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ABSTRACT
This paper is the first in a set that analyses the covariance matrices of clustering statistics
obtained from several approximate methods for gravitational structure formation. We focus
here on the covariance matrices of anisotropic two-point correlation function measurements.
Our comparison includes seven approximate methods, which can be divided into three cate-
gories: predictive methods that follow the evolution of the linear density field deterministically
(ICE-COLA, PEAK PATCH, and PINOCCHIO), methods that require a calibration with N-body sim-
ulations (PATCHY and HALOGEN), and simpler recipes based on assumptions regarding the
shape of the probability distribution function (PDF) of density fluctuations (lognormal and
Gaussian density fields). We analyse the impact of using covariance estimates obtained from
these approximate methods on cosmological analyses of galaxy clustering measurements,
using as a reference the covariances inferred from a set of full N-body simulations. We find
that all approximate methods can accurately recover the mean parameter values inferred using
the N-body covariances. The obtained parameter uncertainties typically agree with the corre-
sponding N-body results within 5 per cent for our lower mass threshold and 10 per cent for our
higher mass threshold. Furthermore, we find that the constraints for some methods can differ
by up to 20 per cent depending on whether the halo samples used to define the covariance
matrices are defined by matching the mass, number density, or clustering amplitude of the
parent N-body samples. The results of our configuration-space analysis indicate that most
approximate methods provide similar results, with no single method clearly outperforming the
others.

Key words: cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

The statistical analysis of the large-scale structure (LSS) of the Uni-
verse is one of the primary tools of observational cosmology. The
analysis of the signature of baryon acoustic oscillations (BAO) and
redshift-space distortions (RSD) on anisotropic two-point cluster-
ing measurements can be used to infer constraints on the expansion

� E-mail: mlippich@mpe.mpg.de

history of the Universe (Blake & Glazebrook 2003; Linder 2003)
and the redshift evolution of the growth rate of cosmic structures
(Guzzo et al. 2008). Thanks to this information, LSS observations
have shaped our current understanding of some of the most chal-
lenging open problems in cosmology, such as the nature of dark
energy, the behaviour of gravity on large scales, and the physics
of inflation (e.g. Efstathiou et al. 2002; Cole et al. 2005; Eisen-
stein et al. 2005; Sánchez et al. 2006, 2012; Anderson et al. 2012,
2014a,b; Alam et al. 2017).
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Future galaxy surveys such as Euclid (Laureijs et al. 2011) or
the Dark Energy Spectroscopic Instrument (DESI) Survey (DESI
Collaboration 2016) will contain millions of galaxies covering large
cosmological volumes. The small statistical uncertainties associated
with clustering measurements based on these samples will push the
precision of our tests of the standard � cold dark matter scenario
even further. In this context, it is essential to identify all components
of the systematic error budget affecting cosmological analyses based
on these measurements, as well as to define strategies to control or
mitigate them.

A key ingredient to extract cosmological information out of
anisotropic clustering statistics is robust estimates of their covari-
ance matrices. In most analyses, covariance matrices are computed
from a set of mock catalogues designed to reproduce the properties
of a given survey. Ideally, these mock catalogues should be based on
N-body simulations, which can reproduce the impact of non-linear
structure formation on the clustering properties of a sample with
high accuracy. Due to the finite number of mock catalogues, the
estimation of the covariance matrix is affected by statistical errors
and the resulting noise must be propagated into the final cosmolog-
ical constraints (Dodelson & Schneider 2013; Taylor, Joachimi &
Kitching 2013; Percival et al. 2014; Sellentin & Heavens 2016).
Reaching the level of statistical precision needed for future sur-
veys might require the generation of several thousands of mock
catalogues. As N-body simulations are expensive in terms of run-
time and memory, the construction of a large number of mock
catalogues might be infeasible. The required number of realiza-
tions can be reduced by means of methods such as resampling the
phases of N-body simulations (Hamilton, Rimes & Scoccimarro
2006; Schneider et al. 2011), shrinkage (Pope & Szapudi 2008),
calibrating the non-Gaussian contributions of an empirical model
against N-body simulations (O’Connell et al. 2016), or covariance
tapering (Paz & Sánchez 2015). However, even after applying such
methods, the generation of multiple N-body simulations with the
required number density and volume to be used for the clustering
analysis of future surveys would be extremely demanding.

During the last decades, several approximate methods for gravita-
tional structure formation and evolution have been developed, which
allow for a faster generation of mock catalogues; see Monaco (2016)
for a review. The accuracy with which these methods reproduce the
covariance matrices estimated from N-body simulations must be
thoroughly tested to avoid introducing systematic errors or biases
on the parameter constraints derived from LSS measurements.

The nIFTy comparison project by Chuang et al. (2015) presented
a detailed comparison of major approximate methods regarding
their ability to reproduce clustering statistics (two-point correla-
tion function, power spectrum and bispectrum) of halo samples
drawn out of N-body simulations. Here, we take the comparison
of different approximate methods one step further. We compare
the covariance matrices inferred from halo samples obtained from
different approximate methods to the corresponding ones derived
from full N-body simulations. Furthermore, we also test the perfor-
mance of the different covariance matrices at reproducing parameter
constraints obtained using N-body simulations. We include seven
approximate methods, which can be divided into three classes: pre-
dictive methods that evolve the linear density field deterministi-
cally on Lagrangian trajectories, including ICE-COLA (Tassev, Zal-
darriaga & Eisenstein 2013; Izard, Crocce & Fosalba 2016), PEAK

PATCH (Bond & Myers 1996), and PINOCCHIO (Monaco, Theuns &
Taffoni 2002; Munari et al. 2017), methods that require higher cal-
ibration with N-body simulations, such as HALOGEN (Avila et al.
2015) and PATCHY (Kitaura, Yepes & Prada 2014), and two simpler

recipes based on models of the probability distribution function
(PDF) of the density fluctuations, the Gaussian recipes of Grieb
et al. (2016) and realizations of lognormal density fields constructed
using the code of Agrawal et al. (2017). For the predictive and cal-
ibrated methods, we generate the same number of halo catalogues
as the reference N-body simulations using identical initial condi-
tions. We focus here on the comparison of the covariance matrices
of two-point anisotropic clustering measurements in configuration
space, considering Legendre multipoles (Padmanabhan & White
2008) and clustering wedges (Kazin, Sánchez & Blanton 2012).
Our companion papers, Blot et al. (2018) and Colavincenzo et al.
(2018), perform an analogous comparison based on power spectrum
and bispectrum measurements.

The structure of the paper is as follows. Section 2 presents a brief
description of the reference N-body simulations and the different
approximate methods and recipes included in our comparison. In
Section 3, we summarize the methodology used in this analysis,
including a description of the halo samples that we consider (Sec-
tion 3.1), our clustering measurements (Section 3.2), the estimation
of the corresponding covariance matrices (Section 3.3), and the
modelling for the correlation function used to assess the impact of
the different methods when estimating parameter constraints (Sec-
tion 3.4). We present a comparison of the clustering properties of
the different halo samples in Section 4.1 and their corresponding
covariance matrices in Section 4.2. In Section 4.3, we compare
the performance of the different covariance matrices by analysing
parameter constraints obtained from representative fits, using as a
reference the ones obtained when the analysis is based on N-body
simulations. We discuss the results from this comparison in Sec-
tion 5. Finally, Section 6 presents our main conclusions.

2 A P P ROX I M ATE ME T H O D S FO R
COVARI ANCE MATRI X ESTI MATES

2.1 Methods included in the comparison

In this comparison project, we included covariance matrices in-
ferred from different approximate methods and recipes, which we
compared to the estimates obtained from a set of reference N-body
simulations. Approximate methods have recently been revived by
high-precision cosmology, due to the need of producing a large
number of realizations to compute covariance matrices of cluster-
ing measurements. This topic has been reviewed by Monaco (2016),
where methods have been roughly divided into two broad classes.
‘Lagrangian’ methods, as N-body simulations, are applied to a grid
of particles subject to a perturbation field. They reconstruct the La-
grangian patches that collapse into dark matter (DM) haloes, and
then displace them to their Eulerian positions at the output redshift,
typically with Lagrangian Perturbation Theory (hereafter LPT). ICE-
COLA, PEAK PATCH, and PINOCCHIO fall in this class. These methods
are predictive, in the sense that, after some cosmology-independent
calibration of their free parameters [that can be thought at the same
level as the linking length of friends-of-friends (FoF) halo finders],
they give their best reproduction of halo masses and clustering with-
out any further tuning. This approach can be demanding in terms
of computing resources and can have high memory requirements.
In particular, ICE-COLA belongs to the class of Particle-Mesh codes;
these are in fact N-body codes that converge to the true solution
(at least on large scales) for sufficiently small time-steps. As such,
Particle-Mesh codes are expected to be more accurate than other
approximate methods, at the expense of higher computational costs.
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The second class of ‘bias-based’ methods is based on the idea
of creating a mildly non-linear density field using some version of
LPT, and then populate the density field with haloes that follow a
given mass function and a specified bias model. The parameters
of the bias model must be calibrated on a simulation, so as to
reproduce halo clustering as accurately as possible. The point of
strength of these methods is their very low computational cost and
memory requirement, that makes it possible to generate thousands
of realizations in a simple workstation, and to push the mass limit
to very low masses. This is however achieved at the cost of lower
predictivity, and need of recalibration when the sample selection
changes. HALOGEN and PATCHY fall in this category.

In the following, we will refer to the two classes as ‘predictive’
and ‘calibrated’ models. All approximate methods used here have
been applied to the same set of 300 initial conditions (ICs) of the
reference N-body simulations, so as to be subject to the same sample
variance; as a consequence, the comparison, though limited to a
relatively small number of realizations, is not affected by sample
variance.

Additionally, we included in the comparison two simple recipes
for the shape of the PDF of the density fluctuations, a Gaussian
analytic model that is only valid in linear theory and a lognormal
model. The latter was implemented by generating 1000 catalogues
of ‘haloes’ that Poisson-sample a lognormal density field; in this
test case, we do not match the ICs with the reference simulations,
and use a higher number of realizations to lower sample variance.

2.2 Reference N-body halo catalogue: Minerva

Our reference catalogues for the comparison of the different ap-
proximate methods is derived from a set of 300 N-body simulations
called Minerva, which were performed using GADGET-3 (last de-
scribed in Springel 2005). To the first set of 100 realizations, which
is described in more detail in Grieb et al. (2016) and was used in
the recent BOSS analyses by Sánchez et al. (2017) and Grieb et al.
(2017), 200 new independent realizations were added, which were
generated with the same set-up as the first simulations. The ICs were
derived from second-order Lagrangian perturbation theory (2LPT)
and use the cosmological parameters that match the best-fitting re-
sults of the WMAP + BOSS DR9 analysis by Sánchez et al. (2013)
at a starting redshift zini = 63. Each realization is a cubic box of
side length Lbox = 1.5 h−1 Gpc with 10003 DM particles and peri-
odic boundary conditions. For the approximate methods described
in the following sections we use the same box size and exactly
the same ICs for each realization as in the Minerva simulations.
Haloes were identified with a standard FoF algorithm at a snapshot
of the simulations at z = 1.0. FoF haloes were then subject to the
unbinding procedure provided by the SUBFIND code (Springel et al.
2001), where particles with positive total energy are removed and
haloes that were artificially linked by FoF are separated. Given the
particle mass resolution of the Minerva simulations, the minimum
halo mass is 2.667 × 1012 h−1 M�.

2.3 Predictive methods

2.3.1 ICE-COLA

COLA (Tassev et al. 2013) is a method to speed up N-body sim-
ulations by incorporating a theoretical modelling of the dynamics
into the N-body solver and using a low-resolution numerical inte-
gration. It starts by computing the ICs using 2LPT (see Crocce,
Pueblas & Scoccimarro 2006). Then, it evolves particles along their

2LPT trajectories and adds a residual displacement with respect to
the 2LPT path, which is integrated numerically using the N-body
solver. Mathematically, the displacement field x is decomposed into
the LPT component xLPT and the residual displacement xres as

xres(t) ≡ x(t) − xLPT(t). (1)

In a DM-only simulation, the equation of motion relates the acceler-
ation to the Newtonian potential �, and omitting some constants it
can be written as ∂2

t x(t) = −∇�(t). Using equation (1), the equa-
tion of motion reads

∂2
t xres(t) = −∇�(t) − ∂2

t xLPT(t). (2)

COLA uses a Particle-Mesh method to compute the gradient of the
potential at the position x (first term of the right-hand side), it
subtracts the acceleration corresponding to the LPT trajectory and
finally the time derivatives on the left-hand side are discretized
and integrated numerically using few time-steps. The 2LPT en-
sures convergence of the dynamics at large scales, where its solu-
tion is exact, and the numerical integration solves the dynamics at
small non-linear scales. Haloes can be correctly identified running
a FoF algorithm (Davis et al. 1985) on the DM density field, and
halo masses, positions, and velocities are recovered with accuracy
enough to build mock halo catalogues.

ICE-COLA (Izard et al. 2016; Izard, Fosalba & Crocce 2018) is a
modification of the parallel version of COLA developed in Koda et al.
(2016) that produces all-sky light-cone catalogues on-the-fly. Izard
et al. (2016) presented an optimal configuration for the production
of accurate mock halo catalogues and Izard et al. (2018) explains
the light-cone production and the modelling of weak lensing ob-
servables.

Mock halo catalogues were produced with ICE-COLA placing 30
time-steps between an initial redshift of zi = 19 and z = 01 and
forces were computed in a grid with a cell size three times smaller
than the mean inter-particle separation distance. For the FoF algo-
rithm, a linking length of b = 0.2 was used. Each simulation reached
redshift 0 and used 200 cores for 20 min in the MareNostrum3 su-
percomputer at the Barcelona Supercomputing Center,2 consuming
a total of 20 CPU kh for the 300 realizations.

2.3.2 PEAK PATCH

From each of the 300 initial density field maps of the Minerva suite,
we generate halo catalogues following the peak patch approach ini-
tially introduced by Bond & Myers (1996). In particular, we use a
new massively parallel implementation of the peak patch algorithm
to create efficient and accurate realizations of the positions and
peculiar velocities of DM haloes (Stein, Alvarez & Bond 2018).
The peak patch approach is essentially a Lagrangian space halo
finder that associates haloes with the largest regions that have just
collapsed by a given time. The pipeline can be separated into four
subprocesses: (1) the generation of a random linear density field
with the same phases and power spectrum as the Minerva simula-
tions; (2) identification of collapsed regions using the homogeneous
ellipsoidal collapse approximation; (3) exclusion and merging of
the collapsed regions in Lagrangian space; and (4) assignment of
displacements to these haloes using 2LPT.

The identification of collapsed regions is a key step of the al-
gorithm. The determination of whether any given region will have

1The time-steps were linearly distributed with the scale factor.
2http://www.bsc.es.
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collapsed or not is made by approximating it as an homogeneous
ellipsoid, the fate of which is determined completely by the princi-
pal axes of the deformation tensor of the linear displacement field
(i.e. the strain) averaged over the region. In principle, the process
of finding these local mass peaks would involve measuring the
strain at every point in space, smoothed on every scale. However,
experimentation has shown that equivalent results can be obtained
by measuring the strain around density peaks found on a range of
scales.3 This is done by smoothing the field on a series of logarithmi-
cally spaced scales with a top-hat kernel, from a minimum radius of
Rf,min = 2alatt, where alatt is the lattice spacing, to a maximum radius
of Rf ,max = 40 Mpc, with a ratio of 1.2. For each candidate peak,
we then find the largest radius for which a homogeneous ellipsoid
with the measured mean strain would collapse by the redshift of
interest. If a candidate peak has no radius for which a homogeneous
ellipsoid with the measured strain would have collapsed, then that
point is thrown out. Each candidate point is then stored as a peak
patch at its location with its radius. We then proceed down through
the filter bank to all scales and repeat this procedure for each scale,
resulting in a list of peak patches which we refer to as the unmerged
catalogue.

The next step is to account for exclusion, an essential step to avoid
double counting of matter, since distinct haloes should not overlap,
by definition. We choose here to use binary exclusion (Bond &
Myers 1996). Binary exclusion starts from a ranked list of candidate
peak patches sorted by mass or, equivalently, Lagrangian peak patch
radius. For each patch we consider every other less massive patch
that overlaps it. If the smaller patch is outside of the larger one, then
the radius of the two patches is reduced until they are just touching.
If the centre of the smaller patch is inside the large one, then that
patch is removed from the list. This process is repeated until the
least massive remaining patch is reached.

Finally, we move haloes according to 2LPT using displacements
computed at the scale of the halo.

This method is very fast: each realization ran typically in 97 s on
64 cores of the GPC supercomputer at the SciNet HPC Consortium
in Toronto (1.72 h in total). It allows to get accurate – and fast –
halo catalogues without any calibration, achieving high precision
on the mass function typically for masses above a few 1013 M�.

2.3.3 PINOCCHIO

The PINpointing Orbit Crossing Collapsed HIerarchical Objects
(PINOCCHIO) code (Monaco et al. 2002) is based on the following
algorithm.

A linear density contrast field is generated in Fourier space, in
a way similar to N-body simulations. As a matter of fact, the code
version used here implements the same loop in k-space as the initial
condition generator (N-GENIC) used for the simulations, so the same
realization is produced just by providing the code with the same
random seed. The density is then smoothed using several smoothing
radii. For each smoothing radius, the code computes the time at
which each grid point (particle) is expected to get to the highly

3This is not to say that a halo found on a given scale corresponds to a peak in
the density smoothed on that scale, however, which is only the case when the
strain is isotropic and the collapse is spherical. Thus, the use of density peaks
as centres for strain measurements and ellipsoidal collapse calculations in the
algorithm is only an optimization, to avoid wasting computations measuring
the properties of regions of Lagrangian space that are unlikely to collapse
in the first place.

non-linear regime. The dynamics of grid points, as mass elements,
is treated as the collapse of a homogeneous ellipsoid, whose tidal
tensor is given by the Hessian of the potential at that point. Collapse
is defined as the time at which the ellipsoid collapses on the first axis,
going through orbit crossing and into the highly non-linear regime;
this is a difference with respect to PEAK PATCH, where the collapse
of extended structures is modelled. The equations for ellipsoidal
collapse are solved using third-order Lagrangian perturbation theory
(3LPT). Following the ideas behind excursion-sets theory, for each
particle we consider the earliest collapse time as obtained by varying
the smoothing radius.

Collapsed particles are then grouped together using an algorithm
that mimics the hierarchical assembly of haloes: particles are ad-
dressed in chronological order of collapse time; when a particle
collapses the six nearest neighbours in the Lagrangian space are
checked, if none has collapsed yet then the particle is a peak of the
inverse collapse time (defined as F = 1/Dc, where Dc = D(tc) is
the growth rate at the collapse time) and it becomes a new halo of
one particle. If the collapsed particle is touching (in the Lagrangian
space) a halo, then both the particle and the halo are displaced using
LPT, and if they get ‘near enough’ the particle is accreted to the halo,
otherwise it is considered as a ‘filament’ particle, belonging to the
filamentary network of particles that have suffered orbit crossing but
do not belong to haloes. If a particle touches two haloes, then their
merging is decided by moving them and checking whether they get
again ‘near enough’. Here, ‘near enough’ implies a parametrization
that is well explained in the original papers (see Munari et al. 2017,
for the latest calibration). This results in the construction of haloes
together with their merger histories, obtained with continuous time
sampling. Haloes are then moved to the final position using 3LPT.
The so-produced haloes have discrete masses, proportional to the
particle mass Mp, as the haloes found in N-body simulations. To
ease the procedure of number density matching described below in
Section 3, halo masses were made continuous using the following
procedure. It is assumed that a halo of N particles has a mass that
is distributed between N × Mp and (N + 1) × Mp, and the distribu-
tion is obtained by interpolating the mass function as a power law
between two values computed in successive bins of width Mp. This
procedure guarantees that the cumulative mass function of haloes
of mass >N × Mp does not change, but it does affect the differential
mass function.

We use the latest code version presented in Munari et al. (2017),
where the advantage of using 3LPT is demonstrated. No further
calibration was required before starting the runs. That paper presents
scaling tests of the massively parallel version V4.1 and timings. The
300 runs were produced in the GALILEO@CINECA Tier-1 facility,
each run required about 8 min on 48 cores.

2.4 Calibrated methods

2.4.1 HALOGEN

HALOGEN (Avila et al. 2015) is an approximate method designed
to generate halo catalogues with the correct two-point correlation
function as a function of mass. It constructs the catalogues following
four simple steps:

(i) Generate a 2LPT DM field, and distribute their particles on a
grid with cell size lcell.

(ii) Draw halo masses Mh from an input halo mass function
(HMF).

MNRAS 482, 1786–1806 (2019)
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(iii) Place the halo masses (from top to bottom) in the cells with
a probability that depends on the cell density and the halo mass
P ∝ ρ

α(Mh)
cell . Within cells we choose random particles to assign the

halo position. We further ensure mass conservation within cells and
avoid halo overlap.

(iv) Assign halo velocities from the particle velocities, with a
velocity bias factor: vhalo = fvel(Mh) · vpart

Following the study in Avila et al. (2015), we fix the cell size at
lcell = 5 h−1 Mpc. In this paper, we take the input HMF from the
mean of the 300 Minerva simulations, but in other studies analytical
HMF have been used. The parameter α(Mh) controls the clustering
as a function of halo mass and has been calibrated using the two-
point function from the Minerva simulations in logarithmic mass
bins (Mh = 1.06 × 1013, 2.0 × 1013, 4.0 × 1013, 8.0 × 1013,
1.6 × 1014 h−1 M�). The factor f(Mh) is also tuned to match the
variance of the halo velocities from the N-body simulations.

HALOGEN is a code that advocates for the simplicity and low needs
of computing resources. The fact that it does not resolve haloes (i.e.
using a halo finder), allows to probe low halo masses while keeping
low the computing resources. This has the disadvantage of needing
to introduce free parameters. However, HALOGEN only needs one
clustering parameter α and one velocity parameter fvel, making the
fitting procedure simple.

2.4.2 PATCHY

The PATCHY code (Kitaura et al. 2014, 2015) relies on modelling the
large-scale density field with an efficient approximate gravity solver,
which is populated with the halo density field using a non-linear,
scale dependent, and stochastic biasing description. Although it can
be applied to directly paint the galaxy distribution on the density
mesh (see Kitaura et al. 2016).

The gravity solver used in this work is based on Augmented
Lagrangian Perturbation Theory (ALPT; Kitaura & Heß 2013), fed
with the same ICs as those implemented in the Minerva simulations.
In the ALPT model, 2LPT is modified by employing a spherical
collapse model on small comoving scales, splitting the displacement
field into a long- and a short-range component. Better results can
in principle be obtained using a Particle-Mesh gravity solver at a
higher computational cost (see Vakili et al. 2017).

Once the DM density field is computed, a deterministic bias
relating it to the expected number density of haloes is applied. This
deterministic bias model consists of a threshold, an exponential
cut-off, and a power-law bias relation. The number density is fixed
by construction using the appropriate normalization of the bias
expression.

The PATCHY code then associates the number of haloes in each
cell by sampling from a negative binomial distribution modelling
the deviation from Poissonity with an additional stochastic bias
parameter.

In order to provide peculiar velocities, these are split into a coher-
ent and a quasi-virialized component. The coherent flow is obtained
from ALPT and the dispersion term is sampled from a Gaussian dis-
tribution assuming a power law with the local density.

The masses are associated with the haloes by means of the
HADRON code (Zhao et al. 2015). In this approach, the masses com-
ing from the N-body simulation are classified in different density
bins and in different cosmic web types (knots, filaments, sheets, and
voids) and their distribution information is extracted. Then HADRON

uses this information to assign masses to haloes belonging to mock

catalogues. This information is independent of ICs, meaning it will
be the same for each of the 300 Minerva realizations.

We used the MCMC python wrapper published by Vakili et al.
(2017) to infer the values of the bias parameters from Minerva sim-
ulations using one of the 300 random realizations. Once these pa-
rameters are fixed one can produce all of the other mock catalogues
without further fitting. The PATCHY mocks were produced using a
down-sampled white noise of 5003 instead of the 10003 original
Minerva ones with an effective cell side resolution of 3 h−1 Mpc to
produce the DM field.

2.5 Models of the density PDF

2.5.1 Lognormal distribution

The lognormal mocks were produced using the public code pre-
sented in Agrawal et al. (2017), which models the matter and halo
density fields as lognormal fields, and generates the velocity field
from the matter density field, using the linear continuity equation.

To generate a lognormal field δ(x), a Gaussian field G(x) is
first generated, which is related to the lognormal field as δ(x) =
e−σ 2

G
+G(x) − 1 (Coles & Jones 1991). The pre-factor with the vari-

ance σ 2
G of the Gaussian field G(x) ensures that the mean of δ(x)

vanishes. Because different Fourier modes of a Gaussian field are
uncorrelated, the Gaussian field G(x) is generated in Fourier space.
The power spectrum of G(x) is found by Fourier transforming its
correlation function ξG(r), which is related to the correlation func-
tion ξ (r) of the lognormal field δ(x) as ξG(r) = ln[1 + ξ (r)] (Coles &
Jones 1991). Having generated the Gaussian field G(x), the code
transforms it to the lognormal field δ(x) using the variance σ 2

G

measured from G(x) in all cells.
In practice, we use the measured real-space matter power spec-

trum from Minerva and Fourier transform it to get the matter correla-
tion function. For haloes we use the measured real-space correlation
function. We then generate the Gaussian matter and halo fields with
the same phases, so that the Gaussian fields are perfectly correlated
with each other. Note however, that we use random realizations
for these mocks, and so, these phases are not equal to those of the
Minerva ICs. We then exponentiate the Gaussian fields, to get mat-
ter (δm(x)) and halo (δg(x)) density fields, following a lognormal
distribution.

The expected number of haloes in a cell is given as Ng(x) =
n̄g[1 + δg(x)]Vcell, where n̄g is the mean number density of the
halo sample from Minerva, δg(x) is the halo density at position x,
and Vcell is the volume of the cell. However, this is not an integer.
So, to obtain an integer number of haloes from the halo density
field, we draw a random number from a Poisson distribution with
mean Ng(x), and populate haloes randomly within the cell. The
lognormal matter field is then used to generate the velocity field
using the linear continuity equation. Each halo in a cell is assigned
the three-dimensional velocity of that cell.

Since the lognormal mocks use random phases, we generate 1000
realizations for each mass bin, with the real-space clustering and
mean number density measured from Minerva as inputs. Also note
that because haloes in this prescription correspond to just discrete
points, we do not assign any mass to them. An effective bias relation
can still be established using the cross-correlation between the halo
and matter fields, or using the input clustering statistics (Agrawal
et al. 2017).

The key advantage of using this method is its speed. Once we had
the target power spectrum of the matter and halo Gaussian fields,
each realization of a 2563 grid, as in Minerva, was produced in 20 s
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Correlation function covariance comparison 1791

using 16 cores at the RZG in Garching. The resulting catalogues
agree perfectly with the Minerva realizations in their real-space
clustering as expected. Because we use linear velocities, they also
agree with the redshift-space predictions on large scales (Agrawal
et al. 2017).

2.5.2 Gaussian distribution

A different approach to generating ‘mock’ halo catalogues with fast
approximate methods is to model the covariance matrix theoreti-
cally. This has the advantage that the resulting estimate is free of
noise. In this comparison project, we included a simple theoretical
model for the linear covariance of anisotropic galaxy clustering that
is described in Grieb et al. (2016). Based on the assumption that the
two-dimensional power spectrum P(k, μ) follows a Gaussian dis-
tribution and that the contributions from the trispectrum and super-
sample covariance can be neglected, Grieb et al. (2016) derived the
explicit formulae for the covariance of anisotropic clustering mea-
surements in configuration and Fourier space. In particular, they
obtain that the covariance between two Legendre multipoles of the
correlation function of order 
 and 
′ (see Section 3.2) evaluated at
the pair separations si and sj, respectively, is given by

C
,
′ (si , sj ) = i
+
′

2π2

∫ ∞

0
k2σ 2



′ (k)j̄
(ksi)j̄
′ (ksj ) dk, (3)

where j̄
(ksi) is the bin-averaged spherical Bessel function as de-
fined in equation (A19) of Grieb et al. (2016), and

σ 2


′ (k) ≡ (2
 + 1) (2
′ + 1)

Vs
(4)

×
∫ 1

−1

[
P (k, μ) + 1

n̄

]2

L
(μ) L
′ (μ) dμ.

Here, P(k, μ) represents the two-dimensional power spectrum of
the sample, Vs is its volume, and n̄ corresponds to its mean number
density.

Analogously, the covariance between two configuration-space
clustering wedges μ and μ′ (see Section 3.2) is given by

Cμ,μ′ (si , sj ) =
∑

1
2

i
1+
2

2π2
L̄
1,μL̄
2,μ′

×
∫ ∞

0
k2σ 2


1
2
(k)j
1 (ksi)j
2 (ksj ) dk,

(5)

where L̄
1,μ represents the average of the Legendre polynomial of
order 
 within the corresponding μ-range of the clustering wedge.
The covariance matrices derived from the Gaussian model have
been tested against N-body simulations with periodic boundary con-
ditions by Grieb et al. (2016), showing good agreement within the
range of scales typically included in the analysis of galaxy redshift
surveys (s > 20 h−1 Mpc).

3 ME T H O D O L O G Y

3.1 Halo samples

In this section, we describe the criteria used to construct the halo
samples on which we base our covariance matrix comparison.

We define two parent halo samples from the Minerva simula-
tions by selecting haloes with masses M ≥ 1.12 × 1013 h−1 M�
and M ≥ 2.667 × 1013 h−1 M�, corresponding to 42 and 100 DM

particles, respectively. We apply the same mass cuts to the cat-
alogues produced by the approximated methods included in our
comparison. We refer to the resulting samples as ‘mass1’ and
‘mass2’.

Note that the PATCHY and lognormal catalogues do not have mass
information for individual objects and match the number density
and bias of the parent samples from Minerva by construction. The
Gaussian model predictions are also computed for the specific clus-
tering amplitude and number density as the mass1 and mass2 sam-
ples. For the other approximate methods, the samples obtained by
applying these mass thresholds do not reproduce the clustering and
the shot noise of the corresponding samples from Minerva. These
differences are in part caused by the different applied methods
for identifying or assigning haloes, e.g. PEAK PATCH uses spheri-
cal overdensities in Lagrangian space to define halo masses while
most other methods are closer to FoF masses, as described in Sec-
tion 2. Therefore, for the ICE-COLA, HALOGEN, PEAK PATCH, and
PINOCCHIO catalogues we also define samples by matching number
density and clustering amplitude of the halo samples from Min-
erva. For the number-density-matched samples, we find the mass
cuts where the total number of haloes in the samples drawn from
each approximate method best matches that of the two parent Min-
erva samples. We refer to these samples as ‘dens1’ and ‘dens2’.
Analogously, we define bias-matched samples by identifying the
mass thresholds for which the clustering amplitude in the cata-
logues drawn from the approximate methods best agrees with that
of the mass1 and mass2 samples from Minerva. More concretely,
we define the clustering-amplitude-matched samples by selecting
the mass thresholds that minimize the difference between the mean
correlation function measurements from the catalogues drawn from
the approximate methods and the Minerva parent samples on scales
40 h−1 Mpc < s < 80 h−1 Mpc. We refer to these samples as ‘bias1’
and ‘bias2’.

The mass thresholds defining the different samples, the number of
particles corresponding to these limits, their halo number densities,
and bias ratios with respect to the Minerva parent samples are listed
in Table 1. Note that, as the halo masses of the PINOCCHIO and PEAK

PATCH catalogues are made continuous for this analysis, the mass
cuts defining the density- and bias-matched samples do not corre-
spond to an integer number of particles. Also note for the calibrated
methods that the HALOGEN catalogue was calibrated using the input
HMF from the mean of the 300 Minerva simulations in logarith-
mic mass bins for this analysis, whereas the PATCHY mass samples
were calibrated for each mass cut individually. For the case of the
HALOGEN catalogue, the selected high-mass threshold lies nearly
half way (in logarithmic scale) between two of the mass thresholds
of the logarithmic input HMF. This explains why whereas for the
first mass cut, bias and number density are matched by construction,
that is not the case for the second mass cut. This has the effect that
the bias2 sample of the HALOGEN catalogue has 15 per cent fewer
haloes than the corresponding Minerva sample. Comparisons of the
ratios of the number densities and bias of the different samples
drawn from the approximate methods to the corresponding ones
from Minerva are shown in Fig. 1. Since the catalogues drawn from
lognormal and PATCHY match the number density and bias of the
Minerva parent samples by construction, they are not included in
the tables and figures.

In the following, we refer to all samples corresponding to the first
mass limit, mass1, dens1, and bias1 as ‘sample1’, and the samples
corresponding to the second mass limit, mass2, dens2, and bias2 as
‘sample2’.
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1792 M. Lippich et al.

Table 1. Overview of the different samples, including the mass limits, Mlim, expressed in units of h−1 M�, the
corresponding number of particles, Np, the mean number density, n̄, and the bias ratio to the corresponding Minerva
parent sample, 〈(ξ app/ξMin)1/2〉. The sample names ‘mass’, ‘dens’, and ‘bias’, indicate if the samples were constructed
by matching the mass threshold, number density, or clustering amplitude of the parent halo samples from Minerva.

Code Sample name Mlim
(
h−1 M�

)
Np n̄

(
h3 Mpc−3

)
Bias ratio

Minerva mass1 1.12 × 1013 42 2.12 × 10−4 1.00
Minerva mass2 2.67 × 1013 100 5.42 × 10−5 1.00
ICE-COLA mass1 1.12 × 1013 42 2.06 × 10−4 0.99
ICE-COLA dens1 1.09 × 1013 41 2.12 × 10−4 0.98
ICE-COLA bias1 1.17 × 1013 44 1.93 × 10−4 1.00
ICE-COLA mass2 2.67 × 1013 100 5.81 × 10−5 0.99
ICE-COLA dens2, bias2 2.77 × 1013 104 5.45 × 10−5 1.00
HALOGEN mass1, dens1, bias1 1.12 × 1013 42 2.14 × 10−4 1.00
HALOGEN mass2, dens2 2.67 × 1013 100 5.40 × 10−5 0.98
HALOGEN bias2 2.91 × 1013 109 4.61 × 10−5 1.00
PEAK PATCHa mass2 2.67 × 1013 100 4.45 × 10−5 1.04
PEAK PATCH dens2, bias2 2.35 × 1013 88.3 5.44 × 10−5 1.00
PINOCCHIO mass1 1.12 × 1013 42 1.95 × 10−4 1.02
PINOCCHIO dens1 1.04 × 1013 39.1 2.15 × 10−4 1.00
PINOCCHIO bias1 1.06 × 1013 39.9 2.09 × 10−4 1.00
PINOCCHIO mass2 2.67 × 1013 100 5.35 × 10−5 1.03
PINOCCHIO dens2 2.63 × 1013 98.6 5.48 × 10−5 1.03
PINOCCHIO bias2 2.42 × 1013 90.7 6.27 × 10−5 1.00

Note. aAs the halo masses corresponding to our low-mass threshold are not correctly resolved in the PEAK PATCH

catalogues, only the high-mass threshold (mass2) is considered in this case.

Figure 1. Ratios of the total halo number (left-hand panel) and the clustering amplitude (right-hand panel) of samples drawn from the approximate methods
to the corresponding quantity in the Minerva parent samples. By definition, for the dens samples the halo number is matched to the corresponding N-body
samples and therefore the corresponding ratio is close to one in the left-hand panel, while the ratios from the bias samples are meant to be close to one in the
right-hand panel. For some cases, two or three samples are represented with the same symbol, e.g. ICE-COLA dens2, bias2 which means that the ICE-COLA dens2
sample is the same as the ICE-COLA bias2 sample.

3.2 Clustering measurements in configuration space

Most cosmological analyses of galaxy redshift surveys are based
on two-point clustering statistics. In this paper, we focus on
configuration-space analyses and study the estimation of the covari-
ance matrix of correlation function measurements. The information
of the full two-dimensional correlation function, ξ (s, μ), where μ

is the cosine of the angle between the separation vector s and the

line of sight, can be compressed into a small number of functions
such as the Legendre multipoles, ξ
(s), given by

ξ
(s) = 2
 + 1

2

∫ 1

−1
L
(μ)ξ (μ, s) dμ, (6)

where L
(μ) denotes the Legendre polynomial of order 
. Typically,
only multipoles with 
 ≤ 4 are considered. An alternative tool is the
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Correlation function covariance comparison 1793

clustering wedges statistic (Kazin et al. 2012), which corresponds
to the average of the full two-dimensional correlation function over
wide bins in μ, that is

ξw,i(s) = 1

�μ

∫ i/n

(i−1)/n
ξ (μ, s) dμ, (7)

where ξw,i denotes each individual clustering wedge and n repre-
sents the total number of wedges. We follow the recent analysis of
Sánchez et al. (2017) and divide the μ range from 0 to 1 into three
equal-width intervals, i = 1, 2, 3.

We compute the Legendre multipoles and clustering wedges of
the halo samples defined in Section 3.1. As these measurements are
based on simulation boxes with periodic boundary conditions, the
full ξ (s, μ) can be computed using the natural estimator, namely

ξ (s, μ) = DD(s, μ)

RR(s, μ)
− 1, (8)

where DD(s, μ) are the normalized data pair counts and RR(s, μ) the
normalized random pair counts, which can be computed as the ratio
of the volume of a shell dV and the total box volume Vs, RR = dV/Vs.
The obtained ξ (s, μ) can be used to estimate Legendre multipoles
and clustering wedges using equations (6) and (7), respectively.
We consider scales in the range 20 h−1 Mpc ≤ s ≤ 160 h−1 Mpc
for all our measurements and implement a binning scheme with
ds = 10 h−1 Mpc for the following analysis. For illustration pur-
poses, we also use a binning of ds = 5 h−1 Mpc for the figures
showing correlation function measurements. Considering Legendre
multipoles with 
 ≤ 4 and three μ wedges, the dimension of the total
data vector, ξ , containing all the measured statistics is the same in
both cases (Nb = 42 and Nb = 84 for the cases of ds = 10 h−1 Mpc
and ds = 5 h−1 Mpc, respectively).

3.3 Covariance matrix estimation

It is commonly assumed that the likelihood function of the measured
two-point correlation function is Gaussian in form,

− 2 lnL(ξ |θ ) = (ξ − ξtheo(θ ))t�(ξ − ξtheo(θ)), (9)

where ξtheo represents the theoretical model of the measured statis-
tics, which here correspond to the Legendre multipoles or clustering
wedges, for the parameters θ , and � is the precision matrix, given
by the inverse of the covariance matrix, � = C−1.

The covariance matrix, C is usually estimated from a large set of
Ns mock catalogues as

Cij = 1

Ns − 1

Ns∑
k=1

(ξk
i − ξ̄i)(ξ

k
j − ξ̄j ), (10)

where ξ̄i = 1
Ns

∑
k ξ k

i is the mean value of the measurements at

the ith bin and ξk
i is the corresponding measurement from the kth

mock. This estimator has the advantage over other techniques such
as jackknife estimates from the data or theoretical modelling, that
it tends to be less affected by biases than estimates from the data
and does not require any assumptions regarding the properties of
the true covariance matrix. However, the noise in C due to the finite
number of realizations leads to an additional uncertainty, which
must be propagated into the final parameter constraints (Dodelson &
Schneider 2013; Taylor et al. 2013; Percival et al. 2014; Sellentin &
Heavens 2016). Depending on the analysis configuration, the control
of this additional error might require a large number of realizations,
with Ns in the range of a few thousands. For the new generation
of large-volume surveys such as Euclid, the construction of a large

number of mock catalogues might be extremely demanding and will
need to rely, at least partially, on approximate N-body methods. The
goal of our analysis is to test the impact on the obtained parameter
constraints of using estimates of C based on different approximate
methods.

We use equation (10) to compute the covariance matrices associ-
ated with the measurements of the multipoles and clustering wedges
of the halo samples defined in Section 3.1. In order to reduce the
noise in these measurements due to the limited number of realiza-
tions, we obtain three separate estimates of C from each sample by
treating each axis of the simulation boxes as the line-of-sight direc-
tion when computing ξ (s, μ). Our final estimates correspond to the
average of the covariance matrices measured on the different lines of
sight. The Gaussian theoretical covariance matrices were computed
for the specific number density and clustering of the halo samples
from Minerva. We used as input the model of the two-dimensional
power spectrum described in Section 3.4, whose parameters were
fitted to reproduce the clustering of parent halo samples.

3.4 Testing the impact of approximate methods for covariance
matrix estimates

The cosmological information recovered from full-shape fits to
anisotropic clustering measurements is often expressed in terms
of the BAO shift parameters

α⊥ = DA(z) r ′
d

D′
A(z) rd

, (11)

α‖ = H ′(z) r ′
d

H (z) rd
, (12)

where H(z) is the Hubble parameter at redshift z, DA(z) is the
corresponding angular diameter distance, rd is the sound horizon
at the drag redshift, and the primes denote quantities in the fidu-
cial cosmology; and the RSD parameter combination fσ 8(z), where
f(z) represents the logarithmic growth rate of density fluctuations
and σ 8(z) is the linear rms mass fluctuation in spheres of radius
8 h−1 Mpc.

The constraints on these parameters are sensitive to details in
the definition of the likelihood function, such as the way in which
the covariance matrix of the measurements is estimated. In order
to assess the impact of using approximate methods to estimate C,
we perform full-shape fits of anisotropic clustering measurements
in configuration space to obtain constraints on α⊥, α�, and fσ 8(z)
assuming the Gaussian likelihood function of equation (9). We com-
pare the constraints obtained when C is estimated from a set of full
N-body simulations with the results inferred from the same set of
measurements when the covariance matrix is computed using the
approximate methods described in Section 2.

Our fits are based on the same model of the full two-dimensional
correlation function ξ (μ, s) as in the analyses of the final BOSS
galaxy samples (Grieb et al. 2017; Salazar-Albornoz et al. 2017;
Sánchez et al. 2017) and the eBOSS DR12 catalogue (Hou et al.
2018). This model includes the effects of the non-linear evolution of
density fluctuations based on gRPT (Crocce, Scoccimarro & Blas,
in preparation) bias (Chan & Scoccimarro 2012), and RSD (Scoc-
cimarro, in preparation). The only difference between the model
implemented in these studies and the one used here is that, since
we analyse halo samples instead of galaxies, we do not include
the so-called fingers-of-God factor, W∞(k, μ) (see equation 18 in
Sánchez et al. 2017). In total, our parameter space contains six free
parameters, the BAO and RSD parameters α�, α⊥, and fσ 8, and the
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1794 M. Lippich et al.

Figure 2. Comparison of the mean correlation function multipoles (upper panels) and clustering wedges (lower panels) of the mass1 and mass2 sam-
ples (left-hand and right-hand panels, respectively) drawn from our Minerva N-body simulations, and the model described in Section 3.4. The points
with error bars show to the simulation results and the dashed lines correspond to the fit to these measurements. The error bars on the measurements
correspond to the dispersion inferred from the 300 Minerva realizations. In all cases, the model predictions show good agreement with the N-body
measurements.

nuisance parameters associated with the linear and quadratic local
bias, b1 and b2, and the non-local bias γ −

3 . We explore this param-
eter space by means of the Monte Carlo Markov Chain (MCMC)
technique. This analysis set-up matches that of the covariance ma-
trix comparison in Fourier space of our companion paper Blot et al.
(2018).

In order to ensure that the model used for the fits has no impact on
the covariance matrix comparison, we do not fit the measurements
of the Legendre multipoles and wedges obtained from the N-body
simulations. Instead, we use our baseline model to construct syn-
thetic clustering measurements, which we then use for our fits. For
this, we first fit the mean Legendre multipoles measured from the
parent Minerva halo samples using our model and the N-body co-
variance matrices. We fix all cosmological parameters to their true
values and only vary the bias parameters b1, b2, and γ −

3 . We then use
the mean values of the parameters inferred from the fits, together
with the true values of the cosmological parameters, to generate
multipoles and clustering wedges of the correlation function using
our baseline model. Fig. 2 shows the mean multipoles and cluster-
ing wedges measured from the Minerva halo sample for both mass
cuts and the resulting fits. In all cases, our model gives a good de-
scription of the simulation results. The parameter values recovered
from these fits were also used to compute the input power spectra
when computing the Gaussian predictions of C. As these synthetic
data are perfectly described by our baseline model by construction,
their analysis should recover the true values of the BAO parame-

ters α� = α⊥ = 1.0, and the growth-rate parameter fσ 8 = 0.4402.
The comparison of the parameter values and their uncertainties re-
covered using different covariance matrices allows us to test the
ability of the approximate methods described in Section 2 to re-
produce the results obtained when C is inferred from full N-body
simulations.

4 R ESULTS

In this section, we present a detailed comparison of the covariance
matrix measurements in configuration space obtained from the ap-
proximate methods described in Section 2 and their performance at
recovering the correct parameter estimates.

4.1 Two-point correlation function measurements

In order to estimate the covariance matrices from all the samples
introduced in Section 3.1, we first measure configuration-space Leg-
endre multipoles and clustering wedges for each sample and in each
realization as described in Section 3.2.

As an illustration of the agreement between the clustering mea-
surements obtained from the approximate methods and the Minerva
simulations we focus here on two cases: (i) the multipoles of the
density-matched samples for the first mass cut (dens1 samples) and
(ii) the clustering wedges of the bias-matched samples for the second
mass cut (bias2 samples). As described in Section 3.1, for PATCHY
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Correlation function covariance comparison 1795

Figure 3. Upper panel: Measurements of the mean multipoles for the density matched samples for the first mass cut (dens1 samples). The first, third, and fifth
row show the monople, quadrupole and hexadecapole, respectively. Lower panel: measurements of the mean clustering wedges for the bias matched samples
for the second mass cut (bias2 samples). The first, third and fifth row show the transverse, intermediate, and parallel wedge, respectively. Comparison of the
measurements drawn from the results of the predictive methods ICE-COLA and PINOCCHIO (left-hand panels) and the calibrated methods HALOGEN and PATCHY

and the lognormal model (right panels) to the corresponding N-body parent sample. The error bars correspond to the dispersion of the results inferred from
the 300 N-body catalogues. The remaining rows show the difference of the mean measurements drawn from the results of the approximate methods to the
corresponding N-body measurement.
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1796 M. Lippich et al.

and the lognormal realizations, the density- and bias-matched sam-
ples are identical to the mass-matched samples by construction.

The upper panel of Fig. 3 shows the mean multipole measure-
ments from all realizations for the dens1 samples obtained from
the predictive methods ICE-COLA and PINOCCHIO (left-hand panels)
and the calibrated methods HALOGEN, PATCHY, and the lognormal
recipe (right-hand panels). The predictive methods are in excellent
agreement with the measurements from the Minerva parent sample,
showing only differences of less than 3 per cent for the ICE-COLA

monopole measurements on scales < 40 h−1 Mpc. The monopole
measurements obtained from the calibrated methods and the lognor-
mal model are also in good agreement with the results from Minerva.
However, the quadrupole and hexadecapole measurements obtained
from HALOGEN and the lognormal samples exhibit deviations of
more than 20 per cent on scales < 60 h−1 Mpc.

The lower panel of Fig. 3 shows the mean wedges measurements
from all realizations for the bias2 samples obtained from the pre-
dictive methods ICE-COLA, PINOCCHIO, and PEAK PATCH (left-hand
panels), and for the corresponding samples obtained from calibrated
methods HALOGEN, PATCHY, and the lognormal recipe (right-hand
panels). Here, we find that the measurements obtained from the
predictive methods and the lognormal model agree well within the
error bars with the corresponding Minerva measurements. We no-
tice that the strongest deviations are present in the measurements of
the transverse and parallel wedge from the HALOGEN samples, of up
to 6 per cent and 20 per cent, respectively, on scales < 60 h−1 Mpc.
The measurements recovered from PATCHY show deviations ranging
between 5 per cent and 10 per cent on small scales.

4.2 Covariance matrix measurements

In this section, we focus on the comparison of the covariance matrix
estimates obtained from the different approximate methods, which
we computed as described in Section 3.3.

The structure of the off-diagonal elements of C of Legendre
multipoles and clustering wedges measurements can be more clearly
seen in the correlation matrix, defined as

Rij = Cij√
CiiCjj

. (13)

Fig. 4 shows the correlation matrices of the multipoles inferred from
the mass1 halo samples from Minerva (upper panel) and the wedges
of the mass2 samples (lower panel).

The estimates of R obtained from the approximate methods are
indistinguishable by eye from the ones inferred from the Minerva
parent samples and therefore not shown here. Instead, we compare
the variances and cuts through the correlation function matrices de-
rived from the different samples. Fig. 5 shows the ratios of the vari-
ances drawn from the approximate methods with respect to those
of the corresponding Minerva parent catalogues. We focus here
on the same example cases as in Section 4.1: the multipoles mea-
sured from the dens1 samples, and the clustering wedges measured
from the bias2 samples. We notice that in both cases the predictive
methods perform better than the calibrated schemes and the PDF-
based recipes. On average, the variance from Minerva is recovered
within 10 per cent, with a maximum difference of 20 per cent for
the variance of the monopole inferred from the PINOCCHIO dens1
sample at scales around 80 h−1 Mpc. The variances recovered from
the other methods show larger deviations, in some cases up to
40 per cent.

Fig. 6 shows cuts through the correlation matrix at sj =
105 h−1 Mpc for the same two example cases. The error bars for

Figure 4. The full correlation matrix inferred from the multipoles of the
N-body parent sample for the low-mass cut (mass1, upper panel) and from
the clustering wedges of the mass2 N-body parent sample (lower panel).

the measurements of the corresponding Minerva parent samples
are obtained from a jackknife estimate using the 300 Minerva
mocks,

(�Mij )2 = NS − 1

NS

∑
S

(
M

(s)
ij − Mij

)2
, (14)

where M is the covariance matrix C or the correlation matrix R (for
Fig. 6 we use R). M(s) is the covariance or correlation matrix which
is obtained when leaving out the sth realization,

M
(s)
ij = 1

NS − 1

∑
r �=s

(
ξ

(r)
i − ξ̄i

)(
ξ

(r)
j − ξ̄j

)
. (15)

For the comparison of the cuts through the correlation matrices,
all methods agree well the corresponding N-body measurements
with only very small differences. In order to quantify the discrepan-
cies between the covariance and correlation matrices drawn from the
approximate methods to the corresponding N-body measurements,
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Correlation function covariance comparison 1797

Figure 5. Upper panel: Relative variance of the multipoles of the correlation function measurements from the density matched samples for the first mass
cut (dens1 samples).The first, third, and fifth row show the measurements for monople, quadrupole, and hexadecapole, respectively. Lower panel: Relative
variance of the clustering wedges of the two-point correlation function for the bias matched samples for the second mass cut (bias2 samples). The first, third,
and fifth row show the measurements for transverse, intermediate, and parallel wedge, respectively. Comparison of the relative variance drawn from the results
of the predictive methods ICE-COLA, PINOCCHIO, PEAK PATCH (left-hand panel) and HALOGEN, PATCHY, and the lognormal model (right-hand panel) to the
corresponding N-body parent sample.
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1798 M. Lippich et al.

Figure 6. Cuts at sj = 105 h−1 Mpc through the correlation matrices for the two example cases drawn from the results of the approximate methods and the
corresponding N-body parent sample. Upper, left panel: Correlation matrices measured from the multipoles of the correlation function drawn from dens1
samples from the predictive methods ICE-COLA and PINOCCHIO. Upper, right panel: Correlation matrices measured from the multipoles of the correlation
function drawn from dens1 samples from the calibrated methods HALOGEN and PATCHY and the Gaussian and lognormal recipes. Lower, left panel: Correlation
matrices measured from the clustering wedges of the correlation function drawn from the bias2 samples from the predictive methods ICE-COLA, PINOCCHIO,
and PEAK PATCH. Lower, right panel: Correlation matrices measured from the clustering wedges of the correlation function drawn from bias2 samples from
the calibrated methods HALOGEN and pATCHY and the Gaussian and lognormal recipes. The error bars are obtained from a jackknife estimate using the 300
Minerva realizations.

we use an χ2 approach. Concretely, we compute χ2 as

χ2 =
∑

i

∑
j≥i

(Cij,approx − Cij,Minerva)2

�C2
ij ,Minerva

(16)

and

χ2 =
∑

i

∑
j>i

(Rij,approx − Rij,Minerva)2

�R2
ij ,Minerva

, (17)

where the indices i and j run over the bins corresponding to the
range of interest of 20–160 h−1 Mpc and �CMinerva and �RMinerva
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Table 2. Values of the relative χ2 for the covariance matrices C (equation 16), correlation matrices R (equation 17), and values for the Kullback–Leibler
divergence DKL (equation 19) obtained from the approximate methods.

Code Sample χ2
rel for C from ξ024 χ2

rel for C from ξw χ2
rel for R from ξ024 χ2

rel for R from ξw DKL for ξ024 DKL for ξw

ICE-COLA mass1 0.19 0.21 0.17 0.16 0.24 0.24
ICE-COLA dens1 0.31 0.42 0.17 0.15 0.28 0.27
ICE-COLA bias1 0.20 0.11 0.19 0.19 0.27 0.27
PINOCCHIO mass1 0.48 0.51 0.27 0.26 0.33 0.33
PINOCCHIO dens1 0.76 0.67 0.78 0.70 0.77 0.77
PINOCCHIO bias1 0.23 0.20 0.24 0.22 0.28 0.29
HALOGEN mass1 1.22 0.90 1.09 0.77 1.28 1.14
PATCHY mass1 0.67 0.40 0.73 0.44 0.82 0.79
Gaussian mass1 2.50 2.20 2.04 0.91 0.82 1.08
Lognormal mass1 1.76 1.09 1.31 0.97 0.96 0.98

ICE-COLA mass2 0.40 0.36 0.38 0.33 0.43 0.45
ICE-COLA dens2 0.36 0.23 0.35 0.27 0.28 0.28
PINOCCHIO mass2 1.03 1.20 0.44 0.41 0.46 0.44
PINOCCHIO dens2 0.81 0.83 0.44 0.40 0.41 0.40
PINOCCHIO bias2 0.70 0.31 0.42 0.54 0.41 0.73
PEAK PATCH mass2 1.84 2.02 0.69 0.69 1.05 1.03
PEAK PATCH dens2 0.48 0.47 0.48 0.45 0.46 0.48
HALOGEN mass2 1.77 1.32 1.70 1.29 1.07 1.07
HALOGEN bias2 2.24 1.76 2.06 1.59 1.28 1.32
PATCHY mass2 1.41 1.26 1.21 0.97 0.99 1.01
Gaussian mass2 2.02 1.77 1.75 1.03 0.78 1.14
Lognormal mass2 2.27 2.57 1.64 1.88 1.02 1.07

are the estimated errors from equation (14). If the approximate
methods perfectly reproduce the expected covariances from the N-
body simulations, the χ2 obtained from the approximate methods
should be χ2 ≈ 0 for the predictive and calibrated methods. This
is due to the fact that the simulation boxes of the predictive and
calibrated methods match the ICs of Minerva and therefore the
properties of the noise in the estimates of C should be very similar.
For the covariance and correlation matrices obtained from the PDF-
based predictions, we expect χ2 ≈ N(N − 1)/2 where N is the
number of bins of the covariance or correlation matrix, since these
predictions do not correspond to the same ICs. In Table 2, we list
the obtained relative χ2-values,

χ2
rel = χ2

N (N − 1)/2
, (18)

where N = 42, for all considered samples and clustering statistics.
We notice that the χ2-values are in most cases smaller for the predic-
tive than the calibrated methods. Furthermore, the χ2-values from
the wedges measurements are overall smaller than the correspond-
ing ones from the multipole measurements. Also, in most cases the
χ2-values obtained from the covariance matrices are slightly larger
than the corresponding ones from the correlation matrices, indicat-
ing discrepancies in the variances obtained from the approximated
methods.

The computed χ2-values do not take the covariance between
the different entries of C into account. In order to provide a more
complete picture of how far the multipole and wedges distributions
characterized by the different covariance matrices are, we also com-
pute the Kullback–Leibler divergence (Kullback & Leibler 1951;
O’Connell et al. 2016). In our case (two multivariate normal distri-
butions with the same means), the Kullback–Leibler divergence is

given as

DKL(CMinerva ‖ Capprox) =1

2

(
tr(C−1

approxCMinerva)

+ ln

(
detCapprox

detCMinerva

)
− N

)
.

(19)

If the approximate methods perfectly reproduce the expected distri-
butions from the N-body simulations, including the same noise, we
expect DKL ≈ 0. In Table 2, we list the obtained DKL values. We find
that the values for DKL are closer to zero for the predictive than for
the other approximate methods. For the calibrated methods and for
the distributions with different noise, obtained from the Gaussian
and lognormal models, we find values DKL ≈ 1.

4.3 Performance of the covariance matrices

For the final validation of the covariance matrices inferred
from the different approximate methods, we analyse their per-
formance on cosmological parameter constraints. We perform
fits to the synthetic clustering measurements described in Sec-
tion 3.4, using the estimates of C obtained from the different
halo samples and approximate methods. We focus on the con-
straints on the BAO shift parameters α�, α⊥, and the growth
rate fσ 8.

Fig. 7 shows the two-dimensional marginalized constraints in the
α⊥–fσ 8 plane for the analysis of our two examples cases, the Leg-
endre multipoles measured from the dens1 samples (upper panels),
and the clustering wedges recovered from the bias2 samples (lower
panel).

In general, the allowed regions for these parameters obtained
using the estimates of C inferred from the different approximate
methods (shown by the solid lines) agree well with those obtained
using the covariance matrices from Minerva (indicated by the dotted
lines in all panels). However, most cases exhibit small deviations,
either slightly under- or overestimating the statistical uncertainties.
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1800 M. Lippich et al.

Figure 7. Comparison of the marginalized two-dimensional constraints in the α⊥–fσ 8 plane for the analysis of samples from the approximate methods with
the corresponding constraints obtained from analysis of the parent Minerva sample. The contours correspond to the 68 per cent and 95 per cent confidence
levels.Upper panel: Results from the analysis of the multipoles measured from the dens1 samples. Lower panel: Results from the analysis of the clustering
wedges measured from the bias2 samples.

We find that, for all samples and clustering statistics, the mean
parameter values inferred using approximate methods are in ex-
cellent agreement with the ones from the corresponding N-body
analysis, showing differences that are much smaller than their as-
sociated statistical errors. The parameter uncertainties recovered
using covariances from the approximate methods show differences
with respect to the N-body constraints ranging between 0.3 per cent
and 8 per cent for the low-mass samples, while most of the re-
sults agree within 5 per cent with the N-body results, and between
0.1 per cent and 20 per cent for the high-mass cut, while most of
the results agree within 10 per cent with the N-body results. For
the comparison of the obtained parameter uncertainties it is impor-
tant to point out that in our companion paper, Blot et al. (2018)

estimate that the statistical limit of our parameter estimation is
about 4–5 per cent. Fig. 8 shows the ratios of the marginalized
parameter errors drawn from the analysis with the different approx-
imate methods with respect to the N-body results. We observe that
for the samples corresponding to the first mass cut, all methods
reproduce the N-body errors within 10 per cent for all parameters,
and in most cases within 5 per cent corresponding to the statistical
limit of our analysis. For the samples corresponding to the second
mass cut also most methods reproduce the N-body errors within
10 per cent with exception of the PEAK PATCH mass-matched and
the HALOGEN bias-matched samples. This might be due to the fact
that these two samples have 15–20 per cent less haloes than the
corresponding N-body sample.
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Correlation function covariance comparison 1801

Figure 8. Comparison of the marginalized error on the parameters α�, α⊥, and fσ 8 which are obtained from the analysis using the covariance matrices from
the approximate methods to the corresponding ones from the N-body catalogues. The light grey band indicates a range of ±10 per cent deviation from a ratio
equal to 1. The different panels show the results obtained from the analysis of upper, left panel: the multipoles drawn from the samples corresponding to the
first N-body parent sample with the lower mass cut, upper, right panel: the multipoles drawn from the samples corresponding to the second N-body parent
sample with the higher mass cut, lower, left panel: the wedges drawn from the samples corresponding to the first N-body sample, lower, right panel: the wedges
drawn from the samples corresponding to the second N-body sample.
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1802 M. Lippich et al.

In order to evaluate the parameter errors, we use the volume of
the allowed region in the three-dimensional parameter space of α�,
α⊥, and fσ 8, which can be estimated as

V = √
det Cov(α‖, α⊥, f σ8), (20)

where det Cov(α�, α⊥, fσ 8) is the determinant of the parameter
covariance matrix. For a Gaussian posterior distribution, the al-
lowed volume is proportional to the volume enclosed by the three-
dimensional 68 per cent C.L. contour. This definition is similar to
the two-dimensional Dark Energy Task Force figure of merit of the
dark-energy equation-of-state parameters w0–wa (Albrecht et al.
2006; Wang 2008), but without taking the inverse of the allowed
volume. The ratios of the allowed volumes obtained from the anal-
ysis with the different approximate methods and the N-body results
are shown in Fig. 9. Here, the differences in the performance of
the methods become clearer. For the first mass cut, we notice that
most approximate methods can reproduce the N-body volume at a
10 per cent level, with the exception of HALOGEN and the Gaussian
and lognormal models, which lead to slightly worse results and
show 10–15 per cent agreement. For the second mass cut, we find
overall larger differences between the samples. The results from the
majority of the samples agree within 10 per cent with the N-body
results, the rest shows differences of 10–15 per cent, and for the
PEAK PATCH mass2 and HALOGEN bias2 samples differences of up
to 40 per cent. For both mass cuts, we find significant differences
in the performances of samples drawn from the same approximate
method but using different selection criteria.

5 D ISCUSSION

In this section, we discuss our results on the allowed parameter space
volumes obtained in Section 4.3. Fig. 9 clearly shows that there
are significant differences in the volume ratios between samples
drawn from the same approximate method when applying different
selection criteria to define the halo catalogues. Matching the parent
samples from Minerva by mass limit, number density or bias can
lead to differences of up to 20 per cent on the obtained results.

For each approximate method, mass limit, and clustering statistic,
we identified the best selection criteria for matching to the N-body
parent samples. As discussed in Section 3.1, for PATCHY, lognormal,
and the Gaussian model we only have samples characterized by
the same mass cuts as the N-body catalogues. The best cases in
decreasing order of the accuracy with which the results of the N-
body covariances are reproduced are as follows:

(i) Lower mass cut, Legendre multipoles: PATCHY (V/VMin =
1.02), PINOCCHIO bias matched (V/VMin = 0.97), ICE-COLA mass
matched (V/VMin = 0.96), lognormal (V/VMin = 1.11), Gaussian
(V/VMin = 0.88), HALOGEN mass, density, bias matched (V/VMin =
0.85).

(ii) Lower mass cut, clustering wedges: PINOCCHIO bias matched
(V/VMin = 1.01), ICE-COLA mass matched (V/VMin = 0.96), PATCHY

(V/VMin = 1.07), lognormal (V/VMin = 1.09), HALOGEN mass, den-
sity, bias matched (V/VMin = 0.87), Gaussian (V/VMin = 0.87).

(iii) Higher mass cut, Legendre multipoles: ICE-COLA den-
sity matched (V/VMin = 0.96), HALOGEN mass, density matched
(V/VMin = 1.04), PEAK PATCH density, biased matched (V/VMin =
1.06), PATCHY (V/VMin = 0.94), Gaussian (V/VMin = 0.92), PINOC-
CHIO density matched (V/VMin = 1.11), lognormal (V/VMin = 1.16).

(iv) Higher mass cut, clustering wedges: HALOGEN mass, density
matched (V/VMin = 1.02), ICE-COLA density matched (V/VMin =

0.97), PEAK PATCH density, biased matched (V/VMin = 1.03), PATCHY

(V/VMin = 0.91), lognormal (V/VMin = 1.09), PINOCCHIO density
matched (V/VMin = 1.1), Gaussian (V/VMin = 0.87).

For a better illustration, Fig. 10 shows the two-dimensional
marginalized constraints on α⊥ and fσ 8 obtained from the Leg-
endre multipoles for the low (upper panels) and high (lower panels)
mass limits. The different panels show the results obtained from the
different approximate methods when the best selection criteria for
each case is implemented. The overall agreement with the results
derived from the N-body covariances is better in this case than when
the same definition is applied to all methods.

The best strategy to define the halo samples for a given approx-
imate method is often different for our two mass limits. For ex-
ample, considering the results from PINOCCHIO, while for our first
mass limit the bias-matched halo samples lead to the best agree-
ment with the constraints inferred from the N-body covariances, for
the second mass threshold the density-matched samples provide a
better performance. Focusing on the results from the multipole anal-
ysis, we observe that for the first mass limit PATCHY, ICE-COLA, and
PINOCCHIO perform slightly better than the other methods. These
methods reproduce the statistical volume of the allowed parameter
regions obtained using the N-body covariances within 5 per cent
while the other methods only reach a 10–15 per cent agreement.
For the second mass limit ICE-COLA, HALOGEN, and PEAK PATCH

can reproduce the N-body results within 5 per cent, PATCHY and
the Gaussian model within 10 per cent, and PINOCCHIO and the log-
normal model within 15 per cent. It is also interesting to note that
the order of performance of the methods is slightly different for
the multipole and the wedges analysis. For example, the multipole
analysis using the PATCHY covariance matrix leads to a better than
2 per cent agreement with the N-body results, whereas the wedge
analysis only reaches 7 per cent.

Our analysis is part of a general comparison project of approx-
imate methods involving also the covariances of power spectrum
and bispectrum measurements (Blot et al. 2018; Colavincenzo et al.
2018). The power spectrum analysis of Blot et al. (2018) is more
closely related to the one presented here, as it is based on the same
baseline model of the two-dimensional power spectrum and explore
constraints on the same nuisance and cosmological parameters. The
bispectrum covariance analysis of Colavincenzo et al. (2018) is dif-
ferent in terms of the model and the parameter constraints included
in the comparison. Both of our companion papers consider the
same approximate methods and mass cuts used here, but focus on
the abundance-matched samples. A comparison of the results of
the three studies shows that the differences between the predictive,
calibrated and PDF-based approximate methods are less evident for
the correlation function analysis than for the power spectrum and
bispectrum. This can be clearly seen by comparing the variations of
the statistically allowed volumes recovered from the different ap-
proximate methods when applied to the correlation function, power
spectrum and bispectrum covariances. Since our companion papers
focus on the density-matched samples, we also show the allowed
volumes only for the ‘dens’ samples in Fig. 11. The differences
between the approximate methods are less evident in configura-
tion space, become more evident for the power spectrum and are
strongest for the bispectrum analysis.

In summary, our results and those of our companion papers indi-
cate that approximate methods can provide robust covariance matrix
estimates for cosmological parameter constraints. However, the dif-
ferences seen between the various recipes, statistics, and selection
criteria considered here highlight the importance of performing de-
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Correlation function covariance comparison 1803

Figure 9. Comparison of the volume ratios between the allowed statistical volumes obtained from the analysis using the covariance matrices from the
approximate methods to the corresponding ones from the N-body catalogues. The light grey band indicates a range of ±10 per cent deviation from a ratio equal
to 1. The different panels show the results obtained from the analysis of upper, left panel: the multipoles drawn from the samples corresponding to the first
N-body parent sample with the lower mass cut, upper, right panel: the multipoles drawn from the samples corresponding to the second N-body parent sample
with the higher mass cut, lower, left panel: the wedges drawn from the samples corresponding to the first N-body sample, lower, right panel: the wedges drawn
from the samples corresponding to the second N-body sample.

tailed tests to find the best strategy to draw halo samples from any
given approximate method.

6 SU M M A RY A N D C O N C L U S I O N S

We have analysed the performance of several approximate methods
at providing estimates of the covariance matrices of anisotropic two-
point clustering measurements in configuration space. Our analysis
is part of a comparison project, including also detailed studies of
the covariance matrices of power spectrum and bispectrum mea-
surements, which are summarized in our companion papers Blot
et al. (2018) and Colavincenzo et al. (2018), respectively.

Our comparison included seven approximate methods, which
we divided into three categories: predictive methods (ICE-COLA,
PEAK PATCH, and PINOCCHIO), methods that require calibration with
N-body simulations (HALOGEN and PATCHY), and recipes based
on assumptions regarding the shape of the density PDF (log-
normal and Gaussian density fields). We compared these meth-
ods against the results obtained from the Minerva simulations.
We generated sets of 300 halo catalogues using the predictive
and calibrated methods, matching the ICs of the reference N-
body simulations. For the lognormal predictions we generated
a set of 1000 catalogues designed to match the number den-
sity and mean correlation function measured from the N-body
simulations.

We defined two halo samples from the Minerva simulations by
applying mass thresholds corresponding to 42 and 100 DM parti-
cles. We then selected different halo samples from the approximate
methods by matching the mass threshold, number density and clus-
tering amplitude of the parent samples from the N-body simula-
tions. We estimated the covariance matrices of the Legendre multi-
poles and clustering wedges corresponding to all halo samples and
compared the results with the corresponding ones from the parent
catalogues.

Our main comparison was focused on the accuracy with which the
covariance matrices inferred from the approximate methods repro-
duce the cosmological parameter constraints obtained from the N-
body results. For this, we first used a model of the two-dimensional
power spectrum applied in recent LSS analyses (Grieb et al. 2017;
Salazar-Albornoz et al. 2017; Sánchez et al. 2017; Hou et al. 2018)
to construct synthetic clustering measurements, and then fitted these
data with the same baseline model, using the covariances from the
different methods and assuming a Gaussian likelihood function. We
analysed the obtained parameter constraints on α�, α⊥ and fσ 8. The
mean values obtained from the fits agree perfectly with the N-body
results for all the samples. Most methods recover the marginalized
N-body parameter errors within 5 per cent for the lower mass cut,
which corresponds also to the statistical limit of our analysis, and
10 per cent for the higher mass cut. The comparison of the statisti-
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1804 M. Lippich et al.

Figure 10. Comparison of the marginalized two-dimensional constraints in the α⊥–fσ 8 plane for the multipole analysis using the best choice of matching for
each approximate method individually to the corresponding constraints obtained from the N-body analysis. The contours correspond to the 68 per cent and
95 per cent confidence levels. Upper panel: Results for the samples corresponding to the first mass cut. Lower panel: Results for the samples corresponding to
the second mass cut.

cally allowed volumes in the three-dimensional parameter space of
α�, α⊥, and fσ 8 shows that the results obtained from any given ap-
proximate method by implementing different selection criteria, i.e.
by matching the mass, number density, or bias of the parent N-body
samples, can differ by up to 20 per cent. Therefore, for each approx-
imate method and mass limit we identified the selection scheme
that provided the closest agreement with the results obtained us-
ing the estimates of C from the N-body simulations. For the first
mass cut, we found that the methods ICE-COLA, PINOCCHIO, and
PATCHY reproduce the N-body results slightly better than the other
methods, with differences of less than 10 per cent in the allowed
volumes. The remaining methods show a 10–15 per cent agree-
ment with the N-body results. For the second mass cut, ICE-COLA,
HALOGEN, and PEAK PATCH perform the best, recovering the N-body
allowed volumes within 5 per cent. The fits using the other methods

lead to a 5–15 per cent agreement. It is noteworthy that the sim-
ple Gaussian prediction performs similar to the other approximate
methods.

We conclude that, with respect to the covariance matrices of
configuration-space clustering measurements, there is no clear pref-
erence for one of the approximate methods. The predictive methods
ICE-COLA, PEAK PATCH, and PINOCCHIO do not outperform the cali-
brated methods and simpler recipes significantly. The advantage of
using the calibrated methods is that they are computationally less
expensive. However, the calibration using full N-body simulations
can also be challenging and time-consuming. In future studies, we
will include additional effects, such as the impact of survey geom-
etry, that will allow us to extend our analysis to assess the impact
of applying approximate methods to the analysis of real galaxy
surveys.
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Correlation function covariance comparison 1805

Figure 11. Volume ratios between the allowed statistical volumes obtained from the analysis using the covariance matrices from the approximate methods to
the corresponding ones from the N-body catalogues for the density matched samples. The light grey band indicates a range of ±10 per cent deviation from a
ratio equal to 1.
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Tiepolo 11, I-34143 Trieste, Italy
6Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, via
Tiepolo 11, I-34143 Trieste, Italy
7Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Via Valerio 2,
I-34127 Trieste, Italy
8Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can
Magrans, s/n, E-08193 Barcelona, Spain
9Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona,
Spain
10Berkeley Center for Cosmological Physics, Campbell Hall 341, University
of California, Berkeley, CA 94720, USA
11Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85741
Garching, Germany
12Institute of Cosmology & Gravitation, Dennis Sciama Building, University
of Portsmouth, Portsmouth PO1 3FX, UK
13Instituto de Astrofı́sica de Canarias, C/Vı́a Láctea, s/n, E-38200 La La-
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