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Abstract 

This PhD project aims to apply nanostructured metal surfaces as substrates for Surface 

Enhanced Raman Spectroscopy for the study of biofluids. This analytical technique 

provides the vibrational fingerprint of a sample assisted by nanostructured metal surfaces, 

which can enhance the scattering signal of analytes adsorbed on them: this allows detection 

of analytes in very low concentrations. These features tell a lot about the potential of SERS 

in the bioanalytics, and indeed, in this field, the use of SERS has increased over the past 

decade taking advantage of both sensitive detection and fingerprinting features.  

Above all, SERS requires the manufacturing of metal nanostructured substrates as sensors. 

In particular, this project is based on the development of a label-free approach: no 

functionalization is present on the nanoparticles surface, and, hence, no preferential 

affinity for a given analyte in the biological matrix is sought. Briefly, once nanoparticles are 

in contact with the specimen, the analytes may adsorb on them without any specific 

interaction other than their affinity for the metal. The outcoming SERS signal will be a 

snapshot of what actually reached the metal surface, namely a fingerprint of the sample. 

For instance, the label-free analysis of biofluids reflects the metabolic content of the fluid 

itself. In the “omic” era, SERS can integrate with untargeted metabolomics, provides the 

metabolic profile of a specimen and distinguishes different samples accordingly, based on 

differences in such profiles. Electrostatically stabilized silver colloids have been chosen, 

given that their performances with biofluids are known. They have been used both as 

colloidal suspension in water, and fixed on a paper support, according to an in-house 

developed protocol for the fabrication of solid substrates. The coupling of metal 

nanostructured substrates with SERS acts as actual sensors, able to interact with aqueous 

environment and detect dissolved analytes. The real advantage of the paper supports lies 

in the stability of the spectroscopic response: they are long lasting, easy to fabricate and to 

handle, cost and time-effective, prone to scale up. These reasons make them potential Point 

of Care tools in the frame of SERS applications. 

Building on the expertise our research group has been developing in recent years, the aim 

of this PhD thesis is twofold: to push forward our fundamental knowledge of the 

nanostructure-biofluid interaction and to test the feasibility of the application of SERS for 

specific clinical problems. These goals were pursued in three steps: 

1. to develop protocols for the label-free analysis of blood fractions (serum, plasma, 

erythrocytes, periphereal blood mononuclear cells, and whole blood) with SERS, 

exploiting their features according to several treatments and SERS substrates; 

2. to characterize the behavior of biomolecules at the interface with metal 

nanoparticles on model systems, namely to understand the role of the protein and 

non-protein corona in the metabolites-nanoparticle interaction. The model system 

is based on mixture of human serum albumin (i.e. the most abundant serum protein) 
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and molecules which are commonly detected in SERS of biofluids: adenine, 

hypoxanthine and uric acid; 

3. to apply the aforementioned knowledge to the early diagnosis of several diseases 

(breast cancer, non-alcoholic fatty liver diseases, cirrhosis and hepatocellular 

carcinoma) through serum and plasma samples by means of multivariate data 

analysis of SERS spectra. 

Considering the latter application of SERS in the field of disease diagnosis, the aim is to 

provide new diagnostic methods complementary to the accepted gold standards such as 

immunochemistry and histopathology methods. The advantages of SERS lie in the rapid 

response and on the non-invasiveness of the liquid biopsy approach. As a future goal, the 

development of SERS platforms as label-free point of care tools integrated to portable 

Raman instruments could bring the diagnosis procedures from the bench to the bedside. 

SERS revealed to be a powerful tool in the biomedical field for the liquid biopsy analysis, 

and many issues still need to be tackled. In conclusion, SERS and the label-free approach 

can potentially support the routine diagnostic pathway and, hence, fulfill unmet clinical 

needs.  
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Riassunto 

Lo scopo di questo progetto di dottorato è quello di utilizzare delle superfici 

metalliche nanostrutturate come substrati per la spettroscopia Raman amplificata da 

superfici (SERS) per l’analisi di biofluidi. Questa tecnica analitica restituisce 

l’impronta digitale vibrazionale del campione grazie alla presenza della nanostruttura 

metallica in grado di amplificare il segnale diffuso inelasticamente dall’analita 

adsorbito su di essa, anche in concentrazioni molto basse. Queste caratteristiche 

anticipano le potenzialità della spettroscopia SERS in campo bioanalitico che ha visto 

un aumento esponenziale delle sue applicazioni nell’ultimo decennio. In particolare, 

la SERS richiede la fabbricazione di substrati metallici nanostrutturati che possano 

funzionare da sensori. Questo progetto si basa sullo sviluppo di un approccio privo di 

marcatura (label-free:): nessuna funzionalizzazione è presente sulla superficie 

metallica al fine di rilevare in modo aspecifico gli analiti presenti della matrice di 

interesse biologico. Il risultato del segnale SERS sarà un’istantanea della soluzione in 

analisi depositata sulla superficie metallica, cioè l’impronta specifica del campione. 

Per esempio, l’analisi label-free dei biofluidi riflette il suo contenuto metabolico. 

Nell’era “omica”, il SERS può essere integrato nella metabolomica non funzionalizzata 

in quanto fornisce il profilo metabolico del soggetto in esame e di conseguenza 

distinguere campioni diversi basandosi sulle differenze di ogni profilo analizzato. I 

colloidi stabilizzati elettrostaticamente sono stati scelti per la loro nota compatibilità 

con i biofluidi. Verranno usati sia in forma colloidale in sospensione acquosa, sia 

fissati su un supporto di carta, definiti supporti solidi e sviluppati grazie a un 

protocollo validato nel nostro laboratorio. L’insieme dei substrati nanostrutturati e il 

SERS possono essere definiti dei sensori veri e propri, capaci di interagire con 

l’ambiente acquoso e rilevare gli analiti disciolti in esso. Il vantaggio portato dai 

supporti in carta risiede nella stabilità della risposta spettroscopica: sono di lunga 

durata, facili da fabbricare e da maneggiare, economici e veloci, potenzialmente 

fabbricabili su ampia scala. Queste sono le caratteristiche che nell’ambito delle 

applicazioni del SERS possono promuovere la costruzione di un dispositivo Point of 

Care. Basandosi sulle competenze acquisite dal nostro gruppo di ricerca, lo scopo di 

questa tesi di dottorato è duplice: aumentare le nostre conoscenze sull’interazione 

biofluidi-nanostrutture e utilizzare il metodo SERS per lo studio di specifici problemi 

clinici. Al fine di soddisfare tali richieste questo lavoro è diviso in tre parti: 

1. Sviluppare protocolli per l’analisi label-free delle frazioni di sangue (siero, 

plasma, eritrociti, cellule mononucleate del sangue periferico, e sangue intero) 

con il SERS, sfruttando le loro caratteristiche in base alla diversa preparazione dei 

campioni e ai substrati SERS utilizzati; 

2. Caratterizzare il comportamento delle biomolecole sulla superficie di 

nanoparticelle metalliche su sistemi modello, cioè capire il ruolo delle corone di 



VII 
 

proteine e non proteine nell’interazione metabolita-nanoparticelle. Il sistema 

modello usato si basa su un insieme di albumina di siero umano (la più 

abbondante proteina del siero) e molecole che sono comunemente osservate nei 

biofluidi: adenina, ipoxantina e acido urico; 

3. Applicare le nozioni di cui sopra per la diagnosi precoce di diverse malattie 

(tumore al seno, fegato grasso non alcolico, cirrosi e carcinoma epatocellulare) 

tramite campioni di sangue e plasma e l’uso di analisi dati multivariata per spettri 

SERS. 

 

Lo scopo dell’utilizzo del SERS in ambito medico è di proporre nuovi approcci 

diagnostici complementari alle tecniche già in uso in clinica come ad esempio i metodi 

di immunochimica e istopatologia. Il vantaggio del SERS risiede nella rapida risposta 

e in un approccio non invasivo tramite l’utilizzo di biopsia liquida. Lo scopo futuro è 

lo sviluppo di una piattaforma SERS label-free come dispositivo point of care integrato 

allo strumento Raman che renderebbe le procedure di diagnosi molto più veloce dal 

laboratorio al letto del paziente.  

 

Seppure il SERS abbia già dimostrato di essere un metodo valido in campo biomedico 

per l’analisi di biopsie liquide, molto deve esser ancora scoperto. In conclusione, il 

SERS e l’approccio label-free possono potenzialmente essere un grande supporto per 

la diagnostica ad oggi in uso andando ad ottemperare quelle richieste cliniche non 

ancora soddisfatte.
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1 Introduction 

1.1 Background and rationale 

In healthcare, the actual issue that the scientific community is called to implement is 

personalized medicine and to cope with the need of improved diagnostic and 

prognostic tools. 

The first step is to understand which are the clinical needs and how to meet them and 

to fulfill their criteria, such as to improve the diagnostic accuracy, to reduce 

invasiveness, to go for cost-effective devices that are of simple fabrication, use and 

response rate [1,2]. Obviously, the dialogue between researchers and end-users 

(medical staffs, but also the patients, stakeholders, and so on) is tremendously 

important to identify these targets. Nowadays, the research pushes towards the 

discovery of cutting-edge technologies and protocols that may address these issues in 

clinical settings. At the same time, the development of lab-on-a-chip systems may help 

in the miniaturization of companion diagnostics as point-of-care tools (POC), going 

from the bench to the patient bedside [3–7].  

The identification of practical solutions is a true challenge, since it is the very first step 

for a real application: indeed, the number of commercialized successful devices is 

really low compared to the scientific efforts [8,9].  

To date, several analytical techniques have been applied in clinics and developed for 

structural and chemical characterization, analytes quantification, biosensing, medical 

imaging and diagnosis. These benefit from different physical, biological, chemical 

tools, i.e., solid or liquid state magnetic resonance, chromatography hyphenated to 

mass spectrometry, a number of fluorescence, infrared, Raman spectroscopy tools, 

immunoassay tests, and so on [10]. Nevertheless, their practical implementation has 

been often hampered by several issues: the incompatibility with the biological fluids 

or tissues, high costs and poor accuracy.  

In the recent years, the improvement in electronics, optics and photonics, as well as 

in the nanofabrication technology, allowed the Surface Enhanced Raman 

Spectroscopy (SERS) to gain a chance to be used in clinical devices [10–12]. SERS is a 

spectroscopic technique that provides the molecular (vibrational) fingerprint of a 

sample with high sensitivity and specificity, able to work with aqueous specimens in 

low volumes and with reduced or no sample pretreatment. SERS preserves the 

features of the normal Raman scattering with an enhancement factor up to 1010 of the 

signal, basically down to the single molecule detection. Being versatile, its application 

ranges from chemistry to biology, environmental science, medicine, pharmacology, 

and others [13,14]. 
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The SERS response requires the use of nanostructured supports as sensors: the 

sample constituents need to be in close proximity to the metal surface to experience 

an amplification of the outgoing signal. To improve sensitivity or to make their use 

compatible with a broad variety of biological samples, customization of the substrates 

is possible, like the chemical functionalization for targeted detection of markers or 

their implementation on microfluidic devices and solid supports [13]. For further 

details, the reader is addressed to the next chapter or to the dedicated literature and 

text books [14,15]. 

The number of publications related to the clinical application of SERS increased 

exponentially over the last 10 years. Great attention has been given to cancer 

diagnosis, where the early detection is an urgent task.  

Pathological information is currently extracted from imaging of cells and tissues, 

analysis of biofluids and liquid biopsies where contrast is achieved by adding tailored 

NPs to trigger the SERS effect. Both qualitative and quantitative detection are 

pursued. 

In general, labeled SERS is commonly the most popular trend, following the old but 

gold paradigm of specific biomarker detection, thanks to the addition of Raman active 

moieties and antibodies to the metal NPs that act as a key-lock mechanism with the 

proper ligands. The outcoming SERS signal usually belongs to the activated linker. In 

this frame, immunohistochemistry-like tests have been proven to work with several 

known cancer biomarkers and viruses, with limits of detection lower or equal to the 

common immunoassays adopted for multimodal analysis [16–22]. Similarly, nucleic 

acid-based multiplexed tests are pursued to detect specific sequences of DNA and 

RNA that might have a role in oncogenesis and other diseases [23–29]. In this case, 

the NPs usually reports ssDNA or small RNA probes complementary to the known 

wanted oligomeric strand, connected to the metal surface through a SERS-active 

linker. 

Conversely, the label-free approach does not include any functionalization of the 

metal surfaces and admits the free adsorption of analytes on them Figure 1.1. In 

principle, all the constituents of the sample can be seen through SERS, but actually the 

metal-molecule affinity and the molecular features are the driving force for the SERS 

signal to occur. This issue is commonly faced when dealing with chemically complex 

specimens, like biofluids, as the spectral signature reveals only a fraction of the 

present species, namely metabolites and catabolites [30–33]. The biomolecules 

present in the adsorbed fraction depend on the sample characteristics, but for sure 

this approach is markedly different from the aforementioned labeled systems, as the 

whole spectrum can be seen as a multimarker detector. In the frame of diagnosis, the 

hypothesis is to consider the biological sample representative of the metabolic state 

of the subject, thus a reflection of the health status. Therefore, a correlation is 

assumed between the collected metabolites and the pathological condition [30,34,35]. 

Machine learning algorithms are part of this study too, as they are involved in the 
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construction of predictive models for diagnostic purposes, provided the large number 

of variables each measurement involves, unmanageable without informatic support.  

 

 

Figure 1.1 Label-free SERS analysis: analytes freely adsorb on the metal 

nanoparticle, driven by the affinity for the surface [36]. 

 

A further step in the direction of the POC devices is the introduction of solid supports 

decorated with SERS nanoparticles. After the first observation of SERS in 1977 by 

Martin Fleischmann with pyridine on an electrochemically roughened silver 

electrode, the first attempt for an application of solid SERS substrates dates back to 

1984 with Tran and co-workers. These researchers exploited the use of paper as 

flexible substrate decorated with metal nanoparticles [37]. Silica slides [38,39], 

roughened electrodes , graphene sheets [40–43], carbon nanotubes [44,45], natural 

[46–48] and synthetic [39,49,50] polymers have been decorated with both labeled 

and unlabeled nanoparticles. Among all, the superficial roughness, flexibility, stability, 

tunable hydrophilicity, low SERS background, and low cost make paper an ideal 

substrate for SERS NPs deposition. For this reason, in this project paper has largely 

been used as substrate to build nanostructured SERS-active surfaces. 

However, it must be observed that most of the studies available in literature about 

paper-based substrates report, at best, only partial aspects of their implementation. 

An inappropriate characterization of SERS substrates features a poor reliability of the 

results, and the improper design of the experiments and validation of the diagnostic 

performance are all issues which burden these reports, limiting the applicability of 

these substrates. Considering the SERS substrates preparation, the list of existent 

recipes and protocols is huge, but often their performance (in terms of robustness, 

accuracy, assay stability, cost, fabrication complexity, etc.) is inadequate, and the 

technology seems to remain far behind from the requirements needed to reach the 

market. Indeed, SERS substrate fabrication implies a complex coordination of 

extremely interdisciplinary fields that need to contribute to the realization of reliable 
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systems. To date, the few commercially available SERS devices are expensive because 

of the complex and time-consuming fabrication process and of the lack of competitors 

in the market.  

1.2 Object of the research 

The main focus of this PhD project was to assess the feasibility of the application of 

the SERS to bioanalysis and clinics, and in particular for the analysis of biofluids. 

Building on the expertise our research group has been developing in recent years 

[30,31,36,51], the conduct of this PhD thesis has a twofold nature, which aim to push 

the fundamental knowledge on the field and to discuss the feasibility of the 

application of SERS to biomedicine.  

The core of the project reported in this dissertation is to present label-free metallic 

substrates as sensors for biomolecules present in biofluids based on citrate-reduced 

silver nanoparticles (cAgNPs), used both in their colloidal form and deposited on 

paper substrates, according to two protocols. The nanoparticles were not 

functionalized: the label-free approach has been used with the specific intent of 

developing versatile substrates, irrespective of the final application.  

This PhD project has different aims: 

1) to contribute to the building of label-free protocols towards the analysis of 

blood fractions (serum, plasma, erythrocytes, periphereal blood mononuclear 

cells, and whole blood itself) with SERS; 

2) to understand the role of the protein corona in the modulation of the 

metabolites-nanoparticle interaction with model systems based on mixture of 

human serum albumin, human serum albumin (HSA), adenine, hypoxanthine, 

uric acid in the physiological range of concentrations; 

3) to apply the aforementioned knowledge to the early diagnosis of several 

diseases (breast cancer, non-alcoholic fatty liver disease and hepatocellular 

carcinoma) through serum and plasma samples by means of multivariate data 

analysis (supervised and unsupervised) of SERS spectra. 

Overall, the challenge is, on one hand, to obtain competitive substrates in terms of 

reliability, cost efficiency, ease of preparation, stability and versatility. On the other 

hand, another aim is to see how these substrates can be applied to biological samples, 

ranging from model systems to real clinical biofluids for diagnostic purposes, paving 

the way for POC devices.  
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2 Raman Spectroscopy and SERS 

 

In the last decades, the role of the vibrational spectroscopy in 

analytical chemistry has been widely explored, providing the 

possibility to get chemical and structural information on a whole 

range of physical states of matter. In the frame of Raman scattering, 

the chance of rapidly obtaining the vibrational fingerprint of a 

sample, the lack of interferences due to water – a common issue in 

other spectroscopic techniques - and the recent advances in the 

photonic technology, spread the application of the Raman technique 

and all its variants through the bioanalytical and medical area, going 

from the bench toward the patient’s bedside.  

In this chapter, an overview on the Raman effect and on the Surface 

Enhanced Raman Spectroscopy is presented, with a focus on the label-

free approach, which has been widely used in this PhD project.  

2.1 Raman Spectroscopy 

When light interacts with matter, several phenomena may occur: it can be adsorbed, 

scattered or simply transmitted through it. Spectroscopy is the study of how these 

interactions, which involve transitions between electronic, vibrational and rotational 

energy levels, can yield information about matter. Raman spectroscopy is mostly 

concerned about vibrational and vibronic (i.e. vibrational + electronic) transitions. In 

the following paragraphs, a brief review on the most relevant aspects of vibrational 

spectroscopy is presented.  

Raman spectroscopy is based on the inelastic scattering of light, a phenomenon of the 

matter-electromagnetic radiation interaction. The origin of the scattering can be in 

part simply explained with classical physics: as the incident wave interacts with 

matter, the charges constituting the object start to oscillate and emit electromagnetic 

radiation, in accordance with the classic electromagnetism theory. Raman 

spectroscopy detects the energy differences between the incident radiation and the 

radiation scattered from the sample, which ranges approximatively from the 

ultraviolet to the near infrared wavelengths. Information about the molecular 

structure and the chemical composition of the sample can be obtained from Raman 

spectra. In particular, vibrational spectra can be seen as typical, characteristic 

patterns (“fingerprints”) of the analytes and allow to qualitatively and quantitatively 

detect them [52]. 
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The technique was named after Sir C. V. Raman, who first observed the phenomenon 

in 1928, together with K. S. Krishnan [53], but it has been postulated earlier in 1923 

by Smekal [54]. Raman was awarded the 1930 physics Nobel Prize for this 

breakthrough.  

 Molecular vibrations 

A molecule exists in a state of constant vibrational motion (even at 0 K). The nuclei 

oscillate around their equilibrium positions and the frequency of these periodic 

motions spans typically from 300 to 3000 cm-1 (wavenumbers, the typical unit used 

in Raman spectroscopy). Such nuclear motions within a molecule are called 

vibrational modes, and they can be always described as a linear combination of finite 

set of so-called “normal” vibrational modes. In general, the “degrees of freedom” 

describe the number of movements of a particle in the 3D space. One atom can 

translate in the three directions in the space (x, y, z), for an amount of three degrees 

of freedom. Three atoms alone would have 3N degrees of freedom, but when linked 

by a bond the translational motion is blocked and the trio can just rotate or vibrate 

normal modes of vibration. A non-linear molecule with N atoms has 3N-6 degrees of 

freedom, whereas in a linear molecule only 2 vibrational modes are possible, thus 3N-

5 degrees of freedom because rotation around the bond axis cannot be observed. As a 

result, a diatomic molecule can have only one vibrational mode, a symmetrical 

stretching, and a triatomic one will have three modes: the symmetrical stretch, the 

bending and the asymmetrical stretch. The polyatomic molecules have mutually 

independent normal modes of vibration, but they involve simultaneous vibrations of 

different parts of the molecule. Figure 2.1 shows a schematic representation of the 

vibrational modes and their features. Overall, the symmetry of the molecule and the 

possible symmetry operations plays a crucial role in the assignment of the normal 

vibrational modes. However, a digression on this topic goes far beyond the purpose 

of this introductory paragraph, and the reader may want to refer to literature or 

textbooks for a detailed description [52,55,56].  

 

Figure 2.1 The vibrational modes 
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 Raman scattering: background principles 

Briefly, vibrational spectroscopy detects the energy exchange required to cause the 

nuclear motion that takes place during the light-matter interaction and the effect on 

the population of the vibrational levels. The Raman scattering mainly involves the 

ground state and the first excited energy level (overtones are very weak or not 

present). In these conditions, the harmonic approximation can be used to describe the 

system. Accordingly, atoms and bonds can be thought as balls and springs in a 

harmonic oscillatory motion. The Hooke’s law is hence easily applied to the molecular 

system: 

’
ρ

ς“

Ὧ

‘
 

(2.1) 

‘
ά ẗά

ά ά
 (2.2) 

where ’ is the oscillation frequency of the vibrational mode, Ὧ is the force constant 

that addresses for the spring (bond) strength, ‘ is the reduced mass for the system 

and άȟά  are the masses of the atoms involved in the bond. It derives that the 

vibration frequency changes as the properties of the system changes, i. e., the stronger 

the bond, the lighter the atoms, the higher the frequency [55]. 

As far as scattering is concerned, when the incident light hits the molecule, this is 

excited to a not stable and non-quantized so-called “virtual” energy state, far above 

the vibrational energy levels. This means that scattering does not requires an incident 

frequency that matches the energy gap between the excited level and the ground state, 

since no absorption takes place (unless special cases are considered, see Resonant 

Raman). When the molecule goes back to its original energy states, the emitted 

radiation can be scattered in both elastic and inelastic modes, as depicted in Figure 

2.2.  

The overall energy balance must be respected, as: 

Ὤ’ Ὁ Ὤ’ Ὁ (2.3) 

with Ὤ Planck’s constant (6.626×10-34 m2 kg s-1), n0 the incident frequency, Ei the 

energy of the initial vibrational level, n’ the frequency of the scattered photon and Ef 

the energy of the final vibrational level.  

In the elastic scattering, the incident radiation frequency equals the emitted one, so 

that no neat energy transfer occurs between the incident radiation and the molecule: 

this is called Rayleigh or coherent scattering and does not contain information about 

molecular vibrations. 

The inelastic scattering, the nuclear motion involved during the vibration, is the actual 

Raman effect, which can be of two types: Stokes-type, with net transfer of energy from 
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the radiation to the molecule, and Anti-Stokes effect, with a net decrease of molecular 

energy and a concomitant increase in energy of the scattered radiation (Figure 2.2).  

In the Stokes scattering, the molecule is in a low energy vibrational level (Ei) and, after 

the interaction with the light, it is promoted to a higher excited vibrational level (Ef). 

A photon is scattered with energy and frequency lower than the incident beam: Ei < Ef 

and n0 < n’. 

On the contrary, in the Anti-Stokes scattering the molecule is in a high energy 

vibrational level (Ef) before the excitation and decades to a lower vibrational level (its 

electronic ground state, Ei). A photon is scattered with energy and frequency higher 

than the incident beam: Ei > Ef and n0 > n’. 

As result, both Stokes and Anti-Stokes bands report information about the vibrational 

levels involved in scattering.  

 

Figure 2.2 (a) Schematic representation of the three scattering modes. The Raman 

effect regards the inelastic diffusion, with changes in the frequency (and energy) of 

the emitted photon. (b) In the Raman spectrum, the Stokes and Anti-Stokes bands are 

symmetric with respect to the Rayleigh line, but with different intensities. Adapted 

from [56]. 

 

The spectra x-axes are reported in Raman shift units (cm-1) as difference between the 

incident frequency (Rayleigh line) and the scattered photon frequency, both 

expressed in wavenumbers (’ , in units of cm-1): 

’ 
’

ὧ

ρ

‗
 

(2.4) 

where ὧ is the speed of light and ‗ is the corresponding wavelength. Anti-Stokes bands 

have negative Raman shift and the Stokes have positive ones. The Raman signal 

depends only upon the energetic gap between two vibrational states and is 

independent on the frequency of the incident laser, so that spectra of the same sample 

obtained from different instrumental set-up (namely, different lasers) can be 

compared. 

Ei 

Ef 
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One of the limits in the use of this spectroscopic technique is the overall signal 

intensity, that is several orders of magnitude lower than the source [14]: 

IRaman  ρπ-4 IRayleigh  ρπ-7source  

The Rayleigh signal is intense, whereas the probability for inelastic scattering to occur 

is very low (1 photon emitted on 106-108 incidents), resulting in weaker signals. 

The Stokes and Anti-Stokes bands are symmetric with respect to the Rayleigh line, but 

their intensity depends on the difference in population of the vibrational levels, 

according the Boltzmann’s law: 

ὔ

ὔ

Ὣ

Ὣ
Ὡὼὴ

Ὁ Ὁ

ὯὝ
 

(2.5) 

Where ὔ  is the number of the molecules in the excited vibrational level (f), ὔ is the 

number of molecules in the ground vibrational level (i), Ὣ is the degeneracy of the 

levels i and f, Ὁ Ὁ is the energy gap between the i and f levels, k is the Boltzmann’s 

constant (1.381x10-23 J K-1) and T is the absolute temperature [56].  

As far as the temperature is concerned, the ground vibrational levels are highly 

populated with respect to the excited ones at ambient temperature. It derives that the 

Stokes bands results more intense than the Anti-Stokes ones. Accordingly, the 

working temperature could be derived from the Anti-Stokes/Stokes intensity ratio: 

ὍὲὸὩὲίὭὸώ

ὍὲὸὩὲίὭὸώ
ᶿ
ὔ

ὔ
ᶿὩὼὴ

Ὁ Ὁ

ὯὝ
 

(2.6) 

To overcome the low intensity issue, the sample is irradiated with an intense 

monochromatic light, namely LASERs (Light Amplification by Stimulated Emission of 

Radiation), whose frequency ranges from the ultraviolet to the near infrared. Lasers 

are used for a few reasons: 

¶ the Raman signal is very weak, as said, and requires many photeons (i.e. an 

intense laser beam) to increase the signal to noise ratio; 

¶ the frequency is far from the vibrational one and does not induce absorption 

phenomena; 

¶ Lasers are extremely monochromatic, a prominent feature to improve signal 

resolution: the observed bands are only slightly shifted from the incident 

frequency and a broad incident frequency would hidden them or cause signal 

convolution. 

As a note, if the laser energy closely matches the electronic transition energy gap in a 

molecule, resonant Raman scattering may occur. It results in a very intense scattering 

signal that may be confused with the absorption phenomenon: they actually differ in 

terms of the lifetime of the vibration, shorter in the resonance Raman scattering with 

respect to the adsorption. Another common interference is the fluorescence, 
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especially when dealing with biological samples, in the 275-975 nm region [57]. 

Excitation lasers with wavelength within this range can induce fluorescence that 

usually overlaps and hides the Raman signal. There are several ways to overcome 

fluorescence: the simplest is to use an excitation source outside the fluorescence 

region (i.e., 785 nm, 1064 nm) to consistently reduce the background. Otherwise, a 

physical separation of the two effects can be obtained by a Kerr gate system, that can 

clean the Raman signal from the fluorescence working on the different lifetime and 

optical properties of the two phenomena [58].  

 Raman scattering 

A brief mathematic demonstration of the Raman effect is reported hereafter. 

As introduced in § 2.1.2, light propagates as oscillating electromagnetic wave and may 

induce an alteration of the electrons cloud that results in separation of charge within 

the molecules, called induced dipole moment (‘ᴆ ). The induced dipole moment is 

proportional to the external electric field (Ὁᴆ), and the polarizability is the 

proportionality coefficient: 

‘ᴆ ‌ᴆὉᴆ. (2.7) 

 

The electric polarizability, ‌ᴆ, is the optical property of a molecule that determines its 

scattering capability, namely how easily electrons can be moved in response to 

external field. The polarizability is defined as the tendency for the dipole moment of 

a molecule to be altered during an excitation and is a characteristic of the molecule. It 

is an anisotropic quantity and is described by a tensor (symmetric 3x3 matrix) and it 

can be depicted as an ellipsoid.  

 

‌

‌ ‌ ‌
‌ ‌ ‌
‌ ‌ ‌

 
 

 

For the dipole moment alteration, the complete equation as matrices products is: 

‘ȟ ‌ Ὁ ‌ Ὁ ‌ Ὁ

‘ȟ ‌ Ὁ ‌ Ὁ ‌ Ὁ

‘ȟ ‌ Ὁ ‌ Ὁ ‌ Ὁ
 

‘ȟ
‘ȟ
‘ȟ

‌ ‌ ‌
‌ ‌ ‌
‌ ‌ ‌

Ὁ
Ὁ

Ὁ
 

The external electric field Ὁᴆ has frequency ’ and oscillates with time as: 

Ὁᴆ Ὁᴆὧέίς“’ὸ (2.8) 
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For the sake of simplicity, the polarizability will be considered scalar and according 

to Eq. (2.7) the dipole moment can be rewritten as: 

‘ᴆ ‌Ὁᴆὧέίς“’ὸ (2.9) 

This means that the induced electric field oscillates at the same frequency ’ of the 

external field and corresponds to the Rayleigh frequency, when no Raman scattering 

occurs.  

The polarizability matrix of a molecule is not a constant: it changes also due to the 

molecular motions and to the mutual orientation with respect to the external electric 

field. It depends upon the vibrational and rotational motions, but here only the 

vibrational part will be considered. Hence, variations in ‌ are associated to the 

vibrational normal modes of the molecule (ὗ ): ‌ is a symmetric matrix and can be 

approximated as a Taylor series (terms beyond the first derivative are here 

neglected): 

‌ ‌
‬‌

‬ὗ
ὗ  

(2.10) 

with ‌ the polarizability at the equilibrium position, ὗ ὗ ÃÏÓς“’ὸ in the 

harmonic approximation and ‬‌‬ὗϳ  as the change in ‌ during the vibration 

normal mode. If Ў‌ ‬‌‬ὗϳ ὗ , and substituting Eq. (2.10) in Eq. (2.9): 

‘ᴆ ‌Ὁὧέίς“’ὸ
ρ

ς
Ў‌ὧέίς“’ ’ ὸ

ρ

ς
Ў‌ὧέίς“’ ’ ὸ 

(2.11) 

Hence, vibrations can alter the dipole moment and induce the diffusion of photons 

with frequency:  

¶ ’, Rayleigh diffusion, typical of the molecule and equal to the incident 

radiation frequency; 

¶ ’ ’ , Anti-Stokes diffusion and  

¶ ’ ’ , Stokes Raman diffusion.  

The gap, ɝʉ ’ ’, is the so-called Raman shift. 

A Raman scattering process occurs if the two frequencies, which are different from 

the incident one, are diffused. This condition derives from the induced dipole 

transition moment (ὓᴆ) for the vibration normal mode ὗ  that must be different 

from zero. In Dirac notation, this can be expressed as: 

ὓᴆ ἂ’ȿ‘ᴆ ȿ’ἃ π (2.12) 

It is demonstrated that this equation is true if: 

¶ the polarizability varies during the vibration normal mode:  
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‬‌

‬ὗ
π 

(2.13)  

¶ the vibrational levels interested in the transition are nearest neighbors: ’

’ ρ. 

These are the selection rules for the Raman effect to occur. 

 In other words, the polarizability is a measure of how easy it is to distort the present 

dipole moment or to induce a dipole moment in the molecule: apolar molecules would 

exhibit a larger Ў‌ during the vibration with respect to the polar ones, as the 

electronic cloud in the latter case is already distorted. Moreover, vibration symmetry 

matters. For instance, an incident radiation can alter the molecular polarizability with 

respect to its symmetry. In general, a vibration is Raman-active if it has the same 

symmetry as the polarizability tensor of the molecule, reported in the respective table 

of characters. For all the other cases, on the basis of the symmetry of the molecule and 

of the vibration, it is possible to determine if a vibrational mode is Raman-active or 

Raman-inactive. As a note, for small and highly symmetric molecules the exclusion 

rule must be cited: vibrational modes that display Raman signal are Infrared inactive, 

and vice versa (Figure 2.3). 

 

Figure 2.3 Effect of the vibrational modes on polarizability and on the Raman 

spectrum [52].  
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2.2 Surface Enhanced Raman Spectroscopy 

A variant of Raman spectroscopy is SERS. This technique takes advantage of 

nanostructured metal surfaces that boosts the sample’s Raman intensity up to 1010 

times.  

This enhancement, obtained by using a plethora of different nanostructured surfaces, 

instrumental set-ups and physical states of the samples, has widely spread the use of 

the SERS technique in several fields, from chemical physics, to analytical chemistry, 

electrochemistry, solid state physics, biophysics and medicine [59,60].  

This effect was first observed in 1973 by Fleischmann and co-workers studying 

pyridine adsorbed on a rough silver surface [61], which displayed an enhanced 

Raman signal when adsorbed on a silver roughened surface. At first, they attributed 

the intense signal to a high degree of absorption of the analyte on the surface due to 

the roughness, but no enhancement effect was hypothesized.  

It took few years to eventually get a convincing demonstration of fact that there was 

a huge signal enhancement and of the mechanisms involved in this process, which, to 

some extent, are still debated. Two main approaches are commonly accepted to 

explain the large SERS cross section and they were independently derived by two 

groups in 1977.  

The first is a physical/electromagnetic explanation (called “electromagnetic 

mechanism”); it was provided by Jeanmaire and Van Duyne: the signal enhancement 

is due to an increase in the local electromagnetic field on the (roughened) metal 

surface, in the direction normal to the surface [62,63]. The molecules absorbed on the 

metal surface experience a stronger electric field than the one due to the incident 

radiation, resulting in an increase of the Raman intensity, which is known to be 

proportional to the magnitude of the electromagnetic field.  

The second mechanism, proposed by Albrecht and Creighton [64], is a “chemical” one: 

it is based on the occurrence of charge-transfer complexes between the metal and the 

molecules; this effect is strong for electron rich molecules with p electrons or lone 

pairs (such as aromatic compounds, carboxylic acids, etc.). The analyte is 

chemisorbed on the metallic surface, and, for all practical purposes it becomes a new 

chemical species with different geometry and electronic structure of the starting 

analyte: accordingly, the signal position and intensity may change. As far as the 

chemical mechanism is concerned, the reader is addressed to literature for further 

descriptions [14,52]. 

Moreover, according to Smith [56], it must be stressed that the two mechanisms are 

not strictly independent, since the molecule-metal interaction always implies the 

alteration of the electronic cloud, regardless its physical or chemical nature, which 

propagates at least within the first few molecular layers. This distortion may change 

the symmetry of a molecule and of the polarizability as well, so that SERS active modes 

may differ from the Raman active ones. The SERS “surface selection rules” relates to 
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the normal modes which alter the z component of the polarizability tensor, depending 

on the distance between the moiety and the nanostructured surface.  

In general, the dominant condition for the enhancement of scattering in SERS is the 

generation of plasmons on the metal surface that allows the analyte adsorbed on the 

metal surface to experience a resulting enhanced local electromagnetic field with 

respect to the incident laser alone. The plasmons are the collective oscillation of the 

free electrons in the metal induced by the interaction with an external 

electromagnetic field oscillating at a frequency able to cause the displacement of the 

electrons from their shells. They are called bulk plasmons when the material is larger 

than the incident wavelength and, more specifically, surface plasmons when the 

oscillation occurs in a confined space near the interface between the material and an 

adjacent dielectric. Their existence was actually predicted by Rufus Ritchie in 1957 

[65]. When the incident wavelength is larger than the material size, the collective 

electrons motion is called localized surface plasmon (LSP, Figure 2.4). If the incident 

frequency matches the LSP frequency, plasmonic absorption occurs, also known as 

localized surface plasmon resonance (LSPR) [66,67]. However, plasmons are “lossy”, 

that is they are not sustainable in the absence of and external energy source. The 

surface plasmons strictly relate to the optical and structural (size, geometry, 

roughness) properties of the dielectric surrounding the metal, and the advances in 

plasmonic science allows to correctly calculate the structure-SPR relation also for 

complex metallic nanostructures [67,68]. Moreover, LSPR can be finely tuned 

according to these optical and structural parameters and these features allow the 

customization of metal nanostructures for sensing and spectroscopic purposes.  

 

Figure 2.4 Schematic illustration of the surface plasmon (a) and of the localized 

surface plasmon (b) phenomena. Adapted from [67]. 

Since metal nanoparticles are not transparent in the UV-MIR range, where their 

plasmonic resonance occurs, they are useful for IR and Raman analysis. Only few 

metals are able to support surface plasmons and have the desired characteristics for 

SERS, the so-called coinage metals: silver, gold and copper. Other metals can also be 

used, such as aluminum, lithium, palladium, platinum, nickel, cobalt and iron. They 

are rarely used since they yield far more modest intensity enhancement and are less 

stable in biological medium and prone to oxidation, which, in turn, broadens the 

resonance linewidth. Practically, silver and gold are commonly used for their 
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properties, compatibility with the organic/biological samples, ageing and oxidation 

stability and with intense plasmon resonance frequencies in the NIR region [56] 

 

 The electromagnetic model of SERS 

A complete theoretical treatment of the LSPR and SERS goes beyond the introductory 

purpose of this Chapter, and the reader is addressed to the dedicated literature for 

further details [30,69–74]. However, the bases of the SERS enhancement are reported 

hereafter considering a spherical nanoparticle (radius ὥ) invested by an incident 

radiation (‗ ὥ), according to the boundary conditions of the Mie scattering theory 

[75]. In this approximation, the electromagnetic field (Ὁ ) around the nanoparticle 

is static and its magnitude can be easily derived from the Maxwell’s classical 

electromagnetism equations (for more complicated cases, numeric solutions are to be 

calculated): 

 

Ὁ ὼȟώȟᾀ ὉᾀǶ
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‐‗ ς‐
ὥὉ
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 (2.14) 

The intensity of Ὁ  falls off with distance from the particle’s surface and depends on 

the incident wavelength, on the size of the particle, on its optical properties and on 

those of the surrounding medium. 

The optical properties of bulk material are described by the permittivity or dielectric 

function e(w), while the medium is characterized by a dielectric constant em. The 

dielectric function describes the behavior of a material in presence of an electric field. 

It is a complex number which accounts for the phases of the polarization of the 

material with respect to the external electric field. It depends on the wavelength (l, 

or frequency, ’) of the incident light and on the electronic structure of the material 

itself:  

‐‗ ‐‗ Ὥ‐ ‗ (2.15) 

Briefly, the real component of the dielectric function describes the phase offset 

between the incident and the response frequency, whereas the imaginary part 

accounts for the absorption of the radiation and the loss of energy.  

The link between the optical properties of a material and its macroscopic behavior, is 

defined by Eq. 2.16, indicating that the metal polarizability could be derived directly 

from the dielectric function of the metal. For a metal sphere immersed in a medium 

with dielectric constant ‐ : 

 

‌ ὥ
‐‗ ‐

‐‗ ς‐
 

 (2.16) 
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where ɻ is the metal polarizability, N is the particles density and ‐‗ is the dielectric 

function for the metal nanoparticle. The term between brackets appears in Eq. 2.14 

and defines the Enhancement Factor for the external electromagnetic field Ὁ , 

strictly related to the incident l and to the radius ὥ. 

According to Eq. 2.16, the enhancement of the SERS signal is effective only when the 

resonance condition is satisfied, that is when the denominator is equal to zero: 

‐‗ ς‐   (2.17) 

The factor 2 accounts for the spherical nanoparticle but can take on different values 

for other geometries. According to this condition, only materials with proper 

dielectric functions are active in the excitation spectral range and the dielectric 

constant of the surrounding medium directly affect the intensity and the frequency of 

the plasmonic adsorption. Among all, the so-called coinage metals present this feature 

for a large range of wavelength (see Par. 2.2). For noble nanoparticles (Au, Ag) the 

condition in Eq. 2.17 is met in the visible range, namely at the plasmonic resonance 

frequency [67,74].  

As far as the SERS application is concerned, part of the energy of the plasmon is 

transferred to the adsorbed molecule to induce a change in polarization. This process 

is near-field and decreases with the 10th power of the distance from the metal surface 

(Ὅ ᶿὨ ) [67]. Data from literature report that almost the 90% of the SERS signal 

derives from the very first layer of molecules absorbed on the metallic support [56]. 

The signal intensity ratio between the SERS and the classic Raman peaks is described 

by the Enhancement Factor (EF) at the surface, namely how much the presence of a 

metallic substrate can boost the electromagnetic field and the scattering signal. To a 

first approximation it can be described as: 

With ὶ the distance from the nanoparticle surface and ‗ the incident wavelength. The 

right part of the equation regards how the EF can be experimentally measured, with 

Ὅ  the intensity of the SERS signal normalized by the number of molecules adsorbed 

on the enhancing substrate ὔ , and Ὅ  the correspondent normal Raman 

intensity for the same molecule, normalized by the number of molecule in the excited 

volume, ὔ Ȣ 

 SERS: geometry and aggregation effects 

As the LSPR condition on the metal surface can be tuned working with proper systems 

geometry (both size and shape), also the intensity of the SERS response can be 

boosted by several orders of magnitude.  

To simplify the mathematical derivation, the conditions for the locally enhanced 

resonant electric field are true for particles ranging in diameter size from 10 to 100 

ὉὊὶȟ‗
Ὁ ὶȟ‗

Ὁ ὶȟ‗

Ὅ Ⱦὔ

Ὅ Ⱦὔ
 

 (2.18) 



  18 | 

nm. A diameter lower than the incident radiation wavelength allows to consider the 

external electric field homogeneous across the particle. Sizes larger than 100 nm 

induce a dramatic drop of the EF, due to the simultaneous excitation of multiple 

interfering surface plasmons, while few nm sizes do not exhibit effective resonance 

with the incident light and do not contribute to the SERS effect. 

The size-related issue is still open, considering different shapes, since the EF 

conditions relates differently with each of them: nano- cylinders, spheres, stars, rods, 

etc., present several resonance conditions depending upon the wavelength of the 

incident radiation, the orientation with respect to the electric field and the position 

on the particle. For each system a proper electromagnetic description is available. 

Even fractals are an important class of clusters where single particles self-assembly 

with symmetric branches to form aggregates [13,69].  

Indeed, aggregation matters. In particular, the dimeric system of coupled 

nanoparticles is, so far, the highest SERS enhancer, and aggregation is the key to get a 

SERS signal up to 106 times the one obtained with the single particle approach and 

~1011 times the classic Raman signal, thus making single-molecule detection feasible 

[23,76]. Moreover, the orientation is crucial for the scattering to occur: the external 

electric field must oscillate parallel to the interparticle axes to generate the strongest 

plasmonic coupling, and the vibrational modes involving changes in the polarizability 

perpendicular to the surface are preferentially enhanced. Conversely, when the 

exciting electric field is orthogonal to the interparticles axes, the enhancement is 

significantly lower and similar to the one provided by the single isolated particle 

(Figure 2.3).  

The interparticle locations are the so called hot-spots: they are generated both 

between aggregated colloidal particles and on rippled surfaces due to the coupled 

plasmon resonance[69,77,78] . For effective performances, every SERS platform 

design requires homogeneously distributed hot-spots with optimized enhancement 

intensity, not always an easy task. 

To sum up, the nanoparticles can be geometrically tailored to produce the desired 

LPSR. Besides, the number of parameters that can be tuned to optimize the EF 

demonstrates how rich and complex the phenomenon is and, therefore, the variety of 

the possible applications of the LSPR effect. 

 SERS substrates  

In the last 15 years the surface enhanced Raman spectroscopy has been given a new 

input in terms of application for both quantitative and qualitative determinations, 

because of the advances in nanotechnology and photonics. To date, the potentiality of 

the LSPR in terms of signal enhancing, molecules detection and quantification is clear. 

However, to transfer the theory into robust, sensitive and reliable practical platform 

is still a very challenging task [66]. 
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Nanofabrication follows two approaches: the top-down, and the bottom-up 

procedures (Figure 2.5). The first consists in a physical etching of surface by removing 

part of the substrate to shape a nanostructured pattern. The second concerns the 

(usually) wet chemical synthesis of nanoparticles that act as building blocks, then 

added one to another to form a nanostructure. Both may have advantages and 

drawbacks in their fabrication and applications. Overall the bottom-up approach 

allows a great differentiation of the final product in terms of chemical composition 

and shape. In this PhD project, only the bottom-up approach has been used.  

 

 

Figure 2.5 Actual concept for the top-down and bottom-up strategies. 

 

Focusing on the bottom-up NPs fabrication, the SERS substrates can be classified in 

two types: the colloidal and the non-colloidal substrates.  

Colloidal nanoparticles are commonly prepared by chemical synthesis [23,79] or by 

laser ablation [80–82]. They may require stabilizing agents, namely ions to stabilize 

charge repulsion [83] (i.e., sodium citrate, hydroxylamine, etc.) or short polymeric 

sequences (i. e., PEG, PVP) to sterically stabilize the NPs [84]. These elements alter the 

surface chemistry of the NPs and the way they can interact with analytes. 

Customization is possible and a plenty of protocols can be found in literature. 

A solid substrate is a device that must be stable in time, especially toward oxidation, 

compatible with the specimen physical form, providing good signal-to-noise ratio, 

with the additional benefits of being manageable and ready-to-use. One of the 

foremost aspects to look for is the homogeneous distribution of the hot-spots to 

guarantee the measurement repeatability for quantification purposes. In particular, 

the ideal device should be reproducible, sensitive, not invasive, with a simplified 

sample processing, relatively inexpensive, possibly able to work in liquid 

environment and with small volumes. However, the lack of signal repeatability has 

been demonstrated to be always the main issue, hampering the application of the 

SERS technique for quantitative determinations. Considering the biomedical area, the 

aim is to obtain a device that may be used as point of care use for diagnostic 

applications [11,31,85] or for target drug monitoring [86].  
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Actually, the very first solid substrate belongs to Fleischmann et al. (1974) who first 

observed the SERS effect on a roughened silver electrode [61]. Ever since, several 

supports have been tested. Silica and glass have been used for both top-down (metal 

wires growth) and bottom-up approaches (physical or chemical deposition of metal 

nanoparticles on the planar surface) [69]. The resulting substrates may present 

inhomogeneity of the hot-spots distribution, leading to a poor intra-substrate 

reproducibility of spectra. Moreover, the neat and non-porous surface may imply long 

and controlled sample preparation procedures. Galvanic displacement can produce 

highly enhancing substrates for the spontaneous electrochemical reaction occurring 

in solution when a metallic ion displaces bulky metallic atom on a semiconductor 

surface. Several protocols exist to this aim, but still the reaction is random and poorly 

controllable [87,88].  

Recently, Polavarapu and Lis-Marzan [89] introduced the advantages that flexible 

plasmonic substrates may lead in the field, compared to the conventional glass-based 

substrates, being more efficient in terms of cost, fabrication and use. Hence, paper 

revealed to be the substrate that may match all the featured described above. Paper 

is an extremely cheap, customizable and versatile support that is commonly used for 

strip test-like applications. Being porous, substantially inert, absorbent and with 

customized polarity, it is suitable for liquid samples and for biosensing.  

Porosity and capillarity make paper suitable for several sample deposition technique, 

i.e., dropping or imbibition. In the first case, few microliters of the sample are 

deposited and dried as a spot-on assay: studies demonstrated how the dehydration 

procedure allows a homogeneous distribution of the analytes across the cellulose 3D 

structure [90], hence across the embedded NPs. In the second case, a separation and 

concentration of analytes can be seen according to polarity or size [91], as in a dipstick 

assay.  

Nevertheless, the reader should be aware that the paper interconnected structure is 

far from being perfectly balanced and homogenous, irrespective of its degree of 

crystallinity or chemical purity. The roughness and the pore size distribution of the 

paper are like a double-edged sword: from one hand, they are the key for a higher 

enhancement factor since they allow the NPs to be better retained and to get a closer 

three-dimensional proximity with respect to the non-porous silica or glass substrates. 

On the other hand, the irregularity of the surface may induce local and irregular 

aggregation itself, undermining the reliability of the substrate in terms of 

repeatability of the SERS signal [8,10]. 

Literature reports how some kind of pre-treatment of cellulose prior to the NPs 

deposition can prepare the support for a more randomized distribution of the hot 

spots, in terms of regularization of the surficial roughness and porosity after specific 

pH-washings [8] and in terms of aggregation of NPs on the surface [92].  

Moreover, the instrumental set-up may allow to collect scattering from a large volume 

(in terms of penetration of the laser in the network of cellulose fibers and of the 
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overall focal volume), thus averaging the possible inhomogeneity of the signal 

originating from different location, which, in turn, partially overcome the 

reproducibility issue. Within these limits, the paper-based SERS substrates could be 

considered homogeneous systems. 

Some examples of the NPs deposition on paper includes the ink-jet based strips[91], 

the electrospinning [93] and the dip coating [51] (Figure 2.6). In the case of ink-jet 

printing, the ink is constituted by the metal colloid itself, which can be micro-sprayed 

directly onto the paper. The optimization of the process (paper porosity, ink viscosity 

and surface tension, etc.) can be potentially extended towards a portable analytical 

apparatus. The electrospun technique provides homogeneous stratification of the 

polymeric matrix and the NPs [94,95] but requires a complex set-up and a specific 

device to be prepared, thus the quality-cost ratio is not favorable. The dip coating is 

by far the most popular technique, as it is the simplest and does not require any kind 

of instruments. Paying attention on the NPs chemistry, they just need to precipitate 

on the support  

 

 

Figure 2.6 Some example of NPs deposition on paper (adapted from [96]). (a) Drop 

casting, (b) dip coating, (c) ink-jet printing. 

 SERS and the label-free approach for biosensing 

In the frame of a bioassay, whether to go for a labeled or unlabeled substrate depends 

on the specific application. 

In the “omic” era, the amount of information that can be retrieved from a biological 

sample is overwhelming, but still the challenge is to identify which are the most 

relevant information in the bunch and multivariate data analysis can give some keys 

to this end. 

Genomics, proteomics, microbiomics, lipidomics, transcriptomics, metabolomics are 

some of the branches that have grown in the last two decades since they led to the 

rapid discovery of several possible biomarkers for diagnostic and theranostic 

purposes. To date, all the techniques belonging to these fields are basically devoted to 

find and characterize biomolecules that are involved in disease-related biochemical 

pathways, like chromatography-coupled mass spectroscopy, fluorescence 

spectroscopy, immunoassays tests, but only few of these have turned into realistic 

applications [97].  
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The new challenge is to change point of view and to move from the classic “single to 

few biomarkers” detection to reach the multiscale data, namely from a targeted 

approach to an untargeted one. The purpose is to consider the whole signal as a 

fingerprint of the actual situation, as a multi-marker, irrespective to the used 

technique.  

SERS substrates fabrication may include, or not, the chemical functionalization of the 

nanostructure. The labels on the NPs are the key for the detection of specific 

molecules: the substrate is chemically tailored a priori in order to identify a specific 

target [36,98,99]. Functionalized multiple arrays are a step forward in the SERS 

detection of metabolites, but it is still complex to build. 

The label-free method, on the contrary, employs NPs without any tag, naked, apart 

from the shield that works as capping and stabilizing agent: all the molecules present 

in the specimen can virtually reach the SERS surface, irrespective for their nature, 

though with different kinetics [13,36,100]; the final spectra would reflect the affinity 

of the analytes for the metal surface.  

Indeed, in the present work the label-free approach has been used, with the specific 

intent to propose highly versatile SERS substrates, simple in nature and simple to use.  

The reader is addressed to the next chapters for further comments on the NPs 

synthesis. 
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3 Multivariate Data Analysis 

Nowadays, multivariate data analysis is a fundamental tool to dig 

into the huge number of variables loaded in a spectral dataset. The 

possibility to correlate the SERS spectra of a biofluid to the 

correspondent metabolic profile has been established. May the state 

of health of an individual be predicted too? When spectroscopy meets 

the possibility to perform clinical diagnosis, the issue inevitably 

becomes multivariate. In this Chapter some basics of the used 

algorithms are reported. 

3.1 A primer on machine learning 

Data analysis is an integral aspect of the measurement procedure. When dealing with 

large number of variables, typically from dozens to thousands, traditional methods of 

univariate analysis fail in the illustration of the relation among variables, hence we 

tend to miss it. Multivariate Data Analysis (MDA) provides a series of tool meant to 

reduce the complexity of the system down to its fundamental structure. This allows 

the pattern behind data to emerge. Simply, the human eye is not able to figure out how 

systems described by more than 3 variables, 3 dimensions, work. We need to be able 

to classify the elements of a dataset according to a reduced number of significative 

features to have a better and complete understanding of what we are looking at. In 

the measurement process, we try to categorize samples according to their properties: 

if some samples are similar, they may cluster and be separated from others. Often, the 

instrumental output is very complex and difficult to interpret. This is the case of the 

vibrational technique, where every wavenumber in the considered spectral range is a 

variable. The same can be said for other kinds of analytical set-up (i.e., gas 

chromatography, mass spectrometers, magnetic resonance, hyphenation between 

them, and so on). Chemometrics is the name given to the branch of science that offers 

a set of mathematical and statistical tools for the characterization of the chemical 

measurement process. Chemometrics found its renaissance in the 21th century with 

the development and diffusion of software that improved this analytical method. To 

date, MDA plays a major role in analytical chemistry, boosted by the prominent role 

that machine learning and artificial intelligence are assuming nowadays in several 

aspects of everyday life, industry and research [101]. 

MDA can be applied to both qualitative and quantitative determinations. that can be 

done through two kind of “learning” methods: the supervised and the unsupervised 

learning. These are roughly divided into three branches: classification, regression and 
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clustering. There are some similarities between classification and regression, as they 

try to find a function or model, which describe a known system (training set), able to 

predict the class or the value of one or more unseen observations (test set). The 

observations used to train the model have to be labeled, namely that we must know 

to which class or value they belong to and the label itself is one of the inputs of the 

function of model: this is what the term “supervised” learning is for. In particular, 

regression works on continuous quantities (i.e., concentration ranges), whereas 

classification on discrete class label (i.e., control/treatment, healthy/unhealthy).  

On the other hand, other techniques do not require a full characterization of the 

training set, like in the unsupervised learning methods. Accordingly, the learning 

process is not oriented by class membership. Clustering is one of those: it finds a 

pattern among data based on the similarity between observations. Semi-supervised 

learning is a third option, useful when not all the observations are labeled but we need 

to visualize a similarity pattern according to the known elements. Learning methods 

can also be hyphenated. For instance, in presence of large dataset with a large number 

of variables, the classification process often needs to deal with a simplified description 

of the original dataset. To this aim, dimensionality reduction algorithms allow to turn 

the space of the original variables into a new space of the so-called latent variable. The 

transformation depends on the chosen algorithm, which can be both supervised or 

unsupervised. In any case, it allows to exalt the features that better characterize the 

system, avoiding noise, collinearity, redundancy, uncorrelated variables.  

In this Chapter, we are going to briefly introduce some algorithms of both supervised 

and unsupervised learning and a combination of those, for the sake of classification. 

The focus regards the models built as integral part of the diagnostic procedure 

regarded the qualitative classification of spectra belonging to samples of known 

clinical outcome, which will be addressed in § 7. 

3.2 Data analysis workflow 

A proper classification method cannot ignore a proper data analysis workflow. The 

scheme in Figure 3.1 illustrates the pathway followed to build the classifier. One of 

the most relevant aspect to visualize the performance of a model passes through the 

proper validation of a predictive model. This is relevant especially when the sample 

size is not big enough to admit an external independent set of data on which test the 

model and predict the classification. Usually, the minimum size of a dataset for a 

robust prediction contains at least 80 samples for each class [102]. Resampling from 

the same dataset is the way and cross validation (CV) is an option: the dataset is 

divided into k segments (“k-fold CV”), one of which is kept as independent test set 

outside the predictor building, while the other elements undergo preprocessing, 

feature reduction, prediction (Figure 3.1). At this point, the left-out segment is 
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recalled, and the classification model is applied to it. In supervised learning, a model 

shows a good performance when it is able to assign class membership correctly. When 

the segment k is made of one element, the CV is called “leave-one-out” (LOO). 

Although at each implementation the system is underrepresented (i.e, outlier 

classification results always wrong and affects the performance of the predictor) and 

the estimation can suffer of high variance, accordingly, the LOO-CV is the simplest CV 

method that we considered suitable for a preliminary classification routine on the 

reported case of study. Different and more articulated solution will be soon addressed 

in more tailored classification algorithms. 

 

 

Figure 3.1 Data analysis workflow with leave-one-out cross-validation. 

3.3 Principal Component Analysis 

Principal Component Analysis (PCA) is an unsupervised learning method that is used 

primarily for dimensionality reduction. This means that the system can be efficiently 

described in terms of few features that main characterize it, without suffering of 

information loss. The algorithm allows to rotate the original variables into a space of 

uncorrelated latent variables, or Principal Components (PCs), and to rank them 

according to the proportion of variance they retain. In other words, the first PC spans 

the direction of the variable with the largest variation throughout the system, the 

second PC spans the second direction, and so on. The total number of PC corresponds 
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to the total number of variables. There will be a threshold beyond which the PCs 

would account for collinearity (i.e., variables that changes together, like the points 

that form a vibrational band), redundancy, and noise. The aim of the dimensionality 

reduction is to identify this threshold and to discard that slice of unnecessary 

information, flattering the dataset down to a reduced-variables system. 

In practice, all the n observations (samples) and the m observed variables (spectra) 

can be described in a nxm matrix, here called X. PCA consists in the orthogonal 

projection of the original coordinates into the new space of the so-called principal 

components (PCs). This method is based on the properties of the covariance matrix: 

PCA assumes a normal distribution of the variables that describe the dataset, hence 

data can be scaled according to the mean in order to emphasize the difference among 

observables, since the covariance matrix includes all the statistical information 

associated to the original dataset. In some cases, data can be also centered to 

normalize the variance. In our specific case, centering is not suggested to avoid noise 

amplification. Briefly, data matrix X can be described as the sum of the information 

loaded in the PCs which are ranked according to the variance explained by each PC. In 

this way, it is possible to reject part of the unnecessary data (noise, uncorrelated 

variables, …) taking into account only the first “n” PCs, namely filtering the relevant 

information loaded in the dataset looking at the cumulative variance. Data reduction 

through PCA accounts for this kind of transformations. Each PC originates from the 

product of the “scores” vector (U, nxk) and the transpose of the “loadings” (V, kxm) 

vector: the scores are the new coordinates of the observables (the spectra) on the PCs 

space. The product Ὗὠ  is an approximation of the original dataset X, plus the error 

included in the residual matrix E. 

ὢ Ὗὠ Ὁ 

They contain the information of the original data in the new rotate space of the PCs. 

The first element of the scores matrix and the first element of the loading matrix are 

also called eigenvalues and eigenvectors, respectively, for the first principal 

components (Figure 3.2). Each subsequent pair of eigenvectors and eigenvalues 

belongs to the following PCs, all ranked according to the variance. The loadings are 

the coefficients of the linear combinations that define the PCs and account for the 

weight each observable has in the PCs. Scores and loadings should be read together, 

since the distribution of the scores reflects the trend of the loadings and allow to 

define the variables that mostly vary within the dataset samples. In other words, this 

transformation allows to find for which variables the system changes the most, 

namely which variable better characterize the dataset [103,104].  
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3.4 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a supervised classification method, hence it 

requires knowing a priori the class membership of each observable, the labels. It is 

similar to PCA, but it focuses on maximizing the separability among known categories 

or classes. Given two categories to be separate, the new axis is created considering 

two criteria simultaneously: (i) maximization of the distance between the means of 

the categories once projected on the new axes, (ii) minimize the variation within each 

projected category. LDA uses the information provided by the observation (variables) 

to create new axes and to project the original variable on it in order to maximize the 

separation of the categories. Just like for the PCA, LDA ranks the new coordinates in 

order of importance, namely the first linear discriminant component would account 

for the most variation between the categories. Instead of PCA, in LDA the new system 

of coordinates rises from the calculation of two covariance matrices, accounting for 

the between-class and within-class covariance. 

The rationale in the hyphenation of PCA and LDA is simple: PCA is used as a tool for 

dimensionality reduction by maximizing the variance, and its scores (a certain 

number of principal components, usually less than 10) are used to build the LDA 

predictor which tries to find the axes to amplify the interclass separation (Figure 3.3). 

The parameters used for such classification are then applied to the test set, in our case 

the one element left out. The procedure continues until all the elements have been 

used as test and their membership predicted.  

 

Figure 3.3 PCA identify the direction along which variance is maximized (black 

arrows), LDA uses this information to find the axes that increase the group 

separation. 

The performance of a classification, then, can be calculated through the confusion 

matrix, a table in which the actual label of the element of the dataset are reported row-

wise and the predicted value column-wise. The larger the correct classification, the 

better the performance. The principal diagonal accounts for the true positive (TP) and 

true negative (TN) classification (assuming a two-class classifier), while the other 

diagonal reports the false positive (FP) and the false negative (FN) outcomes. The 
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figures of merit (accuracy, specificity, sensitivity, positive predicted values – PPV, 

negative predicted value - NPV) are calculated from this platform. 

 

 

 

Another performance evaluator is the ROC (Receiver Operating Charactheristic) 

curve and the AUC (area under the - ROC - curve). They represent the trend of the 

predictor performance and accounts for how many TP are classified for every TN. The 

AUC can range from 0 to 1, where 0.5 represent a classification accuracy not better 

than simply guessing the outcome. The perfect classifier would have an AUC equal to 

1. For some examples of the curve, refer to § 6. 

For more exhaustive insights on chemometrics tools and methods, the reader is 

referred to dedicated literature [101,103,104]. 
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4 Adsorption models 

This chapter means to be a roadmap for the overall practical 

aspects unraveled throughout the PhD project. Some 

foundations are introduced, from the basic aspects of the 

adsorption process required for the SERS effect to occur. 

4.1 The adsorption process 

The SERS effect in the label-free case is possible if the proximity condition between 

the metal nanoparticle and the analyte occurs. The theory of the adsorption process 

is widely described in literature, as it belongs transversely to all the scientific fields. 

Skipping for a while the SERS selection rules behind the spectroscopic signal, let’s 

consider the basic adsorption of the molecule approaching the metal NP. Once the 

analyte is adsorbed on the metal surface, the intensity of the scattering signal depends 

on the orientation of the molecule and its moieties, on its concentration, and, of 

course, on the chemical affinity between the two. Accordingly, spectra can help us in 

the identification of an adsorption process only looking at the evolution of the 

intensities of specific bands versus time, concentration or sample preparation in 

general. It derives that every analyte-NPs match opens the way to a new adsorption 

mechanism. This is why a unique adsorption process has not been yet fully described. 

To understand the process, here few theoretical bases. 

The adsorption is a phenomenon characterized by the transfer of a molecule (X) from 

a vapor or liquid state to active sites on a surface (M). 

ὲὢ ὓ ᵶὢὓ 

Virtually, the process can proceed up to the saturation of the surface’s sites. When a 

molecule interacts with the surface by weak electrostatic forces (London, van der 

Waals) a physiosorption occurs; when a molecule forms a covalent bond or a charge 

transfer with the surface, we are dealing with chemosorption. The physiosorption 

process is aspecific, reversible, activation-energy-free and can lead to multilayer 

association, whereas the chemosorption process involves high heat of adsorption, is 

irreversible, specific, and forms monomolecular layers. In general, the phenomenon 

occurs when the adhesive force between the floating molecules and the unlike solid 

surface are greater than the molecule-molecule cohesive forces (and the solvent-

molecule interaction, in liquid phase). 

The process can be both thermodynamically and kinetically driven, according to the 

chemical and physical features of the involved species. From a thermodynamic point 

of view, the adsorption of a molecule implies a reduction of its concentration in the 
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surrounding medium at equilibrium, thus a loss in mobility and in system entropy. 

Thereby, the process should be exothermic, since a negative enthalpy difference must 

be observed to keep a favorable free-energy change, namely ЎὋ π in ЎὋ ЎὌ

ὝЎὛ. In other words, the chemical potential in the surrounding medium is higher than 

the chemical potential at the surface [105]. From a kinetic point of view, in presence 

of a mixture species, the adsorbate composition can change over time: crossing the 

steric effects due to macromolecules, alteration of the preferential orientation of the 

molecules with respect of the surface, evolution of the mono/multilayer structure and 

diffusion gradient are some examples.  

Adsorption isotherms are the experimental (or simulated) way to describe the 

phenomenon and reflect the specific number of molecules that go from the 

surrounding medium to the solid surface (or the factional coverage, —) with respect 

to the external pressure applied to the system (in gas phase), namely to their 

concentration (in solution), at the equilibrium state and in isothermal conditions. 

Notably, for porous surfaces, the walls of the pores are accounted: the larger the total 

surface, the larger the number of attracted molecules. The shape of the isotherm is 

related to the nature of the adsorption and mathematically described within ad hoc 

boundary conditions. Five principal adsorption mechanisms in their boundary 

conditions have been described by Brunauer (1945) [106], later extended to empiric 

models, here summarized in Table NN. These theories are connected to how and why 

the adsorption process is measured, commonly via gas or water sorption to estimate 

the surficial area and cumulative porosity of a solid. Actually, the interpretation of the 

physical-chemical and mathematical data in se is independent of the detection 

method, hence the theories are extendible to different experimental set-up to retrieve 

the binding coefficients (K). 

In the frame of the adsorption on label-free SERS surface, the adsorption kinetic curve 

can be obtained through a univariate analysis of the area or intensity of concentration 

sensitive peaks. Accordingly, the ordinate value can be considered as an 

approximation of the fractional coverage, —. Moreover, it is necessary to assume the 

monolayer approximation as a boundary condition as the SERS effect derives only 

from molecules that lie within few nanometers far from the metal surface, namely 

from the first coverage shell. Two main trends are observed: the Langmuir-like and 

the sigmoidal one. In the first case, the metal-molecule affinity is so tight that a fast 

adsorption occurs: the signal increases almost linearly with the concentration (A) up 

to the saturation plateau (B), that is the concentration at which all the possible sites 

are bounded, in the monolayer approximation. The slope of the initial linear trend and 

the saturation point depend closely on the analyte-metal peculiar interaction. The 

hyperbolic trend follows a Langmuir-like curve that can be easily extended to this case 

as well as the interpretation of the coefficients (refer to Table 4.1 for further 

descriptions). In the second case the adsorbates are not likely to be independent one 

to another: a cooperative behavior is referred to a typical sigmoidal adsorption trend 

(Figure 4.1). In this frame, the term cooperativity means that the ligand-surface 
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interaction on a site is influenced by the presence of a ligand on a close site: it can be 

positive, if a molecule is more likely to bind the surface, negative in the opposite case 

and non-cooperative if the mutual interaction does not affect the adsorption rate. 

Positive, negative and non- cooperativity are due to the peculiar chemical affinity 

between the species. Several kinetic adsorption models have been developed to 

describe a Type V isotherm [107], although often addressing to multilayer adsorption. 

In the monolayer approximation, the Hill equation can be borrowed from the 

biochemistry and describes the cooperative interactions between one or more ligands 

and the binding site in a macromolecule [108]. 

It is worth noting that the Langmuir-like curve can be included as a non-cooperative 

trend (Figure 4.1), as the Hill equation is formally the same [109]. The ὲ parameter is 

the cooperativity coefficient, where: 

ὲ ρ ὴέίὭὸὭὺὩὰώ ὧέέὴὩὶὥὸὩ ὦὭὲὨὭὲὫ
ὲ ρ ὲέὲὧέέὴὩὶὥὸὭὺὩὰώ ὦὭὲὨὭὲὫ ὒὥὲὫάόὭὶ
ὲ ρ ὲὩὫὥὸὭὺὩὰώ ὧέέὴὩὶὥὸὭὺὩ ὦὭὲὨὭὲὫ

 

 

 

 

 

Figure 4.1 (Left) Type of cooperative behavior; (right) schematic representation of 

the cooperative behavior induced by the lateral interaction effect. 

For the positive cooperation, the typical sigmoidal curve shows an inertial beginning 

(A), where the signal is not susceptible to concentration change (low surface 

coverage), a dramatic increase in the adsorption rate (B) that culminate in the final 

plateau (C), in which the monolayer condition or the maximum number of molecules 

is reached. The A and C regions indicates the minimum and the maximum 

concentration limits below and above which no quantitative detection can be 

obtained through SERS. In particular, for the above-saturation point the same 

aforementioned considerations can be drawn. From both the Langmuir-like and Hill 

equations, the binding coefficients can be retrieved. 
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Table 4.1 Summary of some of the most used adsorption theories and equations. 

 

Adsorption 

Theory 
Plot Boundary Conditions Equation Parameters 

Langmuir 

 

Monolayer approximation 

Binding sites energetically 

equivalent 

Absence of intermolecular 

interactions  

Absence of phase transition at the 

surface 

ʃ  
ὗὑὅ

ρ ὑὅ
 

θ fractional coverage 

Q0 maximum monolayer 

coverage capacities (mg/g) 

K Langmuir isotherm constant 

(dm3/mg) 

Ce equilibrium concentration 

(mg/L) 

Brunauer- 

Emmet- 

Teller 

(BET) 

 

Multilayer adsorption 

Every layer is in equilibrium with the 

surrounding environment 

Langmuir theory applicable for every 

layer 

Monolayer conditions at the plateau 

 

ʃ  
ήὅ ὅ

ὅ ὅ ρ ὅ ρ ὅ ὅϳ
 

θ fractional coverage 

qs theoretical isotherm 

saturation capacity (mg/g) 

CBET adsorption isotherm relating 

to the energy of surface 

interaction (L/mg) 

Cs adsorbate monolayer 

saturation concentration (mg/L) 

Ce equilibrium concentration 

(mg/L) 
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Flory-

Huggins 

 

Adsorption of binary mixture onto 

homogeneous surface 

Accounts for the role of solvent 

Admits the sorption of molecules 

different in size, included in the 

exponential term 

 

—

ὅ
 ὑρ —  

θ fractional coverage 

C0 adsorbate initial concentration 

(mg/L) 

K Flory–Huggins isotherm 

equilibrium constant (L/g) 

nFH Flory–Huggins isotherm 

model exponent 

Freundlich 

 

Empirical description 

Heterogonous surfaces 

Adsorption proportionality exponent 

changes with pressure 

(concentration) 

ʃ ὑὅ
ϳ

 

θ fractional coverage 

K Freundlich isotherm constant 

(mg/g) (dm3/g)n related to 

adsorption capacity 

Ce equilibrium concentration 

(mg/L) 

n adsorption intensity 

Hill 

 

Adsorption is a positive, negative or 

non- cooperative phenomenon. 

 

Vicinity adsorbate influences the 

further adsorption. 
ʃ

ή ὅ

ὑ ὅ
 

θ fractional coverage 

qsH Hill isotherm maximum 

uptake saturation (mg/L) 

Ce equilibrium concentration 

(mg/L) 

nH Hill cooperativity coefficient 

of the binding interaction 

K Hill constant 
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5. SERS substrates 

 

This thesis is about the application of SERS technology to the 

bioanalytical field, and in particular to biofluids. To this aim, we 

decided to develop and use simple but reliable devices for the label-

free detection of biomolecules, aiming to push their application 

towards clinics. 

 

5.1 Background 

Although the main goal of this thesis was not on the development of nanostructured 

metal surfaces, but rather on testing available structures for bioanalytical 

applications with SERS, substrates played a central role, and have been carefully 

considered and studied. The choice of the SERS substrates always depends on the final 

application. In the plethora of possible solutions introduced in § 2, the key aspects to 

be defined are: 

1. type of metal, 

2. interface chemistry, 

3. fabrication method, 

4. physical phase (either colloidal or solid). 

In the present case, we pursued additional desirable characteristics, namely  

5. ease of fabrication,  

6. limited costs,  

7. repeatability and stability over time (shelf-life)  

The aim was to test a substrate obtained with a simple NPs fabrication bottom-up 

strategy with complex matrices for both qualitative and semi-quantitative analysis. In 

particular, the citrate-reduced silver nanoparticles have been used both in colloidal 

form and aggregated on a rough porous surface, i.e., the cellulose fiber network of 

Whatman filter paper, to be used as a solid support. These two physical phases 

address different needs for different applications, whilst sharing the chemical nature 

of the nanoparticles. In this chapter, the protocol for the synthesis of the citrate 

reduced silver nanoparticles (cAgNPs) and two different protocols for the preparation 

of the paper-based SERS substrates are reported together with their characterization. 

The choice of silver as metal derives from its known good performance with biofluids 

in terms of SERS response reported by several authors [24,36,110]. In spite of Ag 
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greater chemical reactivity, which make Ag substrates more prone to contamination 

with respect to Au, this metal is known to yield substrates with higher enhancement 

factors [14,52]. The Lee-Meisel synthesis uses sodium citrate both as reducing and 

capping agent [111].  

The Lee-Meisel protocol is widely known, used and characterized since its 

publication. It is based on the reduction of silver ions in solution through citrate salt 

as reducing agent, given its large electropositive reduction potential in water (Ag+ Ą 

Ag0, E0=+0.799 V). Citrate both reduces the Ag+ ions to its metallic form and stabilize 

the growing nanoparticles through electrostatic repulsion: 

 

ὃὫ
 
ựựựựựự ὃὫ ựựựựựự ὃὫ Ễ ὧὭὸὶὥὸὩựựựựựựựự  ὃὫ ὲὥὲέὧὰόίὸὩὶỄ 

Ễ ựựựựựựựự  ὃὫ ίὩὩὨίựựựựự  ὃὫ ὲὥὲέὧὰόίὸὩὶ

 
  
ựựựựựựựựựự  ὧὃὫὔὖί 

 

The size and the shape of the resulting NPs depends on several parameters: the 

stoichiometry of the reaction, the boiling time, the speed of stirring, as found by Pillai 

et al [112].The citrate ions, together with the positively charged silver ions, form a 

double electric layer on the NP surface, which shields the van der Waals attractive 

forces experienced by the bare NPs. The repulsive Coulombian forces between citrate 

ions on the metal surface work as an electrostatic stabilization of the colloid, 

hampering aggregation further NPs aggregation. To overcome this electrostatic 

barrier, it is possible to increase the ionic strength of the dispersion medium or 

displace the citrate ions with neutral ligands/analytes which display affinity for the 

metal. In these ways, aggregation is induced: this is the key for the SERS enhancement 

to occur, due to the hot-spots formation in the gap between NPs.  

The reasons behind the use of paper as solid support for many kinds of sensors has 

been already introduced in § 2. Being very inexpensive, easy to handle and compatible 

with aqueous samples, hence with bioanalytical applications, it results a winning 

choice. Moreover, the porous surface adds roughness to the aggregate distribution, 

improving the hot-spots formations. 

The fabrication of the paper-based solid substrates finds its origin in a previous work 

by Dalla Marta and co-workers ([51], http://hdl.handle.net/11368/2742099), who 

developed a simple strategy of dip-coating nanoparticles deposition on paper 

substrate. For all the technical details, the reader is addressed to the correspondent 

publication. Moreover, a second protocol inspired by [92] revealed a good 

performance in terms of time of substrates preparation and overall spectral intensity.  

One last but relevant comment regards the combination of the nanostructured 

substrates and the portable Raman instrumentation (§ 2) used throughout all the 

SERS measurements included in this PhD thesis. This coupling allows to optimize the 
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fabrication of a sensing method aiming at a future realistic application of SERS by 

means of affordable, manageable and portable devices.      

5.2 Materials and Protocols 

For the list of the reagents, used in the following protocols please refers to Appendix 

1. 

Warning: Each glassware element must be accurately washed with No-Chromix® 

solution and Aqua Regia, in this order. After each step, rinse thoroughly with MilliQ 

water. 

 Citrate-reduced silver nanoparticles:  

The colloidal citrate-reduced silver nanoparticles (cAg-colloid) have been synthetized 

according to Lee and Meisel [111]. Briefly, 10 ml of 1.1% sodium citrate tribasic 

solution are added dropwise to 500 mL of boiling silver nitrate solution (90 mg 

AgNO3 + 500 mL MilliQ water) in a two-necks flask connected to a refrigerator under 

vigorous stirring. The solution is kept boiling under stirring for 60 min at dark. The 

color of the solution slowly turns from transparent-uncolored to opaque-greenish. 

The colloidal solution can be stored in dark at RT and are stable for at least 6-8 

months. 

Some warning details: attention must be paid to some environmental aspects, like the 

room temperature and humidity and the glassware cleaning procedure (performed 

with NoChromix®, aqua regia and thorough rinse). Moreover, the stirring speed and 

the injection rate must be regular and regulated. 

 Protocol #1: paper-based Ag-solid substrates 

This protocol has been taken from [51] and adapted. 

The nanoparticles obtained with the previous synthesis are concentrated 10 times in 

volume with Ultra Centrifuge (60 min. x 45000 rpm). Contemporary, 1 cm x 1 cm filter 

paper (2 µm average porosity) squares are placed in well-wise in a 24 multi-well 

plates. 3 mL of the cAg-colloid are put inside each well and piped together with 62 µL 

of sodium citrate tribasic 1 M. The suspension immediately turns color from dark 

green to dark grey: the color shift is symptomatic for the aggregation process in 

progress induced by the addition of citrate ions. The multi-well has to be kept in dark 

for 7 days. After this period, aggregates coated the paper surface by precipitating on 

it; the supernatant has to be carefully removed without touching the delicate 

substrate in order to avoid any NPs turbulence at this stage, next, the paper-based 

substrates are allowed to dry. It is preferable to keep the freshly prepared substrates 

exposed to air at RT for a constant number of hours, in order to limit the oxidative 
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process on the nanoparticles surface. When dried, the cAg-paper substrates can be 

stocked immersed in MilliQ water in a Petri dish or in a multi-well. They will be stable 

for months. The drying step makes the substrates more stable, so that once they are 

re-immersed again in aqueous solutions the NPs do not detach from the paper 

support. With respect to the original procedure [51], we simplified the protocol 

introducing disposable multi-well plates instead of reusable glass vials, reducing time 

and the use of acids employed in the glassware cleaning procedure. Moreover, the 

simple addition of sodium citrate 1M instead of weighting the solid salt for each well 

allow faster preparation and improved repeatability of the support. These two 

passages required at least 2-3 hours for each synthesis batch with the previous 

protocol, now reduced to maximum 10 minutes. 

 Protocol #2: paper-based Ag-solid substrates 

This protocol has been taken from [92] and adapted.  

The nanoparticles obtained with the Lee-Meisel synthesis are used to prepare the 

paper-based substrates at the original concentration: no centrifugation is required. 1 

cm x 1 cm filter paper (2 µm average porosity) are pretreated with a NaCl 1M solution 

for 20 minutes to allow a homogenous imbibition of paper. After this period, paper 

squares are let dry. This step allows the dispersion of Cl- ions across the paper 

support. Then, the paper squares are put into the 24 multi-well plate together with 

1.5 mL of cAg-colloids. The added chloride ions act as aggregating agent directly on 

the paper surface, locally changing the ionic strength of the suspension. After 24h the 

supernatant can be removed, and the cAg-paper substrates let dry off for a constant 

number of hours before stocking them in MilliQ water in a Petri dish or a multi-well. 

The substrates are stable over weeks. Compared to the original version of the protocol 

[92], we highlighted some improvement in the intra-batch repeatability measured 

through the absolute intensity of the spectra of some references compounds by 

changing the NaCl : NPs volume ratio. 

 

There are multiple differences between the two protocols for the fabrication of the 

cAg-paper substrates, as summarized in Table 5.1. 

 

 

Figure 5.1 Sketch of the generic cAg paper-based solid substrates fabrication 

protocol. 
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 Protocol #1 cAg-paper Protocol #2 cAg-paper 

Centrifugation Yes (60 minutes) No 

Volume required 3 mL (cAg 10x) 1.5 mL (cAg 1x) 

Stabilization time 7 days 1 day 

Shelf-life Months Weeks 

Table 5.1 Pros and Cons of the two protocols for the cAg-paper substrates fabrication. 

5.3 Substrates characterization  

The SERS response is strictly dependent on size, shape and aggregation state of the 

cAg nanoparticles. Hence, several characterization procedures are required. The 

silver colloidal dispersions have been characterized in size, shape and surface charge 

by means of UV-Visible Spectroscopy, Dynamic Light Scattering (DLS), Z-Potential, 

Transmission Electron Microscopy (TEM). The paper-based silver substrates surface 

has been characterized with Scanning Electron Microscopy (SEM) and SERS.  

In particular, UV-Visible spectra have been collected with Cary 60 UV-Vis, Agilent 

Technologies. The samples were diluted 10 times in MilliQ water in order to avoid the 

detector saturation and placed in PMMA cuvettes. Data were background corrected 

and reported as average of three replica. The UV-Vis measurements allow to obtain 

the extinction band of the surface plasmon of the colloids, which gives information on 

the size and the polydispersity of the NPs. All the batches used for the SERS 

measurements reported in this thesis displayed a maximum of the extinction peak at 

(410 ± 5) nm (Figure 5.2). 

For the TEM images, cAg-colloids where diluted 1:1 in volume, deposit on TEM grid 

and let dry. The samples were characterized in terms of size and shape using the TEM 

Philips EM 208 at the Electron Microscopy Centre of the University of Trieste. The 

Lee-Meisel synthesis provides polydisperse NPs, with diameters ranging between 30-

80 nm.  
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Figure 5.2 (a) UV-Visible characterization of a selection of cAg colloids. (b, c) report 

two TEM images at different scale of the cAg colloids. NPs are different in size and 

shape and this accounts for the broad extinction peak observed at the UV-Visible 

spectrum. 

Dynamic Light Scattering is able to provide the hydrodynamic diameter of the NPs in 

colloidal form. Measurements have been performed with the Malvern Zetasizer Nano 

Z and the NPs diluted 10 times beforehand, resulting in a dispersion of sizes with 

maximum at 60 nm. With the same instrument, the Z-potential has been detected. Z-

potential gives an estimation of the surface charge at the first ionic shell. The cAgNPs 

displayed a negative shell of -39.1 mV: a value large enough to induce electrostatic 

repulsion and to avoid aggregation at the synthesis concentration. Although TEM and 

DLS outcome cannot be directly compared in terms of measured size, as the physical 

principles behind the two characterizations are different, the two results were 

coherent. 

The solid substrates surface has been investigated by means of Scanning Electron 

Microscopy. Specimens were mounted on aluminum stubs covered with two sides 

conductive carbon adhesive tape and the samples were sputtered with gold (Sputter 

Coater K550X, Emitech, Quorum Technologies Ltd, UK). Next the samples were 

immediately analyzed (Quanta250 SEM, FEI, Oregon, USA) operated in secondary 

electron detection mode with 30kV accelerating voltage. The working distance was 

adjusted in order to obtain the suitable magnification. The difference between the 

cAg-paper protocol #1 and protocol #2 is evident in Figure 5.3. The long dip-coating 

procedure and the high NPs concentration used in the first protocol lead to the high-

density coverage of the cellulose surface, in accordance with [113]. However, being 

paper naturally inhomogeneous, the thick NPs layer can be absent or altered in some 
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region. This event may corrupt the SERS performance of the substrate in terms of 

signal repeatability. On the other hand, the second protocol leads to less abundant 

NPs on the surface, as suspected, but still the distribution of the aggregates is more 

homogeneous.  

 

Figure 5.3 SEM images for the cAg-paper (a,b) protocol#1 and (c,d) protocol #2.  

  

The evaluation of the SERS performance for the solid substrates are reported in the 

next paragraph. 

 SERS characterization 

To evaluate the reliability of the two protocols in terms of intra and inter batch 

variability, SERS measurements have been performed using adenine as reference 

analyte. Besides being an important metabolite and an object of study in this thesis 

(see § 6), adenine gives an intense and well-defined SERS spectrum as a consequence 

of its high affinity for Ag surfaces: it is not being light or temperature sensitive, it has 

low-toxicity and it is inexpensive. All these characteristics make adenine a good 

candidate as a reference analyte. The use of a reference allows a direct comparison 

between different substrates, so to estimate how the batch synthesis and the paper-

based substrates may affect the intensity and area of the one of the main peaks. 

Briefly, adenine was dissolved in PBS (see § 6 for further details on this kind of 

samples preparation) at the final concentration of 10 µM. The substrates were 

immersed in the adenine solution for 5 minutes, then rapidly soaked in MilliQ water 

and dried in air at RT. Next, the dried substrates are placed on a microscope glass slide 

and spectra were collected. The procedure has been replied for 5 batches with 10 

spectra collected for each case (Figure 5.4).  
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The instrumental apparatus used has been a i-Raman Plus portable system (BWS465-

785S) connected to a compatible Raman video microscope (BAC151B) and connected 

with the BWSpec software (version 4.03_23_c), by B&W Tek (Newark, DE). Excitation 

was obtained with a CleanLaze 785 nm laser with an output power of about 500 mW. 

Laser light is delivered to the sample and collected via an optical fiber probe. The 

Raman spectrometer uses a quantum efficiency CCD array detector with a wide 

spectral coverage (65-4200 cm-1) and a spectral resolution of 2.4 cm-1. Spectra 

collection used a 10 s CCD exposure for a single accumulation with a laser power at 

the sample of 10% (138 mW). 

 

 

Figure 5.4 Ring breathing mode band area trend for 5 batches of Ag-paper 

substrates prepared according to (a) protocol #1 and (b) 5 to protocol #2.  

 

The relative standard deviations, calculated as percentile ratio between the standard 

deviation and the mean for the single batch, range between 16-21 % for the protocol 

#1 case, and is lowered between 18-23% for the protocol #2. The outcoming average 

area and relative standard deviations are almost comparable. Hence, the reasons 

behind the choice of one or the other for a specific application is based on the better 

results in terms of detection sensitivity and signal-to-noise ratio for the sample under 

examination. As a note, the protocol #2 reports higher peak area values and absolute 

intensities too, in spite of a lower density distribution of the hot-spots as observed in 

the SEM images. A possible explanation may depend on the homogeneity of the 

aggregate distribution: not only the number of aggregates matters, but also their 

distribution within the focal volume on the incident laser. However, to the best of our 

knowledge these results are appreciable with respect to protocols for solid substrates 

found in literature [51], considering the inter-batch repeatability data. In the attempt 

to further optimize a protocol to overcome this issue, we tried the internal standard 

route. 
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 The internal standard approach 

Provided that signal repeatability is often an issue and that previous data revealed 

relative standard deviation around 20%, often not enough for quantitative 

determinations, we tried to identify a strategy for the use of internal standards. By 

definition, an internal standard (IS) is a substance different from those present within 

the specimen, and able to give an instrumental signal clearly distinguishable from the 

signals of the other analytes. It is added to the sample and to the blank in fixed 

concentration and its role is to correct the instrumental response or the sample 

preparation to reduce the error in the quantification of the analyte. This compound 

can then be used for calibration by plotting the ratio of the analyte signal to the 

internal standard signal as a function of the analyte concentration of the standards. 

This is done to correct for the loss of analyte during sample preparation or sensor 

inefficiency. 

In the present case, the required characteristics of the internal standard are:  

i. ability to provide SERS signal 

ii. ability to form covalent bond with the substrate 

iii. no alteration of the adsorption process of the other specimens on the substrate 

iv. no alteration of the IS signal along with the specimen concentration changes. 

Accordingly, three different class of internal standard have been chosen and tested at 

several concentration in presence of other reference analytes: (a) variously substitute 

mercapto-benzene molecules (thiophenol, 4-nitrothiophenol, 4-thiocresol, 4-

mercaptobenzonitrile), (b) sodium sulphite and sodium tiosulphate salts, (c) 

Cadmium Sulfide nanoparticles, (d) purines isotopologues. 

Briefly, none of these have been able to respect all the requisites reported above. 

Except for the third case, in which the signal of the CdS was not detected in the used 

range of concentration, the first two cases reported a same issue. In particular, the 

effect of the crescent concentration of the analytes affected the intensity of the 

standards peaks, thus preventing any possibility of calibration. All of these showed 

intense SERS spectra also in micromolar concentration, but most of the peaks 

correspond to bands of the specimens. Only the thiobenzonitrile showed a peak at 

~2200 cm-1 (CN stretching), far from the considered samples fingerprints. 

Nevertheless, the intensity of this peak was short-lived when the susbtrate with IS 

was exposed to air at room temperature. 

With the isotopologues the aim was to observe a shift in the Raman shift of the 

correspondent non-isotopic form [4]. In principle, the presence of isotopic atoms in 

the molecule would affect the force constants for the vibration modes of the involved 

bounds, with respect to one of the analogue non-isotopically enriched molecules. 

Indeed, the reduced mass that appears in the k constant formula changes, according 
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to Eq. 2.1, leading to a consequent shift in the vibrational frequency and, hence, in the 

Raman shift. The entity of the shift depends upon the k value, and its detection on the 

instrumental features (i. e., the position of the monochromator slides). The aim was 

to spike the analyte solution with its isotopologue at fixed concentration and let them 

adsorb on the SERS, in order to have the isotopologue-signal as an internal standard. 

In principle, the chemical similarity to the analyte should not interfere with the 

subsequent adsorption kinetics and orientation of the specimen. Despite this, the 

“foreign” molecule has revealed to be still considered as an interferent and a 

competitor with respect to the adsorption kinetic, frustrating its “internal standard-

like” purpose. 
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Box 4.1 
How to deal with nanoparticles troubles: 

the case of water 

 

The bottom-up approach for the chemical synthesis of naked 

nanoparticles is not always a straightforward process. It is not 

improbable to face some reproducibility issues, especially in 

terms of average size, polydispersity, shape and, last but not least, 

chemical capping. All of these parameters are commonly 

controlled by a proper good synthesis practice: the temperature 

and the relative humidity of the room should be constant, the 

glassware properly cleaned, the reagents stored in anhydrous 

environment.  

The synthesis can be a simple but delicate process, and every 

change in the protocol and reactants may affect the product. The 

main outcome of a bad synthesis in spectroscopic application is 

the lack of repeatability of the SERS signal, up to the appearance 

of unavoidable background peaks due to the presence of 

contaminants on the nanoparticles surface.  

When struggling with the research of the faulty parameter, just 

think that the easier answer is often the correct one: water.  

A proper purification system (physical, chemical and biological) 

must be provided in order to avoid the presence of organic 

contaminants or incorrect pH and conductibility values. Grade 1 

water is recommended.  

The sooner you control it, the sooner you will avoid repeatability 

issues. 
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6 SERS spectra of blood fractions 

Liquid biopsy is a gold mine for diagnostic purposes, being minimally 

invasive and rich in information. SERS is able to open a window and 

observe some of these aspects and this Chapter means to provide an 

overview about the kind of spectral data than can be obtained from 

blood and its constituents, under the chosen experimental conditions. 

6.1 Background  

As the attention for the analysis of biofluids through label-free SERS arises in the 

academic and technologic fields, it is increasingly relevant to define what SERS can 

detect in a liquid biopsy and how to optimize the performance. In other words, sample 

preparation and data acquisition protocols account for a reliable and robust 

application in clinic.  

In this Chapter, the main characters are blood and its fractions, and how their SERS 

spectra can be collected and interpreted. Blood tests are routinely used for qualitative 

and quantitative determination of the health status, as well as for the monitoring of 

pathologies and of efficacy of therapies. Obviously, efficient and robust devices are 

required, but still, devices based on optical technologies are not widespread and used 

to their fullest potential, as one might expect. For instance, the study of the Raman 

and SERS spectra of blood components can spread over a number of applications, 

from the identification of peculiar pathological fingerprint [10], to the target drug 

monitoring [86], to the nanotoxicology field and outside clinics in in forensic science 

[114]. The peculiar features of SERS allow to detect molecules at low concentrations 

even in very complex systems, as affinity for the metal NPs determine the final 

spectrum profile. Thus, in chemically complex systems metal NPs can act as a signal 

“filter”, leading to a significant simplification. For instance, Premasiri (2012) 

emphasizes how the comparison between the SERS and the non-SERS Raman spectra 

of the same blood sample can reveal differences all over the spectral range [115]: 

mainly small metabolites on one hand, hemoglobin and other proteins on the other. 

This is not surprising, as the metal nanostructure plays an “active” role, enhancing the 

scattering of the adsorbates only. The other side of the coin is that band assignment 

can be tricky due to the plethora of components in biofluids. To date, band assignment 

of the blood spectrum is usually performed through comparisons with pure 

compounds spectra, although the mission is not an easy task.  

Thus, a systematic label-free SERS analysis on blood and its constituents has not been 

completed yet.  
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The first Raman (and resonant Raman) investigation on blood constituents, like the 

heme group, dates back to the middle 70s with Abe, who first attempted bands 

assignments studying the difference in the spin, coordination and oxygenation state 

of the tetrapyrrole ring. This study has been confirmed and extended by several 

authors with both Raman and resonant Raman at various laser sources to unravel the 

structure and dynamics hemoglobin and other metalloprotein and the porphyrin 

[114–118]. Literature dedicated to SERS on blood is growing. Premasiri (2013) 

reported the Raman and SERS spectra of plasma, whole blood and red blood cells on 

gold surfaces with a 785 nm red laser and the ageing effect on blood samples on the 

SERS spectra [115]. Recent SERS studies performed on hydroxylamine- and citrate-

reduced silver colloids (source 785 nm) revealed that the spectra of serum are 

dominated by purine metabolites, especially adenine, hypoxanthine, uric acid and 

reduced glutathione [30,31,119], whose inter-individual variation could represent 

relevant features to be investigated for diagnostic purposes. 

Short laser wavelengths (i.e., 400-530 nm) are often used in Raman and SERS studies 

of biofluids, although they can match the resonance frequency of hemoglobin and 

carotenoids: these dominate the resulting spectra that are more likely to be resonant 

Raman than SERS and thus limit the possible metabolomic-like applications of this 

spectroscopy [36,51]. For example, Brazhe (2009, 2013) investigated in vivo 

erythrocytes with Raman and SERS on Ag NPs (excitation with 532 nm laser line) to 

characterize the inner membrane-bound hemoglobin oxidation state [120]. Casella 

and co-workers (2011) extended to the recognition of hemoglobin and carotenoids 

signature in whole blood with Raman and SERS through two excitation sources (532 

nm, 785 nm), namely in resonance and off-resonance conditions. Thus, the evaluation 

of the SERS features of the blood fractions starts from the choice of the wavelength 

source. For this reason, all the Raman and SERS measurements reported in this PhD 

project used the near infrared 785 nm as laser source, non-resonant with the 

electronic transitions of porphyrins, bilirubin or carotenoids, as suggested by 

literature. In fact, previous studies demonstrated 785 nm to be the excitation of choice 

for biofluids analyses in terms of spectral information, especially when used together 

with citrate-reduced silver NPs as substrates [10,30,114]. Overall, the influence of 

blood proteins on the SERS spectrum is not yet clarified, as the protein corona 

formation around NPs in colloids or on the solid substrates could affect the detection 

of small metabolites, possibly hindering the enhancement of the scattered signal. 

Thinking about a realistic future application in clinic, this could be a crucial point in 

the setting-up of sample preparation procedures: is the protein removal a necessary 

step?  

Our effort is to contribute to pushing the boundaries of the field through a SERS 

characterization of human blood and its fractions under different experimental 

conditions, with the implicit aim of providing an optimized protocol for the 

applications reported in the next chapters. To this end, we are going to evaluate: (i) 

the comparison between Raman and SERS spectra of blood fractions on both citrate-
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reduced silver colloids and paper-based (solid) substrates, (ii) the effect of the 

sample-to-colloidal NPs ratio and (iii) the effect of sample dilution and protein 

removal (by filtration) compared to untreated samples. All these data have been 

compared to the correspondent Raman and SERS existing literature results. Indeed, 

the effect of proteins removal from biofluids on the metabolomic profile is not often 

addressed in the frame of Raman and SERS spectroscopy [30], since proteins 

identification and quantification are usually the focus of the research. The question is 

if the SERS spectra of blood fractions are significantly altered by the presence or 

absence of proteins. Starting from the background knowledge developed in this 

research group, citrate-reduced silver NPs (cAg) will be used in the following 

measurements, both as colloids and deposited on paper according to an in-house 

developed protocol [30]. These NPs are stable, and their synthesis is simple, 

inexpensive and widely used, so they are taking the scene of the “SERS-in-clinic” stage, 

but still literature lacks a broad characterization of the spectra obtained with 

biofluids.  

6.2 Materials and Methods 

 SERS substrate fabrication 

Citrate-reduced silver nanoparticles have been synthetized according to Lee and 

Meisel [111], used both in colloidal form (cAg-colloid) and fixed on a paper-based 

substrate (cAg-paper). The solid substrates have been prepared according to the 

procedure #1 reported in § 5. For the list of reagents see Appendix 1; for the substrate 

fabrication protocol and characterization, please refer to § 5.  

 SERS instrumentation 

The measurements have been performed in air at room temperature with a i-Raman 

Plus portable system (BWS465-785S) connected to a compatible Raman video 

microscope (BAC151B) and collected with the BWSpec software (version 4.03_23_c), 

by B&W Tek (Newark, DE). Excitation was obtained with a CleanLaze 785 nm laser 

with an output power of about 500 mW. Laser light is delivered to the sample and 

collected via an optical fiber probe. The Raman spectrometer uses a quantum 

efficiency CCD array detector with a wide spectral coverage (65-4200 cm-1) and a 

spectral resolution of 2.4 cm-1. 

Spectra collection used a 10 s CCD exposure for a single accumulation with a laser 

power at the sample of 50% (180 mW) and 10% (138 mW) for colloidal and solid 

SERS substrates, respectively. Raman spectra have been collected with a 50% laser 

power, too. The spot diameter at the sample was of 105 µm, channeled through a 20x 

Olympus objective (N.A. 0.25, working distance 8.8 mm). All the samples were placed 

under the microscope on a standard microscope slide: CaF2 for liquid samples, glass 
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for solid substrates. Paracetamol has been used as reference before and during every 

data collection session to account for eventual laser drifts.  

 Sample collection 

Blood has been sampled from 3 healthy donors after informed consent (mean age at 

enrolment 34 years, 1 male, 2 females) from the Transfusion Center (Azienda 

Ospedaliera Universitaria, Trieste). Blood was obtained by venipuncture and 

processed within 1 hour. For each patient, blood was collected in BD Vacutainer® 

serum separation tubes and BD Vacutainer® EDTA spray coated tubes for plasma 

extraction. Blood fraction have been separated within two hours from the drawn and 

stored at -20 °C. 

 Sample preparation 

Within 1 hour from the collection, blood tubes for serum separation were centrifuged 

at 800 g for 10 minutes at 4°C to separate serum from blood and placed in ice. Part of 

the serum aliquots have been subsequently filtered with 10 kDa Amicon Ultra 0.5 mL 

centrifugal filters (Merck, DE) at room temperature, 30 minutes at 14000 g. The other 

blood fractions were derived from the EDTA-sprayed blood tubes for plasma 

separation. One aliquot of the whole blood was stored and plasma, Peripheral Blood 

Mononuclear Cells (PBMCs) and Red Blood Cells (RBCs) were isolated from whole 

blood by centrifugation (40 minutes at 600g at 15° C) through a density gradient 

medium (Ficoll-Paque PLUS, Merck, DE) added to the blood tubes, producing a 

stratification of the components. The plasma, RBCs and PBMCs fractions were 

carefully harvested with a pipette in different aliquots. Aliquots of the whole fractions 

of blood and RBCs were diluted 1:1 with distilled water, while PBMCs with ratio 1:4, 

to induce cells lysis; half of them was filtered (10 kDa Amicon Ultra 0.5 mL centrifugal 

filters) at room temperature, 30 minutes at 14000 g. Part of the plasma was only 

filtered with the same procedure. All the samples were stored at -80 °C and thawed 

immediately before spectra collection. 

 Spectra collection 

For the Raman measurements, 5 µL of the samples have been placed with a 

micropipette on a CaF2 slide and the spectra were immediately collected focusing the 

laser on the top of the drop.  

For the SERS measurements on colloids and solid substrates, different procedures 

have been followed. The cAg-colloids have been mixed with biofluids at several 

sample-to-NPs volume ratio as reported in Table 6.1 for a total volume of 10 µL and 

placed on CaF2 slide with a micropipette. Spectra have been collected on the drop after 

5 minutes in order to allow a proper NPs aggregation. This delay has been established 

to optimize the signal to noise ratio (data not shown). For the cAg-paper-based solid 

substrates, 5 µL of sample were dropped on the surface and let dry for about 20 

minutes. For pigmented samples (i.e., whole blood), the substrate surface was gently 
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washed with MilliQ water after 5 minutes of incubation: the metabolites adsorption 

on the NPs was allowed, preventing the risk of laser photodamage or burn. After 

drying, the paper substrates were placed on a glass microscope slide and spectra were 

collected at room temperature (25 °C). Each measurement has been run at least in 

triplicate. An overview of the samples and measurement conditions are reported in 

Table 6.2 and in Figure 6.1. 

 

 Volumetric ratio 

µL blood : µL cAg 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 

Label 1:9Ag 1:4Ag 3:7Ag 2:3Ag 1:1Ag 3:2Ag 7:3Ag 4:1Ag 9:1Ag 

Table 6.1 List of the volumetric ratio used to prepare the drop for the SERS analysis 

on Ag colloids. The Label row indicates how the correspondent samples will be 

named hereafter. 

 
  

Whole Lysate 
  

Unfiltered Filtered Unfiltered Filtered 
 

Blood ǒÂ R NA ǒ ǒÂ 

Cellular fraction 
RBC ǒÂ R NA ǒ ǒÂ 

PBMC ǒÂ R NA ǒ ǒÂ 

Non-cellular fraction 
Serum ǒ R ǒÂ NA NA 

Plasma ǒ R ǒÂ NA NA 

Table 6.2 Distribution of samples, treatments, and used SERS substrates (Â = 

SERS@cAg-paper; ǒ = SERS@cAg-colloid; R = Raman; NA = not available). 
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Figure 6.1 Sketch or the sample preparation. Each blood fraction undergoes 

different treatments according to Table 6.2 

 Data analysis 

Spectra have been entirely processed in the R environment [121] using hyperSpec 

[122], baseline [123], MALDIquant [124] packages and other in-house developed 

scripts for spectra visualization. 

The steps included: (i) Raman shift range selection, (ii) baseline correction (package 

baseline, method als, lambda = 6), (iii) smoothing for noise reduction (data spacing = 

3cm-1), (iv) vector normalization. 

The criteria for the baseline choice meant to avoid artifacts, and the als (asymmetric 

least squares) allows a correction by the 2nd derivative constrained weighted 

regression, with lambda as constraining factor. The smoothing procedure returns 

evenly spaced spectra in the selected range, without the risk of overfitting. The 

smoothing is useful to reduce the signal-to-noise ratio through the loess (locally 

estimated scatterplot smoothing) function. It interpolates each spectrum onto a new 

x-axis with a local linear fitting by weighted least squares of a polynomial surface on 

neighbor segments, and the size of the neighborhood is controlled. 

6.3 Results and Discussion 

 SERS and Raman of whole blood and blood constituents. 

Raman and SERS normalized spectra of 5 fractions, i.e. i) whole blood, ii) RBCs, iii) 

PBMCs, iv) plasma and v) serum samples (whole and unfiltered) on Ag paper 

substrates are compared and reported stacked along the y-axis in Figure 6.2. Looking 

at the single component, the two techniques show different contributions and 
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Table 6.3 sums up the line assignments based on literature. Note that spectra vector 

normalization allows only qualitative description and delete the information on the 

absolute intensities of the single spectrum.  

 

Figure 6.2 Raman and SERS@cAg-paper spectra of unfiltered blood components. 

Measurements have been acquired with the 785 nm laser; data are vector 

normalized and reported ad mean ± standard deviation of several replica. 

 

The Raman spectra of whole blood and RBCs are similar and follow the spectral profile 

seen in [115,116,125,126], dominated by hemoglobin and heme-group vibrations. 

Heme shows porphyrin breathing at 755 cm-1, pyrrol half-rings stretching at 1126 cm-

1 and 1375 cm-1, methine bridges stretching at 1580 cm-1, whereas the others 

reported peaks account for other hemoglobin stretching modes which are sensitive to 

the distortion of the porphyrin that changes with the redox and spin state of Fe, the 

presence of ligands (O2, CO, NO) and the conformation of the surrounding 

metalloprotein [120]. Few peaks belong to non-porphyrin moiety, such as amide I 

(1650 cm-1), phenylalanine stretching (Phe, 1003 cm-1), tyrosine stretching (Tyr, 850 

cm-1) and the CH2/CH3 amino acid deformation modes (1450 cm-1). All these Raman 

peaks of whole blood and RBCs are mainly attributable to the oxygenated hemoglobin, 

compared to the spectra reported in literature [115,127] and its oxygenation state 

can be arguably due to the exposition to ambient oxygen during the extraction and 

pre-analytic processing. Moreover, it cannot be excluded that the freezing processes 

may have disrupted the cellular membrane of the cell fractions, in both RBCs and 
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PBMCs, causing cytoplasmic hemoglobin to leak out. However, the assignment of 

some bands (i.e., 480 or 492 cm-1) is still missing. 

As expected, Raman and the correspondent SERS spectra for whole blood and RBCs 

are not completely matching: SERS bands are broader, although more intense 

(absolute intensity, data not shown), and at different wavenumbers. Simply put, the 

SERS and Raman spectra are different because they originate from different sources: 

low-molecular weight adsorbed metabolites in SERS, major protein components in 

Raman. Moreover, the chosen excitation source, in off-resonance with respect to the 

porphyrin electronic transitions, makes the heme group contribution overlapped by 

other more intense bands. The main difference lies in the 725 cm-1 peak, that is way 

more intense in RBCs than in whole blood: we hypnotize that it may belong to purines. 

Purines are obviously present in whole blood too, but we can assume the presence of 

a sort of “matrix effect” which hampers their free diffusion or other molecules 

towards the SERs substrate. Besides, the region between 800 cm-1 and 1050 cm-1 

belongs to the substrate background (see Figure A.3.2 in Appendix 3), the SERS band 

at 480 cm-1 appears in both the samples stronger than the Raman homologues. As a 

note, background bands are commonly classified as “anomalous” bands, namely 

spectral features that are not sample-dependent. Their presence is not unusual, and 

depends on the experimental set-up, as they can derive from various sources, i.e., 

contaminants, sample degradation, or artifacts like laser photodamage. The latter is 

common when working with non-colloidal substrates and induces amorphous carbon 

sp2 stretching bands in the 1360 - 1560 cm-1 region. To avoid them, the set-up has to 

be optimized, i.e., reducing the incident laser power. Sample photodamage is 

infrequent with colloids, as the water percentage can efficiently dissipate heat 

[36,128]. 

PBMCs Raman spectra does not show any significant trend other than three very weak 

and extremely broad bands around 520, 1370, 1565 cm-1, therefore not assignable. 

This result can be related to their low concentration or to the poor tendency to show 

SERS signals that come from the cellular membrane, assuming it to be intact. In the 

SERS spectra, only the metal enhanced bands of the citrate background appear (900-

1050 cm-1), and the cells are arguably still too diluted to provide appreciable spectra. 

PBMCs are a rich mixture of cells different in nature, but since their separated 

populations have not yet been analyzed through SERS, the vibrational profile of this 

blood fraction is still under investigation and requires further examinations. For these 

reasons, PBMCs spectra are not going to be further analyzed since the carried 

information is still poor and strongly protocol dependent. However, the excluded 

PBMCs spectra are reported in Appendix 2. 
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Raman* cm-1 SERS* cm-1 Tentative Assignment Blood fraction** 

430w  n21d(Fe-O-O) A, B 

480w  - A, C, D 

 492s - C, D 

568w  n (Fe-O2) B 

 638 breathing ring uric acid (s) C, D 

676m  n7, heme A, B 

720s 722s breathing ring purines (m) C, D 

755s  n15, heme breathing A, B 

 810w - C, D 

 850w Tyrosine A, B 

1003s 1003m Phenylalanine A, B, C, D 

1125w  Protein C-N, C-C stretching A, B 

 1130m n(C-N), uric acid (vs) C, D 

 1203m - C, D 

1223s  n, d (N-C-N), hemoglobin (m) A, B 

1375s  n4, heme pyrrol half-ring A, B 

1450s  CH2/CH3 Amino acid deformation A, B 

1565s  C=C, C-C, heme A, B 

 1574m C-C, C-C-H, heme A, B 

1580s  Hemoglobin A; B 

1603vs  n10, Hemoglobin A; B 

1623vs  n10, Heme methine bridges A, B 

1650s 1650s Amide I A, B, C, D 

 

Table 6.3 Position and assignment of bands in Raman and SERS spectra. Estimated 

precision ± 1 cm-1. Data are from literature [36,114–116,127]. * (vs) very strong, (s) 

strong, (m) medium, (w) weak. ** (A) blood, (B) RBCs, (C) Plasma, (D) Serum.  

 

Serum and plasma share almost the same profile in both Raman and SERS spectra, 

respectively. However, the Raman and SERS profiles of the same specimen are still 

completely different. In the Raman spectra, 1003 cm-1 Phe is the only intense and 

sharp peak, with the purine broad band in the region between 1300 and 1500 cm-1 

and the protein contribution around 1635 cm-1. The SERS spectra are intense and 

more reproducible than the other blood components, and the overall profile includes 

uric acid bands (638 cm-1 and 1130 cm-1). Notably, the typical purines peak around 

730 cm-1 does not appear. This may due to their low concentration in serum and 

plasma, donor-dependent, that can be retrieved by the surrounding proteins and/or 
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by the good practice that allowed a fast after-draw sample processing: it is known that 

a fast procedure allows to minimize the risk of purine metabolization with the high 

production of hypoxanthine that would alter the original sample and spectrum [115]. 

The intense peak at 492 cm-1 appears again but it is blue shifted with respect to the 

correspondent band in whole blood and RBCs. 

To the best of our knowledge, this is the first non-resonant Raman and SERS complete 

characterization of all the blood fractions, in the frame of the chosen instrumental set-

up. So far, the most remarkable result is that whole blood Raman spectra strictly 

relates to the RBCs spectra, hence to heme group and hemoglobin, and the SERS ones, 

obtained with our solid substrates, are informative respect to the metabolites present 

in the biofluid.  

Unfiltered samples mixed with colloidal NPs did not show evident SERS spectra, 

although some significant signals have been detected mixing the sample with the 10 

times concentrated colloid at room temperature. In Figure 6.3, the spectra of the 

filtered and unfiltered serum analyzed with silver solid substrates and colloids at two 

concentrations (1x and 10x) are shown.  

 

 

Figure 6.3 Effect of filtration and SERS substrate form and concentration. 

Measurements have been acquired with the 785 nm laser; data are vector-

normalized and reported as mean ± 1 standard deviation (shaded area) of several 

independent replicas, with cAg-paper = paper-based citrate-reduced silver 

substrates, cAg-colloids = citrate-reduced silver colloids. 
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For the sake of clarity, only one sample-to-NPs ratio (1:9 Ag ratio) is reported for the 

cAg-colloids. The filtered samples yield very similar spectra (upper part of the plot). 

Hence, the concentration of the cAg-colloids does not add any peculiar information to 

the spectra and is unnecessary. Conversely, the unfiltered samples (lower part of the 

plot) show different spectral profiles: the intensity for the cAg-colloids 1x case is too 

low and noisy, while the cAg-colloids 10x case shows some signal, but it is dominated 

by the intense citrate signal (900 – 1100 cm-1). If filtration allows metabolites to freely 

reach the NPs surface, in the unfiltered samples the formation of the so-called protein 

corona around NPs hampers their coupling and the hot-spots set up, which induce the 

enhancement of the scattering. However, NPs concentration induces partial 

preaggregations which are responsible for the background bands. Moreover, small 

metabolites may be still able to pass through this shell with a slower kinetics and to 

approach the metal surface. The SERS signal is then detectable, although with a 

reduced intensity due to the lower amount of NPs aggregations. It is worth noting that 

cAg-colloids 1x and cAg-paper reported the same normalized spectral profile, at the 

considered sample-to-colloid ratio. This suggests that the diffusion of the analytes 

from the bulk solution within the paper network toward the deposited metal 

nanoparticles mimics the diffusion from the bulk solution to the nanoparticles 

suspended in the colloid. As a final comment, unfiltered serum on cAg-colloids 1x 

(synthesis concentration) can give SERS spectra after 24h of incubation at room 

temperature (data not shown), but such a long sample preparation is considered 

impractical for the purposes of this thesis, as we focused on the optimization of faster 

protocols, suitable for point-of-care approaches. The solid substrate provides the 

typical spectra of serum, as the proteins do not alter the aggregation state of the 

already aggregated NPs. For all these reasons, mixtures of colloids and unfiltered 

samples are not going to be further used in this project, as they did not yield 

significant SERS signals unless after several hours of incubation. 

 SERS of biofluids: effect of the colloid/biofluid volumetric ratio 

When colloids are used for SERS, a proper sample-to-NPs ratio has to be chosen since 

the relative intensities may change with the volume ratio. Considering the two most 

representative samples, the SERS spectra for the nine combinations of cAg colloids 

with lysed and filtered RBCs, and serum are reported in Figure . Indeed, RBCs and 

whole blood share a similar SERS pattern, and the same can be said for serum and 

plasma; PBMCs suffer of some limitations already discussed in the previous 

paragraph. The analogous experiments and data of whole blood, PBMCs and plasma 

are reported in Appendix 2. In particular, blood, RBCs and PBMCs were lysed 

beforehand with MilliQ water - not required for plasma and serum - and the protein 

fraction was filtered with a 10 kDa cut-off centrifugal filter. Overall, all the spectra 

share a similar pattern with purine regions at 722 cm-1 and between 1300-1450 cm-

1, uric acid at 638 cm-1 and 1130 cm-1, and the aforementioned unassigned band at 

485 cm-1, here red shifted of 7 cm-1 with respect to the solid substrates reported in 

the previous paragraph. This frequency shift is relatively small and indicates that the 
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electronic structure of the molecules is not dramatically perturbated. It may be due to 

the different structure the substrates (liquid sample on cAg-colloids vs dried sample 

on cAg-paper substrate) and of the sample preparation. Of course, no features due to 

proteins are present in this case, due to the filtration step. The trend is similar for all 

the considered cases: the more the biofluid is diluted in the colloid, the more the SERS 

spectrum intensity increases and the signal-to-noise to ratio is reduced, with barely 

no effect on the relative intensities of the overall profile of the spectra, with some 

exceptions.  

RBCs spectra are almost superimposable in the whole concentration range. Brazhe 

(2012) found the same on erythrocytes mixed with hydroxylamine-reduced silver 

NPs with a 532 nm laser, proving that the shape of the peaks was stable over four 

ratios, with growing intensities for more diluted samples [125]. This effect may 

address to the favorable probability for a larger number of molecules to adsorb on the 

NPs surface: the larger the number of adsorbed compounds, the more intense the 

signal. Conversely, when the number of available adsorption sites on the metal surface 

is reduced with respect to the analytes (i.e., 9:1 Ag ratio), the number of aggregate and 

hot-spots is statistically lower for a same focal volume. The result is a lower signal 

enhancement.  

 

 Volumetric ratio 

µL blood : µL cAg 1:9 2:8 3:7 4:6 5:5 6:4 7:3 8:2 9:1 

Label 1:9Ag 1:4Ag 3:7Ag 2:3Ag 1:1Ag 3:2Ag 7:3Ag 4:1Ag 9:1Ag 

Figure 6.4 Effect of the cAg-colloids dilution on filtered RBCs and serum. 

Measurements have been acquired with the 785 nm laser; data are vector 

normalized and reported as mean ± 1 standard deviation (shaded area) of several 

independent replicas. The y-labels replicates the effective ratio and Table 6.1 is 

reported again for a clear read. 
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The remarkable intensity of the peak at 485 cm-1 in all the five cases might suggest a 

charge transfer interaction between the unknown compound and the metal NP, 

typical of the thiol moieties. Indeed, several authors assign the band to a S-S 

vibrational mode, often hinting to the cysteine bridges in proteins (i.e., hemoglobin or 

lysosomal proteins, rich in disulfide bonds) [71,115,119,130]. However, our 

experiments on filtered biofluids clearly demonstrate that this cannot be true, as 

filtration removes the macromolecular fraction (> 10 kDa), but the 485 cm-1 band is 

still present. A possible explanation is that small peptides might have passed through 

the 10 kDa filter, or simply attribute it to other low-molecular weight compounds, still 

unknown. Whatever the origin of this band is, it always occurs together with bands at 

1220 and 1586 cm-1, which can thus be ascribed to a prominent but still unknown 

metabolite.  

Serum samples show a peculiar behavior: the relative intensities of the coupled peaks 

at 485 and 1223 cm-1 on one hand, and at 638 and 1130 cm-1 on the other, undergo an 

opposite trend starting from the 1:4 Ag dilution upwards, with the more diluted case 

dominated by the purine peaks, which decrease in the higher ratio case in favor of the 

unknown compounds. A possible explanation may regard the competition between 

analytes in terms of concentration versus affinity. Our speculation addresses the 

unknown molecule to be more concentrated in biofluids than the purine and to be 

able to saturate the NPs even at high NPs concentration, hence to dominate the SERS 

spectra. On the contrary, purines have a higher affinity to the NPs although their 

concentration is poor, hence their contribution to the SERS signal prevails when they 

can adsorb on a larger number of metal sites. However, this is only a hypothesis. In 

our view, the key to explain this behavior lies in the identification of the unknown 

compound responsible for the 485, 1220 and 1586 cm-1: once its chemical structure 

is known, targeted experiments with the pure substance could shed some light on its 

competition with uric acid for the adsorption on Ag.  

All these aspects are relevant and need to be unraveled, as the potential use of serum 

(and plasma) for clinic purposes requires a clearer description of the spectral trend 

and profile. 

 Effect of filtration and lysis on SERS of biofluids 

In the superabundance of constituents of blood, three macroscopic classes can be 

roughly identified: small molecules (i.e. metabolites), macromolecules (proteins, 

DNA) and cells (PBMCs, RBCs and platelets). In their race for the NPs surface, the open 

question is if a preferential adsorption occurs and how we can recognize it. To this 

aim, we performed simple preprocessing steps able to induce changes in the sample 

composition or species concentration. The blood fractions underwent two kinds of 

procedures: lysis (for the cells case) and filtration in cross combination, so that four 

classes of processes were obtained. Samples were: non-lysed and unfiltered, non-

lysed and filtered, lysed and unfiltered or lysed and filtered, as reported in Table 6.2 

and in Figure 6.1. However, only two examples are shown for a clearer comparison, 
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as previously reported: RBCs and serum. Again, similar spectra can be observed for 

blood and plasma, respectively, whereas the spectra of PBMCs are flawed by the 

background due to the poor concentration. The excluded spectra are reported 

separately in Appendix 3, for completeness.  

In Figure 6.5, the effect of lysis and filtration treatments compared to the untreated 

samples (not-lysed and unfiltered) on cAg-paper substrates. The cAg-colloids have 

been here set aside, since the effect of filtration has already been discussed. The band 

assignment is the same already described, with the unknown compound with an 

intense band at 485 cm-1, the purine region at about 735 cm-1 and between 1300-1400 

cm-1, the uric acid signature at 650 cm-1 and 1130 cm-1, the amide I band a 1628 cm-1 

and the Phe peak at 1002 cm-1. The main differences can be addressed to the 

qualitative alteration of the relative intensities among these groups of bands. 

Filtration seems to not affect the serum spectra, and the only evidence is the intensity 

reduction of the amide I band (1650 cm-1). On the contrary, treatments induce some 

alterations in the RBCs spectra. Lysis causes a slight increase of the average purines 

peak with respect to that of the unknown compound in unfiltered RBCs. If our 

hypothesis on the competitive binding of these two classes of molecules is true, lysis 

causes dilution of the sample and reduces the probability for the binding of the 

unknown compound in favor of the purines one. RBCs proteins are present on the 

metal surface, although less than in the serum case. Proteins in biofluids are able to 

bind other molecules (e.g., serum albumin). When filtration occurs, the main effect on 

the spectra regards the alteration of the intensity ratio between 735 cm-1 and 485 cm-

1 peaks and is symptomatic of a different degree of interaction with the proteins. 

Filtration impoverishes the sample of everything bound to the proteins and increases 

the relative concentration of the remaining species.  

The unfiltered and intact RBCs on cAg-paper spectra match what was observed by 

Drescher (2013) with the same protocol, but on colloidal cAg (laser source: 785 nm) 

[131]. Moreover, Genova (2017) observed that lysis of intact cells and the proteins 

removal do not heavily affect the overall SERS spectra and neither does the presence 

of organelles, membranes, stress grains or macromolecules in the unfiltered samples 

[119]. Indeed, in our case, non-lysed and lysed RBCs display similar spectra, but this 

might be due to the disruption the intact RBCs underwent in the freezing-thawing 

procedures during the sample preparation. Also, a partial lysis as a consequence of 

the interaction with the nanostructured metal surface cannot be excluded.  
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Figure 6.5 Effect of lysis and filtration. Â = cAg-paper solid substrates. 

Measurements have been acquired with the 785 nm laser; data are vector-

normalized and reported as mean ± 1 standard deviation (shaded area) of several 

independent replicas. 

 

In conclusion, the lysis and filtration steps do not affect that much the SERS spectra 

under the conditions chosen for these experiments, although they can alter the 

relative concentration of metabolites and their peaks intensities.  

However, whole blood and intact RBCs revealed to be not perfectly suitable for SERS 

analysis on our solid paper-based substrates: they require additional washing steps 

before the measurements to remove the heme fraction, otherwise the red 785 nm 

laser would photodamage the sample also with low source power. For this reason, 

blood and RBCs on cAg-paper are not going to be further used in this project. 

For the practical application of label-free SERS on liquid biopsies, the use of plasma 

and serum, both filtered or unfiltered, can easily overcome the background issue and 

their spectra have been demonstrated to be more sensitive to metabolic variation. 

Moreover, the choice between the developed cAg paper-based solid substrates or cAg-

colloids is only ruled by convenience, often connected to the available volumes of 

sample, since the spectral features are almost identical. 
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6.4 Highlights: 

¶ The use of Raman and SERS spectra (with cAg-colloids and cAg-paper) of 

whole blood and RBCs is not suggested for untargeted-metabolomics studies, 

since fewer metabolites are detected with respect to plasma or serum. 

Moreover, whole blood and RBCs are more easily subjected to photodamage. 

¶ Plasma and serum SERS spectra are more similar and display bands due to 

metabolites such as purines and uric acid. The metabolic profile as detected by 

SERS can be altered by preanalytical procedures (i.e., long waiting before the 

fraction separation and filtration). The main outcome is an increased 

hypoxanthine levels due to the extracellular metabolism of purine: cellular 

fraction is not involved here, but filtration can stop the process, as the 

enzymatic fraction would be removed. 

¶ Ratio: higher samples dilutions imply higher probability for the analytes to 

reach the metal surface and to be detected. The overall profile is not that 

affected, although some alteration in the relative intensities can be observed 

in plasma and serum. In general, 1:1 and 1:9 ratios provide the same pattern 

in whole blood and RBCs, except for the intensities. PBMCs signature is sample-

preparation dependent and requires further investigations. For applicative 

purpose the ratio choice may depend on other factors, like the available 

amount of sample. 

¶ Filtration: while it is essential to obtain SERS spectra from colloids, it remains 

an optional step for SERS on solid substrates. Proteins affect the spectra only 

to a limited extent, and the overall shape of the spectra does not vary. It is an 

additional step that can prolong the sample preparation protocol. 
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7  The Nanostructure-Biofluid interface: a model 

The understanding of the boundary conditions and the mechanisms 

involved in the bioanalytical sensing are fundamental aspects, which 

need to be unraveled as well as the applicative ones. Unlike this 

approach seems to be a step back, it is actually a step forward in the 

study of the biofluids spectra, to further define the role of proteins in 

biofluids in the frame of SERS investigations. The complexity is 

reduced to a model system composed only by human serum albumin 

and three metabolites, known to commonly appear in the SERS 

spectra, as stated in § .6 From another perspective, proper SERS 

substrates are a tool for the analysis of the so-called protein and non-

protein corona. 

7.1 Background 

Nanoparticles are playing and will play an important role in the modern and future 

society, considering their widespread application all over diversified fields such as 

medicine, cosmetics, industry, and the impact they have on living organisms and on 

the environment. 

Something happens when NPs get in touch with biological matrices. Protein corona 

(PC) is the classic name given to the protein layers spontaneously formed around 

nanoparticles, irrespective of their nature, when put in contact with a biological 

environment (e.g. biofluids, cytosol). The physicochemical properties of this assembly 

depend on the NPs, on the media composition and its evolution in time. In particular, 

the corona is called “hard” when part of the proteins remains on the NPs surface for a 

long time preventing the adsorption of other molecules. Otherwise, the corona is 

“soft” when the macromolecules on the NPs surface dynamically exchange with the 

surrounding medium. This can be a consequence of the evolution of the composition 

of the solution, or due to kinetics and thermodynamics driving forces, but little is 

known about this process in literature [132,133]. Anyways, research could benefit 

from PC for signaling when NPs are built for specific targets, but it may become a 

drawback if the NPs function is hampered by the PC. The latter is the case when SERS 

is implemented with colloidal metal nanoparticles. As far as SERS is concerned, the 

presence of proteins in biofluids and the formation of PC hinders NPs aggregation, 

limiting the hot-spots formation and the enhancement of the scattered light. 
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The introduction of paper-based solid SERS substrates helps to overcome the issue of 

the hampered nanoparticle aggregation, since in substrates obtained by a bottom-up 

approach NPs are pre-aggregated and immobilized on a solid support. Proteins, as 

well as other low molecular weight molecules, can adsorb on its surface and now their 

SERS signal can be detected, overcoming the lack of aggregation issue. In the frame of 

the label-free SERS analysis on biosystems, the spotlight shifts to the detection of 

small metabolites, since the SERS cross-section for proteins is usually low [134]. Much 

less, in fact, is known about the “non-protein corona”, i.e. the adsorbed layer formed 

by low-molecular weight metabolites. SERS spectra of biofluids are offering us an 

insight into this “non-protein” or “metabolic” corona, but the interplay between these 

metabolites and the protein corona is completely unexplored (Figure 7.1).  

 

Figure 7.1 Sketch for the non-protein (left) and protein (right) corona.  

 

The aim of this Chapter is to interpret the complexity of the biological matrix reducing 

it to a model system and to provide a systematic analysis on the competitive 

adsorption on nanostructured metal surfaces of small metabolites commonly 

observed in SERS spectra (e.g. adenine, hypoxathine, uric acid). Moreover, we will try 

to examine how human serum albumin (HSA), one of the most abundant proteins in 

serum, can quantitatively affect the adsorption of such metabolites. Adenine, 

hypoxanthine and uric acid are purine metabolites and their presence within the SERS 

spectra has been discussed in § 6 and confirmed in literature [30,115]. They are 

poorly soluble in water and their concentration in blood range between 0.2 – 0.6 µM 

for adenine, 1-10 µM for hypoxanthine and 200 – 400 µM for uric acid [135]. These 

broad ranges derive from the huge variability among organisms, gender, age and 

pathological conditions. 

 All the measurements have been performed with the in-house developed solid SERS 

substrates, described in § 5, assuming to be able to identify concentration/signal 

relations. The choice of the substrate protocol accounts for the good spectroscopic 

performances in terms of signal-to-noise ratio for the whole concentration ranges. 

Furthermore, the objectives of this work include: (i) analyzing the adsorption binding 

trend of low molecular weight biomolecules in the physiological concentration range 

metabolites + proteins 

metabolites 
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and above; (ii) verifying the effect of protein filtration on the SERS spectra on a 

mixture of the considered analytes in their physiological concentration; (iii) 

evaluating the diffusion of the small metabolites through the protein layer on the NPs 

and vice versa. All these goals are based on the univariate analysis of concentration-

sensitive peaks, by means of SERS spectra on the used solid substrates, in an effort to 

perform quantitative determinations. 

These data would be a step forward in the understanding of spectra of biological fluids 

and in the identification of a rationale for the binding on NPs phenomenon of both 

macromolecules and small ligands through SERS. 

7.2 Materials and Methods 

 SERS substrate fabrication 

The solid substrates have been prepared according to the procedure #2 reported in 

Chapter 5, starting from citrate-reduced silver NPs according to Lee and Meisel (cAg-

colloids). For the list of reagents see Appendix 1; for the substrate fabrication protocol 

and characterization, please refer to § 5.  

 SERS instrumentation 

The measurements have been performed in air at room temperature with a i-Raman 

Plus portable system (BWS465-785S) connected to a compatible Raman video 

microscope (BAC151B) and collected with the BWSpec software (version 4.03_23_c), 

by B&W Tek (Newark, DE). Excitation was obtained with a CleanLaze 785 nm laser 

with an output power of about 400 mW. Laser light is delivered to the sample and 

collected via an optical fiber probe. The Raman spectrometer uses a quantum 

efficiency CCD array detector with a wide spectral coverage (65-4200 cm-1) and a 

spectral resolution of 2.4 cm-1. Spectra collection used a 10 s CCD exposure for a single 

accumulation with a laser power at the sample of 138 mW (10%). This power level 

has been chosen in order to avoid samples and substrates photodamage. The spot 

diameter at the sample was of 105 µm, channeled through a 20x Olympus objective 

(N.A. 0.25, working distance 8.8 mm). All the substrates were placed under the 

microscope on a standard glass microscope slide. Paracetamol has been used as 

reference before and during every data collection session to account for eventual laser 

drifts.  

 Sample preparation and spectra collection 

Adenine, hypoxanthine and uric acid stock solutions 1 mM were prepared dissolving 

the powders in NaOH 1M and diluting them in PBS up to the desired concentrations 

reported in Table 7.1. HAS 4% was prepared dissolving the powder in phosphate 
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buffered saline (PBS) 1x. For the adsorption curve trial, each aliquot of the 

metabolites solutions was also prepared in presence of HSA 4% for a final volume of 

500 µL. The concentration ranges differ from one to the other, with crowded points 

around the physiological conditions. The solid substrates were cut into 4x4 mm piece 

and immersed the solution for 5 minutes, then thoroughly washed in MilliQ and sit to 

let dry for 30 minutes before measurements collection. Each condition has been 

observed on three substrates and in several replicas. 

 

 Concentrations (µM) 

Adenine ± HSA 4% 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 5, 10, 15, 25, 50, 75, 100 

Hypoxantine ± HSA 4% 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 25, 40, 50, 75, 100 

Uric Acid ± HSA 4% 10, 50, 100, 150, 200, 225, 250, 275, 300, 320, 350, 375, 400, 425, 450, 475, 500 

Table 7.1 Concentration ranges for the analysis of the adsorption curves. 

For the mixed solution and the evaluation of the effect of protein filtration, the 

metabolites concentrations were: adenine 0.2 µM, hypoxanthine 10 µM, uric acid 250 

µM, in the same batch. Both HSA 4% and HSA free versions were prepared. The 

solutions were used as prepared and after centrifugal filtration with 3 kDa cut-off 

Amicon Ultra 0.5 mL filters (Merck, DE), 15 minutes at 14000 g at room temperature. 

Protein-free metabolites solutions were filtered too in order to include the effect of 

the filtration efficiency. The solid substrates were cut into 4x4 mm piece and 

immersed the solution for 5 minutes, then thoroughly washed in MilliQ and sit to let 

dry for 30 minutes before measurements collection. Each condition has been 

observed on three substrates and in several replicas (Figure 7.2). 

Controls are included as filtered protein-free solutions and with-protein unfiltered 

residual. 

 

 

Figure 7.2 Schematic procedure: evaluation of the protein removal by centrifugal 

filtration. 

The evaluation of the diffusion through the protein barrier involved the single solute 

solutions of adenine 10 µM, hypoxanthine 10 µM, uric acid 250 µM and HSA 4%. For 

the samples preparation, two orders were followed: (i) the silver solid substrates 

were immersed for 5 minutes in the metabolite solutions, rinsed in MilliQ water, 
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immersed for 5 minutes in HSA 4% solution, rinsed again and let dry for 30 minutes 

before spectra collection; (ii) the same procedure as before was followed, but 

inverting the order of HSA and metabolites. Each condition has been measured in 

several replicas (Figure 7.3). 

 

 

Figure 7.3 Schematic procedure: metabolites permeation through the protein 

barrier on the solid substrate (grey square). 

 Data analysis 

Spectra have been entirely processed in the R environment [121] using hyperSpec 

[122], baseline [123], ROCR [136] and MASS [55] packages and other in-house 

developed scripts for spectra visualization. 

The steps included: (i) Raman shift range selection, (ii) baseline correction (package 

baseline, method als, lambda = 6), (iii) smoothing for noise reduction (data spacing = 

3cm-1), (iv) vector normalization. 

The criteria for the baseline choice meant to avoid artifacts, and the als (asymmetric 

least squares) allows a correction by the 2nd derivative constrained weighted 

regression, with lambda as constraining factor. The smoothing procedure returns 

evenly spaced spectra in the selected range, without the risk of overfitting. The 

smoothing is useful to reduce the signal-to-noise ratio through the loess (locally 

estimated scatterplot smoothing) function. It interpolates each spectrum onto a new 

x-axis with a local linear fitting by weighted least squares of a polynomial surface on 

neighbor segments, and the size of the neighborhood is controlled. 

7.3 Results and Discussion 

 Adsorption curves 

The comparison between the adsorption of metabolites on the surface and the same 

process in presence of HSA allows to evaluate the influence of the protein on the final 

SERS spectra. To this aim, the study has been extended to a wide range of metabolites 

concentrations with the double intent to characterize the whole system and to 

investigate the potential of the solid substrate in terms of analytes detection. 
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In Figure 7.4, the typical SERS spectra of adenine, hypoxanthine, uric acid and HSA on 

our silver solid substrates obtained with a 785 nm laser source are reported. Their 

profiles are known from literature and the intensity of their peaks accounts for the 

orientation of the molecule and its functional groups with respect to the silver 

nanostructured surface. Table 7.2 summarizes the assignment of the vibrational 

modes of the purines in analogy to what is reported in literature for the adsorption 

on silver NPs [137–139]. For the purines, the most characteristic peaks belong to the 

in-plane ring breathing mode sitting around 735 cm-1 for adenine and hypoxanthine 

and shifted to 640 cm-1 in the uric acid spectrum. The gap in wavenumbers can be 

related to the covalent structure of the uric acid, which is different from the other 

purines and rich in carboxyl groups. Density functional theory (DFT) calculations and 

experimental SERS studies on adenine seem to indicate that it tends to adsorb “edge-

on”, namely orthogonal to the NPs surface through the nitrogens in position 3 and 9 

[137,140–142]. This hypothesis is supported by the fact that the intense ring 

breathing mode exclude a “face-on” coordination through the p electrons and the 

band of the in-plane C8-N9 and N9-H deformation (1335 cm-1) is well amplified in 

both adenine and hypoxanthine spectra, hence it should be close to the metal surface. 

 

Hypoxanthine is chemically similar to adenine: they differ only for a carbonyl and 

amine group in C6, hence it is supposed to adsorb in the same way on silver and the 

intense band at 1095 cm-1 (C8-N9 rocking) can confirm it. Unlike adenine, 

hypoxanthine shows two overlapped ring breathing bands, with maxima shifted at 

725 cm-1 and 744 cm-1, which has already been observed on both silver [137] and gold 

 

Figure 7.4 SERS spectra of adenine, hypoxanthine, uric acid and human serum 

albumin (HSA) on silver solid substrates with (laser source 785 nm, laser power 

10%). Data are baseline subtracted, vector normalized and stacked for the sake of 

clarity. 
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[138] NPs; this aspect will be further addressed later in this section. Uric acid has 

three carbonyl groups that stretch at 1650 cm-1 together with the C-N stretching and 

the N-H in-plane bending of the pyrimidine.  

 

SERS* cm-1 Adenine*** Hypoxanthine*** Uric Acid*** 

500 (s)   C-N bnd, ip ring vibrations 

565 (s)  Ring deformation  

575 (w) oop C2-H, N9-H   

625 (m)  Ring breathing  

640 (vs)   C=O bnd, ring breathing 

645 (m) wag C5-N7-C8   

730 (vw)   N-H bnd 

735 (vs) Ring breathing Ring breathing**  

815 (m)   C-N bnd, ip ring vibration 

888 (m)   C-N str, oop N-H bnd  

923 (w)  N1-C2-N3 bnd  

935 (vw) str C5-N7   

1020 (m) ip ring vibrations ip ring vibrations C-N str, ip ring vibrations 

1095 (m)  C8-N9 rck  

1134 (s)   C-N, C-C str  

1150 (vw) str C8-N9, bnd N9-H   

1206 (m)   ip N-H str, bnd 

1275 (m)  C8-H8 imidazole  

1325 (s)  C2-H2 imidazole  

1335 (s) 

 ip str N1-C2, C6-N1,  

C4-C5, N3-C4, C8-N9, 

bnd N9-H 

  

1368 (w)   C=O 

1375 (s) 

ip bnd C2-H, N9-H, 

N10-H12, str C5-N7, 

C6-N10, N1-C2 

  

1650   CO str, CN, ip NH bnd 

Table 7.2 Band assignments according to [137–140]. str = stretching, bnd = bending, 

rck = rocking, wag = wagging. * (vs) = very strong, (s) = strong, (m) = medium, (w) 

weak, (wv) = very weak. ** In hypoxanthine it is split in two at 725 (imide) and 744 

cm-1 (amide). ***ip =in-plane, oop = out-of-plane. 

 

The band at 888 cm-1 is particularly intense and belongs to the N1-H out-of-plane 

bending in the pyrimidine ring between the carbonyl groups. This evidence indicates 

that the molecule adsorbs on silver through the C=N, N-H and C=O moieties of the six 
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terms ring and the out-of-plane bending band at 888 cm-1 suggests a tilted orientation, 

as only in this case is the z tensor of the polarizability of N1-H would be perpendicular 

to the silver surface [142]. Albumin has a low SERS cross section; the spectra is noisy 

and only the weak phenylalanine peak (1003 cm-1) is evident (noise is amplified due 

to the vector normalization procedure). Before going any further, a concern for the 

analysis of these model solutions to be highlighted is the effect the pH would have on 

the SERS spectrum. Purines are known to be sensitive to pH changes and this effect 

may alter their orientation on the silver surface, resulting in changes in relative 

intensities [77]. Since purines are poorly soluble in water at neutral pH, they have 

been primarily dissolved in alkaline solution (NaOH 1M) and then diluted to the 

desired concentration with PBS. This implies that the higher concentrations are not 

completely buffered and still slightly basic, and this, in turn, influences the 

deprotonation states of the molecule, according to their pKa. Figure 7.5 reports the 

molecular structure, the tautomers and the pKa of the three metabolites. At neutral 

pH, adenine is uncharged in solution, while hypoxanthine exists in the two 

monoanionic amide-imine tautomers (N9 deprotonated) like uric acid, deprotonated 

at N3 [142–144]. For the sake of clarity, only the hypoxanthine tautomerism has been 

depicted. 

 

Figure 7.5 Adenine, hypoxanthine and uric acid structures and protonation state 

according to pH. All the purines undergo isomerism. Here the amide-imide 

tautomerism is reported only for hypoxanthine. 
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In this frame, the pH values of the three samples at the used conditions are reported 

in Table 7.3. 

 

Adenine Hypoxanthine Uric Acid 

C (µM) pH C (µM) pH C (µM) pH 

0,1 7,45 0,1 7,38 1 7.40 

0,2 7,45 1 7,40 10 7,89 

0,4 7,45 2 7,73 50 11,08 

0,6 7,45 3 7,73 100 11,54 

0,8 7,47 4 7,8 150 11,75 

1 7,50 5 7,85 200 11,90 

1,2 7,58 6 7,86 225 12,05 

1,4 7,60 7 7,86 250 12,06 

1,6 7,62 8 7,88 275 12,01 

1,8 7,65 9 7,88 300 12,04 

2 7,73 10 7,89 325 12,07 

5 7,85 15 8,20 350 12,11 

10 7,89 25 10,47 375 12,15 

15 8,20 40 10,8 400 12,18 

25 10,5 50 11,08 450 12,30 

50 11,09 75 11,25 500 12,41 

75 11,25 100 11,54   

100 11,54     

Table 7.3 pH values for the three metabolites solutions at the experimental conditions. 

 

Figure 7.6 a and b report the average SERS spectra of adenine in the whole range of 

concentrations. For better clarity, only some representative concentrations have been 

included. For the univariate analysis, the area under the ring breathing peak is 

evaluated, as it is the dominant feature and it is concentration-sensitive. The plots in 

Figure 7.6 c and d report the evolution of the peaks area versus the concentration of 

the analytes. The relative intensities of the peaks do not undergo significant changes 

in the adenine spectra, nor shifts are present, suggesting that adenine does not change 

its orientation on the metal surface as the concentration increases. The area of the 

735 cm-1 peak follows a sigmoidal trend both in absence and presence of HAS (the 

dashed lines in Figure 7.6 c are guide for the eye). The effect of albumin is evident: the 

peak is proportionally less intense over the whole concentration range, and this can 

be due to the steric effect of the protein on the metal surface, which hamper or 

compete with the metabolite adsorption, or to an adenine sequestration upon HSA-

binding. Albumin is able to bind various ligands, negatively and positively charged, 
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endogenous and exogenous, included adenine, sequestering it from the bulk solution, 

thus hindering adsorption. The adsorption mechanism is still under investigation and 

has not been unambiguously defined, hence no fitting equations are going to be used 

to extrapolate binding constants for the observed phenomena. However, the trend 

resembles a cooperative behavior, as described in § 4. Cooperativity is a common 

trend that can be identify in several fields and implies an acceleration of the process 

ongoing after an initial inertial phase. The reason of the acceleration varies depending 

on the system. The typical curve shows a slow beginning, where the signal is not 

dependent on concentration, followed by a dramatic increase in the adsorption rate 

that culminate in the final plateau, in which the monolayer condition is reached or in 

which the maximum number of the analyte molecules are adsorbed [107]. The lower 

and upper limits and the slope of the sigmoid strictly depend on the features of the 

solid substrate with respect to the analyte under exam. In general, purines tend to 

form clusters in aqueous solution by means of π-π stacking interactions, which may 

be the cooperation driving force. This is a type of hydrophobic interaction between 

the purines induced by the solvent (water) and it is enthalpically-driven rather than 

entropically-driven. Indeed, the energy lost in the disruption of the hydrogen bond 

web during the aggregation is recovered by the stabilization of the stacked clusters 

[145]. The aggregation of purine in aqueous solution has been extensively reported 

in literature as well as their orientation on the silver and gold nanoparticles [146]. 

Nevertheless, little is reported about the stacking of purines bound by a metal surface 

and their preferential mutual orientations. Our data seem to have no clear indication 

of an ongoing hydrophobic pi-pi interaction between adenine molecules, however, 

since no shift is detected upon increasing adenine concentration. Moreover, SERS 

spectra do not show any alteration of the peaks positions nor the identification of 

several population of orientation, hence it is possible to hypothesize that only one 

orientation is mainly detectable, namely the edge-on adsorption on silver through N3 

and N9. The experimental facts might be compatible with an initial edge-on 

adsorption of small adenine aggregates from the solution, and not by individual 

molecules. This would explain why shift are not detected upon increasing adenine 

concentration, even admitting a cooperative mechanism of adsorption. 
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Figure 7.6 Representative SERS spectra of adenine (a) without HSA and (b) with 

HSA, at four crescent concentrations reported as average ± 1 standard deviation 

(shaded area). Laser source 785 nm, laser power at the sample10%, 1 scan of 10 

seconds of exposition. (c) Mean (± 1 standard deviation) of the peak area trend 

versus concentration and attempt of a sigmoidal fitting, (d) magnification of the 0.1 

– 2 µM region.  

However, further examinations are required to confirm this hypothesis. In the 

physiological range (0.1 – 2 µM, Figure 7.6 d), adenine shows a linear trend for the 

HSA and condition. The setting-up of an accurate purine quantification method goes 

beyond the purpose of this experiment, but, nevertheless, preliminary data indicate 

that this might be feasible. 

In the case of hypoxanthine spectra (Figure 7.7 a and b), a significant change in the 

relative intensity of the ring breathing doublet at 725 cm-1 and 744 cm-1 happens. The 

discussion on its origin involves several factors, such as the orientation of the 

molecule on the NP surface, the protonation state, the presence of isomers. Actually, 

hypoxanthine exhibits remarkable amide-imide tautomerism (H−N−C=O ᵶ 
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N=C−O−H, Figure 7.5) that may primarily account for the band shift. The intensity of 

the blue shifted peak increases, reaches an equilibrium at about 50 µM with the red 

shifted and then exceeds it in terms of intensity. The pH may have a role in this. 

Indeed, hypoxanthine exists in different structures in different pH. In physiological 

buffer (pH 7.4), the amide form in Figure 7.5 is stable, whereas the imide prevails at 

alkaline pH [135]. At 25 µM the pH increases, induces the second deprotonation at N1 

and the stabilization of the amidic structure, since the oxygen can more efficiently 

delocalize the negative charge. The negative charge induces a change in the 

orientation of the molecule with respect to the silver surface. According to literature, 

it goes from an almost perpendicular position coordinated through the N3 and N7, to 

a tilted orientation or nearly parallel to the metal surface including the electrons of 

N1 and O6 to the interaction [137]. Conversely, the presence of HSA alters the spectra 

pattern, not only as far as the overall intensity is concerned. The ring breathing band 

is present but does not change neither with concentration or pH in terms of relative 

intensities and suggests the stabilization of the amide form. A possible reason can be 

found in the stabilizing role of the protein on the silver surface, which hinders 

sterically the orientation change of the small molecules and somehow “fixes” them on 

the surface. However, since the double band accounts for the population of the two 

tautomers, the binding curve has been built including the area under the spectra in 

the region between 690 cm-1 and 770 cm-1. The trend of the peak area versus sample 

concentration is different from what observed for adenine: the sigmoid is flattened 

and it does not reach a plateau in the considered concentration range, but again, the 

HSA affects the binding kinetics of the metabolite. The range of interest (1-10 µM) 

does not allow any kind of quantification within these experimental conditions: the 

signal is weak, and few differences appear among the low concentrated samples. 
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Figure 7.7 Representative SERS spectra of hypoxanthine (a) without HSA and (b) 

with HSA, at four crescent concentrations reported as average ± 1 standard 

deviation (shaded area). Laser source 785 nm, laser power at the sample10%, 1 

scan of 10 seconds of exposition. (c) Mean (± 1 standard deviation) of the 735 cm-1 

peak area trend versus concentration, (d) magnification of the 0.1 – 10 µM region. 

 

Uric acid displays a pattern similar to the hypoxanthine one (Figure 7.8). Indeed, a 

splitting of the ring breathing peak (640 cm-1) appears starting from 150 µM and 

becomes more evident at higher concentrations. Even in this case, the high pH 

promotes the deprotonated form and its several amide-imide tautomers which 

adsorb differently on the silver nanoparticles and broaden the ring breathing bands 

[147]. At the same time, the intensity of the C=O peak (1650 cm-1) decreases as far as 

the imide structure of uric acid prevails. The overall intensity of the spectra decreases 

with concentration, probable symptom of the increased molecular crowding 

surrounding the SERS substrates which may partially reabsorb the scattered signal. 

In presence of HSA 4% the situation changes, according to the hypoxanthine series: 

the ring breathing band is slightly asymmetric and the relative intensity with the C=O 



74 

 

peak is not changing in the concentration range, but a single preferential orientation 

is observed, namely the amide form, in analogy with the case of hypoxanthine.  

The evolution of the ring breathing peak area with concentration suffers of both the 

abundance of isomers at high pH and of the aforementioned issues due to the high 

concentration levels. It is not possible to identify a specific trend, then, although in 

this case, HSA has a surprising effect: the intensity and area of the peaks are higher 

with respect to the protein free case. This may reveal that the protein does not only 

show steric effects, but actively interacts with the dissolved species. In the adenine 

and hypoxanthine cases, HSA reduced their available concentration as freely diffusing 

species with a scavenging mechanism. In the uric acid case, HSA seems to promote the 

 

Figure 7.8 Representative SERS spectra of uric acid (a) without HSA and (b) with 

HSA, at four crescent concentrations reported as average ± 1 standard deviation 

(shaded area). Laser source 785 nm, laser power at the sample10%, 1 scan of 10 

seconds of exposition. (c)  Mean (± 1 standard deviation) of the 640 cm-1 peak area 

trend versus concentration. 
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adsorption of the metabolite. This point deserves further studies, in particular as long 

as the use of SERS solid substrates can be extended to biofluids analysis in which uric 

acid plays a key role. 

In general, paper-based solid substrates are great tools for the analysis of metabolites 

in presence of proteins, as the pre-aggregation reduces the SERS-suppressing effect 

of the protein corona. 

The protein corona is present anyway and this systematic approach revealed that 

albumin: 

1. changes the adsorption kinetics for the metabolites towards the metal surface, 

2. acts both as physical/steric and chemical hindrance for the metabolites, 

3. induces the preferential adsorption of peculiar stabilized chemical structure. 

Provided this, the answer to the original question “does albumin affect the adsorption 

process of small metabolites?” is positive. The next question regards whether the 

protein removal would further affect the SERS spectra of the system and how. 

 The role of protein filtration 

The SERS analysis of the blood constituents revealed how the filtration process can 

affect the relative intensity of uric acid, adenine and hypoxanthine. This effect has 

been evaluated in the simplified model system, where adenine, hypoxanthine and uric 

acid coexist in a mixture at their indicative physiological concentrations (0.2 µM, 10 

µM, 250 µM, respectively) both as protein-free and in presence of HSA 4%. All the 

samples have been filtered by centrifugation with a 3 kDa cut-off and the resulting 

SERS spectra are reported in Figure 7.9. To include the role of the filtration efficiency, 

also the protein free mixed solutes solution has been filtered accordingly. Indeed, both 

the filtered samples spectra display reduced intensities with respect to the 

corresponding unfiltered controls (high filter retention rate), but the profiles are not 

affected.  

Looking at the spectra, the most remarkable difference does not regard the filtration 

step, but rather depends on the presence of HSA in the solution. In the frame of the 

chosen experimental conditions, the contribution of hypoxanthine is the more 

pronounced in the protein-free solution, whereas the uric acid fingerprint is weaker. 

The addition of HSA to the solution heavily changes the spectral profile: the relative 

intensities of the 735/640 cm-1 bands are inverted and the uric acid bands emerge. In 

analogy to what observed in the previous paragraph, albumin reduces the 

hypoxanthine adsorption rate and enhances that of uric acid. So far, the mechanism 

behind this behavior is not clear. A partial explanation may involve the electrostatic 

repulsion between the metabolites, especially uric acid, and HSA. Indeed, the pH is > 

12 in the 250 µM uric acid solution, hence all the metabolites of the mixture are in 

their deprotonated form, as well as the protein, although little is known about the HSA 

conformation and the binding with purines in this extreme condition [148,149]. 

Surprisingly, the filtration of the mixed metabolites and HSA turns into spectra similar 
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to the unfiltered case: part of the adenine/hypoxanthine fraction is preferentially 

retained by HSA while uric acid increases in terms of relative concentration and its 

contribution to the spectra emerges. This may reveal an unseen aspect of the story, an 

intrinsic feature of the protein. It might be not the protein corona to modulate the 

metabolites-nanoparticle interaction, but it is the protein itself to specifically alter the 

chemical composition of the medium surrounding the nanoparticle, hence the final 

spectra.  

 

Figure 7.9 Effect of HSA filtration on the spectra of the mixed solutes solutions. (a) 

Average spectra ± 1 standard deviation are reported. Laser source 785 nm, laser 

power at the sample10%, 1 scan of 10 seconds of exposition. The boxplots focus on 

the area of the ring breathing of hypoxanthine/adenine and uric acid, with maxima 

at (b) 735 cm-1 and (c) 640 cm-1, respectively. Mix = metabolites mixture, Mix+HSA 

= mixture of metabolites and HSA 4%. Filtered (Fil.) and unfiltered (Unf.) data 

observed pairwise quantitatively show the filter interference on the sample 

recovery, and the introduction of HSA reverses the relative intensities of the two 

bands.  

 The metabolites permeation through the protein corona 

To complete the overview on the protein influence over the SERS spectra on silver 

solid substrate, we focused on the effect of HSA steric hindrance on the nanoparticles. 

In other words, how much is the protein permeable to small molecules? Conversely, 
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is the NPs-metabolite binding strong enough not to be altered after the addition of 

HSA? According to the protocol described in the Methods section, each metabolite has 

been adsorbed on the paper-based cAg substrate before or after the addition of HSA 

to the substrate itself (Figure 7.10). The conditions are different with respect to the 

previous tests: now metabolites and protein do not co-adsorb competitively, but they 

follow their own separated kinetics.  

The average spectra of adenine in the two conditions are comparable, whereas the 

hypoxanthine signal increases slightly when added after HSA. The point is that the 

metabolite is able to diffuse through the protein layer and reaches the NPs surface, 

but the uric acid example has a different outcome. The presence of pre-adsorbed HSA 

reduces the number of available sites and the small molecules are not able to 

overcome it. A reasonable explanation involves again the protonation state of the 

species: at the used concentrations and neutral pH, adenine and hypoxanthine are 

neutral or mono-deprotonated, respectively, and the electrostatic repulsion 

 

Figure 7.10 Metabolites permeation through the HSA layer. (a) Average spectra ± 1 

standard deviation. Laser source 785 nm, laser power at the sample10%, 1 scan of 

10 seconds of exposition. Labels on the right indicate the order of immersion. (b, c, 

d) Peak area values for the three metabolites in the two orders of immersion. 
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experienced with respect to HSA has a low impact on their adsorption. Uric acid exists 

in its fully deprotonated form at basic pH and may find hindrance to the permeation 

through a negatively charged protein. Hence, the HSA > uric acid case has a lower 

intensity with respect to the other case. 

In summary, the protein plays a key role in the adsorption kinetics of the considered 

metabolites, and it affects their diffusion from the solution to the nanostructure 

interface. Hence, extra-care is required when working with protein samples provided 

the complexity of interaction between macromolecules and small ligands which 

deeply depends upon their chemistry (protonation, pH, etc.).  

 

 

 

7.4 Highlights: 

¶ The presence of the protein and metabolic corona around nanoparticles 

mutually affects the outcoming SERS signal, especially when the two species 

co-adsorb. 

¶ Both chemical (specific binding, aggregation, impoverishment of the solution) 

and sterical hiderance (size exclusion effect) occur.  

¶ pH matters: high pH alters the protonation state and the 3D conformation or 

stacking of both protein and metabolites. 

¶ The SERS substrates we developed are stable up to pH = 12. 
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8 SERS and Diagnosis 

Established the fundamental aspects of the SERS technique in the 

bioanalytical field, it is now time to approach the clinic application. 

The open question regards whether or not the developed SERS sensor 

is able to correctly predict the state of health of an individual, 

pursuing the challenge of the Point of Care technology. 

8.1 Background 

 

Nowadays, early diagnosis of diseases is an absolute priority, allowing proper 

therapeutic choices and the improvement of living conditions. To date, only few 

diseases can take advantage of screening campaigns and prevention policy.  

In this frame, SERS has been drawing the clinical attention worldwide for over a 

decade, being a versatile, nondestructive and cost-effective technique for diagnostic 

and theranostic purposes [86,150]. It is now established that label-free SERS spectra 

of biofluids reflect the metabolic profile of the patient, playing its role in the 

metabolomic area. Therefore, it has been usefully applied in diagnostics to provide a 

new instrumental approach complementary to the accepted immunochemistry, 

histopathology and imaging techniques [31,36].  

In the latest years, several papers have been published on label-free SERS on biofluids 

for diagnostic purposes. Cancer diagnosis is the top-rated topic, including prostate 

[151–154], breast [31,155], lungs [155–157], bladder [95], colorectum [158], 

nasopharynx [159–161], esophagus [35,162], cervix [163], oral cavity [164], stomach 

[165], liver [99,161,166] tumors, but also hepatitis [167], chronical kidney disease 

[168], bacterial infections [169–172] and so on. Liquid biopsy is by far predominant, 

being minimally invasive in most cases. Saliva, serum, plasma, urine, cerebrospinal 

fluids are usually investigated. This is the real advantage of SERS application in 

diagnosis, allowing to avoid more invasive techniques like biopsy, while keeping a 

high accuracy with a rapid response, and reducing the physical and psychological 

impact on the patient.  

The full SERS potential is reached when spectra are unraveled through multivariate 

data analyses for supervised classification purposes (i.e., PCA-LDA). This aspect is an 

integral part of the studies presented here. 
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Established all these positive aspects, it is time to identify the proper way to channel 

the SERS diagnostic potential in the clinical routine. As remarked in § 1, the 

experimental set-up must be tailored for the specific application in order to guarantee 

optimal performances in terms of reliability, stability of results, user-friendliness, 

aiming at the Point of Care technology and reducing the costs for the health system. It 

is a long way, but the final goal would be to implement the diagnostic pathway within 

the screening or detection steps, bringing the analyses from the bench to the bedside 

(Figure 8.1). 

 

 

In this paragraph, three different frameworks have been proposed, namely breast 

cancer, liver inflammation and hepatocellular cancer. Particular attention has been 

given to the Design of the Experiment (DoE) trying to overcome some limits we faced 

in the past [31] and which are often found in literature, especially considering the 

number of tested subjects.  

 Role of the preanalytical steps  

Starting from the preliminary results reported in papers by Cervo and Bonifacio, 

attention has been paid to the samples collection and preparation [31,36]. In 

accordance with Premasiri, a mandatory requirement in the preanalytical step is the 

time of action. In particular, samples must be prepared and measured or stocked 

within 1 hour from the draw and cells (RBCs, PBMCs) should be separated from 

plasma or serum [33]. The reason lies in the increasing levels of hypoxanthine in the 

extracellular environment as metabolic product of RBCs with time at 4 °C: this can 

pass from the original µM level to the hundred µM in few hours. The same 

deterioration is found after freezing-thawing cycles, which must be limited. This 

ageing effect can heavily affect the SERS spectra: Ag NPs are extremely sensitive to 

purines concentration changes, as observed in the previous Chapters. If purines 

signature can prevail over other contributions, any consideration on spectroscopic 

 

Figure 8.1 The aim for a new diagnosis pathway with SERS. 
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data in terms of metabolic fingerprinting is flawed [33]. Conversely, SERS is often 

suggested as a powerful tool for the monitoring of purines levels in biofluids, like in 

forensic science for the ageing of blood samples, notwithstanding the fact that 

metabolites concentration is subject sensitive. 

Moreover, considerations should be given to the design of the experiment to be able 

to collect homogeneous data in terms of sample preparation and instrumental 

conditions, as well as to randomize the nanoparticles batches (this step is necessary 

in order to verify the robustness of the method and to simulate a realistic routinely 

application of the technique). 

 Breast Cancer 

Breast cancer (BC) is the main cause for cancer death in women worldwide and the 

most spread non-cutaneous female tumor in Europe [173,174]: in the lifetime, 1 out 

of 8 women experience BC.  

At the first diagnosis, early tumors are most frequently detected (50%, stage 0-1) with 

respect to the locally advanced ones (33%, stage 2-3). Metastatic tumors are rare 

(5%) [175]. Thanks to the progresses and the scientific knowledges obtained over the 

last 50 years on both the therapies and the screening tools, the survival rate for 

women after five years from the BC diagnosis rose up to 87%. This is a great result, 

but not enough: only in Italy, every year 12000 new cases of metastatic BCs are 

diagnosed, and about 36000 women must confront with this disease. The breast 

cancer screening is one of the first weapon able to reduce the mortality. Besides, the 

risk of overdiagnosis is still too high, and there are no methods to understand if a 

lesion would become an invasive cancer or not [176]. Since the late 70’s, the diffusion 

of mammography as the golden standard screening technique between 50 and 69 

years old paved the way towards early detection. Indeed, in Europe the survival rate 

increased up to 40% in the 5 years after the first diagnosis from the introduction of 

mammography, compared to a constant or slightly increased incidence [177]. 

Nevertheless, mammography is painful, exposes the subjects to X-Rays doses and 

entails high costs for the national healthcare systems, and this is an issue that 

hampers the spread of the screening all over the poorer countries. Ultrasounds are in 

general not recommended as screening techniques but can be used for a better 

investigation under clinic control. The main drawbacks of mammography are to be 

found in the overall high false positive (15%) and false negative rate (10%), 

commonly due to the heterogeneity of the breast tissue density in the screened 

subjects that induce misleading diagnosis [178,179]. Moreover, mammography is 

inadequate for young women for the same reason and the lack of alternative for early 

detection techniques leads to death more than 20,000 women younger than 50 in 

Europe every year, as BC in young age is usually more frequent (40% in Europe versus 

22% for over-50), aggressive and with a lower survival rate (Globocan 2108, 

gco.iarc.fr). Breast cancer classification can follow several standard parameters, like 

grade, type, stage and gene expression. The grade (1 - 3) is assessed by pathologists 
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observing the appearance of the tissue and cells after biopsy. It ranges from the 

normal-like cells to the unrecognizable cells due to growth. The type addresses to the 

location of the carcinoma (ductal, lobular, etc) and the invasiveness (in situ or not), 

including inflammatory BC, metastatic or rare BC forms. The stage (0 - 4) regards the 

evolution of BC and extension in volume and location. The classification considers the 

gene expression similarity to health cells (Luminal A-like and B-like), the amount of 

expressed HER2 (HER2+, HER2-), the presence of estrogen and progesterone 

receptors on the cellular membrane (ER+/-, PGR+/-). The subgroups are 

characterized by different diagnostic frequency, prognosis and therapy. For instance, 

Luminal A features a reduced proliferation and a better outcome with respect to the 

Luminal B, but is the most frequent. Triple Negative tumors are characterized by the 

absence of ER and PGR receptor and HER2 normal levels. They are rare, but still the 

most dangerous, difficult to treat and with the worst prognosis. These biomarkers are 

quantified on tissue biopsy. To date, no BC biomarkers have been approved in 

biofluids: in clinic, tests on serum include the quantification of the carbohydrate 

antigens 15.3 (CA 15.3) and of the carcinoembryonic antigen (CEA), which relate to 

the BC progression and to the therapy monitoring in advanced stages [176]. 

In the frame of a collaboration with the CRO Institute (Aviano, IT), label-free SERS has 

been applied for an early diagnosis on serum samples, aiming to identify the effect of 

cancer on metabolism, especially at the very first stage. The intent was to provide a 

complementary approach to the accepted immunochemistry and histopathology 

methods, following some preliminary results recently published by our research 

group [30,31] that provided good accuracy, sensitivity and specificity rate.  

  Liver disorders 

As known, liver plays a pivotal role in the metabolism and catabolism of lipids, 

proteins, amino acids, carbohydrates, hormones, urea and other building blocks. Liver 

diseases are strictly connected to the alteration of specific metabolic pathway, and 

this effect may be observed in the fingerprint of biofluids that SERS spectra can 

provide.  

In the frame of a collaboration with the Fondazione Italiana Fegato Onlus (Italian 

Liver Foundation, FIF, Trieste, IT) two projects have been developed to build up an 

early diagnosis liquid biopsy method able to discriminate: 

1. patients with several non-alcoholic fatty liver diseases (NAFLD), by means of 

plasma samples, 

2. patients with cirrhosis, hepatocellular carcinoma (HCC) and controls, by 

means of serum samples. 

The FIF Onlus supported and defined the inclusion criteria, the partial design of 

experiment and the samples recruitment. 
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8.1.3.1 NAFLD progression and diagnosis 

The non-alcoholic fatty liver disease (NAFLD) is a manifestation of the metabolic 

syndrome at hepatic level and is one of the most spread disorder worldwide (20-30% 

of the general population). It correlates with nutritional or metabolic disorders and 

with the increased fatty acid levels in serum: they accumulate in liver cells leading to 

steatosis and balloon cell degeneration [180]. Moreover, apparently healthy subjects 

can manifest these disorders, being then at higher risk [181]. 10% of NAFLD can 

evolve into more severe diseases, like nonalcoholic steatohepatitis (NASH), liver 

inflammation, fibrosis, cirrhosis and cancer (HCC) [182]. Although steatosis alone is 

considered non progressive, the molecular evolution to more complicated forms of 

liver disorders is still poorly understood (Figure 8.2) [183,184]. The correct 

identification of the stage of the disease spectrum is of paramount importance in the 

therapeutic choices, considering that severe conditions (i. e., inflammation or fibrosis) 

can compromise the organ regeneration, while mild ones (i. e., steatosis) can still be 

treated with no counter effects [185–187]. The gold standard for NAFLD diagnosis 

and staging is the liver biopsy, but the decision to perform this procedure is hard due 

to the high risk of complications. Currently, the non-invasive diagnostic techniques 

are reliable only for patients with body mass index (BMI) < 30 kg/m2 and include 

elastography, ultrasound, Magnetic Resonance Imaging (MRI), multivariate analysis 

of risk factors and hepatic enzymes levels. These methods are not suitable for patients 

with BMI > 30 kg/m2, making them a high-risk target. Moreover, the MRI is far from 

being an acceptable screening technique, as it is not effective in terms of time and 

costs, beside the fact that the multivariate algorithms are not reliable [188].  

 

 

Figure 8.2 Evolution of the non-alcoholic fatty liver diseases [189]. 

The main aim of this study is to provide a non-invasive and accurate diagnosis method 

to allow to distinguish between liver inflammation and the NASH, as they deserve 

different therapeutic regimes. NAFLD within the inflammation stage can be 
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pharmacologically treated, while worse liver failures may lead to the loss of liver 

function and, then, transplant is the only option. 

8.1.3.2 From cirrhosis to Hepatocellular Carcinoma 

The hepatocellular carcinoma (HCC) is the fifth most frequently detected neoplasia 

and the second leading cause of cancer-related death worldwide. It occurs mostly 

after the exposition of a cirrhotic liver (LC) to risk factors, such as B and C hepatitis 

viruses, alcohol addiction, nutrition and metabolic disorders. LC is also a limiting 

factor for anticancer treatments, as it alters pharmacokinetics, increases the risk of 

hepatotoxicity and may limit surgical approaches. As a consequence, it is fundamental 

to distinguish between cancer and LC for a proper treatment of the diseases [190]. 

For instance, liver transplant is the principal potential cure for both of them: data 

show that the 70% of patients is alive after 5 years from the surgery [191]. However, 

the shortage of donors compels the identification of priority criteria for transplant 

itself or other surgery alternatives, which must pass through the correct identification 

of the boundary between HCC and LC [192]. The urgent need is to find a cancer 

diagnostic tool that could overcome the issues which are connected to the common 

routines. To date, HCC detection follows the Barcelona clinic liver cancer (BCLC) 

staging system through the positive accordance of two imaging techniques 

(ultrasound, solid nuclear magnetic resonance, axial tomography) [193]. However, 

they are only able to detect tumor masses with diameter higher than 5 mm, hence in 

an advanced stage [194]. On the other hand, the analyses of the HCC biomarkers and 

molecular mechanisms of oncogenesis have been going through metabolomic studies 

on liquid biopsy that lead to an earlier detection of HCC. Liquid nuclear magnetic 

resonance, liquid and gas chromatography hyphenated to mass spectrometry are 

some of the available analytical techniques, but still too onerous in terms of costs and 

machine-time considered their low sensitivity [20,195,196].  

In this frame, SERS is tested again for the multi-marker label-free diagnosis of these 

diseases, as depicted in the former clinic cases. Positive results would allow to 

introduce the SERS technique as support to the clinical analyses to identify faster a 

proper therapy or to evaluate sooner the need to turn to transplant. 

8.2 Materials and Methods 

The procedures shared by the three experimental sections are presented hereafter in 

order to avoid redundancy. The common parts relate with the SERS substrate 

fabrication, the instrumental apparatus and data analysis protocol. Conversely, specific 

cohort recruitment procedures, sample preparation, spectra collection, results and 

discussion will be found in the dedicated sections. 
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 SERS substrate fabrication 

Citrate-reduced silver nanoparticles have been synthetized according to Lee and 

Meisel [17], used both in colloidal form (cAg-colloids) and fixed on a paper-based 

substrate (cAg-paper). The solid substrates have been prepared according to the 

procedure #1 reported in Chapter 4, starting from citrate-reduced silver NPs 

according to Lee and Meisel (cAg-colloids). For the list of reagents see Appendix 1; for 

the substrate fabrication protocol and characterization, please refer to § 4. The choice 

of the substrate protocol accounts for the good spectroscopic performances in terms 

of signal-to-noise ratio for the considered samples. 

 SERS instrumentation 

The measurements have been performed in air at room temperature with a i-Raman 

Plus portable system (BWS465-785S) connected to a compatible Raman video 

microscope (BAC151B) and collected with the BWSpec software (version 4.03_23_c), 

by B&W Tek (Newark, DE). Excitation was obtained with a CleanLaze 785 nm laser 

with an output power of about 400 mW. Laser light is delivered to the sample and 

collected via an optical fiber probe. The Raman spectrometer uses a quantum 

efficiency CCD array detector with a wide spectral coverage (65-4200 cm-1) and a 

spectral resolution of 2.4 cm-1. Spectra collection used a 10 s CCD exposure for a single 

accumulation with a laser power at the sample of 50% (180 mW) and 138 mW (10%), 

for cAg-colloids and cAg-paper measurements, respectively. This power level has 

been chosen in order to avoid samples and substrates photodamage. The spot 

diameter at the sample was of 105 µm, channeled through a 20x Olympus objective 

(N.A. 0.25, working distance 8.8 mm). All the substrates were placed under the 

microscope on a standard glass microscope slide. Paracetamol has been used as 

reference before and during every data collection session to account for eventual laser 

drifts. 

 Data analysis 

Spectra have been entirely processed in the R environment [121] using hyperSpec 

[122], baseline [123], ROCR [136] and MASS [55] packages and other in-house 

developed scripts for spectra visualization. 

The preprocessing steps included: (i) Raman shift range selection, (ii) baseline 

correction (package baseline, method als, lambda = 6), (iii) vector normalization. 

Principal Components Analyses have been performed for explorative purpose, to 

highlight possible separations in the dataset and the variables which mostly account 

for that separation. PCA has been used for explorative analyses and the supervised 

classification was performed by means of PCA-LDA, with a leave-on-out cross 

validation.  
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8.3 Detailed methods, Results and Discussion 

 Breast Cancer diagnosis 

8.3.1.1 Cohort of samples 

To increase the sample size with respect to the preliminary data obtained by Cervo 

(2015), 465 samples have been recruited: 241 controls and 224 patients, included 20 

cases of benign tumor. BC samples are stratified according to the incidence of 

available cases at the oncologic Institute, hence with unbalanced proportion among 

the classes. Table 8.1 reports the number of elements for each BC classes and 

subclasses. In some cases, subclassification was missing (i.e., biotype, stage). The 

median and quartiles of the age ranges are homogeneous: 56 (48-63) years old for 

patients, 53 (42-64) for controls, with the 1st and 3rd quartiles in brackets. This range 

has been selected since BC is most frequently detected in this age, which in turn 

matches with the start of the mammography screening. 

 

Patients: 224 – age: 56 (48-63)  Controls: 224 – age: 53 (42-64) Total samples: 465 

Disease       

Benign: 20 T. in situ: 19 
Tumor: 

185 
    

Hystologic type*  

Benign: 20 DCIS: 17  LCIS: 1  Lobular: 13  NST: 148  Other: 24  

Biotype       

Benign: 20 HER2+: 19 
Luminal 

A like: 13 

Luminal B like 

HER 2-: 23 

Luminal B like 

HER2+: 16 

Triple 

Negative: 20 

Unclassified: 

68 

Stage       

Benign: 20 0: 20 I: 101 II: 48 III: 30 Unclassified: 5  

Table 8.1 Cohort composition. Each row accounts for the only classification of 

patients. Age expressed as median (1st quartile – 3rd quartile). *DCIS = Ductal 

carcinoma in situ, LCIS = Lobular carcinoma in situ, NST = no special type (invasive). 

8.3.1.2 Sample collection and preparation 

Serum samples have been prepared and stored by CRO-Biobank (the biobank of the 

CRO National Cancer Institute, Aviano, Italy), according to Cervo et al. [197]. Briefly, 

blood samples are collected from healthy donors and patients at the time of the first 

diagnosis, without any kind of chemotherapy in progress. Serum tubes (Monovette®, 

Sarstedt) are used for blood collection, stored at 4 °C immediately after drawing and 

transported to the lab in ice packed boxes. The tubes are centrifuged (10 minutes, 

2680g) at room temperature and the serum fractions transferred to barcoded tubes 

and stored at -80 °C until the SERS analysis or different preprocessing step. Serum 

aliquots have been used both filtered and unfiltered. Filtration step included: thawing 

at room temperature, immediate centrifugal filtration (3 kDa cut-off, Amicon Ultra® 

0.5 mL) at 13000g, 4 °C for 75 minutes. Samples have been thawed only one time each, 
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in order to limit the deterioration process described in the Background. Every 

deviation from the collection and storage protocol is registered on a database, 

together with the anthropometric parameters of the subject, like menopausal status, 

age, body mass index or smoking habits. For each cancer case, information on the 

stage, histologic type and biotype of the BC classification is registered. All the enrolled 

participants signed the informed consent to participate in the study. The CRO-

Biobank project has been approved by the CRO Institutional Ethics Committee. 

8.3.1.3 Spectra collection 

Filtered serum samples have been analyzed immediately after thawing by means of 

cAg-colloids, (Figure 8.3). Accordingly, 5 µL of biofluids have been mixed with 45 µL 

of cAg-colloids (ratio 1:9Ag) and placed on a CaF2 slide with a micropipette. Spectra 

have been collected on the drop after 5 minutes in order to allow a proper NPs 

aggregation. This delay has been established to optimize the signal to noise ratio (data 

not shown). Measurements have been performed only once for each sample: on one 

hand the overall number of available samples was limited, on the other, the intent was 

to provide an estimation of the diagnostic performance based on a single shot, miming 

the realistic use as potential point of care. The choice of the sample-to-colloid ratio 

(1:9Ag) accounted for the same principles. Only filtered serum aliquots have been 

used with colloids to avoid the protein corona formation. 

 

Figure 8.3 Sketch of the sample preparation for spectra collection. 

8.3.1.4 Breast Cancer diagnosis: Results and Discussion 

A pilot study previously performed in our group demonstrated promising results in 

terms of BC early diagnosis working with filtered serum mixed with cAg-colloids 

[197]. For this reason, the analysis here reported has been performed accordingly. 

Among the 465 samples, the BC classes reported in Table 8.1 were not equally 

distributed in terms of sample size. Since classification and prediction algorithms are 

less biased working with balanced classes (see § 4), the first step was to merge them. 

Grossly, a primary classification involved the distinction between donor and patients, 

241 and 224 samples, respectively. Figure 8.4 reports (a) the average spectra for the 

two classes and (b) the scores plots of first two components of the Principal 

Components Analysis (PCA). At first glance, both the lack of significant differences 

between the average spectra of the two classes and the scores plots are not good signs 

in terms of classification performance. The spectral features are the same already 

described in the previous Chapters, but no significant differences appear. Both classes 

share the same variability, in terms of standard deviation, meaning that the intraclass 
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variability is comparable with the interclass one. This is somewhat surprising because 

the preliminary measurements performed in our research group highlighted the real 

possibility to discriminate between controls and patients at different stage of BC. 

Nevertheless, at the time the number of samples was reduced to 60 samples (20 

donors + 20 BC stage 0 + 20 BC stage 4) [31], and they were meticulously matched in 

terms of age, smoking habits and body-mass index. Hence, increasing the number of 

the samples reduces the metabolic distinction between healthy donors and BC 

patients, as inferred from the spectral data. Ultimately, increasing the number of 

samples only proves the intrinsic variability that each sample (and person) introduces 

in the class. 

Body fluids evolve continuously, during the day, with diet, across the age and the 

gender and in presence of pathological conditions and therapeutic treatments. 

Metabolism changes accordingly. Inasmuch as the sample size increases, the 

intraclass variability increases too. A label-free approach is able to test this chaotic 

trend, since all the possible biomolecules that are adsorbed on cAgNPs are considered 

makers and a reflection of the actual metabolic profile. For this reason, two or more 

classes can be distinguished if and only if the peculiar metabolic conditions are 

separate enough, in SERS active components, to display a spectral difference. If the 

requirement fails, a lack of clear distinction among the groups emerges, undermining 

the classification. The peaks assigned to hypoxanthine and uric acids are the most 

intense and variable throughout the whole dataset, and greatly influences the inter-

sample variability. Uric acid concentration can span the 120-400 uM range, and the 

value is ascribed to a number of factors, from the age, the dietary habit and lifestyle, 

the alcohol and smoke consumption, the use of drugs, the hormonal cycle, the 

presence of comorbidity and so on, beyond the effect of cancer on metabolism [110]. 

These aspects influence the dispersion of the composition of blood and serum in both 

donors and patients, and it is amplified by expanding the sample size. Moreover, 

sample matching in terms of age and body-mass index, both factors that are known to 

have an impact on the metabolic profile, was not as close as in the case of the 

preliminary study. In a less controlled cohort of samples (such as the ones in the case 

of an extensive screening study) small interclass differences can be lost among 

intraclass variation. PCA is a powerful tool to highlight the trend of the variable 

accounting for the larger variability within the system, expressed as Principal 

Components (PC). The first PCs retain the most variability, and as long as the PC 

number increases the loaded information in each one decreases, whereas the 

cumulative variable slowly approaches a plateau. The number of explicative variables 

to be retained depends on the system. It should not be too low, to lose the small but 

significative variations spectra always carry, but not too high to include noise, 

redundant information and collinearity. In this specific case, additional PCs did not 

introduce meaningful information or separation among the classes, at least from an 

explorative point of view.  
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Confusion Matrix 

  Actual 

  Control Breast C 

Predicted 
Control 151 90 

Breast C. 90 133 

 
 Figures of merit  

Accuracy 61.2% 

Sensitivity 62.6% 

Specificity 59.6% 

Figure 8.4 (a) Average spectra of the controls (blue) and of the patients (red) ± 

standard deviation (shaded area). Laser source 785 nm, 10 seconds of acquisition 

time, 1 scan, 50% laser power. (b) The scatter point in the scores plot of the first 

three principal components are colored according to the same legend. (d) ROC 

curve, confusion matrix and figures of merit for the PCA-LDA classification 

performance for breast cancer diagnosis on filtered serum on cAg-colloids. 

Classification has been tried using the combined PCA-LDA algorithm, here used for 

predictive modeling. The model has been trained on a part of the dataset, according 

to a 10-fold cross validation approach and then tested on an independent segment of 

the samples. The number of variables to be retained for the classification has been 

identified through a repeated double cross validation method on the training set, as 

d 
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described in § 3. The figures of merit have been extracted from the confusion matrix 

reported in Figure 8.4. Label-free SERS analysis of serum samples for breast cancer 

identification reported an overall accuracy of 61.2%, a specificity of 59.6% and a 

sensitivity of 62.6%. The ROC curve (Figure 8.4 d) has an area under the curve (AUC) 

of 0.64. The performance is not satisfactory enough when compared to the result 

achieved with mammography (sensitivity 68% and specificity 75% [199]). Hence, the 

initial hypothesis based on the possible improvement of mammography statistics has 

to be rejected. These analyses on an extended data set allow us to state confidently 

that this label-free SERS method based on the analysis of serum, despite promising 

initial results, does not work to diagnose breast cancer. 

The same classification procedure has been applied on the solely BC samples spectra 

looking at stage or histologic subclass classification. However, the result is the same 

or worse, and the classification performance is just slightly better than randomly 

guessing the class membership. Hence, the developed spectroscopic method is not 

able to separate clearly spectral patterns neither in the control-vs-donor case, nor 

among different molecular origins of the disease.  

Actually, literature rarely reports studies on the effect of BC on metabolism: usually 

protein loading, circulating DNA fragments and gene expression are considered, all 

elements not easily detectable through SERS with the approach presented in this 

thesis. The same conclusion has been drawn for filtered and unfiltered serum on the 

other cAg-paper SERS substrates. Neither filtration nor substrate nature (colloids vs 

paper) have been able to exalt the peculiar features discriminating BC samples from 

healthy ones. Indeed, many other variables could have affected the sample 

measurements: samples treatment (freeze-thawing time and cycles), cAg 

nanoparticles synthesis, laser drifts, environmental conditions (temperature, 

humidity), order of the measurements. However, all these aspects have been carefully 

evaluated and randomized in order to reduce any confounding variables and bias. Of 

course, also preprocessing of data plays a relevant role: it is fundamental not to create 

artifacts that may alter the meaning of the spectra. For this reason, the effect of several 

parameters on the classification accuracy has been tested (baseline algorithm, 

number of components for classification, validation pattern), although no differences 

have been encountered. On the other hand, BC probably does not affect metabolism 

as much as supposed, or at least not enough to generate significative differences 

among groups. To provide a complete insight on this issue, also other label-free 

methods have been tested, namely the SERS analysis of filtered and unfiltered serum 

on cAg paper-based solid substrates and filtered serum on hydroxylamine Ag-colloids. 

However, no differences have been obtained with respect to the present case. 

Unfortunately, the aim of this specific method has not been achieved under the chosen 

experimental conditions. However, three relevant messages derive from this 

experience: 
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1. Sample size really matters: whatever the trial, it is just necessary to test it on 

increasing sample size and verify the initial hypothesis on large numbers 

(following the guidelines of Beleites et al. [102], at least 80 independent 

samples / class). Preliminary/pilot studies are useful and necessary, but only 

to stimulate further research. 

2. Bias reduction or removal is mandatory, and the study design has to be 

carefully planned, in terms of patient enrollment, sample collection and data 

acquisition. 

3. Metabolism alterations strictly depends on the considered pathologies, and 

not all of them can be classified through a label-free approach, especially if the 

alterations are not strong enough. 

The “negative” result turns out to be a relevant one. As the label-free SERS for 

diagnosis route is becoming more and more followed by several authors in these 

years, the large-scale outcome we presented here may represent a red flag over 

pitfalls and data misinterpretation.  

 NAFLD progression and diagnosis 

8.3.2.1 Cohort of samples 

The analysis of plasma samples for the early diagnosis of non-alcoholic fatty liver 

diseases is a proof of concept, never tested so far by Raman/SERS methods. For this 

reason, we opted for a pilot study, with a small sample size: 38 samples from women 

with NAFLD at different stage.  

The age ranges and the body mass index were comparable among the classes. The 

stages include: (i) pure liver steatosis, (ii) liver steatosis and inflammation, (iii) early 

non-alcoholic steatosis hepatitis (NASH), (iv) fibrotic NASH. All the subjects gave their 

written informed consent before participating in this study, approved by protocol N. 

22979 Local Ethical Committee (Comitato Etico Regionale Unico, FVG, SSN). 

Provided all the considerations reported in the BC case, it was necessary to merge 

data into two classes, since the main goal is to distinguish the disease progression 

between the inflammatory state to the early non-alcoholic steatohepatitis. The blend 

turned into groups so far on called A (pure steatosis + steatosis and inflammation) 

and B (early NASH and fibrotic NASH), as in Table 8.2. 
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Group NAFLD No. Gender Age: median(quartiles) 

A 
Pure steatosis 9 F 53 (46 - 56) 

Steat. & Inflamm. 9 F 47 (42 - 55) 

B 
Early NASH 11 F 41.5 (35 - 50) 

Fibrotic NASH 9 F 46 (34 - 52) 

 Total 38 F  

Table 8.2 Cohort composition. Age expressed as median (1st quartile – 3rd quartile). 

 

8.3.2.2 Sample collection and preparation 

Plasma samples have been prepared and stored by the Liver Center of the University 

Hospital of Trieste (Italy). Briefly, blood samples were obtained by venipuncture and 

collected in BD Vacutainer® EDTA spray-coated tubes for plasma extraction and 

processed within 1 hour. The whole blood was centrifuged once at 2000g (10 minutes 

at 15 °C) through a density gradient medium (Ficoll-Paque PLUS, Merck, DE) added to 

the blood tubes which produces a stratification of the components. The plasma was 

carefully harvested with a pipette, transferred in another vial and centrifuged for 

further 5 minutes at 6000g to clarify plasma samples (4 °C). Unfiltered plasma 

aliquots were subsequently stored at -20 °C and thawed immediately before the SERS 

measurement. Part of the aliquots have been filtered to remove the protein fraction 

through centrifugal filtration (3 kDa Amicon Ultra 0.5 mL centrifugal filters, 14000g, 

15 minutes at room temperature) and spectra were promptly collected.  

All the participants in the campaign signed informed consent to participate in the 

study. The project has been approved by the Comitato Etico Regionale Unico del Friuli 

Venezia Giulia (Prot. No. 2018 Os-008-ASUITS, CINECA no. 2225). 

8.3.2.3 Spectra collection 

Plasma samples have been analyzed immediately after thawing following three 

approaches: (i) filtered plasma @ cAg-colloids, (ii) filtered plasma @ cAg-paper, (iii) 

unfiltered plasma @ cAg-paper (Figure 8.5). In the first case, 5 µL of biofluids have 

been mixed with 45 µL of cAg-colloids (ratio 1:9Ag) and placed on a CaF2 slide with a 

micropipette. Spectra have been collected on the drop after 5 minutes in order to 

allow a proper NPs aggregation. This delay has been established to optimize the signal 

to noise ratio (data not shown). In the second and third cases, 5 µL of filtered or 

unfiltered sample was dropped on the surface of the cAg-paper substrates and let dry 

for about 20 minutes. After drying, the paper substrates were placed on a glass 

microscope slide and spectra were collected at room temperature (25 °C). 

Measurements have been performed in three replicas. The choice of the sample-to-

colloid ratio (1:9Ag) is due to the small number of available samples. Only filtered 

plasma aliquots have been used with colloids to avoid the protein corona formation. 



93 

 

8.3.2.4 Results and Discussions 

Figure 8.6 reports the average spectra for the groups A and B and the differences of 

the mean (“B-A”) for the filtered plasma on cAg-colloids. Only these representative 

results are presented; the main outcome related to the other protocols can be found 

in Appendix 4. Spectral differences can be found all over Raman shifts, in particular in 

terms of relative intensities. Group A samples are characterized by a lower intensity 

ration between purines (735 cm-1) and uric acid bands (640 cm-1), with respect to 

group B. Also in this case, just like in the breast cancer diagnosis campaign, the 

intraclass variability is significant, but lower than the differences between classes. 

The difference spectrum illustrates exactly the same trend, suggesting that the most 

severe NAFLD conditions come along with high uric acid levels. Indeed, several papers 

reports how the concentration of uric acid and urate increases in early NASH 

conditions [200], although this is not a sufficient condition for a confident diagnosis 

of the disease, since high uric acid levels can be related to diverse physiological or 

pathological conditions, irrespective of steatosis. It has been demonstrated that 

hyperuricemia is associated with an increased risk in NAFLD, although the role of uric 

acid is still ambiguous. On one hand, it is a powerful antioxidant, able to act as 

scavenger for oxygen radicals and to reduce the fatty liver in obese mice. Conversely, 

uric acid becomes a strong oxidant in metabolic syndrome environment, turning into 

a risk factor for NAFLD. Moreover, uric acid levels and NAFLD are associated with 

cardiac disease as they contribute to vascular inflammation. This is a further reason 

behind the need for a reliable diagnostic method for the identification of NAFL 

diseases and its nature [201].  

In the PCA scores, the two groups are nicely separated according to PC1 and the 

correspondent loading is specular to the aforementioned difference spectrum. This 

corroborates the hypothesis that the relative concentration of the two mainly 

detected analytes are discriminative with respect to the evolution of the disease. The 

diagnostic classification model has been built according to the PCA-LDA algorithm 

 

Figure 8.5 Sketch of the sample preparation for spectra collection. 
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previously discussed and validated with a leave-one-out approach to optimize the 

classifier results.  

 

 

 

Confusion Matrix 

  Actual 

  Gr. A Gr. B 

Predicted 
Gr. A 13 3 

Gr. B 5 17 

 

 

 

Figures of merit  

Accuracy 78.95% 

Sensitivity 72.2% 

Specificity 85.0% 

Figure 8.6 Results for plasma@cAg-colloids. (a) average spectra (± 1 standard 

deviation in shaded area). Laser source 785 nm, acquisition time 10s, 1 scan; (b) 

two of the most significative Principal Components and (c) the corresponding 

loadings. At the bottom, the difference spectra (Gr. A – Gr. B) reveal the same trend 

of the loadings of the PC; (d) ROC curve, confusion matrix and figures of merit for 

the PCA-LDA model. 

 

The figures of merit have been extracted from the confusion matrix reported in 

Figure 8.6. Label-free SERS analysis of plasma samples for NAFLD stage 

discrimination reported an overall accuracy of 78.5%, a specificity of 72.2% and a 

sensitivity of 85%. The ROC curve (Figure 8.6 d) has an area under the curve (AUC) 

d

0 
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of 0.83. The outcome is surprisingly good: by far, there are no similar techniques 

able to merge good prediction accuracy for the considered pathological conditions 

with a compact and fast sensing device, without the need for specific biomarkers 

detection. Moreover, the relative low rate of false positive and false negative 

encourages the hypothesis that metabolic signature detected through label-free 

SERS can truly open a way to a potential clinic application in the liver disease 

classification. Unfortunately, at the moment, the absence of a healthy control group 

hampers a possible extension of the approach to the early diagnosis of the diseases, 

but it may help in the identification of the disease evolution. It would be interesting 

to expand the selection of clinical cases to apparently healthy subjects, in which the 

presence of the disease is always late detected, being hence at higher risk.  

Accordingly, the perspective of a possible robust development of the method is real, 

although the situation experienced with the breast cancer case definitively suggests 

and encourages to enlarge the sample size to obtain reliable and accurate 

predictions before drawing further conclusions. 

 From cirrhosis to Hepatocellular Carcinoma 

8.3.3.1 Cohort of samples 

In this campaign 268 subjects divided into controls and patient (both female and 

male) have been enrolled (Table 8.2). They are divided into two groups: 106 (82 men, 

24 women) who were diagnosed with HCC, 61 (39 men, 22 women) with cirrhosis 

and 101 (72 men, 29 women) healthy controls. The recruitment, management and 

diagnosis out of the samples have been organized by the Liver Center of the University 

Hospital of Trieste (Italy). All the patients provided written informed consent and 

patient anonymity has been preserved. Investigation was conducted according to the 

principles expressed in the Declaration of Helsinki. The study was approved by the 

regional ethical committee (Comitato Etico Regionale Unico del Friuli Venezia Giulia, 

Prot. No. 2018 Os-008-ASUITS, CINECA no. 2225). 

 

 
Male 

No., age 

Female 

No., age 

Controls 72, 56 (52-60) 29, 56 (54-58)  

Cirrhosis 39, 63 (57-72) 22, 69 (66.3-71) 

Hepatocellular C. 82 70 (64-75) 24, 75, (73-80) 

Total 193, 62 (56-72) 75, 67 (56.5-74.5) 

Table 8.2 Cohort composition. Age expressed as median (1st quartile – 3rd quartile). 

8.3.3.2 Sample collection and preparation 

Blood drawing has been performed after overnight fasting. Serum samples have been 

prepared and stored by the Liver Center of the University Hospital of Trieste (Italy). 
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Briefly, blood samples are collected from healthy donors and patients at the time of 

the first diagnosis, in case of cancer, without any kind of chemotherapy in progress. 

Serum tubes (Vacuvette®, Greiner Bio-One GmbH, Kremsmünster Austria) are used 

for blood collection, stored at 4 °C immediately after drawing and transported to the 

lab in ice packed boxes. The tubes are centrifuged (10 minutes, 3500rpm) at room 

temperature and the serum fractions transferred to barcoded tubes and stored at -80 

°C until the SERS analysis or different preprocessing step. Serum aliquots have been 

used only unfiltered.  

8.3.3.3 Spectra collection 

Serum samples have been analyzed immediately after thawing following only the 

unfiltered plasma @ cAg-paper approach (Figure 8.7). 5 µL of biofluids have been 

dropped on the surface of the cAg-paper substrates and let dry for about 20 minutes. 

After drying, the paper substrates were placed on a glass microscope slide and spectra 

were collected at room temperature (25 °C). Measurements have been performed in 

three replicas. Only unfiltered serum has been analyzed, provided the low samples 

volumes available. 

 

Figure 8.7 Sketch of the sample preparation for spectra collection. 

 

8.3.3.4 Results and Discussion 

The need of an analytical method able to discriminate between two severe liver 

conditions, namely cirrhosis and liver tumor, is urgent and of uttermost relevance in 

the frame of therapy and liver transplants management. Encouraged by the positive 

results obtained in the NAFLD plasma analysis, the present measurement campaign 

means to extend the SERS actual value to another field within the liver disease 

diagnosis. A consideration may want to be given to the age imbalance found in the 

HCC cases with respect to the other. This is justified in terms of relative incidence of 

this type of cancer related to cirrhosis. However, a crossed comparison between age 

ranges and the pathological classes revealed that age does not heavily influence the 

spectral profile distribution. First of all, female and male subjects had to be separated 

and not analyzed within the same dataset. It is well known that metabolism is gender 

dependent too, and it would be an error not to remove this confounding factor from 

the analysis [202]. Provided this, the most relevant outcome shared by both genders, 

is the control-to-patients discriminations. Figure 8.8 reports the average spectra for 

controls vs cirrhosis (left) and controls vs liver tumor (right), for male subjects. The 

correspondent female sample plots are reported in Appendix 4 to avoid redundancy, 
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since the load information is comparable to the plots here presented. Just like in the 

NAFLD case, the spectral differences are addressed to the relative intensities for 

hypoxanthine or adenine and uric acid bands, although on different samples and 

acquisition protocol, as confirmed by the loadings in plots b and e. The difference 

between the average spectra of the groups (controls – cirrhosis and controls – HCC) 

highlights the same bands that appear in the loadings. In both cirrhosis and HCC, the 

uric acid concentration is higher than in the controls, and this may be associated with 

a strong oxidative stress and inflammation typical of the severe liver disturbs 

[190,193]. The predictive models based on PCA-LDA and validated through a leave-

one-out cross validation process, reported different rate of accuracy, sensitivity and 

specificity for the two cases, as reported in Figure 8.9. For the model, the area under 

the ROC curve is 0.81 for the “controls vs cirrhosis” and 0.88 for the “controls vs HCC”. 

In general, the predictive model for the cancer case provides overall better results, 

compared to the cirrhosis case in which the good accuracy comes together with a 

substantial lack of sensitivity. This means that, for the present model, the detection 

rate for the true positive is poor. The results are really promising. Label-free SERS 

approach allows the integration of a fast, low cost and easy method for the recognition 

of liver disturbs also in the frame of cirrhosis and HCC. Moreover, this trial is based 

solely on unfiltered serum: protein may have a role in the class discrimination, as seen 

in the loadings (Figure 8.8 c and f), but the most relevant point is that good predictive 

accuracy comes along with a simplified preanalytical step. The fluid does not require 

filtration, but the warning about the good sample treatment is always high. This 

applies especially to the case in which purines levels and the relative intensity with 

respect to uric acid is diagnostically relevant. Literature reports papers on the use of 

SERS and silver NPs to perform HCC diagnosis on serum samples. Liu and co-workers 

(2018) reported similar alteration of the spectral profile in the cancer cases, with 

respect to the donors [203]. Although the band assignment is often incongruent with 

ours, they found some evidence in the role the peaks at 640 cm-1 and 730 cm-1 in 

classes differentiation. Arguably, Liu associates the reduction of the purine level in 

HCC to the abnormal metabolism of DNA. Indeed, this can be a reason, together with 

the accelerated metabolism of purines that increases the uric acid levels [202]. 

Nevertheless, we did observe the same alteration in cirrhotic cases and – whilst with 

plasma samples – in the NAFLD case of study. This demonstrates that something more 

is happening and the SERS substrate itself could potentially play an active role in this 

frame, as suggested in § 5. 
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Figure 8.8 Results for serum@cAg-paper for male subjects: (left) controls vs 

cirrhosis, (right) controls vs hepatocellular carcinoma (HCC). (a, d) average spectra 

(±standard deviation in shaded area). Laser source 785 nm, acquisition time 10s, 1 

scan; (b, e) two of the most significative Principal Components and (c, f) the 

corresponding loadings. At the bottom, the 5 times magnified difference spectra 

(Controls – Pathology) reveal the same trend of the loadings. 
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Confusion Matrix 

  Actual 

  Control Cirrhosis 

Predicted 
Control 63 18 

Cirrhosis 18 71 

 
 Figures of merit  

Accuracy 78.8% 

Sensitivity 77.8% 

Specificity 79.8% 

 

 

Confusion Matrix 

  Actual 

  Control HCC 

Predicted 
Control 53 10 

HCC 19 71 

 
 Figures of merit  

Accuracy 81.1% 

Sensitivity 73.6% 

Specificity 87.7% 

 

Figure 8.9 ROC curve, confusion matrix and figures of merit for the PCA-LDA model 

for the case of (a) controls vs cirrhosis and (b) controls vs hepatocellular carcinoma. 

 

Unfortunately, the outcome for the cirrhosis/liver cancer comparison did not exhibit 

any correlations, neither with PCA, nor with multivariate prediction. This negative 

result can have more than one reason. For instance, the HCC samples belong to 

patients at the earliest stage of tumor, and the effect of the disease is probably not 

very evident yet. Comparisons with more advanced stages of the disease would 

certainly help in the characterization of the SERS potential in this field. As a last note, 

the differences between controls and patients in both the NAFLD and cirrhosis/HCC 

cases are very similar. In general, a possible explanation – to be confirmed – may 

regard the lack of SERS specificity for the disease of interest. SERS can be an 

interesting tool for the detection of metabolism alteration, irrespective of its origin. 

This aspect urges further insights, analyzing a larger number and type of samples, i.e. 
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analysis of several liver pathological conditions with the same kind of sample and 

procedure in order to accept or refuse this hypothesis.  

 

 

 

8.4 Highlights: 

¶ SERS as label-free approach toward diagnosis revealed intriguing advantages 

and pitfalls to be carefully evaluated before a campaign of measurements is 

launched. The number of involved variables and confounding factors is huge, 

starting from the metal substrates preparation, to the design of experiment for 

the sample recruitment, to the sample preparation and storage. The operative 

protocol must be studied in detail a priori and strictly followed. 

¶ Not every biofluid is suitable for diagnostic purposes, as already stated in § 5, 

and, most of all, not every disease can be positively detected through SERS.  

¶ The main obstacle in the diagnostic process on filtered serum is due to the 

sample size: the increasing intrinsic intraclass variability may overshadow the 

interclass variability, with a concomitant decrease in the diagnostic accuracy. 

¶ The disease has to strongly impact metabolism with respect to the controls. 

¶ For breast cancer diagnosis, the strive to find discriminative factors between 

healthy and pathological conditions is limited by the lack of specificity of the 

chosen set-up for the metabolic effects of the disease. 

¶ Livers pathologies massively alter the metabolic pathway of a patient with 

respect to the control, to a different extent, depending on the pathology. 

Provided the lack of detection techniques for early diagnosis, label-free SERS 

turned out to be a promising candidate for the development of a Point of Care 

tool for the identification of NAFLD stages, cirrhosis and hepatocellular 

carcinoma. 
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9 Conclusions 

In the pursuit of developing cutting-edge technologies in the clinical field, the dialogue 

between researchers and physicians is mandatory to identify the unmet clinical needs 

to be tackled. To date, frontiers in early detection of diseases aim at the design of 

simple, minimally invasive, cost effective but reliable and affordable diagnostic 

methods. Methods with such characteristics used to sound utopian, but these methods 

can soon turn into reality thanks to the recent development of electronics, plasmonic, 

photonics, nanotechnology and data analysis. A cocktail of science and technology 

that found home also in SERS. This thesis shed light on issues that must be overcome 

before label-free SERS can be successfully applied as a routine technique in diagnosis. 

In particular, the discussion articulated from the simple to the complex system, 

namely the model solution of protein and metabolites, the blood and its fractions up 

to the qualitative classification of serum and plasma samples on the basis of the 

spectral features. Everything seen from the label-free SERS point of view, by means of 

citrate reduced silver substrates.  

In SERS, what can be observed depends on the peculiar binding nanoparticles-

analytes. In biofluids, the mutual interaction of proteins and metabolites corona 

around nanoparticles can alter the spectral profile of the system according to both 

chemistry (including the pH and the ionic strength) and mechanics of interaction (due 

to size exclusion effects). When dealing with protein-rich systems, it would be good 

practice to evaluate how much the presence of proteins can affect the overall SERS 

signal compared to the protein-free system. The macromolecules removal can 

introduce alterations too.  

The same can be said for extremely complex systems, like blood, in which we can 

address also to a sort of “matrix effect” that can regulate the availability of freely 

diffusing species. However, a lot has to be further understood about this kind of effect.  

Indeed, the label-free analysis of blood under several conditions allowed to identify 

which fractions are better addressed to SERS analysis, provided the metabolic 

information they can carry. We are speaking about serum and plasma samples, which 

have been enrolled for the disease diagnosis section, accordingly. Plasma and serum 

SERS spectra are similar and display bands due to metabolites such as purines and 

uric acid. The metabolic profile as detected by SERS can be altered by preanalytical 

procedures (i.e., long waiting before the fraction separation and filtration). The main 

outcome is an increased hypoxanthine level due to the extracellular metabolism of 

purine: cellular fraction is not involved here, but filtration can stop the process, as the 

enzymatic fraction would be removed. Anyways, good practices are required when 

handling this kind of specimens, otherwise considerations on the metabolic 

differences between classes shall be invalid. The other side of the coin is that SERS 

could be successfully employed for blood sample dating. Overall, the sensor – 
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intended as integration between the metal nanostructured support and the Raman 

apparatus – play a relevant role in all the aforementioned considerations. Sample to 

colloids ratio, protein filtration turned out to be relevant aspects to consider during 

the setting up of a protocol. For instance, filtration is essential to obtain SERS spectra 

from colloids, but it remains an optional step for SERS on solid substrates, often 

avoidable to reduce the number of preanalytical steps. We have been focusing on a 

simple but reliable system which, of course, can be further optimized to improve the 

diagnostic performance 

To this extent, the analysis of samples from patients with three different diseases 

confirmed that SERS can detect metabolic differences, provided that the pathological 

condition significantly alters the analyzed biofluids as far as the low molecular weight 

composition is concerned. Indeed, breast cancer did not cause detectable class 

differences or, better, the effect on metabolism is not that marked, hence the intra-

class variability is overwhelmed by the inter-class one.  

Of course, sample size matters: the larger the dataset, the larger the variability. Hence, 

it is necessary a stronger metabolome alteration to perform a classification based on 

the chosen experimental conditions. Nevertheless, the limits in the strive for diagnosis 

is probably related to the lack of specificity of the chosen set-up for the metabolic 

effects of the disease. Conversely, liver diseases expressed this condition and good 

classification performances have been retrieved also with simple classification 

algorithms, like PCA-LDA. Livers pathologies massively alter the metabolic pathway 

of a patient with respect to the control, to a different extent, depending on the 

pathology. However, to confirm this preliminary trial we need to go for larger dataset 

and more varied system, to mimic a realistic diagnostic pattern.  

Indeed, a well build design of experiment is truly the greater part of the analysis 

As a note, literature often shares promising results in terms of diagnostic performance 

with SERS on biofluids. As this thesis reported, the reader should beware of 

enthusiastic conclusions and always consider the design of experiments, as 

conclusions reached on small sample size are hardly reproduced on a large scale. 

The conclusion is that if “the simpler the better”, referring to the SERS substrates in 

use, extra care is required when dealing with complex systems. For this reason, we 

aim to further develop the proposed method and to structure it into a real applicative 

Point of Care device, not forgetting the huge role the fundamental research plays in 

the field. More than this, the same implementation can be done in other areas, from 

agro-food, to pharma. Nevertheless, our study should encourage researchers to put 

their efforts in this promising technique, which is a premise for non-invasive, cost-

effective, and fast diagnosis processes.  
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Appendix 1 

List of reagents 

Reagent Grade of purity Producer CAS 

Laboratory glassware washing 

NoChromix® N.A. Merck 328693 

Sulfuric Acid 95-97 % Puriss.p.a Merck 7664-93-3 

Nitric Acid > 65 % Puriss.p.a Merck 7697-37-2 

Nanoparticles Synthesis 

Sodium Citrate 

Tribasic 
≥ 99 % Merck 6132-04-3 

Silver Nitrate ≥ 99.0 % Merck 7761-88-8 

Hydroxylamine 

Hydrochloride 
99.999% Merck 5470-11-1 

Sodium Chloride ACS Merck 7647-14-5 

Metabolite Solutions 

Phosphate buffered 

saline (tablets) 
N.A. Merck Sigma-P4417 

Sodium hydroxide ACS Merck 1310-73-2 

Adenine ≥ 99 % Merck 73-24-5 

Hypoxanthine ≥ 99 % Merck 68-94-0 

Uric acid ≥ 99 % Merck 69-93-2 

Human serum 

albumine 
≥ 98 % Merck 70024-90-7 

Blood treatment 

Ficoll® Paque Plus N.A. Merck N.A. 

 

MilliQ water (grade 1, Merck, DE) has been used for all the preparations. 

https://www.sigmaaldrich.com/catalog/search?term=73-24-5&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=68-94-0&interface=CAS%20No.&lang=en&region=US&focus=product
https://www.sigmaaldrich.com/catalog/search?term=69-93-2&interface=CAS%20No.&lang=en&region=US&focus=product
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Appendix 2 

 

 

Figure A.2.1 Effect of the silver colloid dilution on filtered blood, RBCs, PBMCs, serum 

and plasma. Measurements have been acquired with the 785 nm laser; data are vector 

normalized and reported as mean ± 1 standard deviation (shaded area) of several 

independent replica. 
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PBMCs show a different trend with respect to the other blood fractions: almost no 

significant signals are visible in the more diluted conditions (from 3:2Ag to 1:9Ag) 

while intense spectra appear at higher concentrations of sample in the colloid. A 

possible explanation may be found in the limit of detection of the PBMCs themselves 

with cAg-colloids, as they may require a higher sample to NPs ratio to provide a 

SERS signal. It is worth remembering that the PBMCs samples were lysed with a 1:4 

proportion in MilliQ water, four times more than all the other blood fractions (see 

the sample preparation section). 

The case of plasma is peculiar since no peak is visible in the most diluted sample 

(1:9Ag), whereas the spectra from the 1:4Ag ratio on are much more defined and 

intense. In analogy with the PBMCs case, it can be speculated that the 1:9Ag 

condition would be too diluted to provide SERS signals, whereas a turnaround is 

seen with the subsequent dilutions. The result has been confirmed with several 

replica, and other explanations are still unclear. 
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Appendix 3 

 

Figure A.3.1 Effect of lysis and filtration.  

Â = paper-based cAg substrate; ǒ = cAg colloid; U = unfiltered; F = filtered; lys = 

lysed; whole = not lysed. Measurements have been acquired with the 785 nm laser; 

data are vector normalized and reported as mean ± 1 standard deviation (shaded 

area) of several independent replica. For the sake of comparison, only the 1:1Ag 

ratio filtered biofluids-to-colloids mixture are reported (except for PBMC, in 3:2Ag 

ratio), without prejudice to the considerations set in Par. 4.2.8.  
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As a note, several spectra report a strong signature of the citrate ions belonging to the 

cAg background which are not of our interest; however, this reveals an incomplete 

saturation of the metal surface with the analytes under exam. In particular, unfiltered 

blood, RBCs and PBMCs show citrate bands at 796 cm-1, 836 cm-1, 940 cm-1 and 1020 

cm-1 (citrate spectrum reported below) 

PBMCs, again, show a peculiar behavior: their initial concentration is four times lower 

than all the other cases and this is reflected in less intense spectra visible through a 

poor signal-to-noise ratio and the predominance of the citrate bands, in particular for 

the unfiltered PBMCs when lysed (and further diluted) and on cAg-paper. In this case, 

PBMCs do not feature the 485 cm-1 band so far discussed and not even the uric acid 

bands. Filtration apparently increases the concentration of these two species, which 

appear in both the cAg-paper and, mostly, in the cAg-colloids cases. 

Plasma and serum show very similar profiles in all the conditions and lysis seems to 

not alter the overall SERS profile with cAg-paper. The differences with the cAg-

colloids case mainly regard the uric acid peaks, almost absent in the cAg-colloids case: 

the behavior reflects and strictly depends on what has already been seen in the 

previous paragraph in terms of sample-to-NPs ratio, here 5:5 in volume. The reader 

is addressed back to Par. 4.2.8 in this regard. 

Surprisingly, the behavior of the whole blood spectra, irrespective of sample 

processing, mainly follows that of the RBCs, and the plasma or serum metabolites do 

not play any significant role in this respect. Nevertheless, the sample concentration 

requires to be adjusted in order to avoid any interferences due to the SERS substrates 

background (i.e., sodium citrate). However, whole blood and intact RBCs revealed to 

be not perfectly suitable for SERS analysis on our solid paper-based substrates: they 

require additional washing steps before the measurements to remove the heme 

fraction, otherwise the red 785 nm laser would photodamage the sample also with 

low source power.  

  

Figure A.3.2 Citrate on paper-based cAg substrate. Six normalized spectra.  
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Appendix 4 

 

 

 

Confusion Matrix 

  Actual 

  Gr. A Gr. B 

Predicted 
Gr. A 7 3 

Gr. B 10 18 

Figures of merit  

Accuracy 65.8% 

Sensitivity 41.1% 

Specificity 85.0% 

 

 

 

Confusion Matrix 

  Actual 

  Gr. A Gr. B 

Predicted 
Gr. A 10 1 

Gr. B  7 20 

Figures of merit  

Accuracy 78.9% 

Sensitivity 58.8% 

Specificity 95.2% 

 

Figure A.4.1 SERS on plasma @ cAg-paper: non-alcoholic fatty liver diseases. 

(Left) average spectra for the (a) unfiltered plasma@cAg-paper and (b) filtered 

plasma@cAg-paper, and (right) correspondent confusion matrices and figures of 

merit. All the protocols suffer of low sensitivity but show promising results in terms 

of accuracy and specificity. The paper-based SERS substrates are interesting 

starting points towards the Point of Care development. 
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Appendix 5 

 

 

 

 

 

 

Confusion Matrix 

  Actual 

  Ctrl Cirrh. 

Predicted 
C 15 5 

Cirrh. 6 21 

Figures of merit  

Accuracy 76.6% 

Sensitivity 71.4% 

Specificity 80.8% 

 

 

Confusion Matrix 

  Actual 

  Ctrl. HCC 

Predicted 
Ctrl. 19 7 

HCC 5 22 

Figures of merit  

Accuracy 77.4% 

Sensitivity 79.1% 

Specificity 75.8% 

 

 
 

 

Figure A.5.1 Female samples: Cirrhosis and Hepatocellular Carcinoma, serum@cAg-

paper. (Left) average spectra for the unfiltered serum@cAg-paper (a) “control vs 

cirrhosis” and (b) “controls vs HCC” and (right) correspondent confusion matrices and 

figures of merit.  
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