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Abstract

This paper addresses the problem of estimating the frequencies, amplitudes and phases of the n sinusoidal components of a
possibly biased multi-sinusoidal signal. The proposed adaptive observer allows the direct adaptation of the frequency estimates
with a relatively low dynamic order 3n + 1 (3n for an unbiased signal). The stability analysis proves the global exponential
convergence of the estimation error and the robustness to additive norm-bounded measurement perturbations.
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1 Introduction

The problem of determining the unknown amplitudes,
frequencies and phases (AFP) of the components of a
multi-sinusoidal signal represents a fundamental chal-
lenge in many engineering fields, including active noise
and vibration control, periodic disturbance rejection,
power quality monitoring, etc. (see, for instance the re-
cent Special Issue [3] and the references cited therein).

The Fast Fourier Transform (FFT) is the most used sig-
nal processing technique when dealing with stationary
signals, but the accuracy of FFT is known to degrade in
the presence of time-varying frequency. Moreover, since
it operates over batches of data samples, it requires quite
large memory storage resources specially when high res-
olution is required. These weaknesses motivated the re-
search on alternative AFP methods. In particular, fre-
quency trackers based onKalman andExtendedKalman
Filters (e.g [27], [2]), adaptive-notch-filtering method
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(ANF) (e.g. [16]) and frequency-adaptive Phase-Locked-
Loop (PLL) (e.g. [19], [30]) represent valid alternatives
that offer superior transient perfomances. The said AFP
methods have found applications in particular in the es-
timation of power-electrical signals for monitoring tasks
and power quality assessment. To deal with nonzero-
mean sinusoidal signals arising in practical applications,
several modifications to conventional ANF an PLL have
been proposed in the recent years, such as Enhanced
PLL (EPLL), Quadratic PLL (QPLL), frequency lock
loop (FLL) and the second-order generalized integrator-
based orthogonal signal generator (OSG-SOGI) (see,
for example, [18], [11] and [9] and the references cited
therein). Furthermore, higher-order perturbations mod-
eled as time-polynomials (such as drift phenomena) are
addressed in [25] and [7] by pre-filtering techniques.With
the aim of extending single-tone PLL and ANF struc-
tures to the multi-sinusoidal case, combinations of mul-
tiple ANFs and PLLs in the form of filter-banks are
proposed in [22], [21], [12] and [10]. The main draw-
back of these approaches is that only local stability proofs
are available. Moreover, there exist practical pathologi-
cal situations in which these estimators fail to converge,
such as in the case of sudden frequency variations or in
the case of multi-sinusoids with narrow frequency sepa-
ration.

The ability to provide global or semi-global convergence
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guarantees in case of multiple sinusoids is a notable fea-
ture of another class of AFP methods based on adaptive
observer (see [23], [31], [14], [28], [15], [28] and [5]). The
first algorithm of this class is presented in [20], in which a
5nth-order identifier is designed to cope with n frequen-
cies and the unknown offset, while in [15], a (5n+ 1)th-
order scheme is presented for the extraction of all the 3n
parameters (full AFP estimation). The dynamic order of
the adaptive observers is further reduced in [23], [31] and
[14], resulting in estimators of dimension 3n for unbiased
signals and (3n+ 1)th-order if the bias is considered. In
the more recent contributions [4] and [26] the dimension
of the adaptive system is further reduced to 3nth for a
biased multi-sinusoidal signal. While dimensionality re-
duction is an important aspect to decrease the complex-
ity of the adaptive observer, consistent effort has been
devoted also to increase the robustness of the algorithm
in facing saturated signals or unstructured measurement
perturbations. For instance, an hybrid observer is pro-
posed in [5] (see also [6]) to identify the n frequencies of
a multi-frequency signal with saturation. Moreover, the
new methodology called Dynamic Regressor Extension
and Mixing (DREM) proposed in [1] and [29] allows to
improve at the same time the noise immunity and the
transient performance.

However, the common drawback of all the aforementioned
multi-sinusoidal AFP methods methods is that the fre-
quencies of the sinusoidal components are not directly es-
timated. Indeed, the parameters undergoing adaptation
correspond to the coefficients of the characteristic poly-
nomial of the autonomous signal generator system. The
parametrization of the AFP problem in terms of the co-
efficients of the characterstic polynomial is used mainly
to recast the identification problem in a convenient liner-
in-the parameters form. However, the frequencies can be
then retrieved only at the cost of performing a further
- possibly cumbersome (depending on the dimensional-
ity of the problem) - processing step, which consists in
finding the complex roots of the characteristic polyno-
mial. As a consequence, the computational burden may
increase significantly in the presence of a large number
of sinusoids. In order to alleviate the drawback of the
afore-described methods, two novel adaptive-observer
algorithms have been recently proposed in [8] and [24],
that allow to adapt the frequencies directly without the
need of further processing.

Based on the preliminary results presented in [24], this
paper deals with a full AFP methodology, character-
ized by a direct adaptation mechanism for the squares of
the frequencies. In contrast with the recently presented
adaptive observer with the same notable feature [8], the
devised method removes the requirement of state augmen-
tation, reducing the dimensionality of the observer.

The paper is organized as follows: Section 2 introduces
the AFP problem in the multi-sinusoidal signal scenario.
The adaptive observer-based estimator is proposed in

section 3. Then, the stability analysis is dealt with in Sec-
tion 4. Finally, in Section 5, simulation are given show-
ing the effectiveness of the proposed algorithm.

2 Problem Formulation

Consider the perturbed multi-sinusoidal signal:

y(t) = a0 +

n
∑

i=1

ai sin (φi + ωit) + d(t), t ∈ R≥0 (1)

where a0 ∈ R>0 is the unknown constant bias. The am-
plitudes of the sinusoidal components verify the inequal-
ity ai ≥ 0 and φi represents the unknown initial phase
of each sinusoid. The frequencies are time-invariant pa-
rameters subject to: ωi > 0, ωi 6= ωj for i 6= j. The term
d(t) denotes the measurement disturbance.

The following assumptions are used in this paper.

Assumption 1 The squared-frequencies of the sinu-
soids are bounded by a known positive constant Ω such
that ω2

i < Ω, ∀ i ∈ {1, 2, · · · , n}.

Assumption 2 The additive measurement perturbation
d(t) verifies the following constraints:

|d(t)| ≤ d̄1, |ḋ(t)| ≤ d̄2, ∀t ∈ R≥0

where d̄1 and d̄2 are known positive constants.

Remark 2.1 In practical applications, there exists a va-
riety of perturbations which can be characterised by the
conditions proposed in Assumption 2, such as a linear
drifts, band-limited white noises and additional (unstruc-
tured) sinusoids with finite amplitudes.

The signal y(t) can be thought as generated by the fol-
lowing autonomous multi-harmonic oscillator comprised
of n second-order linear harmonic oscillators:

ż(t) = diag
(

G1 · · · Gn, 0
)

z(t)

y(t) = Cz(t) + d(t)
(2)

with z(t) , [z1(t), · · · , z2n+1(t)] ∈ R
2n+1. The matrices

Gi and C are given by:

Gi =





0
ω2
i

r2

−r2 0



 , ∀i ∈ {1, . . . , n}

C⊤ = [ 1 0 1 0 · · · 1 0 1]⊤ ∈ R
2n+1 ,

where r ∈ R>0 can be chosen arbitrarily. The initial
conditions of the multi-oscillator are related to the initial
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phase of the sinusoids in (1) by

[

z2i−1(0)

z2i(0)

]

=ai





sin(φi)

r2 cos(φi)

ωi



 , ∀i∈{1, . . . , n} ,

and z2n+1(0) = a0. The model of the signal generator
(2) will be now recast in an adaptive observer form. To
this end, let us introduce a vector Λ = [α1 α2 · · · αn],
parametrized by tuning parameters αi ∈ R>0, i =
1, 2, · · · , n such that αi 6= αj for i 6= j, and the constant

ᾱ , max
i∈{1,2··· ,n}

{αi}. (3)

Moreover, defining A , A(Λ) = diag (J1, J2, · · · , Jn, 0)
with Ji given by

Ji =

[

0 r2αi

−r2 0

]

, ∀i = 1, 2..., n.

Then, the multi-oscillator (2) can be rewritten as:

ż(t) = Az(t) + Γ(z)Φ(Ω)

y(t) = Cz(t) + d(t)
(4)

where Ω , [ω2
1 ω2

2 · · · ω2
n]

⊤ is a vector containing the
spectral parameters, while Γ(z) ∈ R

(2n+1)×n is a sparse
matrix where the non-zero components are defined as:
Γ2i−1,i = z2i, ∀i=1, 2, · · · , n, and Φ(Ω) ∈ R

n is given by

Φ(Ω) =
[

Φ1(Ω) Φ2(Ω) · · · Φn(Ω)
]⊤

=
Ω

r2
− r2Λ

=

[

ω2
1

r2
− r2α1

ω2
2

r2
− r2α2 · · · ω2

n

r2
− r2αn

]⊤

.

(5)
For the sake of brevity, in the sequel we will drop the
dependence of Φ(Ω) on Ω, thus letting Φ = Φ(Ω). Note
that, thanks to the Assumption 1, the vector Ω belongs
to the compact set W defined as

W , {Ω ∈ R
n : |Ω| ≤

√
nΩ̄}.

Moreover, the following further assumption on the state
of the signal generator (4) is formulated.

Assumption 3 The norm of the state z(t) is bounded
by a known finite positive constant z ∈ R>0, such that
|z(t)| ≤ z, ∀t ∈ R≥0.

According to Assumption 3, it holds that z(t) ∈ Z,

where Z is a compact set defined as Z , {z ∈ R
2n+1 :

|z| ≤ r2z̄} for any r ≥ 1.

3 Adaptive Observer-based Estimation Scheme

Now, we introduce the structure of the adaptive observer
for the joint estimation of z(t), Φ and ωi, i = 1, · · · , n.
In view of (4), let Φ̂(t) be an estimated counterpart of

Φ (the dynamics of Φ̂(t) is described later on by (9)).
We first propose an unconstrained mechanism for state
estimation

˙̂zpre(t) , Aẑ(t) + Γ(ẑ)Φ̂(t) + L(y(t)− Cẑ(t)) ,

with the observer gain L designed such that the eigen-
values of A− LC, denoted by g1 . . . g2n+1, satisfy the
constraint: gi ∈ R<0, ∀i ∈ {1, · · · , 2n+ 1}. Then, with
the aim of confining the estimated state ẑ(t) to the pre-
defined convex region Z, a projection operator is uti-
lized, which gives rise to

˙̂z(t) = P [ ˙̂zpre(t)] = ˙̂zpre(t)− I(ẑ) ẑ(t)ẑ(t)
⊤

r2z2
˙̂zpre(t) (6)

where P denotes the projection operator and the func-
tion I(ẑ) is given by

I(ẑ) =
{

1, |ẑ(t)| = r2z and ẑ(t)⊤ ˙̂zpre(t) > 0 ,

0, otherwise.

(7)

By defining the matrix S(ẑ),I(ẑ) ẑ(t)ẑ(t)
⊤

r2z2
∈R2n+1,

the constant vector δ⊤z ,CA=r2[0 α1 0 α2 · · · 0 αn 0] ∈
R

2n+1 , the time-varying vector

Φ̂(t) ,
Ω̂(t)

r2
− r2Λ, (8)

depending upon the adapted parameter vector θ(t)

through Ω̂(t) , θ(t) + r2µγ(ẑ)y(t), and the vector func-

tion γ(z)⊤ , CΓ(z) = [z2 z4 · · · z2n] , we propose the
following adaptive observer scheme:

{

˙̂z(t) =Aẑ(t)+Γ(ẑ)Φ̂(t)+L(y(t)−Cẑ(t))−S(ẑ) ˙̂zpre(t)

θ̇(t) =Fu(t) + Fc(t)

(9)
where the two terms Fu(t) and Fc(t) forming the
parameter-adaptation law are defined as follows

Fu(t),−r2µγ(ẑ)
(

γ(ẑ)⊤Φ̂(t) + δ⊤z ẑ(t)
)

− r2µγ( ˙̂z)y(t)

Fc(t),−Ψ(t)S̄
Ω̂(t)√
nΩ̄

. (10)

with µ > 0 a user-defined scalar gain that tunes the
convergence speed. Fu(t) represents the unconstrained
derivative of θ, while Fc(t) is a forcing term in charge
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of constraining the estimated parameters in the feasible
set W . Ψ(t) in (10) is a binary switching signal that
enables/disables the constraint-enforcing term Fc(t):

Ψ(t) =

{

1 , |Ω̂(t)| = √
nΩ̄

0 , |Ω̂(t)| < √
nΩ̄

(11)

Moreover, S̄ ∈ R>0 is a user-defined constant to be cho-
sen large enough such that

S̄ ≥ max
(ẑ, z) ∈ Z2

Ω̂ ∈ W

{∣

∣

∣

∣

d

dt
(r2µγ(ẑ)y(t)) + Fu(t)

∣

∣

∣

∣

}

. (12)

The upcoming analysis is carried out in order to show the
existence of a finite S̄ satisfying (12). When the forcing
term Fc(t) is non-null it holds that

Ψ(t) = 1 and |Ω̂(t)| =
√
nΩ̄. (13)

We can expand the right hand side of (12) by

d

dt
(r2µγ(ẑ)y(t)) +Fu(t) = r2µγ( ˙̂z)y(t) + r2µγ(ẑ)ẏ(t)

− r2µγ(ẑ)
(

γ(ẑ)⊤Φ̂(t) + δ⊤z ẑ(t)
)

− r2µγ( ˙̂z)y(t)

= r2µγ(ẑ)

(

n
∑

i=1

ω2
i z2i(t) + ḋ(t)

)

− r2µγ(ẑ)
(

γ(ẑ)⊤Φ̂(t) + δ⊤z ẑ(t)
)

,

the boundedness of which is implied by the boundedness
of z(t), ẑ(t), Ω and ḋ(t). Therefore there always exists a
sufficient large S̄, such that (12) is verified. In view of
(10) and (13), it is immediate to show that

˙̂
Φ =

1

r2
˙̂
Ω =

1

r2

(

d

dt
(r2µγ(ẑ)y(t)) + Fu(t)− S̄

Ω̂(t)

|Ω̂(t)|

)

.

Hence, in virtue of (12) we have that Ω̂⊤ ˙̂
Ω ≤

0, with |Ω̂(t)| = √
nΩ̄ which indicates that the forcing

term is strong enough to steer the trajectory of the spec-
tral parameter estimates back into the feasible domain.

Given the estimates Ω̂(t) and ẑ(t), the frequency, ampli-
tude and phase estimates for the i−th sinusoidal com-
ponent can be retrieved by:

ω̂i(t) =

√

Ω̂i(t) , âi(t) =

√

ẑ22i−1(t) +
ω̂2
i (t)

r4
ẑ22i(t) ,

ϕ̂i(t) = ∠

(

ω̂i(t)

r2
ẑ2i(t) + j ẑ2i−1(t)

)

, i = 1, 2..., n ,

and the offset is directly estimated by: â0(t) = ẑ2n+1(t).

4 Stability Analysis

In this section, we address the stability of the adaptive
observer. The following assumption is needed in order to
prove the convergence of the proposed adaptive observer.

Assumption 4 (PE) The signal vector γ(z) is persis-
tently exciting 1 , in R

n with a level of excitation ǫ > 0,
i.e. ∃T0 > 0 such that

1

T0

∫ t+T0

t

γ(z(τ))γ(z(τ))⊤dτ ≥ ǫI, ∀ t ≥ 0.

Next, let us introduce a few instrumental error variables:
z̃(t) , ẑ(t)− z(t), Φ̃(t) , Φ̂(t)−Φ and Ω̃(t) , Ω̂(t)−Ω.

Due to (5), it holds that Φ̃(t) = 1
r2
Ω̃(t). The dynamics

of the state estimation error z̃(t) can be written as

˙̃z(t) =(A− LC)z̃(t) + Γ(ẑ)Φ̃ +M(Ω)z̃

− S(ẑ) ˙̂zpre(t) + Ld(t) (14)

where we use the relationship Γ(z̃)Φ = M(Ω)z̃, owing to
the linearity of the map Γ(·) and with the sparse matrix
M(Ω) ∈ R

(2n+1)×(2n+1) whose non-zero elements are
given by M2i−1,2i(Ω) = ω2

i /r
2 − r2αi, ∀i = 1, 2, · · · , n.

Some intermediate results concerning the Lyapunov sta-
bility characterization of the above dynamics will be
given in the following. It is worth noting that the matrix
A− LC + qI is Hurwitz for any q ∈ R>0 such that:

q < g , min
i∈{1,··· ,2n+1}

{−gi}, (15)

where gi ∈ R<0, i = 1, 2, · · · , 2n+ 1 are the eigenvalues
of the dynamic matrix A−LC. Therefore, there always
exists a positive symmetric matrix T ∈ R

(2n+1)×(2n+1)

that solves the following Lyapunov equation:

(A− LC + qI)⊤ T + T (A− LC + qI) = −qI. (16)

for any q ∈ R>0 verifies (15). Consider a positive sym-
metric matrix P ∈ R

(2n+1)×(2n+1) such that P 2 = T .
It is immediate to show that P (A − LC)P−1 is Hur-
witz, thus there exists a positive-definite symmetric ma-
trix Ps ∈ R

(2n+1)×(2n+1) that solves the next Lyapunov
equation:

(P (A− LC)P−1)⊤Ps + Ps(P (A− LC)P−1) = −2qsI,
(17)

1 Persistent excitation assumption is a quite standard and
not restrictive assumption in the framework of the parameter
estimation of sinusoids[4,15,20].
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for any qs ∈ R>0. In order to derive an upper bound
for ps , max eig(Ps), we resort now to the following
technical result of [32]: let X be a Hurwitz matrix such
thatXs = (X+X⊤)/2 < 0; then the maximum solution
of the Lyapunov equation X⊤Px + PxX = −Q, for any
Q > 0 such that QX−1

s < 0 verifies the upper bound:
max eig(Px) ≤ max eig(−QXs)

−1. This result applies
to our formulation lettingX = P (A−LC)P−1, Px = Ps

and Q = 2qsI. Indeed, it can be readily verified (right-
and-left-multiplying both sides of (16) by P−1) that

Xs =
1

2

(

P−1(A− LC)⊤P + P−1(A− LC)⊤P
)

= −2qI − qP−2 (18)

is negative definite. Therefore, it holds that

ps≤qs max eig(−X−1
s )=qs

1

min eig(−Xs)
<

qs
q
. (19)

The main result is stated in the following theorem.

Theorem 4.1 Given the perturbed multi-sinusoidal sig-
nal y(t), if Assumptions 1-4 hold and the observer gain
L is designed such that the eigenvalues of A−LC verify
the following inequality:

g > q > max

{

40nΩ
2 z2

ǫ

p̄2

p2
, 2(

Ω

r2
+ r2ᾱ)+1

}

, (20)

where p̄ , max eig(P ), p , min eig(P ). Then the esti-

mation error z̃(t) and Φ̃(t) exponentially converge to a
residual set

D =
{

z̃, Φ̃
∣

∣

∣
|z̃|+ |Φ̃| ≤ σ(d̄1, d̄2)

}

(21)

where σ(d̄1, d̄2) , 2eκT0

κmin{ps p2,1}

(

µd̄22+
qs
q2
p̄2|L|2d̄21

)

is a

positive function with respect to d̄1, d̄2.

Proof. Consider the following candidate Lyapunov
function that accounts for z̃(t) and Φ̃(t):

V (z̃(t), Φ̃(t)) =
1

2

(

z̃(t)⊤PPsP z̃(t) + Φ̃(t)⊤Φ̃(t)
)

,

where the positive symmetric matrices P and Ps are de-
fined in the equation (16) and (17), respectively. Intro-
ducing the auxiliary variable x̃(t) = P z̃(t) ∈ R

2n+1 and
resorting to (14), the dynamics of x̃(t) write:

˙̃x(t) =P (A− LC)P−1x̃(t) + P (Γ(ẑ)Φ̃ +M(Ω)z̃(t))

− P (S(ẑ) ˙̂zpre(t)− Ld(t)). (22)

In view of (8) and (9), Φ̃(t) evolves according to

˙̃Φ(t) =− µγ(ẑ)γ(ẑ)⊤Φ̃(t)−µγ(ẑ)γ(z̃)⊤Φ(t) + µγ(ẑ)ḋ(t)

−µγ(ẑ)δ⊤z z̃(t)+
Fc(t)

r2
. (23)

In the sequel, we drop the dependence of time-varying
variables (e.g., ˙̃z(t), ˙̂zpre(t), ˙̃x(t), d(t)) on t for the sake of
brevity. Then, using the auxiliary variables x̃, Lyapunov

function can be written as V (z̃, Φ̃) =
1

2
(x̃⊤Psx̃+Φ̃⊤Φ̃).

By means of (17), (22) and(23), V̇ (z̃,Φ̃) becomes

V̇ (z̃,Φ̃) ≤ −qsx̃
⊤x̃+ x̃⊤PsP (Γ(ẑ)Φ̃ +M(Ω)z̃)

+x̃⊤PsPLd− µΦ̃⊤γ(ẑ)γ(ẑ)⊤Φ̃

−µΦ̃⊤γ(ẑ)
(

δ⊤z z̃ + γ(z̃)⊤Φ
)

+ µΦ̃⊤γ(ẑ)ḋ . (24)

where we have taken advantage of the fact that the
term−x̃⊤PsPS(ẑ) ˙̂zpre(t) and Φ̃⊤Fc(t) are non-positive,
which are the results of the the projection operation in
(7) and constrain term Fc(t) in (10), respectively. By
applying the Young’s inequality [13], (19) and using the
relation that Γ(ẑ)⊤Γ(ẑ) ≤ r4z̄2I, ∀ẑ(t) ∈ R

2n+1, we get:

x̃⊤PsPΓ(ẑ)Φ̃ ≤ qs
4
x̃⊤x̃+

qs
q2

r4z̄2Φ̃⊤P 2Φ̃ (25)

x̃⊤PsPM(Ω)z̃ ≤ qs
q
||M(Ω)|| x̃⊤x̃ . (26)

Moreover, let σ(Ω),
1

r2
[0 ω2

1 0 ω2
2 · · · ω2

n 0]⊤ ∈ R
2n+1 .

It holds that δ⊤z z̃ + γ(z̃)⊤Φ = σ(Ω)z̃, hence,

−µΦ̃⊤γ(ẑ)
(

δ⊤z z̃ + γ(z̃)⊤Φ
)

= −µΦ̃⊤γ(ẑ)σ(Ω)z̃

≤ µ

2
Φ̃⊤γ(ẑ)γ(ẑ)⊤Φ̃ +

µ

2
|σ(Ω)|2 z̃⊤z̃ . (27)

Thanks to Assumption 2, the upper bounds of x̃⊤PsPLd
and µΦ̃⊤γ(ẑ)ḋ are established:

x̃⊤PsPLd ≤ qs
4
x̃⊤x̃+

qs
q2

|PL|2d̄21 (28)

µΦ̃⊤γ(ẑ)ḋ ≤ µ

4
Φ̃⊤γ(ẑ)γ(ẑ)⊤Φ̃ + µd̄22. (29)

Applying (25)-(29) to (24), we can obtain

V̇ (z̃, Φ̃) ≤ −µ

4
Φ̃⊤γ(ẑ)γ(ẑ)⊤Φ̃+

qs
q2

r4z̄2p̄2Φ̃⊤Φ̃

− z̃⊤
(

(
qs
2

− qs
q
||M(Ω)||)p2 − µ

2
|σ(Ω)|2

)

z̃ + d̄ . (30)

where p̄ = max eig(P ), p = min eig(P ) and d̄ = µd̄22 +
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qs
q2
p̄2|L|2d̄21. The linearity of the map γ(·) implies that

γ(ẑ)γ(ẑ)⊤ = γ(z + z̃)γ(z + z̃)⊤ ≥ γ(z)γ(z)⊤+2γ(z)γ(z̃)⊤

by which we derive an upper bound of the first term on
the right hand side of (30) as follows

−µ

4
Φ̃⊤γ(ẑ)γ(ẑ)⊤Φ̃ ≤ −µ

8
Φ̃⊤γ(z)γ(z)⊤Φ̃ +

2µnΩ̄2

r4
z̃⊤z̃ .

(31)
where we made use of the relations that
Φ̃⊤γ(z̃)γ(z̃)⊤Φ̃ ≤ z̃⊤||Φ̃Φ̃⊤||z̃ and ||Φ̃Φ̃⊤|| ≤ |Φ̃|2 =
1
r4
|Ω̃|2 ≤ 4nΩ̄2

r4
. Under Assumption 1, the terms |σ(Ω)|2

and |M(Ω)| can be upper bounded by

max
Ω:|Ω|∞≤Ω

{|σ(Ω)|2} ≤ nΩ
2

r4
, max
Ω:|Ω|∞≤Ω

{|M(Ω)|} ≤ Ω

r2
+r2ᾱ .

(32)
Applying (31) and (32), we can finally get:

V̇ (z̃, Φ̃) ≤ −β(ẑ, z)V (z̃, Φ̃) + d̄ (33)

with

β(ẑ, z) , 2min

{

min eig

(

µ

8
γ(z)γ(z)⊤− qs

q2
r4z̄2p̄2I

)

,

q

qsp̄2

((

qs
2

− qs
q
(
Ω

r2
+ r2ᾱ)

)

p2 − 5µn

2r4
Ω̄2

)}

. (34)

According to [17, Chapter 8], the Lyapunov function V is
exponentially bounded if β(ẑ, z) is persistently exciting
with a level of excitation κ > 0, i.e. ∃T0 > 0, such that

1

T0

∫ t+T0

t

β(ẑ, z)dτ ≥ κ > 0, ∀t ≥ 0. (35)

Therefore, the next lines are devoted to show that β
verifies (35). From (20), it is immediate to obtain

q > 40nΩ
2 z2

ǫ

p̄2

p2
, q − 2(

Ω

r2
+ r2ᾱ) > 1 .

Multiply the above inequalities side-by-side to get:

q

(

q − 2

(

Ω

r2
+ r2ᾱ

))

> 40nΩ
2 z2

ǫ

p̄2

p2
. (36)

Multiplying both sides of (36) by the positive tuning
gain µ and 1

r4
, the following inequality is verified

5µnΩ
2

(1 − 2( Ω
r2

+ r2ᾱ)

q
)p2r4

<
µq2ǫ

8r4z2p̄2
.

Being the Lyapunov parameter qs > 0 arbitrary, let us
pick qs in the non-empty set bounded by extrema of the
above inequality. Therefore qs verifies:

qs >
5µnΩ

2

(1− 2( Ω
r2

+ r2ᾱ)

q
)p2r4

, (37a)

qs <
µq2ǫ

8r4z2p̄2
. (37b)

First, multiplying both sides of (37a) by
(

1/2− (Ω/r2 + r2ᾱ)/q
)

p2, we get

(

qs
2

− qs
q
(
Ω

r2
+ r2ᾱ)

)

p2 >
5µn

2r4
Ω

2
, (38)

On the other hand, in view of the PE Assumption 4 and
inequality (37b), the integral of the first argument in (34)
over the time interval [t, t+ T0] can be lower bounded
by

1

T0

∫ t+T0

t

µ

8
γ(z)γ(z)⊤ − qs

q2
r4z̄2p̄2Idτ

≥
(

µ

8
ǫ− qs

q2
r4z̄2p̄2

)

I=
r4z2p̄2

q2

(

µq2ǫ

8r4z2p̄2
−qs

)

I >0,

(39)

∀t > 0. Now, defining

κ1 ,
r4z2p̄2

q2

(

µq2ǫ

8r4z2p̄2
− qs

)

,

κ2 ,
q

qsp̄2

((

qs
2

− qs
q
(
Ω

r2
+ r2ᾱ)

)

p2 − 5µn

2r4
Ω

2
)

,

we can conclude that any κ ∈ (0, 2min{κ1, κ2}] verifies
(35). For the sake of brevity, let us denote V (z̃(t), Φ̃(t))
and β(ẑ(t), z(t)) by V (t) and β(t) respectively. By the
Gronwall-Bellman Lemma, the value of the Lyapunov
function (33) can be bounded as follows:

V (t)≤ e
−
∫

t

0
β(τ)dτ

V (0) +

∫ t

0

d̄e
−
∫

t

τ

β(s)ds
dτ

≤ e
−
∫

t

0
β(τ)dτ

V (0) + d̄

∫ t

0

e−κ(t−τ−T0)dτ

≤ e−κtV (0) +
d̄eκT0

κ
(1 − e−κt),

for ∀t > T0. Therefore, we have

ps p
2

2
|z̃(t)|+ 1

2
|Φ̃(t)| ≤ V (t) ≤ d̄eκT0

κ
+ ρ(t).
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where ps = min eig(Ps) and ρ(t) is an exponentially de-
caying term. Therefore, the total estimation errors |z̃(t)|
and |Φ̃(t)| exponentially converge to the residual set D
(see (21)), thus concluding the proof. �

Parameters Tuning Guidelines
The stability analysis also provides some tuning guide-
lines for the parameters of the proposed estimation al-
gorithm, depending on the assumed disturbance level
(see Assumption 2) and on the required asymptotic
accuracy. The design procedure consists of two steps.
First, set r = 1 and choose n arbitrary constant pa-
rameters Λ = [α1 α2 · · · αn] , such that αi 6= αj for
i 6= j, ∀i, j = 1, 2 · · · , n. In view of the inequality (20),
choose the parameters q ∈ R>0 and gi ∈ R<0 such that

g > q > 2( Ω
r2

+ r2ᾱ) + 1, where Ω is defined in the As-
sumption 1 and ᾱ in (3).

Then solve the equation (16) to obtain the condition
number of the positive definite matrix T (i.e., p̄2/p2).
Together with the prior knowledge of the upper bound z̄,
the minimum value of q ensuring the stability of the esti-
mator, denoted by q, can be calculated by exploiting(20):

q , max

{

40nΩ
2 z2

ǫ

p̄2

p2
, 2(

Ω

r2
+ r2ᾱ)+1

}

. (40)

If q > q, the design of the adaptive observer is completed.

If not, choose another constant q′ such that q′ > q. Then

set r′ =
√

q′/q r and redesign the observer gain as L′ =
q′/q L. It turns then out that A(r′) = q′/q A(r) and the
poles of the new observer are shifted to g′i = q′/q gi, ∀i =
1, 2, · · · , 2n+ 1. We can immediately obtain that

g′ =
q′

q
g >

q′

q
q = q′. (41)

Next, we show that the stability condition (20) is verified
for the redesigned observer. Note that, the same matrix
T solving (16) also solves the Lyapunov equation for the
redesigned observer:

((A(r′)−L′C)+q′I)
⊤
T+T ((A(r′)−L′C)+q′I)=−q′I.

(42)
Analogously, multiplying both sides of each term in (42)
by P−1, we obtain

P−1(A(r′)−L′C)⊤P+P (A(r′)−L′C)P−1=−2q′I−q′P−2.

Since P−1(A(r′) − L′C)⊤P is Hurwitz, the Lyapunov
equation (17) and the inequality (19) is verified by q′.
Moreover, the condition number p̄2/p2 is invariant un-
der the redesign, consequently, the first term in (40) is

preserved, yielding to

q′ > 40nΩ
2 z2

ǫ

p̄2

p2
. (43)

Additionally, since q > 2( Ω
r2

+ r2ᾱ)+1 and q′

q
> 1, the

following inequality holds for the redesigned observer:

q′=
q′

q
q >

q′

q
(2(

Ω

r2
+r2ᾱ)+1) > 2(

Ω

r′2
+r′2ᾱ)+1. (44)

In view of the inequalities (41), (43) and (44) , the sta-
bility condition in (20) is satisfied for the redesigned ob-
server, thus completing the design.

5 Simulation Results

In this section, we provide some numerical examples to
show the effectiveness of the proposed method. The al-
gorithms taken for comparison are discretized by the
4th-order Runge-Kutta method with sampling period
Ts = 1× 10−4 s.

Example 1
In this example, we compare the proposed algorithm
with a recent multi-FLL approach [10], the minimal
dimension observer presented in [4] and the DREM
method in [29]. The input signal is composed by two si-
nusoids: y(t) = sin(2t) + sin(5t).

For the sake of fair comparison, all the methods are ini-
tialized with the same initial condition ω̂(0) = [3, 4] and
are tuned to ensure similar convergence speed in the
absence of disturbance. More specifically, the method
in [4] is tuned with: K = [k1, k2, k3] = [1.2, 0.47, 0.06]
and γ1 = 1 and γ2 = 400, while the method reported
in [10] is set as Ks = 1.2, γs1 = 1, γs2 = 0.2, and
the tuning parameters of the method in [29] are set as
λ = 1, γ1 = 1, γ2 = 5, k1 = k2 = 50. The parameters
of the proposed estimator are chosen as: Λ = [65, 15],
g = 4, r = 1 and µ = 5. The behavior of the estimators
is shown in Fig. 1. As it can be seen, all the methods suc-
ceed in detecting the frequencies with similar transient
time. Next, the four algorithms are compared in presence
of a disturbance d(t) = 0.25 sin(10t), which is added to
the measurement: ŷ(t) = sin(2t) + sin(5t) + d(t) . As it
can be noticed from Fig. 2, all the methods are capable
to track both the frequencies in this scenario. However,
the algorithm presented in [4] is more susceptible to high
frequency disturbances than the other three methods.
Example 2
In order to gain more insight into the features of the
proposed adaptive observer, let us consider a multi-
sinusoidal signal whose components exhibit a sudden
(step-wise) frequency variation: ŷ(t) = sin(ω(t)t) +
sin(5t), where ω(t) = 2, for t ∈ [0, 15) and ω(t) = 4.5,
for t ∈ [150,+∞).
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Fig. 1. Time behaviour of the estimated frequencies for an
unperturbed multi-sinusoidal signal.
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Fig. 2. Time behaviour of the estimated frequencies for a
perturbed multi-sinusoidal signal.

At this stage, we compare the proposed method with
the FLL and DREM approaches. All the algorithms
are tuned to have a similar initial transient response.
The results are reported in Fig. 3. As it can be noticed,
the FLL [10] method struggles to identify the nearby
frequencies after the step change, whilst the present al-
gorithm and the DREM method favorably deal with the
frequency change and lead to comparable stationary be-
haviour. Nevertheless, the proposed method has the ad-
vantage to provide direct estimates for the frequencies.

0 100 200 300 400 500 600 700
0

2

4

6

8

10

FLL method

DREM method

Proposed adaptive observer

Fig. 3. Time behaviour of the estimated frequencies for an
unperturbed multi-sinusoidal signal with a step frequency
change at 150s.

Example 3
Now, the present algorithm is simulated in a more chal-
lenging scenario, where the input consists of three sinu-
soidal signals and an unknown bias: y(t) = 2 sin(2t) +
4 sin(5t) + 3 sin(3t) + 0.5. The parameters are set to:

Λ = [250, 65, 15], r = 1, g = 5, while the adapta-
tion gain µ is chosen as 0.05, with initial condition
ω̂(0) = [1.5, 2.5, 6]. Figures 4, 5 and 6 show respectively
the estimated frequencies, amplitudes (including the off-
set) and the phase estimation errors, which verify the
effectiveness of the proposed methodology in this case.

0 50 100 150 200
0

2

4

6

Fig. 4. Time behaviour of the estimated frequencies for a
biased multi-sinusoidal signal.
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0
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6

8

Fig. 5. Time behaviour of the estimated amplitudes and
offset for a biased multi-sinusoidal signal.

0 50 100 150 200

-5

0

5

Fig. 6. Time behaviour of the phase estimation errors for a
biased multi-sinusoidal signal.

6 Concluding remarks

In this paper, a novel adaptive observer-based estima-
tor is proposed to address the AFP problem for a bi-
ased and perturbed multi-sinusoidal signal. The pre-
sented methodology allows for the direct adaptation of
the squared-frequencies of the components instead of es-
timating the characteristic polynomial’s coefficients of
the signal-generator system. Moreover, the proposed es-
timator is characterized by a low dynamic order equal
to 3n or 3n+1 when featuring bias elimination. The ef-
fectiveness of the proposed algorithm has been verified
by several comparative simulation examples. Future re-
search efforts will be devoted to the development of real-
time experimental results.
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