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Nonresonance conditions

for radial solutions of nonlinear
Neumann elliptic problems on annuli
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Abstract. An existence result to some nonlinear Neumann ellip-
tic problems defined on balls has been provided recently by the author
in [21]. We investigate, in this paper, the possibility of extending such
a result to annuli.
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1. Introduction

In a previous paper [21], in order to obtain an existence result, the author in-
troduced a liminf-limsup type of nonresonance condition below the first positive
eigenvalue for Neumann problems defined on the ball BR = {x ∈ RN , |x| < R}.
As an example, the following problem−∆u = g(u) + e(|x|) in BR

∂u

∂ν
= 0 on ∂BR ,

where the functions g : R → R and e : [0, R] → R are continuous, has a radial
solution if

lim inf
u→+∞

2G(u)

u2
<
( π

2R

)2
and lim sup

u→−∞

g(u)

u
<
( π

2R

)2
(here G is a primitive of g), and assuming the existence of a positive d such
that (

g(u) + ē
)

sgnu > 0 when |u| ≥ d ,

where ē =
N

RN

∫ R

0

sN−1e(s) ds.
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In this paper, we treat Neumann problems defined on annuli and, in the
spirit of the above quoted paper, we will provide in Theorem 2.2 some sufficient
condition for the existence of radial solutions. Moreover, we will provide with
Theorem 2.6 a different result in presence of not well-ordered constant upper
and lower solutions.

Let us briefly introduce some notations. We denote by AN (R1, R2) ⊂ RN ,
with R2 > R1 > 0, the open annulus of internal radius R1 and external radius
R2:

AN (R1, R2) = BR2
\BR1

,

where Br ⊂ RN is the open ball of radius r centered at the origin. As usual,
we denote the boundary of AN (R1, R2) with ∂AN (R1, R2), and the euclidean
norm with | · |. The problem we are going to study is of the type−∆u = g(|x|, u) + e(|x|) in AN (R1, R2)

∂u

∂ν
= 0 on ∂AN (R1, R2) ,

where g : [R1, R2]× R→ R and e : [R1, R2]→ R are continuous functions.
The spirit of this paper follows the idea presented by Fonda, Gossez and

Zanolin in [9]. In that paper, the authors deal with a Dirichlet problem defined
in a smooth domain Ω ⊂ RN contained in a ball Bρ of a certain radius ρ:{

−∆u = g(u) + h(x) in Ω

u = 0 on ∂Ω .

They replace the classical limsup nonresonance condition with respect to the
first eigenvalue λ1 provided by Hammerstein in [15],

lim sup
|u|→∞

2G(u)

u2
< λ1 ,

with a double liminf condition like the following one

lim inf
u→−∞

2G(u)

u2
<

π2

4ρ2
, and lim inf

u→+∞

2G(u)

u2
<

π2

4ρ2
(1)

(here, again, G is a primitive of g). Notice that, one has π2/4ρ2 < λ1, except
to the case Ω = (−2ρ, 2ρ) ⊂ R where the equality holds. Condition (1) has
been first introduced in the frame of the one-dimensional Dirichlet problem in
(−2ρ, 2ρ) in [7].

In the case of a Neumann problem, a condition of liminf type was studied by
Gossez and Omari in [12, 13]. In Neumann problems, a nonresonance condition
with respect to the zero eigenvalue must be introduced, so that the liminf



NEUMANN ELLIPTIC PROBLEMS ON ANNULI 257

condition will be related to the first positive eigenvalue (see also [3, 16] for
related problems). Such a situation occurs also when dealing with periodic
problems (see for example [8]).

The paper is organized as follows: in Section 2 we will state all the results,
the proofs of them are postponed to Section 3.

2. Main results

In this paper we are concerned with the following class of problems defined on
an annulus AN (R1, R2) with R2 > R1 > 0:−∆u = g(|x|, u) + e(|x|) in AN (R1, R2)

∂u

∂ν
= 0 on ∂AN (R1, R2) ,

(2)

where g : [R1, R2]× R → R and e : [R1, R2] → R are continuous functions. In
particular, consider a radial solution u(x) = v(|x|) to (2). Setting r = |x|, and
denoting with ′ the derivative with respect to r, we have the equivalent system−v′′ −

N − 1

r
v′ = g(r, v) + e(r) r ∈ [R1, R2]

v′(R1) = 0 = v′(R2) .
(3)

Notice that the differential equation in (3) does not present a singularity, being
R1 > 0. The case R1 = 0 has been treated by the author in [21]. It will be
useful to consider the mean value of the function e

ē =
N

RN2 −RN1

∫ R2

R1

sN−1e(s) ds

and ẽ(t) = e(t)− ē, so that
∫ R2

R1
sN−1ẽ(s) ds = 0.

In the proof of the theorem, we will use the so-called time-map function.
Let us spend a few words about it. Consider the scalar second order differential
equation x′′ + ψ(x) = 0. It is possible to write the associated system in the
plane

x′ = y , −y′ = ψ(x) . (4)

Suppose ψ(x)x > 0 for every x 6= 0, and consider the primitive Ψ(x) =∫ x
0
ψ(ξ) dξ. The function

τψ(x) = sgn(x)
√

2

∫ x

0

dξ√
Ψ(x)−Ψ(ξ)

,

is defined as the time-map associated to the planar system (4), and gives an
estimate of the time between two subsequent zeroes t1 and t2 of the function
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x = x(t). In particular, if the function x reaches its maximum x(t0) = xM at
t0 ∈ (t1, t2), then t2 − t1 = τψ(xM ) and t2 − t0 = t0 − t1 = τψ(xM )/2. See,
e.g., [6, 11, 18, 19] for details and their applications to periodic scalar problems.

In view of this, let us define the half-valued time-map

Tψ(x) = sgn(x)
1√
2

∫ x

0

dξ√
Ψ(x)−Ψ(ξ)

,

and the following limits

T ±ψ = lim sup
x→±∞

Tψ(x) , T ψ± = lim inf
x→±∞

Tψ(x) .

In [11], Fonda and Zanolin provided some estimates on these values, some of
which we collect in the following proposition.

Proposition 2.1 ([11]). Assume that ψ is a continuous function, with prim-
itive Ψ, and `+, `− are positive constants. If ψ satisfies at +∞ or −∞ some
of the following limits on the left, then the correspondent estimate on the right
holds.

lim inf
x→±∞

2Ψ(x)

x2
≤ `± ⇒ T ±ψ ≥

π

2
√
`±
,

lim sup
x→±∞

ψ(x)

x
≤ `± ⇒ T ψ± ≥

π

2
√
`±
,

∃ lim
x→±∞

2Ψ(x)

x2
≤ `± ⇒ T ψ± ≥

π

2
√
`±
.

We can now state our main result.

Theorem 2.2. Assume the existence of a continuous function φ : R→ R, and
of a constant d > 0 such that

−ē < g(r, v) ≤ φ(v) for every r ∈ [R1, R2] and every v ≥ d , (5)

φ(v) ≤ g(r, v) < −ē for every r ∈ [R1, R2] and every v ≤ −d . (6)

Moreover assume the existence of a constant η > 0 such that

φ(v)v ≥ η v2 for every |v| ≥ d . (7)

Suppose that the function Tφ is well-defined for |v| > d and its limits satisfy
either

T +
φ > R2 −R1 and T φ− > R2 −R1 , (8)

or
T φ+ > R2 −R1 and T −φ > R2 −R1 . (9)

Then (2) has at least one radial solution.
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Remark 2.3. Assuming (5) and (6) we implicitly have that the function Tφ =
Tφ(v) is well-defined for v large enough. The assumptions of the theorem require
only that the value d is chosen large enough to guarantee that the domain of
Tφ contains the set (−∞,−d) ∪ (d,+∞).

We will prove this theorem in Section 3.1. We will give now, as an example
of application, some possible corollaries to Theorem 2.2 using the estimates
in Proposition 2.1. In order to simplify the statement, in the setting of prob-
lem (2), we assume g not depending by x.

Corollary 2.4. Let be g(|x|, u) = g(u) with primitive G. Assume

lim inf
u→+∞

2G(u)

u2
<

(
π

2(R2 −R1)

)2

and lim sup
u→−∞

g(u)

u
<

(
π

2(R2 −R1)

)2

and that there exists d > 0 such that

(g(u) + ē) sgnu > 0 when |u| > d .

Then, problem (2) has at least one radial solution.

Corollary 2.5. Let be g(|x|, u) = g(u) with primitive G. Assume

lim inf
u→+∞

2G(u)

u2
<

(
π

2(R2 −R1)

)2

and ∃ lim
u→−∞

2G(u)

u2
<

(
π

2(R2 −R1)

)2

and that there exists d > 0 such that

(g(u) + ē) sgnu > 0 when |u| > d .

Then, problem (2) has at least one radial solution.

The proof is obtained by defining, for η > 0 sufficiently small, the function

φ(v) =

{
max {g(v) , η v} if v ≥ d
min {g(v) , η v} if v ≤ −d ,

(10)

enlarging d if necessary, and extending its domain to the whole R.

Another existence result can be obtained assuming the existence of constant
lower and upper solutions which are not well-ordered, as the following theorem
states. For further results on non-well-ordered lower and upper solutions, see,
e.g., [1, 5, 10, 14, 17].

Theorem 2.6. Assume the existence of a continuous function φ : R → R and
of some positive constants d, χ, η such that

−χ < g(r, v) ≤ φ(v) for every r ∈ [R1, R2] and every v ≥ d ,
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φ(v) ≤ g(r, v) < χ for every r ∈ [R1, R2] and every v ≤ −d ,

φ(v)v ≥ ηv2 for every |v| ≥ d .

Moreover, assume that there exist some constants β < α such that

g(r, β) + e(r) < 0 < g(r, α) + e(r) , for every r ∈ [R1, R2] . (11)

Suppose that the function Tφ is well-defined for |v| > d and its limits satisfy
either

T +
φ > R2 −R1 and T φ− > R2 −R1 ,

or
T φ+ > R2 −R1 and T −φ > R2 −R1 .

Then (2) has at least one radial solution.

Such a statement has been inspired by a result obtained by Gossez and
Omari in [12], and the following results follow as a direct consequence of the
previous theorem. We will refer also to [13] for comparison.

Theorem 2.7. Assume g to be a continuous function, with primitive G, such
that

lim inf
u→+∞

2G(u)

u2
<

(
π

2(R2 −R1)

)2

and lim sup
u→−∞

g(u)

u
<

(
π

2(R2 −R1)

)2

.

Then, −∆u = g(u) + e(|x|) in AN (R1, R2)
∂u

∂ν
= 0 on ∂AN (R1, R2) ,

has a solution for every continuous function e if and only if g(R) = R.

Theorem 2.8. Assume g to be a continuous function, with primitive G, such
that

lim inf
u→+∞

2G(u)

u2
<

(
π

2(R2 −R1)

)2

and ∃ lim
u→−∞

2G(u)

u2
<

(
π

2(R2 −R1)

)2

.

Then, −∆u = g(u) + e(|x|) in AN (R1, R2)
∂u

∂ν
= 0 on ∂AN (R1, R2) ,

has a solution for every continuous function e if and only if g(R) = R.

For comparison, let us quote here a possible application of [13, Theorem 1.1].
The quoted theorem is a more general application to asymmetric nonlinearities.
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Theorem 2.9 ([13]). Let λ2 be the second eigenvalue of −∆ on AN (R1, R2)
with Neumann boundary condition. Assume g to be a continuous function, with
primitive G, such that

lim sup
u→+∞

g(u)

u
≤ λ2 and lim sup

u→−∞

g(u)

u
≤ λ2 ,

with moreover lim inf
u→+∞

2G(u)

u2
< λ2. Then,−∆u = g(u) + e(x) in AN (R1, R2)

∂u

∂ν
= 0 on ∂AN (R1, R2) ,

has a solution for every continuous function e if and only if g(R) = R.

Notice that Theorem 2.7 does not require any limsup type of condition at
+∞, but it requires that all the limits are below the second eigenvalue.

Remark 2.10. It is known that the Fučik spectrum for the radial elliptic Neu-
mann problem on an annulus presents two monotone curves departing from the
point (λ2, λ2), where λ2 is the first positive eigenvalue (cf. [2, 20]). Such curves
have two different asymptotes, call a > 0 the smaller one. A natural question

arises about the order of a and of the constants k = π2

4(R2−R1)2
involved in

the previous theorems. The value a is strictly related to the zeroes of Bessel
functions of index ν and ν + 1 = N/2 and also, in particular, to the choice of
R1 and R2. It is possible to find suitable values for them thus obtaining both
the cases a < k and a > k, so that the liminf condition in Corollary 2.4 and
Theorem 2.7 is sometimes not necessary, but it is hard to verify if this situation
occurs when R1 and R2 are arbitrarily fixed.

Remark 2.11. Similar results can be obtained by assuming the existence of
non-constant lower and upper solutions which are not well-ordered, following
the main ideas of the paper by Alif and Omari [1]. We do not enter in such
details for briefness.

Remark 2.12. Several other theorems can be formulated using the estimates
in Proposition 2.1 and the other ones contained in [11]. As a trivial example,
the asymptotic behaviour of the nonlinearities at +∞ and −∞ can be switched
in all the previous theorems. For briefness we do not enter in such details.

3. Proofs

3.1. Proof of Theorem 2.2

We will prove the theorem under assumption (8). The proof of the other case
is specular.
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Define the function T : (−∞,−d] ∪ [d,+∞)→ R as

T (v) =
1√
2

∫ v

d

dξ√
Φ(v)− Φ(ξ) + ‖e‖∞(v − ξ)

, for v ≥ d ,

T (v) =
1√
2

∫ −d
v

dξ√
Φ(v)− Φ(ξ)− ‖e‖∞(v − ξ)

, for v ≤ −d .

The following proposition was proved in [21, Lemma 3.1].

Proposition 3.1. For every ε > 0 there exists vε > d such that the following
inequalities hold

T (v) ≤ Tφ(v) ≤ (1 + ε)T (v) + ε ,

for every v with |v| > vε.

By (8), it is possible to find a sufficiently small ε > 0 such that there exist
an increasing sequence of positive real values (ωn)n, with limn ωn = +∞, and
ω̄ > 0 with the following property:

Tφ(ωn) > (R2 −R1)(1 + ε) + ε for every n ∈ N ,

Tφ(v) > (R2 −R1)(1 + ε) + ε for every v < −ω̄ .
We can assume ω̄ and ω0 to be greater than d+ 1 and vε, where vε is given by
Proposition 3.1, thus permitting to have the following estimates

T (ωn) ≥ Tφ(ωn)− ε
1 + ε

> R2 −R1 for every n ∈ N , (12)

T (v) ≥ Tφ(v)− ε
1 + ε

> R2 −R1 for every v < −ω̄ . (13)

We introduce the following family of problems, for λ ∈ [0, 1],−v′′ −
N − 1

r
v′ = λ

(
g(r, v) + e(r)

)
+ (1− λ)ηv , r ∈ [R1, R2] ,

v′(R1) = 0 = v′(R2) ,
(14)

where η was introduced in (7). We define the following sets

CkN = {v ∈ Ck([R1, R2]) : v′(R1) = 0 = v′(R2)} , k = 1, 2 .

It is not restrictive to assume that the constant η introduced in (7) is smaller
than the first positive eigenvalue, so to have the existence of a unique solution
of the problem−v′′ −

N − 1

r
v′ = ηv + f(r) , r ∈ [R1, R2] ,

v′(R1) = 0 = v′(R2) ,
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for every continuous function f . Call T : C0 → C1
N the operator that sends

the continuous function f to the unique solution v. Then (14) is equivalent to
the fixed point problem

v = Gλ(v) := λT
(
− ηv + g(r, v) + e(r)

)
.

where Gλ : C1
N → C1

N is a completely continuous operator. Moreover, any fixed
point of Gλ is a function belonging to C2

N and dLS(I − G0,Ω, 0) = 1 for every
open bounded set Ω ⊂ C1

N such that 0 ∈ Ω. Hence, by Leray-Schauder degree
theory, it will be sufficient to find an open bounded set Ω ⊂ C1

N , containing 0,
such that there are no solutions of (14) on ∂Ω, for every λ ∈ [0, 1], in order to
prove the existence of a solution of (3).

We are going to prove the existence of such a set, looking for some positive
constants A,B,M defining Ω as follows:

Ω = {v ∈ C1
N : −A < v(r) < B and |v′(r)| < M , ∀r ∈ [R1, R2]} . (15)

First of all, we show now that all the solutions of (14) cannot remain large
because of assumptions (5) and (6). We will prove the following claim.

Claim. Every solution v of (14) satisfies |v(r)| < d for some r ∈ [R1, R2].

Consider a solution v of (14) such that v(r) > d for every r ∈ [R1, R2]. It
satisfies also the following differential equation for every r ∈ [R1, R2]:

d

dr

(
rN−1v′(r)

)
= −rN−1

[
λ
(
g(r, v(r)) + e(r)

)
+ (1− λ)ηv(r)

]
. (16)

Integrating it in the interval [R1, R2], we get

0 = −
∫ R2

R1

rN−1
[
λ
(
g(r, v(r)) + ē

)
+ (1− λ)ηv(r)

]
dr .

Notice that, by (5), the integral must be negative, providing a contradiction. A
similar computation proves also the impossibility of having a solution v of (14)
such that v(r) < −d for every r ∈ [R1, R2]. We have so proved the claim.

The proof of Theorem 2.2 consists of three steps: in each one we provide
one of the needed constants A,B,M which appear in (15).

I Step 1 (Find the constant B). The positive constant B can be chosen
in the set of the values of the previously introduced sequence (ωn)n, taking n
sufficiently large. In fact, suppose by contradiction that there exist a sequence
(λn)n, with λn ∈ [0, 1] for every n, a subsequence of (ωn)n, still denoted (ωn)n,
and a sequence of solutions vn to (14), with λ = λn, such that max[R1,R2] vn =
ωn. The maximum is reached at the instant

rnM = max{r ∈ [R1, R2] : vn(r) = ωn} .
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The Claim permits us to define also

rnd = max{r ∈ [R1, R2] : vn(r) = d} .

We consider two different situations, up to subsequences.

� Case 1: rnM < rnd .
In this situation, the solution reaches its maximum at rnM and then becomes
small reaching the value d at

r̃n = min{r ∈ [rnM , R2] : vn(r) = d} .

For every r ∈ [rnM , r̃n] such that v′n(r) < 0, it is possible to find a value
s(r) ∈ [rnM , r) such that v′n(s(r)) = 0 and v′n(r) < 0 for every s ∈ (s(r), r].
Consider the differential equation in (14) with v = vn and λ = λn. Using (5)
and (7), we have

−v′′n(s) ≤ φ(vn(s)) + ‖e‖∞ for every s ∈ [s(r), r] ,

and multiplying by v′n(s) ≤ 0 and integrating in the interval [s(r), r], we obtain

−1

2
v′n(r)2 ≥ Φ(vn(r))− Φ(vn(s(r))) + ‖e‖∞

(
vn(r)− vn(s(r))

)
.

Using the monotonicity of Φ in the interval [d,+∞), we get

1 ≥ 1√
2

−v′n(r)√
Φ(ωn)− Φ(vn(r)) + ‖e‖∞(ωn − vn(r))

,

for every r ∈ [rnM , r̃n] such that v′n(r) < 0. The previous inequality holds also
when v′n > 0, so we can obtain the following contradiction using (12):

r̃n − rnM ≥
1√
2

∫ r̃n

rnM

−v′n(r)√
Φ(ωn)− Φ(vn(r)) + ‖e‖∞(ωn − vn(r))

dr

= T (ωn) > R2 −R1 .

� Case 2: rnM > rnd .
We want to show that, in this situation, the solutions vn must reach a negative
minimum mn = min[R1,R2] vn which is large in absolute value, in particular we
will prove that

lim
n
mn = −∞ . (17)

We consider the last point of minimum

rnm = max{r ∈ [R1, R2] : vn(r) = mn} < rnM .
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Arguing by contradiction, we suppose that there exists a constant C > 0 such
that, up to a subsequence, vn(r) ≥ −C for every r ∈ [R1, R2] and every n ∈ N.
Defining

g̃n(r) = −rN−1
[
λn
(
g(r, vn(r)) + ē

)
+ (1− λn)ηvn(r)

]
, (18)

we verify, using (16), that ∫ R2

R1

g̃n(r)dr = 0 .

Hence, being g̃n negative when vn > d,∫ R2

R1

|g̃n(r)|dr=

∫
vn>d

−g̃n(r)dr +

∫
−C≤vn≤d

|g̃n(r)|dr

≤ 2

∫
−C≤vn≤d

|g̃n(r)|dr ,

which is bounded. Form (16) and the previous computation, we obtain∥∥∥∥ ddr (rN−1v′n)

∥∥∥∥
L1

≤ D , (19)

for a suitable constant D, independent of n. Thus, for every r ∈ (rnm, R2],

rN−1v′n(r) = (rnm)N−1v′n(rnm) +

∫ r

rnm

(
sN−1v′n(s)

)′
ds ≤ D .

Hence, v′n(r) < D/RN−11 for every r > rnm, for every n. The following compu-
tation gives us a contradiction with the assumption ωn → +∞ giving us the
proof of the limit in (17):

ωn = vn(rnM ) = vn(rnm) +

∫ rnM

rnm

v′n(s) ds ≤ d+
D

RN−11

(R2 −R1) .

Being (17) valid, we can assume mn < −d for every n. Consider

r̂n = min{r ∈ (rnm, r
n
d ) : vn(r) = −d} .

Arguing as in Case 1, we can find, for every r ∈ [rnm, r̂n] such that v′n(r) > 0, a
value s(r) ∈ [rnm, r) such that v′n(s(r)) = 0 and v′n(s) > 0 for every s ∈ (s(r), r].
Considering the differential equation in (14) with v = vn and λ = λn, we can
write, using (6) and (7),

−v′′n(s) ≥ φ(vn(s))− ‖e‖∞ for every s ∈ [s(r), r] .
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Multiplying it by v′n(s) ≥ 0 and integrating in the interval [s(r), r], using the
monotonicity of Φ in (−∞,−d], we obtain, arguing as above,

1 ≥ 1√
2

v′n(r)√
Φ(mn)− Φ(vn(r))− ‖e‖∞(mn − vn(r))

.

for every r ∈ [rnm, r̂n], thus giving us the following contradiction when n is large
enough, using (13):

r̂n − rnm ≥
1√
2

∫ r̂n

rnm

v′n(r)√
Φ(mn)− Φ(vn(r))− ‖e‖∞(mn − vn(r))

dr

= T (mn) > R2 −R1 .

We have just proved that there cannot exist solutions to (14) such that
max[R1,R2] vn = ωn if n is large enough. So, we can choose B among such
values.

I Step 2 (Find the constant A). When B is fixed, it is possible to prove that
there cannot exist solutions to (14), for a certain λ, having max[R1,R2] v < B
with a large (in absolute value) negative minimum.

Suppose by contradiction that, for every m ∈ N, there exists a solution vm
to (14), for a certain λ, with max[R1,R2] vm < B, such that min[R1,R2] vm < −m.
By the Claim, if −m < −d then max[R1,R2] vm > −d.

Arguing as above, we can define the function g̃m as in (18) and, being g̃m
positive when vm < −d, with a similar procedure, we can find a constant D′

(independent of m) such that v′m < D′/RN−11 so to obtain

−d < max
[R1,R2]

vm ≤ min
[R1,R2]

vm +
D′

RN−11

(R2 −R1)

<−m+
D′

RN−11

(R2 −R1) ,

which gives us a contradiction when m is large enough. Hence, we can find a
positive constant A, such that every solution v to (14) satisfying max[R1,R2] v <
B must also satisfy min[R1,R2] v > −A.

I Step 3 (Find the constant M). Consider a solution v of (14) with −A <
v < B, then by (16) it is easy to see that

rN−1|v′(r)| ≤
∫ R2

R1

∣∣∣∣ dds (sN−1v′(s))

∣∣∣∣ ds ≤ KrN ,
for a suitable positive constant K. So, we get |v′| ≤ KR2 and setting, for
example, M = KR2 + 1 also the third step of the proof is completed.

We have just found the three constants A,B,M describing a set Ω suit-
able to apply the Leray-Schauder degree theory, completing the proof of The-
orem 2.2.
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3.2. Proof of Theorem 2.6

The proof is rather similar to the one of Theorem 2.2. Proposition 3.1 remains
valid also under the assumptions of Theorem 2.6.

It is not restrictive to assume d > max{−β, α}. Let us consider first the
case β < 0 < α. As above, we can find a sequence of values (ωn)n and a
constant ω̄ satisfying (12) and (13). We can introduce problem (14) and the
operator Gλ, but we are now going to look for a different kind of set Ω. In
particular it will be of the form

Ω = {v ∈ C1
N :−A < v(r) < B , |v′(r)| < M for every r ∈ [R1, R2]

and ∃r0 ∈ [R1, R2] : β < v(r0) < α} .

The impossibility of having solutions v to (14) satisfying max[R1,R2] v = β or
min[R1,R2] v = α is given by assumption (11). The proof of this theorem follows
the main procedure of the one of Theorem 2.2 and consists of three steps, too.

I Step 1 (Find the constant B). It is possible to find the constant B in the
set of the values of the sequence (ωn)n. If n is chosen large enough, one can
prove that any solution v to (14), with β < v(r0) < α for a certain r0 ∈ [R1, R2],
must satisfy max[R1,R2] v 6= ωn.

I Step 2 (Find the constant A). It is possible to find the constant A choosing
it sufficiently large in order to obtain that any solution v to (14), with β <
v(r0) < α for a certain r0 ∈ [R1, R2] and satisfying max[R1,R2] v < B, must
also satisfy min[R1,R2] v > −A.

I Step 3 (Find the constant M). It is possible to find a constant M ,
sufficiently large, in order to guarantee that any solution v to (14), with
−A < v(r) < B for every r ∈ [R1, R2], must satisfy max[R1,R2] |v′| < M .

We emphasize that, in order to adapt the proof of Theorem 2.2 to the
assumptions of Theorem 2.6, we have to rewrite the part involving the estimate
in (19). In this part, in fact, we have used the property sgn(v)(g(r, v) + ē) > 0
which does not hold necessarily under the assumptions of Theorem 2.6. So, we
are going to rewrite this part.

We can assume χ > ē and rename the function g̃n, appearing in (18), as

g̃n(r) = −rN−1
[
λn
(
g(r, vn(r)) + χ

)
+ (1− λn)ηvn(r)

]
,

so that
d

dr
(rN−1v′n(r))′ = g̃n(r) + λnr

N−1(χ− e(r)) .

Integrating the equation in the interval [R1, R2], we obtain∫ R2

R1

g̃n(s)ds ≥ −χ− ē
N

(RN2 −RN1 ) .
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Let us define H = (χ− ē)(RN2 −RN1 )/N . Being g̃n < 0 when vn > d, we have∫ R2

R1

|g̃n(s)|ds=

∫
vn>d

−g̃n(s)ds+

∫
−C≤vn≤d

|g̃n(s)|ds

≤H +

∫
−C≤vn≤d

g̃n(s)ds+

∫
−C≤vn≤d

|g̃n(s)|ds

≤H + 2

∫
−C≤vn≤d

|g̃n(s)|ds ,

which is bounded, independently of n. Then,∫ R2

R1

∣∣∣∣ dds (sN−1v′n(s))

∣∣∣∣ ds≤ ∫ R2

R1

|g̃n(s)|ds+
χ

N
(RN2 −RN1 )

+

∫ R2

R1

sN−1|e(s)| ds ≤ D′ ,

for a suitable constant D′, independent of n. We thus obtain∥∥∥∥ ddr (rN−1v′n)

∥∥∥∥
L1

≤ D′ ,

for every n. Then the proof works as the one of Theorem 2.2.

The proof of Theorem 2.6, is now completed only in the case β < 0 < α.
Suppose now that this condition is not fulfilled. Choosing ξ ∈ (β, α) and
defining h(r, v) = g(r, v+ξ), we can verify that the assumptions of Theorem 2.6
are also satisfied for β1 = β − ξ < 0 < α − ξ = α1 and φ1 = φ( · + ξ), even
slightly modifying the other values. Thus, we can find a solution z of−∆z = h(|x|, z) + e(|x|) in AN (R1, R2)

∂z

∂ν
= 0 on ∂AN (R1, R2) ,

so that the function u = z + ξ is a solution to (2), thus completing the proof.

3.3. Proof of Theorems 2.7 and 2.8

It is easy to prove that the requirement g(R) = R is a necessary condition. So,
we will prove only that it is also sufficient. By hypothesis, for every continuous
function e, it is possible to find α, β ∈ R such that g(α) ≥ ‖e‖∞ and g(β) ≤
−‖e‖∞, thus having the property of being respectively a lower and an upper
constant solution to (2). The case α ≤ β follows from classical results (see,
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e.g., [4]), so let us assume β < α. Suppose that lim infu→+∞ g(u) = −∞, then it
is possible to find a constant upper solution β2 > α, thus concluding. Similarly,
if lim supu→−∞ g(u) = +∞, we can find α2 < β being a constant lower solution.
The interesting case is the remaining one: there exists a positive constant
χ > 0 such that g(v) sgn(v) ≥ −χ. Defining φ as in (10), the assumption
of Theorem 2.6 are fulfilled using the estimates in Proposition 2.1. Applying
Theorem 2.6 we complete the proof.
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