We expect this trend to be also highlighted in RegCM-

HAD under the RCP8.5 scenario.

Figure 5.6 shows the annual cycle of mean precipitation across the three timeslices

for RegCM-HAD. No strong shift in precipitation seasonality, but rather a general

decrease of precipitation all year round, except for winter precipitation in the North,

which slightly increases. In the far future, April-May-June precipitation is projected

to decrease in all regions but the North An interesting dual mode of precipitation is

produced in the far future in the north, where September precipitation is increased

and October precipitation decreases. Note that the near future average is very close to

the reference (1976–2005), due to the nature of the selected RCP, which substantially

increases the greenhouse gases forcing only starting from the second half of the

century. Spatial patterns of mean precipitation (figure 5.7) further highlight the

increase in average precipitation in the colder months in the North in both time

slices (+18% for 2020–2049, +13% for 2070–2099). A precipitation decrease is instead

present in the Islands in all seasons and especially in spring (−23%) and summer

(−31%) by the end of the century. In the other regions, a reduction of summer

precipitation can be noted, especially for the far future, with reductions of 14, 13 and

34% for the Centre, South and Islands respectively.

Changes in precipitation extremes are more relevant for this project. Figure 5.8

shows the evolution across the three timeslices of the extreme R95ptot metric, which is
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FIGURE 5.6: The precipitation annual cycle for RegCM-HAD in the
three timeslices selected, for the four macroregions (see sections 2.1.4

and 3.4).
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FIGURE 5.7: Average seasonal precipitation for RegCM-HAD for the
reference period (left column) and % change w.r.t. it (centre and right
column, in percentage). The four rows represent seasons. In the top
right corner of each map, the colour-coded average for each of the four

macroregions is shown.
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FIGURE 5.8: Seasonal R95ptot for RegCM-HAD for the reference period
(left column) and % change w.r.t. it (centre and right column, in
percentage). The four rows represent seasons. In the top right corner of
each map, the colour-coded average for each of the four macroregions

is shown.
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characterised by a general increase in all regions towards the end of the century, with

average changes ranging from +17% to +58%. For R99ptot (not shown), the changes

are even larger and range from +52% to +155% in the end of the century period.

Over land, the area that shows the largest signal is the Po plain, especially in winter

and autumn, followed by the south-eastern region. Over high elevations, changes

seem to be generally negligible or even slightly negative in all seasons. Spatial trends

across the two future timeslices are similar, but there are nonetheless areas (such as

Central Italy in autumn) in which the change signal differs between the two timeslices.

The daily precipitation PDFs (figures 5.9 and 5.10) also show a similar increase, with

stronger extreme events being more pronounced in the far future and, in several

cases, with presence of events of a magnitude not recorded in the historical period.

The changes greatly depend on the region and the season: Central Italy shows barely

any change in winter, but in summer strong events with a magnitude of 100 mm d−1

or greater are ten times more frequent in the far future timeslice than in the reference

period.

For all regions, autumn shows the largest increase in extreme precipitation, with

freater values in Central and Southern Italy Overall, the general tendency of increased

extreme precipitation is confirmed, even in regions where average precipitation is

projected to decrease.

Results on extreme temperature are deferred to appendix A. The changes are mainly

limited to an overall, spatially uniform increase in temperature of about 4 and 6 ◦C in

winter and summer respectively.

5.2 The Italian hydrology in the three CHyM simulations

The findings of section 5.1.2, which indicate a general increase in extreme precipitation

over Italy by the end of the century, can be linked to a change in flood hazard over

all domains. In the upcoming sections, we’ll look at the performance of the CHyM

model and discuss how the the projected changes in discharge extremes can be linked

to the changes in precipitation. Following the literature (e.g. Alfieri et al., 2015a), this

is accomplished through several metrics. For the comparison of CHyM simulation

with station data, we used the following metrics:

SDH Synthetic Design Hydrographs, derived from models and observations via the

statistical procedure described in section 4.3.

KGE Kling-Gupta efficiency, a metric for analysing model efficiency similar to the Nash-

Sutcliffe coefficient, devised by Gupta et al. (2009) and Kling et al. (2012). Varies

between − inf and 1, with values closer to 1 meaning better performance.

d Index of agreement, a standard metric for assessing model performance by Willmott

(1984). Varies between 0 and 1, with 0 meaning no agreement and 1 perfect match.

r Pearson correlation coefficient; varies between −1 and 1.
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For evaluation of future change in average and extreme discharges, the following

four metrics will be used:

Q Average discharge.

Qymax Average maximum discharge calculated over each year in the given record.

QRP Projected peak discharge for the given Return Period RP, obtained by fitting a

Gumbel distribution to the discharge data (see section 4.3).

POT Peak Over Threshold, the number of times (or fraction of timesteps) a discharge

climatology surpasses a given threshold, usually given by the QRP for a given Return

Period.

The last three metrics, which represent extreme discharges, are chosen in order to act

as proxies for flood events.

5.2.1 Validation of the CHyM simulations

The three CHyM simulations are here validated. The two simulations CHyM-OBS

and CHyM-ERA, driven by GRIPHO and RegCM-ERA, can be compared directly to

the available discharge data (section 2.2) with standard metrics mentioned in the the

beginning of this chapter. Unfortunately, due to the low station availability (both in

number of stations and length of the timeseries), most domains contain few or no

discharge stations sharing a long enough period with the CHyM simulations. The

validation is thus carried out only for the two domains where station availability is

more complete (the Po basin and Central Italy). The results are, however, affected

by the low quality of the provided observed discharge data, which present several

irregularities, inhomogeneities and suspicious values.

For brevity, only a few of the maps are shown here. Figure 5.11 shows the index

of agreement and Kling-Gupta efficiency for the GRIPHO-driven simulation over

the Po basin, which is the largest basin in Italy. Both metrics show good agreement

with observations in most of the domain except the northernmost stations, located in

Switzerland. This is also confirmed by the correlation (not shown), which is higher

than 0.6 for most stations. Larger basin tend to perform better better in these metrics.

Results in Central Italy (see figure 5.12 for the index of agreement and the correlation)

show generally acceptable performance for the GRIPHO-driven simulation. Never-

theless, several stations in the eastern part of the domain indicate correlation values

smaller than 0.5, suggesting that the model is not performing as good as before in this

part of the domain. This is also confirmed by the other metrics. However, the Tevere

river basin, which is the main catchment of the region, is showing good results in all

metrics.

In regional climate simulations, even if laterally driven by reanalysis, the timing and

intensity of heavy precipitation events, which is crucial for a proper representation

of discharge, can be quite different from reality. This is reflected by the worsening





Chapter 5. Results 107

10

10

9

7

7

7

7

7 7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6 6

5

5

5

5

5

5

5

5

5

5

5

4

3

3
3

3

2
22

22

1

1

1

1

60 km

41.5°N

42°N

42.5°N

43°N

43.5°N

44°N

11.5°E 12°E 12.5°E 13°E 13.5°E 14°E 14.5°E

 0  0.125 0.25 0.375 0.5 0.625 0.75 0.875  1      

Index of Agreement

10

10

9

7

7

7

7

7 7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

6
6

6

6

6

6

6

6

6

6

6

6

6

6

6

6 6

5

5

5

5

5

5

5

5

5

5

5

4

3

3
3

3

2
22

22

1

1

1

1

60 km

41.5°N

42°N

42.5°N

43°N

43.5°N

44°N

11.5°E 12°E 12.5°E 13°E 13.5°E 14°E 14.5°E

 0  0.125 0.25 0.375 0.5 0.625 0.75 0.875  1      

Correlation

FIGURE 5.12: Index of agreement (top) and correlation (bottom) for
the CHyM simulation driven by GRIPHO over Central Italy, compared
with observations. Colours indicate the value of the metric, numbers
the total length of the time period in common with observations (in

years).
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of correlation and KGE values in RegCM-ERA (figure 5.13) are still mostly positive,

but generally low. The Po river basin, which, due to its large size, is less sensitive to

precipitation timing, is the one which is better reproduced.

Validating the performance of CHyM-HAD, the CHyM simulation driven by RegCM-

HAD, is more difficult. In this case, since climate simulations do not represent

real timing of the events, but rather only a statistical representation of it, no direct

comparison with observations can be made. One way to validate the simulations is to

use the Synthetic Design Hydrographs that are computed by fitting yearly maxima to

an extreme value distribution (see section 4.3 for details). These Hydrographs, which

represent the typical discharge timeseries of an extreme event, can be calculated

for any river point and can be compared between two points with different time

coverage, being them only a statistical representation of the discharge of a given river

segment. This approach works best if a long timeseries of discharge data is available.

For CHyM model runs driven by RegCM at least 30 years are considered, while the

simulation driven by GRIPHO has only 16 years of data. The length of the time

period for discharge observations from station data varies by station; only stations

with more than 10 years of data are considered here.

Figures 5.14 and 5.15 show Synthetic Design Hydrographs for selected stations,

compared with CHyM-OBS, CHyM-ERA and CHyM-HAD. The latter is shown

across the three selected timeslices and is generally found to increase discharge by

the end of the century; this topic will be more widely discussed in the next section.

In particular, figure 5.14 shows SDHs for two selected stations in the Po river basin,

which were initially used for testing the methodology. These stations are known

to be reliable and relatively unaffected by upstream water management. The three

CHyM-OBS, CHyM-ERA and CHyM-HAD simulations show here similar results to

the observations for the present day, but an overestimation in the peak discharge at

the Isola Sant’Antonio Po station can be found in the CHyM-OBS and CHyM-ERA

simulations. Figure 5.15 shows instead example SDHs for two stations in Central

Italy, characterised by widely different drained areas (16361 and 53 km2). In both

cases, peak discharges are close to those obtained from observations.

Model performance across different basin sizes is good, albeit, on average across all

stations, an overestimation of peak discharges if generally found to be present in

all simulations. This might partially be due to the fact that discharge rating curves

generally tend to underestimate extreme flows (Di Baldassarre and Montanari, 2009).

5.2.2 Future changes in mean and extreme discharges over Italy

The CHyM-HAD simulation, which covers the period 1975 to 2100, allows us to

analyse the possible changes in discharge in a future climate scenario. In figure 5.16,

the change in average discharge between the two future timeslices and the reference

period is shown for the nine domains used to cover the complete Italian territory.
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FIGURE 5.16: Average discharge for CHyM-OBS and CHyM-HAD
(leftmost two columns) and percentage change for near and far future
(leftmost two columns), over the four seasons. To avoid overlaps and
overplotting, only the basins completely enclosed in each of the nine
simulation domains are plotted and only the major rivers are shown

for each basin.
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Average discharges obtained from the CHyM-OBS, also plotted as a reference, show

good agreement with CHyM-HAD, which covers a similar period of time. Increases

(decreases) in mean discharge are larger in the North in winter (summer), which can

be directly linked to the changes in mean precipitation (figure 5.7) and snow melt

(Coppola et al., 2014). By the end of the century, Central Italy is the only region which

shows increased discharges in summer, except for the Tevere river, the main of the

region. In autumn in the far future, discharges increase all over Italy, especially for

smaller rivers. An exception is the Tevere, the principal river of the second largest

Italian basin, which shows a negative change of about 25%. Both increasing and

decreasing signals are on average stronger in the far future compared to the near

future. The general trends between the two periods are not linear: Sardinia, for

example, shows decreased average summer discharges in the near future, but slight

increases by the end of the century (despite decreasing precipitation); in autumn,

average discharges increase over most of the country, despite little to no change in

average precipitation.

As a basic metric for high discharge, the mean annual maximum discharge (Qymax)

over the three selected 30-year periods is displayed in figure 5.17. Compared to

CHyM-OBS, in agreement with the RegCM results, CHyM-HAD for the reference

period shows generally good performance, despite a slight underestimation for winter

in the Po plain. By the end of the century, maximum yearly discharges increase in

winter and autumn across most of Italy, with changes often above +50%. In summer

and spring, results are more mixed and depend on the region: central Italy shows an

increase in summer (including the Tevere river basin, contrarily to mean discharge),

while areas such as Sardinia and the Alps show a slight decrease in the same season.

Once again changes by the end of the century are higher than in the near future and,

in some cases (e.g. Central Italy), of opposite sign. These changes can in general be

linked to extreme precipitation changes in the driving model (figure 5.8), which show

similar patterns across the domain; there are however some notable differences, such

as the marked decrease in 2070-2099 summer Qymax over Sardinia (not mirrored by

R95ptot).

Figure 5.18 shows QRP: it is the peak projected discharge for the 2, 10, 20, 50 and

100 year Return Periods, calculated using the methodology described in section 4.3.

Compared to the mean annual maximum discharge, this metric is more representative

of extreme events, but it can only be computed on a yearly basis. These extreme

discharges are in line with CHyM-OBS or even somewhat underestimated for some

rivers. As for projections, in the near future changes appear to be relatively small

and mixed across the domain; for the end of the century, instead, this metric shows a

consistent increase in extreme discharges over the whole Italian territory, with only

some areas (mainly in the southern region of Calabria) showing a slight decrease.

Some large rivers, such as the Po and the Tevere, show more than doubled values of

the peak 100-year discharge, compared to 1976–2005. The change results for the five

Return Periods are almost identical, which is to be expected given the fact that the
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FIGURE 5.17: Like figure 5.16, but for Qymax, the mean annual max-
imum discharge.
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discharges are calculated using the same constant parameters, only changing the RP.

Another standard metric for extreme discharge is the number of times the discharge is

higher than a chosen threshold. This Peak Over Threshold (POT) metric is calculated

using as reference the peak projected discharge for different Return Periods (the same

as in QRP, figure 5.18). Contrarily to the previous extreme metrics, this metric shows

an overestimation on the side of CHyM-HAD compared to CHyM-OBS (figure 5.19),

which prompts for caution with drawing conclusions from this data. The maps of

POT change clearly show a strong increase in the frequency of future events, for each

return period. In particular, for the end of the century, the less frequent the event

(more severe floods, higher Return Period), the higher the frequency increase: the

frequency of exceedance of 100-year thresholds increases more than 500% and up

to tenfold over most of the domain, while the POT of 2-year events increases, on

average, by a factor 2 or 3.

Since floods are closely linked with extreme discharges, Qymax, QRP and POT can

all be considered proxies for flood events. This simulation then unambiguously

shows a strong increase in flood hazard towards the end of the century, if the current

business-as-usual policy towards climate change is not subject to intervention.

5.3 Flood hazard maps for the Italian territory

The CA2D hydraulic model is able to reproduce flood extent and water depth for the

complete Italian domain, as described in section 4.4. Due to the lack of observational

data, validation of CA2D against real inundation events is challenging. As an example

of validation, a case study was analysed by Rita Nogherotto from the ICTP Earth

System Physic group: in November 2016 heavy rainfall over the north-west of Italy,

and in particular in the regions of Piemonte and Liguria, led to increase of hydrometric

levels over the danger thresholds for several rivers in the Po basin, such as the

Bormida and the Tanaro. The event caused vast damages and one casualty1. When

utilising discharge data from CHyM-OBS, CA2D is able to reproduce with remarkable

similarity the flooded extent as reported by COSMO-SkyMed satellite images, in

figure 5.20. The actual flooded extents (top panels) are within the boundaries of the

100- and 500-year Return Period extents as simulated with the model (bottom panels)

in both the areas considered. This validation, although only partial, suggests the

methodology described so far is reasonable.

Figure 5.21 shows preliminary results on flood hazard maps for the complete Italian

territory and for four Peturn Periods (50, 100, 250 and 500 years), as reproduced by

the CA2D model using discharge data from CHyM-OBS. The results are similar to the

official ISPRA flood maps (figure 1.7), even though these maps tend to show a larger

flooded extent compared to our product, in compatible Return Periods. However,

1For additional information about the event, refer to https://it.wikipedia.org/wiki/Alluvione_

del_Piemonte_del_2016 (in Italian)
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FIGURE 5.18: Like figure 5.16, but for QRP, the peak projected dis-
charge, calculated for 5 Return Periods: 2, 10, 20, 50 and 100 years.
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FIGURE 5.19: Like figure 5.16, but for number (and % change) of Peak
Over Threshold events above the relative QRP (see figure 5.18) for 5

Return Periods: 2, 10, 20, 50 and 100 years.
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FIGURE 5.21: Preliminary results on the flooded area for four different
Return Periods (50, 100, 250 and 500 years), computed by CA2D using

data from an observation-driven CHyM simulation.
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Chapter 6

Summary and outlook

The primary aim of this PhD project was to evaluate current flood hazard in Italy

and to project changes in a future scenario. This was accomplished through a model

chain of a climate, a hydrological and a hydraulic model, using an approach similar

to that already employed in the literature (see section 1.3, but tailored to be able to

work for the the Italian peninsula and the data available over this area. The final aim

is to reproduce a much finer spatial details, including as many small catchments as

possible over the whole area.

As part of the project, we developed and validated a first version of GRIPHO (GRid-

ded Italian Precipitation Hourly Observations, chapter 3), a new high resolution

hourly gridded precipitation database over Italy, for the period 2001 to 2016. To

our knowledge, this is the first high resolution station-based precipitation dataset

covering the complete Italian territory and having a time frequency greater than daily

data. GRIPHO shows good performance in all the tested metrics, which focused

on mean and extreme precipitation. In Northern Italy, GRIPHO performs similarly

to the existing daily high resolution datasets. In the South, where no such dataset

previously existed, GRIPHO shows significantly finer details compared to the state of

the art 25 km E-OBS dataset. The creation of GRIPHO required a significant effort for

data cleaning and quality control. Some erroneous station values, however, passed

through the checking procedures and need to be addressed in a future version. Fur-

thermore, the validation of GRIPHO was not possible on a sub-daily timescale, due

to the lack of a suitable hourly comparison dataset, and was limited to a small set of

mean and extreme precipitation metrics. We aim to address all of these deficiencies

in future works (Fantini et al., 2019, in preparation).

In the context of the development of GRIPHO, we performed (section 2.1.3) an ana-

lysis of uncertainty in the available precipitation products over Italy, finding large

variations across the different datasets. This analysis confirmed the need, already

noted in several works (Fantini et al., 2016; Prein et al., 2016; Prein and Gobiet, 2017),

for high resolution, high station density precipitation datasets, especially when con-

sidering extreme precipitation metrics. These findings are further discussed in Fantini

and Coppola (2019, in preparation).
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Two 12 km Regional Climate Model simulations with the ICTP RegCM model were

performed on the EURO-CORDEX domain, one as a perfect boundary (ERA-Interim)

experiment and one driven by a GCM (HadGEM) under the RCP8.5 scenario. These

simulations were validated over the Italian territory in terms of mean and extreme

precipitation and temperature, showing good model performance and entitling us

to use the model for future projections. In particular, the model is capable of repro-

ducing precipitation extremes when compared with observations. In the scenario

simulation, coherently with most literature (see section 1.3), precipitation extremes

are projected to strongly increase by the end of the century, even in regions where

average precipitation decreases. More intense extreme events, such as those evalu-

ated by the R99ptot metric, are projected to increase more than less intense extremes

(R95ptot).

Three simulations with the CHyM hydrological model were performed, in which

the input precipitation data was provided by GRIPHO, RegCM (ERA-Interim) and

RegCM (HadGEM) respectively. Nine separate domains, corresponding to the CHyM

operational regions, were chosen and run at a resolution ranging from 300 to 900 m.

Validation of the historical simulations (section 5.2), limited to two of the nine domains

(the Po basin and Central Italy) due to lack of reliable observational data, showed

acceptable performance on part of the model, especially when driven by the GRIPHO

observations. We plan to expand this validation by performing additional data

cleaning and checks on the discharge datasets considered (section 2.2).

The CHyM scenario simulation driven by RegCM (HadGEM) can be used to assess

the impact of climate change on the mean and extreme discharge for the Italian river

network. Being this a single scenario simulation, we are well aware of the limitations,

for example, on assessing the uncertainty of the projected signal. Therefore, a possible

future development would be to repeat the study in an ensemble context. The

analysis of this hydrological scenario simulation shows that by comparing the 2070–

2099 timeslice with the historical (1976–2005), changes in the mean are rather mixed:

discharges generally increase in autumn and winter and decrease in summer, but

significant regional differences are present. The Alpine area, which is the water tower

for the largest Italian river catchment, the Po basin, which is often flooded, shows

significantly increased mean discharges, especially in the colder months.

By the end of the century, the three metrics chosen for extreme discharges all indicate

strong increases, in some cases up to tenfold the reference values, for both large and

small basins. Since these metrics can be considered proxies for flood hazard, it is

likely that floods are also going to increase significantly in this scenario for each of

the return period examined in this thesis. These findings are generally in agreement

with those found in the literature, however our approach provides a much finer look

on smaller basins than previous works, which covered the entire European continent

(see e.g. Alfieri et al., 2015a; Alfieri et al., 2015b).

By using the calibrated output of the hydrological model, flood extent maps were
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created at a resolution of 90 m using the hydraulic model CA2D (section 5.3) and

validated in a case study for the Piemonte 2016 flood. Good agreement between 100-

and 500-year Return Period maps and the observed inundation is observed. Larger

scale validation is limited by the lack of observations on the flooded extent in real

world flood events.

Preliminary flood hazard maps were produced for the present day and compared

to the maps assembled by ISPRA starting from flood data from the Italian regional

agencies (figure 1.7). Similar features and extents can be found in the two products,

despite the differences in the approaches employed in their creation. Compared

to the ISPRA maps, our approach has the significant advantage of ensuring that

the methodology is coherent across the whole Italian territory and, additionally, it

provides a simple route to simulate future hazard. Currently, flood hazard maps

under an RCP8.5 scenario (utilising the CHyM output analysed in this thesis) are

being computed and will provide a useful tool on top of which future policies can be

based.

The work presented in this thesis answers the three main research questions posed in

section 1.1.1. Our model chain can reproduce flood hazard over the Italian domain,

and first tests suggest good performance both in a case study and in comparison with

existing maps. Our simulations project flood hazard proxies to increase in the RCP8.5

business-as-usual scenario for most of the Italian catchments, with changes often

exceeding +100% by the end of the century. A good example of this is the increases

in mean annual maximum discharge (QYmax) in Northern Italy (in winter) and in

Central Italy (in summer) by the end of the century.

The near and far future timeslices often show different patterns and change intensities:

the peak projected 100-year discharge (Q100), for example, shows only moderate

changes in the 2020–2049 timeslice, but very marked increases across most of the

country by 2070–2099.

In general, changes can vary from one region to the other, supporting the thesis of the

necessity of high resolution studies which are capable of resolving even small river

basins. Even at this local scale, changes can be non uniform: in Sardinia, for example,

changes in QYmax show different sign in different areas, despite their closeness and

similar climatic characteristics.

Changes in flood hazard proxies and average discharges usually follow the changes

in the respective precipitation metrics, but some exceptions suggest that ground and

snow interactions also play an important role in the projections of future hydrology,

which cannot only be limited to precipitation analysis. This non linearity can be

seen, for example, when comparing average discharge and precipitation over the

whole Italy in autumn, or extreme precipitation (R95ptot) and discharge (QYmax) for

Central and Northern Italy in summer in the 2070–2099 timeslice. It is clear that care

must be exercised when employing extreme precipitation metrics (such as R95ptot) for

estimating flood hazard, since other discharge-related proxies can sometimes paint a

different picture.
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The major limitations of our approach are threefold.

Firstly, the whole procedure completely ignores water management and man-made

structures such as dams, dykes and canals. Consequently, it is likely that flood control

procedures, such as floodplain reservoirs and river defences, might reduce flood

hazard compared to our estimation. To take this factor into account on such a large

scale would require significant added complexity and was not planned for this work.

Secondly, the procedure described in this thesis is purposefully limited to at most

30-year timeslices: we then describe 100-year floods by extending the available data

with an extreme value distribution. The uncertainty associated with this approach

should not be easily dismissed, since it can represent a sizeable fraction of the signal.

Schulz and Bernhardt (2016), for example, have shown that using 30-year timeslices

to estimate 100-year discharges can lead to an error of up to ±30%. The possibility of

using the whole 130 years of scenario simulation, however, is ruled out by the need to

extrapolate a climate change signal between the far future and the reference period.

Thirdly, all of the work carried out in this project is based on a single model chain

and a single future scenario (RCP8.5). As highlighted by Dankers and Feyen (2009)

and Rojas et al. (2012), who use ensemble approaches, driving different hydrological

models with a set of climate models would allow a basic estimation of the uncertainty

associated with this method and improve the overall reliability of the projections. As

already noted, expanding the current methodology to at least take into account several

driving RCMs might be an interesting future research path. Currently, simulations

with the climate change mitigation scenario RCP2.6 are planned, to validate the

impact of a significantly less extreme degree of climate change which represents the

best case scenario of current mitigation policies.

Despite these limitations, we believe that the approach and the tools described in

this thesis are useful for evaluating and projecting flood hazard over Italy. Moreover,

the methodology we followed is extremely flexible and has the potential for being

applied anywhere in the world. In particular, tests on a European-wide 1 km grid

have already started, with the intent of extending the evaluation of discharge flood

proxies over the whole continent.

In conclusion, we developed, tested and validated a generic methodology for es-

timation of flood hazard in any domain where terrain and climatic information are

available. The results show good agreement with the available observations. The

procedure required a large amount of preparation, and in particular the completion

of two regional climate simulations for the EURO-CORDEX domain and one scen-

ario hydrological simulation over the entire Italian peninsula, not yet present in the

literature. Moreover, the creation and validation of a novel high resolution hourly

precipitation dataset named GRIPHO, which currently is the only dataset of this kind

available over Italy, has been accomplished.
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Appendix A

Temperature validation and change

for the RegCM simulations

The two RegCM simulations described in section 4.1.4 are here briefly analysed for

what concerns temperature. In the reference period, the comparison is performed

against the UDEL(Willmott and Matsuura, 2001), CRU(Harris et al., 2014) and E-OBS

(Haylock et al., 2008) datasets. Figure A.1 show the annual cycle of the two simula-

tions, compared with that of observations. In both cases, biases with observations are

relatively minor, with the model being slightly too cold in winter in all regions, and

slightly too hot (cold) in the North (South) in summer.

A spatial comparison is presented in figure A.2. Average seasonal temperatures

are significantly easier for the model to simulate compared to precipitation, and all

major features are well reproduced. An overestimation of summer temperatures

in the Po plain is found, together with a general underestimation of high elevation

temperatures in winter. Uncertainties between observations are also greatly reduced

for this variable, with all the three dataset showing similar spatial patterns and values.

For the RegCM (HadGEM) simulation, future changes in temperature can be reduced

to a general increase, pretty uniform across all of the domain. Land areas warm up

slightly more than water surfaces. The temperature changes range from to 3 to 7 ◦C,

with average changes of 3.7 to 6.2 ◦C. The increase is stronger in summer and weaker

in winter.

Temperature PDFs (not shown) are also mainly characterised by a uniform, constant

increase across all the frequencies, seasons and regions. This means that extremely

cold days generally disappear in the 2070–2099 timeslice, while high temperature

events that can be considered extreme in the reference period become much more

common by the end of the century: 30 ◦C summer days in Sardinia and Sicily, for

example, become more than ten times more frequent.
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FIGURE A.1: Annual cycle of temperature as reproduced by obser-
vations and models (section 4.1.4). The time period for each dataset
varies according to availability. The four macroregions selected are the

same as in previous evaluations (sections 2.1.4 and 3.4).
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FIGURE A.2: Average seasonal temperature for the two climate model
simulations (top two rows) and three selected temperature datasets.
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FIGURE A.3: The temperature annual cycle for the RegCM (HadGEM)
simulation in the three timeslices selected, for the four macroregions

(see sections 2.1.4 and 3.4).
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FIGURE A.4: Average seasonal temperature for the RegCM (HadGEM)
simulation for the reference period (left column) and change w.r.t. it
(centre and right column). The four rows represent seasons. In the top
right corner of each map, the colour-coded average for each of the four

macroregions is shown.
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FIGURE A.5: Daily seasonal temperature Probability Density Func-
tions for the RegCM (HadGEM) simulation, across the three timeslices.
The four rows represent macroregions, the four columns the seasons.
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Appendix B

Software and programs used in this

thesis

This PhD project required a vast amount of computing, preprocessing, analysis and

plotting. None of this would have been possible without the large number of different

software packages used, all of which are free to use, and most of which are open

source. The following is a non-comprehensive list of the software used:

R R Core Team (2018)

CDO Schulzweida (2018)

NCO Zender (2008)

Python Python Software Foundation

(2018)

netCDF Unidata (2018)

ScyPy Jones et al. (2007)

GDAL GDAL/OGR contributors (2018)

Most of the data analysis and plotting was carried out using R. Several R packages

were extremely useful and deserve a special mention:

ncdf4 Pierce (2017)

ggplot2 Wickham (2016)

patchwork Pedersen (2017)

ggspatial Dunnington (2018)

ggrepel Slowikowski (2018)

RColorBrewer Neuwirth (2014)

sf Pebesma (2018a)

stars Pebesma (2018b)

raster Hijmans (2018)

rnaturalearth South (2018)

mapedit Appelhans and Russell (2018)

leaflet Cheng et al. (2018)

shiny Chang et al. (2018)

dplyr Wickham et al. (2018)

tidyr Wickham and Henry (2018)

glue Hester (2018)

readr Wickham et al. (2017)

profvis Chang and Luraschi (2018)

purrr Henry and Wickham (2018)

furrr Vaughan and Dancho (2018)
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future Bengtsson (2018)

futile.logger Rowe (2016)

optparse Davis (2018)

lubridate Grolemund and Wickham

(2011)

This thesis was typeset in LATEX.
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