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a b s t r a c t 

Sensitivity analysis is an important component of model building, interpretation and validation. A model

comprises a vector of random input factors, an aggregation function mapping input factors to a random
output, and a (baseline) probability measure. A risk measure, such as Value-at-Risk and Expected Short- 
fall, maps the distribution of the output to the real line. As is common in risk management, the value
of the risk measure applied to the output is a decision variable. Therefore, it is of interest to associate a
critical increase in the risk measure to specific input factors. We propose a global and model-independent

framework, termed ‘reverse sensitivity testing’, comprising three steps: (a) an output stress is specified,
corresponding to an increase in the risk measure(s); (b) a (stressed) probability measure is derived, min- 
imising the Kullback–Leibler divergence with respect to the baseline probability, under constraints gener- 
ated by the output stress; (c) changes in the distributions of input factors are evaluated. We argue that
a substantial change in the distribution of an input factor corresponds to high sensitivity to that input
and introduce a novel sensitivity measure to formalise this insight. Implementation of reverse sensitivity
testing in a Monte Carlo setting can be performed on a single set of input/output scenarios, simulated

under the baseline model. Thus the approach circumvents the need for additional computationally ex- 
pensive evaluations of the aggregation function. We illustrate the proposed approach through numerical

examples with a simple insurance portfolio and a model of a London Insurance Market portfolio used in
industry.

1. Introduction

1.1. Problem framing and contribution 

Risk managers often use complex quantitative models as deci- 
sion support tools. Of fundamental importance is sensitivity anal- 
ysis, which is concerned with characterising and providing in- 
sight regarding the relation between inputs and outputs. Sensitivity 
analysis can have different aims, including identifying the most in- 
fluential inputs ( factor prioritisation ), detecting the direction of in- 
put/output relationships, and inferring model structure; see Saltelli 
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et al. (2008) and Borgonovo and Plischke (2016) for comprehen- 
sive reviews. For the specific aim of factor prioritisation, a sensitiv- 
ity measure is typically used, assigning a sensitivity score to each 
input. When model inputs are subject to uncertainty, global sensi- 
tivity measures are used, considering the whole possible space of 
multivariate input scenarios. 

In this paper we develop a sensitivity analysis framework ap- 
propriate for contexts where the following considerations, typi- 
cal in several fields, including probabilistic safety assessment, re- 
liability analysis and financial/insurance risk management ( Aven 
& Nøkland, 2010; Gourieroux, Laurent, & Scaillet, 20 0 0; Saltelli & 
Tarantola, 2002; Tsanakas & Millossovich, 2016 ), hold: 

• Model inputs are uncertain, hence sensitivity and uncertainty
analyses are interlinked and global sensitivity analysis methods

are called for.
• A decision criterion is derived by applying a risk measure on

the distribution of the output. Risk measures are functionals
mapping random variables to the real line ( Artzner, Delbaen,
Eber, & Heath, 1999; Szegö, 2005 ). Risk measures are used in
a variety of operations research and risk analysis applications,
with Value-at-Risk (VaR) and Expected Shortfall (ES – also
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known as CVaR) particularly popular choices; indicatively see 
Rockafellar and Uryasev (2002) , Tapiero (2005) , Gotoh and 
Takano (2007) , Ahmed, Çakmak, and Shapiro (2007) , and 
Asimit, Bignozzi, Cheung, Hu, and Kim (2017) . 

• The value of the risk measure, applied on the output distribu- 
tion, gives an indication of criticality for the system whose un- 
certainty is analysed. For example, in the context of financial
risk management, high values of output risk measures may in- 
dicate that a portfolio is not admissible, e.g. due to regulatory
constraints ( Artzner et al., 1999 ). In the context of probabilis- 
tic safety assessment, legislation postulates acceptable proba- 
bilities of failure, e.g. of fatality numbers exceeding a threshold
( Borgonovo & Cillo, 2017 ).

• The relationship between model inputs and outputs is complex

and not necessarily given in analytical form. Furthermore, eval- 
uations of the model are computationally expensive inducing
the need to estimate sensitivity measures from a single sample

of input and output scenarios ( Beckman & McKay, 1987; Plis- 
chke, Borgonovo, & Smith, 2013 ).

We propose a sensitivity analysis framework, adapted to the 
above context, termed reverse sensitivity testing . We work in the 
standard setting of sensitivity analysis, where a number of random 
input factors are mapped to a random output via an aggregation 
function. The baseline probability measure summarises the distribu- 
tion of inputs and output in the current specification of the model. 
Our reverse sensitivity testing framework comprises the following 
steps. First, an output stress is defined, corresponding to an in- 
crease in the value of the output risk measure. We focus on the 
widely used risk measures VaR and ES. The increase in the value 
of the risk measure is specified so as to produce a stress that is 
problematic to a decision maker. For example, in a capital man- 
agement context, a stress on VaR may lead to a situation where 
insufficient assets are available to satisfy regulatory requirements. 

Secondly, a stressed probability measure is derived. This is a 
probability (a) under which the risk measure applied to the model 
output is at its stressed level and (b) that minimises the Kullback–
Leibler (KL) divergence subject to appropriate constraints on the 
output probability distribution. Thus the stressed probability leads 
to the most plausible alternative model, under which the output 
distribution is subjected to the required stress. We derive analyti- 
cal solutions of the stressed probability measure under an increase 
of VaR and ES. The form of the solutions allows for numerically ef- 
ficient implementation via a single set of Monte Carlo simulations. 

Finally, the distribution of individual input factors is examined 
under the baseline and stressed models. Substantial changes in 
the distribution of a particular input indicate a large sensitivity to 
that input. A new class of reverse sensitivity measures is introduced, 
quantifying these input changes, and extended to control for sta- 
tistical dependence between inputs. The sensitivity measures are 
then used to identify the most influential input factors; in a sense, 
those factors that may be responsible for ‘breaking the model’. 

1.2. Relation to the literature 

Prominent sensitivity analysis methods use a (Hoeffding) de- 
composition of the output variance ( Saltelli, 2002; Saltelli, Chan, 
& Scott, 20 0 0; Saltelli et al., 20 08; Sobol, 1993; Wagner, 1995 ), as 
well as moment independent approaches ( Borgonovo, 2007; Bor- 
gonovo, Castaings, & Tarantola, 2011 ). Alternative methods consider 
partial derivatives of statistical functionals of the output distribu- 
tion in the direction of parameters of interest, see Glasserman and 
Liu (2010) for expectation-type and Hong (2009) and Tsanakas and 
Millossovich (2016) for percentile-based functionals. 

The sensitivity measures we propose in the present paper re- 
flect the joint distribution of individual input factors and out- 

put; hence our proposed method remains formally within the 
unifying framework discussed by Borgonovo, Hazen, and Plischke 
(2016) and thus are (distantly) related to variance-based and 
moment-independent sensitivity measures. Nonetheless, our pro- 
posed sensitivity measures are conceptually different compared to 
variance-based metrics and other current approaches in the liter- 
ature. First, our approach involves an assessment of output uncer- 
tainty via tail-risk measures rather than the variance. Second, we 
adopt a reverse approach of stressing the output and then evalu- 
ating the impact on the inputs. Our method allows for flexibility 
in the stress level on the output, giving a nuanced picture of the 
sensitivity of input factors. Furthermore, the sensitivity measures 
we propose can take both negative and positive values, indicat- 
ing the direction in which input factors affect the output. Thus, we 
view our proposed sensitivity analysis framework as complemen- 
tary rather than competing with established methods, as it aims to 
address different questions. 

Conceptually, the reverse direction (from output to input) of 
the proposed method, is related to regionalised sensitivity analy- 
sis methods ( Osidele & Beck, 2004; Spear, Grieb, & Shang, 1994 ). 
However, there is a key difference between regionalised sensitiv- 
ity analysis and our approach: in the former, states of the output 
are identified that are ‘out of control’, while in the latter what is 
‘out-of-control’ are not individual states but specifications of the 
output distribution. The numerical tractability of our framework in 
a Monte Carlo setting is akin to Beckman and McKay (1987) . 

In the practice of financial risk management and regulation, re- 
verse stress testing , starting with a stressed output state and study- 
ing the corresponding surface of scenarios that provide the ad- 
verse outcome, is frequently used ( BCBS, 2013; EIOPA, 2009 ). For 
example, “reverse stresses that result in a depletion of capital...”
( Lloyd’s, 2016 ) are used in the validation of insurance risk mod- 
els. The academic literature on reverse stress testing is relatively 
sparse, with a recent focus towards identifying most likely stress 
scenarios ( Breuer, Janda ̌cka, Mencía, & Summer, 2012; Glasserman 
& Xu, 2014; McNeil & Smith, 2012 ). Our approach differs from re- 
verse stress testing, in that we consider most influential factors in 
relation to changes in the output distribution and not a particular 
output state. 

The KL-divergence has been widely used in financial risk man- 
agement, in particular in the context of model uncertainty, where 
several plausible specifications of the probability measure may co- 
exist. For example, Breuer and Csiszár (2013) , Glasserman and Xu 
(2014) , and Blanchet, Lam, Tang, and Yuan (2017) consider the 
worst-case probability measure with respect to all probabilities ly- 
ing within a KL-divergence radius of the baseline probability. In 
contrast, reflecting our focus on sensitivity rather than model un- 
certainty, we consider the probability measure with minimal KL- 
divergence that satisfies given constraints. Our approach is closely 
related to the work of Cambou and Filipovi ́c (2017) with probabil- 
ity set constraints and Weber (2007) with risk measure constraints, 
see Section 3 for a detailed comparison. 

1.3. Structure of the paper 

In Section 2 , some preliminaries on risk measures and the KL- 
divergence are given. In Section 3 , the optimisation problem yield- 
ing stressed probability measures is stated and solved under con- 
straints arising from different risk measures, with emphasis on 
VaR and ES. Explicit solutions allow easy implementation and in- 
spection of the distributional changes arising. Furthermore, we dis- 
cuss an extension where the distributions of multiple outputs are 
stressed. The solutions and their properties are illustrated through 
an example of a non-linear insurance portfolio evaluated using 
Monte Carlo simulation. 
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In Section 4 we propose metrics tailored to the proposed 
reverse sensitivity testing approach. A comparison study of the 
proposed reverse sensitivity measures with moment independent 
and variance-based sensitivity measures is conducted, illustrating 
differences between the concepts but also demonstrating coherent 
sensitivity rankings of inputs. In addition, a generalisation of re- 
verse sensitivity measures is proposed, with the aim of controlling 
for dependence between input factors. 

Section 5 demonstrates the applicability of the reverse sensitiv- 
ity testing framework to a commercially used insurance portfolio 
model. 

Section Appendix A is devoted to a comparison of the stressed 
and the baseline probability measures through stochastic order re- 
lations, in order to establish formal properties of the proposed 
framework. We find that the distribution of the output under the 
baseline probability is first-order stochastically dominated by that 
under the stressed probability. A similar dominance relation is pro- 
vided for input factors, under the assumption of a non-decreasing 
aggregation function and positive dependence between input fac- 
tors. Moreover, stressed probability measures stemming from dif- 
ferent stress severities lead to stochastically ordered input factors 
and output. All proofs are provided in Appendix B . 

2. Preliminaries

We consider a measurable space (�, A ) and denote by P the 
set of all probability measures on (�, A ) . For a random variable 
Z on (�, A ) we write F Q 

Z (·) = Q(Z ≤ ·) for its distribution under 
Q ∈ P, and similarly, E Q ( · ) for its expectation. Throughout, we use 
the Kullback–Leibler divergence ( KL-divergence , Kullback & Leibler, 
1951 ) as a measure of discrepancy between two probability mea- 
sures. For Q 1 , Q 2 ∈ P, the KL-divergence, also known as relative 
entropy, of Q 1 with respect to Q 2 is defined by 

D KL (Q 1 � Q 2 ) =
{ ∫

dQ 1 

dQ 2 
log 

(dQ 1 

dQ 2
)
d Q 2 if Q 1 � Q 2 

+ ∞ otherwise , 

where we use the convention that 0 log (0) = 0 . The KL-divergence 
is non-negative, vanishes if and only if Q 1 ≡Q 2 , and is in general 
not symmetric ( Cover & Thomas, 2012; Kullback, 1959 ). The KL- 
divergence is a special case of the class of f-divergences , first intro- 
duced by Ali and Silvey (1966) , for the choice f (x ) = x log (x ) , x > 
0 . For a given convex function f , the f -divergence of Q 1 with re- 
spect to Q 2 , for any Q 1 , Q 2 ∈ P, is defined through D f (Q 1 � Q 2 ) =
∫ 
f 
(
dQ 1 
dQ 2 

)
d Q 2 . 

Risk measures are tools used in risk management, which as- 
sociate to every random variable a real number. The application 
of risk measures leads to a classification of different levels of 
risk severities, see Artzner et al. (1999) and Föllmer and Schied 
(2011) for an overview. Moments, such as the mean and standard 
deviation, can be seen as risk measures. In recent years, percentile- 
based risk measures ( Acerbi, 2002 ) have become prominent, with 
the most commonly used risk measures being Value-at-Risk (VaR) 
and Expected Shortfall (ES). These risk measures are used exten- 
sively in financial regulation for the calculation of capital require- 
ments, specifically VaR for European insurance companies, EIOPA 
(2009) , and ES for banks, BCBS (2012, 2013) . 

The VaR at level α ∈ [0, 1] of a random variable Z is defined as 
the left α-quantile of the distribution of Z , VaR Q α (Z) = F Q, −1 

Z (α) =
inf { z ∈ R | F Q 

Z (z) ≥ α} , where, as usual, inf ∅ = + ∞ . In particular, 

the essential supremum of Z is ess sup Q Z = F Q, −1 
Z (1) . The ES (also

CVaR) of Z at level α ∈ [0, 1) is defined by 

ES Q α (Z) = 
1 

1 − α

∫ 1
α

VaR Q u (Z)d u = 
1 

1 − α
E Q 

((
Z − VaR Q α ( Z)

)
+ 

)

+ VaR Q α (Z) ,

where, in the second representation, VaR Q α (Z) can be replaced by
any α-quantile of F Q 

Z . Unlike VaR, the ES takes into account the 
whole tail of the distribution of Z , that is all realisations larger than 
VaR Q α (Z) . See Föllmer and Schied (2011) for a comparison of the
two risk measures. 

Shortfall risk measures, associated with utility-type arguments, 
are defined through ρQ (Z) = inf { z ∈ R | E Q (� (Z − z)) ≤ z 0 } for Q ∈
P, where � is a non-decreasing, non-constant and convex loss 
function while z 0 is a point in the interior of the range of � 
( Föllmer & Schied, 2002 ). Examples of shortfall risk measures in- 
clude entropic risk measures, Gerber (1974) , and the class of gen- 
eralised quantiles called expectiles ( Bellini, Klar, Müller, & Rosazza 
Gianin, 2014; Newey & Powell, 1987 ). 

3. Deriving the stressed model

3.1. Problem statement 

We consider the standard setting of (reverse) sensitivity anal- 
ysis, involving a (typically complicated) function, mapping model 
inputs to an output that is used in a decision making process. 
Mathematically, we define the input factors as a random vector 
X = (X 1 , . . . , X n ) on the measurable space (�, A ) . The (measurable) 
function g : R n → R , is called the aggregation function , which gives, 
when applied to input factors X , the one-dimensional random out- 
put of interest Y = g( X ) . The variability of the output Y to changes 
in input factors is of fundamental importance in sensitivity analysis 
( Borgonovo & Plischke, 2016; Saltelli et al., 2008 ) and the focus of 
this paper. We adopt throughout the convention that large values 
of the output correspond to adverse states. 

We call the triple ( X , g , P ), the baseline model with baseline 
probability measure P ∈ P . The probability P is seen as encoding 
current beliefs regarding (or software implementation of) the dis- 
tribution of X . Under the baseline probability P we suppress the 
superscript and write, for example, F Z (·) = F P Z (·) and E(·) = E P (·) , 
and analogously for risk measures, VaR α(·) = VaR P α(·) and ES α(·) =
ES P α(·) . We call any Q ∈ P an alternative probability measure and ( X ,
g , Q ) an alternative model . A Radon-Nikodym (RN) density is a non- 
negative random variable ζ on (�, A ) such that E(ζ ) = 1 . We de- 
note by Q ζ the probability measure which is absolutely continuous 

with respect to P with RN-density ζ , that is, ζ = d Q 
ζ

d P . 
The starting point of reverse sensitivity analysis is to define a 

stress on the distribution of the output that would be problematic 
to a decision maker, such as a risk manager or regulator. For exam- 
ple, one may require that the probability of a particular event, rep- 
resenting system failure, increases to an extent that the risk of fail- 
ure is no longer acceptable. Specific stress definitions using differ- 
ent risk measures are discussed in Sections 3.2 –3.6 . Subsequently, 
we call ( X , g , Q ) a stressed model with stressed probability measure 
Q ∈ P if, under Q , the output Y fulfils a set of probabilistic con- 
straints (the stress) and Q has minimal KL-divergence with respect 
to P . Thus, a stressed probability measure is defined as a solution 
to 

min 
Q∈P

D KL (Q� P ) ,

s.t. constraints on the distribution of Y under Q hold . (1)

The optimisation problem (1) is robust in the sense that con- 
vergence in the KL-divergence implies weak convergence of the 
probability measures, Gibbs and Su (2002) . This means that an al- 
ternative probability which satisfies the constraints of (1) and is 
close in KL-divergence to the stressed probability, is also close to 
the stressed probability in the Lévy metric. 

Optimisation problem (1) under linear (i.e. moment) constraints 
was first studied in the seminal paper by Csiszár (1975) . In the 
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context of financial risk management, in particular when risk 
measures are used, optimisation problem (1) involves non-linear 
constraints and Csiszár’s theory cannot be applied. Relevant re- 
search includes Cambou and Filipovi ́c (2017) who consider the op- 
timisation problem for general f -divergences and probability set 
constraints. Weber (2007) works with bounded random variables 
and considers risk measure constraints such as ES and short- 
fall risk measures, see Sections 3.3 and 3.4 for a more detailed 
comparison. 

3.2. Probability constraints 

Before studying problem (1) with constraints involving the risk 
measures of Section 2 , we consider stresses under which the prob- 
abilities of (adverse) outcomes of Y = g( X ) are altered. These out- 
comes are captured by disjoint sets B 1 , . . . , B I ⊆ R , each set B i as- 
sociated with an event { Y ∈ B i } where the system being studied is 
failing or ‘out of control’. In a financial context, where Y is in- 
terpreted as a loss, one can identify B i with a region of extreme 
losses. 

The following result is an immediate consequence of Theorem 
3.1 in Csiszár (1975) ; we also refer to Cambou and Filipovi ́c (2017) . 

Proposition 3.1. Let B 1 , . . . , B I ⊆ R be disjoint Borel sets with P (Y ∈ 
B i ) > 0 , i = 1 , . . . , I, and α1 , . . . , αI > 0 such that α1 + · · · + αI ≤ 1 . 
Then there exists a unique solution to 

min 
Q∈P

D KL (Q � P ) , s.t. Q (Y ∈ B i ) = αi , i = 1 , . . . , I, (2) 

with RN-density given by ζ = 
∑ I 

i =0 
αi 

P(Y ∈ B i ) 1 { Y ∈ B i } , where we write 

α0 = 1 − ∑ I 
i =1 αi and B 0 = ( 

⋃ I 
i =1 B i ) 

c . 

The RN-density ζ in Proposition 3.1 is a piecewise constant 
function of Y . This implies that all outcomes of Y within a set B i 
receive the same probability re-weighting by the change to the 
stressed probability. In particular, if αi > P ( Y ∈ B i ), under the alter- 
native probability Q the probability of all outcomes in B i increases. 
Note that moving from the baseline to the stressed model might 
induce a new dependence structure in the input factors. 

3.3. VaR constraints 

We now consider optimisation problem (1) under a constraint 
on the risk measure VaR, applied to the output Y . A VaR constraint 
is not equivalent to a probability constraint of optimisation prob- 
lem (2) , when F Y is not strictly increasing. 

Proposition 3.2. Let 0 < α < 1 and q ∈ R such that VaR α(Y ) < q < 
ess sup Y and consider the optimisation problem 

min 
Q�P

D KL (Q� P ) , s.t. VaR Q α (Y ) = q. (3) 

There exists a unique solution to (3) if and only if P (q − ε < Y < q ) > 
0 for all ε > 0 . The RN-density of the solution is given by 

ζ = 
α

P (Y < q ) 
1 { Y <q } + 

1 − α

P (Y ≥ q ) 
1 { Y ≥q } . 

The assumption P (q − ε < Y < q ) > 0 for all ε > 0, implies that 
q cannot be chosen arbitrarily. In particular, problem (3) does not 
have a solution if the distribution of Y is constant to the left of q ( q 
excluded); this includes the (uncommon in practice) case where Y 
is a discrete random variable. This complication arises from using 
the constraint VaR Q α (Y ) = q rather than Q(Y ≤ q ) = α. If q cannot
be chosen to fulfil the assumptions in Proposition 3.2 , the form 
of ζ in Proposition 3.2 remains meaningful: by Proposition 3.1 , it 
is the solution to an optimisation problem where the constraint 
VaR Q α (Y ) = q is replaced by Q(Y < q ) = α.

The RN-density ζ of the solution to (3) is a non-decreasing 
function of Y since α ≤ P ( Y ≤VaR α( Y )) ≤ P ( Y < q ). Hence, under the 
stressed probability, adverse realisations of the output are given 
higher probabilities of occurrence. 

Remark. Propositions 3.1 and 3.2 hold true for any f -divergence 
with a strictly convex function f . In particular, the RN-densities ζ
of the solutions of (2) and (3) are independent of the choice of 
f -divergence. We do not provide a proof for this statement, how- 
ever the steps of the proofs of Propositions 3.1 and 3.2 can be 
closely retraced if one substitutes the KL-divergence with a gen- 
eral f -divergence. We refer to Ben-Tal, Den Hertog, De Waegenaere, 
Melenberg, and Rennen (2013) for robust linear optimisation with 
general f -divergence constraints. 

Remark. Let VaR α(Y ) < q ∗ < ess sup Y be a stress for which the 
distribution function of Y under P is increasing and continuous in 
a neighbourhood of q ∗, so that a solution of problem (3) exists for 
all q in that neighbourhood. Then, viewed as a function of q , the 
RN-density ζ ( q ) is a.s. continuous under P . Thus, the correspond- 
ing probability measure Q ζ ( q ) , solution of problem (3) , converges 
in total variation distance to Q ζ (q ∗) , implying that stressed models 
are robust with respect to stresses in VaR. 

The explicit form of the RN-density in Proposition 3.2 (as well 
as the subsequent Propositions 3.3 –3.4 ), allows easy implementa- 
tion of the change of measure in a Monte Carlo simulation context 
similar to Beckman and McKay (1987) . Note that the RN-density 
is a function of Y , in the sense that ζ (ω) = η(Y (ω)) , ω ∈ �, for a 
function η. Then, one can follow the process: 

1. Sample M multivariate scenarios x (1) , . . . , x (M) from X under P .
Calculate y (k ) = g( x (k ) ) , k = 1 , . . . , M.

2. Set ζ (k ) = η(y (k ) ) , k = 1 , . . . , M.

3. The distributions of the output and inputs under the stressed
measure Q are estimated by:

F Q 
Y (y ) = 

1 
M 

M ∑ 

k =1

ζ (k ) 1 { y (k ) ≤y } , y ∈ R , 

F Q 
X i (x ) = 

1 
M 

M ∑ 

k =1

ζ (k ) 1 { x (k ) 
i ≤x } , x ∈ R , i = 1 , . . . , n.

Thus, the process of working out the distribution of input fac- 
tors under the stressed measure is akin to importance sampling, 
with ζ ( k ) playing the role of importance weights. Note that this 
calculation allows stressing the model without the need to re- 
simulate scenarios under Q , which can be of practical importance 
if evaluation of g is computationally expensive. Straightforward im- 
plementation yields a computational cost of M(n + 1) for calculat- 
ing the empirical distribution functions under the stressed model 
for the output and all input factors. In a simulation environment, 
convergence can be improved if Quasi Monte Carlo sampling is de- 
ployed, which is not a route we pursue here. Note that when sim- 
ulations are computationally very expensive, meta-modelling tech- 
niques are often used in practice. 

Example. The following insurance portfolio, similar to Example 1 
in Tsanakas and Millossovich (2016) , will be used as an illustrative 
example throughout the paper. An insurance company faces a loss 
L resulting from two lines of business. The two lines produce losses 
X 1 , X 2 respectively, which are subject to the same multiplicative in- 
flation factor X 3 , such that L = X 3 (X 1 + X 2 ) . The insurance company 
has a reinsurance contract on the loss L with limit l and deductible 
d . The total portfolio loss for the insurance company is 

Y = L − (1 − X 4 ) min { (L − d) + , l} ,
where X 4 captures the percentage lost due to a default of the rein- 
surance company. 
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Fig. 1. Left: simulated RN-density of the solution to (4) . Right: simulated empirical distribution functions of the output under the baseline (dashed black) and the stressed
(solid grey) model under problem (4) .

In this example, the two lines of business X 1 , X 2 are truncated 
Log-Normal(4.98, 0.23 2 ) and Gamma(100, 2) distributed, with re- 
spective means 150, 200 and standard deviations 35, 20. The trun- 
cation point for X 1 is chosen to be the 99.9% quantile. The multi- 
plicative factor X 3 follows a truncated Log-Normal(0.05, 0.02 2 ) dis- 
tribution with mean 1.05, standard deviation 0.02 and truncation 
point equal to the 99.9% quantile. The default loss X 4 is modelled 
through a Beta(0.125, 1.125) distribution, corresponding to mean 
0.1 and standard deviation 0.2. To complete the specification of the 
joint distribution of X , we further assume that X 1 , X 2 , X 3 are inde- 
pendent and X 4 is independent of ( X 1 , X 2 , X 3 ) given L . Additionally, 
X 4 is taken to be dependent on the aggregated loss L through a 
Gaussian copula with correlation 0.6. The deductible of the insur- 
ance contract is d = 380 and the limit l = 30 . 

Consider optimisation problem (3) with a 10% increase in 
VaR 0.9 , that is 

min 
Q�P

D KL (Q� P ) , s.t. VaR Q 0 . 9 (Y ) = 1 . 1 VaR 0 . 9 (Y ) . (4) 

The solution to the problem (4) is estimated from a Monte Carlo 
sample containing M = 10 0 , 0 0 0 simulated scenarios from ( X , Y ). 
Simulated values of the RN-density ζ are plotted in the left of 
Fig. 1 , against samples from Y . It is seen that the RN-density is 
a non-decreasing function of Y and thus gives more weight to ad- 
verse outcomes of Y . 

The empirical distribution functions of the total loss Y of the 
insurance company under the baseline probability (dashed black) 
and the stressed probability (solid grey) are displayed in the right 
of Fig. 1 . The output distribution under the stressed probabil- 
ity lies beneath, and therefore first-order stochastically dominates, 
the distribution of Y under the baseline probability. We refer to 
Section Appendix A for a more detailed discussion of stochastic 
comparisons of stressed and baseline probabilities. 

Fig. 2 displays the change in distribution of the input factors 
when moving from the baseline model to the stressed model. It 
can be seen that all factors under the stressed probability first- 
order stochastically dominate the corresponding inputs under the 
baseline probability. However, not all input factors are impacted 
the same: the distributions of inputs X 1 and X 4 are stressed more 
compared to the baseline model. This indicates a higher sensitivity 
to X 1 and X 4 , compared to X 2 and X 3 . A specific sensitivity measure 
reflecting the above observations is introduced in Section 4 . 

Table 1
Distributional characteristics of inputs and output under the baseline and
stressed model under problem (4) .

Sensitivity Input factors Output

X 1 X 2 X 3 X 4 Y

Mean under P 150 200 1.05 0.10 362

Mean under Q 156 201 1.05 0.14 369

Standard deviation under P 35 20 0.02 0.20 36

Standard deviation under Q 41 21 0.02 0.24 45

Skewness under P 0.6 0.2 0.0 2.5 0.4

Skewness under Q 1.2 0.5 0.1 2.4 1.2

Excess kurtosis under P 0.5 0.1 −0.1 5.6 1.3

Excess kurtosis under Q 0.8 0.2 −0.1 3.9 1.4

Table 1 summarises basic characteristics of the change in the 
output and the input factors under the two models. Consistently 
with Fig. 2 , it is seen that X 1 and X 4 are the most affected input 
factors by the change of probability measure. For example, under 
the stressed probability, X 1 , X 4 are subject to a relative increase of 
the standard deviation of 17%, 20%, respectively. 

3.4. VaR and ES constraints 

This section addresses optimisation problem (1) with a con- 
straint on both, VaR and ES. Adding to problem (3) a constraint 
on ES allows to stress the whole tail of the output distribution. 
Weber (2007) considers optimisation problem (1) with an ES con- 
straint only. In that case there does not exist an analytic solution 
of the stressed probability and Weber (2007) offers a procedure for 
a numerical solution. 

Proposition 3.3. Let 0 < α < 1 and q, s ∈ R such that VaR α(Y ) < q < 
s < ess sup Y . Assume the cumulant generating function of Y | Y > q un- 
der P exists in a neighbourhood of 0 and that E ( Y | Y > q ) < s. Consider 
the optimisation problem 

min 
Q∈P

D KL (Q� P ) , s.t. VaR Q α (Y ) = q, ES Q α (Y ) = s. (5) 

Define the sets A 1 = { Y ≥ q } and A 2 = { Y > q } and, for i = 1 , 2 , de- 
note by θ ∗

i the unique positive solution of the equation 

E 
(
(Y − s ) e θ (Y −q ) ∣∣A i

)
= 0 . (6)
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Fig. 2. Empirical distribution functions of the input factors under the baseline (dashed black) and the stressed model (solid grey) under problem (4) . The dark red line
displays the difference of the distribution functions according to the axis on the right. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

There exists a unique solution to problem (5) under either 

1. P (q − ε < Y < q ) > 0 for all ε > 0 and E 
(
e θ

∗
1 (Y −q ) ∣∣A 1 

)
≤

P (A c 
1 ) /P (A 1 )

α/ (1 −α)
. 

2. P (Y = q ) > 0 and P (q − ε < Y < q ) = 0 for some ε > 0, and

E 
(
e θ

∗
2 (Y −q ) ∣∣A 2

)
≥ P (Ac 

2 ) /P (A 2 )
α/ (1 −α)

. 

The corresponding RN-density of the solution is 

ζi = 
α

P (A c 
i ) 

1 A c 
i
+ 1 − α

E 
(
e θ

∗
i (Y −q ) 1 Ai

)e θ ∗
i (Y −q ) 1 A i , i = 1 , 2 .

Note that, compared to stressing solely the VaR, adding an ES 
constraint may provide a solution even for an output following 
a discrete distribution. The condition on the moment generating 
function in cases 1 and 2 restricts the choice of s and q , such that 
the stressed risk measure values cannot be chosen independently. 

The RN-density of Proposition 3.3 under case 1, ζ 1 , is a non- 
decreasing function of Y . Under Proposition 3.3 case 2, the RN- 
density ζ 2 is not monotone. However, both RN-densities are ex- 
ponentially increasing for realisations of Y exceeding q . Thus, un- 
der the stressed model, adverse outcomes of Y , such as tail events, 
admit a higher likelihood compared to the baseline model. 

Remark. Let VaR α(Y ) < q ∗ < s ∗ < ess sup Y be a stress of VaR and 
ES for which the cumulant generating function of Y | Y > q ∗ un- 
der P exists in a neighbourhood of 0, E ( Y | Y > q ∗) < s ∗, the dis- 
tribution function of Y under P is increasing and continuous in 
a neighbourhood of q ∗ and the second inequality in case 1 of 

Proposition 3.3 holds strictly. Then, a solution of problem (6) exists 
in a neighbourhood of ( q ∗, s ∗). Viewed as a function of ( q , s ), the 
RN-density ζ ( q , s ) is a.s. continuous under P . Thus, the correspond- 
ing probability measure Q ζ ( q , s ) , solution of problem (5) , converges 
in total variation distance to Q ζ (q ∗,s ∗) , implying that stressed mod- 
els are robust with respect to stresses in VaR and ES. 

Example (continued) . We consider optimisation problem (5) with 
a 10% increase in VaR 0.9 and a 13% increase in ES 0.9 . Fig. 3 displays 
samples of the RN-density of the stressed probability measure, see 
Proposition 3.3 case 1 For high outcomes of the output Y , the RN- 
density ζ is exponentially increasing as a function of Y , hence in- 
flates stressed tail probabilities. On the right hand side, the empiri- 
cal distribution functions of the output under the baseline (dashed 
black) and the stressed model (solid grey) are shown. 

Observe that the stressed distribution of the output appears 
similar to the stressed distribution of optimisation problem (4) , see 
Fig. 1 . This is due to the fact that increasing VaR 0.9 by 10% in opti- 
misation problem (4) , already leads to an increase of 8.5% in ES 0.9 
under the stressed model. However, comparing Tables 1 and 2 it 
is seen that the standard deviation, skewness and kurtosis of Y in- 
crease more when stressing VaR and ES, compared to stressing VaR 
alone. 

Similar to optimisation problem (4) , the output and the in- 
put factors under the baseline probability are first-order stochas- 
tically dominated by the stressed probability, as can be seen in 
Figs. 3 and 4 . We refer to Section Appendix A for a formal 
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Fig. 3. Left: simulated RN-density of the solution. Right: simulated empirical distribution functions of the output under the baseline (dashed black) and the stressed (solid
grey) model under problem (5) with a 10% increase in VaR 0.9 and a 13% increase in ES 0.9 .

Fig. 4. Empirical distribution functions of the input factors under the baseline (dashed black) and the stressed model (solid grey) under problem (5) with a 10% increase
in VaR 0.9 and a 13% increase in ES 0.9 . The dark red line displays the difference of the distribution functions according to the axis on the right. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Distributional characteristics under the baseline and the stressed model

under problem (5) with a 10% increase in VaR 0.9 and a 13% increase in
ES 0.9 .

Sensitivity Input factors Output

X 1 X 2 X 3 X 4 Y

Mean under P 150 200 1.05 0.10 362

Mean under Q 157 202 1.05 0.14 371

Standard deviation under P 35 20 0.02 0.20 36

Standard deviation under Q 43 21 0.02 0.26 50

Skewness under P 0.6 0.2 0.0 2.5 0.4

Skewness under Q 1.4 0.5 0.1 2.4 1.7

Excess kurtosis under P 0.5 0.1 −0.1 5.6 1.3

Excess kurtosis under Q 1.3 0.2 −0.1 3.7 2.8

treatment of stochastic comparison of the stressed and baseline 
probabilities. 

3.5. Shortfall risk measure constraints 

Optimisation problem (1) with shortfall risk measure con- 
straints is studied in Weber (2007) and is a direct application of 
Theorem 3.1 in Csiszár (1975) . Nonetheless, we present the solu- 
tion for completeness. 

Proposition 3.4. Let ρ be a shortfall risk measure with loss function 
� and y 0 , and q ∈ R in the support of Y such that E(� (Y − q )) < y 0 . If 
the moment generating function of � (Y − q ) exists in a neighbourhood 
of 0, then the optimisation problem 

min 
Q∈P

D KL (Q� P ) , s.t. ρQ (Y ) = q, (7) 

has a unique solution whose density is given by ζ = 
1

E ( e θ∗� (Y−q ) ) 
e θ

∗� (Y −q ) , where θ ∗ is the unique positive solution of 

E 
��

� (Y − q ) − y 0 
�
e θ� (Y −q ) � = 0 . 

3.6. Multivariate output 

Problem (1) can be extended to constraints on a multivariate 
output, that is, to Y = (Y 1 , . . . , Y k ) = g( X ) , for k ∈ N and aggrega- 
tion function g : R n → R k . The general case under set constraints 
can be treated along the lines of Cambou and Filipovi ́c (2017) , Sec- 
tion 7. We provide below an example based on two outputs. 

Example (continued) . We revisit the insurance portfolio example 
of Section 3.3 and view as output both the loss before reinsurance, 
L , and after reinsurance, Y . To shorten notation let v L = VaR 0 . 9 (L ) 
and v Y = VaR 0 . 9 (Y ) and consider the problem of stressing the VaR 
of L and Y by 10% 

min 
Q∈P

D KL (Q� P ) , s.t. VaR Q 0 . 9 (L ) = 1 . 1 v L , VaR Q 0 . 9 (Y ) = 1 . 1 v Y . 

(8) 

The constraints can be written as Q(L ≤ v L ) = 0 . 9 and Q(Y ≤ v Y ) = 
0 . 9 , since the distribution functions of L and Y are increasing and 
continuous around those stressed VaR. Thus, problem (8) can be 
solved straightforwardly using the Lagrange multiplier technique. 
The RN-density of the solution of (8) is constant on the four sets 
{ L ≤ v L , Y ≤ v Y } , { L > v L , Y ≤ v Y } , { L ≤ v L , Y > v Y } and { L > v L , Y >
v Y } .

Fig. 5 displays the simulated empirical distribution of L and Y 
under the baseline model and the stressed model. Note that stress- 
ing both L and Y , in contrast to stressing only Y , do not lead to 
radical different results, as can be seen comparing Tables 1 and 
3 . This is because the stressed model, solution of problem (4) , al- 
ready induces an increase of 7% in VaR 0.9 ( L ). Moreover, stressing 
L , the portfolio loss before reinsurance, in addition to Y , reduces 

Table 3
Distributional characteristics under the baseline and the stressed model under
problem (8) .

Sensitivity Input factors Output

X 1 X 2 X 3 X 4 L Y

Mean under P 150 200 1.05 0.10 367 362

Mean under Q 157 202 1.05 0.13 376 370

Standard deviation under P 35 20 0.02 0.2 42 36

Standard deviation under Q 42 21 0.02 0.23 52 46

Skewness under P 0.6 0.2 0.0 2.5 0.4 0.4

Skewness under Q 1.3 0.5 0.1 2.4 1.2 1.3

Excess kurtosis under P 0.5 0.1 −0.1 5.6 0.3 1.3

Excess kurtosis under Q 0.9 0.2 −0.1 4.3 0.7 1.6

the importance of the default of the reinsurance displayed in the 
change of X 4 under Q . 

4. Sensitivity measures for importance ranking

4.1. Definition of sensitivity measures 

Plots such as the ones shown in Figs. 2 and 4 provide some in- 
sight into the sensitivity of the output risk measure to different 
input factors. In order to produce a ranking of inputs, it is neces- 
sary to introduce a formal sensitivity or importance measure; this 
is especially the case for models with large numbers of inputs for 
which succinct sensitivity summaries are needed. Here we develop 
a sensitivity measure that quantifies changes in input factors under 
the stressed model, compared to the baseline model. 

Before proceeding to the definitions, some preliminaries are 
due. The random couple ( V , W ) is comonotonic if it can be 

written as (V, W ) d = (F −1 
V (U) , F −1 

W (U)) , for a uniformly distributed 
random variable U on (0,1). In contrast, ( V , W ) is counter- 

monotonic if (V, W ) d = (F −1 
V (U) , F −1 

W (1 −U)) . Comonotonicity and 
counter-monotonicity correspond to extremal positive and negative 
dependence structures respectively, for a random couple with fixed 
marginals ( Müller & Stoyan, 2002 ). For a random variable V , we 

denote by V | W , V | W † the random variables satisfying V | W 
d = V | W † 

d =
V, such that ( V | W , W ) is comonotonic and (V | W † , W ) is counter- 

monotonic. Then for any V � d = V it holds that ( Rüschendorf, 1983 ), 

E(W V | W † ) ≤ E(W V � ) ≤ E(W V | W ) .

The subsequent definition introduces a sensitivity measure that 
captures the extent to which a random variable is affected by 
a stress on the baseline model, that is, a change in probability 
measure. 

Definition 4.1. Let Q ξ be an alternative probability with RN- 

density ξ = d Q 
ξ

d P . The sensitivity of a random variable Z to the 
change of measure is given by 

S(Z, ξ ) = 

⎧⎪⎪⎨
⎪ ⎪⎩

E(Zξ ) − E(Z) 
max 

ψ d= ξ E(Zψ) − E(Z) 
E(Zξ ) ≥ E(Z) , 

− E(Zξ ) − E(Z)

min 
ψ d = ξ E(Zψ) − E(Z)

otherwise , 

where we use the convention ± ∞ 
∞ = ±1 and 0 0 = 0 . 

In the definition of S(Z, ξ ) , the numerator E(Zξ ) − E(Z) reflects 
the increase in the expectation of Z under the alternative model. 
The denominator normalises this difference, as it represents the 
maximal (or minimal) increase of the expectation of Z , under all al- 
ternative models with density ψ that are equal in distribution to ξ . 
This ensures normalisation of the sensitivity measure to [ −1 , 1] . If 
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Fig. 5. The simulated empirical distribution of the output under the baseline model (dashed black) and under the stressed model (solid grey) under problem (8) . The left
graph depicts the output before reinsurance, L , whereas the right plot shows the output after reinsurance, Y .

S(Z, ξ ) = 1 or S(Z, ξ ) = −1 , the alternative model produces a max- 
imal stress on the variable Z , representing a positive or negative 
impact of the changes in probability measure on Z respectively. 

Note that arg max 
ψ d = ξ

E(Zψ) = ξ| Z and arg min 
ψ d = ξ

E(Zψ) = 

ξ| Z † . This allows for a straightforward calculation of the sensitivity 
measure. If working within a Monte Carlo simulation context, as 
is common in risk analysis, ξ | Z , resp. ξ| Z † , can be simply obtained 
by re-arranging samples of ξ to be sorted in the same, resp. oppo- 
site, way as samples from Z . This context gives a different perspec- 

tive on the constraint ψ d = ξ : if simulated elements of ξ represent 
a particular scheme for re-weighting simulated scenarios, then ψ 
are vectors containing the same weights as ξ , but re-arranged to 
potentially prioritise different scenarios. 

Next we define two sensitivity measures that are specific to the 
reverse sensitivity analysis framework of this paper. 

Definition 4.2. Let Q ζ be an alternative model with density ζ = 
d Q ζ
d P = η(Y ) , for a non-decreasing function η. For input X i and out- 
put Y , we define the reverse and forward sensitivity measures �i and 
�i by: 

�i = S(X i , ζ ) , 

�i = S(Y, ζ| X i ) .

Here, ζ = η(Y ) can be arrived at as the solution of optimisation 
problems (3), (5) or (7) . �i thus reflects the extent to which the 
reverse sensitivity test affects the expectation of the input factor 
X i . Note that for E ( X i ζ ) ≥ E ( X i ), we can write �i = Cov (X i ,ζ ) 

max 
ψ d = ζ

Cov (X i ,ψ) ,

showing that the reverse sensitivity measure can also be under- 
stood as a dependence measure between X i and Y . In this sense 
it is closely related to the dependence measure introduced by 
Kachapova and Kachapov (2012) . Indeed, sensitivity measures con- 
sidering the dependence between X i and Y have a rich history in 
sensitivity analysis, for an overview see for example Borgonovo 
et al. (2016) . Thus, in contrast to variance-based sensitivity mea- 
sures, �i and �i can take both negative and positive values, indi- 
cating the direction in which input factors affect the output. 

A possible criticism of the measure �i and, by extension, the 
reverse sensitivity testing framework we propose, is as follows. Let 
�i be high. This implies that stressing the model output Y leads 
to a substantial change in the distribution of the input factor X i . 
However, this is not equivalent to a perturbation in the distribu- 
tion of X i leading to a sizeable stress in the distribution of the 

output Y . Such a discrepancy, though uncommon, is theoretically 
possible and has been termed probabilistic dissonance ( Cooke & van 
Noortwijk, 1999 ). 

This motivates the introduction of the forward sensitivity mea- 
sure �i , as a companion measure to �i . The definition of the 
forward sensitivity measure �i is analogous to that of �i , but 
with a focus on the change in the expectation of Y when per- 
turbing the distribution of the model input X i . Recall that ζ| X i =
arg max 

ψ d = ζ
E(ψX i ) . Therefore, ζ| X i is a RN-density with the same 

distribution as ζ that has the most adverse effect on the input fac- 
tor X i . Thus �i captures the impact of a change in the input X i on 
the output Y . Reporting �i along with �i can thus produce warn- 
ing signs of probabilistic dissonance. 

Properties of the sensitivity measures �i and �i , reflecting their 
nature as dependence measures, are summarised below. 

Proposition 4.3. Using the above introduced notation, the sensitivity 
measures �i and �i are well-defined and have the following proper- 
ties: 

1. −1 ≤ �i , �i ≤ 1 .
2. �i = �i = 0 , if X i , Y are independent.
3. �i = �i = 1 , if ( X i , Y ) is comonotonic.

4. �i = �i = −1 , if ( X i , Y ) is counter-monotonic.

5. �i = �i ≥ 0 , if ( X i , Y ) are positively quadrant dependent 
1 .

6. �i = �i ≤ 0 , if ( X i , Y ) are negatively quadrant dependent 
1 .

Remark. Let ζ be the RN-density of the solution of problem (3) or 
(5) . Then, for an input X i with continuous distribution function, the
corresponding reverse and forward sensitivity measures, �i , �i , are
robust in the size of the stress as long as the RN-density is a.s. con- 
tinuous in a neighbourhood of that stress. We refer to the remarks 
on robustness in Section 3.3 and 3.4 for details on the conditions 
required on the RN-density. 

The above defined sensitivity measures focus on the dif- 
ference of expectations under an alternative and the baseline 
model. If the interest lies in other distributional properties, such 
as tails, Definition 4.2 can be extended to consider monotone 
transformations of input factors. Specifically, one can calculate 
S(u (X i ) , ζ ) , respectively S(u (Y ) , ζ| X i ) , for an appropriately chosen
non-decreasing function u . As the couple ( u ( X i ), X i ) is comonotonic, 

1 These concepts are reviewed in Section Appendix A .
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Fig. 6. Reverse (left plot) and forward (right plot) sensitivity measures �i, v , �i, v with a 10% increase in VaR and 13% increase in ES.

Table 4
Reverse sensitivity measure �i for a 10% and 20% in- 
crease / decrease of VaR 0.9 .

Input λ = 0.8 λ = 0.9 λ = 1.1 λ = 1.2 

X 1 −0.83 −0.85 0.88 0.90

X 2 −0.58 −0.51 0.36 0.34

X 3 −0.17 −0.17 0.15 0.14

X 4 −0.93 −0.72 0.60 0.68

the interpretation of the sensitivity measures remains unchanged. 
One particular example is the choice 

u v (X i ) = (X i − F −1 
Xi

(v )) + − (F −1 
X i (1 − v ) − X i ) + , 0 . 5 ≤ v < 1 . (9)

For v = 0 . 5 , the function u 0.5 is the identity and thus 
S(u 0 . 5 (X i ) , ζ ) = �i , respectively S(u 0 . 5 (X i ) , ζ| X i ) = �i . When 

v > 0 . 5 , the function u v is zero whenever X i ∈ 
[
F −1 
X i

(1 − v ) , F −1 
X i

(v ) 
]

and linearly increasing otherwise. Thus, increasing v places higher 
emphasis on the tail behaviour of X i . The random variable u v (Y ) is 
defined and interpreted in a similar way. 

We denote �i, v = S(u v (X i ) , ζ ) and �i, v = S(u v (Y ) , ζ| X i ) . It is
easily seen that the properties of Proposition 4.3 still apply to 
�i, v , �i, v . In addition, it holds that 

S(u v (aX i + b) , ζ ) = sign (a ) S(u v (X i ) , ζ ) , 

such that the reverse sensitivity measure is invariant under linear 
transformations of input factors. 

Example (continued) . Fig. 6 displays the forward and reverse sen- 
sitivity measures �i, v , �i, v for v ∈ [0 . 5 , 0 . 999) , for the stressed
model arising from optimisation problem (5) with a 10% increase 
in VaR and a 13% increase in ES. Consistently with the example in 
Section 3.4 , the highest sensitivity, for both reverse and forward 
measures, is displayed by X 1 , followed by X 4 , X 2 and X 3 . Further- 
more, the ranking is not affected by the level v and is thus not 
sensitive to emphasising the tails of the distributions. In the next 
section we present a situation where this no longer holds true. 

To illustrate the impact on the sensitivity measure �i of the size 
of the stress applied to the output risk measure, we fix α = 0 . 9 
and let q = λVaR α(Y ) , with λ ranging from 0.8 to 1.2. 2 Results are 
given in Table 4 . For λ< 1 it is seen that the sensitivity measure 
�i takes negative values. This is a result of applying a negative 
stress on Y , such that the RN-density ζ becomes a decreasing func- 
tion of Y . The absolute value of the sensitivity measure responds 

2 Note that in general Proposition 3.2 only applies for λ> 1. However, continuity
of Y in this example implies that the RN-density ζ of Proposition 3.2 is a solution
to problem (3) even for λ<1.

asymmetrically to positive ( λ>1) or negative ( λ<1) stresses on 
VaR α( Y ), in extremis even leading to a change in the ranking of in- 
puts. This reflects a different sensitivity to input factors with view 
to increasing or decreasing the VaR of the output. 

4.2. Comparison to other sensitivity measures 

By the proposed reverse sensitivity measure �i , we aim to 
quantify the extent to which a stress in the output distribution 
impacts different inputs. In the present section we compare �i 
to the moment independent sensitivity measure introduced in 
Borgonovo (2007) , and to the variance-based sensitivity measures, 
see Borgonovo and Plischke (2016) for an overview, which are de- 
signed to apportion the output variance to individual input factors. 
Specifically, the first order sensitivity index S i , the total effects sen- 
sitivity index T i and the moment independent sensitivity measure δi 
are respectively defined as 

S i = 
Var (E(Y | X i ))

Var (Y ) 

T i = 
E( Var (Y | X −i ))

Var (Y ) 

δi = 
1

2 
E 
(∫ ∣∣ f Y (y ) − f Y | X i (y | X i ) 

∣∣d y
)
,

where X −i = (X 1 , . . . , X i −1 , X i +1 , . . . , X n ) , f Y and f Y | X i denote the
density of the output Y and the density of Y conditional on the 
input factor X i , respectively. The measure S i can be understood as 
the expected reduction in the variance of Y that would be achieved 
if input X i could be fixed, whereas T i is interpreted as the ex- 
pected variance that would be left if all inputs but X i could be 
fixed ( Saltelli et al., 2008; Sobol, 1993; Wagner, 1995 ). The moment 
independent sensitivity δi can be seen as the expected shift of the 
output induced by fixing the input factor X i ( Borgonovo, 2007 ). 

Thus, the interpretation of the reverse sensitivity measure �i is 
quite different to that of S i , T i and δi , which are designed to answer 
different questions. Furthermore, �i is designed with reference to 
a (tail) risk measure like VaR/ES and hence captures distributional 
impacts differently than the variance-based or the moment inde- 
pendent sensitivities, as is illustrated by the following numerical 
example. 

Example (continued) . We return to the simple insurance portfo- 
lio example of Section 3.3 (optimisation problem (4) ), stressing 
VaR α( Y ) by 10%, for α = 0 . 5 and α = 0 . 9 . The sensitivity indices 
S i , T i and δi are calculated, in addition to �i , where the calcula- 
tion of the variance-based sensitivities is carried out via estimation 
of the necessary conditional expectations from the existing Monte 
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Table 5
Comparison of the variance based sensitivity measures

S i , T i , the moment independent sensitivity measure δi

and the reverse sensitivity measure �i with a 10% in- 
crease in VaR α , for α = 0 . 5 and α = 0 . 9 , for independent 
input vector X .

Input Si Ti δi �i

α = 0.5 α = 0.9 

X 1 0.71 0.73 0.46 0.87 0.89

X 2 0.24 0.26 0.21 0.41 0.36

X 3 0.03 0.03 0.06 0.15 0.15

X 4 0.00 0.01 0.04 0.09 0.07

Carlo sample by local polynomial regression and the estimation of 
δi utilises kernel smoothing as in Borgonovo et al. (2011) . 

In Table 5 , the sensitivity measures are reported for a variation 
of the model, where the aggregation function g and the marginal 
distributions of the inputs X i are unchanged, but the vector X 
is independent. Assuming that the input factors are independent 
facilitates comparison of �i and δi with the variance based sensi- 
tivity measures, S i and T i . It can be seen that all sensitivity mea- 
sures produce a consistent ranking, with X 4 assigned a very low 
sensitivity. Note that the first order sensitivities, S i , sum up to 0.98, 
implying that the interaction terms are nearly as important as S 3 . 

The sensitivity measure �1 is slightly increasing in α, while �2 
is decreasing. This reflects the different tail characteristics of X 1 
(LogNormal) and X 2 (Gamma); for a high α, the focus is on the 
right tail of Y , for which the heavier tail of X 1 is more important. 

4.3. Controlling for dependence in the sensitivity measure 

The literature on sensitivity indices has long been concerned 
with the implications for sensitivity analyses of statistical depen- 
dence between inputs. In particular for variance-based sensitivi- 
ties, ( Oakley & O’Hagan, 2004; Saltelli & Tarantola, 2002 ), show 
that correlation between inputs can impact sensitivity measures 
in ways that do not reflect the functional dependencies in the 
model’s aggregation function and are thus viewed as spurious; see 
Section 4.3 in Borgonovo and Plischke (2016) for more discussion 
of this topic and extensive references. Refinements of variance- 
based sensitivity indices have been proposed to address depen- 
dence between inputs, indicatively see Xu and Gertner (2008a) , Xu 
and Gertner (2008b) , and Mara and Tarantola (2012) . 

Our sensitivity measure �i , similarly to many other sensitivity 
measures ( Borgonovo et al., 2016 ), is evaluated on the joint distri- 
bution of ( X i , Y ). As a result, it does not control for dependence 
between inputs and is therefore subject to problems of confound- 
ing typical in multivariate analyses. In this section, we put forward 
a proposal for generalising the sensitivity measure �i , in order to 
take into account such effects. 

To proceed with the definition, denote by N = { 1 , . . . , n } and 
X T = (X j ) j∈ T for T ⊆N . Consider now, for T ⊆N \ { i }, the quantity 
S(X i − E(X i | X T ) , ζ ) , measuring the reverse sensitivity to that part
of X i that is not already explained by the inputs X T . With the above 
in mind, we define the k th- order reverse sensitivity measure as 

�(k ) 
i = 

1

c k 

∑ 

T ⊆N\{ i } , | T | = k 
S ( X i − E(X i | X T ) , ζ ) , k = 0 , . . . , n − 1 ,

where c k = 
(
n −1 
k

)
. Thus �(k ) 

i represents the average reverse sensi- 
tivity to X i , after controlling for all subsets of inputs of size k . Note 
the special cases �(0) 

i = �i and �
(n −1)
i = S(X i − E(X i | X −i ) , ζ ) . If X i

is independent of X −i , then �
(k ) 
i = �i for all k = 0 , . . . , n − 1 . 

Example (continued) . Continuing with the insurance portfolio ex- 
ample, we work out k th-order reverse sensitivity measures for 

Table 6
The k th -order reverse sensitivity measure

�(k ) 
i , for k = 0 , . . . , 3 , of problem (4) for a 10% 

increase of VaR 0.9 ( Y ).

Input k = 0 k = 1 k = 2 k = 3 

X 1 0.88 0.81 0.76 0.71

X 2 0.36 0.30 0.29 0.31

X 3 0.15 0.13 0.12 0.13

X 4 0.60 0.48 0.34 0.18

k = 0 , . . . , 3 , with the RN-density ζ derived from problem (4) for 
an 10% increase of VaR 0.9 ( Y ). The results are summarised in Table 6 
and show that, as the order of the sensitivity measure increases, 
the sensitivity of some input factors is impacted more than that 
of others. This is particularly noticeable for X 4 : for k = 3 , where 
all other input factors are controlled for, the sensitivity drops 
substantially. 

Comparing the first column in Table 6 , that is �i , with Table 5 , 
the sensitivity for the independent input vector, we see that the 
rank of X 2 and X 4 are reversed. The observed impact of depen- 
dence between inputs on the importance ranking of X 4 can be un- 
derstood as follows. X 4 represents the percentage of reinsurance 
recovery lost due to default. In our baseline model, X 4 is depen- 
dent on L = X 3 (X 1 + X 2 ) , with Gaussian copula correlation of 0.6. 
The correlation reflects the notion that such recovery losses are 
more likely under those scenarios when they are most needed (i.e. 
L is large), leading to a high sensitivity to X 4 . 

5. Financial application: a London Insurance Market portfolio

In this section we demonstrate the use of the sensitivity mea- 
sures �i, v and �i, v , in a more realistic insurance risk model with 
a higher number of inputs. This is a proprietary model of a Lon- 
don Insurance Market portfolio, currently in use by a participant 
in that market. We have been supplied by the model owner with a 
Monte Carlo sample of size M = 50 0 , 0 0 0 , containing simulated ob- 
servations from input factors X = (X 1 , . . . , X 72 ) and output Y . Each 
of the X i ’s represents a normalised loss for a particular part of the 
portfolio and is measured on the same scale. The output Y stands 
for the portfolio loss. 

The aggregation function g is linear, specifically 

Y = g(X ) = 
72 ∑ 

j=1

w j X j , 

for a vector of weights w = (w 1 , . . . , w 72 ) . The linearity of g is not 
used for sensitivity calculations, since the reverse sensitivity test- 
ing framework makes no assumptions on the form of g . We do not 
have access to the joint probability distribution that was used to 
generate samples from the random vector X ; in fact the distribu- 
tion of X is not given in closed form, as samples from X are them- 
selves outputs of a different model, which remains a completely 
black box to us. 

We consider optimisation problem (5) with risk measure con- 
straints on VaR and ES given by q = VaR Q 

0 . 95 (Y ) = 1 . 08 VaR 0 . 95 (Y ) 

and s = ES Q 
0 . 95 (Y ) = 1 . 1 ES 0 . 95 (Y ) . In Fig. 7 , the reverse and forward 

sensitivity measures �i, v , �i, v , for v = 0 . 5 and v = 0 . 95 , are pre- 
sented for all 72 inputs. The input factors are ordered according to 
�i , 0.5 and the sizes of the markers reflect the weights w i attached 
to the individual input factors X i . 

Observations on the plot of Fig. 7 : 

• The ranking of input factors according to �i , 0.5 and �i , 0.95 is
not fully consistent; moving focus to the tails of input factors
changes the order of the sensitivity measures. Hence, under the



12

Fig. 7. Reverse and forward sensitivity measures �i, v , �i, v for the London Insurance Market portfolio, for v = 0 . 5 and v = 0 . 95 . 

stressed model, for some input factors the expectation is af- 
fected more, while for others the impact is higher in the tail. 

• For v = 0 . 5 , the ranking produced by the reverse and for- 
ward sensitivity metrics is not equivalent. However, once the
focus is moved towards the tails of risk factor distributions
(e.g. v = 0 . 95 ), the discrepancy of the two sensitivity measures

diminishes.
• There is no clear relation between the sizes of the markers

and the ranking of input factors. This means that the sensitivity
measure �i, v does not solely reproduce the size of the weight

w i .

To elaborate on the last of those points, in Fig. 8 (left), the re- 
verse sensitivities �i , 0.95 are plotted against the weights w i . There 
is a broadly increasing relation, which is not unreasonable. Given 
the linearity of the aggregation function, a higher weight w i im- 
plies a higher local sensitivity ∂g 

∂x i 
( Borgonovo & Plischke, 2016 ). But 

the relation is by no means deterministic: weight is a weak pre- 
dictor of the reverse sensitivity measure �i, v . 

Furthermore, the reverse sensitivity measure does not only 
reflect the shape of the input risk factor distributions. In 
Fig. 8 (right), �i , 0.95 is displayed against the scaled percentiles 
VaR 0 . 95 (X i )

E(X i )
− 1 , not showing a clear pattern. Hence the two plots in

Fig. 8 demonstrate that the proposed reverse sensitivity measure 
does not reproduce easily observed characteristics of the aggrega- 
tion function g or of the distributions of the inputs X i . 

6. Conclusions

We proposed a reverse sensitivity testing framework that is ap- 
propriate for contexts where model inputs are uncertain and the 
relationship between model inputs and outputs is complex and 

not necessarily given in analytical form. At the core of the reverse 
sensitivity framework is a stress on the output distribution, corre- 
sponding to an increase in the value of a risk measure applied on 
the output and representing a plausible but adverse model change. 
This leads to stressed probabilities under which the distribution 
of the input factors (marginals and dependence structure) is al- 
tered such that the output distribution is subjected to the required 
stress. 

We provided analytical solutions of the stressed probability 
measure under an increase of the VaR and ES risk measures. These 
explicit solutions facilitate straightforward implementation in a 
Monte Carlo simulation context and inspection of changes in the 
distributions of inputs. A new class of reverse sensitivity measures 
is introduced, quantifying the extent that the distribution of an 
input factor is distorted by the transition to a stressed probabil- 
ity. Analysis of stochastic order relations induced by the change of 
measure provides assurance that the proposed method has desir- 
able properties. 

The reverse sensitivity framework can be easily deployed by a 
risk analyst with access only to a set of input / output scenar- 
ios, simulated under the baseline model. Thus there is no need for 
a detailed consideration of the model structure or of simulating 
additional scenarios, involving computationally expensive model 
evaluations. Thus the proposed framework is immediately appli- 
cable to industry applications. 

Appendix A. Stochastic comparisons 

The proposed reverse sensitivity testing framework is based on 
the change from a baseline probability measure P to a stressed 
probability Q . The optimisation problems of Section 3 ensure that 
under Q the value of particular risk measures applied on Y in- 
creases. But the broader changes in the distributions of input 
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Fig. 8. Reverse sensitivity measure �i , 0.95 for the London Insurance Market portfolio, against weights w i (left) and scaled input percentiles VaR 0 . 95 (X i ) E(X i ) − 1 (right).

factors X and output Y arising from the change of measure are also 
of interest in a risk management context. For Q to be meaningfully 
called a ‘stressed measure’, we argue that three properties should 
be fulfilled. First, under Q the distribution of the output should 
dominate (in a suitable stochastic order relation) the output distri- 
bution under the baseline model. Second, under the assumptions 
of a non-decreasing aggregation function and positive dependence 
between input factors, the distribution of the input vector X un- 
der Q should stochastically dominate the distribution of X under P . 
Third, an increase in the extent to which risk measures are stressed 
should be reflected in the distributions of output and inputs under 
the corresponding stressed probabilities. In this section we aim to 
give precise conditions under which the above properties are ful- 
filled. Note that most of the discussion is not contingent on Q be- 
ing a solution of one of the optimisation problems of Section 3 . 

We adopt the standard definitions of stochastic order relations. 
For distribution functions F , G we write F �st G if G is larger than F 
in first-order stochastic dominance, that is F ( x ) ≥G ( x ) for all x ∈ R n . 
For univariate F , G , we denote F �icx G if G is larger than F in increas- 
ing convex (or stop-loss) order, that is 

∫ 1 
u F 

−1 (s )d s ≤ ∫ 1 
u G −1 (s )d s 

for all u ∈ (0, 1). The following dependence concepts are of impor- 
tance, see Denuit, Dhaene, Goovaerts, and Kaas (2006) : 

• An m -dimensional random vector Z is stochastically increasing
(or positively regression dependent ) in a random variable W , de- 
noted by Z ↑ si W , if P ( Z > z | W = w ) is non-decreasing in w, for
all z ∈ R m .

• An m -dimensional random vector Z is associated if Cov( h 1 ( Z ),
h 2 ( Z )) ≥0, for all component-wise non-decreasing functions
h 1 , h 2 : R m → R for which the covariance exists.

• The random couple ( W , Z ) is positively quadrant dependent
(PQD) if P (W ≤ w, Z ≤ z) ≥ P (W ≤ w ) P (Z ≤ z) for all w, z ∈ R .

• The random couple ( W , Z ) is negatively quadrant dependent
(NQD) if P (W ≤ w, Z ≤ z) ≤ P (W ≤ w ) P (Z ≤ z) for all w, z ∈ R .

For a pair of random variables ( W , Z ) the above definitions 
are successively weaker: Z ↑ si W implies that ( Z , W ) is associated,
which implies PQD, see Esary, Proschan, and Walkup (1967) . We 
write Z −k = (Z 1 , . . . , Z k −1 , Z k +1 , . . . , Z m ) , 1 ≤ k ≤ m for the (m − 1) - 
dimensional sub-vector of Z deprived of its k th component. 

The next two propositions characterise the stochastic ordering 
of inputs and output under two different probabilities Q 1 , Q 2 , mak- 
ing alternative assumptions on distributions under P , on g and on 
the form of the corresponding two RN-densities. 

Proposition A.1. Let Q 1 , Q 2 ∈ P be two probability measures with 
d Q 1 
d P = η1 (Y ) , 

d Q 2 
d P = η2 (Y ) , for some non-negative functions η j , j = 

1 , 2 . If the RN-densities cross once, such that for some d ∈ R 

η2 (y ) 

{
≤ η1 (y ) y < d 
≥ η1 (y ) y ≥ d, 

(A.1) 

then the following hold: 

1. F Q 
1 

Y �st F 
Q 2
Y 

2. For given i ∈ { 1 , . . . , n } , if E ( (X i − t) + | Y = y ) is non-decreasing in

y for all t ∈ R , then F Q 
1 

X i
�icx F 

Q 2 
X i

. 

3. For given i ∈ { 1 , . . . , n } , if X i ↑ si Y , then F 
Q 1 
X i

�st F 
Q 2
X i

. 

Proposition A.2. Let Q 1 , Q 2 ∈ P be two probability measures with 
d Q 1 
d P = η1 (Y ) , 

d Q 2 
d P = η2 (Y ) for some non-negative functions η j , j = 

1 , 2 . Assume that η2 − η1 is non-decreasing. Then the following hold: 

1. F Q 
1 

Y �st F 
Q 2 
Y . 

2. If the aggregation function g is non-decreasing in coordinate i and

X i is independent of X −i , then F 
Q 1 
X i

�st F 
Q 2
X i

. 

3. Assume that the aggregation function g is non-decreasing.

(a) For given i ∈ { 1 , . . . , n } , if ( X i , Y ) is PQD, then F Q 1 X i
�st F 

Q 2
X i

. 

(b) If X is associated, then F Q 
1 

X �st F 
Q 2
X . 

Part 1. of both Propositions Appendix A.1 and Appendix A.2 re- 
flects the comparative impact of the stress on the output Y , 
while parts 2. and 3. characterise the impact of the stress on 
the inputs. An example where the assumption of Proposition Ap- 
pendix A.1 , part 3., is satisfied is the following. Suppose the in- 
put vector X is multivariate normal and Y = h ( 

∑ n 
i =1 w i X i ) for an 

increasing function h and w i ∈ R for all i . If Cov (X i , h −1 (Y )) =∑ n 
j=1 w j Cov (X i , X j ) ≥ 0 , then X i ↑ si Y holds. The assumption in

Proposition Appendix A.2 part 3.(a) holds for example if X −i ↑ st X i
and g is non-decreasing. 
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Fig. A.1. Left: simulated RN-densities of the solution to (4) with a 10% (black) and 15% (grey) increase in VaR. Right: simulated RN-densities of the solution to (5) case 1,
with a 10% increase in VaR and 9% (black) and 13% (grey) increase in ES.

Propositions Appendix A.1 and Appendix A.2 allow for a 
stochastic comparison of the output and the input factors under 
the stressed and the baseline model. In particular, Proposition Ap- 
pendix A.1 applies to the solutions of problems (3), (5) and 
(7) with Q 2 = Q and Q 1 = P . Proposition Appendix A.2 applies to
optimisation problem (1) , with Q 2 = Q and Q 1 = P, if the RN- 
density of the solution is a non-decreasing function of Y . Recall 
that the RN-density of the solutions to (3), (5) case 1, and (7) are 
non-decreasing. Moreover, for a stressed model under which the 
input X i stochastically dominates, in first-order or increasing con- 
vex order, the distribution of the input under the baseline model, 
the introduced sensitivity measure �i is positive. 

Proposition Appendix A.1 also enables to contrast stressed prob- 
abilities corresponding to different stress levels. For example, when 
solving optimisation problem (3) with two different VaR con- 
straints, the output under the stressed model corresponding to a 
higher VaR should stochastically dominate the output under the 
other stressed model. The next lemma associates Proposition Ap- 
pendix A.1 with solutions of the optimisation problems (3) and (5) . 

Lemma A.3. The crossing condition of Proposition Appendix A.1 is 
satisfied for: 

1. Two solutions Q 1 , Q 2 of optimisation problem (3) with constraints

VaR Q 
1 

α (Y ) = q 1 respectively VaR 
Q 2 
α (Y ) = q 2 , and q 1 < q 2 . 

2. Two solutions Q 1 , Q 2 of optimisation problem (5) with con- 

straints VaR Q 
1 

α (Y ) = VaR Q 
2 

α (Y ) = q and ES Q 
1 

α (Y ) = s 1 , respectively 

ES Q 
2 

α (Y ) = s 2 , and s 1 < s 2 . 

The second part of Lemma Appendix A.3 holds true for both 
types of solutions of (5) . 

Example (continued) . Applying Proposition Appendix A.1 to the 
two optimisation problems in this example, we immediately ver- 
ify that the output under the stressed probabilities first-order 
stochastically dominates the output under the baseline probabil- 
ity, see Figs. 1 and 3 . Moreover, the aggregation function g is non- 
decreasing and it can be verified that, for instance, ( X 4 , Y ) is PQD. 
Hence, following Proposition Appendix A.2 part 3.(a), the distribu- 
tion of X 4 under the stressed probability first-order stochastically 
dominates that under the baseline probability. This can be seen in 
Figs. 2 and 4 . 

An illustration of Lemma Appendix A.3 is given in Fig. A.1 . The 
left plot shows the RN-densities of solutions to (3) with two differ- 
ent stress levels. The black line corresponds to an increase of VaR 
of 10%, the same as in Fig. 1 , and the grey line to an increase of 
VaR of 15%. The plot to the right displays the RN-densities of so- 
lutions to (5) for an increase of 10% in VaR and 9% in ES (black) 
and an increase of 10% in VaR and 13% in ES (grey), see Fig. 3 . It is 
seen how in both cases, the two RN-densities satisfy the crossing 
condition of Proposition Appendix A.1 . 

Appendix B. Proofs 

Proposition 3.1. A similar result to Proposition 3.1 can be found 
in Cambou and Filipovi ́c (2017) , and we also refer to Csiszár 
(1975) for a general form of the solution. It is immediately veri- 
fied that ζ is a RN-density for which Q ζ (Y ∈ B i ) = αi , i = 1 , . . . , I. 
Let ξ be any RN-density that satisfies Q ξ (Y ∈ B i ) = αi , i = 1 , . . . , I. 
Using Jensen inequality, the KL-divergence of Q ξ with respect to P 
fulfils 

D KL (Q ξ� P ) =
I ∑ 

i =0

E ( ξ log (ξ ) | Y ∈ B i ) P (Y ∈ B i )

≥
I ∑ 

i =0

E ( ξ | Y ∈ B i ) log ( E ( ξ | Y ∈ B i ) ) P (Y ∈ B i )

= 
I ∑ 

i =0

αi log 
(

αi 
P (Y ∈ B i ) 

)

= D KL (Q ζ� P ) .

Therefore Q ζ is a solution of (2) . Uniqueness follows by strict con- 
vexity of the KL-divergence, see Csiszár (1975) . �

Proposition 3.2. Assume that P (q − ε < Y < q ) > 0 for all ε > 0. 
Then, it is immediate to verify that ζ is a RN-density such that 

VaR Q 
ζ

α (Y ) = q . Let ξ = d Q 
ξ

d P be a RN-density for which VaR Q 
ξ

α (Y ) =
q . By Jensen inequality, the KL-divergence of Q ξ with respect to P 
is 

D KL (Q ξ� P )

= E ( ξ log (ξ ) | Y < q ) P (Y < q ) + E ( ξ log (ξ ) | Y ≥ q ) P (Y ≥ q )
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≥ Q ξ (Y < q ) log 

(
Q ξ (Y < q ) 
P (Y < q ) 

)
+ Q ξ (Y ≥ q ) log

(
Q ξ (Y ≥ q ) 
P (Y ≥ q ) 

)

= k 
(
Q ξ (Y < q ) , P (Y < q ) 

)
,

where we define k (x, y ) = x log ( x y ) + (1 − x ) log ( 1 −x 
1 −y ) , for 

0 < x < 1, 0 < y < 1. Inspection shows that, for fixed 0 < y < 1, 
x → k ( x , y ) is non-increasing on (0, y ]. Moreover it holds 

Q ξ (Y < q ) ≤ α ≤ P (Y ≤ VaR α(Y )) ≤ P (Y < q ) . 

The KL-divergence of Q ξ is thus larger than the KL-divergence of 
Q ζ , 

D KL (Q ξ� P ) ≥ k 
(
Q ξ (Y < q ) , P (Y < q ) 

)

≥ k 
(
α, P (Y < q ) 

)

= α log 
(

α

P (Y < q ) 

)
+ (1 − α) log

(
1 − α

P (Y ≥ q ) 

)

= D KL (Q ζ� P ) ,

and Q ζ is a solution of (3) . Uniqueness follows by strict convexity 
of the KL-divergence. 

Assume now that there exists ε > 0 such that P (q − ε < Y < 
q ) = 0 . If P (Y = q ) = 0 , by the absolute continuity of the probabil- 
ity measures, the optimisation problem (3) does not admit a solu- 
tion. Hence, we assume that P (Y = q ) > 0 . Let Q ξ be a RN-density 

for which VaR Q 
ξ

α (Y ) = q . Denote r = Q ξ (Y ≤ q ) and p = P (Y ≤ q ) .
The KL-divergence of Q ξ with respect to P is 

D KL (Q ξ� P ) = E(ξ log (ξ ) | Y ≤ q ) p + E(ξ log (ξ ) | Y > q )(1 − p)

≥ r log 
(
r

p

)
+ (1 − r) log

(
1 − r

1 − p 

)

= D KL (Q ξ
r � P ) ,

where we define ξ u = d Q 
ξu

d P = u p 1 { Y ≤q } + 1 −u 
1 −p 1 { Y >q } , 0 ≤u ≤1. The 

family of RN-densities ξ u fulfil VaR Q 
ξu 

α (Y ) = q if and only if α ≤
u < α p

P(Y <q ) . In particular this holds for the RN-density ξ
r . Hence 

the optimisation problem (3) is reduced to minimise D KL (Q ξ
u � P )

subject to α ≤ u < α p 
P(Y <q ) . As a function of u the KL-divergence 

D KL (Q ξ
u � P ) is non-increasing on (0, p ], hence the optimisation

problem does not admit a solution as α p 
P(Y <q ) < p. �

Proposition 3.3. For i = 1 , 2 , Eq. (6) can be rewritten as 

∂ 
∂θ

E (e θ (Y −q ) | A i ) =
E 
(
(Y − q ) e θ (Y −q ) | A i

)
E (e θ (Y −q ) | A i ) = s − q. 

The left hand side is increasing for positive θ , negative for θ = 0 
and diverges for θ↑ θmax , where θmax = sup { θ > 0 | E(e θY | A i ) < ∞} ,
by properties of the moment generating function. Thus, for i = 1 , 2 , 
there exists a unique positive solution θ ∗

i of (6) . 
Case 1 . The RN-density ζ 1 fulfils the constraints in (5) since 

Q ζ1 (Y < q ) = α, Q ζ1 (Y ≤ q ) ≥ α and the ES constraint is equivalent 

to (1 − α)(s − q ) = E Q 
ζ1 ((Y − q ) + ) . Let ξ = d Q 

ξ

d P be a RN-density 

satisfying the constraints of problem (5) and denote r = Q ξ (A c 
1 )

and p = P (A c 
1 ) . Using Jensen’s inequality, the KL-divergence of Q ξ

with respect to P fulfils 

D KL (Q ξ� P ) = E 
(
ξ log (ξ ) 1 A c 

1 
)

+ E 
(
ξ log (ξ ) 1 A 1 

)

+ θ ∗
1 (1 − α)(s − q ) − E 

(
ξ log 

(
e θ

∗
1 (Y −q ) )1 A 1

)

≥ r log 
(
r

p 

)
+ θ ∗

1 (1 − α)(s − q ) 

+ E

(
ξ log 

(
ξ

e θ
∗
1 (Y −q ) 

)∣∣∣A 1 
)

(1 − p) . 

Recall that the perspective of a convex function f , defined by 
h (x, y ) = y f (x/y ) is itself convex, see Boyd and Vandenberghe 
(2004) . Applying then Jensen’s inequality to h (x, y ) = y log ( y x ) , the 
third term becomes 

E 

(
ξ log 

(
ξ

e θ
∗
1 (Y −q ) 

)∣∣∣A 1 
)

(1 − p)

≥ E (ξ | A 1 ) log
(

E (ξ | A 1 )
E (e θ

∗
1 (Y −q ) | A 1 )

)
(1 − p) 

= (1 − r) log 

(
(1 − r) 

E 
(
e θ

∗
1 (Y −q ) 1 A 1

)
)

.

Collecting all terms, 

D KL (Q ξ� P ) ≥ r log
(
r

p 

)
+ θ ∗

1 (1 − α)(s − q ) 

+ (1 − r) log

(
(1 − r) 

E 
(
e θ

∗
1 (Y −q ) 1 A 1

)
)

= k 
(
r, p, E 

(
e θ

∗
1 (Y −q ) 1 A 1

))
,

where we define k (x, y, z) = x log ( x y ) + θ ∗
1 (1 − α)(s − q ) + (1 −

x ) log ( 1 −x 
z ) , for 0 < x < 1 and y , z > 0. For fixed y , z > 0, the func- 

tion x → k ( x , y , z ) is decreasing on 
(
0 , y 

y + z 
]
. The condition on θ ∗

1 in 
1. is equivalent to

α ≤ p

p + E 
(
e θ

∗
1 (Y −q ) 1 A 1

) .

Therefore, noting that r ≤α, we obtain 

D KL (Q ξ� P ) ≥ k 
(
r, p, E 

(
e θ

∗
1 (Y −q ) 1 A 1

))
≥ k 

(
α, p, E 

(
e θ

∗
1 (Y −q ) 1 A 1

))

= D KL (Q ζ1 � P ) .

The last equality follows since 

D KL (Q ζ1 � P ) = α log

(
α

p 

)
+ 1 − α

E 
(
e θ

∗
1 (Y −q ) 1 A 1

)

× E 

(
e θ

∗
1 (Y −q ) 1 A 1 log 

(
1 − α

E 
(
e θ

∗
1 (Y −q ) 1 A 1

)e θ ∗
1 (Y −q )

) )

= α log 
(
α

p 

)
+ (1 − α) log

(
1 − α

E 
(
e θ

∗
1 (Y −q ) 1 A 1

)
)

+ θ ∗
1 

1 − α

E 
(
e θ

∗
1 (Y −q ) 1 A 1

)E (e θ ∗
1 (Y −q ) (Y − q ) + 

)

= α log 
(
α

p 

)
+ (1 − α) log

(
1 − α

E 
(
e θ

∗
1 (Y −q ) 1 A 1

)
)

+ θ ∗
1 (1 − α)(s − q ) 

= k 
(
α, p, E 

(
e θ

∗
1 (Y −q ) 1 A 1

))
.

Therefore Q ζ1 is a solution of (5) . Uniqueness follows by strict con- 
vexity of the KL-divergence. 

Case 2 . The proof of case 2 is similar to that of case 1, replacing 
the set A 1 with A 2 and ζ 1 with ζ 2 . The RN-density ζ 2 fulfils the 

constraints (5) . Letting ξ = d Q 
ξ

d P be a RN-density satisfying the con- 

straints of problem (5) , then the KL-divergence of Q ξ with respect 
to P can be bounded by 

D KL (Q ξ� P ) ≥ k
(
Q ξ (A c 2 ) , P (A 

c 
2 ) , E 

(
e θ

∗
2 (Y −q ) 1 A 2

))
,

where the function k ( x , y , z ) has been defined above. For fixed y , 
z > 0, the function x → k ( x , y , z ) is increasing on 

[
y 

y + z , 1 
)
. Moreover, 
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the condition on θ ∗
2 in 2. is equivalent to 

P (A c 2 ) 

P (A c 
2 ) + E 

(
e θ

∗
2 (Y −q ) 1 A 2

) ≤ α.

Since α ≤ Q ξ (A c 
2 ) we obtain

D KL (Q ξ� P ) ≥ k 
(
α, P (A c 2 ) , E 

(
e θ

∗
2 (Y −q ) 1 A 2

))
= D KL (Q ζ2 � P ) ,

which is the KL-divergence of Q ζ2 . �

Proposition A1. Let y ≤d , then Q 2 (Y ≤ y ) = E(η2 (Y ) 1 { Y ≤y } ) ≤
E(η1 (Y ) 1 { Y ≤y } ) = Q 1 (Y ≤ y ) . For y > d , it holds Q 2 (Y ≤ y ) = 1 −
Q 2 (Y > y ) = 1 − E(η2 (Y ) 1 { Y >y } ) ≤ 1 − E(η1 (Y ) 1 { Y >y } ) = Q 1 (Y ≤ y ) . 
For the second part we have, for all t ∈ R , using the tower 
property under P , 

E Q 
2 
( (X i − t) + ) = E Q 

2 (
E ( (X i − t) + | Y ) 

)
≥ E Q 

1 (
E ( (X i − t) + | Y )

)

= E Q 1 ( (X i − t) + ) , 

by first-order stochastic dominance of Y with respect to the mea- 
sures Q 1 , Q 2 . The last claim follows using a similar argument. �

Proposition A2. The RN-densities have to cross once due to nor- 
malisation, therefore part 1. applies. In the rest of the proof, let 
h = η2 − η1 . 

To prove part 2., let g be non-decreasing in coordinate i and 
X i independent of X −i . For any t ∈ R , using the Fortuin–Kasteleyn–
Ginibre inequality ( Wüthrich & Merz, 2013 ), we have 

Q 2 (X i > t) − Q 1 (X i > t) = E 
(
h (Y ) 1 { X i >t} 

)
= E 

(
E 
(
h (Y ) 1 { X i >t} | X −i

))

≥ E 
(
E 
(
h (Y ) 

∣∣X −i 
))
P (X i > t) = 0 , 

proving first-order stochastic dominance. 
To show part 3.(a), assume that g is non-decreasing and ( X i , Y ) 

are PQD. Hence, for all t ∈ R , 

Q 2 (X i > t) − Q 1 (X i > t) = E 
(

1 { X i >t} h (Y ) 
)

≥ 0 , 

where the last inequality follows from Lemma 3 in Lehmann 
(1966) . Part 3.(b) follows by association of the vector ( h ( Y ), X ), us- 
ing a similar argument. �

Lemma A3. The first claim follows since α ≤ P ( Y < q 1 ) ≤ P ( Y < q 2 ). 
For part 2., consider first the case where P (q − ε < Y < q ) > 0 for 
all ε > 0. Denote by θ ∗

1 , θ
∗
2 the solutions to (6) with q and s 1 , re- 

spectively s 2 . Hence, θ ∗
1 ≤ θ ∗

2 , and there exists a d > q such that for 
all ω ∈ � with Y ( ω) > d we have 

e (θ
∗
2−θ ∗

1 ) ( Y (ω) −q ) ≥
E 
(
e θ

∗
2 (Y −q ) 1 A 1 

)
E 
(
e θ

∗
1 (Y −q ) 1 A 1

) ,

which implies η2 ≥η1 for all ω with Y ( ω) > d . Since on A c 
1 , η1 =

η2 P -a.s. the RN-densities admit a (unique) crossing point. The ar- 
gument also holds if A 1 is replace with A 2 . �

Proposition 4.3. We also refer to Theorem 6 in Kachapova and 
Kachapov (2012) . The first two properties are immediate. For 3. if 
X i and Y are comonotonic, ζ and ζ| X i are also comonotonic since ζ
is a non-decreasing function of Y and ζ| X i a non-decreasing func- 
tion of X i . Part 4. follows by a similar argument. Properties 5. 
and 6. are consequences of the invariance of PQD (NQD) under 
non-decreasing (non-increasing) transformations, see Lemma 1 in 
Lehmann (1966) . �
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