
Personalized, Browser-based Visual Phishing
Detection Based on Deep Learning

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao

Department of Engineering and Architecture, University of Trieste, Trieste, Italy
{bartoli.alberto, andrea.delorenzo, emedvet, ftarlao}@units.it

Abstract. Phishing defense mechanisms that are close to browsers and
that do not rely on any forms of website reputation may be a powerful
tool for combating phishing campaigns that are increasingly more tar-
geted and last for increasingly shorter life spans. Browser-based phishing
detectors that are specialized for a user-selected set of targeted web sites
and that are based only on the overall visual appearance of a target could
be a very effective tool in this respect. Approaches of this kind have not
been very successful for several reasons, including the difficulty of coping
with the large set of genuine pages encountered in normal browser usage
without flooding the user with false positives. In this work we intend to
investigate whether the power of modern deep learning methodologies
for image classification may enable solutions that are more practical and
effective. Our experimental assessment of a convolutional neural network
resulted in very high classification accuracy for targeted sets of 15 web-
sites (the largest size that we analyzed) even when immersed in a set of
login pages taken from 100 websites.

1 Introduction

Phishing campaigns are increasingly more targeted to specific and small popu-
lation of users and last for increasingly shorter life spans [1, 4]. There is thus an
urgent need for defense mechanisms that are close to browsers and that do not
rely on any forms of blacklisting/URL-based reputation: there is simply no time
for detecting novel phishing campaigns and notify all interested users quickly
enough.

In this work we investigate the feasibility of browser-based phishing detectors
that: (1) are specialized for a user-selected set of websites (i.e., we do not insist
on detecting phishing attacks directed at any possible target); (2) are based only
on the overall visual appearance of a website (i.e., without relying on any URL-
related feature, blacklisting, peculiar features of a given screenshot); (3) allow
incorporating a specific website in the set automatically (i.e., with a systematic
and website-independent procedure based solely on screenshots); (4) are simple
and fast enough to warn the user in real time.

There have been a number of proposals for attempting to detect phishing
pages based solely on their visual features (e.g., [5, 2, 3]). The framework is
based on an image classifier equipped with prior knowledge of the legitimate

2 A. Bartoli, A. De Lorenzo, E. Medvet, F. Tarlao

〈protocol,domainName〉 pair(s) of each website of interest to the user. When the
browser has loaded a web page p, the classifier determines whether the screenshot
of p belongs to one of the visual classes corresponding to each website to be pro-
tected. In case of a match, the tool compares the actual 〈protocol,domainName〉
of p to those expected for that website and warns the user in case of a mismatch.

Key advantage of this framework is that it does not require any form of black-
listing or of URL-based reputation. The required tool could be implemented as a
browser extension and could possibly be integrated within a password manager.
The resulting defensive mechanism would implement the procedure that any
technically-savvy and constantly vigilant user applies in practice, except that in
this case the procedure would be automated and thus available to every user
and continuously. The resulting scenario would thus raise the bar for attackers
considerably.

It is fair to claim that approaches of this kind have not been very successful
so far, though, the key reasons include the difficulty of actually implementing the
above requirements while providing sufficiently high detection accuracy [6]. For
example, we are not aware of any actual implementation of the image classifier
devised in [5], the screenshot classifiers analyzed in [2] did not deliver adequate
accuracy, the large scale classification experiment in [3] considered 16 targeted
websites but without injecting pages from other websites (unlike what happens
during normal browser usage). In this work we intend to revisit the framework
and investigate whether modern deep learning methodologies for image classifi-
cation may lead to solutions that are practical and effective.

2 Problem statement and proposed approach

The login page of a website may have several different appearances, depending
on the user agent declared by the browser (e.g., desktop vs. mobile) and on
the resolution of the page rendered by the browser. We say that a screenshot x
looks similar to the screenshot x(p) of a login page p, denoted x ∼ x(p), if the
visual appearance of the two screenshots is sufficiently similar to let the user
believe that x is indeed the rendering of a login page p. In this work we consider
that two screenshots satisfy this definition only if they are screenshots taken
from the same login page, possibly with different resolutions. This assumption
corresponds to a scenario in which a phishing page is an exact visual replica of a
genuine login page, hosted at a (fraudulent) website different from the genuine
one. We will consider more general scenarios in future work.

We consider a statically defined list S of websites s1, s2, . . . , snS
that have

a login page and that must be protected from phishing attempts (this set may
be personalized on a user basis). The problem input consists of a screenshot x.
The corresponding output y must be one of nS + 1 categorical values (classes),
as follows: if x looks similar to a login page of website sj ∈ S, then y = j; other-
wise, y = nS + 1. In other words, the problem does not consist in discriminating
between phishing pages and legitimate pages. The problem consists in associ-
ating a screenshot with a predefined set of visual classes, including a special

Personalized Phishing Detection with Deep Learning 3

class meaning “none of the websites selected for protection” that is necessary in
practice.

We explored a solution based on deep learning, specifically, on a neural net-
work in which: the input layer corresponds to a screenshot with a 640×360 pixel
resolution with 3 channels (RGB); the output layer consists of nS + 1 neurons,
with one-hot encoding of the corresponding classes. We apply a screenshot x to
the input layer after the following preprocessing steps. First, we create an image
x16:9 with 16:9 aspect ratio by either cropping or extending (by wrapping) the
bottom part of x. Then, we resize x16:9 to 640× 360 resolution with the bilinear
interpolation of the Pillow Python module. The chosen resolution is high enough
to capture small graphical details such as, e.g., logo and text characters shape.
We chose a 16:9 aspect ratio because this is the most common screen-ratio for
desktop computers (we intend to explore a single classifier for both desktop and
mobile platforms in future work).

We used a convolutional neural network (CNN) composed of a sequence
of four pairs 〈CNi,MPi〉, i.e., 〈convolutional layer,maxpool layer〉, with i =
1, . . . , 4, as follows. CN1 applies 32 kernels of size 5 × 5 × 3, CN2 64 kernels
of size 5 × 5 × 32, CN3 96 kernels of size 5 × 5 × 64, CN4 128 kernels of size
5× 5× 64. MP1 applies 4× 4 kernel and 4× 4 stride, while the other maxpool
layers apply a 2 × 2 kernel and 2 × 2 stride. The output of MP4 is fed to a
fully connected layer FC1, that is followed by another fully connected layer FC2,
that is followed by the output layer SM. Both FC1 and FC2 have 200 neurons.
The activation function for all the CN and the FC layers is ReLU, while the
output layer implements a softmax. We implemented this network architecture
with Keras.

For our experimental assessment we collected 1500 screenshots of login pages
from 100 websites, 15 different screenshots from each website. For each website,
we identified the login page and captured 15 different screenshots of that page
differing on the browser windows size resolution. We captured the resolutions
that correspond to the 15 most common screen sizes1, on the grounds that dif-
ferent resolutions may result in very different webpage layouts. We selected 30
websites of the companies most targeted by phishing attacks, according to re-
ports by specialized IT security firms, and 70 websites from the Alexa ranking
of the most visited websites. We skipped duplicate websites, sites with porno-
graphic content, sites without a login page. We also skipped websites whose login
page was identical to an already collected login page of another website, due to
the usage of single sign on.

We trained the network after a data augmentation procedure applied to the
collected screenshots. This procedure may be used for obtaining a virtually un-
limited amount of artificial screenshots different from the real ones but that
should be effective for training the multiclass classifier. The procedure consists
of the following steps, executed whenever an artificial screenshot xa is to be
obtained from a real screenshot x (all random quantities have uniform distribu-
tion in a specified interval): (i) modify x and obtain a 16:9 aspect ratio (as in

1 http://gs.statcounter.com/screen-resolution-stats

4 A. Bartoli, A. De Lorenzo, E. Medvet, F. Tarlao

preprocessing); (ii) circular shift vertically and horizontally of a random quan-
tity; (iii) with 50% chance, apply a centered zoom of a random zoom factor and
keep size unchanged by cropping; (iv) with 50% chance, either lighten or darken
the image; the 3 RGB channels are all lighted or all darkened, with a random
multiplicative factor different in each channel such that the overall change never
exceed 30% of the original pixel value.

We executed the actual training of the network as follows. Let S denote the
set of websites s1, s2, . . . , snS

whose login page has to be protected from phishing
attacks. Let XS denote the set of login page screenshots of websites in S. Let
T, V denote the learning data to be obtained from XS , i.e., the training set and
the validation set respectively. Both T and V are sets of pairs 〈x, y〉, where x
is a screenshot and y ∈ {1, . . . , nS + 1} is the corresponding class (encoded as
one-hot in the output layer of the network): if x is a login page of website sj ∈ S,
then y = j; otherwise, y = nS + 1.

At each training epoch, we randomly select a subset of T such that 50% of the
pairs are of class y = nS + 1 while the remaining pairs are equally distributed
across the other classes. We loop across this subset for constructing a set of
artificial screenshots Ta with the data augmentation procedure described above
and use Ta for training in the current epoch (the class of an artificial screenshot
will be the same as the corresponding real screenshot). We group pairs of Ta in
batches of size bs = 32 and execute each epoch for nb = 12(nS + 1) cT

bs
steps, cT

being the median cardinality of classes in T (we use each element of Ta once,
hence |Ta| = 12(nS +1)cT). We use Stochastic Gradient Descent (SGD) with the
following parameters: momentum set to 0.9; learning rate 0.02; gradient clipping
with maximum norm value 1.0; dropout with probability 0.1 after each CN layer
and with probability 0.3 after each FC layer.

At the end of each training epoch we evaluate the classification accuracy of
the current network on a set of validation pairs Va (the same set for all epochs).
We construct this set by randomly selecting a subset of V so that all classes
have the same cardinality. We then loop across this subset for constructing a
set of artificial screenshots Va with the data augmentation procedure described
above until |Va| = 24(nS + 1)cV , cV being the median cardinality of classes in
V . We trained the network for 400 epochs and used the network with higher
classification accuracy on Va ever seen on all the epochs.

3 Experimental assessment

We assessed three different values for the number of websites to be protected
nS = 5, 10, 15, corresponding to 6, 11, 16 classes respectively (we remark that
the large scale classification experiment in [3] considered 16 targeted websites).
We constructed the training set T , validation set V and testing set E so as to
ensure that: (a) each of the nS + 1 classes has the same cardinality in T and in
V ; (b) all the remaining data are used in E.

In detail, let SD be the set of 100 websites of our dataset and let XD be the
corresponding set of 1500 screenshots. We denote each element of XD by 〈x, i〉

Personalized Phishing Detection with Deep Learning 5

where x is a screenshot taken from website si ∈ SD. Let Xi denote the subset of
XD containing screenshots taken from si ∈ SD. Initially, we set T = V = E =
Xo = ∅; then:

1. We randomly selected a subset S′ ⊂ SD such that |S′| = nS .
2. For each website si ∈ S′, we randomly partitioned Xi in three subsets XT

i ,
XV

i , XE
i with the same cardinality; then, we added XT

i to T , XV
i to V and

XE
i to E.

3. For each website sj 6∈ S′, we added Xj to Xo.
4. We randomly partitioned Xo in three subsets XT

o , XV
o and XE

o such that
|XT

o | = |XV
o | = |XT

i | (thus, |XE
o | = |Xo \ (XT

o ∪XV
o)|); then, we added XT

o

to T , XV
o to V and XE

o to E.
5. We adjusted all class labels so that elements from S′ were of classes 1, 2, . . . , nS

and elements from SD \ S′ were of class nS + 1.

We repeated the above procedure 3 times for each value of nS , each time
selecting a different subset S′ of websites at step 1 and ensuring that the three
subsets have empty intersection. Furthermore, for each selected subset S′, we
executed a 3-fold cross validation by rotating the roles of sets T, V,E. Thus, we
executed 9 different experiments for each value of nS . For each trained network
we computed the performance indexes described below on the testing set E. The
Categorical Accuracy (CA) is the ratio of correctly classified screenshots while
the Balanced Categorical Accuracy (BCA) is the arithmetic mean of the accu-
racy in each class. The Missed Alarm Ratio (MAR) is the ratio of screenshots
from websites in S′ classified as belonging to class nS +1 (screenshots from web-
sites that should be protected from phishing attacks, but are not recognized as
belonging to those sites). The False Alarm Ratio (FARI) is the ratio of screen-
shots from websites in S′ classified as belonging to a class different from the
correct class and different from nS + 1 (screenshots from websites that should
be protected and that are recognized as a login page, but are attributed to a
website different from the real one). The False Alarm Ratio on other web sites
(FARU) is ratio of screenshots from websites not in S′ classified as belonging to
a class different from nS + 1 (screenshots from websites for which a protection
from phishing attacks has not been required, but are attributed to a website
that should be protected).

Table 1 shows the indexes values, averaged across the 9 experiments. Column
ET reports the average execution time for each experiment (on a machine with
18 cores, 128 GB RAM, Xeon(R) E5-2697 v4 @ 2.30 GHz).

4 Discussion and concluding remarks

We believe the results are highly encouraging: the multiclass classifier delivers
very good performance in each considered index. While such a performance
level may not be enough for a full phishing defense, an effective phishing defense
cannot rely on a single tool: a defense in depth strategy working at different levels
is necessary. In this respect, we believe that our proposed approach may indeed

6 A. Bartoli, A. De Lorenzo, E. Medvet, F. Tarlao

Table 1. Performance indexes, averaged across 9 experiments, for different values of
nS (number of websites to be protected). All values are in percentage, except for ET
that is in hours:minutes format.

nS CA BCA FARI FARU MAR ET

5 99.0 99.2 0.0 1.0 0.7 4:49
10 98.0 98.2 0.1 2.1 1.7 9:22
15 98.4 98.6 0.3 1.6 1.1 14:17

be practically viable and may provide complementary capabilities to existing
tools. The ability to warn the user of a phishing site without any assumption on
the reputation of the IP address, hosting provider, and website may be extremely
useful for combating phishing attack strategies that are increasingly shorter and
more targeted. While in principle one would like to be protected everywhere, we
believe that even a protection on a user-selected set of 10–15 sites may be very
useful [3].

Further investigation is obviously needed from several points of view, includ-
ing in particular the ability to classify correctly screenshots that are not exact
replicas of the original login page but that are similar enough to fool a user.
To this end, we intend to explore more sophisticated data augmentation strate-
gies and use suitably crafted artificial screenshots in testing as well. Adversarial
attacks, i.e., login pages systematically crafted by an attacker to induce the clas-
sifier to output an attacker-chosen wrong class, are certainly to be explored as
well.

References

1. The human factor: People-centered threats define the landscape. Tech. rep., Proof-
point (2018)

2. Afroz, S., Greenstadt, R.: PhishZoo: Detecting phishing websites by looking at them.
In: 2011 IEEE Fifth International Conference on Semantic Computing. pp. 368–375
(2011)

3. Chen, T.C., Dick, S., Miller, J.: Detecting visually similar web pages: Application
to phishing detection. ACM Trans. Internet Technol. 10(2), 5:1–5:38 (Jun 2010)

4. Lazar, L.: Our analysis of 1,019 phishing kits – blog — imperva. https://www.

imperva.com/blog/2018/01/our-analysis-of-1019-phishing-kits/ (Jan 2018),
accessed: 2018-7-4

5. Maurer, M.E., Herzner, D.: Using visual website similarity for phishing detection
and reporting. In: CHI ’12 Extended Abstracts on Human Factors in Computing
Systems. pp. 1625–1630. CHI EA ’12, ACM, New York, NY, USA (2012)

6. Varshney, G., Misra, M., Atrey, P.K.: A survey and classification of web phishing
detection schemes. Security Comm. Networks 9(18), 6266–6284 (Dec 2016)

