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Abstract. Beta diversity has long been used to summarize the amount of variation in species 27 

composition among a set of N sampling units. However, while classical beta diversity provides an 28 

estimate of multiple-site dissimilarity among all sampling units, it is not informative on the changes 29 
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of multiple-site dissimilarity as a function of sampling effort. For gamma diversity, this pattern is 30 

usually represented as a species accumulation curve, which is the graph of the number of observed 31 

species when the number of plots varies from 1 to N. Here, we will show that species accumulation 32 

curves may also be used to summarize directional and non-directional beta diversity as a function of 33 

sampling effort. The behavior of the proposed measures of beta diversity is illustrated with one 34 

worked example on plant species in Mediterranean coastal vegetation. We believe this approach to 35 

the measurement of beta diversity provides a relevant contribution to summarize multiple-site 36 

dissimilarity as the result of a species turnover process, rather than as a static indicator. For 37 

directional species accumulation curves, the method, for which we provide a custom R function, 38 

further allows summarizing the spatial autocorrelation in species composition among plots along an 39 

a-priori defined spatial, temporal or environmental gradient. 40 

 41 

Keywords: Community turnover; Directional and non-directional accumulation curves; Effective 42 
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 44 

Introduction 45 

Whittaker (1960, 1972) introduced the concept of beta diversity (the amount of variation in 46 

species composition among a set of sampling units) for linking mean local-scale diversity (or alpha 47 

diversity) to the diversity of the broader regional species pool (gamma diversity). Since then beta 48 

diversity has become a primary tool for connecting the spatial structure of species assemblages to 49 

ecological processes and there is a huge literature on its measurement and summarization (for a 50 

review, see e.g. Tuomisto 2010a, 2010b; Anderson et al. 2011). According to Whittaker’s proposal, 51 

given a community composition matrix of S species in N plots (or sampling units), beta-diversity 52 

can be calculated as the ratio of the diversity of the pooled set of plots and mean species diversity 53 

within each plot, such that    . This metric of beta diversity summarizes multiple-site 54 

dissimilarity within the community composition matrix. However, it does not provide any 55 



3 
 

information on the changes of multiple-site dissimilarity when the number of plots varies from 1 to 56 

N. For gamma diversity, this variation is traditionally represented as a species accumulation curve, a 57 

graph of the number of observed species as a function of sampling effort or the area sampled 58 

(Gotelli and Colwell 2001). In this view, the species accumulation curve represents gamma 59 

diversity as the outcome of the sampling process rather than as a fixed summary statistic. A 60 

distinction is usually made between directional and non-directional accumulation curves: directional 61 

curves summarize how species accumulate along an a-priori defined spatial, temporal or 62 

environmental gradient. By contrast, non-directional curves measure turnover in community 63 

structure without reference to any specific gradient. 64 

In this paper, we show that species accumulation curves may also be used for summarizing 65 

directional and non-directional beta diversity. While beta diversity measures have been developed 66 

for a long time, there is a knowledge gap on how multiple-site dissimilarity changes in relation to 67 

sampling effort. The present manuscript fills this gap and shows how species accumulation curves 68 

can be used to summarize beta diversity as a function of sampling effort. This can be very useful to 69 

researchers attempting to identify the necessary sampling effort to correctly characterize beta-70 

diversity. We also show that comparing the directional beta diversity of a given set of plots with its 71 

non-directional counterpart provides a measure of the spatial autocorrelation of species composition 72 

among plots induced by the non-random species sorting along the ecological gradient. 73 

The paper is organized as follows: first, we present an overview on directional and non-74 

directional species accumulation curves and their associated beta diversity measures. Next, to show 75 

the behavior of the proposed measures, a worked example is used with data on plant species cover 76 

in 68 plots of Mediterranean coastal vegetation. 77 

 78 

Methods 79 

Non-directional species accumulation curves and beta diversity 80 

Sample-based accumulation curves are constructed for a set of N equal-sized plots by plotting 81 

the number of detected species S when the number of sampled plots increases from 1 to N (Scheiner 82 
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2003; Scheiner et al. 2011). For non-directional curves, it is assumed that the position of the plots in 83 

physical or environmental space is irrelevant. Therefore, accumulation curves are generally 84 

constructed via permutation procedures by randomly resampling the N plots and then plotting the 85 

average number of species found in 1, 2, ..., N plots (Gotelli and Colwell 2001; Colwell et al. 2004). 86 

For standard resampling without spatial constraints, a mathematical expression for sample-based 87 

accumulation curves was first derived by Shinozaki (1963) and then independently re-discovered by 88 

several authors in the 1970s and then again in the 2000 (for a review, see Chiarucci et al. 2008). For 89 

species incidence (presence and absence) data, the average number of species detected by sampling 90 

all possible combinations of M equal-sized plots randomly and without replacement from a larger 91 

set of N plots, is given by: 92 

 93 

1 1

1

i i

S S

M

i i

N N N N

M M
S S

N N

M M

 

        
      

         
      
      

      

 

                (1) 94 

 95 

where MS
 is an estimator of the number of species in the M plots, S the total number of species in 96 

the entire set of N plots 
 N M

, and Ni the number of plots that contain species i. The binomial 97 

ratio 

i

iM

N N N

M M

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    
     is the probability that species i is not present in a randomly selected 98 

sample of M plots. Therefore, 
0iM 

 for iM N N 
. 99 

Species accumulation curves have been used for comparing species richness in assemblages of 100 

various sizes after rarefaction to a common level sampling effort or sample completeness (Gotelli 101 

and Colwell 2001; Colwell et al. 2004; Chao and Jost 2012), and for extrapolating species richness 102 

to a larger area sampled (Colwell et al. 2012; Chao et al. 2014, 2015). Eq. 1 is also used for 103 

constructing individual-based accumulation curves relating the estimated number of species to the 104 
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number of sampled individuals. In this case, M and N represent the sampled number of individuals 105 

and the overall population size, respectively (Hurlbert 1971; Simberloff 1972). 106 

The estimated number of species MS
 represents the gamma diversity in the M plots: M MS 

. 107 

By contrast, alpha diversity does not change with M being always equal to 1S
. This is easily shown 108 

considering that in Eq. 1 each plot appears an equal number of times for the calculation of MS
, 109 

irrespective of the value of M, such that 1M S 
 (see Ricotta et al. 2012, Appendix S3). From MS

 110 

and 1S
 we can calculate an index of beta diversity for all values of M as (Chao et al. 2014): 111 

 112 
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 114 

According to Jost (2007), M  can be interpreted as an ‘effective number’ of communities or 115 

plots, the theoretical number of fully-distinct plots (no shared species) with mean species richness 116 

equal to M  needed to produce the given value of beta diversity (see also Wilson and Shmida 117 

1984). 118 

Like the original species accumulation curve, the curve of beta diversity built from the M  119 

values is a concave and increasing function of M (proof in Appendix 1). Therefore, the graph of M  120 

vs. M shows how the effective number of plots accumulates with sampling effort. Note however 121 

that M  summarizes multiple-site dissimilarity among plots in the range [1, M]. This range is 122 

intuitively related to the very meaning of M  as the effective number of maximally distinct plots. 123 

For a community composition matrix of S species x N plots, if all plots are compositionally 124 

identical, then 
1M 

 irrespective of the value of M. In that case, since M M 
, one single 125 

‘effective’ plot is enough to produce the observed value of M . By contrast, if the plots do not have 126 
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any species in common, M M 
, meaning that M maximally distinct plots with mean species 127 

richness M  are needed to obtain the observed value of M . Therefore, since the range of M  128 

depends on M, the effective numbers of plots cannot be used for comparing beta diversity for 129 

different values of M. To remove this dependence, beta must first be rescaled onto the unit interval 130 

(Chao et al. 2012; Ricotta and Pavoine 2015). The simplest way to rescale a given quantity X 131 

between zero and one is to use the linear transformation 
   min max minX X X X 

. This 132 

transformation gives a normalized measure of non-directional beta diversity (Harrison et al. 1992; 133 

Jost 2007): 134 

 135 
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 137 

which can be interpreted as the average proportion of non-overlapping species in the M plots. When 138 

2M  , it reduces to the classic Sørensen dissimilarity coefficient. The normalized measure   139 

summarizes beta diversity in a fixed range of values (
0 1 

) that is independent of M. That is, 140 

the minimum and maximum values that   can take are fixed constants that do not depend on the 141 

number of accumulated plots M. This lack of systematic constraints between   and M ensures that 142 

  can be used for comparing multiple-site dissimilarity at different values of M. For additional 143 

normalized dissimilarity measures of beta diversity, see Chao and Chiu (2016). 144 

Normalization removes the (undesired) dependence of the range of   on M. However, it does 145 

not eliminate the dependence of beta on sampling effort, which is the main assumption of this 146 

paper. Therefore, for a given set of plots N, the variation in species composition   decreases as a 147 

function of the number of plots sampled (proof in Appendix 1). Due to this decreasing pattern, 148 
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calling the graph of   vs. M an ‘accumulation curve’ is not the most appropriate choice. 149 

Therefore, like in Wilson and Shmida (1984), we use for these curves the more neutral term of 150 

‘community turnover’ curves.  151 
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Directional species accumulation curves and beta diversity 152 

The examination of turnover in species composition along a gradient requires explicit 153 

consideration of the order of plots in physical or environmental space (Vellend 2001). To this end, 154 

given N plots ordered along a predefined gradient of interest, starting from one end of the gradient 155 

we can construct a directional species accumulation curve by sequentially adding the plots one after 156 

the other along that gradient and plotting the cumulative number of species found in 1, 2, ..., N 157 

plots. 158 

Because each directional accumulation curve is case-specific and depends on the distribution of 159 

plots along a user-defined gradient, it cannot be derived theoretically and a mathematical expression 160 

for this curve does not exist. Therefore, the values of alpha and gamma diversity along the gradient 161 

need to be calculated separately for each curve based on the specific order of plots. Beta diversity 162 

for all values of M can then be calculated as above: 163 

 164 
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 168 

where the arrows on alpha, beta and gamma denote the directional nature of the turnover process. 169 

Unlike a non-directional accumulation curve, in the directional case the value of M  (i.e. the mean 170 

number of species in the M plots) is not constant. Rather, like M , it depends on the order of the 171 

plots along the gradient. Accordingly, the order in which individual plots are added affects the 172 

shape of the resulting accumulation curve, such that directional beta   is not necessarily a 173 

monotonically decreasing function of M. 174 
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To complete the picture, ‘constrained’ species accumulation curves which account for the 175 

arrangement of plots in physical or environmental space were introduced by Scheiner (2003, his 176 

Type IIIA curves) and first explored by Chiarucci et al. (2009). Order-free accumulation curves 177 

tend to overestimate the rate of increase in species richness because they ignore the autocorrelation 178 

of species composition among the sampling units. In contrast, constrained accumulation curves 179 

describe the increase in species richness as a function of both the sampling effort and the 180 

autocorrelation in species composition among plots. 181 

In building a constrained accumulation curve, adjacent sampling units are combined step by step 182 

using the spatial or environmental proximity among plots as a constraining factor. Given a set of N 183 

plots, for each plot a directional species accumulation curve is constructed by sequentially adding 184 

the first, second, ..., k-th nearest neighbor. This procedure is repeated for all N plots, generating N 185 

directional accumulation curves from which a mean constrained curve is calculated (Chiarucci et al. 186 

2009; Bacaro et al. 2016). The resulting curve is thus an intermediate solution between a non-187 

directional accumulation curve in which all possible combinations of 1, 2, ..., M plots are used for 188 

building the curve and a pure directional curve in which the N plots are ordered along a single 189 

spatial or environmental gradient. 190 

Denoting by jM
 and jM

 the gamma and alpha diversity of the j-th directional community 191 

turnover curve (j = 1, 2, ..., N), the constrained beta diversity M  for a sequence of M plots can be 192 

calculated in analogy to Eq. 2 as the ratio of mean gamma to mean alpha: 193 

 194 
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such that 196 

1

1

M

M








                            (7) 197 

 198 



10 
 

The reasons for calculating beta as M M M  
instead of 1

1
N

M jM jMj
N  


 

 were 199 

discussed by Chao et al. (2014) in the context of the rarefaction of Hill numbers, and the reader is 200 

addressed to this paper for additional details. 201 

The plot of   vs. M describes how ‘constrained’ beta diversity varies with increasing sampling 202 

effort. For each value of M, the difference between   (or  ) and the non-directional beta reflects 203 

the amount of autocorrelation in community composition among plots. This is because directional 204 

beta summarizes turnover in community structure along an a-priori ecological gradient and is thus 205 

directly influenced by the similarity in community composition among plots. By contrast, non-206 

directional turnover is calculated with permutation procedures which ignore any autocorrelation in 207 

community structure. Therefore, a measure of autocorrelation for directional beta diversity can be 208 

calculated as the normalized difference between directional and non-directional beta: 209 

 210 
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 212 

with 
1 1  

. Since the compositional dissimilarity among plots will often increase more slowly 213 

when sampling units are close to each other, usually   
 and 

0 
. Compositional 214 

autocorrelation occurs due to two processes: localized dispersal mechanisms and autocorrelation in 215 

environmental conditions. We therefore expect greater habitat homogeneity to lead to lower 216 

compositional heterogeneity among adjacent plots. If adjacent plots are compositionally very 217 

similar to each other, the difference   
 will be high, such that the normalized difference   218 

will be high too. By contrast, if autocorrelation in community composition among adjacent plots is 219 

low,   will approach its random expectation   and   will be close to zero.  220 
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Worked example 221 

We used vegetation plots sampled on recent (Holocene) coastal dunes occupying a narrow strip 222 

(< 150 m) of about 16 km length along the seashore on the Tyrrhenian coast of central Italy (Figure 223 

1). The vegetation of the dune profile follows a compressed zonation of habitats along a clearly 224 

defined sea-inland environmental gradient that drives considerable turnover in species composition 225 

and functioning over short distances: from the pioneer communities of the upper beach to the 226 

woody communities (Mediterranean macchia and evergreen forests) of the inland fixed dunes 227 

(Acosta et al. 2003). 228 

Vegetation sampling was undertaken in spring (April-May) of 2006. Randomly generated GPS 229 

coordinates were used to define the sampling location of 2 x 2m vegetation plots in the study area. 230 

In each plot, the cover of all vascular plant species was recorded using a 10% interval rank scale. A 231 

total of 68 plots were sampled and 61 species recorded (Appendix 2). For the 68 plots of coastal 232 

dune vegetation used in this study we produced: 233 

 234 

i) A non-directional community turnover curve of   vs. M constructed according to Eq. (1-3). 235 

 236 

ii) A spatially-constrained turnover curve of   vs. M (hereafter distance-based turnover curve), in 237 

which all plots are ordered according to their distance from the seashore. Carboni et al. (2011) 238 

showed that for coastal vegetation, distance from the seashore is related to a directional stress 239 

gradient of wind and soil parameters, ranging from the exposed conditions of the upper beach to the 240 

more sheltered conditions of the back dune. Therefore, plant communities located closer to the sea 241 

are generally subject to higher environmental stress and disturbance. 242 

 243 

iii) A functionally-constrained turnover curve (hereafter trait-based turnover curve), in which all 244 

plots are ordered along an ecological gradient according to the functional characters of the most 245 

abundant species. For building this functional turnover curve, we defined an a-priori directional 246 
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gradient in functional trait space. To do so, we used a set of plant functional traits measured for a 247 

subset of 42 dominant species. This subset of species was chosen by selecting the most common 248 

and abundant species within each habitat along the sea-inland gradient, that collectively account for 249 

~80% of the standing live biomass (see Carboni et al. 2013 for details). This threshold has been 250 

shown to ensure a satisfactory description of overall community properties (Pakeman and Quested 251 

2007). 252 

Three quantitative life-history traits were chosen based on their relevance to the functional 253 

ecology of plants in coastal dune environments (Carboni et al. 2016): plant height (cm), leaf dry 254 

mass content (LDMC; mgg-1) and seed mass (mg). These traits provide a good representation of the 255 

species global spectrum of form and function (Diáz et al. 2016) and are also correlated with the 256 

directional stress gradient of wind and soil parameters which shape the zonation of the coastal dune 257 

vegetation (Carboni et al. 2011, 2013). Because of environmental sorting of species according to 258 

habitat preferences along the sea-inland stress gradient, we expect that specific species 259 

combinations with particular suites of traits (e.g. short annual species with succulent leaves on the 260 

upper beach) should gradually be replaced along the gradient by other dominant species with 261 

different traits (e.g. tall perennial species on the main dune ridge). Carboni et al. (2013) showed that 262 

there was a significant relationship between sea-inland stress and community functional 263 

composition. 264 

First, we calculated the Bray-Curtis pairwise dissimilarity among species based on the selected 265 

functional traits. Before calculations, traits were square root-transformed when necessary and scaled 266 

to unit length. We next calculated the pairwise functional dissimilarity among plots according to 267 

Pavoine and Ricotta (2014, Eq. 3) The resulting plot-to-plot functional distance matrix was then 268 

used for constructing the constrained turnover curve of   vs. M. All curves were constructed using 269 

a custom R function available as an electronic appendix to this paper (Appendix 3).  270 
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Results 271 

The directional and non-directional species accumulation curves of M  and M  vs. M, together 272 

with the corresponding community turnover curves of   and   vs. M. are shown in Figure 2 and 273 

3, respectively. Figure 4 shows the amount of autocorrelation of directional beta diversity   as a 274 

function of sampling effort. As expected, the shape of the curves differs depending on which 275 

methods are used to construct the curves, thus providing a useful tool to characterize biodiversity 276 

patterns and to explore the relevance of selected functional traits or environmental variables in 277 

shaping community structure. Due to the very high autocorrelation of plots in functional space, the 278 

trait-based accumulation curve increases less steeply than the corresponding non-directional curve. 279 

That is, functionally similar plots are on average compositionally more similar to each other than 280 

expected by chance alone. As shown in Figure 3, the lower rate of species accumulation of the trait-281 

based curve compared to the random non-directional curve results in a lower rate of turnover in 282 

community structure and thus in lower beta diversity. 283 

On the other hand, the plot of the distance-based accumulation curve is very similar to that of the 284 

non-directional curve. That is, at least for our case study, distance from the seashore is a less 285 

effective indicator of the species sorting than trait-based differences. This is probably due to the 286 

effects of natural and anthropogenic disturbance, which tend to modify the natural zonation of 287 

vegetation along the dune profile giving rise to a complex mosaic of fragmented and intermingled 288 

communities. As shown in Figure 4, for the distance-based curve, the autocorrelation of directional 289 

beta diversity is much lower than that of the trait-based curve and becomes negligible for M > 45, 290 

meaning that after this threshold the compositional turnover of the constrained distance-based curve 291 

does not substantially differ from random expectation. This example clearly shows how different 292 

degrees of autocorrelation in geographical or functional space can affect the estimates of gamma 293 

and beta diversity of community turnover curves.  294 
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Discussion 295 

In this paper, we showed that community turnover curves provide a tool for summarizing various 296 

types of directional and non-directional beta diversity as a function of sampling effort. Azovsky 297 

(2011) separated two conceptually different curves: species-area and species-sampling effort 298 

relationships. The present manuscript deals mostly with species-sampling effort relationship, 299 

although directional analysis of real gradients with ordered plots goes a step further simple species-300 

sampling effort relationships sensu Azovsky (2011). The same approach can be extended for 301 

constructing incidence- or abundance-based community turnover curves either mathematically or 302 

with resampling methods for any taxonomic, functional or phylogenetic diversity metric (Walker et 303 

al. 2008; Ricotta et al. 2012; Chao et al. 2014, 2015). The resulting measures of beta diversity can 304 

then be compared among habitats sampled with different effort after rarefaction to the sample size 305 

of the smaller datasets. For examples, see e.g. Bacaro et al. (2016). In addition, if directional or non-306 

directional beta diversity is calculated for a nested series of plots of different size, the resulting 307 

turnover curves can be used to analyze how beta diversity scales with local sample area, thus 308 

extending our results to species-area relationships (see Palmer and White 1994; Mokany et al. 309 

2013). 310 

Finally, turnover curves can also be used for calculating the amount of autocorrelation in 311 

community composition for directional beta diversity compared to its non-directional counterpart. 312 

Species are almost never randomly distributed, either due to heterogeneity of environmental factors 313 

or to non-random dispersal mechanisms. Therefore, autocorrelation is a crucial aspect of directional 314 

turnover curves and appropriate methods should be used in diversity studies if there is evidence of 315 

significant clustering of species in physical or environmental space (Legendre 1993; Fortin and 316 

Dale 2009; Bacaro et al. 2016). 317 

Previous methods to assess multivariate spatial community structure include distance-decay plots 318 

(Nekola and White 1999; Qian and Ricklefs 2007), multivariate variograms (Wagner 2003) and 319 

Mantel correlograms (Borcard and Legendre 2012). Our proposal adds a new tool to the ecologist 320 
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toolbox as it allows to summarize autocorrelation in species composition along spatial, temporal or 321 

environmental gradients from community turnover curves. 322 

Directional species accumulation curves have been typically used to summarize the decrease in 323 

species accumulation due to spatial autocorrelation along an environmental gradient compared to 324 

non-directional curves (e.g. Chiarucci et al. 2009; Bacaro et al. 2016). The same ‘directional’ 325 

approach can also be used to maximize the rate of species accumulation with a given effort so as to 326 

improve the efficiency of species inventories (Palmer et al. 2002; Rocchini et al. 2005). Because the 327 

sampling order of plots determines the slope of the accumulation curve, an optimal strategy to 328 

maximize species accumulation consists of using external data to choose the order of plots so that 329 

the resulting accumulation curve is the steepest possible (Rocchini et al. 2005). That curve is a 330 

special kind of directional turnover curve, which accumulates species at a faster rate compared to 331 

the corresponding random non-directional curves. As a consequence of this increased accumulation 332 

rate, the normalized difference between the non-directional and directional beta diversity measures 333 

takes negative values showing a general tendency towards a negative correlation in the 334 

compositional similarity of subsequent plots. This illustrates how our proposed metric of 335 

autocorrelation based on turnover curves can also be used as a synthetic criterion for defining 336 

optimization strategies in vegetation sampling, for example to show at what distance species 337 

composition is no longer autocorrelated. Thus, one can use this critical distance between sampling 338 

units to avoid spending time and resources on redundant information. 339 

The idea of calculating an index of beta diversity from species accumulation curves has already 340 

been proposed in the past. Ricotta et al. (2002) suggested calculating beta diversity as the slope of 341 

the linearized species accumulation curve in semilogarithmic space according to Gleason (1922); 342 

Crist and Veech (2006) proposed an additive model of diversity decomposition for which beta 343 

diversity is obtained as the difference in species richness between the last and first points of the 344 

species accumulation curve: 1NS S     
. The main difference between these previous 345 

works and ours is that we do not treat beta diversity as a fixed quantity: the graph of beta vs. M 346 
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shows how community turnover varies when M increases from 1 to N. Therefore, using 347 

accumulation curves, multiple-site dissimilarity or beta diversity is represented as the result of a 348 

species turnover process, rather than as a static indicator. For M N , M  reduces to the traditional 349 

Whittaker’s (static) beta diversity for a set of N sampling units N N
  

. 350 

We also showed that using the classical multiplicative formula M M M  
, a measure of beta 351 

is obtained which is easily interpretable in terms of ‘effective number of plots’. However, due to the 352 

constraint 
1 M M 

 we cannot directly use this measure for comparing beta diversity for 353 

different numbers of plots. To remove the dependence on M, we can use the normalized measure 354 

   1 1M M   
. This scaled version of beta diversity can be used for comparing community 355 

turnover for different values of M. 356 

In principle, because of the fundamental constraint M M MM   
 (Chao et al. 2012), a 357 

similar scaling can also be used for defining a normalized measure of gamma diversity 358 

   M M M MM      
. However, since M M M   

, a little algebra shows that 359 

   1 1M M      
, meaning that there is no fundamental difference between normalized 360 

beta diversity and normalized gamma diversity. For a given number of plots, the rescaled version of 361 

gamma diversity is per se a measure of community turnover, such that normalized beta diversity 362 

can be also expressed in terms of the relationship between gamma diversity and its extreme values: 363 

if M M 
 then 

0 
; At the other extreme, if M MM 

 then 
1 

. Therefore, the scaled 364 

versions of beta diversity and gamma diversity lead to the same normalized measure of species 365 

turnover. 366 

To conclude, by its very nature, community ecology usually deals with high-dimensional 367 

multivariate data and calls for summarizing methods and indices. However, by condensing the 368 

structure of a multidimensional community composition matrix into a single indicator, information 369 

is inevitably lost, such that a variety of indices is needed to answer a variety of ecological questions 370 



17 
 

(Pavoine 2016). Therefore, accurate knowledge of the basic properties of diversity measures 371 

becomes a necessary condition for comparing different habitats in ecologically meaningful ways. 372 

Given this, relying on metrics standardized for sampling effort can provide better means for 373 

identifying the most relevant biotic and abiotic drivers of community composition in different 374 

habitats and taking appropriate management decisions. 375 
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Figure captions 496 

 497 

Figure 1. Location of the study area. 498 

 499 

Figure 2. Directional and non-directional species accumulation curves M  and M  vs. M. for the 500 

coastal dune communities of central Italy. 501 

 502 

Figure 3. Directional and non-directional community turnover curves   and   vs. M for the 503 

coastal dune communities of central Italy. 504 

 505 

Figure 4. Plot of the amount of autocorrelation of directional beta diversity   as a function of 506 

sampling effort M for the coastal dune communities of central Italy. 507 


