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Abstract

We prove continuous dependence on initial data for a backward parabolic op-
erator whose leading coefficients are Osgood continuous in time. This result fills
the gap between uniqueness and continuity results obtained so far.

1 Introduction
Backward parabolic equations are known to generate ill-posed Cauchy problems (in the
sense of Hadamard [6, 7]). Due to the smoothing effects of the parabolic operator, in
fact, it is not possible, in general, to guarantee existence of the solution for initial data
which are not suitably regular. In addition, even when solutions possibly exist, unique-
ness cannot be ensured without additional assumptions on the operator. Nevertheless,
even for problems which are not well-posed the study of the conditional stability of the
solution – the surrogate of the notion of “continuous dependence” when existence of
a solution is not guaranteed – is of some interest. Such kind of study is related to the
notion of well-behaved problem introduced by John [10]: a problem is well-behaved if
“only a fixed percentage of the significant digits need be lost in determining the solution
from the data”. More precisely, a problem is well behaved if its solutions in a space H
depend Hölder continuously on the data belonging to a space K , provided they satisfy
a prescribed bound in a space H ′ (possibly different from H ). If the dependence of
solutions on data is only continuous, one says that the problem is conditionally stable.
It is an important task to give a quantification of the continuous dependence on data,
because it measures the illness of the problem from the computational point of view.
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In this paper we give a contribution to the study of the conditional stability of
the Cauchy problem associated with a backward parabolic operator. In particular, we
consider the operator L defined, on the strip [0,T ]×Rn, by

L u = ∂tu+
n

∑
i, j=1

∂xi

(
ai, j(t)∂x j u

)
+

n

∑
j=1

b j(t)∂x j u+ c(t)u , (1)

where all the coefficients are bounded. We suppose that ai, j(t) = a j,i(t) for all i, j =
1, . . . ,n and for all t ∈ [0,T ]. We also suppose that L is backward parabolic, i.e. there
exists kA ∈]0,1[ such that, for all (t,ξ ) ∈ [0,T ]×Rn,

kA|ξ |2 ≤
n

∑
i, j=1

ai, j(t)ξiξ j ≤ k−1
A |ξ |

2 . (2)

We shall show that if the coefficients of the principal part of L are at least Osgood
continuous (i.e. their modulus of continuity ω satisfies the condition

∫ 1
0 1/ω(s)ds =

+∞), then there exists a function space in which the associated Cauchy problem{
L u = f , in (0,T )×Rn ,
u|t=0 = u0 , in Rn ,

(3)

is conditionally stable.
To collocate the new result in the framework of the existing literature, the contents

of some publications on the subject are preliminarily recalled. They show that, as one
could expect, the strongness of the stability property is related to the degree of regular-
ity of the coefficients of L . Weaker requirements on the regularity of the coefficients
give rise to weaker stability estimates, and possibly require stronger a priori bounds of
the solution.

The overview on available works leads the reader to the new result, concerning op-
erators with Osgood-continuous coefficients. This kind of regularity is critical since it
is the minimum required regularity to have uniqueness of the solution and can therefore
be considered as a sort of lower limit. Although the proof of the claim is based on the
theoretical scheme followed to achieve previous results [4], the modifications needed
to obtain an analogous proof in the case of Osgood coefficients are not trivial.

The paper is organised as follows. In Section 2 we give an overview on uniqueness
and non-uniqueness results for (3). Moreover, we introduce the notion of modulus
of continuity and define the Osgood condition. In Section 3 we recall the notion of
conditional stability and we review some known results. In Section 4 we state and
prove the main result of the paper (Theorem 4.2). In Section 5 we prove the main
results. In Section 6 we consider the particular case of Log-Log-Lipschitz coefficients,
where the dependence on initial data can be explicitly determined.

Aknowledgement. We would like to thank the anonymous referee for her/his valu-
able suggestions to improve the readability of the paper.
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2 Uniqueness and non-uniqueness results
This section recalls some results on the uniqueness and non-uniqueness of the solution
of the problem (3) for an operator like (1) with coefficients depending also on x, namely

L u = ∂tu+
n

∑
i, j=1

∂xi

(
ai, j(t,x)∂x j u

)
+

n

∑
j=1

b j(t,x)∂x j u+ c(t,x)u . (4)

Consider the space

H0 ,C([0,T ],L2)∩C([0,T [,H1)∩C1([0,T [,L2) . (5)

One of the first results concerning uniqueness is due to Lions and Malgrange [11] who
consider an equation associated to a sesquilinear operator defined in a Hilbert space. In
our context, this result can be read as follows.

Theorem 2.1 If the coefficients of the principal part of L are Lipschitz continuous
with respect to t and x, u ∈H0 and u0 = 0, then L u = 0 implies u≡ 0. �

The Lipschitz continuity of the coefficients is a crucial requirement for the claim, as
shown some years later by Pliś [12] who proved the following theorem.

Theorem 2.2 There exist u, b1, b2 and c ∈C∞(R3), bounded with bounded derivatives
and periodic in the space variables and there exist l : [0,T ]→R, Hölder-continuous of
order δ for all δ < 1 but not Lipschitz-continuous, such that 1/2≤ l(t)≤ 3/2 for all t,
the support of u is the set {t ≥ 0}×R2, and

∂
2
t u(t,x1,x2)+∂

2
x1

u(t,x1,x2)+ l(t)∂ 2
x2

u(t,x1,x2)+

+b1(t,x1,x2)∂x1u(t,x1,x2)+b2(t,x1,x2)∂x2u(t,x1,x2)+

+ c(t,x1,x2)u(t,x1,x2) = 0 in R3 . (6)

�

Note that the differential operator in (6) is elliptic. However, as explained in [3], the
counterexample of Pliś can bemodified in order to obtain a counterexample for the
backward parabolic operator

LP , ∂t +∂
2
x1
+ l(t)∂ 2

x2
+b1(t,x1,x2)∂x1 +b2(t,x1,x2)∂x2 + c(t,x1,x2) .

Moreover, the result can be extended to the operator L acting in the space H0, by
considering the problem solved by u(t,x1,x2)e−x2

1−x2
2 , thus obtaining the following the-

orem.

Theorem 2.3 There exist coefficients ai, j, depending only on t, which are Hölder con-
tinuous of every order but not Lipschitz continuous and there exist u ∈H0 such that
the solution of problem (3) with u0 = 0 and f = 0 is not identically zero. �
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In view of the previous results, a question naturally arises: which is the minimal
regularity (between Lipschitz continuity and Hölder continuity) of the coefficients of
the principal part of L guaranteeing uniqueness of the solution of (3)? To answer to
this question, the definition of modulus of continuity, that can be exploited to measure
the degree of regularity of a function, is useful.

Definition 2.4 A modulus of continuity is a function µ : [0,1]→ [0,1] which is contin-
uous, strictly increasing, concave and such that µ(0) = 0. A function f : R→ R has
regularity µ if

sup
0<|t−s|<1

| f (t)− f (s)|
µ(|t− s|)

<+∞ .

The set of all functions having regularity µ is denoted by Cµ .

As particular cases, the Lipschitz continuity, the τ-Hölder continuity (τ ∈]0,1[) and
the logarithmic Lipschitz (in short Log-Lipschitz) continuity are obtained for µ(s) = s,
µ(s) = sτ and µ(s) = s log(1+1/s), respectively.

A further characterization of the modulus of continuity is the so called Osgood
condition which is crucial in most of the results on uniqueness and stability that are
described in the rest of the article. A modulus of continuity µ satisfies the Osgood
condition if ∫ 1

0

1
µ(s)

ds =+∞ .

This characterization is used, for instance, in [3] to obtain the following result
concerning an operator whose coefficients in the principal part depend also on x.

Theorem 2.5 Let µ be a modulus of continuity that satisfies the Osgood condition. Let

H1 , H1([0,T ],L2(Rn))∩L2([0,T ],H2(Rn)) (7)

and let the coefficients ai, j be such that, for all i, j = 1, . . . ,n,

ai, j ∈Cµ([0,T ],Cb(Rn))∩C ([0,T ],C 2
b (Rn)) ,

where Cb is the space of bounded functions and C 2
b is the space of the bounded func-

tions whose first and second derivatives are bounded. If u∈H1, L u= 0 on [0,T ]×Rn

and u(0,x) = 0 on Rn, then u≡ 0 on [0,T ]×Rn.

More recently, by using Bony’s para-multiplication, the result has been improved
as far as the regularity with respect to x is concerned, i.e. replacing C 2 regularity with
Lipschitz regularity [5].

Note that the claim of Theorem 2.5 refers to the function space defined by (7),
however, it is not difficult to extend it to the function space H0 defined by (5).
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3 Conditional stability results with Lipschitz or Log-
Lipschitz continuous coefficients

As we explained in the Introduction, the Cauchy problem (3) for the backward parabolic
differential operator (4) is in general not well posed. Therefore, the notion of contin-
uous dependence from initial data needs to be replaced with the notion of conditional
stability. The question about the conditional stability can be stated as follows: suppose
that two functions u and v, defined in [0,T ]×Rn, are solutions of the same equation
L w = f ; suppose, in addition, that u and v satisfy a fixed bound in a space K and that
‖u(0, ·)− v(0, ·)‖H is small (e.g. smaller than some ε > 0). Given these assumptions,
what can we say about the quantity supt∈[0,T ′] ‖u(t, ·)−v(t, ·)‖K , where T ′ < T ? Does
it remains small as well, e.g. smaller than a value related to ε , and possibly tending to 0
as ε tends to 0? In this section some results that give an answer to the above questions
are reported.

One of the first results on conditional stability has been proven by Hurd [9] in the
same theoretical framework considered by Lions and Malgrange.

Theorem 3.1 Suppose that the coefficients ai, j in (4) are Lipschitz continuous both in
t and in x. For every T ′ ∈]0,T [ and for every D > 0 there exist ρ > 0, δ ∈]0,1[ and
M > 0 such that if u ∈H0 is a solution of L u = 0 on [0,T ]×Rn with ‖u(t, ·)‖L2 ≤ D
on [0,T ] and ‖u(0, ·)‖L2 ≤ ρ , then

sup
t∈[0,T ′]

‖u(t, ·)‖L2 ≤M‖u(0, ·)‖δ

L2 . (8)

The constants ρ , δ and M depend only on T ′ and D, on the ellipticity constant of L , on
the L∞ norms of the coefficients ai, j, b j, c, on the L∞ norms of their spatial derivatives,
and on the Lipschitz constant of the coefficients ai, j with respect to time. �

Estimate (8) means that, under the hypotheses of Theorem 3.1, the Cauchy problem
(3) is well behaved. Notice that the result expressed by (8) implies uniqueness of the
solution for (3). It is therefore apparent that a necessary condition for (3) to be well
behaved, is that the coefficients ai, j fulfil the Osgood condition with respect to time.
Hence a natural question arises: is Osgood condition also a sufficient condition for
(8) to hold? Del Santo and Prizzi [4] gave a negative answer to this question. In
particular, mimicking Pliś counterexample, they have shown that if the coefficients ai, j
are not Lipschitz continuous but only Log-Lipschitz continuous, then Hurd’s result
does not hold. Notwithstanding, they proved that if the coefficients are Log-Lipschitz
continuous with respect to time and sufficiently regular with respect to space, then a
conditional stability property, weaker than (8), does hold. The counterexample in [4]
relies on the fact that it is possible to construct

• a sequence {Lk}k∈N of backward uniformly parabolic operators with uniformly
Log-Lipschitz-continuous coefficients (not depending on the space variables) in
the principal part and space-periodic uniformly bounded smooth coefficients in
the lower order terms,
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• a sequence {uk}k∈N of space-periodic smooth uniformly bounded solutions of
Lkuk = 0 on [0,1]×R2,

• a sequence {tk}k∈N of real numbers, with tk→ 0,

such that
lim
k→∞
‖uk(0, ·, ·)‖L2([0,2π]×[0,2π]) = 0

and

lim
k→∞

‖uk(tk, ·, ·)‖L2([0,2π]×[0,2π])

‖uk(0, ·, ·)‖δ

L2([0,2π]×[0,2π])

=+∞

for every δ > 0.
As we mentioned above, in the case of Log-Lipschitz coefficients a result weaker

that (8) is valid. Consider the equation L u = 0 on [0,T ]×Rn, with L defined in (4)
and suppose that for all i, j = 1, . . . ,n, ai, j ∈ LogLip([0,T ],L∞(Rn)), that is

sup
{
|ai, j(t,x)−ai, j(s,x)|
|t− s|(1+ log |t− s|)

| t,s ∈ []0,T ],< |t− s|< 1,x ∈ Rn
}
<+∞ ;

moreover, assume that ai j, b j and c belong to L∞([0,T ],C2(Rn)).

Theorem 3.2 [4] Suppose that the above hypotheses hold. For all T ′ ∈]0,T [ and for
all D> 0 there exist ρ > 0, M > 0, N > 0 and δ ∈]0,1[ such that, if u∈H0 is a solution
of L u = 0 on [0,T ]×Rn with ‖u(t, ·)‖L2 ≤ D on [0,T ] and ‖u(0, ·)‖L2 ≤ ρ , then

sup
t∈[0,T ′]

‖u(t, ·)‖L2 ≤Me−N| log‖u(0,·)‖L2 |δ , (9)

where the constants ρ , δ , M and N depend only on T ′, on D, on the ellipticity con-
stant of L , on the L∞ norms of the coefficients ai, j, on the L∞ norms of their spatial
derivatives, and on the Log-Lipschitz constant of the coefficients ai, j with respect to
time.

The proof of Theorem 3.2 relies on a weighted energy estimate, with loss of space
regularity as time goes on. Such estimate is obtained exploiting Fourier transform of
solutions when the coefficients in L are independent of space. To deal with the case of
space dependent coefficients one needs to use Paley-Littlewood dyadic decomposition
of solutions. Using Bony’s para-product the result can be further improved, lower-
ing the requirements on space regularity of coefficients and allowing them to be just
Lipschitz continuous with respect to x [2].

4 Stability with Osgood continuous (with respect to time)
coefficients

Let us finally come to the new result contained in this paper. As in the previous section
we first present a counterexample to the stability estimate (9) and then a new weaker
stability result.
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4.1 Counterexample to stability estimate (9) in the LogLog-Lipschitz
case

Consider the modulus of continuity ω defined, near 0, by

ω(s) = s log
(

1+
1
s

)
log
(

log
(

1+
1
s

))
and note that ω satisfies the Osgood condition but C ω functions are not Log-Lipschitz
continuous. As in the previous section, it is possible [1] to construct

• a sequence {Lk}k∈N of backward uniformly parabolic operators with uniformly
C ω -continuous coefficients (independent of the spatial variable) in the princi-
pal part and space-periodic uniformly bounded smooth coefficients in the lower
order terms,

• a sequence {uk}k∈N of space-periodic smooth uniformly bounded solutions of
Lkuk = 0 on [0,1]×R2,

• a sequence {tk}k∈N of real numbers, with tk→ 0,

such that
lim
k→∞
‖uk(0, ·, ·)‖L2([0,2π]×[0,2π]) = 0

but (9) does not hold for all δ ; more precisely

lim
k→∞

‖uk(tk, ·, ·)‖L2([0,2π]×[0,2π])

e−N| log‖uk(0,·,·)‖L2([0,2π]×[0,2π])
|δ

=+∞

for every δ > 0 and N > 0.

4.2 Stability result in the Osgood-continuous case
From now on, the following conditions are assumed to hold.

Assumption 4.1 The operator L defined in (1) is such that

• for all t ∈ [0,T ] and for all i, j = 1, . . . ,n,

ai, j(t) = a j,i(t) ;

• there exists kA > 0 such that, for all (t,ξ ) ∈ [0,T ]×Rn,

kA|ξ |2 ≤
n

∑
i, j=1

ai, j(t)ξiξ j ≤ k−1
A |ξ |

2 ;

• there exists kB > 0 such that, for all t ∈ [0,T ] and for all i = 1, . . . ,n, |bi(t)| ≤ kB;

• there exists kC > 0 such that, for all t ∈ [0,T ], |c(t)| ≤ kC;
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• for all i, j = 1, . . . ,n, ai, j ∈Cω([0,T ]), where ω is a modulus of continuity that
satisfies the Osgood condition.

We can now state our main result.

Theorem 4.2 For all T ′ ∈]0,T [ and for all D > 0 there exist ρ ′ > 0, and an increasing
continuous function G : [0,+∞[→ [0,+∞[, with G(0) = 0, such that, if u ∈H0 is a
solution of L u = 0 on [0,T ] with ‖u(t, ·)‖L2 ≤ D on [0,T ] and ‖u(0, ·)‖L2 ≤ ρ ′, then

sup
t∈[0,T ′]

‖u(t, ·)‖2
L2 ≤ G(‖u(0, ·)‖2

L2) . (10)

The constant ρ ′ and the function G depend on kA,kB,kC,ω,n,T,T ′ and D. �

In Theorem 4.2 all coefficients of the operator L are assumed to be independent of
the space variable x. Compared with the assumptions in [4, 2] this is certainly a strong
restriction. In order to deal with the case of space dependent coefficients one could
exploit dyadic Littlewood-Paley decomposition of solutions. As it will be apparent in
the computations in Section 5 below, although estimate (10) involves only L2 norms, it
is obtained through a massive use of Gevrey-Sobolev norms (see [8] for a theoretical
framing). In the case of space dependent coefficients, this would lead to the use of
Bony paraproducts (even when only the lower order coefficients are space-dependent)
and would require strong regularity assumptions on the x-dependence of coefficients:
namely, it would require that the coefficients themselves are Gevrey-Sobolev (hence
C∞) in x (see Theorem 4.1 in [8]). The use of paraproducts would introduce a certain
amount of technical difficulties in the management of various commutators, and it is
not clear to what extent the result we expose in the present paper can be generalized to
the case of an operator L with x dependent coefficients.

Definition 4.3 [8] Given a≥ 0, d ∈ R and ε > 1, the Gevrey-Sobolev function space
Hd

a,ε is the space of the functions u : Rn→ R such that

‖u‖2
Hd

a,ε
,
∫
Rn

(
1+ |ξ |2

)d
e2a|ξ |1/ε |û(ξ )|2 dξ <+∞ ,

where û is the Fourier transform of u.

Besides Gevrey-Sobolev spaces, we need to introduce a new particular class of
spaces, taylored on the modulus of continuity ω .

Definition 4.4 Let a > 0, d ∈ R and ω a modulus of continuity satisfying the Osgood
condition. We denote by Hd

a,ω the set of the functions u : Rn→ R such that

‖u‖2
Hd

a,ω
,
∫
Rn

(
1+ |ξ |2

)d
e

a|ξ |2ω

(
1

|ξ |2+1

)
|û(ξ )|2dξ <+∞ .

We call it Osgood-Sobolev function space.
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Remark 4.5 From Definitions 4.3 and 4.4 it is easy to see that, for any Osgood moduls
of continuity ω , for all ε > 1, for all a > 0 and for all d ∈ R,

Hd
a,ε ⊂ Hd

a,ω .

Theorem 4.2 is a consequence of the following local result.

Theorem 4.6 There exists α1 > 0 and, for any T ′′ : 0 < T ′′ < T , there exist constants
ρ > 0, C > 0 and a function g : [0,kA]→ [0,+∞[, such that, if u ∈H0 is a solution of

L u = 0 , (11)

with L fulfilling Assumption 4.1 and ‖u(0, ·)‖2
H0

ν ,ε
< ρ for some ν > 0 and some ε > 1,

then

sup
z∈[0,σ̄ ]

‖u(z, ·)‖2
H1 ≤Ce

−σg
(
‖u(0,·)‖2

H0
ν ,ε

) [
1+‖u(σ , ·)‖2

H1

]
, (12)

where σ =min{T ′′,1/α1} and σ̄ =σ/8. The constant α1 depends only on kA,kB,kC,ω
and n while the constants ρ and C depend also on T and T ′′. The function g is a
strictly decreasing function; it depends on kA,kB,kC,ω,n,T,T ′′,ε and ν and satisfies
limy→0 g(y) = +∞. �

We end this section with a comment on the functions g and G in estimates (12) and
(10) respectively. The function g, as it will be clear in the proof of Theorem 4.6, can
be explicitly expressed in terms of the modulus of continuity ω (the precise formula
for g is given by (50) below). Being ω ”generic”, the expression of g is of course
only theoretically explicit. Nevertheless, when a concrete ω is given, it is possible to
compute the concrete explicit expression of g. As an example, in Section 6 we compute
the explicit expression of the continuity estimate (12) for an operator L with LogLog-
Lipschitz continuous coefficients, i.e. with ω(s) = s(1− logs) log(1− logs). In such
case the stability estimate becomes

sup
z∈[0,σ̄/2]

‖u(z, ·)‖2
L2 ≤ exp

{
−σkA

2e
exp

[(
log
(

1
τ
|log‖u(0, ·)‖L2 |

))δ
]}

, (13)

where σ , σ̄ , τ and δ are suitable constants. Concerning the function G in the global es-
timate (10), it is obtained by iterating a finite number of times estimate (12): therefore,
explicit knowledge of g yields explicit knowledge of G. In the LogLog-Lipschitz case
we shall see that estimate (13) reproduces itself at each iteration step, so in the corre-
sponding global estimate the function G has the same form as in the local estimate.

Next section is devoted to the proofs of Theorems 4.6 and 4.2.

5 Proofs of the main reults
Theorem 4.6 will be proven with the help of partial results expressed in terms of es-
timates of some integral quantities. Lemma 5.2 below guarantees that all the integral
quantities that will be introduced are finite, so that the obtained estimates make sense.
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Lemma 5.1 Let u : [0,T ]→R a C1 function. If u′(t)≥Mu(t), then u(t)≤ eM(t−T )u(T ).

Proof. If is sufficient to note that:

u′(t)≥Mu(t) ⇒ u′(t)e−M(t−T )−Mu(t)e−M(t−T ) ≥ 0 ⇒

⇒ d
dt

(
u(t)e−M(t−T )

)
≥ 0 ⇒ u(t)e−M(t−T ) ≤ u(T ) ⇒

⇒ u(t)≤ eM(t−T )u(T ) .

�

Lemma 5.2 Let M > 0 and let u ∈H0 be a solution of

∂tu+
n

∑
i, j=1

ai, j(t)∂xi∂x j u+
n

∑
i=1

bi(t)∂xiu+ c(t)u = 0 , (14)

on [0,T ], such that ‖u(t, ·)‖L2 ≤M, for all t ∈ [0,T ]. Let l > 0 and extend the coeffi-
cients ai, j, bi and c to [−l,T ] by setting ai, j(t) = ai, j(0), bi(t) = bi(0) and c(t) = c(0)
for all t ∈ [−l,0[. Then u can be extended to a solution of (14) on [−l,T ], and there
exists M̂ such that ‖u(t, ·)‖L2 ≤ M̂ on [−l,T ]. The constant M̂ depends only on n, kA,
kB, KC, T , l and M. Moreover,

1. u ∈C0([−l,T [,Hd
a,ε) for all a≥ 0, ε > 1 and d ∈ R;

2. u ∈C0([−l,T [,H1) and there exists C, which depends on n, kA, kB, kC, T and l,
such that

‖u(t, ·)‖H1 ≤C(T − t)−1/2‖u(T, ·)‖L2

for all t ∈ [−l,T [;

3. there exists Ĉ, which depends on n, kA, kB, kC, l, a and ε and which tends to +∞

when l tends to zero, such that

‖u(−l, ·)‖H0
a,ε
≤ Ĉ‖u(0, ·)‖L2 .

�

Proof. It is easy to see that for all t ∈ [0,T ] and for almost all ξ ∈ Rn,

∂t û(t,ξ )−
n

∑
i, j=1

ai, j(t)ξiξ jû(t,ξ )+ ı
n

∑
i=1

bi(t)ξiû(t,ξ )+ c(t)û(t,ξ ) = 0 . (15)

Multiplying both terms of (15) by ¯̂u yields

∂t û(t,ξ ) ¯̂u(t,ξ )=
n

∑
i, j=1

ai, j(t)ξiξ j|û(t,ξ )|2−ı
n

∑
i=1

bi(t)ξi|û(t,ξ )|2−c(t)|û(t,ξ )|2 . (16)
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By adding to (16) its complex conjugate, we obtain

∂t |û(t,ξ )|2 = 2
n

∑
i, j=1

ai, j(t)ξiξ j|û(t,ξ )|2 +2
n

∑
i=1

ℑ{bi(t)}ξi|û(t,ξ )|2+

−2ℜ{c(t)}|û(t,ξ )|2 , (17)

hence, recalling the bounds for the coefficients of L (see Assumption 4.1),

∂t |û(t,ξ )|2 ≥ 2kA|ξ |2|û(t,ξ )|2−2nkB|ξ ||û(t,ξ )|2−2kC|û(t,ξ )|2 ,

i.e.
∂t |û(t,ξ )|2 ≥ (2kA|ξ |2−2nkB|ξ |−2kC)|û(t,ξ )|2 .

Lemma 5.1 allows one to write

|û(t,ξ )|2 ≤ e(2kA|ξ |2−2nkB|ξ |−2kC)(t−T )|û(T,ξ )|2 . (18)

Therefore, for a fixed t ∈ [−l,T [,

∫
Rn

(
1+ |ξ |2

)d
e2a|ξ |

1
ε |û(t,ξ )|2dξ ≤

≤
∫
Rn

(
1+ |ξ |2

)d
e2a|ξ |

1
ε +(2kA|ξ |2−2nkB|ξ |−2kC)(t−T )|û(T,ξ )|2dξ <+∞ ,

where the last inequality comes from the fact that u ∈H0 and therefore, in particular,
u ∈ C 0([0,T ],L2(Rn)), and, since t < T ,

lim
|ξ |→∞

(
1+ |ξ |2

)d
e2a|ξ |

1
ε +(2kA|ξ |2−2nkB|ξ |−2kC)(t−T ) = 0

for all a > 0 and all ε > 1. The first claim is then proven. The second claim is proven
easily by choosing d = 1 and a = 0. To prove the third claim it is sufficient to rewrite
equation (18) replacing T with 0. �

5.1 Preliminary results and defintions
In this section some functions that are used in the rest of the article are defined. Let ω

be a modulus of continuity satisfying Osgood condition. For a given ρ > 1 define the
function θ : [1,+∞[→ [0,+∞] as

θ(ρ) =
∫ 1

1/ρ

1
ω(s)

ds . (19)

It is easy to see that θ is bijective and strictly increasing. As a consequence, it can be
inverted. For y ∈ (0,1], for q > 0 and for λ > 0, let ψλ ,q :]0,1]→ [1,+∞[ be defined by

ψλ ,q(y), θ
−1 (−λq logy) .

11



The relation
θ
(
ψλ ,q(y)

)
=−λq logy

immediately follows from the definitions; hence

θ
′ (

ψλ ,q(y)
)

ψ
′
λ ,q(y) =−

λq
y

.

Now, let the function φλ ,q : (0,1]→ (−∞,0] be defined as

φλ ,q(y), q
∫ y

1
ψλ ,q(z)dz . (20)

The function φλ ,q is bijective and strictly increasing; moreover,

φ
′′
λ ,q(y) = qψ

′
λ ,q(y) =

q
θ ′
(
ψλ ,q(y)

) (−λq
y

)
. (21)

On the other hand, equation (19), with the change of variable η = 1/s, becomes

θ(ρ) =−
∫ 1

ρ

1

ω

(
1
η

) 1
η2 dη =

∫
ρ

1

1

η2ω

(
1
η

)dη

from which
1

θ ′
(
ψλ ,q(y)

) = ψλ ,q(y)
2
ω

(
1

ψλ ,q(y)

)
. (22)

Substituting (22) into (21) and recalling that ψλ ,q(y) = φ ′
λ ,q(y)/q, it is easy to see that

φλ ,q satisfies the equation

yφ
′′
λ ,q(y) =−λ

(
φ
′
λ ,q(y)

)2
ω

(
q

φ ′
λ ,q(y)

)
. (23)

Note that for all λ > 0, for all q > 0 and for all y ∈ (0,1], ψλ ,q ∈ (1,+∞) and, conse-
quently,

q
φ ′

λ ,q(y)
∈ (0,1) .

5.2 A pointwise estimate
The first result shows that, once fixed ξ , namely the value of the frequence argument of
û, it is possible to find a bound for a particular time-integral, in an interval [0,σ ], of a
function of |û(t,ξ )|. This bound consists in the sum of two terms depending on û(0,ξ )
and û(σ ,ξ ), respectively.
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Proposition 5.3 Let T ′′ ∈ ]0,T [. There exist α1 > 0, λ̄ and γ̄ > 0 such that, setting
α , max{α1,1/T ′′}, defining σ = 1/α , fixing τ ∈ ]0,σ/4], and letting β ≥ σ + τ ,
whenever u ∈H0 is a solution of (11), one has

1
4
(
kA|ξ |2 + γ

)∫ σ

0
e
(1−αt)|ξ |2ω

(
1

|ξ |2+1

)
e2γte−2βφλ

(
t+τ

β

)
|û(t,ξ )|2dt ≤

≤ φ
′
λ

(
τ

β

)
τe
|ξ |2ω

(
1

|ξ |2+1

)
e−2βφλ

(
τ

β

)
|û(0,ξ )|2+

+(σ + τ)(γ + k−1
A |ξ |

2)e2γσ e−2βφλ

(
σ+τ

β

)
|û(σ ,ξ )|2 , (24)

for all λ ≥ λ̄ and all γ ≥ γ̄ , where φλ , φλ ,kA (see (20)). The constant α1 depends only
on n, kA, kB, kC and ω , while γ̄ and λ̄ depend on n, kA, kB, kC, ω , T and T ′′. �

Proof. Let T ′′ ∈ ]0,T [ and let α ≥ 1/T ′′, γ > 0, λ > 0, τ ∈ ]0,T ′′[, σ = 1/α and
β ≥ τ +σ . Consider the function v̂ : [0,σ ]×Rn→ R defined by

v̂(t,ξ ) = e
( 1−αt

2 )|ξ |2ω

(
1

|ξ |2+1

)
eγte−βφλ

(
t+τ

β

)
û(t,ξ ) . (25)

The time-derivative of v̂ is

∂t v̂(t,ξ ) =−
α

2
|ξ |2ω

(
1

|ξ |2 +1

)
e
( 1−αt

2 )|ξ |2ω

(
1

|ξ 2 |+1

)
eγte−βφλ

(
t+τ

β

)
û(t,ξ )+

+ γe
( 1−αt

2 )|ξ |2ω

(
1

|ξ |2+1

)
eγte−βφλ

(
t+τ

β

)
û(t,ξ )+

−φ
′
λ

(
t + τ

β

)
e
( 1−αt

2 )|ξ |2ω

(
1

|ξ |2+1

)
eγte−βφλ

(
t+τ

β

)
û(t,ξ )+

+ e
( 1−αt

2 )|ξ |2ω

(
1

|ξ |2+1

)
eγte−βφλ

(
t+τ

β

)
∂t û(t,ξ )

which may be rewritten as

∂t v̂+
α

2
|ξ |2ω

(
1

|ξ |2 +1

)
v̂− γ v̂+φ

′
λ

(
t + τ

β

)
v̂−

n

∑
i, j=1

ai, j(t)ξiξ j v̂+

+ ı
n

∑
i=1

bi(t)ξiv̂+ c(t)v̂ = 0 , (26)

where the dependency of v̂ and ∂t v̂ on t and on ξ has been neglected for the sake
of a simple notation and where the equation (15) has been exploited. The complex
conjugate equation of (26) is

∂t ¯̂v+
α

2
|ξ |2ω

(
1

|ξ |2 +1

)
¯̂v− γ ¯̂v+φ

′
λ

(
t + τ

β

)
¯̂v−

n

∑
i, j=1

ai, j(t)ξiξ j ¯̂v+

− ı
n

∑
i=1

b̄i(t)ξi ¯̂v+ c̄(t) ¯̂v = 0 . (27)
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Multiplying (26) by (t+τ)∂t ¯̂v and (27) by (t+τ)∂t v̂ and summing the two terms yields

2(t + τ)|∂t v̂|2 +
α

2
(t + τ)|ξ |2ω

(
1

|ξ |2 +1

)
(v̂∂t ¯̂v+ ¯̂v∂t v̂)− γ(t + τ)(v̂∂t ¯̂v+ ¯̂v∂t v̂)+

+(t + τ)φ ′
λ

(
t + τ

β

)
(v̂∂t ¯̂v+ ¯̂v∂t v̂)− (t + τ)

n

∑
i, j=1

ai, j(t)ξiξ j(v̂∂t ¯̂v+ ¯̂v∂t v̂)+

−2(t + τ)
n

∑
i=1

ξiℑ{bi(t)v̂∂t ¯̂v}+2(t + τ)ℜ
{

c(t)v̂∂t ¯̂v
}
= 0 . (28)

Substituting in the second term the explicit expressions of ∂t v̂ and ∂t ¯̂v, that may be
obtained from (26) and (27), one obtains

2(t + τ)|∂t v̂|2−
α2

2
(t + τ)|ξ |4

[
ω

(
1

|ξ |2 +1

)]2

|v̂|2+

+αγ(t + τ)|ξ |2ω

(
1

|ξ |2 +1

)
|v̂|2−α(t + τ)|ξ |2ω

(
1

|ξ |2 +1

)
φ
′
λ

(
t + τ

β

)
|v̂|2+

+α(t + τ)|ξ |2ω

(
1

|ξ |2 +1

)
|v̂|2
(

n

∑
i, j=1

ai, j(t)ξiξ j− c(t)

)
+

− γ(t + τ)(v̂∂t ¯̂v+ ¯̂v∂t v̂)+(t + τ)φ ′
λ

(
t + τ

β

)
(v̂∂t ¯̂v+ ¯̂v∂t v̂)+

− (t + τ)(v̂∂t ¯̂v+ ¯̂v∂t v̂)
n

∑
i, j=1

ai, j(t)ξiξ j+

−2(t + τ)
n

∑
i=1

ξiℑ{bi(t)v̂∂t ¯̂v}+2(t + τ)ℜ
{

c(t)v̂∂t ¯̂v
}
= 0 . (29)

Integrating (29) between 0 and s, with s≤ σ = 1/α , yields
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2
∫ s

0
(t+τ)|∂t v̂(t,ξ )|2dt− α2

2
|ξ |4

[
ω

(
1

|ξ |2 +1

)]2 ∫ s

0
(t+τ)|v̂(t,ξ )|2dt+

+αγ|ξ |2ω

(
1

|ξ |2 +1

)∫ s

0
(t+τ)|v̂(t,ξ )|2dt︸ ︷︷ ︸

(A)

+

−α|ξ |2ω

(
1

|ξ |2 +1

)∫ s

0
(t+τ)φ ′

λ

(
t+τ

β

)
|v̂(t,ξ )|2dt+

+α|ξ |2ω

(
1

|ξ |2 +1

)∫ s

0
(t+τ)

n

∑
i, j=1

ai, j(t)ξiξ j|v̂(t,ξ )|2dt+

−α|ξ |2ω

(
1

|ξ |2 +1

)∫ s

0
(t+τ)c(t)|v̂(t,ξ )|2dt+

+ γ

∫ s

0
|v̂(t,ξ )|2dt− γ(s+τ)|v̂(s,ξ )|2+

+ γτ|v̂(0,ξ )|2︸ ︷︷ ︸
(B)

+
∫ s

0

[
−φ
′′
λ

(
t+τ

β

)(
t+τ

β

)
−φ

′
λ

(
t+τ

β

)]
|v̂(t,ξ )|2dt+

+φ
′
λ

(
s+τ

β

)
(s+τ)|v̂(s,ξ )|2︸ ︷︷ ︸
(C)

−φ
′
λ

(
τ

β

)
τ|v̂(0,ξ )|2+

−
∫ s

0
(t+τ)[v̂(t,ξ )∂t ¯̂v(t,ξ )+ ¯̂v(t,ξ )∂t v̂(t,ξ )]

n

∑
i, j=1

ai, j(t)ξiξ jdt︸ ︷︷ ︸
(D)

+

−2
n

∑
i=1

ξi

∫ s

0
(t + τ)ℑ{bi(t)v̂(t,ξ )∂t ¯̂v(t,ξ )}dt+

+2
∫ s

0
(t+τ)ℜ{c(t)v̂(t,ξ )∂t ¯̂v(t,ξ )}dt = 0 , (30)

where, to ease the following reasoning, some terms have been identified with capital
letters from A to D. Terms (A) and (B) are positive and, since φ is strictly increasing,
also (C) is positive. To obtain the final estimate, equation (30) needs to be slightly
modified. In particular, extend functions ai, j to the whole real axis by setting ai, j(t) =
ai, j(0) for t < 0 and ai, j(t) = ai, j(T ) if t > T and define

aε
i, j(t), (ρε ∗ai, j)(t) =

∫
Rn

ρε(t− s)ai, j(s)ds

where ρε is a C ∞ mollifier.
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From (30), replacing ai, j(t) with ai, j(t)+aε
i, j(t)−aε

i, j(t) in (D), and integrating by
parts, we get

2
∫ s

0
(t+τ)|∂t v̂(t,ξ )|2dt︸ ︷︷ ︸

(E)

− α2

2
|ξ |4

[
ω

(
1

|ξ |2 +1

)]2 ∫ s

0
(t+τ)|v̂(t,ξ )|2dt︸ ︷︷ ︸

(F)

+

−α|ξ |2ω

(
1

|ξ |2 +1

)∫ s

0
(t+τ)φ ′

λ

(
t+τ

β

)
|v̂(t,ξ )|2dt︸ ︷︷ ︸

(G)

+

+α|ξ |2ω

(
1

|ξ |2 +1

) n

∑
i, j=1

ξiξ j

∫ s

0
(t+τ)ai, j(t)|v̂(t,ξ )|2dt︸ ︷︷ ︸

(H)

+

−α|ξ |2ω

(
1

|ξ |2 +1

)∫ s

0
(t+τ)c(t)|v̂(t,ξ )|2dt︸ ︷︷ ︸

(I)

+γ

∫ s

0
|v̂(t,ξ )|2dt︸ ︷︷ ︸
(L)

+

− γ(s+τ)|v̂(s,ξ )|2︸ ︷︷ ︸
(M)

+
∫ s

0

[
−φ
′′
λ

(
t+τ

β

)(
t+τ

β

)
−φ
′
λ

(
t+τ

β

)]
|v̂(t,ξ )|2dt︸ ︷︷ ︸

(N)

+

−φ
′
λ

(
τ

β

)
τ|v̂(0,ξ )|2︸ ︷︷ ︸
(O)

+2
n

∑
i, j=1

ξiξ j

∫ s

0
(t+τ)ℜ{v̂(t,ξ )∂t ¯̂v(t,ξ )}ãε

i, j(t)dt︸ ︷︷ ︸
(P)

+

+
n

∑
i, j=1

ξiξ j

∫ s

0
|v̂(t,ξ )|2 ∂

∂ t
[(t+τ)aε

i, j(t)]dt︸ ︷︷ ︸
(Q)

+τ

n

∑
i, j=1

aε
i, j(0)ξiξ j|v̂(0,ξ )|2︸ ︷︷ ︸

(R)

+

− (s+τ)
n

∑
i, j=1

aε
i, j(s)ξiξ j|v̂(s,ξ )|2︸ ︷︷ ︸
(S)

−2
n

∑
i=1

ξi

∫ s

0
(t+τ)ℑ{bi(t)v̂(t,ξ )∂t ¯̂v(t,ξ )}dt︸ ︷︷ ︸

(T )

+2
∫ s

0
(t + τ)ℜ{c(t)v̂(t,ξ )∂t ¯̂v(t,ξ )}dt︸ ︷︷ ︸

(U)

≤ 0 , (31)

where ãε
i, j = aε

i, j−ai, j for all i, j = 1, . . . ,n.
In the following each term is considered individually, beginning with (P). The

properties of the modulus of continuity ω guarantee that there exists a constant C0
such that

|aε
i, j(t)−ai, j(t)| ≤C0ω(ε) ,
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for all ε , for all i, for all j and for all t. Hence∣∣∣∣∣ n

∑
i, j=1

[aε
i, j(t)−ai, j(t)]ξiξ j

∣∣∣∣∣≤ n

∑
i, j=1
|aε

i, j(t)−ai, j(t)||ξiξ j| ≤C0n2
ω(ε)|ξ |2 ,

where the property that, for all i, |ξi| ≤ |ξ | has been exploited. As a consequence, if

ε =
1

|ξ |2 +1
,

then

|(P)| ≤ 2C0n2|ξ |2ω

(
1

|ξ |2 +1

)∫ s

0
(t+τ)|v̂(t,ξ )∂t ¯̂v(t,ξ )|dt .

Young’s inequality yields

|(P)| ≤
∫ s

0
(t + τ)|∂t v̂(t,ξ )|2dt +C2

0n4|ξ |4
[

ω

(
1

|ξ |2 +1

)]2 ∫ s

0
(t + τ)|v̂(t,ξ )|2dt

and, consequently, since ω(s) ∈ [0,1] for all s ∈ [0,1] and, in turn, −ω(s)2 > −ω(s)
for all s ∈ [0,1],

(P)≥−
∫ s

0
(t + τ)|∂t v̂(t,ξ )|2dt︸ ︷︷ ︸

(P1)

−C2
0n4|ξ |4ω

(
1

|ξ |2 +1

)∫ s

0
(t + τ)|v̂(t,ξ )|2dt︸ ︷︷ ︸

(P2)

.

Let us consider now the term (Q). For the properties of the modulus of continuity, there
exists C1 such that

|(aε
i, j)
′(t)| ≤C1

ω(ε)

ε
,

for all ε , for all i, for all j and for all t. As a consequence, if

ε =
1

|ξ |2 +1
,

then

(Q) =
n

∑
i, j=1

ξiξ j

∫ s

0
|v̂(t,ξ )|2(t + τ)(aε

i, j)
′(t)dt+

+
n

∑
i, j=1

ξiξ j

∫ s

0
|v̂(t,ξ )|2aε

i, j(t)dt ≥

≥−C1n2|ξ |2(|ξ |2 +1)ω
(

1
|ξ |2 +1

)∫ s

0
(t + τ)|v̂(t,ξ )|2dt︸ ︷︷ ︸

(Q1)

+

+
n

∑
i, j=1

ξiξ j

∫ s

0
aε

i, j(t)|v̂(t,ξ )|2dt︸ ︷︷ ︸
(Q2)

.
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As far as the terms (T) and (U) are concerned,

(U)− (T )≥−(U1)− (U2)− (T1)− (T2) ,

where

(U1) = 2k2
C

∫ s

0
(t + τ)|v̂(t,ξ )|2dt , (U2) =

1
2

∫ s

0
(t + τ)|∂t v̂(t,ξ )|2dt ,

(T1) = 2n2k2
B|ξ |2

∫ s

0
(t + τ)|v̂(t,ξ )|2dt , (T2) =

1
2

∫ s

0
(t + τ)|∂t v̂(t,ξ )|2dt .

Note, moreover, that

(H)≥ αkA|ξ |4ω

(
1

|ξ |2 +1

)∫ s

0
(t + τ)|v̂(t,ξ )|2dt ,

and
(Q2)≥ kA|ξ |2

∫ s

0
|v̂(t,ξ )|2dt .

We claim now that there exist two positive constants α1 and γ1 such that, for all ξ ∈Rn,

γ1

4T
+

α1

2
kA|ξ |4ω

(
1

|ξ |2 +1

)
−C2

0n4|ξ |4ω

(
1

|ξ |2 +1

)
+

−C1n2|ξ |2
(
|ξ |2 +1

)
ω

(
1

|ξ |2 +1

)
−2n2k2

B|ξ |2−2k2
C+

− α2
1

2
|ξ |4

(
ω

(
1

|ξ |2 +1

))2

−α1|ξ |2ω

(
1

|ξ |2 +1

)
kC ≥ 0 . (32)

In fact, from the properties of the modulus of continuity, we know that, for |ξ | ≥ 1, the
function

ξ → |ξ |2ω

(
1

|ξ |2 +1

)
is bounded from below by a positive constant. Consequently there exists α1 > 0 and
ξ0 ∈ Rn such that, if |ξ |> |ξ0|, then

α1

4
kA|ξ |4ω

(
1

|ξ |2 +1

)
−C2

0n4|ξ |4ω

(
1

|ξ |2 +1

)
+

−C1n2|ξ |2
(
|ξ |2 +1

)
ω

(
1

|ξ |2 +1

)
−2n2k2

B|ξ |2−2k2
C+

−α1|ξ |2ω

(
1

|ξ |2 +1

)
kC ≥ 0 .

We use now the fact that

lim
|ξ |→+∞

ω

(
1

|ξ |2 +1

)
= 0 ,
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and, for the above chosen α1, possibly taking a larger |ξ0|, we have that, for all |ξ | >
|ξ0|,

α1

4
kA|ξ |4ω

(
1

|ξ |2 +1

)
− α2

1
2
|ξ |4

(
ω

(
1

|ξ |2 +1

))2

≥ 0.

Finally, to obtain (32) for all ξ ∈ Rn, it is sufficient to choose a suitable γ1. We remark
also that the inequality (32) remains true with α at the place of α1, provided the choice
of a possibly larger γ1.

As a consequence, if α = max{α1,1/T ′′} and γ ≥ γ1, then

1
2
(L)+

1
2
(H)− (P2)− (Q1)− (T1)− (U1)− (F)− (I)≥ 0 . (33)

By using (33) into (31) and taking into account that (E) = (T2)+ (U2) = (P1) and
that (R)≥ 0, we obtain

1
2
(H)+(Q2)−α|ξ |2ω

(
1

|ξ |2 +1

)∫ s

0
(t+τ)φ ′

λ

(
t + τ

β

)
|v̂(t,ξ )|2dt︸ ︷︷ ︸

(G)

+
1
2
(L)+

− γ(s+ τ)|v̂(s,ξ )|2︸ ︷︷ ︸
(M)

+
∫ s

0

[
−φ
′′
λ

(
t+τ

β

)(
t+τ

β

)
−φ

′
λ

(
t+τ

β

)]
|v̂(t,ξ )|2dt︸ ︷︷ ︸

(N)

+

−φ
′
λ

(
τ

β

)
τ|v̂(0,ξ )|2︸ ︷︷ ︸
(O)

−(s+ τ)
n

∑
i, j=1

aε
i, j(s)ξiξ j|v̂(s,ξ )|2︸ ︷︷ ︸
(S)

≤ 0 . (34)

Recall, now, that φλ is a solution of equation (23) with q = kA. Since ω(z)/z > 1
for all z ∈ (0,1), equation (23) implies

−1
2

yφ
′′
λ
(y)>

λkA

2
φ
′
λ
(y) , for all y ∈ (0,1) . (35)

Hence, if φλ is solution of (23) with λ > 2/kA,

(N)≥−1
2

∫ s

0
φ
′′
λ

(
t + τ

β

)(
t + τ

β

)
|v̂(t,ξ )|2dt ,

provided that (t + τ)/β ∈ (0,1) for all t ∈ (0,s). Consider, now, the following two
cases.

1. If

φ
′
λ

(
t + τ

β

)
≤ (|ξ |2 +1)kA

4
,

then

(G)≤ 1
4

αkA|ξ |2(|ξ |2 +1)ω
(

1
|ξ |2 +1

)∫ s

0
(t + τ)|v̂(t,ξ )|2dt
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and hence, if

γ > γ̄ ,max
{

γ1,8T αkAω

(
1
2

)}
, (36)

then
1
2
(H)+

1
4
(L)≥ (G) .

In fact if |ξ |> 1, then

1
4

αkA|ξ |2(|ξ |2 +1)ω
(

1
|ξ |2 +1

)∫ s

0
(t + τ)|v̂(t,ξ )|2dt ≤ 1

2
(H) .

If |ξ | ≤ 1, then

(|ξ |2 +1)|ξ |2ω

(
1

|ξ |2 +1

)
≤ 2ω

(
1
2

)
and choosing γ according to (36) guarantees (G)≤ (L)/4.

2. On the contrary, if

φ
′
λ

(
t + τ

β

)
>

(|ξ |2 +1)kA

4
,

then, since the function h : (0,1)→ R defined by h(y) = ω(y)/y is decreasing,

(|ξ |2 +1)ω
(

1
|ξ |2 +1

)
=

ω

(
1

|ξ |2 +1

)
1

|ξ |2 +1

≤

≤

ω

 kA

4φ ′
λ

(
t+τ

β

)


kA

4φ ′
λ

(
t+τ

β

) =
4
kA

φ
′
λ

(
t + τ

β

)
ω

 kA

4φ ′
λ

(
t+τ

β

)


and, since ω is increasing,

(|ξ |2 +1)ω
(

1
|ξ |2 +1

)
≤ 4

kA
φ
′
λ

(
t + τ

β

)
ω

 kA

φ ′
λ

(
t+τ

β

)
 .

As a consequence, if φλ is solution of (23) with λ > 4/kA, then

(N)≥−1
2

∫ s

0
φ
′′
λ

(
t + τ

β

)(
t + τ

β

)
|v̂(t,ξ )|2dt =

=
λ

2

∫ s

0
φ
′
λ

(
t + τ

β

)φ
′
λ

(
t + τ

β

)
ω

 kA

φ ′
λ

(
t+τ

β

)
 |v̂(t,ξ )|2dt ≥

≥ λkA

8
(|ξ |2 +1)ω

(
1

|ξ |2 +1

)∫ s

0
φ
′
λ

(
t + τ

β

)
|v̂(t,ξ )|2dt . (37)
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Moreover, if

λ > λ̄ ,max
(

4
kA

,
16T α

kA

)
,

then

(N)≥ α(|ξ |2 +1)ω
(

1
|ξ |2 +1

)∫ s

0
(t + τ)φ ′

λ

(
t + τ

β

)
|v̂(t,ξ )|2dt ≥ (G) .

In conclusion, taking into account that (N) ≥ 0, (H) ≥ 0, (L) ≥ 0 and (G) ≥ 0, leads
to the inequality

1
2
(H)+

1
4
(L)+(N)− (G)≥ 0 . (38)

Furthermore, using (38) into (34) and taking into account that

1
2
(Q2)≥

1
2

kA|ξ |2
∫ s

0
|v̂(t,ξ )|2dt ,

yields(
kA|ξ |2

2
+

γ

4

)∫ s

0
|v̂(t,ξ )|2dt ≤

≤ φ
′
λ

(
τ

β

)
τ|v̂(0,ξ )|2 +(s+ τ)(γ + k−1

A |ξ |
2)|v̂(s,ξ )|2 . (39)

Finally, substituting (25) into (39) yields

1
4
(
kA|ξ |2 + γ

)∫ s

0
e
(1−αt)|ξ |2ω

(
1

|ξ |2+1

)
e2γte−2βφλ

(
t+τ

β

)
|û(t,ξ )|2dt ≤

≤ φ
′
λ

(
τ

β

)
τe
|ξ |2ω

(
1

|ξ |2+1

)
e−2βφλ

(
τ

β

)
|û(0,ξ )|2+

+(s+ τ)(γ + k−1
A |ξ |

2)e
(1−αs)|ξ |2ω

(
1

|ξ |2+1

)
e2γse−2βφλ

(
s+τ

β

)
|û(s,ξ )|2 . (40)

Equation (40) holds for all s ∈ (0,σ ]; choosing s = σ one obtains (24). �

5.3 An integral estimate
Proposition 5.3 provides a punctual estimate of the Fourier transform of u which will
allow us to obtain, by integration, an analogously estimate on the norm of u. To obtain
this result the following lemma and Definition 4.4 are accessory.

Lemma 5.4 If u ∈H0 is solution of (1), then there exists γ̄ , not depending on ξ , such
that, for all ξ , e2γ̄t |û(t,ξ )|2 is (weakly) increasing in t. �
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Proof. We want to show that there exists γ̄ such that

∂t(e2γ̄t û(t,ξ ) ¯̂u(t,ξ ))≥ 0 .

Note that

∂t(e2γ̄t û(t,ξ ) ¯̂u(t,ξ )) = 2γ̄e2γ̄t |û(t,ξ )|2+
+ e2γ̄t

∂t(û(t,ξ )) ¯̂u(t,ξ )+ e2γ̄t û(t,ξ )∂t( ¯̂u(t,ξ )) . (41)

From (15), multiplying by ¯̂u(t,ξ ) we obtain

¯̂u(t,ξ )∂t û(t,ξ ) =

=
n

∑
i, j=1

ai, j(t)ξiξ j|û(t,ξ )|2− ı
n

∑
i=1

bi(t)ξi|û(t,ξ )|2 + c(t)|û(t,ξ )|2

and also, taking in both term the complex conjugate values,

û(t,ξ )∂t ¯̂u(t,ξ ) =

=
n

∑
i, j=1

ai, j(t)ξiξ j|û(t,ξ )|2 + ı
n

∑
i=1

b̄i(t)ξi|û(t,ξ )|2 + c̄(t)|û(t,ξ )|2

and, consequently,

∂t(e2γ̄t û(t,ξ ) ¯̂u(t,ξ )) = 2γ̄e2γ̄t |û(t,ξ )|2 +2e2γ̄t
n

∑
i, j=1

ai, j(t)ξiξ j|û(t,ξ )|2+

+2e2γ̄t
n

∑
i=1

ℑ{bi(t)}ξi|û(t,ξ )|2 +2e2γ̄t
ℜ{c(t)}|û(t,ξ )|2 ≥

2e2γ̄t |û(t,ξ )|2(γ̄ + kA|ξ |2−nkB|ξ |− kC) . (42)

Now, if |ξ | ≥ nkB/kA, then kA|ξ |2 > nkB|ξ | and hence, if γ̄ > kC, we have

γ̄ + kA|ξ |2−nkB|ξ |− kC ≥ 0 .

On the other hand, if |ξ | < nkB/kA, then −|ξ | > −nkB/kA and hence −nkB|ξ | >
−n2k2

B/kA. In conclusion, the claim holds for any γ̄ such that γ̄ > 2max{kC,n2k2
B/kA}.

�

Let us, now, come back to inequality (24). By integrating it with respect to ξ , the
following result can be obtained.

Proposition 5.5 Let σ and τ be as in Proposition 5.3. Set σ̄ , σ/8. There exists C > 0
such that, whenever u ∈H0 is a solution of (1), with L fulfilling Assumption 4.1, one
has, for all β ≥ σ + τ ,

sup
z∈[0,σ̄ ]

‖u(z, ·)‖2
H1

1
2 ,ω

≤

≤Ce−σφ ′
(

σ+τ

β

) [
φ
′
(

τ

β

)
e−2βφ

(
τ

β

)
‖u(0, ·)‖2

H0
1,ω

+‖u(σ , ·)‖2
H1

]
, (43)

22



where φ = φ
λ̄ ,kA

with λ̄ given by Proposition 5.3. The constant C depends no n, kA, kB,
kC, ω , T and T ′′. �

Proof. In the hypotheses of the stetement, Proposition 5.3 guarantees the existence
of σ , α , γ and φλ such that (24) holds. The integrand function in (24) is positive and,
consequently, the term on the left hand side can be bounded from below by integrating
on an interval contained in [0,σ ]. Let τ ≤ σ/4 and let z be a value such that 0 < z≤ σ̄ ;
we have

[z,2z+ τ]⊂ [0,σ/2] ;

by integrating with respect to ξ and taking into account that, since σ = 1/α ,

1−αt ≥ 1−α
σ

2
≥ 1

2
,

for all t ∈ [0,σ/2], one obtains

1
4

∫
Rn

(
kA|ξ |2 + γ

)
e

1
2 |ξ |

2ω

(
1

|ξ |2+1

) ∫ 2z+τ

z
e2γte−2βφλ

(
t+τ

β

)
|û(t,ξ )|2dtdξ ≤

≤ τφ
′
λ

(
τ

β

)
e−2βφλ

(
τ

β

) ∫
Rn

e
|ξ |2ω

(
1

|ξ |2+1

)
|û(0,ξ )|2dξ+

+(σ + τ)e2γσ e−2βφλ

(
σ+τ

β

) ∫
Rn
(γ + k−1

A |ξ |
2)|û(σ ,ξ )|2dξ . (44)

Now, let ¯̄γ be a value of γ fulfilling equation (36), let γ̄ be the value provided by
Lemma 5.4 and let

γ > max{ ¯̄γ, γ̄} .

Since φλ is increasing, we have that

e−2βφλ

(
t+τ

β

)
≥ e−2βφλ

(
2(z+τ)

β

)

for all t < 2z+ τ . As a consequence, using also the fact that e2γz ≥ 1, equation (44)
yields

c1(z+ τ)
∫
Rn
(|ξ |2 +1)e

1
2 |ξ |

2ω

(
1

|ξ |2+1

)
|û(z,ξ )|2dξ ≤

≤ τφ
′
λ

(
τ

β

)
e2β

[
φλ

(
2(z+τ)

β

)
−φλ

(
τ

β

)] ∫
Rn

e
|ξ |2ω

(
1

|ξ |2+1

)
|û(0,ξ )|2dξ+

+ c2(σ + τ)e2γσ e2β

[
φλ

(
2(z+τ)

β

)
−φλ

(
σ+τ

β

)] ∫
Rn
(1+ |ξ |2)|û(σ ,ξ )|2dξ , (45)

where the constant values

c1 ,
1
4

min{kA,γ} , c2 ,max
{

γ,k−1
A

}
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have been introduced. Dividing by τ and taking into account that (z+ τ)/τ > 1 and
that φλ is negative, it is easy to see that (45) implies

c1‖u(z, ·)‖2
H1

1
2 ,ω

≤ φ
′
λ

(
τ

β

)
e2β

[
φλ

(
2(z+τ)

β

)
−φλ

(
τ

β

)]
‖u(0, ·)‖2

H0
1,ω

+

+ c2
σ + τ

τ
e2γσ e2β

[
φλ

(
2(z+τ)

β

)
−φλ

(
σ+τ

β

)]
‖u(σ , ·)‖2

H1 ≤

≤ φ
′
λ

(
τ

β

)
e2β

[
φλ

(
2(z+τ)

β

)
−φλ

(
τ

β

)
−φλ

(
σ+τ

β

)]
‖u(0, ·)‖2

H0
1,ω

+

+ c2
σ + τ

τ
e2γσ e2β

[
φλ

(
2(z+τ)

β

)
−φλ

(
σ+τ

β

)]
‖u(σ , ·)‖2

H1 , (46)

Moreover, with respect to φλ , note that since φλ is increasing,

2(z+ τ)≤ σ

2
+ τ ⇒ φλ

(
2(z+ τ)

β

)
≤ φλ

(
σ

2 + τ

β

)
.

In addition, since φλ is also concave,

φλ

(
σ + τ

β

)
−φλ

(
σ

2 + τ

β

)
≥ σ

2β
φ
′
λ

(
σ + τ

β

)
.

As a consequence, from (46) one obtains

c1‖u(z, ·)‖2
H1

1
2 ,ω

≤

≤ e−σφ ′
λ

(
σ+τ

β

) [
φ
′
λ

(
τ

β

)
e−2βφλ

(
τ

β

)
‖u(0, ·)‖2

H0
1,ω

+ c2
σ + τ

τ
e2γσ‖u(σ , ·)‖2

H1

]
, (47)

namely

‖u(z, ·)‖2
H1

1
2 ,ω

≤

≤Ce−σφ ′
λ

(
σ+τ

β

) [
φ
′
λ

(
τ

β

)
e−2βφλ

(
τ

β

)
‖u(0, ·)‖2

H0
1,ω

+‖u(σ , ·)‖2
H1

]
, (48)

where

C = max
{

1
c1
,

c2(σ + τ)e2γσ

c1τ

}
.

Equation (48) holds for all z ∈ [0, σ̄ ] and hence equation (43) immediately follows. �

5.4 Proof of Theorem 4.6
Proposition 5.5 states, in particular, that the norm of u in any insatant of the sub-interval
[0, σ̄ ] ⊂ [0,σ ] is bounded by a quantity depending on the value of the norm in the
initial and final instants, i.e. on ‖u(0, ·)‖H0

1,ω
and ‖u(σ , ·)‖H1 . Nevertheless, to obtain
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a stability result, the right hand side term in equation (48) must tend to zero when
‖u(0, ·)‖H0

1,ω
tends to zero, which is not immediate to guess. The following lemma

allows one to choose β in such a way that (48) can be written in a form from which the
stability property can be obtained more easily.

Lemma 5.6 Let φ be a solution of (23) with λ > 0 and q > 0 and let τ > 0. Let
h :]0,1[→]q,+∞[ be defined by

h(z), e−2τφ(z)/z
φ
′(z) .

The function h so defined is strictly decreasing with

lim
z→0

h(z) = +∞ , lim
z→1

h(z) = q .

�

Proof. The claim is easily proven by computing h′. �
As a consequence of Lemma 5.6, h can be inverted and its inverse h−1 :]q,+∞[→

]0,1[ is strictly increasing and

lim
y→+∞

h−1(y) = 0 .

Now the main stability result can be proven.

Proof of Theorem 4.6. In (43) of Proposition 5.5 we want to choose β > σ + τ in
such a way that

φ
′
(

τ

β

)
e−2βφ

(
τ

β

)
= ‖u(0, ·)‖−2

H0
1,ω

.

This goal is achieved by taking

β =
τ

h−1

(
‖u(0, ·)‖2

H0
1,ω

) ,

provided that ‖u(0, ·)‖H0
1,ω

< q−1/2 and ‖u(0, ·)‖H0
1,ω

< h
(

τ

σ+τ

)−1/2. With this choice

of β , one obtains, from (43),

sup
z∈[0,σ̄ ]

‖u(z, ·)‖2
H1

1
2 ,ω

≤Ce
−σ ĝ

(
‖u(0,·)‖2

H0
1,ω

) [
1+‖u(σ , ·)‖2

H1

]
, (49)

where ĝ is defined by

ĝ(y) = φ
′
(

σ + τ

τ
h−1(y−1)

)
, (50)

so that
lim
y→0

ĝ(y) = +∞ .
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Note, in particular, that taking τ = σ/4 the condition ‖u(0, ·)‖H0
1,ω

< h(τ/(σ +τ))−1/2

yields ‖u(0, ·)‖H0
1,ω

< ρ̂ where

ρ̂ ,min{e−τ
4
5 φ( 5

4 )φ
′
(

5
4

)1/2

,q−1/2} .

Note, now, that
‖u(z, ·)‖2

H1 ≤ ‖u(z, ·)‖2
H1

1
2 ,ω

(51)

and that, for all ν > 0 and all ε > 0, there exists C̃ν ,ε such that

‖u(0, ·)‖2
H0

1,ω
≤ C̃ν ,ε‖u(0, ·)‖2

H0
ν ,ε

.

It follows that

sup
z∈[0,σ̄ ]

‖u(z, ·)‖2
H1
≤Ce

−σ ĝ
(

C̃ν ,ε‖u(0,·)‖2H0
ν ,ε

) [
1+‖u(σ , ·)‖2

H1

]
, (52)

provided that

‖u(0, ·)‖H0
ν ,1

<
ρ̂

C1/2
ν ,ε

.

By defining g(y) = g̃(C̃ν ,ε y), equation (52) allows one to easily obtain (12). �

The claim of Theorem 4.6 to the whole interval [0,T ].

5.5 Proof of Theorem 4.2
Theorem 4.2 is proven iterating a finite number of times the estimate given by the
following lemma.

Lemma 5.7 Under the same hypotheses of Theorem 4.6,

sup
z∈[0,σ̄/2]

‖u(z, ·)‖L2 ≤C′Ce−σg
(

C′′‖u(0,·)‖2
L2

) [
1+‖u(σ , ·)‖2

L2

]
.

The constants C′ and C′′ depend on n, kA, kB, kC, ν , ε and σ and tend to +∞ as σ tends
to zero. �

Proof. Analogously to Lemma 5.2, extend ai, j, bi and c on [−σ/2,T ] and u to a
solution of L on [−σ/2,T ]. Then the results of Theorem 4.6 on [−σ̄/2,T − σ̄/2]
gives

sup
z∈[−σ̄/2,σ̄/2]

‖u(z, ·)‖2
H1
≤Ce

−σg
(
‖u(−σ̄/2,·)‖2

H0
ν ,ε

) [
1+‖u(σ − σ̄/2)‖2

H1

]
.
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By Lemma 5.2 we obtain

sup
z∈[0,σ̄/2]

‖u(z, ·)‖2
L2 ≤Ce−σg

(
C′′‖u(0,·)‖2

L2

) [
1+‖u(σ − σ

16
, ·)‖2

H1

]
≤

≤C′Ce−σg
(

C′′‖u(0,·)‖2
L2

) [
1+‖u(σ , ·)‖2

L2

]
. (53)

�
Now set G(y), (1+D)C′Ce−σg(C′′y) and note that limy→0 G(y) = 0. We have just

proven that
sup

z∈[0,σ̄/2]
‖u(z, ·)‖2

L2 ≤ G
(
‖u(0, ·)‖2

L2

)
. (54)

Finally, let T ′ : 0 < T ′ < T ; take T ′′ = (T +T ′)/2 (so that T ′ < T ′′ < T ). Note that
σ̄/2=σ/16 and recall that σ =min{1/α1,T ′′}. To complete the proof of Theorem 4.2
it is sufficient to iterate inequality (54) a finite number of times. Indeed, set T0 = 0 and,
for i≥ 0,

Ti+1 = Ti +
1
16

min
{

1
α1

,T ′′−Ti

}
.

For all i inequality (54) provides

sup
z∈[Ti,Ti+1]

‖u(z, ·)‖2
L2 ≤ Gi

(
‖u(Ti, ·)‖2

L2

)
.

The result follows by noting that

Ti+1−Ti =
1
16

min
{

1
α1

,T ′′−Ti

}
,

and that, for all j

Tj+1 =
j

∑
i=0

1
16

min
{

1
α1

,T ′′−Ti

}
.

The sequence
{

Tj
}

j∈N is increasing and bounded from above by T ′′; hence it admits
a limit. Let this limit be T ∗; we want to show that T ∗ = T ′′. Obviously, T ∗ ≤ T ′′;
suppose that T ∗ < T ′′, then T ′′−Ti ≥ T ′′−T ∗ > 0 and, consequently,

Tj+1 ≥
j

∑
i=0

1
16

min
{

1
α1

,T ′′−T ∗
}

for all j, yielding lim j→∞ Tj = +∞, which is a contradiction. Therefore it must be
T ∗ = T ′′ which means that Tj > T ′ for some j. �

6 A specific case
In this section the explicit expressions of the functions g and G appearing in the
statements of 4.6 and 4.2 respectively is computed when the modulus of continuity
ω :]0,e1−e]→ R is defined by

ω(s) = s(1− logs) log(1− logs) . (55)
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Note that ω is increasing and fulfils the Osgood condition, but LogLog-Lipschitz con-
tinuity is strictly weaker than Log-Lipschitz continuity.

The computations below are not just a straightforward application of theorems 4.6
and 4.2 with ω given by (55). Indeed, the specific form of ω allows a more effective
handling of inequality (5.5) and yields a slightly different function g. The explicit form
of the ”new” g is particularly well suited for the iteration procedure which in turn gives
G, since it ”reproduces itself” after each iteration step, up to some possible changes in
the constants.

To begin with, we need to revisit Section 5.1 in the light of (55). The function
θ : [ee−1,+∞[→ [0,+∞[ is now defined by

θ(τ) =
∫ e1−e

1/τ

1
ω(s)

ds = log(log(1+ logτ))

and the function ψλ ,q :]0,1]→ [ee−1,+∞[ is defined by

ψλ ,q(y) = θ
−1(−λq logy) = exp(ey−λq −1) . (56)

From the definition of ψλ ,q, one can easily check that it is strictly decreasing and that

ψ
′
λ ,q(y) = exp

(
ey−λq −1

)
ey−λq

(−λq)y−λq−1 =−λq
y

(
ψλ ,q(y)

)2
ω

(
1

ψλ ,q(y)

)
,

(57)
hence the function φλ ,q :]0,1]→]−∞,0] defined by

φλ ,q(y) =−q
∫ 1

y
ψλ ,q(z)dz

is such that

φ
′′
λ ,q(y) =−

λ

y

(
φ
′
λ ,q(y)

)2
ω

(
q

φ ′
λ ,q

(y)

)
i.e. φλ ,q is a solution of equation (23). Note, as an accessory result, that

φ
′
λ ,q(y) = qφλ ,q(y)≥ qee−1 . (58)

We need also to introduce the function Λ : [0,+∞[→]−∞,0] defined by

Λ(y) = yφλ

(
1
y

)
(59)

which is strictly decreasing and, hence, invertible. Its inverse, Λ−1 :]−∞,0]→ [1,+∞[
is also strictly decreasing. We have the following

Lemma 6.1 The functions ψλ ,kA and Λ are such that

lim
ζ→+∞

ψλ ,kA

(
1
ζ

)
|Λ(ζ )|

=+∞ .
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Proof. Note that

lim
ζ→+∞

ψλ ,kA

(
1
ζ

)
|Λ(ζ )|

= lim
ρ→0
−

ρψλ ,kA(ρ)

φλ ,kA(ρ)
= lim

ρ→0
−

ψλ ,kA(ρ)+ρψ ′
λ ,kA(ρ)

kAψλ ,kA(ρ)
=

=− 1
kA
− lim

ρ→0

ρψ ′
λ ,kA

(ρ)

kAψλ ,kA(ρ)
=− 1

kA
+ lim

ρ→0

1
kA

λψλ ,kA(ρ)ω

(
1

ψλ ,kA(ρ)

)
=

=− 1
kA

+ lim
q→0

λ

kA

ω(q)
q

=−1+ lim
q→0

(1− logq) log(1− logq) = +∞ .

�
From now on, we choose q = kA and λ ≥ λ̄ as in the proof of Proposition 5.3,

and for the sake of a simpler notation, we write φλ and ψλ instead of φλ ,q and ψλ ,q,
respectively. Proposition 5.5 and (58) then, for β ≥ σ + τ , give

sup
z∈[0,σ̄ ]

‖u(z, ·)‖2
L2 ≤Ce−σφ ′

λ

(
σ+τ

β

)
φ
′
λ

(
τ

β

)[
e−2βφλ

(
τ

β

)
‖u(0, ·)‖2

H0
1,ω

+‖u(σ , ·)‖2
H1

]
,

(60)
where σ̄ = σ/8. Arguing as in Lemma 5.7 one obtains

sup
z∈[0,σ̄/2]

‖u(z, ·)‖2
L2 ≤Ce−σφ ′

λ

(
σ+τ

β

)
φ
′
λ

(
τ

β

)[
e−2βφλ

(
τ

β

)
‖u(0, ·)‖2

L2 +‖u(σ , ·)‖2
L2

]
(61)

with a possibly larger C.
We can now state and prove the refinement of the local stability estimate of Theo-

rem 4.6:

Theorem 6.2 Let ω be as in (55) and let the operator L fulfil Assumption 4.1. Let
D > 0. There exists α1 > 0 and, for any T ′′, 0 < T ′′ < T , there exist constants ρ > 0
and 0 < δ < 1, such that, if u ∈H0 is a solution of

L u = 0 , (62)

with supt∈[0,T ] ‖u(t, ·)‖2
L2 ≤ D and ‖u(0, ·)‖2

L2 < ρ , then

sup
z∈[0,σ̄/2]

‖u(z, ·)‖2
L2 ≤ exp

{
−σkA

2e
exp

[(
log
(

1
τ
|log‖u(0, ·)‖L2 |

))δ
]}

(63)

where σ = min{T ′′,1/α1}, 0 < τ ≤ σ/4 and σ̄ = σ/8. The constant α1 depends only
on kA,kB,kC,ω and n, while the constant δ depends also on T and T ′′ and ρ depends
also on T and T ′′ and D.

Proof. Set

β = τΛ
−1
(

1
τ

log‖u(0, ·)‖L2

)
(64)
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so that

e−2τΛ

(
β

τ

)
= ‖u(0, ·)‖−2

L2 .

Notice that the value of β is larger than σ + τ if and only if

‖u(0, ·)‖L2 < eτΛ( σ+τ
τ ) , ρ .

In particular, if τ = σ/4 then ρ = eτΛ(5/4) (however, we show below that a smaller
value of τ performs better). Note, now, that for ζ > 1 and y < 1/ζ

log
(
ψλ ,q(ζ y)

)
=
(
log
(
ψλ ,q(y)

)
+1
)ζ−λq

−1;

therefore

φ
′
λ

(
σ + τ

β

)
=

kA

e
exp

[(
log
(

ψλ ,kA

(
τ

β

))
+1
)δ
]
, (65)

where δ = ((σ + τ)/τ)−λkA . From (61), (64) and (65) one obtains

sup
z∈[0,σ̄/2]

‖u(z, ·)‖2
L2 ≤CkAψλ ,kA

(
1

Λ
( 1

τ
log‖u(0, ·)‖L2

))×
× exp

−σkA

e
exp

(log

(
ψλ ,kA

(
1

Λ−1
( 1

τ
log‖u(0, ·)‖L2

)))+1

)δ
×

×
(
1+‖u(σ , ·)‖2

L2

)
. (66)

Consider, now, the function F defined by

F(ζ ), (1+D)CkAζ exp
{
−σkA

2e
exp
[
(logζ +1)δ

]}
and note that

lim
ζ→+∞

F(ζ ) = 0 .

Indeed, let ε > 0. It is easy to check that

F(ζ )< ε ⇔ exp
{
−σkA

2e
exp
[
(logζ +1)δ

]}
≤ εζ−1

CkA(1+D)
⇔

⇔−σkA

2e
exp
[
(logζ +1)δ

]
≤− logζ + log

ε

CkA(1+D)
⇔

⇔ σkA

2e
exp
[
(logζ +1)δ

]
≥ logζ − log

ε

CkA(1+D)
⇔

⇔ exp
[
(logζ +1)δ

]
≥ 2e

σkA
logζ − 2e

σkA
log

ε

CkA(1+D)
⇔

⇔ (logζ +1)δ ≥ log
(

2e
σkA

logζ − 2e
σkA

log
ε

CkA(1+D)

)
,

30



which is true for sufficiently large ζ . It follows that, for sufficiently small ‖u(0, ·)‖L2 ,
one has

(1+D)CkAψλ ,kA

(
1

Λ−1
( 1

τ
log‖u(0, ·)‖L2

))×
× exp

−σkA

2e
exp

(log

(
ψλ ,kA

(
1

Λ−1
( 1

τ
log‖u(0, ·)‖L2

)))+1

)δ
≤ 1 .

So, if ‖u(0, ·)‖L2 ≤ ρ̃ for a suitable ρ̃ , one has

sup
z∈[0,σ̄/2]

‖u(z, ·)‖2
L2 ≤ exp

−σkA

2e
exp

(log

(
ψλ ,kA

(
1

Λ−1
( 1

τ
log‖u(0, ·)‖

)))+1

)δ
 .

(67)
Now thanks to Lemma 6.1 we have

lim
ζ→+∞

ψλ ,kA

(
1
ζ

)
|Λ(ζ )|

=+∞

and therefore for ‖u(0, ·)‖L2 sufficiently small we get

ψλ ,kA

(
1

Λ−1
( 1

τ
(log‖u(0, ·)‖L2)

))≥ 1
τ
|log‖u(0, ·)‖L2 | .

As a consequence, (67) yields

sup
z∈[0,σ̄/2]

‖u(z, ·)‖2
L2 ≤ exp

{
−σkA

2e
exp

[(
log
(

1
τ
|log‖u(0, ·)‖L2 |

))δ
]}

. (68)

The proof is complete. �
Finally, we state and prove the refinement of the global stability estimate of Theo-

rem 4.2:

Theorem 6.3 Let ω be as in (55) and let the operator L fulfil Assumption 4.1. Then
for any 0 < T ′ < T and D > 0 there exist constants σ̃ , τ̃, ρ̃ > 0 and 0 < δ̃ < 1, such
that, if u ∈H0 is a solution of

L u = 0 , (69)

with supt∈[0,T ] ‖u(t, ·)‖2
L2 ≤ D and ‖u(0, ·)‖2

L2 < ρ̃ , then

sup
z∈[0,T ′]

‖u(z, ·)‖2
L2 ≤ exp

− σ̃kA

2e
exp

(log
(

1
2τ̃

∣∣log‖u(0, ·)‖2
L2

∣∣))δ̃

 . (70)

The constants σ̃ , τ̃ , δ̃ and ρ̃ depend only on kA,kB,kC,ω,n, T,T ′ and D.
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Proof. Fix T ′ < T ′′ < T . Setting σ1 := σ = min{T ′′,1/α1}, σ̄1 := σ̄/2 = σ1/16,
δ1 := δ , and choosing

τ1 = min
{

σ1

4
,

σ1kA

4e

}
we can rewrite (63) as

sup
z∈[0,σ̄1]

‖u(z, ·)‖2
L2 ≤ exp

{
−σ1kA

2e
exp

[(
log
(

1
2τ1

∣∣log‖u(0, ·)‖2
L2

∣∣))δ1
]}

. (71)

Repeating the above arguments on the interval [σ̄1,T ], we find

sup
z∈[σ̄1,σ̄2]

‖u(z, ·)‖2
L2 ≤ exp

{
−σ2kA

2e
exp

[(
log
(

1
2τ2

∣∣log‖u(σ̄1, ·)‖2
L2

∣∣))δ2
]}

, (72)

where σ2 = min{1/α1,T ′′−σ1}, σ̄2 = σ2/16 and τ2 = min{σ2/4,σ2kA/4e}. Notice
that σ2 ≤ σ1 and τ2 ≤ τ1. As a consequence,

sup
z∈[σ̄1,σ̄2]

‖u(z, ·)‖2
L2 ≤

exp

−σ2kA

2e
exp


log

∣∣∣∣∣∣ 1
2τ2

log

exp

−σ1kA

2e
exp

(log

∣∣log‖u(0, ·)‖2
L2

∣∣
2τ1

)δ1

∣∣∣∣∣∣
δ2


=

= exp

−σ2kA

2e
exp


log

∣∣∣∣∣∣−σ1kA

4eτ2
exp

(log

∣∣log‖u(0, ·)‖2
L2

∣∣
2τ1

)δ1
∣∣∣∣∣∣
δ2


=

= exp

−σ2kA

2e
exp


log

σ1kA

4eτ2
+

(
log

∣∣log‖u(0, ·)‖2
L2

∣∣
2τ1

)δ1
δ2


≤

≤ exp

{
−σ2kA

2e
exp

[(
log

1
2τ1

∣∣∣log‖u(0, ·)‖2
L2

∣∣∣)δ1δ2
]}

,

where the last inequality holds since σ1kA ≥ 4eτ2. Merging the estimates obtained for
the two intervals, yields

sup
[0,σ̄2]

‖u(z, ·)‖2
L2 ≤ exp

{
−σ2kA

2e
exp

[(
log

1
2τ1

∣∣log‖u(0, ·)‖2
L2

∣∣)δ1δ2
]}

,

which has the same form of the inequality obtained in [0, σ̄1]. Hence, iterating the
arguments above a finite number of times one obtains an estimate on [0,T ′] of the form

sup
[0,T ′]
‖u(z, ·)‖2

L2 ≤ exp

− σ̃2kA

2e
exp

(log
1

2τ̃

∣∣log‖u(0, ·)‖2
L2

∣∣)δ̃

 .

The proof is complete. �
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