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a b s t r a c t

Let X be an arbitrary set. A topology t on X is said to be useful if every complete and continuous
preorder on X is representable by a continuous real-valued order preserving function. It will be
shown, in a first step, that there exists a natural one-to-one correspondence between continuous and
complete preorders and complete separable systems on X . This result allows us to present a simple
characterization of useful topologies t on X . According to such a characterization, a topology t on X
is useful if and only if for every complete separable system E on (X, t) the topology tE generated by
E and by all the sets X \ E is second countable. Finally, we provide a simple proof of the fact that the
countable weak separability condition (cwsc), which is closely related to the countable chain condition
(ccc), is necessary for the usefulness of a topology.

1. Introduction

Let X be an arbitrarily but fixed chosen set. From Herden,
1991, a topology t on X is said to be useful if every continuous
complete (total, linear) preorder ≾ on X has a continuous utility
representation, i.e. can be represented by a continuous real-
valued order preserving function (utility function) (see e.g. Her-
den, 1989a,b, 1991). Continuity of ≾means that the order topology
t≾ induced by ≾ is coarser than t (i.e., the sets l(x) = {z ∈ X |z ≺ x}
and r(x) = {z ∈ X |x ≺ z} are open subsets of X for every x ∈ X).

Other authors call continuously representable the topologies
satisfying the aforementioned property (see e.g. Candeal et al.,
1998 and Campión et al., 2006, 2007, 2009, 2012). In this paper
we prefer the original terminology of a useful topology, inherited
from the seminal paper Herden, 1991, who first explicitly started
a systematic study of this concept.

In some sense the problem of characterizing all useful topolo-
gies on X is the most fundamental problem in utility theory.
Indeed, the classical theorems by Eilenberg, 1941 (ET) and De-
breu, 1954, 1964 (DT)), that only recently have been proved again
by Rébillé, 2018 by very elementary methods, present sufficient
conditions for a topology t on X to be useful. Other sufficient con-
ditions, which are based upon familiar topological properties, that
ensure usefulness for a topology t on X are provided in Campión
et al., 2012, Theorem 4.3.

In Estévez and Hervés, 1995, it was shown that in any non-
separable metric space there is a continuous complete preorder
that does not admits a utility function. This result, in combination
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with DT, can be used to state that a metric topology t on X is
useful if and only if it is second countable. We will refer to this
latter result as Estévez–Hervés’ theorem (EHT) (see also Candeal
et al., 1998, Theorem 1).

With help of the concept of a useful topology t on X , the
fundamental theorems above can be restated as follows.

ET: Every connected and separable topology t on X is useful.
DT: Every second countable topology t on X is useful.
EHT: A metrizable topology t on X is useful if and only if t is second
countable.

On the other hand, it is well known that second countability
or separability, in general, is not necessary for t to being useful
(cf., for instance, the Niemitzki plane that is extensively discussed
in Steen and Seebach, 1970). It is important to observe that,
according to Campión et al., 2006, Theorem 3.1, a very important
example of a useful topology is represented by the weak topology
of a Banach space.

Different characterizations of useful (or representable) topolo-
gies appear in the literature. In particular, Campión et al., 2009,
Theorem 5.1, proved that a topology t on X is useful if and only
if all its preorderable subtopologies are second countable, where
a topology t ′ on X is preorderable if it is the order topology of
some continuous complete preorder on (X, t ′). It is remarkable
that our main result (Theorem 3.1) is somewhat analogous to this
characterization.

In this paper we contribute to clarify the structure of useful
topologies on X by using the concept of a complete separable
system. In particular, we prove that there exists a natural one-to-
one correspondence between continuous and complete preorders
and complete separable systems on X (cf. Proposition 3.2). ThisE-mail address: gianni.bosi@deams.units.it (G. Bosi).
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one-to-one correspondence can be applied, in particular, in order
to simplify and somewhat generalize the characterization of use-
ful topologies that has been presented in Herden, 1991, Herden
and Pallack, 2000 and Campión et al., 2009. Indeed, we prove
in Theorem 3.1 that a topology t on X is useful if and only if,
for every complete separable system E on X , the topology tE
generated by E and {X \ E|E ∈ E} is second countable. We
notice that for every complete and continuous preorder ≾ on
(X, t) which is continuously representable, if we take E := {l(x) =

{z ∈ X |z ≺ x}|x ∈ X}, then the topology tE is precisely the order
topology t≾ on X .

Finally, by introducing the concept of a well-separated family
of separable systems on X , we provide a necessary condition
for a topology to be useful. This condition, that was introduced
by Herden and Pallack, 2000, is referred to as the countable weak
separability condition (cwsc). It is inspired by two well-known
topological concepts: the countable chain condition (ccc) and the
concept of a locally finite family of subsets of X (cf., Definitions 3.1
and 3.2, and Proposition 3.3).

2. Notation and preliminary results

A preorder ≾ on a nonempty set X is a reflexive and transitive
binary relation on X . A preorder is said to be complete (linear,
total) if, for all x, y ∈ X , either x ≾ y or y ≾ x. The strict part (or
asymmetric part) of a preorder ≾ on X is defined as follows for all
x, y ∈ X: x ≺ y if and only if (x ≾ y) and not(y ≾ x). Further, the
symmetric part ∼ of a preorder ≾ on X is defined as follows for
all x, y ∈ X: x ∼ y if and only if (x ≾ y) and (y ≾ x). We have that
∼ is an equivalence on X , and we denote by X|∼

the quotient set,
made up by the equivalence classes [x] = {z ∈ X |z ∼ x} (x ∈ X).

An order ⪯ on X is a preorder which in addition is antisym-
metric (i.e., for all x, y ∈ X , (x ⪯ y) and (y ⪯ x) implies that
x = y).

If t is a topology on X , then a family B′
⊂ t is said to be a

subbasis of t if the family B consisting of all possible intersections
of finitely many elements of B′ is a basis of t (i.e., every set O ∈ t
is the union of some sets of B).

A topology t on X is said to be second countable if there is a
countable basis B = {Bn|n ∈ N+

} for t .
Let us denote, for every subset A of X , by A its topological

closure. We recall that a family A = {Ai}i∈I of subsets of (X, t)
is said to be locally finite if for every x ∈ X there exists a
neighborhood Ux of x which intersects finitely many elements of
A (i.e., the set {i ∈ I|Ux ∩ Ai ̸= ∅} is finite). A well known result
in general topology states that if A = {Ai}i∈I is a locally finite
family of subsets of X , then

⋃
i∈I

Ai =

⋃
i∈I

Ai (see e.g. Engelking,

1989, Theorem 1.1.11).
A complete preorder ≾ on the topological space (X, t) is said

to be continuous if the sets l(x) = {z ∈ X |z ≺ x} and r(x) = {z ∈

X |x ≺ z} are open subsets of X for every x ∈ X . Equivalently,
this is the case when t is finer than the order topology t≾ on X
associated to ≾, which is precisely the topology generated by the
family {l(x)|x ∈ X} ∪ {r(x)|x ∈ X} (i.e., {l(x)|x ∈ X} ∪ {r(x)|x ∈ X}

is a subbasis of t).
A topology t on X is said to be useful if every continuous

complete preorder on the topological space (X, t) has a continuous
utility representation (order preserving function) u, i.e., there exists
a continuous real-valued function u such that x ≾ y if and only
if u(x) ≤ u(y) for all x, y ∈ X . The Debreu Open Gap lemma
(see e.g. Bridges and Mehta, 1995, Lemma 3.3) guarantees that
if there exists a utility representation u′ for a complete preorder
≾ on a set X , then there exists a utility representation u for ≾
which is continuous in the order topology t≾ on X . Therefore, if
≾ is a continuous complete preorder on a topological space (X, t),
then the existence of a utility representation actually implies the
existence of a continuous one.

Definition 2.1 (Herden, 1989a). Let a topology t on X be given. A
family E of open subsets of the topological space (X, t) such that⋃
E∈E

E = X is said to be a separable system on (X, t) if it satisfies

the following conditions:

S1 : There exist sets E1 ∈ E and E2 ∈ E such that E1 ⊂ E2.
S2 : For all sets E1 ∈ E and E2 ∈ E such that E1 ⊂ E2 there

exists some set E3 ∈ E such that E1 ⊂ E3 ⊂ E3 ⊂ E2.

Let us now introduce the fundamental notion of a complete
separable system on a topological space (X, t).

Definition 2.2. Let a topology t on X be given. A separable
system E on (X, t) is said to be complete if for all sets E ∈ E and
E ′

∈ E at least one of the following conditions holds: E = E ′ or
E ⊂ E ′ or E ′ ⊂ E.

Remark 2.1. It should be noted that the concept of a complete
separable system is stronger than the notion of a linear separable
system as it was presented in Herden, 1991 and Herden and
Pallack, 2000. Indeed, a linear separable system was defined to
be a separable system E on (X, t) which is linearly ordered by
set inclusion (i.e., for all sets E ∈ E and E ′

∈ E either E ⊂ E ′ or
E ′

⊂ E).

Remark 2.2. The consideration of a complete separable systems
in connection with useful topologies can be motivated as follows.
Let (X, t,≾) be a completely preordered topological space and
assume that there exists a continuous utility representation u for
≾. Then it is easily seen that the family E = {Eq = u−1(] −

∞, q))}q∈Q is a complete separable system on (X, t). We just
observe that, for all q ∈ Q, Eq = u−1(] − ∞, q]) and this fact
clearly implies that, for all q, r ∈ Q such that q < r , Eq ⊂ Er .

The following proposition holds, which illustrates the concept
of a complete separable system on X .

Proposition 2.1. Let t be a topology on X, and let E be a family of
open subsets of the topological space (X, t) such that

⋃
E∈E

E = X. In

order for E to be a complete separable system on (X, t) it is necessary
and sufficient that E satisfies the following conditions.

CS1: Ec
:= E ∪ {E|E ∈ E} is linearly ordered by set inclusion.

CS2: E =

⋃

E′⊂E, E′∈E

E ′
=

⋃

E′⊂E, E′∈E

E ′ for every E ∈ E .

CS3: E =

⋂

E⊂E′∈E

E ′
=

⋂

E⊂E′∈E

E ′ for every E ∈ E .

Proof. If E is a complete separable system on X , then it is clear
that the above condition CS1 holds since E is in particular linear.
In order to show, for example, that also condition CS3 holds, first
consider that, from condition S2 in Definition 2.1, for every set
E ∈ E and for every E ′

∈ E such that E ⊂ E ′ there exists a set
E ′′

∈ E such that E ⊂ E ′′ and E ⊂ E ′′ ⊂ E ′, which implies that⋂

E⊂E′∈E

E ′
=

⋂

E⊂E′∈E

E ′. In order to show that
⋂

E⊂E′∈E

E ′
=

⋂

E⊂E′∈E

E ′ ⊂ E,

take any x ∈ X \ E. Then there exists E ′′
∈ E such that x ∈ E ′′,

and since the separable system E is linear, it must be E ⊂ E ′′.
Therefore we have that x ̸∈

⋂

E⊂E′∈E

E ′. Condition CS2 can be proven

in a perfectly analogous way.
Conversely, consider a family E satisfying conditions CS1, CS2

and CS3. Condition CS1 clearly implies that for any two sets
E1, E2 ∈ E such that E1 ̸= E2 either E1 ⊂ E2 or E2 ⊂ E1. Now
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consider any two sets E1, E2 ∈ E such that E1 ⫋ E2. Then there
exists x ∈ E2 \ E1, and by conditions CS2 and CS3 there exists
E3 ∈ E such that x ∈ E3 ⊂ E2, implying that E1 ⊂ E3 ⊂ E3 ⊂ E2.
Now the proof is complete. □

3. Characterization of useful topologies

Let SC (X) be the set of all complete separable systems on X
that contain X . Then we proceed by considering the preorder
≾S on SC (X) that is defined by setting, for all separable systems
E ∈ SC (X) and L ∈ SC (X),

E ≾S L ⇔ ∀E ∈ E

⎛
⎝

⎛
⎝E =

⋃

L∈L,L⊂E

L =

⋃

L∈L,L⊂E

L

⎞
⎠ ∧

⎛
⎝E =

⋂

E⊂L∈L

L =

⋂

E⊂L∈L

L

⎞
⎠

⎞
⎠ .

In order to better understand ≾S we denote, for every separa-
ble system E ∈ SC (X), by tE the topology on X that is generated
by E ∪ {X \ E|E ∈ E} (i.e., E ∪ {X \ E|E ∈ E} is a subbasis of tE ).
Indeed, using this notation, the following proposition holds.

Proposition 3.1. For all separable systems E ∈ SC (X) and L ∈

SC (X) it holds that

E ≾S L ⇔ tE ⊂ tL.

Proof. Assume that, for two complete separable systems E ∈

SC (X) and L ∈ SC (X), E ≾S L. In order to show that tE ⊂ tL
it suffices to show that the sets E and X \ E are open in the
topology tL for every set E ∈ E . These facts are immediate, since
in particular, we have that E =

⋃

L∈L,L⊂E

L and X \ E =

⋃

E⊂L∈L

(X \ L).

Conversely, assume that for two complete separable systems
E ∈ SC (X) and L ∈ SC (X), we have that tE ⊂ tL. Then any set
E ∈ E must be expressed as union of sets which are open in the
topology tL, and therefore it must be the case that E =

⋃

L∈L,L⊂E

L.

Also, X \E must be open in the topology tL, and therefore it must
be the case that E =

⋂

E⊂L∈L

L. This actually means that E ≾S L, and

the proof is complete. □

Denote by ∼S the symmetric part of the above defined pre-
order ≾S on SC (X) (i.e., for all separable systems E ∈ SC (X) and
L ∈ SC (X), E ∼S L if and only if (E ≾S L) and (L ≾S E)). From
Proposition 3.1, we have that, for all separable systems E ∈ SC (X)
and L ∈ SC (X), E ∼S L if and only if tE = tL.

We are now fully prepared in order to prove the following
proposition that is fundamental in the theory of complete and
continuous preorders on X .

Proposition 3.2. Let P(⊴) be the set of all continuous and com-
plete preorders on X. Then there exists a one-to-one correspondence
between P(⊴) and SC (X)|∼S

.

Proof. Let, in a first step, some continuous and complete preorder
≾∈ P(⊴) be arbitrarily chosen. Then we set l(x) := {y ∈ X |y ≺ x}
for every x ∈ X in order to then define a function Φ : P(⊴) →

SC (X)|∼S
by setting Φ(≾) := [{l(x)}x∈X ] for every continuous and

complete preorder ≾∈ P(⊴). Let, conversely, some equivalence
class [E] ∈ SC (X)|∼S

be chosen. Then we define a function Ψ :

SC (X)|∼S
→ P(⊴) by choosing some representant E ∈ [E] in

order to then consider the complete preorder ≾[E]:= Ψ ([E]) that
is defined, for all x ∈ X and y ∈ X , by setting

x ≺[E] y ⇔ ∃E ∈ E ∃E ′
∈ E ((E ⊂ E ⊂ E ′) ∧ (x ∈ E) ∧ (y ∈ X \ E ′)),

x ∼[E] y ⇔ ¬(x ≺[E] y) ∧ ¬(y ≺[E] x).
The reader may compare the previous definition with assertion
(iii) of Theorem 3.1 in Herden, 1989b. It follows that

≾[E] = {(x, y) ∈ X × X |∀E ∈ E (y ∈ E ⇒ x ∈ E)}.

In addition, one immediately verifies that Ψ is well-defined,
i.e. independent of the particular chosen representative E ∈ [E].

Since the verification for Φ(≾) := {l(x)}x∈X to be, for every
continuous and complete preorder ≾∈ P(⊴), a complete separable
system on X as well as the verification Ψ ([E]) to be, for every
equivalence class [E] ∈ SC (X)|∼S

, a continuous and complete
preorder on X is lengthy but immediate, the proposition will
follow if we are able to show that Ψ ◦ Φ = idP(⊴) and that,
conversely, Φ ◦ Ψ = idSC (X)|∼S

.
Let us, therefore, start with arbitrarily choosing some contin-

uous and complete preorder ≾∈ P(⊴). Then Φ(≾) := [{l(z)}z∈X ]
and Ψ ([{l(z)}z∈X ]) := {(x, y) ∈ X × X |∀z ∈ X (y ≺ z ⇒ x ≺ z)} =

{(x, y) ∈ X × X |x ≾ y} =≾, which means that Ψ ◦ Φ = idP(⊴).
Let us, conversely, choose some equivalence class [E] ∈

SC (X)|∼S
. Then Ψ ([E]) :=≾[E]:= {(x, y) ∈ X × X | ∀E ∈ E (y ∈

E ⇒ x ∈ E)}. The definition of ≾[E] implies that Φ(≾[E]) =

[{l(z)}z∈X ] = [E]. This means that Φ ◦ Ψ = idSC (X)|∼S
and, thus,

finishes the proof of the proposition. □

Now a simple solution to the problem of characterizing all
useful topologies on X can be presented.

Theorem 3.1. Let t be a topology on a set X. The following assertions
are equivalent:

(i) t is useful.
(ii) For every separable system E ∈ SC (X), the topology tlE

generated by E is second countable.
(iii) For every separable system E ∈ SC (X), the topology tE

generated by E ∪ {X \ E|E ∈ E} is second countable.

Proof. (i) ⇒ (ii). The proof of this implication is found in Herden
and Pallack, 2000, Proposition 5.1, assertion (iv).

(ii) ⇒ (iii). Consider any separable system E ∈ SC (X) on (X, t),
and assume that the subtopology t lE of t is second countable. Let
Bl

= {Bn}n∈N+ be a countable basis for t lE . Since t lE is linearly
ordered by set inclusion, we can assume without loss of general-
ity that every element Bn of the basis Bl belongs to E , i.e. Bl

=

{En}n∈N+ ⊂ E . From condition CS3 in Proposition 2.1 we have
that, for every set E ∈ E , X \ E =

⋃

E⊂E′∈E

(X \ E ′) =

⋃

E⊂En∈Bl

(X \ En).

Therefore, we have that Bu
= {X\En}n∈N+ is a basis for the linearly

ordered subtopology tuE of t which is generated by {X \ E|E ∈ E},
and B = Bl

∪Bu is a countable subbasis of tE . Hence, tE is second
countable.

(iii) ⇒ (i). Consider any complete and continuous preorder
≾ on (X, t). In the proof of Proposition 3.2 we noticed that
E = {l(x)}x∈X is a complete separable system on (X, t). It is not
difficult to show that the order topology t≾ corresponding to ≾ is
contained in the topology tE generated by E and {X \ E|E ∈ E}

(see Herden, 1989b, Lemma 2.1). Since this latter topology is
second countable, we have that also t≾ is second countable, which
implies that ≾ is representable by a utility function (see Herden,
1989b, Lemma 3.1, assertion (v)), and therefore it is continuously
representable by the Debreu Open Gap Lemma (see Debreu, 1954,
1964). This consideration completes the proof. □
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The usual proofs of ET and DT that can be found in the
literature do not even touch any result that at least is somewhat
related to Proposition 3.2. On the other hand, however, ET as well
as DT are implicit in Theorem 3.1. Indeed, one immediately ver-
ifies that Theorem 3.1 is a common generalization of ET and DT,
since every linearly ordered subtopology t ′ of a second countable
or connected and separable topology t is itself second countable
(and this is the case of the subtopology topology t lE of t generated
by a complete separable system E). Because of the naturalness of
Proposition 3.2, this observation is surely remarkable.

EHT, however, cannot be deduced from Theorem 3.1. It is
of quite different nature than any of the theorems ET and DT,
respectively. Indeed, a generalization of EHT is based upon the
already announced condition cwsc. In order to prepare the funda-
mental definition of countable weak separability condition (cwsc),
let us first recall the definition of well-separated family of separa-
ble systems as it is found in Herden and Pallack, 2000.

Definition 3.1 (Herden and Pallack, 2000). Let Θ = {Ei}i∈I
be a family of separable systems on X . Then Θ is said to be
well-separated if it satisfies the following conditions.

WS1:
⋃
E∈Ei

E ∩

⋃
L∈Ej

L = ∅ for all i ∈ I and all j ∈ I such that i ̸= j.

WS2: Let, for every i ∈ I , some fixed set Ei ∈ Ei be arbitrarily
chosen. Then
⋃
i∈I

Ei =

⋃
i∈I

Ei.

The reader may recall that condition WS2 is satisfied if the

family

⎧⎨
⎩

⋃
E∈Ei

E

⎫⎬
⎭

i∈I

of open subsets of X is locally finite, i.e. each

point x ∈ X has a neighborhood Ux such that Ux ∩

⋃
E∈Ei

E ̸= ∅ for

at most finitely many i ∈ I . This means that condition WS2 may
be considered as a slight generalization of the locally finiteness
condition in topological spaces.

Definition 3.2. A topology t on a set X is said to satisfy the count-
able weak separability condition (cwsc) if every well-separated
family Θ = {Ei}i∈I of separable systems on X is countable.

In metric spaces cwsc is equivalent to second countability.
This is the contents of EHT. Following the spirit of the proof
that has been presented by Estévez and Hervés, 1995, a proof of
the following proposition already has been given in Herden and
Pallack, 2000, Lemma 6.1. Here we want to present a somewhat
modified and simpler proof that is based upon Proposition 3.2 and
Theorem 3.1, respectively.

Proposition 3.3 (Herden and Pallack, 2000, Lemma 6.1). In order
for a topology t on X to be useful, it is necessary that t satisfies cwsc.

Proof. Let t be a useful topology on X . Then we consider a family
Θ = {Ei}i∈I of separable systems on X that satisfies the conditions
WS1 and WS2 in Definition 3.1 in order to assume, in contrast,
I to be uncountable. In this case the Well-ordering Theorem of
Zermelo allows us to assume without loss of generality that I :=

[0, Ω), where Ω is the first uncountable ordinal number. Let
now some ordinal number α < Ω be fixed given. Since Eα is a
separable system on X we may choose for every ordinal number
α′

≤ α and every rational number p ∈ Q some set Eα
α′p ∈ Eα in

such a way that, for all pairs of ordinal numbers (α′, α′′) with

α′
≤ α and α′′

≤ α, and for all pairs (p, q) of rational numbers
such that (α′, p) ̸= (α′′, q),

Eα
α′p ⊂ Eα

α′′q ⇔ (α′, p) <lex (α′′, q)

⇔ (α′ < α′′) or ((α′
= α′′) and (p < q)).

We proceed by setting Eα
p :=

⋃
α′≤α

⋃
α′′≤α′

Eα′

α′′p =

⋃
α′≤α

Eα′

α′p for every

ordinal number α < Ω and every p ∈ Q. The construction of
the (open) sets Eα

p (α < Ω , p ∈ Q) implies, with help of the
conditions WS1 and WS2 of Definition 3.1, that the collection E =

{Eα
p }α<Ω, p∈Q is a complete separable system on X . Since it is clear

that E = {Eα
p }α<Ω, p∈Q is a separable system on X , we limit our-

selves to show that completeness is verified (see Definition 2.2),
and to this aim we notice that, whenever (α, p) <lex (β, q),

Eα
p =

⋃
α′≤α

Eα′

α′p =

⋃
α′≤α

⋃
α′′≤α′

Eα′

α′′p ⊂

⋃
β ′≤β

⋃
β ′′≤β ′

Eβ ′

β ′′q =

⋃
β ′≤β

Eβ ′

β ′q = Eβ
q .

In addition, condition WS1 of Definition 3.1 implies that, for any
two sets Eα

p and Eβ
q , the proper inclusion Eα

p ⫋ Eβ
q holds whenever

α < β and for all pairs (p, q) of rational numbers. Hence, the not
countability of Ω implies that the topology t lE generated by the
family E = {Eα

p }α<Ω, p∈Q cannot be second countable. Assertion
(ii) of Theorem 3.1, thus, allows us to conclude that t cannot be
useful. This contradiction finishes the proof of the proposition. □

4. Conclusions

In this paper, based on the concept of a complete separable
system on a topological space, we have presented a simple char-
acterization of a useful topology t on a set X (i.e., a topology t
such that every continuous complete preorder on the topological
space (X, t) admits a continuous utility representation). Indeed,
we have shown that a topology t on X is useful if and only if, for
every complete separable system E on (X, t), the linearly ordered
subtopology t lE which is generated by the family E is second
countable. This is peculiar of the consideration of a complete
separable system as defined in the present work. While there
are many other characterizations of useful (or representable)
topologies in the literature (see the various papers appearing
in our section of references), it seems to us that our approach
is enough general in order to be considered as interesting and
widely applicable.

We are confident that our considerations may be used in order
to characterize useful topologies under the Souslin Hypothesis. If
this is possible, then the corresponding material will be presented
in a future paper.
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