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Abstract

In this paper we show that, via an extension of time, some metric structures

naturally appear in both classical and quantum mechanics when both are for-

mulated via path integrals. We calculate the various Ricci scalar and curvatures

associated to these metrics and prove that they can be choosen to be zero in

classical mechanics while this is not possible in quantum mechanics.
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1. Introduction

Quantum gravity is for sure one of the most outstanding open problem in

theoretical physics. The usual approach is to take a geometric classical theory

(like Einstein gravity, string or similar) and apply quantum mechanics to it.

People have never reversed the problem, that means first try to understand if

there is some hidden universal geometry in quantum mechanics and, second,

see if this geometry is compatible with the geometry of the classical model that

we want to quantize. In this paper we will concentrate on the first of the two

issues above that means try to understand if there is some hidden geometry in

quantum mechanics. In doing this we will discover some nice things which may

have some application. In a future paper we hope to come back to the second

issue mentioned above.
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It was shown in [1] that classical mechanics (CM) and quantum mechanics

(QM) could have a very similar formulation via path-integrals. The generating

function of the first, which we will indicate with the acronym CPI (for classical

path integral) has the form:

ZCPI [J] =

∫
DΦa exp

[
i

∫
idtdθdθ̄ 1 (L[Φ] + JΦ)

]
(1)

where θ, θ̄ are two grassmanian partners of t, Φa are extensions of the phase

space coordinates ϕa ≡ (q1, . . . , qn; p1, . . . , pn), a = 1, . . . , n and L is the usual

lagrangian. The generating functional for quantum mechanics, which we will

indicate with ZQPI (where QPI stands for quantum path integral), has the form

ZQPI [J] =

∫
DΦa exp

i∫ idtdθdθ̄
θθ̄

~
(L[Φ] + JΦ)

 (2)

which is very similar to Eq. (1) except that the 1 in Eq. (1) is replaced by θθ̄
~

in Eqs. (2). As these quantities multiply the measure of integration
∫
idtdθdθ̄,

it comes natural to do the following: let us introduce a general dreibein EM
A in

the space (t, θ, θ̄) and let us build the following path-integral

ZGPI [J] =

∫
DΦa exp

[
i

∫
idtdθdθ̄ E (L[Φ] + JΦ)

]
(3)

(GPI stands for General Path Integral) and where E is the determinant (or su-

perdeterminant) of EMA . Immediately we notice, comparing Eq. (3) with Eq. (1)

and Eq. (2) that the CPI can be considered a GPI with E = 1 and the QPI a

GPI with E = θθ̄
~ . As the GPI has a general covariance in the (t, θ, θ̄) space we

could consider the CPI and QPI as two “gauge fixed” versions of Eq. (3)1. The

reader could object to this by saying that Eq. (1) and Eq. (2) should contain

the Fadeev-Popov determinant if considered as gauge fixed versions of Eq. (3).

We will return to this issue at the end of Section (2). Somehow we can consider

1The Lagrangian of the GPI will have its usual derivatives replaced by general covariant

ones. The usual derivatives contanied in Eq. (1) and Eq. (2 will be forced to be the same as

the covariant ones associated to their gauge-fixing.
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the formulation in Eq. (1), Eq. (2), Eq. (3) similar to that of a field theory Φ in

a background gravitational field EAB . The reader may also object that if both

Eq. (1) and Eq. (2) are different gauge of Eq. (3) then we could turn classi-

cal mechanics Eq. (1) into quantum mechanics Eq. (2) via a general covariant

transformation in the extension of time. We will show later on why it is not

possible to turn CM into QM. Next we will prove that there are various families

of EAB which give the same CPI and the same for the QPI. These families are

parametrized by 4 parameters for the CPI and by 5 for the QPI. From the EAB

with the help of Wolfram Mathematica we will build the metric, the Christoffel

symbols, the Ricci curvature tensor Rαβ and the Ricci scalar R. All of these

depend on the same parameters as the EAB . For the CPI we shall prove that

there is a point in parameter space for which the Ricci scalar and tensors are

zero. The same does not happen for the QPI. This fact may indicate something

very profound but we have not been able to get to it so far.

We leave to the reader the task to explore this last issue. The paper is

organized as follows. In Section (2) for completness we briefly review [1, 2, 3].

In Section (3) we introduce the vierbein EAB
2 and indicate the general strategy.

In Section (4) we show how to obtain the vierbein for both the CPI and the

QPI and do the counting of the free parameters. In Section (5) we calculate the

metric for both the CPI and the QPI. In Section (6) we proceed to calculate

the Ricci scalar and curvature for both theories. In Section (7) we search for

the points in parameter space where the Ricci scalar and tensor are zero in

the CPI. We also prove that a similar point does not exist for the QPI. In

Section (8) we summarize what we had done and the prospects for the future.

In few appendices we confine some detailed and long calculations.

2What, from now on , we shall call a “vierbein” is actually a dreibein associated to (t, θ, θ̄).
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2. Review

In the thirties Koopman and Von Neumann (KVN) proposed [2, 3] an oper-

atorial and Hilbert space formulation of classical mechanics (CM) on the lines

of what had been done few years before for quantum mechanics (QM). It was

then natural to give [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] a path-integral version of

the KVN formalism like Feynman had done for the operatorial version of QM

[15]. Actually, the path-integral version of classical mechanics (CPI) provided,

in a natural way, a generalization of the KVN formalism in the sense that it

gave also the classical evolution of differential forms and tensors on phase-space

[16].

The procedure has been worked out in details in [1] and [4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14] and can be summarized as follows. The KVN postulates for the

Hilbert space and operatorial version of CM are the following:

1. a state of a classical system, whose phase-space is indicate by M with

coordinates ϕa ≡ (q1, . . . , qn; p1, . . . , pn) is represented by an elememt |ψ〉

of a Hilbert space H.

2. On this Hilbert space the operators p̂i and q̂j , whose eigenvalues are pi

and qj , commutes

[p̂i, q̂j ] = 0

and their common eigenstates are indicated as |q, p〉.

3. The staes 〈q, p|ψ〉 are square-integrable and their modulus squared |ψ(q, p)|2

is the probability density ρ(q, p) of finding the system in (q, p).

4. The evolution of ψ(q, p) is given by the Liouville equation

i
∂ψ

∂t
= L̂ψ

where the Liouvillian L̂ is

L̂ = i

(
∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q

)
and H is the Hamiltonian of the sistem whose associated equation of motion

are

ϕ̇a = ωab
∂H

∂ϕb
(4)
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where

ωab =

 0 I

−I 0


is actually a 2n × 2n matrix called symplectic matrix. It is well-known that

the evolution between some initial point ϕi and some final point ϕj has the

following form on the states

ψ(ϕf , tf ) =

∫
K(ϕf , tf |ϕi, ti)ψ(ϕi, ti) d

2nϕi (5)

where

K(ϕf , tf |ϕi, ti) = δ[ϕf − Φcl(tf ; qi, ti)]

with Φcl the solution of Eq. (4) with initial condition ϕi. Slicing the time interval

tf − ti in N intervals, we can re-write the kernel K(ϕf , tf |ϕi, ti) as follows:

K(ϕf , tf |ϕi, ti) = lim
N→∞

{∫ N−1∏
J=1

dϕJ δ[ϕJ − Φcl(tJ ;ϕi, ti]

}
δ[ϕf−Φcl(tf ; qi, ti)]

(6)

where ϕJ are the intermediate points between ϕi and ϕf over which we integrate.

The Dirac deltas which appear in Eq. (5) can be written as

δ[ϕJ − Φcl(tJ ;ϕi, ti)] = δ

[
ϕ̇a − ωab ∂H

∂ϕb

]∣∣∣∣
tJ

det

[
δab ∂t − ωac

∂2H

∂ϕc∂ϕb

]∣∣∣∣
tJ

. (7)

Let us now introduce some auxiliary variables λa and let us rewrite the first

term on the RHS of Eq. (7) as

δ

[
ϕ̇a − ωab ∂H

∂ϕb

]
=

∫
dλa exp

[
i λa

(
ϕ̇a − ωab ∂H

∂ϕb

)]
(8)

modulo a normalization factor. Let us also introduce 4n grassmanian variables

[17] ca, c̄a, a = 1, . . . , 2n so that we can rewrite the det on the RHS of Eq. (7)

as:

det

[
δab ∂t − ωac

∂2H

∂ϕc∂ϕb

]
=

∫
dcadc̄a exp

[
−c̄a

(
δab ∂t − ωac

∂2H

∂ϕc∂ϕb

)
cb
]
. (9)

Using Eq. (7), Eq. (8) and Eq. (9) in Eq. (6) we get

K(ϕf , tf |ϕi, ti) =

∫ ϕf

ϕi

D′′ϕDλDcDc̄ exp

[
i

∫
dtL̃
]

(10)
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where

L̃ = λa

[
ϕ̇a − ωab ∂H

∂ϕb

]
+ i c̄a

(
δab ∂t − ωac

∂2H

∂ϕc∂ϕb

)
cb (11)

and D′′ϕ indicates that the integration is done over all its intermediate points

and not on the end points ϕi and ϕf . Eq. (10) is basically the path-integral

counter-part of the KVN formalism. Remembering how commutators are ob-

tained from the path-integral [15] we get

[ϕ̂a, ϕ̂b] = 0

[ϕ̂a, λ̂b] = i δab (12)

[ˆ̄ca, ĉ
b] = δab

where the last are anticommutators or graded commutators [17]. All the other

commutators are zero. From the second commutators of Eq. (12) we can realize

operatorially the λ̂a as

λ̂a = −i ∂
∂ϕa

. (13)

Let us now see how the Liouville operator emerges from Eq. (11) from the

non-grassmanian part of L̃ which we indicate with L̃B the following quantitity:

L̃B = λa ϕ̇
a − H̃B

where

H̃B = λa ω
ab ∂H

∂ϕb
. (14)

It is then clear that at the operatorial level we have:∫
DϕDλ exp

[
i

∫
dtL̃B

]
−→ exp

[
− ̂̃HB t] (15)

where
̂̃HB is the operator associated to Eq. (14) obtained using Eq. (13)

H̃B = −i ∂

∂ϕa
ωab

∂H

∂ϕb
=

= −i∂H
∂p

∂

∂q
+ i

∂H

∂q

∂

∂p
= L̂ (16)

and this L̂ is the Liouville operator. The reader may ask now which operator

we would get if we had kept also the grassmanian variables. It was shown in [4]
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that the ca can be identified with the differential operator dϕa. Via these we

can build generic differential forms [16]

ψ(ϕ, dϕ) (17)

and we know that their evolution is given by an operator [16] called the Lie

derivative of the Hamiltonian flow which is simbolically written as L(dH)# . So

∂tψ(ϕ, dϕ) = L(dH)#ψ(ϕ, dϕ). (18)

This operator is a generalization of the Liouville operator which makes only the

evolution of ψ(ϕ) that are called zero forms. As we said in [4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14] the ca of our path-integral can be identified with the dϕa and so

the differential form Eq. (17) can be turned into a ψ(ϕ, c)

ψ(ϕ, dϕ) −→ ψ(ϕ, c). (19)

From the path-integral Eq. (10) it is clear that the evolution of ψ(ϕ, c) is given

by

∂tφ(ϕ, c) =
̂̃
Hψ(ϕ, c), (20)

where
̂̃
H is the operatorial Hamiltonian associated to the Lagrangian of Eq. (11).

Comparing Eq. (20) with Eq. (18) we can say that the Hamiltonian operator of

our path-integral is a well-known object [16] in differential geometry, i.e. it is

the Lie derivative of the Hamiltonian flow. The identification with objects of

differential geometry can be also extended to the exterior derivatives, the inner

contractions, the Lie brackets and the whole Cartan calculus [16]. The details of

this important correspondence have been worked out in [4, 5]. So the auxiliary

variables that we introduced ca, c̄a, λa are not just tricks to rewrite the path

integral in a simpler form but crucial geometrical objects. Let us now go back

to the commutation relations i.e Eq. (12). We said before that we can realize

the λ̂a as a derivative operator and obviously the ϕa as a multiplicative one:

ϕ̂a|ϕ〉 = ϕa |ϕ〉. (21)
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The same can be done for the operators ĉa, ˆ̄ca. As they commute with the ϕ̂a

and λ̂a, we can generalize the states of Eq. (21) to the following ones:ϕ̂a|ϕ, c〉 = ϕa |ϕ, c〉

ĉa|ϕ, c〉 = ca |ϕ, c〉
(22)

and implement ˆ̄ca as a derivative operator

ˆ̄ca =
∂

∂ca
.

There is another manner to realize the commutation relations of Eq. (12). Not-

ing that q̂i and λ̂pi commutes and the same ĉq and ĉp we can diagonalize these

operators 3 and obtain the states

q̂ |q, λp, cq, c̄p〉 = q |q, λp, cq, c̄p〉

λ̂p |q, λp, cq, c̄p〉 = λp |q, λp, cq, c̄p〉

ĉq |q, λp, cq, c̄p〉 = cq |q, λp, cq, c̄p〉
ˆ̄cp |q, λp, cq, c̄p〉 = c̄p |q, λp, cq, c̄p〉 .

(23)

The operators p̂ and λ̂q are realized as derivatives operators

p̂ = i
∂

∂λp
, λ̂q = −i ∂

∂q
.

The two basis Eq. (22) and Eq. (23) are related by a Fourier transformation [1].

The transition amplitudes in the basis of Eq. (23) is a generalization of Eq. (10)

and it has the following path-integral expression

〈qf , λpf , c
q
f , c̄

p
f |qf , λ

p
i , c

q
i , c̄

p
i 〉 = (24)

=

∫
D′′qDpD′′λpDλqD′′cqDcpDc̄qD′′c̄p exp

[
i

∫
dt ˜̃L ]

where
˜̃L is a Lagrangian which differ from L̃ of Eq. (11) by surface terms. More

details can be found in ref.[1]. At this point we have to introduce two crucial

ingredients which are familiar from the supersymmetry formalism [18]. Let us

3The index q and p on ĉ, ˆ̄c, λ̂ indicates respectively the first and the last n-indices on

ĉa, ˆ̄ca, λ̂a
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extend the variable t via two grassmanian partners θ, θ̄. The triplet (t, θ, θ̄) is

often called “supertime”. If we extend t to the 4-dim xµ then there is an analog

extension of super-time called “superspace” [18]. With this tool we can group-

together the various variables (ϕa, λa, c
a, c̄a) into a function of (t, θ, θ̄) called

superfield and defined as follows:

Φa(t, θ, θ̄) ≡ ϕa + θ ca + θ̄ ωab c̄b + i θ̄θ ωabλb. (25)

We can separate off the q and p part of this superfields as follows:

Φa =

Qi
Pi

 ≡
qi
pi

+ θ

cqi
cpi

+ θ̄

 c̄qi

−c̄pi

+ iθ̄θ

 λpi

−λqi

 . (26)

Using the superfield there are some nice identities which we will need later on.

Let us build the Lagrangian associated to H(ϕ) of the original equations of

motion Eq. (4) and let us call it L(ϕ) where we replaced q̇ with p. Let us

now replace in L(ϕ) the ϕ with the superfield Φa and expand in θ, θ̄. We get

following expression:

L[Φ] = L(ϕ) + θM+ M̄θ̄ − iθ̄θ ˜̃L (27)

where ˜̃L is the Lagrangian which enters in Eq. (24). We will need these identities

later on. Let us drop the indices in Eq. (26):Q(θ, θ̄) = q + θ cq + θ̄ cp + i θ̄θ λp

P (θ, θ̄) = p+ θ cp − θ̄ cq − i θ̄θ λq
. (28)

The variables which enter Q all commute once they are turned into operators

so we could define the following states

Q̂|Q〉 = Q(t, θ, θ̄)|Q〉 (29)

which clearly satisfy 

q̂|Q〉 = q |Q〉

λ̂p|Q〉 = λp |Q〉

ĉq|Q〉 = cq |Q〉
ˆ̄cp|Q〉 = c̄p |Q〉.
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So we can identify the states |Q〉 with those of the basis Eq. (29). We can now

use this fact and Eq. (27) to rewrite Eq. (24) as follows

〈Qf , tf |Qi, ti〉 =

∫
D′′QDP exp

[
i

∫ t

t0

i dt′dθdθ̄ L[Φ]

]
(30)

where we have used the standard rule of grassmanian integration∫
dθdθ̄ θ̄θ = 1.

all the details above are carefully explained in ref.[1]. Let us go back to the

quantum mechanical path-integral [15] which gives the following expression for

the transition amplitude

〈qf , tf |qi, ti〉 =

∫
D′′qDp exp

[
i

~

∫
dt′ L[ϕ]

]
. (31)

Note the great analogy between the classical path-integrac (CPI) Eq. (30) and

the quantum path-integral (QPI) Eq. (31). We pass from one to the other by

the following steps: 
Q −→ q

P −→ p

i
∫
dtdθdθ̄ −→ 1/~

. (32)

This is a sort of dimensional reduction which in [1] we proved to be equivalent

to geometric quantization [19]. More details can be found in ref.[1]. Differently

than in [1] in this paper we still exploit the relation between Eq. (31) and Eq. (30)

but following a different route. Let us write Eq. (31) using the superfield and

Eq. (27): ∫
dtL(ϕ) =

∫
dtdθdθ̄ θ̄θ L[Φ] =

∫
i dtdθdθ̄ (−i θ̄θ)L[Φ]

so
i

~

∫
dtL(ϕ) = i

∫
i dtdθdθ̄

(
− i
~
θ̄θ

)
L[Φ].

We can then rewrite Eq. (31) as

〈qf , tf |qi, ti〉 = N
∫
D′′QDP exp

[
i

∫
i dt′dθdθ̄

(
− i
~
θ̄θ

)
L[Φ]

]
. (33)
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where N is a normalizing factor. On the right hand side of Eq. (33) the inte-

gration over c, c̄, λ drops off the path-integration because these variables do not

enter the weight. The normalizing factor N is there to get 1 out of those extra

intergrations. We could avoid introducing this normalizing factor if we write

the L.H.S. of Eq. (33) as 〈Qf , tf |Qi, ti〉 The pieces 〈λf , tf |λi, ti〉 〈cf , tf |ci, ti〉

〈c̄f , tf |c̄i, ti〉 turn out to be products of “1” at each slice in time exactly as on

the path-integral on the R.H.S. So we can summarize the Eq. (33) and Eq. (30)

as

〈Qf , tf |Qi, ti〉CPI =

∫
D′′QDP exp

[
i

∫ t

t0

i dt′dθdθ̄ I L[Φ]

]
(34)

〈Qf , tf |Qi, ti〉QPI =

∫
D′′QDP exp

i∫ t

t0

i dt′dθdθ̄ −i
θ̄θ

~
L[Φ]

 . (35)

We have encircled the quantities I and −i
θ̄θ

~
because they seems to be

the only quantities which are different in QM and CM. They somehow mod-

ify the measure of integration over the superspace
∫
dtdθdθ̄. We can extend

the formalism also to the generating functionals as we have indicated in the

introduction.

3. General Strategy

The presence of a factor in the measure, both in Eq. (34) and Eq. (35), is

reminiscent of another factor which appears in the measure of integration. This

happens in Riemannian geometry. There we have distances defined via a metric

gµν as

ds2 = gµν dx
µ dxν

and we require that this distance is invariant under general coordinate transfor-

mations

x′µ = x′µ(xν).
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We also require that the volume of integration is invariant and this happens

only if we multiply the volume by a factor E:∫ 4∏
ν=1

dxv E. (36)

The factor E is a determinant which is built in this way. Let us introduce a

tensor called vierbein eaµ which carries an index a transforming under Lorentz

transformations and a second index µ transforming under general coordinate

transformations. It is possible to show that the metric gµν can be written in

terms of the vierbein as follows

gµν = ηab e
a
µ e

b
ν , (37)

where ηab is a flat-Lorentz metric. For a review the interested reader can look

into ref.[20]. The factor E making the measure invariant is defined as

E = det eaµ. (38)

In our case the space on which we would like to introduce the factor E is not

the 4-dim. space time but the 3-dim. space zA = (t, θ, θ̄). Riemannian spaces

with grassmannian coordinates have been studied in [21, 22]. We can define flat

supertime in many ways but we choose the following one:

dzA ηAB dz
B = dt2 − dθdθ̄ + dθ̄dθ, (39)

where ηAB is

ηAB =


1 0 0

0 0 −1

0 1 0

 . (40)

The analog of the Lorentz transformation in this case is given by the group

Osp(1|2), which is the set of transformations leaving invariant the quantity

s = t2 + θθ̄ − θ̄θ. (41)

The non-flat infinitesimal distance is defined as

dzA gAB dz
B , (42)
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where gAB is the analog of the metric, which due to the grassmannian character

of some of its elements, is called supermetric. Under a general superdiffeomor-

phisms of our coordinates, which we will indicate as:

zA
′

= zA + ξA(z), (43)

the gAB , in order for Eq. (42) to be invariant, must transform as [21, 22]:

g′AB = gAB(z) +

→
∂ ξC

∂zA
gCB + gAC

ξC
←
∂

∂zB
+ gAB,C ξ

C , (44)

where the right and left derivatives above are due to the grassmannian character

of some of the z and the fact that in Eq. (42) some infinitesimals are to the left

and some to the right. Like in normal Riemannian geometry also in super-

Riemannian one [21, 22] we can define the super-vierbein which we will indicate

with EAΛ , where A is the Lorentz analog (Osp(1,2)) index and Λ the general

covariant (in supertime) one. The relation between supermetric and super-

vierbein is [21, 22]:

gΛΠ = EAΛ ηAB (−1)(1+B)ΠEBΠ(z). (45)

The numbers which are in the exponent of (−1) are 0 for t and 1 for θ and θ̄.

For more details about grassmannian number, matrices and super-determinant

(which are often indicated by sdet(. . . )) the reader can consult [17] or the Ap-

pendix A of this paper. From now on we will replace the greek letters on

the vierbein with latin letters taken from the end of the latin alphabet like

M,N,P, . . . . The analog of Eq. (36) for the superspace made of t, θ, θ̄ will be∫
i dt dθ dθ̄ E (46)

where E = sdet(EAM ). If we compare this with Eq. (34) and Eq. (35) we can

say that the CPI is like a “gauge” fixed version of a “super-general covariant”

formalism in supertime and the “gauge fixing” is such that

E = I (47)
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while for the QPI the “gauge fixing” is such that

E = −i θ̄θ
~
. (48)

Before going on further we should remember that Eq. (47) and Eq. (48) are

not the only conditions we have to impose in order to obtain respectively the

CPI and the QPI. We should in fact remember that in a “general covariant”

formalism also in the kinetic piece of the Lagrangian there is the presence of the

vierbeins. Let us first suppose we integrate out in Eq. (34) and Eq. (35) the P

so that the kinetic piece in both of them is reduced to

∂tQ∂tQ, (49)

where we omit the indices on Q. An analog “general covariant” piece would be

DtQDtQ (50)

where the general covariant derivative Dt would be

Dt = EMt ∂M , (51)

with EMt components of the inverse of the vierbein matrix appearing in Eq. (45)

and Eq. (46). The EMt should be chosen to be real because the expression in

Eq. (50) is real. If instead Eq. (50) were of the form

(DtQ)(DtQ)∗,

then we could choose EMt to be complex. We will extend the reality condition of

the EMt to all the components of the vierbein in order to simplify the treatment.

For the expression Eq. (50) to be the same as Eq. (49), we will see later on that

we have to make a particular choice for the vierbein. This choice, beside the

one of Eq. (47) for the CPI and the Eq. (48) for the QPI, is something like

a gauge fixing that we need to impose on the ”general covariant” formalism

where the vierbein are free. The reader may object that we should also insert

a Faddev-Popov (F.P.) determinant in the functional measure. As we already

said earlier, we thought this was not necessary in our two cases because the

14



F.P. would depend only on EAM in our two gauge-fixings and we do not have

the integration over EAM in the path-integral. But again the reader could object

that a gauge-fixing could depend also on the matter Φ, like in the t’Hooft gauge,

and over Φ we integrate. As a consequence what we get is not a “gauge fixing”

independent formalism and so we cannot pass from the CPI to the QPI via a

“gauge transformation”. So we should be careful in saying that the CPI and

the QPI are something like a “gauge fixing” of a general covariant formalism.

In fact we have used the expression “something like”. Nevertheless we think

that is worth to pursue this analogy and see if it helps us better undertand the

interplay between CM and QM

4. Vierbeins

In this section we shall build the vierbein EMA , which gives the CPI and the

one which gives the QPI. We will bother the reader with several details which

are crucial in order to get the precise form of the vierbeins. We will show that

there is a whole family of EAM , which reproduce the same CPI and the same for

the QPI. The vierbein is a 3× 3 super matrix

EMA =


a α β

γ b c

δ d e

 , (52)

where the greek letter indicate an odd element while the latin one indicates

an even element. It is easy to see why the elements of EMA have the features

indicated above by considering how the supermetric gAB is built out of the

vierbein in Eq. (45) and from the odd/even characters of the elements of the

gAB . The two conditions that we have to satisfy to get the CPI are:
E = 1 =⇒ sdet(EMA ) = 1

DtQDfQ = ∂tQ∂tQ .

(53)

About the first relation above we already talked a lot, while the second one is

there in order to obtain the usual kinetic piece of C.M. from the covariant one.
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It is a long calculation, reported in Appendix B, to prove that the vierbein for

the CPI, satisfying the constraints (53) is given by

EMA (CPI) =


±1 0 0

γ b c

δ d e

 .

where the variables b, c, d, e have to satisfy two constraints reported in Appendix

B. A similar but much longer calculation, reported in Appendix C, gives the

form of the vierbein for the QPI

EMA (QPI) =


1 + aSθθ̄ α β

γ b c

δ d e

 ,

where aS is the “soul” (see Appendix A or ref.[17] for the definition of soul).

Also the elements of EMA (QPI) are not free but must satisfy two constraints

presented in Appendix C. Of course for the QPI also Eq. (53) is different and

it is reported in details in Appendix C.

5. Metrics

In this section we will calculate the metric from the vierbeins and show that

they depend on a lower number of free parameters than the vierbeins. All details

of the calculations are in Appendix D and we will often refer to the equations

contained in that appendix and in the previous ones. We will skip the similar

details in later sections for the curvatures because most of those calculations

were done using Wolfram Mathematica and using symbols already defined in

this and the previous section.

Let us start from the CPI. The vierbein, before implementing the constraint

Eq. (B.3), has the form given by Eq. (B.2), i.e.

EMA =


±1 0 0

γ b c

δ d e

 , (54)
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and the “super-metric” has the following form as a function of the vierbein:

gMN = EMA η
AB (−1)(1+B)NENB . (55)

A long but easy calculation gives

gMN =


1− 2 γ δ γ d− δ b γ e− δ c

γ d− δ b 0 b e− c d

γ e− δ c −(b e− c d) 0

 (56)

and implementing the constraint (B.3) we get:

gMN =


1− 2 γ δ γ d− δ b γ e− δ c

γ d− δ b 0 ±1

γ e− δ c ∓1 0

 . (57)

Apparently this metric depends on γ, δ, b, c, d, e which means 12 parameters

minus the two constraints on b, c, d, e so only on 10 parameters. Actually the

combinations of parameters which enter the gMN is less. In fact let us define

the following variables: 

π1 ≡ γθ eB − δθ cB
π2 ≡ γθ̄ eB − δθ̄ cB
π3 ≡ δθ bB − γθ dB
π4 ≡ δθ̄ bB − δθ̄ dB

(58)

and

π5 ≡ γθ̄ δθ − γθ δθ̄. (59)

This π5 is actually dependent on the other four πi of Eq. (58), in fact:

π5 = ±(π2 π3 − π1 π4).

It is easy to see that the metric Eq. (56) can be written in term of the πi as

follows

gMN =


1± 2θ̄θ(π2π3 − π1π4) −π3θ − π4θ̄ π1θ + π2 θ̄

−π3θ − π4θ̄ 0 ±1

π1θ + π2 θ̄ ∓1 0

 . (60)
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Later on, in order to build the Christoffel symbols and the various curvatures

tensor, we shall need also the inverse of gMN which turns out to have the

following expression:

gMN =


1 ∓(θπ1 + θ̄π2) ∓(θπ3 + θ̄π4)

±(θπ1 + θ̄π2) 0 ∓(1 + θ̄θ(π2 π3 − π1 π4))

±(θπ3 + θ̄π4) ±(1 + θ̄θ(π2 π3 − π1 π4)) 0

 .

(61)

In both metrics above we have made the choice a = ±1 which is consistent

with the CPI. The reader may wonder why the metric has less free parameters

than the vierbein. We feel the reason is because of the particular combination

of vierbeins which enters the metric (see Eq. (45)). Moreover the vierbein is a

more general object than the metric; in fact it enters the dynamics of particles

of any spin. One last question the reader may have is if the πi are really free

parameters or not. We feel they are free because they are made (see Eq. (58))

of combinations of odd variables γ, δ and even ones b, c, d, e and only these last

ones are constrained (see Eq. (B.3), while the first ones are totally free. Let us

now build the metric for the quantum case (QPI) or better for the “regularized”

quantum case. The very long details of the calculations are confined in Appendix

D. The result is anyhow the following

gMN =


1− 2πQ5 θ̄θ −πQ3 θ − πQ4 θ̄ πQ1 θ + πQ2 θ̄

−πQ3 θ − πQ4 θ̄ 0 πQ7 + πQ6 θ̄θ

πQ1 θ + πQ2 θ̄ −πQ7 − π
Q
6 θ̄θ 0

 .

where the variables πQ1 , . . . , π
Q
7 are properly defined in Appendix D.

6. Curvatures

In this section we will build the curvatures from the metric presented in the

previous section. As the calculations are very long we have made used of a

package of Wolfram Mathematica dedicated to calculations containing grass-

mannian variables [23]. The same package has been used also for calculating
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the metric of the previous section and other calculations presented all through

the paper. The first thing we have calculated has been the Christoffel symbols

associated to our various metrics. If we work in a space with odd and even

variables the Christoffel symbols ΓCAB have the following expression [21, 22]:

ΓCAB = (−)BC
1

2

[
(−)BD gAD,B + (−)A+B+AB+AD gBD,A − gAB,D

]
gDC

(62)

where the comma on the metric like gAD,B means the derivative of gAD respect

to the variable B . As usual the exponent on the (−) indicate the even (0)

or odd (1) nature of the associated variables. The results of the calculations

of Eq. (62) for both the CPI metric Eq. (60) and Eq. (61) and for the QPI

one Eq. (D.18) and Eq. (D.25) are confined in Appendix E. Once we have the

Christoffel symbols we can calculate the various curvatures. The definition we

will use is the one of ref.[21, 22] for SuperRiemannian space:

RDABC = −ΓDAC,B + (−)BC ΓDAB,C − (−)C(D+E) ΓEAC ΓDEB +

(−)B(C+D+E) ΓEAB ΓDEC . (63)

From this we can build the Ricci curvature tensor defined as

RAB ≡ (−)C RCABC . (64)

Its expression in term of Christoffel symbols is:

RAB = (−)C+1 ΓCAC,B + (−)C(B+1) ΓCAB,C + (65)

− (−)C(C+E−1) ΓEAC ΓCEB + (−)BE+C ΓEAB ΓCEC .

From the Ricci curvature tensor we can calculate the so-called Ricci scalar de-

fined in [21, 22] as

R = (−)B gBARAB . (66)

The explicit expression of all components of the Ricci tensor and of the Ricci

scalar has been confined to Appendix F and Appendix G. Its calculation, again,

has been made possible by the use of Wolfram Mathematica [23]. The things to
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notice for the curvatures of the QPI (see Eq. (F.3) and (G.3)) is they are singular

for ε→ 0. Infact in many of its component we have the πQ7 in the denominator

and πQ7 is proportional to ε. Only the Rθθ and Rθ̄θ̄ are not singular because

they are equal to zero. What we should take care of is the Ricci scalar, Eq. (F.4)

and (G.4)), where the singularity cannot be a coordinate artifact because it is

a scalar independent of the coordinates. The way out could came from the fact

that in the true quantum case (ε→ 0) we also have that θ and θ̄ have to be sent

to zero [21, 22]. So for example in Eq. (F.4) we have that the fourth contribution

is proportional to θ̄θ/π7 that would give a 0/0, which is an undefined term. But

being ε and θ̄θ totally independent, we could choose that this undefined form is

a finite grassman number. The next term is proportional to θθ̄ and it would go

to zero. In this manner the Ricci scalar would not blow up in QM, which seems

a natural thing to require as nothing goes to infinity in QM.

7. Zeros of the curvature

In this section we will check if there are value of the πi for which the various

curvatures turn out to be zero or at least some of them. As the πi are arbitrary

we can choose the system to sit on those values and so conclude that those

curvatures are zero. This is what happens in the CPI as we will check. Surpris-

ingly this does not happen in the QPI. There is no point where the curvatures

vanish. This “may” indicate that there is some sort of “hidden matter” in QM.

Of course we don’t identify this with the so called “hidden variables” of Einstein

[24].

7.1. Zeros of the curvature in the CPI

Let us start with the CPI in the case where the πi are indipendent of time.

The Ricci scalar was given in Eq. (F.2) and it had the following expression:

RCPI = −1

2

(
π2

2 − 22π2 π3 + π2
3 + 20π1 π4

)
+

+ 8
θ̄θ

a
(π2 π3 − π1 π4)

2
. (67)
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In order to have RCPI = 0 we need to have zero both its soul and body, i.e.:π2 π3 − π1 π4 = 0

π2
2 − 22π2 π3 + π2

3 + 20π1 π4 = 0.
(68)

From the first equation in (68) we get

π1 =
π2 π3

π4
(69)

and putting this into the second of Eq. (68) we get

π2 = π3. (70)

In the space described by the four parameters π1, π2, π3, π4 the Ricci scalar is

zero on a 2-dim surface descibed by Eq. (69) and Eq. (70). Let us now check if

on this surface, or at least on some points, also the Ricci tensor is zero. Let us

look at the various components of the Ricci tensor presented in Eq. (F.1). Let

us start with

Rtt =
1

2
(π2 + π3)

2 − 2π1 π4.

Using Eq. (69) and Eq. (70) it is straightforward to show that Rtt = 0. Let us

now move on to

Rtθ = −Rθt =
(θ π1 + θ̄ π2) (−(π2 + π3)2 + 4π1 π4)

2 a
.

The second factor on the right is zero on Eq. (68) so Rtθ = Rθt = 0. Let us now

check

Rtθ̄ = −Rθ̄t = − (θ π3 + θ̄ π4) ((π2 + π3)2 − 4π1 π4)

2 a
.

Again the second factor on the right is zero on Eq. (68) so Rtθ̄ = Rθ̄t = 0. Next

let us check

Rθθ̄ =
1

2

θ̄θ (π1 π4 − π2 π3)︸ ︷︷ ︸
A

(
π2

2 − 6π2 π3 + π2
3 + 4π1 π4

)

− a
(
π2

2 − 10π2 π3 + π2
3 + 8π1 π4

)︸ ︷︷ ︸
B

 .
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The term A = 0 because of Eq. (68) while B, using Eq. (68), can be transformed

as follows:

B = π2
2 − 10π2 π3 + π2

3 + 8π1 π4 = π2
2 − 10π2

2 + π2
2 + 8π2

2 = 0.

So Rθθ̄ = −Rθ̄θ = 0.

The reason why we can choose the values of the πi on which our curvature

is zero is because the πi do not enter the lagrangian of the CPI and we can

change them without the Lagrangian getting modified. So far in the CPI we

have proved that both the Ricci scalar and the Ricci curvature can be brought

to zero. This is a situation very similar to the Schwarzschild case where, for

points outside the mass region we have both R and Rab equal to zero. What is

not zero there is another scalar built up from the curvature tensor:

RabcdR
abcd 6= 0.

This quantity in the Schwarzschild case is proportional to G/r6 and it is the

indicator of the presence of matter somewhere. We should calculate the analog

quantity for the CPI. In this case the quantity to calculate is:

RabcR
abc.

Instead of doing this rather complicated calculation, we should remind ourselves

that our analog of space-time is (t, θ, θ̄) so we should just check if our Ricci

scalar and tensor are zero for any value of (t, θ, θ̄). This would not happen in

the Schwarzschild case in the area where there is matter. The calculation we

have done is without t and with θ, θ̄ 6= 0 and it gives zero everywhere. Let us

now generalize it to the case with t present that means when the πi depend on

t and see if we get zero everywhere in (t, θ, θ̄). Let us start by finding the points

on which the Ricci scalar is zero for πi depending on time. The RCPI is given

by Eq. (G.2)

RCPI = −1

2

[
π2

2 − 22π2π3 + π2
3 + 20π1π4 + 4(π′3 − π′2)

]
(71)

+
θ̄θ

a

[
8 (π2π3 − π1π4)2 + 4 a (π′3 − π′2)π5 + 7 a π′5(π3 − π2) + 2 a π′′5

]
.
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Both the soul and the body must be zero, i.e.π2
2 − 22π2π3 + π2

3 + 20π1π4 + 4(π′3 − π′2) = 0

8 (π2π3 − π1π4)2 + 4 a (π′3 − π′2)π5 + +7 a π′5(π3 − π2) + 2 a π′′5 = 0.
(72)

If in the time-independent case Eq. (69) and Eq. (70) are choosen, starting from

the relation between π5 and π1, π2, π3, π4

π5 =
π2 π3 − π1 π4

a
,

it can be easily seen that

π5 = 0, (73)

from which it follows that π′5 = π′′5 = 0. The system of Eq. (72) consequently

reduces to π2
2 − 22π2π3 + π2

3 + 20π1π4 = 0

8 (π2π3 − π1π4)2 = 0.
(74)

which is equivalent to the system of Eq. (68), whose solutions Eq. (69) and

Eq. (70) are the one we started with in the time independent case. It follows

that the constraints on which RCPI is zero, even in the time dependent case, are

Eq. (69) and Eq. (70) like in the case of πi independent on time. Of course there

may be other set of points on which it is zero (because π2 = π3 was our choice)

but what is important is that we have found points in which it is zero. Next we

should check that also the Ricci tensor is zero on the same set of points. Their

expression is given in (G.1) of Appendix G and it is easy to check they are all

zero on the points where the following condition are satisfied (69),(70),(73):
π2 = π3

π1 =
π2 π3

π4

π5 = 0.

(75)

Let us consider for example Rtt of (G.1):

Rtt = RCPItt (πi) + (π′3 − π′2) + θ̄θ
[
π2

3π
′
2 − π2

2π
′
3 + (π2 − π3)(π4π

′
1 + π′4π1)+

+ (π′3 − π′2)(a π5 − 2π2π3 + 3π1π4) + 2 aπ′5] . (76)
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It turns out that the first term is equal to zero because it has the same expression

as the time independent RCPItt , which was zero on the contraints (69),(70). As

for the other contributions they are trivially zero because the conditions π2 = π3

and π5 = 0 imply π′2 = π′3 and π′5 = 0. In the same way it can be shown that

all the other contributions are identically equal to zero. As we explainied in the

time independent case, we do not calculate

RabcR
abc,

bacause we proved that the Ricci scalar and the tensors are zero over the whole

(t, θ, θ̄) space. As a consequence we have that there is no matter anywhere

differently than in the Schwarzschild case.

7.2. Lack of zeros in the QPI curvature

Let us now turn to the QPI case starting with the Ricci scalar in the case

independent on time. Its expression was given in Eq. (F.4):

RQPI = RCPI(πQi ) + (2σ1 − 3πQ6 ) + (77)

+
θ̄θ

πQ7

[
−(πQ

2

2 + 6πQ2 π
Q
3 + πQ

2

3 − 8πQ1 π
Q
4 )πQ6 + 4πQ

2

6 +

− 4σ1(πQ
2

2 + 3πQ2 π
Q
3 + πQ

2

3 − 5πQ1 π
Q
4 − π

Q
6 + σ1)

]
.

The σ1 was defined in (E.2) of Appendix E and the parameters of (77) are not

four but six. The various πQi were introduced in (D.20). Note that πQ5 does not

appear because it is related to the others. Let us suppose we stay on the surface

where

RCPI(πQi ) = 0. (78)

and this happens when the constraints Eq. (69) and Eq. (70) are satisfied but

with the πi replaced by the πQi . Next, for the body of Eq. (77) to be zero we

need that

2σ1 − 3πQ6 = 0

i.e.

σ1 =
3

2
πQ6 . (79)
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Like in the CPI, we keep πQ4 and πQ3 free and link the other vabiables to these

two via the RCPI(πQi ) = 0. Also πQ6 seems to be free and the same πQ7 , which

does not make its appearance in Eq. (77) but was present in the formalism. So

Eqs. (79) and (78) bring to zero the body of RQPI ; now we have to make the

soul zero. Using the constrain Eq. (78), which leads to πQ2 = πQ3 , and Eq. (79),

after straightforward calculations we get that the soul of RQPI is given by

soul(RQPI) =
πQ

2

6

πQ7
.

So to be zero we have to set

πQ6 = 0. (80)

We can summarize the set of constraints which make RQPI = 0 as:

πQ2 = πQ3

πQ1 =
πQ2 πQ3

πQ4

πQ6 = 0

σ1 =
3

2
πQ6

(81)

Let us now see if also the Ricci tensor for the QPI, given by Eq. (F.3) is zero

on the points of Eq. (81). Let us start from RQPItt :

RQPItt = RCPItt (πQi )︸ ︷︷ ︸
A

+2σ1 +
θ̄θ

πQ7

[
((πQ2 + πQ3 )2 − 4πQ1 π

Q
4 )πQ6︸ ︷︷ ︸

B

+ 2 (πQ
2

2 + 4πQ2 π
Q
3 + πQ

2

3 − 6πQ1 π
Q
6 − π

Q
6 )σ1 + 6σ2

1︸ ︷︷ ︸
C

 .
The A-term calculated using Eq. (81) gives

A =

[
1

2
(πQ2 + πQ3 )2 − 2πQ1 π

Q
4

]
=

[
1

2
(2πQ2 )2 − 2πQ2 π

Q
3

]
= 2πQ

2

2 − 2πQ
2

2 = 0.
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The term B is zero because is multiplied by πQ6 which is zero by Eq. (81). The

term C is zero because σ1 = 0. After the A piece there is a σ1 which is zero. So

RQPItt = 0. Let us now analyze the RQPItθ which is

RQPItθ = −RQPIθt (82)

= RCPItθ (πQi )− πQ6 + 3σ1

πQ7

[
θπQ1 + θ̄(πQ2 + πQ3 )

]
.

The RCPItθ = 0 on the constraints Eq. (81). The second piece in Eq. (82) is zero

because πQ6 = σ1 = 0, so RQPItθ = 0. Next let us analyze Rθθ̄ which is

RQPI
θθ̄

= −Rθ̄θ = RCPIθθ̄ (πQi ) +
σ1 − 3πQ6

πQ7
(83)

+
θ̄θ

πQ
2

7

[
2πQ

2

6 + 8πQ1 π
Q
4 π

Q
6 − 8πQ2 π

Q
3 π

Q
6 σ1

(
(πQ2 − π

Q
3

)2

+ 4πQ6 + 2σ1)

]
.

Again RCPI
θθ̄

= 0 is zero on the constraints Eq. (81) and all the rest is zero

because πQ6 = σ1 = 0.

Now let us check if the constraint Eq. (81) leads to any contradiction. Let

us go back to the definition of πQ6 given in Eq. (D.23)

πQ6 = ε aS −
i

~
aB (1− ε) + aB(αθ π2 − αθ̄ π1 + βθ π4 − βθ̄ π3) + αθ̄ βθ − αθ βθ̄.

Going to the true-quantum case ε = 0 we would get

πQ6 = −
i

~
aB + aB (αθ π2 − αθ̄ π1 + βθ π4 − βθ̄ π3)︸ ︷︷ ︸

A

+αθ̄ βθ − αθ βθ̄︸ ︷︷ ︸
B

. (84)

If, as we did before in our calculations, we choose α = β = 0, we get in the true

quantum case:

πQ6 = −
i

~
aB

as aB = ±1 we get

πQ6 = ∓
i

~
. (85)

So it is never zero and this contradicts Eq. (81) or, saying it better, because of

Eq. (85) the constraint Eq. (81) is not satisfied. The Ricci scalar curvature and
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the associated tensor are never zero in the true quantum case. Let us suppose

we do not make the choice α = β = 0, then in Eq. (D.23) we would have

three terms: one which is a complex number ε aS −
i

~
aB (1 − ε) and the A,B

of Eq. (84) which are the product of couple of grassmannian odd number like

π2 and αθ and similar. These A and B are grassmann even and they will never

be equal to a complex number. So A and B cannot cancel the above mentioned

complex number in order to put πQ6 equal to zero. As the A and B contain

the parameterm πQi which are free they could be put to zero, but then also the

complex number has to be put to zero. This is possible in the regularized QPI

and it would mean

ε aS −
i

~
aB(1− ε) = 0

which is equivalent to:

aS =
i

~
aB

1− ε
ε

. (86)

But in the true quantum case ε → 0 we would get aS → ∞, which does not

make sense. Let us do the last attempt and see if we can put RQPI = 0 without

putting πQ6 = 0. Let us go back to formula Eq. (77) and let us see if there is a

different method to get RQPI = 0. If in Eq. (77) we put first to zero the body

and then the soul we get

RCPI(πQi ) + 2σ1 − 3πQ6 = 0

which leads to

πQ6 =
1

3
(RCPI(πQi ) + 2σ1). (87)

From this formula it seems that we do not have to put πQ6 = 0. But let us

analize Eq. (87) in detail. On the R.H.S. we have only terms which are product

of grassmann variables like

σ1 = πQ2 π
Q
3 − π

Q
1 π

Q
4 − π

Q
5 π

Q
7 .

The same for RCPI which is

RCPI(πQi ) = −1

2

(
πQ

2

2 − 22πQ2 π
Q
4 + πQ

2

3 + 20πQ
2

1 πQ4

)
.

+ θ̄θ
8

a
(πQ2 π

Q
3 − π

Q
1 π

Q
4 ).
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So on the R.H.S. of Eq. (87) we have products of 2 grassmannian numbers or

higher terms (like those with θ̄θ which anyhow goes to zero in the true quantum

case θ, θ̄ → 0), while on the L.H.S. we have πQ6 which (see Eq. (84)) contains

both product of grassmannian numbers but also complex number which must

be put to zero separately and we go back to the case described by Eq. (86). So

we can conlude that in the true quantum case we cannot bring the curvature to

zero. Of course we should do the same calculations in the case dependent on t,

but we feel that the result will be the same.

8. Conclusions

In this paper we have shown that an “intrinsic” vierbein, present in the

CPI version of CM, gives zero curvature (at least the Ricci one). This seems

natural because there is no external mass generating a curvature in the space

on which our test particle of the CPI would move. In the quantum case instead

there is an intrinsic curvature. One could immediately ask what is the matter

which produce this curvature. We could speculate saying that there are some

non-local hidden variables of the type Bell [24] proposed long ago or it is some

sort of dark matter or dark energy so fashionable these days. We do not know

and we prefer not to speculate. Our goal at the beginning was to see if there

was some “intrinsic” geometry in Q.M and we feel we have found some hints

of it. We also would like to notice that this intrinsic geometry appear when

we do not look only at the usual bosonic variables ϕa of Q.M but also at their

differential forms ca, which we would like to call “quantum forms”. This is a

topic which has not been studied deeply except by few mathematicians and in

a language difficult for physicists. We feel a more intense study should be done

of this sector of mathematics.
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Appendix A.

Appendix A.1. Grassmannian algebras

Given a set of N -elements ξa, a = 1, . . . , N obeying the following properties

ξaξb = −ξbξa, (ξa)2 = 0, for all a, b,

they are called generators of a grassmannian algebra ΛN .

The elements 1, ξa, ξaξb, ξaξbξc, . . . form a set of 2N objects, called the basis of

the algebra. An addition in this basis and a multiplication by complex numbers

is defined among its elements and so they form a linear vector space of dimension

2N .

Appendix A.2. Super-numbers

Every element z of the vector space above can be written as

z = zB + zS

where zB is an ordinary complex number and it is called the “body” of z and

zS , called the “soul”, is:

zS =

2N∑
n=1

1

n!
ca1···anξ

an · · · ξa1 , (A.1)

where the ca1···an are also complex numbers. The ca1···an are antisymmetric in

the exchange of their indices. It is easy to prove that

zN+1
S = 0.

Appendix A.3. Inverse of a super-number

The inverse z−1 of a super-number, defined by z z−1 = 1, turns out to be

z−1 = z−1
B

2N∑
n=0

(
−z−1

B zS
)
,

so if zB = 0 the inverse does not exist.
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Appendix A.4. C-number and A-number

Any super-number can be split into its even “e” and odd “o” part as

z = e+ o

e ≡ zB +
∑
n

1

2n!
ca2···a2nξ

a2n · · · ξa2

o ≡
∑
n

1

2n+ 1!
ca1···a2n+1ξ

a2n+1 · · · ξa1 .

If a super-number has only an “e” part is called an even super-number while if

it has only an “o” part it is called an odd super-number. The grassmann index

of even or odd numbers is the number 2n or 2n+1 modulo 2 so for even number

is zero and for odd number is one. Usually it is put as exponent of (−1) and is

indicated with square brackets: [e], [o].

Appendix A.5. Super-vectors and super-matrices

Super-vectors are defined regorously in [17], but basically they are rows

or columns of super-numbers. The elements in the basis of these vectors are

arranged in such a manner that the even elements “e” come above the odd

“”o”” one, like e
o

 . (A.2)

This feature can always be realized because super-vectors can be multiplied by

super-numbers. If the basis has the form of Eq. (A.2) then a super-matrix K

can always be arranged in the form

K =

A C

D B

 , (A.3)

where the elements of the super-matrices A and B are made of even super-

numbers while C and D are made of odd numbers. More details are given in

[17].
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Appendix A.6. Super-trace

The super-trace of the matrix K is defined as

strK = (−1)[i]Kii,

where [i] is the grassmann index of the “i” elements and we sum over “i”.

Appendix A.7. Super-determinant and its inverse

For a standard matrix X we know that the following relation holds between

the variation “δ” of parameters entering the determinant and the ones entering

the trace:

δ[ln detX] = tr[X−1δX].

We use this relation to define the super-determinant in case of a super-matrix

K which has the form K of Eq. (A.3). The result [17] is:

sdet

A C

D B

 = det(A− CB−1D)(detB)−1 (A.4)

where the symbol “det” has the same meaning as if the entries were complex

numbers. It is also possible to define the inverse of the supermatrix X as:

X−1 =

Ã C̃

D̃ B̃

 (A.5)

where

Ã = (I−A−1CB−1D)−1A−1

C̃ = −(I−A−1CB−1D)−1A−1CB−1

D̃ = −(I−B−1DA−1C)−1B−1DA−1

B̃ = (I−B−1DA−1C)−1B−1.

Note that the inverse above exists if only A and B are not singular. It is also

easy to calculate the determinant of the inverse:

sdet

A C

D B

−1

= (detA)−1det(B −DA−1C).
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Appendix A.8. Left and right derivatives

The rigourous definition for these operations are given in [17]. Here we will

give only an example. Let us give a function f(ξ1, ξ2) of two grassmannian odd

variables ξ1, ξ2 of the form

f(ξ1, ξ2) = ξ1 ξ2.

Let us define the right or left derivative of f with respect to ξ1:

→
∂ f

∂ξ1
= ξ2 left derivative

←
∂ f

∂ξ1
= −ξ2 right derivative

“Somehow” roughly speaking in the right derivative it looks like if we had put
←
∂ /∂ξ1 to the right of the function so that

←
∂ /∂ξ1 has to pass through ξ2 in

order to act on ξ1. In going through ξ2 it acquires a minus sign because ξ1

and ξ2 anticommute. On grassmannian spaces we can also define the concept

of integration. All the details are given in [17]. The few things we need in this

paper were already indicated in the body of the paper and will not be repeated

in this appendix.
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Appendix B.

In this appendix we will give details of the calculations of the vierbein for

the CPI case.

Using the expression Eq. (52) for the EMA we get

Dt = ∂ME
M
t = a ∂t + α∂θ + β ∂θ̄,

so

(DtQ)(DtQ) = a2 ∂tQ∂tQ+ 2 aα ∂tQ∂θQ+ 2 a β, ∂tQ∂θ̄Q+ αβ ∂θQ∂θ̄Q.

Using the expression above, it is easy to prove that a choice of parameters for

which the second of Eq. (53) holds is the following one:

a = ±1, α = β = 0. (B.1)

So the supervierbein in Eq. (52) takes the form

EMA =


±1 0 0

γ b c

δ d e

 . (B.2)

Next we have to impose the first of the condition Eq. (53) using the definition

of superdeterminant given in [17] or Appendix A of this paper and applied to

Eq. (B.2):

sdetEMA = 1 =⇒ det

b c

d c

 =⇒ b e− c d = ±1. (B.3)

The quantity b, c, d, e are even so they have the form

b ≡ bB + bS θ̄θ

c ≡ cB + cS θ̄θ

d ≡ dB + dS θ̄θ

e ≡ eB + eS θ̄θ,

(B.4)

where bB , cB , dB , eB are the “bodies” of the numbers while bS , cS , dS , eS are

called the “souls” of the numbers. Again for details about these numbers see
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Appendix A of this paper and consult ref.[17]. Using Eq. (B.4) the relation

(B.3) gives the two equations bB eB − cB dB = ±1

bS eB + bB eS − cS dB − cB dS = 0
. (B.5)

A set of two solutions has the form

(1) eB = 0, cB = ∓ 1

dB
, cS =

∓dS + dB bB eS
d2
B

(B.6)

(2) bB =
±1 + cB dB

eB
, bS =

∓eS − cB dB eS
e2
B

+
cB dS eB + cS dB eB

e2
B

It is a long but easy calculation to build the inverse [17] of the matrix EMA , the

result is 
±1 0 0

±c δ ∓ e γ ±e ∓c

±d γ ∓ b δ ∓d ±b

 . (B.7)

So now we have all the matrix elements to build the kinetic term and the

superdeterminat. The number of free elements that we know in Eq. (B.2) is

12 because each b, c, d, e, γ, δ is made of two numbers either the body and the

soul of the even ones or for the odd elements, like γ = γθ θ + γθ̄ θ̄, they are the

coefficient of θ and of θ̄. We have 2 constraints in Eq. (B.5), so the number

of free variables is 10 and we choose them to be real. Considering the gauge

freedom the carefull reader may envision the following problem. We said that

building the CPI or the QPI is “like a gauge fixing” of a more general theory.

For the CPI this “gauge fixing ” is given by the constraints of Eq. (53). One

important thing to check is that the “ gauge fixing” Eq. (53) does not fix more

parameters than those allowed by the gauge freedom. This is not so and we

prove it below. Our diffeomorphism, Eq. (43), can be explicitly written as:

δt = A(t) + α̃(t)θ + β̃(t)θ̄ + β(t)θθ̄

δθ = γ̃(t) + C(t)θ +D(t)θ̄ + ε(t)θθ̄ (B.8)

δθ̄ = δ̃(t) + F (t)θ +G(t)θ̄ + ξ(t)θθ̄,
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where the latin symbols are real even numbers and the greek ones are odd

number functions only of t and not of θ and θ̄. So in (B.8) we have 12 parameters.

The general vierbein has the form

EMA (z) =


a α β

γ b c

δ d e

 (B.9)

and it contains 18 variables because each a, α, . . . , e is made of two entries. This

vierbein transforms in the following manner under (B.8) or (43):

E′MA (z) =

→
∂ z′B
∂zA

EMB (z′). (B.10)

If we were able to fully exploit the 12-parameter gauge freedom of (B.8), we

could reduce the 18-variables of EMA to just six. In the CPI the vierbein that

we use is:

EMA (CPI) =


±1 0 0

γ b c

δ d e

 (B.11)

so we have 12 parameters minus the 2 constraints (B.5) and this brings down

to 10 parameters that are more than 6. So we have done only a partial gauge

fixing.
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Appendix C.

In this appendix we will give details of the calculation of the vierbein for the

QPI. We will start with a vierbein of the form

EMA (QPI) =


1 + asθθ̄ α β

γ b c

δ d e

 , (C.1)

which has 17 parameters minus 2 constraints (that we will see later on) bringing

the total free parameters down to 15. Moreover we will choose α = β = 0 like

in the CPI, so we will come down to 11 parameters, which again is more than 6.

This is consistent with considering our procedure as a partial gauge fixing. This

would not be so if the procedure would bring the number of free parameters to

less than 6 both in the CPI and in the QPI.

Let us now build the vierbein for the quantum case that is the QPI of Eq. (2).

In this case the determinant of the vierbein E = sdet(EAM ) has to be

E = −i θ̄θ
~
. (C.2)

This number has a body equal to zero and as explained as explained in [17] and

in Appendix A, it does not admit an inverse E−1. The way out is is to add a

small “regulating” body ε to Eq. (C.2) so that the determinant can be inverted.

This “regularized” determinant is

Ereg = ε− i θ̄θ
~
. (C.3)

The inverse can now be built [17] and it is

E−1 =
1

ε
+

1

ε2
θ̄θ

~
. (C.4)

We will now go on to find for the QPI the analog of the two constraints of

Eq. (53). Let us insert the regularized Ereg of Eq. (C.3) into the action of the

QPI written in Eq. (35) once we have integrated out the P . Moreover let us

keep only the kinetic piece:

Sreg
QPI = i

∫
dtdθdθ̄

(
ε− i θ̄θ

~

)(
1

2
DtQDtQ

)
. (C.5)
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Performing the products above,we get:

Sreg
QPI = i ε

∫
dtdθdθ̄

(
1

2
DtQDtQ

)
+
i

~

∫
dtdθdθ̄ θ̄θ

(
1

2
DtQDtQ

)
. (C.6)

The first term goes to zero in the true quantum-case because in this case ε→ 0.

So we will work out only the second term in Eq. (C.6) using the general form

of the vierbein written in Eq. (52) and using the expression Eq. (51) for the

covariant derivative. The second term in Eq. (C.6) turns out to be

1

~

∫
dt dθ dθ̄

1

2
(a ∂tQ+ d ∂tQ+ β ∂θ̄Q)

2
θ̄θ. (C.7)

As the α and β are odd and get multiplied by θ̄θ the only term which survives

is
1

~

∫
dt dθ dθ̄

1

2
a2 (∂tQ)2 θ̄θ. (C.8)

Differently than in the classical case of Eq. (B.1), note that in the quantum case

a is an even element made of a body aB and a soul aS . So Eq. (C.8) turns out

to be

1

~

∫
dt dθ dθ̄

1

2

(
a2
B + 2 aB aS θ̄θ

)
θ̄θ∂tQ∂tQ =

1

2 ~

∫
a2
B (∂tq)(∂tq). (C.9)

where q is the first component of Q like in Eq. (26) and we have omitted the in-

dices for simplicity. In order to get the usual kinetic piece of quantum mechanics

in Eq. (C.9) we need to have:

aB = ±1, (C.10)

while aS is free. Next we have to impose the conditions Eq. (C.4) and Eq. (C.10)

on the determinant, i.e.:

sdet


±1 + aS θ̄θ α β

γ b c

δ d e

 =
1

ε
+
i

ε

θ̄θ

~
. (C.11)

Working out the sdet on the L.H.S. of Eq. (C.11) using the usual rules given in
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[17], we get

sdet


±1 + aS θ̄θ α β

γ b c

δ d e

 (C.12)

=

±1 + aS θ̄θ −
(
α β

)b c

d e

−1γ
δ


 · det−1

b c

d e

 .

Let us now simplify things by introducing some new symbols p, q, r defined as:

p θ̄θ ≡
(
α β

)b c

d e

−1γ
δ


q + r θ̄θ ≡ det−1

b c

d e

 . (C.13)

The powers of θ, θ̄ present on the L.H.S.of Eq. (C.13) can be easily understood

by remembering the powers of θ, θ̄ present in the even and odd elements. Using

Eq. (C.13) the relation Eq. (C.12) can be written as

sdet


±1 + aS θ̄θ α β

γ b c

δ d e

 = ±q + (aS q − p q ± r)θ̄θ. (C.14)

Combining Eq. (C.14) with Eq. (C.11) we get
q = ±

1

ε

asq − p q ± r =
i

ε2 ~

. (C.15)

which can be combined to give

±
(aS
ε
− p

ε
+ r
)

=
1

ε2 ~
. (C.16)

From the second equation in (C.13) we get that the matrix

D ≡

b c

d e

 (C.17)
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must be invertible and the determinant of the inverse must be equal to the

L.H.S. of the following equation:

q + r θ̄θ = ±1

ε
+ r θ̄θ. (C.18)

The R.H.S. of Eq. (C.18) is otained from the first of Eq. (C.15). From the de-

terminant of the inverse we can get the determinant of D which from Eq. (C.18)

turns out to be

detD = ±ε− ε2 r θ̄θ. (C.19)

The determinant of D is equal to (b e− c d) so Eq. (C.19) becomes

b e− c d = ±ε− ε2 r θ̄θ, (C.20)

which is equal to

(bB + bS θ̄θ)(eB + eS θ̄θ)− (cB + cS θ̄θ)(dB + dS θ̄θ) = ±ε− ε2 r θ̄θ (C.21)

and comparing equal powers of θ and θ̄ we get that Eq. (C.21) is equivalent to

the following two equations bB eB − cB dB = ±ε

bS eB + bB eS − cS dB − cB dS = −ε2 r.
(C.22)

The first equation is a true constraint equation while the second one relates the

parameter r to the variables b, c, d, e. From Eq. (C.13) we can also obtain the

detail expression of p in terms of the entries of the vierbein. A long calculation

leads to the following equation

p = ±1

ε
(αθ̄ γθ eB − γθ̄ αθ eB − αθ̄ δθ cB + αθ δθ̄ cB

+βθ γθ̄ dB − βθ̄ γθ dB + βθ̄ δθ bB − βθ δθ̄ bB) . (C.23)

Inserting Eq. (C.23) and the second of Eq. (C.22) into the second of Eq. (C.15)

we get a constraint among the a, b, c, d, α, β, γ, δ. This constraint together with

the first of Eq. (C.22) provides the two QPI constraints analog to the two of the

CPI of Eq. (B.5) but much more complicated. In order to simplify things let us
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choose α = β = 0 like in the CPI case. This choice, once inserted in Eq. (C.23),

gives p = 0. Using this inside Eq. (C.16) we get

aS
ε

+ r = ± i

ε2 ~
(C.24)

and using for r the expression in the second equation of Eq. (C.22) we get from

Eq. (C.24) the following constraint

bS eB + bB eS − cS dB − cB dS = ∓ i
~

+ ε aS . (C.25)

This together with the first relation in Eq. (C.22) are the two constraints for

the QPI analog to the two for the CPI in Eq. (B.5). Let us write together those

of the QPI 
bB eB − cB dB = ±ε

bS eB + bB eS − cS dB − cB dS = ∓
i

~
+ ε aS .

(C.26)

We can find some solutions of these equations like for example

(1) eB = 0, cB = ∓ 1

dB
, cS =

±ε dS + dB bB aS ± i
~aS dB − ε aS dB

d2
B

(2) bB =
±ε+ cB dB

eB
, bS =

∓ε eS − cB dB bS + cB dS eB
e2
B

+
cB dB eB ∓ i

~eB + ε aS aB

e2
B

. (C.27)
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Appendix D.

Here we will give details for the construction of the metric in the QPI case.

Let us start with the most general vierbein:

E M
A =


a α β

γ b c

δ d e

 (D.1)

and later on we will insert the quantum constraints Eq. (C.22) in the associated

matrix. Using the relation Eq. (55) between vierbein and metric we get that

the metric associated to the general vierbein in Eq. (D.1) has the form:
1− 2γ δ + 2 θ̄θ aBaS d γ − bδ + αaB e γ − c δ + β aB

d γ − b δ + αaB 0 be− cd+ αβ

e γ − c δ + β aB cd− be− αβ 0

 . (D.2)

Let us now rewrite the metric using the πi introduced in Eq. (58) and Eq. (59).

From the definition of π5 in Eq. (59) it is easy to prove that

γ δ = π5 θ̄θ

so the element g11 of Eq. (D.2) can be written as

1− 2γ δ + 2 θ̄θ aBaS = 1− 2(π5 − aBaS)θ̄θ

≡ 1− πQ5 θ̄θ (D.3)

where we have defined a new quantity πQ5 as

πQ5 ≡ π5 − aBaS . (D.4)

The index “Q” is to indicate that these are objects related to the QPI. The

element g12 of Eq. (D.2) can be written as

d γ − b δ + αaB = −π3 θ − π4 θ̄ + αθ aB θ + αθ̄ aB θ̄

= −(π3 − αθaB)θ − (π4 − αθ̄aB)θ̄

≡ −πQ3 θ − πQ4 θ̄ (D.5)
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where

πQ3 ≡ π3 − αθaB

πQ4 ≡ π4 − αθ̄aB . (D.6)

The element g13 of Eq. (D.2) can be written as

e γ − c δ + β aB = π1 θ + π2 θ̄ + β aB

= π1 θ + π2 θ̄ + βθ θ aB + βθ̄ θ̄ aB

= (π1 + βθaB)θ + (π2 + αθ̄aB)θ̄

≡ πQ1 θ + πQ2 θ̄ (D.7)

where

πQ1 ≡ π1 + βθaB

πQ2 ≡ π2 + βθ̄aB . (D.8)

Next let now examine the term g23 of Eq. (D.2)

be− cd+ αβ = (bB eB − cB dB) + (D.9)

+ (bS eB + bB eS − cS dB − cB dS + αθ̄ βθ − βθ̄ αθ) θ̄θ.

When aB 6= ±1 the first of relation (C.22) and (C.16) will turn into the following

two relations: 
bB eB − eB dB = aB ε

aBaS

ε
−
aBp

ε
+ aBr =

i

ε2 ~

. (D.10)

The first of relations (C.15) will turn into

q =
aB
ε

while the relation Eq. (C.23) for p becomes

p =
aB
ε

[αθ̄(γθ eB − δθ cB) + αθ(δθ̄ cB − γθ̄ eB)+

+βθ(γθ̄ dB − δθ̄ bB) + βθ̄(δθ bB − γθ dB)]

=
aB
ε

(αθ̄ π1 − αθ π2 − βθ π4 + βθ̄ π3) (D.11)
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Multiplying the second equation of (D.10) by ε2/aB we get

ε aS − ε p+ ε2 r =
i

~ aB

which, using Eq. (D.11), implies

−ε2 r = ε aS − ε p−
i

~ aB
= (D.12)

= ε aS −
i

~ aB
− aB(αθ̄ π1 − αθ π2 − βθ π4 + βθ̄ π3).

Let us now remember the second relation of Eq. (C.22)

bS eB + bB eS − cS dB − cB dS = −ε2 r. (D.13)

Note that the L.H.S. of this equation are exactly the first four terms of the soul

of b e − c d + αβ in Eq. (D.9). Replacing them with the expression of −ε2 r,

which appear on the L.H.S. of Eq. (D.13), we get that the soul of b e− c d+αβ

is equal to

ε aS − i

~ aB
+ aB(αθ π2 − αθ̄ π1 + βθ π4 − βθ̄ π3) +

+ αθ̄ βθ − αθ βθ̄ ≡ π
Q
6 . (D.14)

In the equation above the soul of b e− c d+ αβ has been set equal to πQ6 .

Going now back to Eq. (D.9) and using for its body the first constraint of

Eq. (D.10) we get

b e− c d+ αβ = aB ε+ θ̄θ πQ6 . (D.15)

We have now all the elements to write down the metric with all constraints

implemented

gMN =


1− 2πQ5 θ̄θ −πQ3 θ − πQ4 θ̄ πQ1 θ + πQ2 θ̄

−πQ3 θ − πQ4 θ̄ 0 aB ε+ πQ6 θ̄θ

πQ1 θ + πQ2 θ̄ −aB ε− πQ6 θ̄θ 0

 .. (D.16)

If we define a new variable πQ7 as

πQ7 = aB ε, (D.17)
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the metric Eq. (D.16) can be written using only πQi variables as follows:

gMN =


1− 2πQ5 θ̄θ −πQ3 θ − πQ4 θ̄ πQ1 θ + πQ2 θ̄

−πQ3 θ − πQ4 θ̄ 0 πQ7 + πQ6 θ̄θ

πQ1 θ + πQ2 θ̄ −πQ7 − π
Q
6 θ̄θ 0

 . (D.18)

Let us summarize the various quantities we have introduced:

πQ1 ≡ π1 + βθ aB

πQ2 ≡ π2 + βθ aB

πQ3 ≡ π3 − αθ aB

πQ4 ≡ π4 − αθ̄ aB

πQ5 ≡ π5 − aB aS

πQ6 ≡ ε aS −
i

~ aB
+ aB(αθ π2 − αθ̄π1 + βθπ4 − βθ̄π3) + αθ̄βθ − αθβθ̄

πQ7 ≡ aBε
(D.19)

Let us now count the number of free parameters. α and β do not enter any of

the constraints in Eq. (C.22) so they are free. In order to simplify things we can

put them by hand equal to zero like in the CPI and we suggested this already

after Eq. (C.23). Moreover we should remember that aB = ±1 as proved in

Eq. (C.10) but differently than the classical case aS is a free parameter. So with

this choice Eq. (D.19), becomes

πQ1 = π1

πQ2 = π2

πQ3 = π3

πQ4 = π4

πQ5 = π5 ∓ aS

πQ6 = ε aS ∓
i

~
πQ7 = ±ε

(D.20)

44



So the “quantum” metric depend on 5 parameters πQ1 , π
Q
2 , π

Q
3 , π

Q
4 and aS while

the classical one only on 4. The reader may object that also α and β were free

and should be counted. He is right. Anyhow we put them equal to zero both in

the CPI and the QPI and so the difference in the numbers of free parameters

remains one between QM and CM Let us look at the vierbein. For the CPI we

have 10 free parameters, while in the QPI will be 11 because we have aS as extra

variable. If we had not put α = β = 0 we would have 14 parameters for the

vierbein of the CPI and 15 for the QPI. For the metrics instead, as the α and

β get incorporated into the πQi (see Eq. (D.19)) the number of free parameters

is 6 for the QPI, while for the CPI we do not know because we should re-derive

the metric keeping the α and β different from zero.To finish this section let us

explore the issue of wether we can recover the classical case from the “regulated

quantum” one without setting ~→ 0 but manipolating the ε parameter and the

others. For sure we have to require that α = β = aS = 0 which are the values

set previously in the CPI. Moreover in the CPI we had the constraint

b e− c d = ±1 (D.21)

while in the QPI we had (with α = β = 0) Eq. (D.15):

b e− c d = aB ε+ θ̄θ πQ6 . (D.22)

For Eq. (D.22) to be equal to Eq. (D.21), as we know that aB = ±1, we have to

require that ε→ 1 and πQ6 = 0. Actually, remembering the form of πQ6 present

in Eq. (D.19), we see that the following other form of πQ6

πQ6 = ε aS −
i

~
aB (1− ε) + aB(αθ π2 − αθ̄ π1 + βθ π4 +

− βθ̄ π3) + αθ̄ βθ − αθ βθ̄ (D.23)

has the same quantum limit (ε → 0) as the one conained in Eq. (D.19). So we

can use Eq. (D.23) in order to reproduce Q.M. This new πQ6 has the feature

that it goes to zero for ε = 1 (of course this has to be combined with the other

things we require for CM: aS = α = β = 0). So in the limit ε → 0 we would
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get QM and in the limit ε → 1 we would get CM This is equivalent of having

required that the determinant of the vierbein had the form

E = ε− i (1− ε) θ̄θ
~
. (D.24)

For ε→ 1 we would get from Eq. (D.24)

E = I

which is the C.P.I and for ε→ 0 we would get

E = −i θ̄θ
~
,

which is QM For ε in between 0 and 1 we would get a family of models which are

betwwen CM and QM and could interpolate all the mesoscopic physics. Before

concluding this section let us provide the inverse of gMN of Eq. (D.18). This

quantity will be useful for the calculations provided in the next section:

gMN =


1− 2 θ̄θ(ϕQ−πQ

5 π
Q
7 )

πQ
7

− θ π
Q
1 +θ̄ πQ

2

πQ
7

− θ π
Q
3 +θ̄ πQ

4

πQ
7

θ πQ
1 +θ̄ πQ

2

πQ
7

0 −π
Q
7 +(ϕQ−πQ

6 )

πQ2

7

θ πQ
3 +θ̄ πQ

4

πQ
7

πQ
7 +θ̄θ(ϕQ−πQ

6 )

πQ2

7

0

 . (D.25)

In the expression above to be compact we have defined a new quantity:

ϕQ ≡ πQ2 πQ3 − π
Q
1 πQ4 .

Note that in the true quantum limit ε → 0 this metric is singular because

πQ7 → 0.
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Appendix E.

We will now calculate the Christofel symbols for the CPI leaving the body

“a” of the vierbein undetermined. The results, obtained assuming the πi inde-

pendent on t and using Mathematica, are the following ones:

Γttθ =
θπ1(π2 − π3) + θ̄(π2(π2 + π3)− 2π1π4)

2 a
= −Γtθt

Γθtθ =
π2 + π3

2
= Γθθt = −Γθ̄tθ̄ = −Γθ̄θ̄t

Γθ̄tθ = −π1 = Γθ̄θt

Γttθ̄ =
θ(−π3(π2 + π3) + 2π1π4) + θ̄ π4(π2 − π3)

2 a
= −Γtθ̄t (E.1)

Γθtθ̄ = π4 = Γθθ̄t

Γtθθ̄ =
π2 − π3

2 a
− 2 θ̄θ(π2 − π3)(π2π3 − π1π4) = −Γtθ̄θ

Γθθθ̄ =
θ(π3(3π2 − π3)− 2π1π4) + θ̄π4(π2 − π3)

2 a
= −Γθθ̄θ

Γθ̄θθ̄ =
θ(π1(π3 − π2) + θ̄(π2(3π3 − π2)− 2π1π4))

2 a
= −Γθ̄θ̄θ.

All the other Christofel symbols are equal to zero. Similarly we can calculate

the Christofel symbols for the QPI using the metric (D.18) and (D.25). In order

to simplify the expression for the Christofel symbols and curvatures, we need to

introduce the following quantity:

σ1 ≡ πQ2 π
Q
3 − π

Q
1 π

Q
4 − π

Q
5 π

Q
7 . (E.2)

Note that in the classical limit πQi → πi, i = 1, . . . , 4 since αθ, αθ̄, βθ, βθ̄ → 0

and πQ7 → a being ε → 1. Therefore σ1 → (π2π3 − π1π4 − π5 aB), that in the

classical limit is equal to zero. The result, via Mathematica [23], for parameters

47



πi independent on t, turns out to be:

Γttt = θ̄θ
(πQ3 − π

Q
2 )

πQ7
σ1

Γθtt = −θ̄ σ1

Γttθ = Γt CPItθ (πQi ) +
σ1

πQ7
= −Γtθt

Γθtθ = Γθ CPItθ (πQi ) + θ̄θ
πQ6 (πQ2 + πQ3 ) + 2πQ3 σ1

2πQ7
= Γθθt

Γθ̄tθ = Γθ̄ CPItθ (πQi )− θ̄θ
πQ1 (σ1 + πQ6 )

πQ7
= −Γθ̄θt

Γttθ̄ = Γt CPItθ̄ (πQi )−
σ1

πQ7
= −Γtθ̄t

Γθtθ̄ = Γθ CPItθ̄ (πQi ) + θ̄θ
πQ4 (σ1 + πQ6 )

πQ7
= Γθθ̄t (E.3)

Γθ̄tθ̄ = Γθ̄ CPItθ̄ (πQi )− θ̄θ
πQ6 (πQ2 + πQ3 ) + 2πQ2 σ1

2πQ7
= Γθ̄θ̄t

Γtθθ̄ = Γt CPIθθ̄ (πQi )− θ̄θ
(πQ2 − π

Q
3 )(σ1 + πQ6 + 2πQ5 π

Q
7 )

2πQ
2

7

= −Γtθ̄θ

Γθθθ̄ = Γθ CPIθθ̄ (πQi )− θ
πQ6

πQ7
= −Γθθ̄θ

Γθ̄θθ̄ = Γθ̄ CPIθθ̄ (πQi )− θ̄
πQ6

πQ7
= −Γθ̄θ̄θ,

where

ΓC CPI
AB (πQi ) ≡ ΓC CPI

AB (πi → πQi , a→ πQ7 ).

All the other Christofel symbols are equal to zero.

If we choose the πi dependent on time for the CPI Christofel symbols we get
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the following expressions:

Γttt = θ̄θ π′5

Γθtt = θ π′3 + θ̄ π′4

Γθ̄tt = −θ π′1 − θ̄ π′2

Γttθ = −θ π1 (π2 − π3)

2 a
+ θ̄

(π2 + π3)π2 − 2π1 π4

2 a

Γθtθ =
π2 + π3

2
+ θ̄θ

π′5
2

Γθ̄tθ = −π1

Γttθ̄ = θ̄
(π2 − π3)π4

2 a
+ θ

2π1 π4 − π3 (π2 + π3)

2 a

Γθtθ̄ = π4

Γθ̄tθ̄ = −π2 + π3

2
+ θ̄θ

π′5
2

Γtθt = −Γttθ

Γθθt = Γθtθ

Γθ̄θt = Γθ̄tθ

Γtθθ̄ =
π2 − π3

2 a
− θ̄θ 4π2 π5 − π′5

2 a

Γθθθ̄ = θ̄
(π2 − π3)π4

2 a
+ θ

(π2 − π3)π3 + 2 a π5

2 a

Γθ̄θθ̄ = −θ̄ (π2 − π3)π1

2 a
+ θ̄

2 a π5 − (π2 − π3)π2

2 a

Γtθ̄t = −Γttθ̄

Γθθ̄t = Γθtθ̄

Γθ̄θ̄t = −π2 + π3

2
+ θ̄θ

π′2 + π′3
2

Γtθ̄θ = −Γtθθ̄

Γθθ̄θ = −Γθθθ̄.

Γθtθ = −π2 + π3

2
+ θ̄θ

π′5
2

(E.4)

For the QPI case, when the coefficient πi depend on time the Christofel symbols
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turn out to be:

Γttt = Γt CPItt − θ̄θ (π2 − π3)σ1

π7

Γθtt = Γθ CPItt − θ σ1

Γθ̄tt = Γθ̄ CPItt − θ̄ σ1

Γttθ = Γt CPItθ + θ̄
σ1

π7

Γθtθ = Γθ CPItθ + θ̄θ
σ′1 + π6 (π2 + π3) + 2π3 σ1 − π′6

2π7

Γθ̄tθ = Γθ̄ CPItθ − θ̄θ π1 (σ1 + π6)

π7

Γttθ̄ = Γt CPItθ̄ − θ σ1

π7

Γθtθ̄ = Γθ CPItθ̄ + θ̄θ
π4 (σ1 + π6)

π7

Γθ̄tθ̄ = Γθ̄ CPItθ̄ + θ̄θ
σ′1 − π6 (π2 + π3)− 2π2 σ1 − π′6

π7

Γtθt = −Γttθ

Γθθt = Γθtθ

Γθ̄θt = Γθ̄tθ

Γtθθ̄ = Γt CPIθθ̄ − θ̄θ π
′
6 − σ′1 + 2 (π2 − π3)(σ1 − π6)

2π2
7

Γθθθ̄ = Γθ CPIθθ̄ + θ
σ1 − π6

π7

Γθ̄θθ̄ = Γθ̄ CPIθθ̄ + θ̄
σ1 − π6

π7

Γtθ̄t = −Γttθ̄

Γθθ̄t = Γθtθ̄

Γθ̄θ̄t = Γθ̄θ̄t

Γtθ̄θ = −Γtθθ̄

Γθθ̄θ = −Γθθθ̄

Γθ̄θ̄θ = −Γθ̄θθ̄.

The other symbols are zero. All πi appearing above have to be intended as πQi .
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Appendix F.

Appendix F.1. Time Independent CPI Ricci tensor and scalar

In the case of πi independent of t the CPI Ricci curvature tensor turns out

to be:

Rθθ = Rθ̄θ̄ = 0 (F.1)

Rtt =
(π2 + π3)2 − 4π1π4

2

Rtθ = −
(θ π1 + θ̄ π2)((π2 + π3)2 − 4π1π4)

2 a
= −Rθt

Rtθ̄ = −
(θ π3 + θ̄ π4)((π2 + π3)2 − 4π1π4)

2 a
= −Rθ̄t

Rθθ̄ =
θ̄θ

2
(π1π4 − π2π3)(π2

2 − 6π2π3 + π2
3 + 4π1 π4)

−
a

2
(π2

2 − 10π2π3 + π2
3 + 8π1 π4) = −Rθ̄θ

From the components we can build the Ricci scalar

RCPI = −
1

2
(π2

2 − 22π2π3 + π2
3 + 20π1 π4) + 8

θ̄θ

a
(π2π3 − π1π4)2 (F.2)
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Appendix F.2. Time Independent QPI Ricci tensor and scalar

For the QPI, the components of the Ricci tensor can be written as:

Rθθ = Rθ̄θ̄ = 0 (F.3)

Rtt = RCPItt (πQi ) + 2σ1 +
θ̄θ

πQ7

[
πQ6 ((πQ2 + πQ3 )2 − 4πQ1 π

Q
4 )+

+ 2σ1 (πQ
2

2 + 4πQ2 π
Q
3 + πQ

2

3 − 6πQ1 π
Q
4 − π

Q
6 ) + 6σ2

1

]
Rtθ = RCPItθ (πQi )−

πQ6 + 3σ1

πQ7

[
θπQ1 + θ̄(πQ2 + πQ3 )

]
= −Rθt

Rtθ̄ = RCPItθ̄ (πQi )−
πQ6 + 3σ1

πQ7

[
θ̄πQ4 + θ(πQ2 + πQ3 )

]
= −Rθ̄t

Rθθ̄ = RCPIθθ̄ (πQi )−
σ1 − 3πQ6

πQ7
+

θ̄θ

2πQ
2

7

[
2πQ

2

6 + 8πQ1 π
Q
4 π

Q
6

− 8πQ2 π
Q
3 π

Q
6 − σ1((πQ2 − π

Q
3 )2 + 4πQ6 + 2σ1)

]
= −Rθ̄θ,

where

RCPIAB (πQi ) ≡ RCPIAB (πi → πQi , a→ πQ7 ).

The Ricci scalar turns out to be

RQPI = RCPI(πQi ) + 2σ1 − 3πQ6 + (F.4)

+
θ̄θ

πQ7

[
−πQ6 (πQ

2

2 + 6πQ2 π
Q
3 + πQ

2

3 − 8πQ1 π
Q
4 ) + 4πQ

2

6

− 4σ1(πQ
2

2 + 3πQ2 π
Q
3 + πQ

2

3 − 5πQ1 π
Q
4 π

Q
6 + σ1)

]
where

RCPI(πQi ) = RCPI(πi → πQi , a→ πQ7 ).
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Appendix G.

Appendix G.1. Time Dependent CPI Ricci tensor and scalar

In the case of πi dependent on t we get for the CPI the expressions below

where π′i and π′′i indicate the first and second derivative of πi with respect to t.

Rθθ = Rθ̄θ̄ = 0 (G.1)

Rtt = RCPItt (πi) + (π′3 − π′2) + θ̄θ
[
π2

3π
′
2 − π2

2π
′
3+

+ (π′3 − π′2)(a π5 − 2π2π3 + 3π1π4) + 2 aπ′5+

+ (π2 − π3)(π4π
′
1 + π′4π1)]

Rtθ = RCPItθ (πi) +
θπ1 + θ̄π2

2 a
(π′3 − π′2) +

θ̄π′5

2

Rtθ̄ = RCPItθ̄ (πi) +
θπ3 + θ̄π4

2 a
(π′2 − π′3)−

θπ′5

2

Rθt = RCPIθt (πi)−
θπ3 + θ̄π4

2 a
(π′2 − π′3)−

3 θπ′5

2

Rθθ̄ = RCPIθθ̄ (πi) +
a (π′2 − π′3)

2
+
θ̄θ

2
[5 a π′5(π3 − π2)+

+ 4 a π5(π′3 − π′2) + aπ′′5 ]

Rθ̄t = RCPIθ̄t (πi)−
θπ3 + θ̄π4

2 a
(π′2 − π′3)−

3 θπ′5

2

Rθ̄θ = RCPIθ̄θ (πi)−
a (π′2 − π′3)

2
−
θ̄θ

2
[5 a π′5(π3 − π2)+

+ 4 a π5(π′3 − π′2) + aπ′′5 ] .

RCPIAB (πi) are the expressions previously presented in Appendix C for the time

independent CPI Ricci tensor. The other tensor components are all equal to

zero. The CPI Ricci scalar, when the parameters are explicit functions of time,

turns out to be:

RCPI = RCPI(πi) + 2(π′2 − π′3) + (G.2)

+ θ̄θ [4π5 (π′3 − π′2) + 7 (π3 − π2)π′5 + 2π′′5 ] ,

where, once again, RCPI(πi) is the CPI Ricci scalar given in Appendix C.
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Appendix G.2. Time Dependent QPI Ricci Tensor and Curvature

In the case of πi dependent on t we get for the QPI Ricci tensor:

Rtt = RQPItt (πi) + π′2(t)− π′3(t) + (G.3)

−
θ̄θ

π7
[−π2(t) (2π4(t)π′1(t) + 4π3(t) (π′2(t)− π′3(t)) + 2π1(t)π′4(t)+

+ π7π
′
5(t) + π′′3 (t)) + π3(t) (2π4(t)π′1(t) + 2π1(t)π′4(t) + π7π

′
5(t)+

− π′′2 (t)) + 2π2(t)2π′3(t)− 2π3(t)2π′2(t) + 6π1(t)π4(t)π′2(t)+

+ 2π7π5(t)π′2(t) + π6(t)π′2(t)− 6π1(t)π4(t)π′3(t)− 2π7π5(t)π′3(t)+

− π6(t)π′3(t)− 2π′2(t)π′3(t) + 2π′1(t)π′4(t) + π4(t)π′′1 (t) + π1(t)π′′4 (t)+

+ π′′6 (t)]

Rtθ = RQPItθ (πi) +
θ

2π7
(π1(t)π′2(t)− π1(t)π′3(t)) +

θ̄

2π7
[−π4(t)π′1(t)+

+ (π2(t) + π3(t))π′2(t)− π1(t)π′4(t) + 3π′6(t)]

Rtθ̄ = RQPI
tθ̄

(πi) +
θ

2π7
[π4(t)π′1(t)− (π2(t) + π3(t))π′3(t) + π1(t)π′4(t)+

+ −3π′6(t)] +
θ̄

2π7
(π4(t) (π′2(t)− π′3(t)))

Rθt = RQPIθt (πi) +
θ

2π7
π1(t) (π′3(t)− π′2(t)) +

θ̄

2π7
[−3π4(t)π′1(t)+

+ − (π2(t)− 3π3(t))π′2(t) + 4π2(t)π′3(t)− 3 (π1(t)π′4(t) + π′6(t))]

Rθθ̄ = RQPI
θθ̄

(πi) +
π′2(t)− π′3(t)

2π7
− θ̄θ

2π2
7

[−π2(t) (2π4(t)π′1(t)+

+ 4π3(t) (π′3(t)− π′2(t)) + 2π1(t)π′4(t)− 3π7π
′
5(t) + 2π′6(t) + π′′3 (t)) +

+ π3(t) (2π4(t)π′1(t) + 2π1(t)π′4(t)− 3π7π
′
5(t) + 2π′6(t)− π′′2 (t)) +

+ 2π2(t)2π′3(t)− 2π3(t)2π′2(t)− 2π1(t)π4(t)π′2(t) + 2π7π5(t)π′2(t)+

− 2π6(t)π′2(t) + 2π1(t)π4(t)π′3(t)− 2π7π5(t)π′3(t) + 2π6(t)π′3(t)+

− 2π′2(t)π′3(t) + 2π′1(t)π′4(t) + π4(t)π′′1 (t) + π1(t)π′′4 (t) + π′′6 (t)]
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Rθ̄t = RQPI
θ̄t

(πi) +
θ

2π7
[3π4(t)π′1(t) + π3(t) (π′3(t)− 4π′2(t)) + 3 (−π2(t)π′3(t)

+ +π1(t)π′4(t) + π′6(t))] +
θ̄

2π7
π4(t) [π′3(t)− π′2(t)]

Rθ̄θ = RQPI
θ̄θ

(πi) +
π′3(t)− π′2(t)

2π7
− θ̄θ

π2
7

[π2(t) (2π4(t)π′1(t) + 4π3(t) (π′3(t)− π′2(t))

+ 2π1(t)π′4(t)− 3π7π
′
5(t) + 2π′6(t) + π′′3 (t))− π3(t) (2π4(t)π′1(t)+

+ 2π1(t)π′4(t)− 3π7π
′
5(t) + 2π′6(t)− π′′2 (t))− 2π2(t)2π′3(t)2π3(t)2π′2(t) +

+ 2π1(t)π4(t)π′2(t)− 2π7π5(t)π′2(t) + 2π6(t)π′2(t)− 2π1(t)π4(t)π′3(t)+

+ 2π7π5(t)π′3(t)− 2π6(t)π′3(t) + 2π′2(t)π′3(t)− 2π′1(t)π′4(t)− π4(t)π′′1 (t)+

− π1(t)π′′4 (t)− π′′6 (t)]

where RCPIAB (πi) are the expression previously presented in Appendix C for the

QPI Ricci tensor. The other tensor components are all equal to zero. The QPI

Ricci scalar, when the parameters are explicit functions of time, turns out:

RQPI = RQPI(πi) + 2(π′2 − π′3) + (G.4)

+
θ̄θ

π7
[−π2(t) (5π4(t)π′1(t) + 3π3(t) (π′3(t)− π′2(t)) + 5π1(t)π′4(t)

− 2π7π
′
5(t) + 5π′6(t) + 2π′′3 (t)) + π3(t) (5π4(t)π′1(t) + 5π1(t)π′4(t)

− 2π7π
′
5(t) + 5π′6(t)− 2π′′2 (t)) + 2 (π1(t) (π4(t) (π′2(t)− π′3(t)) + π′′4 (t))

+ (3π7π5(t)− π6(t))π′2(t) + (−2π′2(t)− 3π7π5(t) + π6(t))π′3(t)

+ 2π′1(t)π′4(t) + π4(t)π′′1 (t) + π′′6 (t)) + 5π2(t)2π′3(t)− 5π3(t)2π′2(t)
]

where, once again, RQPI(πi) is the QPI Ricci scalar given in Appendix C.

55



References

[1] A. A. A. Abrikosov, E. Gozzi, D. Mauro, Ann. Phys (314) (2005) 24–71.

[2] B. O. Koopman, Proc. Nat. Acad. Sci. (17) (1931) 315.

[3] J. V. Neumann, Ann. Math (33) (1932) 597.

[4] E. Gozzi, M. Reuter, W. D. Thacker, Phys. Rev. D 40 (10) (1989) 3365.

[5] E. Gozzi, M. Reuter, W. D. Thacker 46 (2) (1992) 757.

[6] E. Gozzi, M. Reuter, Phys. Lett. B (233) (1989) 383.

[7] E. Gozzi, M. Reuter, Phys. Lett. B (240) (1990) 137.

[8] E. Gozzi, M. Reuter, Phys. Rev. E (1993) 725.

[9] E. Gozzi, M. Regini, Phis. Rev. D 067702 (62) (2000) 067702.

[10] E. Gozzi, D. Mauro, Journ. Math. Phys. 41 (4) (2000) 1916.

[11] E. Gozzi, E. Deotto, D. Mauro, Journ. Math. Phys 44 (2003) 5907.

[12] E. Gozzi, E. Deotto, D. Mauro, Journ. Math. Phys 44 (2003) 5937.

[13] E. Cattaruzza, E. Gozzi, A. F. Neto, Phys. Rev. D 87 (2013) 067501.

[14] E. Gozzi, C. Pagani, Phys. Rev. Lett. 105 (2010) 150604.

[15] R. P. Feynman, Rev. Mod. Phys. 20 (1948) 367.

[16] R. Abraham, J. Marsden, Foundations of Mechanics, Benjamin-Cummings

Pubbl. inc., New York, 1979.

[17] B. D. Witt, Supermanifolds, Cambridge University Press, 1984.

[18] P. C. West, Introduction to supersymmetry and supergravity, World Sci-

entific, Singapore, 1990.

[19] N. M. J. Woodhouse, Geometric Quantization, Clarendon Press, Oxford,

1980.

56



[20] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman

and Company, San Francisco, 1973.

[21] R. Arnowitt, P. Nath, Gen. Rel. Grav. 7 (1976) 89.

[22] R. Arnowitt, P. Nath, Nucl. Phys. B 165 (1980) 462.

[23] M. Headrick, Grassmann.m: a package that teaches mathematica how to

manipulate grassmann variables, Tech. rep. (2009).

[24] J. Bell, Speakable and un-speakable in quantum mechanics, Cambridge

University Press, 1987.

57


	Introduction
	Review
	General Strategy
	Vierbeins
	Metrics 
	Curvatures 
	Zeros of the curvature
	Zeros of the curvature in the CPI
	Lack of zeros in the QPI curvature

	Conclusions
	
	Grassmannian algebras
	Super-numbers
	Inverse of a super-number
	C-number and A-number
	Super-vectors and super-matrices
	Super-trace
	Super-determinant and its inverse
	Left and right derivatives

	
	
	
	
	
	Time Independent CPI Ricci tensor and scalar
	Time Independent QPI Ricci tensor and scalar

	
	Time Dependent CPI Ricci tensor and scalar
	Time Dependent QPI Ricci Tensor and Curvature


