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Miguel Aguilera, Iñigo Arandia-Romero and Manuel Heras-Escribano

The dark room problem in predictive processing and active inference, a legacy of cognitivism? . . . . . . . . . 40

Manuel Baltieri and Christopher Buckley

NukaBot: Research and Design of a Human-Microbe Interaction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Dominique Chen, Hiraku Ogura and Young Ah Seong

i



Hybrid Synthetic Approach to Animal Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Hiroyuki Iizuka, Yosuke Nakamoto and Masahito Yamamoto

An artificial life approach to studying niche differentiation in soundscape ecology . . . . . . . . . . . . . . . . . . . . . . 52

David Kadish, Sebastian Risi and Laura Beloff

Insect-Inspired Visual Navigation On-Board an Autonomous Robot: Real-World Routes Encoded in
a Single Layer Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

James Knight, Daniil Sakhapov, Norbert Domcsek, Alex Dewar, Paul Graham, Thomas Nowotny
and Andrew Philippides

Hybrid Variational Predictive Coding as a Bridge between Human and Artificial Cognition . . . . . . . . . . . . 68
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Preface

This volume presents the proceedings of the 2019 Conference on Artificial Life (ALIFE 2019) which took
place 29 July – 2 August 2019 in Newcastle upon Tyne, United Kingdom (https://2019.alife.org/).

The International Conference on the Synthesis and Simulation of Living Systems (ALIFE) and the
European Conference on Artificial Life (ECAL) have been the major meeting of the artificial life (ALife)
research community since 1987 and 1991, respectively. Starting with ALIFE 2018 in Tokyo, Japan, these two
conferences have merged into the Conference on Artificial Life. This year, the merged ALIFE conference for
the first time replaces what would have been an ECAL conference previously. Hosting it in Europe seemed
fitting.

The ALIFE 2019 Theme

This year’s ALIFE conference features the special theme “How Can Artificial Life Help Solve Societal Chal-
lenges?” Artificial Life has historically been regarded by its adversaries as an academic “hobby” with little
application to real life. We believe that these days are past, as in fact, our interdisciplinary and constantly
self-innovating discipline brings together a set of skills and perspectives with a unique potential to tackle
some of the most pressing societal challenges of our times. Indeed, our complex systems analysis methodolo-
gies have application across a very broad range of domains and provide alternative tools to extract actionable
insight than more traditional analysis methods. This special theme ran through the conference in the shape
of keynote presentations and satellite events that apply Artificial Life principles to research on e.g. social
dynamics, cultural evolution and societal learning, human behaviour, and smart cities.

The ALIFE 2019 Programme

We received a total of 154 full paper and abstract submissions. All submissions where reviewed by typically
three and in some cases two reviewers. Scientific advisors then performed a topic wide metareview to derive
acceptance decisions. As a result, we accepted 108 contributions for publication and oral presentations.
Submission of posters is still open at the time of writing. Following the successful model of ALIFE 2018, we
selected 18 submissions for plenary lightning talks.

Simultaneously to ALIFE 2019, Newcastle University also held the Designer Biology 2019 Conference
(http://designer-biology.org/), which focusses on the intersection of bioengineering and synthetic biology.
With the growing overlap of Wet Artificial Life and Synthetic Biology, we closely aligned these conferences
by hosting shared keynote presentations as well as a joint panel discussion and generally encouraged broad
interactions among the two audiences.

The conference programme this year included:

• Eight keynotes presentations spanning diverse areas of Artificial Life research, many of which chosen
with respect to the conference theme

– Barry McMullin (Dublin City University, Ireland)

– Alex Penn (University of Surrey, United Kingdom)

– Armando Geller (Scensei GmbH, Switzerland)

– Stefano Battiston (University of Zurich, Switzerland)

– Ioannis Ieropoulos (University of Bristol, United Kingdom)

– Roberto Serra (University of Modena, Italy)

– Nicola Patrón (Earlham Institute, United Kingdom), shared with Designer Biology

– Kate Adamala (University of Minnesota, United States of America), shared with Designer Biology

• Parallel sessions

– Complex dynamical systems
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– Perception

– Neural networks

– Robot control

– Swarm behaviour

– Artificial chemistry

– Evolution

– Biological systems

– Emergence of innovation and cooperation

– ALife in the social sciences

– Philosophy, language, art and education

• Three special sessions

– ALife & Society (organized by Alex Penn and Jesus Mario Siqueiros Garćıa)

– Hybrid Life II: Approaches to integrate biological, artificial and cognitive systems (organized by
Manuel Baltieri, Keisuke Suzuki, Hiroyuki Iizuka, Olaf Witkowski and Lana Sinapayen)

– Towards autonomous evolution, production and learning in robotic eco-systems (organized by
Emma Hart, Andy M. Tyrrell, Jon Timmis, Alan Winfield and Gusz Eiben)

• A dedicated student session

• Nine satellite workshops

– Evolution of Human Behaviour: Using Theory to Address Societal Challenges (organized by
Cedric Perret, James Borg, The Anh Han, Tom Lenaerts and Simon Powers)

– The Fourth Workshop on Social Learning and Cultural Evolution (organized by Chris Marriott,
Peter Andras, James Borg and Simon Powers)

– Computational Approaches to Social Dynamics – Data, Modeling, Simulation, and Hybrids (or-
ganized by Genki Ichinose, Fernando P. Santos, Francisco C. Santos and Hiroki Sayama)

– International Workshop on Agent-Based Modelling of Human Behaviour (organized by Soo Ling
Lim, Peter J. Bentley, JoEllyn Prouty McLaren and Randall S. Peterson)

– Chemistry and Artificial Life Forms (organized by Jitka Čejková, Geoff Cooperand and Richard
Löffler)

– Life at the Nexus of Microbial & Synthetic Ecology (organized by Alex Penn and Erik Hom)

– 2nd Development of Neural Networks Workshop (organized by Julian Miller, Sylvain Cussat-
Blanc, Dennis Wilson)

– Process Modeling and Self-Organization: Methods and Applications (organized by Francis Hey-
lighen, Peter Dittrich and Tomas Veloz)

– Methodology in Artificial Life (organized by Emily Dolson, Ińaki Fernández Pérez, Penny Faulkner
Rainford and Arturo Araujo)

• Five tutorials

– Intelligent Systems for Smart Cities (organized by Enrique Alba)

– Simulating Complex Systems with FLAME GPU (organized by Paul Richmond and Mozhgan
Kabiri Chimeh)

– Introduction to Avida-ED (organized by Michael Wiser)

– Introduction to Artificial Gene Regulatory Networks (organized by Sylvain Cussat-Blanc and
Wolfgang Banzhaf)

– Cartesian Genetic Programming (organized by Julian Miller)

• A panel discussion shared with the Designer Biology Conference on how the two disciplines relate
themselves to current societal challenges
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ALIFE 2019 as a Demonstrator for Sustainable Conferencing

In line with our theme of facing societal challenges, ALIFE 2019 attempted to revisit the way academic
conferences are run in order to reduce the ecological impact of this scientific event. Sustainability implications
where considered at all stages of the conference organization.

Our primary aim was not to deliver a one-off event that would meet self-assigned sustainability criteria,
but rather to engage with the community in order to develop a longer term agenda for the ALIFE community.
This was initiated through an online survey that assessed the acceptance of diverse sustainability measures.
The survey – results of which are included in these proceedings – not only provided us with information about
which measures would be accepted by the community, but also with a plethora of actionable suggestions for
our endeavour.

As the major ecological impact of scientific conferencing is associated with travel, we early on took the
decision to open the conference up for remote participation by means of video-conferencing solutions. As a
result, the majority of ALIFE 2019 presentations have been live streamed and recordings of talks have been
made available through the conference website. Viewers of these live streams were given the opportunity to
take part in dicussions using online platforms (sli.do). Participants were allowed to submit prerecorded video
presentations, that were then discussed using telecommunication technology. A similar remote presentation
model was offered to poster presenters. To increase the reach of these activities, we encouraged groups at
different universities in Japan, USA and Mexico to organize local seminars to act as remote hubs of the
ALIFE 2019 conference.

For local delegates our agenda lead to sustainably sourced, plastic free catering, featuring menus that
followed recommendations of the recent EAT-Lancet Commission report on “Healthy Diets from Sustainable
Food Systems” – primarily reducing the amount of red meat and increasing the proportion of vegetarian
food options. Similarly, all conference merchandize was selected to be plastic free, low-waste and made from
recycled material where possible.

While it is too early to see how our endeavours might impact the long-term way of working in the ALIFE
community, we were very happy to see our own institution engage in this pilot project. Implementations we
have trialed at ALIFE 2019 will now be considered by Newcastle University to develop best practices and
guidelines for its future sustainable conference organization.
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Harold Fellermann holds a PhD in Applied Systems Science from the University of Osnabrück, Germany,
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“Life clearly does more than adapt to the Earth. It
changes the Earth to its own purposes. Evolution is a

tightly coupled dance, with life and the material
environment as partners. From the dance emerges the

entity Gaia.”
James Lovelock

Life in a Challenged World
Our world is in distress. At an alarmingly increasing pace,
we are witnessing the effects of global warming and climate
change: record temperatures, droughts, melting of glacial
and polar ice and large scale natural disasters are only few of
the many clear indicators of the burden that human life puts
on our Planet’s climate systems (Masson-Delmotte et al.,
2018). Rapid climate change and the loss of natural habi-
tats to make space for humanity’s growing resource needs
are causing biological mass extinctions of unprecedented
scale (Ceballos and Ehrlich, 2018). With a global human
population size predicted to plateau at around 11bn people
within the next 50 to 80 years (United Nations, Department
of Economic and Social Affairs, Population Division, 2017)
and a growing number of threshold countries adopting con-
sumerist life styles, we can only expect the strain on our
ecosystem to intensify.

Global challenges do not stop at our door steps. Despite
huge gains in global economic output, there is evidence that
our current social, political and economic systems are ex-
acerbating inequalities, rather than reducing them (Dabla-
Norris et al., 2015), which is an increasing cause of political
unrest. The global financial crisis of 2008 revealed signif-
icant weaknesses in the financial system and the vulnera-
bilities of a single interconnected global market (Rose and
Spiegel, 2012; Battiston et al., 2016). The scale of the em-
ployment challenge is vast, with an estimated 200 million
people unemployed globally. Even comparably modest so-
cietal goals such as race and gender equality are far from
being achieved.

For the majority of humans, the Anthropocene might soon
no longer be a comfortable spot to live in. While some au-

Figure 1: Trends of diverse environmental indicators over
the last 50 years. None has reversed since the “World Scien-
tists’ Warning to Humanity” had been issued in 1992. Yet,
the reversal of ozone depletor concentrations (panel a) is a
proof by example that concerted policy making can in princ-
ple overcome ecological problems on a global scale. Repro-
duced with permission from Ripple et al. (2017).

thors raise the question whether a collapse of our global
civilization can be avoided (Ehrlich and Ehrlich, 2013),
other scientists worry whether humanity will inevitably push
Earth beyond limits where it would be unable to sustain life
in the manner that we know at all (Ripple et al., 2017).

Can Artificial Life Help Tackle Societal
Challenges?

Historically, the discipline of Artificial Life has often been
regarded by its adversaries as an academic leisure, where
scientists investigate dreamt up worlds with little to no ap-
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plication to real life. We believe this view to be a gross
misconception that our community should set straight: Ar-
tificial Life is the study of Life driven by investigating its
first principles. How could we possibly remain unattached
or shy away, if the subject at the very heart of our studies is at
stake? Yet, it is not immediately obvious how our commu-
nity can confront the challenges that humanity is currently
facing. What unique skills and perspectives can the Artifi-
cial Life community bring to the table?

As organizers of an ALIFE conference on the theme
“How Can Articifical Life Help Solve Societal Challenges”
we do in fact believe that our interdisciplinary and constantly
self-innovating discipline brings together a set of skills and
perspectives with a unique potential to tackle some of the
most pressing societal challenges of our times.

Firstly, we believe that more than many other disciplines,
ALIFE embraces systems thinking at its core. Rather than
perceiving our current societal challenges as isolated prob-
lems that can be solved independently using linear thinking,
we recognize them as interconnected symptoms of a strained
system of systems that about to be pushed out of their local
area of stability. The formal application of systems think-
ing to global challenges dates almost 50 years back, when
Meadows et al. (1972) developed Systems Dynamics to in-
vestigate the interplay of feedback loops in our intertwined
socio-economical and ecological systems. Their basic con-
clusion – that humanity inevitably reaches the carrying ca-
pacity of planet Earth – still holds to date, and has been re-
stated with slightly updated facts ever since.

However, such nonlinearities do not come easy to our hu-
man minds, and conclusions from these studies have not yet
affected policy making and societal norms and habits to the
extent necessary. We believe one of the core competencies
of ALIFE – mathematical modelling and simulation – to be
a vital tool, for understanding the nonlinear nature of our
current crisis, as well as for educating the public and policy
makers. Model based decision support systems and partici-
patory modelling techniques are key elements to this process
(Gilbert and Bullock, 2014; Sayama and Dionne, 2015).

Importantly, the predicament we are facing is not just eco-
logical in nature, nor societal, nor economic, nor bound to
any other single discipline – it is truly trans-disciplinary.
Few other scientific communities have interdisciplinarity
embodied as deeply and drastically as ours (Aicardi, 2010):
not only do we engage without reservations in discourses
with academics from various departments and faculties, AL-
IFE also has close bonds with the arts, music, game develop-
ment and design. Maybe we should reflect on this strength
of ours, and provide more domain-segmented academic re-
search areas with our 30 year experience in crossing disci-
plinary boundaries (Dini et al., 2011).

Thirdly, we believe that ALIFE’s ‘central dogma’ that
life is an emergent complex adaptive system that exhibits
dynamical hierarchies and open-ended evolution is another

indispensible ingredient when addressing our current prob-
lems. The ALIFE community is aware of the complex dy-
namics that unfold in self-organized, self-regulating multi-
agent societies. We know that neither biological systems, so-
cieties, nor markets react proportional in response to stimuli
and are thus notoriously hard to steer by means of top-down
regulations. Yet, ALIFE understands that sudden phase tran-
sitions are not only found in our current climate crisis, but
that social learning and cultural revolutions equally proceed
in series of punctuated equilibria that can open up for unex-
pected jumps into the next adjacent possible.

The industrialized world currently experiences the rapid
growth of a new cultural grassroot movement that turns its
back on established consumerism to instead adopt a low-
carbon, zero-waste life-style. Such movements, paired with
the loud voices of young adults striking all over the world
for policy makers to finally take actions, might ignite a spark
of hope among the desperate predictions that scientists have
produced. But what determines the success or failure of
such cultural revolutions? Which factors most strongly af-
fect their speed of uptake? What influences how such move-
ments ultimately shape national and global policy making?
We believe that these and similar questions can be readily
addressed and turned into actionable recommendations us-
ing our ALIFE toolbox. At the same time, we can reach out
to these groups from a scientific point of view.

The shear amount of societal themes discussed at this
year’s conference – from social learning, human and cultural
evolution, social dynamics and simulation to financial mar-
ket dynamics and policy making – demonstrates how heavily
our community is indeed long concerned with this general
agenda. And what better tools to draw from than the union
of dynamical systems theory, game theory and agent-based
modelling, artificial intelligence and machine learning, evo-
lutionary and unconventional computing that together con-
stitute a good part of the ALIFE methodology?

A main concept of ALIFE is not the study of life as it
is (with all its evolved facets and structures that sometimes
only make sense in the context of this evolutionary history)
but the analysis of deliberately simplified life-like systems.
Two main intellectual challenges have to be mastered: First,
principles of life found in our real world have to be mapped
into artificial systems. Thereby, depending on the research
question, only a small subset of important principles may
be taken into account in order to highlight specific aspects.
Second, we have to answer to what extent results found in
artificial systems can be mapped onto the behavior or struc-
tures of the real world. The first challenge certainly appeals
to the creativity of the ALIFE community and resulted in a
rich variety of approaches. The second challenge turns out
to be harder and certainly requires an even closer collabora-
tion with those experts who know the real world. However,
ALIFE will only achieve its full potential if both challenges
are mastered.
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Perheaps most importantly, compared to many other aca-
demic disciplines, the ALIFE community is a notoriously
free-spirited crowd. In our studies, we typically do not
let hair-splitting details stop us from pushing pie-in-the-sky
ideas. This capability of ALIFE to be imaginative and to
think out of the box might perheaps be the most important
quality that we can offer to the scientific community and
society at large, by embedding our critical creative think-
ing and our free spirit in all potential solution fronts. Be it
in the form of alternative societies and e-democracy (Sper-
oni di Fenizio and Paterson, 2010; Aragón et al., 2017), liv-
ing technology that incorporates the core features of life (Be-
dau et al., 2009; Armstrong, 2009), bioremediation and ter-
raforming programmes based on artificial cells (Solé, 2015),
or even a coming form of hybrid, biological-technical life
forms that could form the basis of a post-human era.

Artificial Life is understood as “The study of life as it
could be, rather than life as we know it.” At times where
life as we know it is threatened to cease to exist, we urge the
ALIFE community to take this credo to the next level: Let us
dream up what our very own life as human species could be,
and how we might be able to recreate the harmonious dance
that life and the material environment ought to perform.

References
Aicardi, C. (2010). Harnessing non-modernity: a case study in

artificial life. Doctoral, UCL (University College London).

Aragón, P., Kaltenbrunner, A., Calleja-López, A., Pereira, A.,
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Abstract

All of biological research is done on a single sample: that of modern, terrestrial life. In the quest to engineer synthetic living systems,
we seek to expand that sample size, enabling investigation of properties of lineage agnostic, synthetic organisms.

Synthetic minimal cells are liposomal bioreactors that have some, but not all properties of live cells. Creating artificial living systems
allows us to diversify the chassis of biological studies and provide novel opportunities for bioengineering. We can begin to answer
biggest questions about healthy and diseased natural cells and ask whole new set of questions about the nature of life. Engineering
synthetic cells with fundamentally different physical and chemical properties, we can compare behaviors and begin drawing broad
conclusions about basic rules of biological life.

Synthetic cells are fully definable, enabling studies of natural processes with level of detail previously unavailable. In synthetic system,
there is less noise from underlying endogenous activity of the cell, and every interesting process can be isolated and studied indepen-
dently. Synthetic cells provide new chassis for biological studies, for broadening understanding of our own type of biology, and for
investigating alternatives to the single known life form.
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Abstract

There is growing academic and societal interest on the relation between the surge of AI and the future of work and services. Some
experts project utopian visions where AI enhance human life and helping us to achieve a more sustainable world. Others project
dystopian visions where AI dominates human life suppressing freedom and democracy.

These discussions do not adequately account for the crucial role played by the structure of the ownership relationships. Who will own
the robots? Who will own the physical devices and the technologies to make them work?

In particular, developed economies have committed to move towards a more sustainable and circular production system. This process
could greatly benefit from AI but may require a transformation of the notion of ownership. Consumers may have to purchase services
rather than owning goods (i.e. the right to use a car rather than owning the car itself).

Ownership takes place through chains of contracts, which give rise to complex financial networks. In one direction, financial funds
flows to make possible the realisation of projects and technologies. In the other direction, revenues, control but also financial risk flow
towards the owners. Understanding the properties of financial networks is key to understand and manage the trajectory that human
society we will take in the next decades in relation to the surge of AI.
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Abstract

Our socio-technical environment is becoming increasingly complex all the while we have less and less time for making decisions. The
advent of computers in general and AI in particular has helped us to deal with complexity and time constraints. Virtually no industry and
sector remains untouched by this development: The private sector, government, non-profits; manufacturing, advertisement, logistics,
healthcare, defense; finance, compliance, customer care, human resources and many more. Why is it then that, I wonder, we still have
very little satisficing solutions to our worlds most pressing problems as for example stated in the sustainable development goals: Climate
change, poverty, sustainable cities and so forth. One reason for this, I believe, is grounded in the false trust in the abundance of data and
ubiquity of computational power. More data and brute force doesnt necessarily mean better insights and thus decisions.

Sustainable and robust decisions depend on our understanding why things happen and our ability to think in plausible futures. Causality
and scenarios can be generated through the symbiosis of human brain ingenuity and computational simulations. This implies that
humans embrace digitalization as an opportunity and invest in the further development of cognitive humanmachine interaction.

I will suggest and critically discuss a framework for constructing and applying a computational decision support framework that furthers
this vision. Technically the framework hinges on data fusion, simulation and insight generation. Successful application for decision-
making, however, relies on consequent stakeholder integration, which requires building trust in a simulations underlying causal model
from which openness to internalize insights in organizational decision making processes derives. I will present the concrete steps of
building a computational simulation designed for decision support against the background of two case studies representing pressing
social problems, along with the process of taking the client on this journey and how it helped her to improve business critical decisions
and thus outcomes.

The quintessence is as simple as it remains futuresque: Tomorrows successful organization represents itself and the environment it
operates in in a form of holodeck, enabling it and its employees to play through and train for the future that will challenges us.
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Abstract

This talk will present results from the practical implementation of MFCs in a range of applications. The presentation will show the
chronological evolution of the technology, starting from the earlier implementation in robotics to the more recent development in
sanitation and as a robotic chemostat for maintaining steady state conditions in microbial communities. The talk will have a focus on
EvoBot, a robotic chemostat that has been developed as part of the EU FP-7 EVOBLISS project (611640), which was funded under the
Evolving Living Technologies Programme. The work combined scientific approaches from robotics, artificial intelligence, chemistry,
and microbiology and the talk will demonstrate how the integration of these otherwise disparate disciplines was used to produce i) a
generally useful, expandable and customizable technical platform for the artificial evolution of new materials and applications based
on a real-time feedback robotic workstation and ii) a specific improved technology, namely a microbial fuel cell, that incorporates
natural as well as artificial macro-, micro-, and nanoscale elements for improved function. EvoBot was used with the scientific objective
to investigate the possibility of optimizing artificial chemical life, microbial ecosystems, and nanoparticles and their physiochemical,
dynamic environments using robot facilitated, artificial evolution. The main conceptual synergy of EVOBLISS was to embody the
principles of living technology at various scales in order to probe a system?s ability to evolve within and between scales. The talk
continues with a description of the multiple by-products that can be produced by the core MFC technology and concludes with the case
for microbial fuel cells as a platform technology for multiple a range of environments including sanitation, renewable energy generation,
production of value-added products via elemental recycling and wastewater treatment.
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Abstract

It is well established in the scientific literature that global
human civilization faces multiple imminent, and potentially
existential, crises. The most comprehensive survey is per-
haps that of the Planetary Boundaries framework (Rockström
et al., 2009; Steffen et al., 2015). The unfolding of these chal-
lenges will be very complex, and the trajectory ahead is cer-
tainly still open to significant human management and mod-
eration. Nonetheless, it is clear that we are no longer deal-
ing with “problems” that might be “solved”; rather, this is a
predicament — an uncertain, dynamic, and at least partially
chaotic, disruption in global human development (Gilding,
2012). A predicament calls not for “solution”, but for engage-
ment, and continuous refinement of response. The purpose of
this contribution is to explore how some specific concepts,
tools and techniques of Artificial Life have already helped
shape our understanding of this predicament; and may offer
some distinctive supports in moulding our future responses.

The use of computational tools to model complex biologi-
cal, evolutionary, ecological and social dynamics is a foun-
dational technique in the ALife field. Indeed, computational
thinking and modelling was at the heart of the systems dynam-
ics approach to socio-ecological modelling pioneered by For-
rester (1982). This provided the basis for the famous (or infa-
mous?) Limits to Growth (LTG) project of the Club of Rome
(Meadows et al., 1972). This was the first substantive attempt
to computationally model the socio-ecological dynamics of
global human society and assess whether ecological impacts
would be likely to limit the growth of human material activi-
ties within any practically foreseeable timeframe. While the
model was necessarily crude, the robust result was that — in
the absence of effective control measures to the contrary —
serious limits would become apparent within the first half of
the 21st century.

In the almost 50 years since its original publication, the world
has tracked remarkably close to the “standard run” of the LTG
study (Turner, 2014). In fact, multiple lines of investigation
now strongly suggest that aggregate human activity has al-
ready reached a state of significant overshoot beyond safe or
sustainable ecological limits. Overshoot is a qualitatively dis-
tinct regime for the design and operation of any adaptive or
mitigating interventions (Catton, 1982). Effective societal re-
sponses to date have been significantly impaired by a lack of
wide understanding of this harsh ecological reality. This gap
in understanding facilitates the comforting — but erroneous
— notion that it is prudent to delay difficult responses until
after impacts are manifest. But delay is precisely one of the

principle mechanisms that actually causes overshoot, and un-
dermines the capability to damp the subsequent “crash”. This
presents both a need and an opportunity for Artificial Life
practitioners to use their skills and their tools to help catalyse
much wider societal understanding of the nature of ecologi-
cal overshoot and mediate the desperately needed reflections
on how to achieve the necessary collective, systems-level, re-
sponses (cf. Bullock, 2016).
Separately and in conclusion, the presentation will briefly
consider the meta-question of the ecological footprint of
scholarly activity itself: and what, if any, obligations schol-
arly communities (such as ISAL, the International Society
for Artificial Life) might have to reconsider their established
practices in the face of planetary scale ecological emergency
(e.g. Wilde and Nevins, 2015).
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Abstract

Although unable to flee predators or sub-optimal growth conditions, plants have the incredible ability to continue normal life after losing
whole organs. They can also alter the expression-levels of thousands of genes, remodelling growth and metabolism and deploying an
extensive molecular armoury in response to threats. These abilities provide us with food but also present a potential platform for the
rapid production of complex molecules from water and light. Until recently, however, we lacked the tools and data necessary for
complex engineering of plant systems. The application of engineering principles to plant biology has enabled us to establish platforms
for high-throughput, automated, experimentation at nanoscales. We are combining these approaches with genome editing technologies
and comparative genomics to investigate how regulatory functions are encoded in plant DNA and to engineer plants with new traits and
functions. In recent work, we have shown that genome editing can be used to make plants with different carbohydrate structures, paving
the way for the production of more nutritious crops. Currently, we are learning where to make precise changes to regulatory regions in
order to rewire the control networks that coordinate large-scale responses to environmental signals. Beyond foods, we are developing
plants as photosynthetic platforms for biomanufacturing We are interested not just in making human therapies but also in manufacturing
a greater range of products to improve the sustainability of agriculture.
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Abstract

Modern biological cells are endowed with effective mechanisms which control their division, ensuring that it does not take place before
the duplication of the genetic material has been completed. It is unlikely that similar sophisticated mechanisms were in place in primitive
protocells, which were much simpler than their present-day descendants. So a major question concerns the way in which reproduction
of the whole protocell might take place together with replication of its genetic molecules, absent any kind of high-level control.

This might happen if the rate of duplication of the genetic material and that of fission of the protocell are the same, i.e. if the two
processes are synchronized. This possibility can be studied using simplified models of reaction networks (among replicators), assuming
that one or more replicators can affect the growth and fission rates of their lipid container. Surprisingly enough, such synchronization
does not necessarily require a careful assembly of reactions with very specific reaction rates. On the contrary, it turns out to be a property
which emerges spontaneously in a broad set of models, with different parameters, different reaction networks and even different protocell
architectures. Note that synchronization, while being a widespread property, is not always achieved for all the models and reaction types.
The conditions for emergent synchronization will be discussed, reviewing previous work and showing some new results.

These results are based upon dynamical models which assume that the reactions are known a priori. On the other hand, in models of
the origin of life it is often assumed that not all the important chemicals are there since the very beginning, but that some of them are
synthesized at later stages. The appearance of new chemicals makes new reactions possible, which may in turn lead to the synthesis
of new chemicals, etc. Dealing with this kind of problems requires the choice of a particular model of the replicators and of their
interactions; in this paper the random binary polymer model proposed by S. Kauffman, where the replicators are polymers which
can undergo cleavage or condensation, will be considered. This model allows, in principle, the appearance in time of polymers of
increasing length. Another aspect which has to be taken into account, in order to properly model these phenomena, is that new chemical
species may be initially present in very low concentrations, which require a stochastic treatment like the one allowed by the well-known
Gillespie algorithm.

The random binary polymer model can give rise in time to collectively autocatalytic sets, which are able to self-replicate; if some
chemicals which belong to the core or to the periphery of these sets are coupled to the growth of the lipid container, this may lead to
emergent synchronization. However, the interactions can be quite complicated and the overall behaviour can be counterintuitive. Some
examples of dynamical behaviours which have been observed in simulations will be presented and discussed, with particular emphasis
on features which are always, or frequently, observed. It will be argued that studying the dynamical interaction of autocatalytic sets with
the growth and splitting dynamics of the lipid container is crucial to understand the possibility that a population of protocells undergo
sustainable growth and evolution.
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Abstract

By Artificial Democratic Life we mean the design and deploy-
ment of artificial (digital) infrastructures aimed at enhanc-
ing or improving social democratic life. Artificial Life, as
a discipline and as a community, has much to contribute to
the contemporary challenge of redesigning democracy in the
network era, in understanding and designing democracy as a
form of life: one that evolves into increasingly higher com-
plexity and diversity while preserving homeostatic invariants
and designing the infrastructures capable to resiliently en-
hance it. We identify some opportunities and specific chal-
lenges that can be faced using Alife simulation techniques
and conceptual resources.

Introduction: democracy and the living
New constraints and opportunities often give rise to the
emergence of new forms of life or their radical transfor-
mation. Such is the case of the emergence of administra-
tive institutions with the invention of writing, the emergence
and autonomization of economic life with capitalism or that
of academic life through meetings, letters and journals and,
more recently, the internet. This last infrastructure, the in-
ternet, has made possible a profound transformation of many
human and societal forms of life. And democracy is waiting
its turn. In the era of Artificial Intelligence and Algorith-
mic Governance the issue of how to build public digital in-
frastructures for democratic life becomes a design challenge
that can greatly benefit from Alife simulation techniques and
conceptual resources.

The conceptual relationships that researchers have estab-
lished between living phenomena and democracy are many.
At the most abstract level “causal democracy” has been vin-
dicated as a model for understanding developmental and liv-
ing phenomena (Oyama, 2000), at the molecular level cellu-
lar transcription networks have been characterized as demo-
cratic dynamics (Bar-Yam et al., 2009), collective behaviour
is often characterized using democracy related terms like
“quorum” sensing and “consensus” in bacteria (Miller and
Bassler, 2001) or directly as “democracy” in honey-bees
(Seeley, 2010). In turn, concept such as that of neuronal-
assemblies (Varela, 1995) or dendritic democracy (Husser,

2001) have been widely used, and as early as in 1941 Sher-
rington declared the nervous system to be “a million-fold
democracy whose each unit is a cell” (Sherrington, 1941).
More generally, the concepts of “self-organization” and “au-
tonomy” have been central to the characterizations of the
living, strongly associated with notions of self-governance,
self-rule-making (Kauffman, 1993; Varela, 1979). Artifi-
cial Life models have played a very important role on the
modelling and conceptualization of how patterns of life can
emerge out of decentralized and self-organized processes
(Bedau, 2003), that is, understanding how living patterns are
democratic-like. It is time to seek out how Artificial Life can
inform and improve Democracy.

Artificial constitution of democratic societies
Our societies are not anymore a collection of rational agents,
individually or collectively acting according to specific cog-
nitive strategies with a mere instrumental relationship to ar-
tifacts. The french sociologist Bruno Latour (2005) chal-
lenges us to conceive of societies as actor-networks where
cars, mobiles or pencils operate, interconnected with hu-
mans, all creating the collective network of interactions we
call “society”. The increasing mediation of digital devices
in our social life makes this artificial constitution of society
the more apparent and the design of social interfaces has be-
come the primary mode of social production (Yaneva, 2009).

Decentralized Autonomous Organizations as defined by
smart contracts running over blockchain technologies (like
Ethereum) (DuPont, 2017) or new direct participatory
democracy platforms like Decidim.org (Barandiaran et al.,
2017, 2019) (currently in use in hundreds of cities) are but
two examples of how new technologies are boosting demo-
cratic life. But they face multiple design challenges to de-
liver the experience of effective and complex democracy
they aim to make possible.

Artificial Democratic Life: the very idea
Following Bedau (2003) the goals of Artificial Life “include
modelling and even creating life and life-like systems, as
well as developing practical applications using intuitions
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and methods taken from living systems.” If we now con-
sider democracy as a form of (political) life we can envision
the very idea of Artificial Democratic Life as the design and
deployment of artificial infrastructures aimed at enhancing
or improving social democratic life understood as a decen-
tralized, egalitarian, and participatory decision making and
commitment generating system of interactions.

Some open challenges that Artificial Democratic Life
could help with include:

• Equilibrium between the satisfaction of multiple interests.
Designing mechanisms for decision making that maxi-
mize the satisfaction of a maximum number of citizens.
For an example see the work of Fain et al. (2016)

• Facilitation of complex growth patterns in communicative
discourse. Designing deliberative mechanism (e.g. nested
comments in a forum) that improve deliberative depth,
quality and effectiveness. For an example see the work
of Aragon et al. (2017)

• Effective distribution of relevant information for decision
making. Designing collaborative moderation systems to
channel relevant information into front pages or personal-
ized profile feeds. For an example see the work of Mills
and Fish (2015)

• Ecological efficiency and diversity preservation in com-
munication networks. Designing algorithms for suggest-
ing connectivity patterns between social network partic-
ipant in order to improve diversity, robustness and com-
munication efficiency.

Life have solved variants of these problems at different
scales. And Alife has played a central role understanding
and modelling them. Discovering and designing democracy
as a form of life involves moving beyond its understanding
as a complicated optimization problem, a statistical mass ef-
fect, a mere complex system or a political representational
function of social cognition. Artificial Life should help un-
derstand democracy as a form of social life, with its potential
for self-organization, its capacity to evolve into increasingly
higher complexity, to homeostatically adapt to new circum-
stances preserving equity and to embody intelligence in a
distributed social body.
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Abstract

Taking inspiration from nature for meta-heuristics has proven
popular and relatively successful. Many are inspired by the
collective intelligence exhibited by insects, fish and birds.
However, there is a question over their scalability to the types
of complex problems experienced in the modern world. Nat-
ural systems evolved to solve simpler problems effectively,
replicating these processes for complex problems may suf-
fer from inefficiencies. Several causal factors can impact
scalability; computational complexity, memory requirements
or pure problem intractability. Supporting evidence is pro-
vided using a case study in Ant Colony Optimisation (ACO)
regards tackling increasingly complex real-world fleet opti-
misation problems. This paper hypothesizes that contrary to
common intuition, bio-inspired collective intelligence tech-
niques by their very nature exhibit poor scalability in cases of
high dimensionality when large degrees of decision making
are required. Facilitating scaling of bio-inspired algorithms
necessitates reducing this decision making. To support this
hypothesis, an enhanced Partial-ACO technique is presented
which effectively reduces ant decision making. Reducing the
decision making required by ants by up to 90% results in
markedly improved effectiveness and reduced runtimes for
increasingly complex fleet optimisation problems. Reduc-
tions in traversal timings of 40-50% are achieved for prob-
lems with up to 45 vehicles and 437 jobs.

Introduction
The natural world is filled with a wealth of differing animals
and ecosystems. Many of these organisms display collec-
tive behaviours which they use to overcome problems within
their ecosystem such as ants foraging for food or bees com-
municating locations of nectar. These organisms have in-
spired many computing algorithms to assist in solving dif-
ficult real-world problems. Much of this inspiration comes
from the exhibition of collective behaviours whereby thou-
sands of organisms work together for the benefit of a colony,
flock or hive. Each organism is simplistic in nature and by it-
self cannot survive but as part of a collective, problems such
as finding sources of food can be solved. Nature has been
used as a source of inspiration for the direct design of meta-
heuristic algorithms that are moderately successful in solv-
ing optimisation problems of human consideration such as
routing problems, information management and logistics to

name a few. Examples of bio-inspired collective behaviour
algorithms include Ant Colony Optimisation (ACO) (Dorigo
and Gambardella, 1997) inspired by how ants forage for
food; Artificial Bee Colony (ABC) (Karaboga and Basturk,
2007) based upon the way bees communicate sources of nec-
tar; and Particle Swarm Optimisation (PSO) (Eberhart and
Kennedy, 1995) which models the complex interactions be-
tween swarms of insects. These algorithms can be grouped
under the term swarm intelligence through their use of hun-
dreds or thousands of simulated digital organisms.

However, the types of problems that are tackled in na-
ture by these organisms such as finding sources of food can
be considered much more simplistic than the complex soci-
etal problems facing the human world. In an increasingly
digital world whereby the available data is growing consid-
erably alongside inter-connectivity and joined up thinking,
the size and complexity of the problems that require solv-
ing are increasing rapidly such as with smart city planning
(Batty, 2013; Murgante and Borruso, 2015). Moreover, un-
like the natural world, restrictions exist on modern comput-
ers in terms of compute capability and available memory to
be able to simulate many thousands of collective organisms.

In regards to the literature of swarm algorithms most im-
plementations of collective behaviour algorithms are applied
to relatively small problem sizes. However, there have been
some works in the field addressing scalability. For instance,
Piccand et al. (2008) found applying PSO to problems of
greater than 300 dimensions resulted in failing to find the
optimal solution more than 50% of the time. Cheng and Jin
(2015b) noted that PSO fails to scale well to problems of a
high dimensionality potentially as a result of problem struc-
ture. However, the authors employ a social learning imple-
mentation whereby many particles act as demonstrators and
present promising results on problems of sizes up to 1,000
dimensions. Cheng and Jin (2015a) later propose a modifi-
cation to PSO whereby instead of using local and global best
solutions to update particle positions a pairwise competition
is performed with the loser learning from the winner to up-
date their position. The technique demonstrated improved
results over PSO on benchmark problems of up to 5,000
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dimensions although it was noted this was very computa-
tionally expensive. Cai et al. (2015) applies greedy discrete
PSO to social network clustering problems with as many as
11,000 variables. For further reading Yan and Lu (2018)
provide a review of the challenges of large-scale PSO.

Regarding ACO, Li et al. (2011) noted the scaling is-
sues of the approach proposing a DBSCAN clustering ap-
proach to decompose large Travelling Salesman Problems
(TSPs) of up to 1,400 cities into smaller sub-TSPs and solve
these. Ismkhan (2017) also noted the computational cost
and memory requirements and considered the use of addi-
tional heuristics or strategies to facilitate the scaling of the
technique to larger problems. Improvements such as con-
sidering the pheromone matrix as a sparse matrix and us-
ing pheromone in a local search operator enabled ACO to
be applied effectively to TSPs of over 18,000 cities. Chitty
(2017) also noted computational issues with ACO and mit-
igated them with a non-pheromone matrix ACO approach
which only made partial changes to good solutions applying
the technique to TSP instances of up to 200,000 cities.

Therefore, it can be ascertained both ACO and PSO have
issues in terms of scaling to high dimensional problems,
the curse of dimensionality. Consequently, the question ex-
plored in this paper is can nature inspired, collective intel-
ligence techniques scale up to the size and complexity of
problems that the modern world desires solving? If not,
what are the potential limiting causal factors for this and
what mitigating steps could be taken? These questions will
be investigated using a case study based on ACO to provide
an illustration of the problems faced in scaling up a collec-
tive behaviour meta-heuristic and the hypothesized causal
limitations by applying to a real-world fleet optimisation
problem with steadily increasing complexity. The second
aspect of this paper will attempt to mitigate ACO for these
scalability issues using the novel Partial-ACO approach and
enhance the approach further to assist scalability.

Ant Colony Optimisation: An Exemplar Case
A popular swarm based meta-heuristic is based upon the for-
aging behaviours of ants and known as Ant Colony Opti-
misation (ACO) (Dorigo and Gambardella, 1997). Essen-
tially, the algorithm involves simulated ants moving through
a graph G probabilistically visiting vertices and depositing
pheromone as they move. The pheromone an ant deposits
on the edges E of graph G is defined by the quality of
the solution the given ant has generated. Ants probabilisti-
cally decide which vertex to visit next using this pheromone
level deposited on the edges of graph G plus potential local
heuristic information regarding the edges such as the dis-
tance to travel for routing problems. An evaporation effect is
used to prevent pheromone levels building up too much and
reaching a state of local optima. Therefore, ACO consists of
two stages, the first solution construction, simulating ants,
the second stage pheromone update. The solution construc-

tion stage involves m ants constructing complete solutions
to problems. Ants start from a random vertex and iteratively
make probabilistic choices using the random proportional
rule as to which vertex to visit next. The probability of ant
k at point i visiting point j ∈ Nk is defined as:

pkij =
[τij ]

α[ηij ]
β

∑
l∈Nk [τil]α[ηil]β

(1)

where [τil] is the pheromone level deposited on the edge
leading from location i to location l; [ηil] is the heuris-
tic information from location i to location l; α and β are
tuning parameters controlling the relative influence of the
pheromone deposit [τil] and the heuristic information [ηil].

Once all ants have completed the solution construction
stage, pheromone levels on the edges E of graph G are up-
dated. First, evaporation of pheromone levels upon every
edge of graph G occurs whereby the level is reduced by a
value ρ relative to the pheromone upon that edge:

τij ← (1− ρ)τij (2)

where ρ is the evaporation rate typically set between 0 and
1. Once this evaporation is completed each ant k will then
deposit pheromone on the edges it has traversed based on
the quality of the solution found:

τij ← τij +

m∑

k=1

∆τkij (3)

where the pheromone ant k deposits, ∆τkij is defined by:

∆τkij =

{
1/Ck, if edge (i, j) belongs to T k

0, otherwise (4)

where 1/Ck is the quality of ant k’s solution T k. This en-
sures that better quality solutions found by an ant result in
greater levels of pheromone being deposited on those edges.

Consideration of the Scalability of ACO
From a computational point of view, implementing an ant in-
spired algorithm on computational hardware to solve large-
scale problems suffers from three potential limitations re-
garding overall performance. The degree of memory re-
quired, the computational costs of simulating thousands of
ants and the sheer intractability of the problem itself.
Memory Requirements A key aspect of ACO is the
pheromone matrix used to store pheromone levels on all the
edges in the graph G. This can require significant amounts
of computing memory. For instance, a fully connected
100,000 city Travelling Salesman Problem (TSP) will have
ten billion edges in graph G. Using a float data type requir-
ing four bytes of memory will need approximately 37GB of
memory to store the pheromone levels, considerably greater
than available in standard computing platforms. In the nat-
ural world storing pheromone levels is not an issue with

14



an infinite landscape to store them. A secondary memory
requirement arises from ants only updating the pheromone
matrix once all ants have constructed their solutions necessi-
tating storing these in memory too. For a 100,000 city TSP a
single ant will require 0.38MB of memory using a four byte
integer data type. If the number of ants equals the number of
vertices an additional 37GB of memory would be required.

An ant inspired algorithm that addresses this memory
overhead is Population-based ACO (P-ACO) (Guntsch and
Middendorf, 2002) whereby the pheromone matrix is re-
moved with only a population of ant solutions maintained.
From this population, pheromone levels are reconstructed
for the available edges by finding the edges taken within the
population from the current vertex and assigning pheromone
to edges based on the solution quality.

Computational Costs A second aspect to consider with
ACO is the time it will take to simulate ants through the
graph G. At each vertex an ant needs to decide which vertex
to next visit. This is performed probabilistically by looking
at the pheromone levels, and possibly heuristic information,
on all available edges. This requires computing probabilities
for all these edges. As an example, take a 100,000 city TSP,
at the first vertex an ant will have 99,999 possible edges to
take all of which require obtaining probabilities from. Once
an ant has made its choice it moves to the chosen vertex and
once again analyses all available edges, now 99,998. Thus,
for the 100,000 city TSP an ant will need to perform five
billion edge comparisons. If a processor is capable of 100
GFLOPS (billion floating point operations per second) and
assuming an edge comparison takes one floating point oper-
ation it will require at least 0.05 seconds to simulate an ant
through graph G. If using a population of ants equivalent to
the number of vertices in graph G then to complete one iter-
ation of solution construction would require nearly 90 min-
utes of computational time. For ants in nature, compute time
is not an issue since each ant can act independently although,
the actual time it would take real ants to move through a net-
work of this size would still be problematic.

The simulation of ants is inherently parallel in nature and
therefore can easily take advantage of parallel computing re-
sources to alliviate the computational costs. In recent years,
speeding up ACO has focused on utilising Graphical Pro-
cessor Units (GPUs) consisting of thousands of SIMD pro-
cessors. DeléVacq et al. (2013) provide a comparison of dif-
fering parallelisation strategies for MAX -MIN ACO on
GPUs. Cecilia et al. (2013) reduced the decision making
process of ants using a GPU with an Independent Roulette
approach that exploits data parallelism and Dawson and
Stewart (2013) went a step further introducing a double spin
ant decision methodology when using GPUs. These works
have provided speedups ranging from 40-80x over a sequen-
tial implementation, a considerable improvement. Peake
et al. (2018) used the Intel Xeon Phi and a vectorized candi-
date list methodology to achieve a 100 fold speedup. Can-

didate lists are an alternative efficiency method of reducing
the computational complexity of ACO whereby ants are re-
stricted to selecting a subset of the available vertices within
its current neighbourhood. If none of these vertices are avail-
able then the full set are considered as normal. Gambardella
and Dorigo (1996) used this approach to solve TSP instances
whereby speedups were observed but also a reduction in ac-
curacy due to sub-optimal edges being taken.

Problem Intractability A final scalability issue with
ACO involves the amenability of the problem under con-
sideration to be tackled by ACO. The key issue is the proba-
bilistic methodology ACO employs to decide which edge to
take next by utilisng the pheromone levels on the available
edges to influence the probabilities. Computationally, an ant
will take the pheromone level on each edge, and if available
multiply by the heuristic information, and multiply this by
a random value between zero and one. The edge with the
largest product is selected as the next to be traversed.

As an example consider a simple decision point whereby
an ant has two choices available, one being the correct, opti-
mal selection, the other suboptimal. If the pheromone levels
on each edge are equal then there is a 0.5 probability the
ant will take the optimal edge. However, consider ten in-
dependent decision points each with two possible choices
akin to a binary optimisation problem such as clustering a
set of items into two groups. Probabilistically this is equiv-
alent to ten coin flips. With equal pheromone on all edges,
there is only a 0.510 probability of an ant making the opti-
mal choices, approximately one in a thousand. Conversely,
an ant has a 0.999 probability of generating a sub-optimal
solution so 1,000 ants would need to traverse graph G to
obtain an optimal solution. For a much larger problem of
100,000 decision points this would be 0.5100,000 requiring
1030,102 ants to find the optimal solution.

Consequently, pheromone levels are there to help guide
the ants to taking the optimal edge. Consider the previous
100,000 decision point example again but with high levels
of pheromone on the edge to the optimal choice, say 0.99 vs.
0.01 on the suboptimal edge, then the probability of obtain-
ing the optimal solution will be 0.99100,000 or approximately
3437 ants required, still a significant number. In fact, to get
to a manageable number of ant simulations the pheromone
on the optimal edges would need to be of the order 0.9999
vs. 0.0001 on the suboptimal edge when only approximately
20,000 ants would need to traverse the network before an
ant probabilistically takes the correct edges at each decision
point. However, this means the pheromone level would need
to be 10,000 times greater on the optimal edge than the sub-
optimal edge. Moreover, the pheromone levels would need
to build up over time before reaching these levels.

Hence, it can be observed that applying ACO to ever
larger problems results in increasingly reduced probabili-
ties of optimal solutions being found unless the pheromone
levels become increasingly stronger on the important edges.
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Candidate lists, as covered in the previous section, can re-
duce the number of decisions that ants need to make but
with a potential error reducing accuracy and can only use
if heuristic information is available to define the neighbour-
hood. Of course ants in the natural world do not have prob-
lems of this magnitude to solve and have the numbers if nec-
essary without any undue computational cost to consider.

An Illustration of the Scalability Issues With ACO
To highlight the potential drawbacks of ACO it will be tested
against a difficult set of real-world fleet optimisation prob-
lems of steadily increasing complexity. These problems
have been supplied by a Birmingham based maintenance
company which operates a fleet of vehicles performing ser-
vices at customer properties within the city. Each vehicle
starts from a depot and must return when it has finished ser-
vicing customers. Each customer is defined by a location
and a job duration predicting the length of time the job will
take and in some cases, a time window for when the jobs
must be completed. The speed of travel of a vehicle between
maintenance jobs is defined at an average 13kph to account
for city traffic. There is also a hard start time and end time
to a given working day defined as 08:00 and 19:00 hours.
Fleet optimisation is essentially the classic Multiple Depot
Vehicle Routing Problem (MDVRP) (Dantzig and Ramser,
1959) with Time Windows (MDVRPTW).

The MDVRP can be formally defined as a complete graph
G = (V,E), whereby V is the vertex set and E is the set of
all edges between vertices in V . The vertex set V is fur-
ther partitioned into two sets, Vc = V1, ..., Vn represent-
ing customers and Vd = Vn+1, ...Vn+p representing depots
whereby n is the number of customers and p is the number
of depots. Furthermore, each customer vi ∈ Vc has a ser-
vice time associated with it and each vehicle vi ∈ Vd has a
fixed capacity associated with it defining the ability to fulfill
customer service. Each edge in the set E has an associated
cost of traversing it represented by the matrix cij . The prob-
lem is essentially to find the set of vehicle routes such that
each customer is serviced once only, each vehicle starts and
finishes from the same depot, each vehicle does not exceed
its capacity to service customers and the overall cost of the
combined routes is minimised.

The worksheet data supplied by the company has been di-
vided into a series of problems of increasing complexity and
size which are described in Table 1. The manner in which
the company assigns customer jobs to vehicles is known
apriori enabling a ground truth for the optimisation process.
Effectively, the company assigns geographically related jobs
to vehicles based on postcode and then orders them such that
the vehicle performs the job furthest from its depot first and
then works its way back, time windows allowing.

To highlight the drawbacks of ACO in terms of scala-
bility, the MAX -MIN Ant System (MMAS) (Stützle
and Hoos, 2000) will be tested upon these fleet optimisa-

Table 1: Real-world problem scenarios supplied by a Birmingham
maintenance company described in terms of the vehicles available,
customers to service, the total predicted service time required and
the total travel time using the company’s current scheduling.

Total Job Total Fleet
Problem Vehicles Jobs Servicing Traversal Time

(hh:mm) (hh:mm)

Week 1 8 77 47:09 31:12
Week 2 8 79 48:24 22:49
Week 3 8 81 48:33 19:54

Fortnight 1 16 156 95:33 54:01
Fortnight 2 16 138 102:01 57:07
Fortnight 3 16 160 96:57 42:43

ThreeWeek 1 24 237 144:06 73:55
ThreeWeek 2 24 217 150:25 79:56
ThreeWeek 3 24 219 150:34 77:01

Month 1 32 298 198:58 99:50
Month 2 32 313 190:26 96:28

SixWeek 1 45 437 267:47 142:46

tion problems.MMAS simulates ants through the graph G
but, in contrast to standard ACO, only the best found solu-
tion provides pheromone updates. Additionally, minimum
and maximum levels of pheromone on edges are defined.
To solve the fleet optimisation problem the fully connected
graph G has vertices relating to the number of vehicles and
customer jobs. Ants start from a random vehicle vertex then
visit every other vertex once only resulting in a sequence of
vehicles beginning from their specified depots followed by
the customer jobs they will service before returning to their
depot. This representation is shown in Figure 1 whereby V
relates to a vehicle and J relates to a job. The first vehicle
will undertake jobs 6, 5 and 9, the second jobs 3, 7, and 2
and so forth.

V1 J6 J5 J9 V2 J3 J7 J2 V3 V4 J1 J4 J8

Figure 1: Example solution representation.

Once a new solution has been generated its quality needs
to be assessed. This is measured using two objectives, the
first of which is to maximise the number of jobs correctly
performed within their given time window. The second ob-
jective is the minimisation of the total traversal time of the
fleet of vehicles. Reducing the number of missed jobs is the
primary objective. Hence, comparing two solutions, if the
first services more customer jobs than the second then the
first solution is considered the better. If though they have
equal customer job time serviced then the solution with the
lower fleet traversal time is considered the better.

The pheromone to deposit is calculated using these ob-
jectives to be optimised. A penalty based function will be
utilised for the first objective whereby any customers that
have not been serviced due to capacity limitations or miss-
ing the time window will be penalised by the predicted job
time. The secondary objective is to minimise the time the
fleet of vehicles spend traversing the road network between
jobs. Solution quality can then be described as:

Ck = (S − sk + 1) ∗ Lk (5)
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where S is the total amount of time of jobs to be serviced, sk

is the amount of job service time achieved by ant k’s solu-
tion and Lk is the total traversal time of the fleet of vehicles
of ant k’s solution. Clearly, if ant k has achieved the pri-
mary objective of fulfilling all customer demand S then Ck

becomes merely the total traversal time of the fleet.

Table 2: Parameters used with the ACO MMAS algorithm
Number of Ants 192
Max Iterations 1,000,000
α 1.0
β 1.0
ρ 0.02

A parallel implementation of MMAS is tested against
the exemplar problems from Table 1 with experiments con-
ducted using an AMD Ryzen 2700 processor using 16 par-
allel threads of execution. The algorithms were compiled
using Microsoft C++. Experiments are averaged over 25 in-
dividual execution runs for each problem with a differing
random seed used in each instance. The parameters used
withMMAS are described in Table 2.

The results from these experiments are shown in Table 3
whereby the issue of scalability is abundantly clear. As the
size and complexity of the fleet optimisation problems in-
creases, the ability forMMAS to find a solution which sat-
isfies all the customer demand reduces. Similarly,MMAS
cannot obtain solutions with a lower fleet traversal time than
the company’s own scheduling when the problem size in-
creases. Therefore, it can be considered that these results
support the hypothesis that a nature inspired swarm algo-
rithm such as ACO suffers from scalability issues.

Table 3: The MMAS results for fleet optimisation in terms of
customers serviced, reductions in fleet traversal time over the orig-
inal scheduling and the execution time.

Problem Job Time Traversal Execution
Serviced (%) Reduction (%) Time (mins)

Week 1 100.00± 0.00 33.62± 3.39 2.23± 0.10
Week 2 100.00± 0.00 30.70± 4.85 2.33± 0.10
Week 3 100.00± 0.00 31.48± 4.68 2.49± 0.10

Fortnight 1 100.00± 0.00 23.84± 7.46 6.56± 0.13
Fortnight 2 100.00± 0.00 28.64± 4.99 6.84± 0.10
Fortnight 3 100.00± 0.00 25.02± 4.49 5.76± 0.11

ThreeWeek 1 99.81± 0.18 −11.43± 7.62 13.09± 0.11
ThreeWeek 2 99.95± 0.11 7.33± 6.56 11.57± 0.15
ThreeWeek 3 99.86± 0.18 −2.36± 5.92 12.09± 0.15

Month 1 99.76± 0.18 −17.85± 3.75 19.75± 0.13
Month 2 99.91± 0.13 6.24± 3.47 21.57± 0.15

SixWeek 1 98.46± 0.57 −26.97± 6.76 39.54± 0.26

Addressing the ACO Scalability Issues
Given that the evidence seems to support the hypothesis that
ACO methods will struggle to scale to larger, increasingly
complex problems the next step is to attempt to address the
underlying reasons behind the poor performance. As has
been previously discussed, a key problem is the degree of
decision making required to form solutions vs. the proba-
bilistic nature of ACO. Therefore, it can be theorized that
if the degree of decision making is reduced, ACO may well
scale better. A novel modification to the ACO algorithm

known as Partial-ACO (Chitty, 2017) provides a mechanism
to achieve this. Essentially, this technique minimises the
computational effort required and the probabilistic fallibil-
ity of ACO by ants only considering partial changes to their
solutions rather than constructing completely new solutions.
In contrast to standard ACO algorithms, Partial-ACO oper-
ates in a population based manner much the same as P-ACO.
Essentially, a population of ants is maintained each of which
represent a solution to the given problem. Pheromone levels
are constructed from the edges taken within this population
of solutions with their associated qualities which are relative
to the best found solution. Partial-ACO also operates in a
pure steady-state manner to preserve diversity. An ant only
replaces its own best solution with a new solution if it is of
better quality. Hence, each ant maintains a local memory of
its best yet found solution.

This lbest memory enables an ant to consequently only
partially change this solution to form a new solution. To
partially modify its locally best found solution an ant simply
picks a random point in the solution as a starting point and a
random sub-length of the tour to preserve. The remaining as-
pect of the tour is rebuilt using standard ACO methodologies
in a P-ACO manner. This process is illustrated in Figure 2.
To highlight the computational advantage of this technique,
consider retaining 50% of solutions for a 100,000 TSP prob-
lem. In this instance only 50,000 probabilistic decisions now
need to be made and only 1.25 billion pheromone compar-
isons would be required, a reduction of 75%. An overview
of the Partial-ACO technique is described in Algorithm 1.

12 3 45 6 7 89 10 111213

Random Start

Point Random Length

1 3 46 7 1112 2 5910 138

Ants Local Best Solution

New Solution

Figure 2: An illustration of the Partial-ACO methodology.

Algorithm 1 Partial-ACO
1: for each ant do
2: Generate an initial solution probabilistically
3: end for
4: for number of iterations do
5: for each ant k do
6: Pick uniform random start point from lbest solution
7: Select uniform random length of lbest to preserve
8: Copy lbest points from start for specified length
9: Complete remaining aspect probabilistically

10: If new solution better than lbest then update lbest
11: end for
12: end for
13: Output best lbest solution (the gbest solution)
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Evaluating the Partial-ACO Approach
To test the hypothesis that reducing the degree of decision
making that ants need to perform will enable them to scale
to larger problems, Partial-ACO will be tested upon the same
problems as previously. The parameters used for the imple-
mentation of Partial-ACO are described in Table 4. Note the
lower number of ants in contrast to MMAS. The original
Partial-ACO work found a low number of ants was highly
effective. To ensure the same number of solutions are eval-
uated, Partial-ACO will use six times more iterations.

The results for the MDVRP fleet optimisation problem are
shown in Table 5 whereby it can be observed that now in all
problem instances, reductions in the fleet traversal times are
achieved by Partial-ACO over the commercial company’s
methodology. In fact, in many cases the improvement in the
reduction in fleet traversal time is significantly better than
that from MMAS, especially regarding the larger, more
complex, problems. Disappointingly though, the Partial-
ACO technique was also unable to service all the customer
jobs for the larger problems. In terms of execution timings,
Partial-ACO is slightly slower than MMAS when evalu-
ating the same number of solutions. This is caused by the
requirement to construct the edge pheromone levels at each
point as an ant moves through the graph G.

Table 4: Parameters used with the Partial-ACO algorithm
Number of Ants 32
Max Iterations 6,000,000
α 3.0
β 1.0

Table 5: The Partial-ACO results for fleet optimisation in terms
of customers serviced, reductions in fleet traversal time over the
original scheduling and the execution time.

Problem Job Time Traversal Execution
Serviced (%) Reduction (%) Time (mins)

Week 1 100.00± 0.00 32.29± 3.77 4.69± 0.49
Week 2 100.00± 0.00 22.39± 7.84 4.76± 0.45
Week 3 100.00± 0.00 28.75± 5.55 4.90± 0.50

Fortnight 1 99.98± 0.10 23.12± 6.30 9.87± 0.43
Fortnight 2 100.00± 0.00 27.27± 5.49 10.18± 0.38
Fortnight 3 100.00± 0.00 29.70± 6.64 9.09± 0.48

ThreeWeek 1 100.00± 0.00 17.13± 4.47 16.42± 0.71
ThreeWeek 2 99.91± 0.21 20.64± 2.36 14.54± 0.78
ThreeWeek 3 99.84± 0.27 18.00± 7.84 14.95± 0.49

Month 1 99.82± 0.18 19.60± 4.09 23.59± 0.83
Month 2 99.81± 0.22 20.25± 3.60 24.73± 1.08

SixWeek 1 97.48± 0.66 11.50± 5.78 41.71± 0.47

Enhancing Partial-ACO
Although the results of the Partial-ACO approach seemed
promising they did not significantly enforce the premise
that ants are less effective with higher degrees of decision
making. Analysing the Partial-ACO methodology, it could
be postulated that modifying a continuous subsection of an
ant’s locally best found tour could present problems in that
individual points within the solution cannot be displaced a
great distance. They are confined to a local neighbourhood
as to how they could be reorganised.

Ants Local Best Solution

New Solution

V1 J6 J5 J9 V2 J3 J7 J2 V3 V4 J1 J4 J8

V1J6 J5 J9V2 J3 J7 J2 V3V4 J1 J4 J8

Figure 3: An illustration of the Enhanced Partial-ACO methodol-
ogy whereby two vehicle schedules are preserved.

An enhancement to Partial-ACO is proposed which will
facilitate the movement of points in a given ant’s locally
best solution. To achieve this, it is proposed that instead
of one continuous segment of an ant’s solution being pre-
served and the remaining part probabilistically regenerated
as is the norm, a number of separate blocks throughout the
solution are preserved instead. In this way a point at one
end of a given solution could be moved to points through-
out the solution. This should help prevent the ants becoming
trapped in local optima. This methodology is actually well
suited to the fleet optimisation problem since each vehicle
can be considered as a stand-alone aspect of the solution.
Each preserved block could in fact be a vehicle’s complete
job schedule. Before attempting to construct a new solution
an ant can simply decide randomly which vehicle schedules
to preserve and then use the probabilistic behaviour of mov-
ing through the graph G to assign the remaining customer
jobs to the remaining vehicles as normally. Figure 3 demon-
strates the principle whereby it can be observed that two sec-
tions representing vehicle schedules are preserved by an ant
from its lbest solution with the rest built up probabilistically.

Table 6: The enhanced Partial-ACO results for fleet optimisation
regards customers serviced, reductions in fleet traversal time over
the original scheduling and the execution time.

Problem Job Time Traversal Execution
Serviced (%) Reduction (%) Time (mins)

Week 1 100.00± 0.00 34.75± 5.92 5.08± 0.86
Week 2 100.00± 0.00 38.60± 4.14 5.15± 0.81
Week 3 100.00± 0.00 36.00± 5.05 5.76± 1.00

Fortnight 1 100.00± 0.00 49.19± 0.57 10.75± 0.34
Fortnight 2 100.00± 0.00 50.18± 0.49 11.25± 0.22
Fortnight 3 100.00± 0.00 47.24± 0.80 10.21± 0.15

ThreeWeek 1 100.00± 0.00 46.55± 1.40 18.78± 0.14
ThreeWeek 2 100.00± 0.00 42.61± 0.92 17.48± 0.14
ThreeWeek 3 100.00± 0.00 44.21± 1.20 17.57± 0.16

Month 1 100.00± 0.00 34.80± 1.94 26.22± 0.35
Month 2 100.00± 0.00 36.05± 0.92 26.96± 0.20

SixWeek 1 100.00± 0.00 10.09± 4.16 42.36± 0.17

To evaluate the enhancement to Partial-ACO, it will be
tested against the same problems as previously using the
same parameters as described in Table 4. The results are
shown in Table 6 and when contrasted to those in Table
5 it can be seen that significant improvements have been
made over the standard Partial-ACO approach. Now, for
all problem instances including the most complex, all the
customer jobs have all been serviced. Furthermore, signifi-
cantly improved reductions in the fleet traversal times have
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Figure 4: The average reductions in fleet traversal timings over the commercial company’s methodology as the degree of permissible ant
modification is reduced for each problem instance. Execution timings are also displayed on the same graph.

been achieved. In fact, as much as an additional 29% re-
duction in fleet traversal time for the ThreeWeek 1 prob-
lem instance. With regards execution timings, block based
Partial-ACO is slightly slower which is caused by the over-
head of assembling blocks of retained solution rather than
one continuous section. Consequently, from these results it
can be inferred that when using solution preservation with
Partial-ACO, smaller random blocks should be preserved
rather than a continuous section to obtain improved results.

Reducing the Degree of Modification
The enhanced Partial-ACO approach has provided a signif-
icant improvement over standard ACO techniques such as
MMAS. However, recall that the original hypothesis sup-
porting the development of Partial-ACO was that poten-
tially, collectively intelligent meta-heuristics could fail to
scale well to larger problems because of the degree of de-
cision making that is necessitated. This hypothesis seems
to be borne out by the results achieved by Partial-ACO to
some degree. However, it is possible to test this hypothe-
sis to a greater extent by reducing the degree of permissible
modification an ant can make. Currently, an ant will ran-
domly preserve any amount of its locally best solution and
will modify the rest using the ACO probabilistic rules, ap-
proximately 50% of the solution on average. To avoid a large
aspect of redesign, a maximum degree of modification could
be imposed on an ant changing its locally best solution. This
will firstly have the benefit of increasing the speed of Partial-
ACO but also, if the hypothesis is correct, lead to improved
optimisation. As such, the previous experiments will be re-
run using a maximum modification limit ranging from 50%

of the solution down to 10% in increments of 10%. The im-
proved block preserving version of Partial-ACO will be used
and additionally, to prevent ants becoming trapped in local
optima with a small random probability (0.001) an ant can
modify its locally best found solution to any degree.

The results from reducing the degree of permissible mod-
ification of ants locally best solutions are shown in Figure 4.
These describe the reductions in fleet traversal times over the
commercial company’s own scheduling and execution tim-
ings. The percentage of customer jobs serviced is not shown
as in all cases 100% of jobs were serviced. A clear trend
can be observed for considerably improved reductions in
fleet traversal times whilst reducing the degree of permissi-
ble modification. This further reinforces the hypothesis that
due to the probabilistic nature of ants, the degree of decision
they are exposed to must be reduced in order for the tech-
nique to scale. Moreover, the larger the problem, the more
pronounced the effect as evidenced by the month and six
week long problem instances. Remarkably, for the largest
problem, reducing ants decision making by 90% yields the
best results with a four fold improvement in solution quality
fully enforcing the hypothesis that ants significantly benefit
from reduced decision making. A further added benefit from
reduced decision making of ants is faster execution times.
Not only does the Partial-ACO approach provide improved
reductions in fleet traversal times but can also achieve these
reductions much faster by reducing the probabilistic deci-
sions that ants need to make. In fact, from these results, it
can be stated that Partial-ACO is more accurate, much faster
and more scalable than standard ACO as a consequence of
the reduced decision making of ants within the algorithm.
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Conclusions
This paper has posed the hypothesis that although algo-
rithms inspired by the collective behaviours exhibited by
natural systems have been effective for simplistic human
level problems, they may fail to problems of much greater
complexity. Evidence supporting this hypothesis is provided
by applying Ant Colony Optimisation (ACO) to a range of
increasingly complex fleet optimisation problems whereby
degrading results are observed as complexity rises. A theory
postulated is that the degree of decision making required by
ants to construct solutions becomes too great. Given a small
probability of an ant choosing poorly at each decision point,
the greater decisions required to construct a solution and
available choices, the greater probability of reduced solution
qualities. Consequently, this paper applies the Partial-ACO
approach to reduce the decision making of ants. Indeed,
the Partial-ACO approach provided much improved results
for a complex fleet optimisation problem enabling ACO to
scale to much larger problems with reductions of over 50%
in traversal times achieved with the subsequent savings in
fuel costs for the given company and similarly significant
reductions in city traffic and hence vehicular emissions.

In fact remarkably, for the larger problems, reducing ants
decision making by up to 90% yielded the best results. Con-
sequently, this reinforces the posed hypothesis that for col-
lective behaviour algorithms to scale effectively, the degree
of decision making should be minimised as much as possi-
ble. However, further studies need to be performed with bio-
inspired algorithms besides ACO such as Particle Swarm
Optimisation (PSO) and Artificial Bee Colony (ABC) and
to consider problem areas other than fleet optimisation to
provide better supporting evidence to the hypothesis posed
by this paper.
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Abstract

The latest report from the Intergovernmental Panel on Cli-
mate Change (IPCC) estimated that humanity has a time win-
dow of about 12 years in order to prevent anthropogenic cli-
mate change of catastrophic magnitude. Green house gas
emission from air travel, which is currently rising, is possibly
one of the factors that can be most readily reduced. Within
this context, we advocate for the re-design of academic con-
ferences in order to decrease their environmental footprint.
Today, virtual technologies hold the promise to substitute
many forms of physical interactions and increasingly make
their way into conferences to reduce the number of travelling
delegates. Here, we present the results of a survey in which
we gathered the opinion on this topic of academics world-
wide. Results suggest there is ample room for challenging the
(dangerous) business-as-usual inertia of scientific lifestyle.

Background
The latest report from the Intergovernmental Panel on Cli-
mate Change (IPCC) estimated that humanity has a time
window of about 12 years in order to prevent anthropogenic
climate change of catastrophic magnitude (IPCC, 2018) and
calls for drastic actions in order to halve CO2 emissions by
no later than 2030. In light of these reports, a growing num-
ber of scientists rethinks their way of working and attempts
to implement a low-carbon agenda (Nevins, 2014; Nathans
and Sterling, 2016; Cobb et al., 2018).

As analyzed by Achten et al. (2013), professional mobil-
ity constitutes about 75% of the carbon emissions of a rep-
resentative PhD project, with 35% of total emissions being
associated with conference attendence alone.

Global impact of flying is immense—and it is rapidly in-
creasing. Recent reports establish aviation impact as high
as 2.1% of global CO2 emissions (Girling et al., 2018)—
roughly equivalent to Germany’s total emissions. Moreover,
this figure does not consider the enhanced impact of green-
house gas emissions at high altitude (Lee et al., 2009).

Universities are also dealing with the problem of avia-
tion (Nature editorial, 2015). For example, the University
of British Columbia has recently published a comprehen-
sive analysis of emissions due to flying—where conferences

are highlighted as the biggest contributor to the academic
environmental footprint (Wynes and Donner, 2018). Uni-
versity of California Los Angeles applies a tax to academic
flights—although this measure “doesn’t go too far” (Hasan,
2018). In addition to this, the University of Basel is consid-
ering mandatory train travel within some radius (Leybold-
Johnson, 2019). However, university-sustainability policies
do not necessarily tackle this issue and may “unintention-
ally encourage academic staff to fly more rather than less”
(Glover et al., 2017).

Already almost a decade ago, a multi-hub conference (i.e.,
talks/audience distributed among different locations) paved
the way for low-carbon conferencing strategies (Krumdieck
and Orchard, 2011).

Here, we present the result of a community survey on
the acceptance of different measures for implementing low-
carbon conferencing with particular emphasis on virtual
conferencing solutions. The survey has been performed for
the Artificial Life (ALIFE) community. Results may be con-
sidered in the future to adapt the ALIFE Conference to a
low-carbon path.

Results
Our online survey consisted of 28 questions that assessed re-
spondents general conferencing habits, their experience with
and evaluation of virtual technologies to substitute for pre-
sential conferencing, as well as acceptance of potential mea-
sures that conference organizers might put in place to reduce
the ecological impact of their event. The survey was open to
unrestricted anonymous participation over a period of four
weeks and had been announced through the mailinglist and
Twitter feeds of the International Society of Artificial Life
(announce@isal.groups.io), as well as the personal profes-
sional networks (email and Twitter) of the ALIFE 2019 or-
ganizers.

Survey participants
At the time of writing, the survey was completed by 170 re-
spondents. Figure 1 shows the profile of respondents. Most
of these work in academia (academic or student), 67% are
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Figure 1: Demographics of survey respondents: profes-
sional affiliation, gender, age, and top-most countries of res-
idence (80% of total).

male and the majority is within 30 and 50 years of age.
Since the survey was openly accessible, we devised sev-

eral question in order to determine respondents’ affiliation
with the Artificial Life community. Participants where asked
whether they are interested in Artificial Life (very much: 68,
somewhat: 48, not at all: 49), are working in Artificial Life
(fully: 26, partly: 63, not at all: 77), have attended ALIFE
or ECAL conferences (once: 10, 2-5 times: 32, 6-9 times:
14, more than 10 times: 5, never: 105), have publised in the
Artificial Life journal (once: 12, 2-5 times: 32, 6-9 times:
10, more than 10 times: 6, never: 107), or whether they
are members of the International Society for Artificial Life
(yes: 27, no: 130, do not know: 11). Since all of these are
exceptedly correlated, we simply chose the answer to the
question “Do you consider yourself as working in the field
of Artificial Life” as an indicator of the community affili-
ation. With this, our survey includes 89 respondents (52%)
from the ALIFE community and 81 respondents (45%) from
other research areas, which includes 5 respondents who did
not answer the respective question.

Conference attendance
Participants reported to attend an average of three to four
conferences per year, one or two of which typically being
intercontinental. All in all, conference attendence appears
to follow a Poisson distribution, i.e. we do not observe a
heavy tail distribution in our data sample (Figure 2).

Participants were asked to weigh their reasons for attend-
ing conferences (Figure 3). This establishes the priorities
of the respondents, which eventually need to be considered

Figure 2: Average number of conferences attended per year.

when devising sustainability measures, particularly regard-
ing inclusion of virtual remote participation. Presenting own
work, discovering new work, and catching up with work
done by colleagues were named as the three top priorities.
Employment considerations such as finding potential future
employers or employees where regarded less relevant. Ad-
ditional comments allowed respondents to name further rea-
sons, of which the following received the most mentions:
Keeping in touch with friends and colleagues; boosting aca-
demic reputation, e.g. through invited talks; being provided
with an environment that allows to completely focus on sci-
ence and develop new ideas; travelling to new places, espe-
cially when paired with vacations.

Participants were then asked to think about the last confer-
ence they intended to attend, but eventually decided against.
The main reasons for not attending were, in decreasing or-
der: too much travel involved (85 mentions), travel bud-
get exceeded (85 mentions), nothing to present (55), and
competing professional (53 mentions) or personal commit-
ments (42 mentions). Noteworthily, additional comments
completed this list with five mentions of climate impact as a
motif for not attending the conference in question.

If the conference in question would have allowed for vir-
tual remote participation, survey respondents reported that
they would have made use of this opportunity in order to:
follow broadcast contributions (136 mentions), present own
work as talk or poster (99 mentions), and discuss presen-
tations in comments or forums (85 mentons). Comparably
fewer people stated that they would have engaged in ple-
nary or one-to-one video conversations (53 and 47 mentions,
respectively). Only 29 respondents would have advertised
job openings in forums or chat rooms. However, this num-
ber might reflect the relative scarceness of job opportunities
more than the respondents willingness to advertise those.
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Figure 3: Main reasons to attend scientific conferences.

Evaluation of virtual conferencing solutions

The majority of survey respondents (66%) have never at-
tended a conference that was delivered virtually or had a
significant portion of remotely delivered content. Yet, 62%
reported that they did participate in webinar series and the
vast majority (92%) reports that they occasionally or regu-
larly follow video lectures and/or recorded talks related to
their field of work.

The majority of respondents (69 %) indicated that they
would only be interested in attending a conference virtually
at significantly reduced fee, while 14% were willing to pay a
slightly reduced fee, and another 16% would only participate
virtually if it were for free.

Participants were asked to evaluate (from strong advan-
tage to strong disadvantage) the effects of virtual remote
participation on different aspects of conferencing (Figure 4).
The top advantages are money and time saving, the ability
to reach a wider audience and to accommodate for conflict-
ing professional or personal duties. All these advantages are
deemed about equally strong. Additional comments added
the following benefits: Reduced climate impact (31 men-
tions); no travel inconvenience or visa problems (5 men-
tions); longer availability of recorded talks (5 mentions); im-
proved accessibility for delegates with disabilities (4 men-
tions).

Figure 4: Advantages and disadvantages of virtual confer-
encing.

The top disadvantages are the lost chance of unplanned in-
teractions, and reduced depth of interaction. Potential tech-
nical problems are deemed as less significant, as is the lost
chance to experience the conference location. Additional
comments added the following concerns: virtual respon-
dents miss out on networking opportunities, including af-
ter hour activities (11 mentions); harder for virtual partic-
ipants to fully commit to the event (10 mentions); remote
presentations being less engaging for presential delegates (3
mentions); Another important concern was that broadcasting
and recording of talks discourages presentation of work-in-
progress and unpublished material, as well as open discus-
sion about presented work.

The survey then asked respondents to evaluate how well
virtual conference solutions can deliver the aspects of sci-
entific conferences (from “much better” to “much worse”).
Results are shown in Figure 5. As expected, virtual solu-
tion are deemed to perform well (in some cases even better
than presential conferencing) when it comes to delivering
technical content (seeing what is important to the commu-
nity, discovering new work, presenting own work), but fall
short when it comes to supporting social interaction (finding
potential future employers or employees, coordinating with
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Figure 5: How well can virtual technologies deliver different
aspects of conferences compared to presential participation?

collaborators, and getting to know new people).
Interestingly, when crossing these answers with the ones

to the question on the importance of various conferencing
aspects, it can be concluded that the functions that are seen
as most important (see Figure 3) are also deemed to be de-
livered equally well or only slightly worse by virtual confer-
encing technologies compared to presential conference at-
tendance.

The survey also included several open questions about re-
spondents’ experience with virtual conferencing technolo-
gies and asked what they saw that worked particularly well,
what could have been improved where things went wrong,
and where they see the biggest barriers that would need to
be overcome in order to make virtual conferencing an equal
or superior option. Feedback from these questions gener-
ally fell into three categories: technical, organizational, and
social.

On the technical side, the software platform used for
broadcasting and/or video conferencing is crucial as it has
been responsible for many of the reported problems. If re-
mote participants are to interact virtually with the presen-
tial audience, virtual conferencing solutions should not re-
quire installation of proprietary clients, particularly if they

are not equally well supported on all major operating sys-
tems. Internet connection, both video and audio equipment,
but especially the latter, need to be of sufficient quality to
not impede the conversation. Similarly, the choice of light-
ning can significantly influence virtual conferencing experi-
ence. Solutions need to be supervised by well trained techni-
cal support, and organizers should provide alternative ways
of access and/or backup recordings if part of the technol-
ogy becomes unreliable. If all requirements are met, several
survey respondents feel that virtually delivered or received
presentations can actually be superior to presential ones, as
the former is also often affected by poor sound quality and
visuals in the venue.

Regarding modes of presentation, respondents showed
some divide as to whether life presentation or pre-recorded
presentation leads to a better delivery of a remote talk. Life
presentation is generally reported to be more engaging, but
more susceptible to technical issues. In both cases, delivery
of a talk to the camera is generally unsympathetic to peo-
ple’s audience-oriented delivery style, and the lack of audi-
ence feedback renders remote delivery less engaging. In a
life setup, this might be addressed by streaming a feed of
the audience to the presenter. However, lack of engagement
is ultimately not a technical problem but is often due to the
speaker himself not feeling present at the event. Several re-
spondents advocate for pre-recorded presentations followed
by life Q&A sessions.

For virtual life interaction, special focus needs to be
placed on enabling interaction between presential and vir-
tual participants, as interactions can easily appear unsatis-
fying due to time lags and reduced communication band-
width of virtual participation solutions. While some survey
respondents advocate for questions and answers to be mod-
erated by the chair (for example using technologies such as
sli.do), other respondents prefer the opportunity for a direct
dialogue with the presenter. A particular difficulty is to in-
clude virtual participants in workshops, where the focus lies
on discussion rather than delivery of presentations. On the
other hand, change between different interaction formats can
also support the exchange of ideas and current affairs: Dis-
cussions that start in a Q&A session or virtual chat can read-
ily be followed up in specialized discussion forums, and vir-
tual break-out sessions can reconvene in plenary.

Independent of virtual participation, most respondents
valued the recording and streaming of presentations, both
for their potential to reach a wider audience as well as for
their longevity. The latter being especially valuable as con-
ferences with parallel tracks do not allow for participants
to follow the whole programme. On the flip-side, wide
and long-lasting availability of conference contributions can
make participants less willing to present work in progress
and unpublished results, which can have a detrimental im-
pact on the quality of the discussion.

In line with the numeric evaluation shown in Figure 5,
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the most mentioned biggest barrier that would need to be
overecome in order to make virtual conferencing an equal
or superior option to presential conferencing is the lack of
serendipitous interactions, unplanned face-to-face conversa-
tions, and informal networking activities. This was most of-
ten expressed as the lack of “virtual hallway tracks”, “vir-
tual lunches” and after hour activities. No respondent hinted
towards any existing technology with a potential to enable
such interactions to a meaningful extent. As a consequence
of falling short in this important conferencing function, sev-
eral respondents expressed their worry that opening tradi-
tional conferences for virtual participation might introduce a
two-class scientific society, where virtual participants (those
who are unable or unwilling to fly more, presumably mainly
early career scientists) are disadvantaged compared to pre-
sential attendants.

A recurrent suggestion that might compensate for the lack
of social interactions in virtual conferences was to host sci-
entific events in several parallel local venues, which are then
linked up using virtual conferencing technology. This form
of conferencing is able to create an opportunity for full im-
mersion, social networking and direct physical interaction,
while still reducing the amount of long distance air travel.

Acceptance of sustainability measures

Finally, we asked participants to evaluate different measures
that conference organizers might install in order to reduce
the ecological impact of their event (Figure 6). Most respon-
dents strongly or slightly welcomed the inclusion of virtual
remote talks and poster presentations, despite all difficulties
expressed in the previous sections. In general, respondents
demonstrate a higher acceptance of optional measures and
incentives (such as registration discounts for train travel),
whereas mandatory measures (such as exclusively vegetar-
ian and sustainably sourced catering) received lower sanc-
tioning, particularly when connected with increased regis-
tration fees. Carbon offsetting was ranked equally low (with
the optional measure being slightly more accepted than the
mandatory one), likely due to its controversial benefit. In-
stalling presential participation quota meets the lowest ac-
ceptance by survey respondents, particularly when corre-
lated with travel distance or when quota are installed per
research group. In general, all but these last two sustainabil-
ity measures received more supportive than opposing evalu-
ations.

Participants were more inclined to accept hard presential
participation quota when virtual participation is notably dis-
counted (Figure 7). 61% of the respondents would welcome
enforced presential participation limits if connected with a
significant registration discount and 72% would welcome
the measure if virtual presentation were at no cost.

Figure 6: Acceptance of different sustainability measures
for scientific conferences

Figure 7: Acceptance of hard physical attendance quota for
different registration schemes

25



Figure 8: Different acceptance of flight-distance-correlated
presential participation quota within the ALIFE community
and other respondents.

Difference between the ALIFE community and
other survey respondents
We have analyzed all survey results with respect to differ-
ences between responses from self-declared ALIFE commu-
nity members against the rest of the respondents. For almost
none of the questions could a significant difference be no-
ticed.

The only exception is that ALIFE community members
show a stronger opposition than other respondents towards
conference organizers imposing flight-distance-correlated
presential participation quota (Figure 8). This might be due
to a number of reasons: Firstly, ALIFE is a small community
that holds essentially one international conference per year.
If people from certain origins are discouraged to participate
presentially, they cannot be offered an alternative closer to
their country of residence. Secondly, because the commu-
nity is relatively small, there might be a stronger desire to
physically co-locate all its members – something that is un-
feasible for larger scientific communities. Thirdly, ALIFE
is also a very diverse community. Co-locating its members
might help to keep the community coherent and prevent the
loss of exchange between subfields of Artificial Life. Lastly,
we cannot exclude a sampling bias due to the way survey
respondents had been recruited. If this were the case, it is
nevertheless interesting that such bias shows most strongly
when it comes to this particular sustainability measure.

Discussion
We have presented results from a community survey that as-
sessed the acceptance of virtual conferencing technologies
and other sustainability measures in the ALIFE community
as well as the general scientific community. In summary,
our results show that scientists are rather welcoming of al-
most all suggested measures that help us to lower the eco-

logical impact of academic conferences. Measures are more
accepted when they are presented as incentives rather than
compulsion.

The most positive feedback was on the inclusion of re-
mote participation by means of virtual talks and poster pre-
sentations, as well as making these presentations accessible
via streaming and/or broadcasting. This is very encourag-
ing, as it is arguably the most effective measure to reduce the
ecological cost associated with conferencing, i.e., the impact
of air travel.

At the same time, there is strong concern that virtual con-
ferencing techniques can only deliver the scientific content
that is presented, but fail to cover other important aspects
of conferencing, primarily the opportunity for personal net-
working and the opportunity to fully engage in the confer-
ence. There is the associated fear that the spreading of vir-
tual conferencing will deprive early career researchers from
their professional opportunites. Quoting one of the survey
respondents: “The young need to travel: for their own sake
and for the sake of the elder.” While we fully agree with
this sentiment, we point out that opportunities for travel are
already constrained by boundary conditions such as travel
budget limitations, competing professional or personal com-
mitments such as child care obligations, or disabilities. Vir-
tualization has the potential to make scientific conferences
more inclusive by lowering these barriers. In a time, where
a growing number of academics experiences a personal con-
flict between their ecological ethos and a perceived duty to
travel, virtual conferencing technologies can empower aca-
demics to decide more freely how often and how far to travel,
without sacrificing their engagement with the community
entirely.

The enforcement of presential participation quota has
received the lowest acceptance among respondents, both
within the ALIFE community as well as the wider scien-
tific audience. This is unfortunate as it is the only proposed
measure by which conference organizers can guarantee that
their event does not exceed some given ecological impact
target. Yet, the survey results reveal that academics are more
receptive for such enforcements, if alternative remote par-
ticipation comes with significant monetary incentives or is
offered for free.

The results of this survey will be taken forward, and will
be closely considered in the organization of ALIFE 2019. As
this years’ ALIFE conference will explore the theme “how
Artificial Life can help solve societal challenges”, we are ea-
ger to trial a variety of solutions toward low-carbon confer-
encing in the hope to make a noticable real-world difference.
We understand that changing the habits of a community is an
undertaking that can only show success, if done in line with
the communities sentiments and agenda. Therefore, we re-
gard our efforts merely as starting point of a long-term pro-
cess that needs to be performed in discussion with the AL-
IFE community, the International Society of Artificial Life
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(ISAL), as well as future conference organizers. The pre-
sented survey is the start of this discussion.
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Abstract 

One of the research questions in ALife that could contribute 
greatly to social sustainability issues is how dynamic meta-
states of a complex system may be sustained through continual 
adaptive changes, or suppleness (Bedau, 1998). The idea of 
sustainability by suppleness is fundamentally different from 
conventional ideas of sustainability by robustness or resilience, 
and it is directly linked to open-endedness, a topic that has 
recently attracted significant attention in the ALife community 
(Taylor et al., 2016). Understanding and implementing 
mechanisms of suppleness and open-endedness may provide 
novel perspectives of many of today’s socio-economic, socio-
ecological and socio-technological problems that call for new 
strategies to cope with inevitable environmental/contextual 
changes. This short essay provides a non-exhaustive list of 
research questions on this topic and encourages ALife 
researchers to play a leading role in this interdisciplinary 
collaboration endeavor. 

 
Sustainability of a dynamical system is often conceptualized 

and characterized as either robustness or resilience in the 
literature. Robustness implies persistent stability, rigidness and 
outright tolerance of a system against perturbations. A robust 
system’s state remains at or near a stable fixed point without 
much deviation from it (Fig. 1(a)). The mechanism that 
realizes sustainability of a robust system is a strong, quick 
negative feedback which eliminates any small perturbation 
before it grows and takes the system away from its normal 
state. There is little room for adaptation in a robust system. 

Resilience implies a more elastic, longer-term stability than 
that implied by robustness. A resilient system’s state may 
undergo large drifts from the normal one occasionally, but 
temporary accommodation and gradual recovery eventually 
bring the system back to normal (Fig. 1(b)). The mechanism 
that realizes sustainability of a resilient system is elasticity (i.e., 
capability of temporary accommodation) and restoration (i.e., 
capability of gradual recovery). Like robustness, resilience is 
based on goal-oriented negative feedback, which is much 
slower and more moderate than those of robust systems. 

As seen above, robustness and resilience are, in a sense, 
similar – robust systems may show resilience at a finer scale, 
while resilient systems may show robustness at a coarser scale. 
The distinction between the two is partly based on the scale of 
observation and control being used.  

The sustainability of real biological or ecological systems, 
however, is not necessarily based on either robustness or 
resilience. Although those systems can definitely be robust and 
resilient, their states never remain at a single place in a long 
term. Instead, they continue to change dynamically due to 
complex interaction and evolutionary adaptation of system 
components. What is sustained over a long period of time in 
those systems is not a specific normal state, but the ability to 
demonstrate a unique, dynamic, emergent meta-state, such as 
“alive”, “active”, “productive”, and so on. Some of those meta-
states may be readily quantifiable and measurable, while others 
are more qualitative and may be hard to quantify. 

By shifting our focus from the system’s specific desired 

(a) (b) (c) 

   

Figure 1: Illustrative visualizations of three different forms of sustainability. (a) Robustness. (b) Resilience. (c) Suppleness. Horizontal 

axes show the progress of time, while vertical axes show the system’s states represented by the aggregate states of its components.  
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state to its dynamic meta-state, we may consider yet another 
characterization of sustainability, which we call suppleness. 
Bedau (1998) defined supple adaptation as “an automatic and 
continually creative evolutionary process of adapting to 
changing environments”. We can conceptualize suppleness as 
a novel form of sustainability fundamentally different from 
robustness or resilience discussed above. It may inform us 
about the sustainability of our social systems from a different 
perspective. 

Suppleness implies the maintenance of a dynamic meta-
state of a system by continual adaptive changes of the system 
(and its components), where the system’s actual state drift 
greatly and may not even come back to the original place in its 
state space (Fig. 1(c)). There is no strong negative feedback to 
a normal state in action, while inputs are continuously provided 
to the system from an ever-fluctuating environment. Since 
there is no reference point to converge towards, the dynamics 
of a supple system are necessarily open-ended, which may 
result in divergent, exploratory, or even creative processes 
unless the environment is too selective. Understanding and 
creating such open-ended processes is now widely recognized 
as one of the major challenges in the ALife community and the 
AI community at large (Taylor et al, 2016; Stanley, 2018). 

The concept of suppleness and its significance for the 
maintenance of dynamic meta-states of complex systems have 
already been discussed in various forms. The Red Queen 
principle discussed in evolutionary biology (Van Valen, 1973) 
is a classic example, which illustrated the need of continual 
adaptation for a dynamic evolutionary system to survive in co-
evolutionary environments. 

Many of today’s socio-economic, socio-ecological and 
socio-technological problems arise in rapid environmental/ 
contextual changes, such as global warming, economic 
volatility and political instability. In the presence of such large-
scale changes, an attempt to bring the system back to its 
original state, which is the central idea of sustainability by 
robustness or resilience, may no longer be a viable option from 
a practical viewpoint. Instead, these problems call for new 
strategies to cope with inevitable environmental changes.  

Here we argue that the concept of suppleness (and open-
endedness) discussed above will have significant implications 
for today’s social problems that are all situated in rapidly 
changing environments. Meanwhile, applications of the 
concept of suppleness to social sustainability issues has not 
fully developed yet in either science or practice. There are a 
number of open questions to be investigated. Here are some 
examples: 

1. How can suppleness be modeled theoretically/ 
mathematically? How to formally define sustainability by 
suppleness? 

2. What are appropriate, meaningful, and/or useful ways of 
characterizing dynamic meta-states sustained in a supple 
system? 

3. What are the environmental conditions for suppleness to 
be an effective strategy for the system’s sustainability? 
Does our current natural and social environment meet 
those conditions? 

4. What are potential risks of being supple? 

5. Are all biological systems supple, or are there exceptions? 

6. Among a variety of different social, political and 
economic systems human being has developed in its 
history, which are suppler than others? Are/were they 
functioning effectively or not? 

7. Can suppleness help improve creativity, decision making 
and problem solving by human individuals or groups? 

8. Has the recent development of IT and social media made 
our society suppler or not? 

9. Rapid concentration of resource and information in a 
small number of entities is ongoing in many scenes of our 
society. Is it for or against social suppleness? 

10. Is there any fundamentally different form of social 
mechanisms (policies, technologies, customs, etc.) that 
could significantly enhance social suppleness? 

11. How can we make the financial systems suppler to 
prevent further financial crises from happening? 

12. How can we make the social infrastructure (e.g., power 
grid, water supply, transportation, the Internet) suppler? 

13. What are the implications of suppleness for global climate 
change? 

14. How can we improve the current political decision making 
mechanisms using the concept of suppleness? 

15. Is the current form of science and engineering supple 
enough to promote new discovery and innovation? If not, 
what should be done? 

These research questions are by no means intended to be 
exhaustive. Readers are encouraged to explore other directions 
of inquiry and come up with more questions and answers. 

We believe ALife and other related disciplines have a lot to 
offer to the research on suppleness and open-endedness for 
social sustainability. Models and simulations of nonlinear 
dynamical systems, evolutionary systems and agent-based 
systems will likely play an essential role in driving this 
research. Equally important will be evolutionary biology and 
mathematical biology, where numerous models of evolutionary 
adaptation have already been developed and studied 
extensively. Moreover, insight into practical social applications 
will be obtained from management and organizational sciences 
that study innovation, creativity, decision making and social 
networks. ALife researchers can and should play a leading role 
in promoting such interdisciplinary collaboration endeavor. 
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Abstract

Cities are pervasive and they are some of the most powerful
ecosystems of the Anthropocene. They have been around for
almost 10000 years, and by the year 2050 most humans will
be living in a city. Although it is known that cities have an
impact to different scales, from the very local to the whole
Earth System, its implications are far from being understood.
Studying cities as organismic systems has been a productive
strategy and favourable to complex adaptive systems analy-
ses. However, the organismic view is to a great extent me-
taphorical, focusing exclusively on human activity, instead I
argue for an approach that actually considers life processes as
constitutive to them. In this extended abstract I suggest a con-
ceptual framing for a synthetic approach to cities in which life
processes are paramount for their understanding. Specifically,
I will focus on two aspects: 1) the human-teleological compo-
nent of cities and 2) the role of life processes organisationally
closing the city, and bringing forth a self-generated unity and
identity and the conditions for its own evolution. I believe
that due to the increasing interest of the ALife community in
tackling social issues, ALife unique insights and methods can
be of great value in understanding cities and dealing with the
social-ecological challenges they pose. A definition of cities
from a synthetic perspective can help the ALife community
to put into action its epistemic arsenal.

Introduction
Cities are equally fascinating and highly challenging pro-

cesses to academics and policy makers. Their awe is well
justified because cities display complex dynamics, affecting
their inhabitants –humans and non-human, with an immen-
se impact on their surroundings and contributing to global
change at the level of the biosphere (Mills, 2007). Howe-
ver, given the current environmental conditions, understan-
ding cities should also help to steer them towards more sus-
tainable pathways and to be resilient once they’re on track
(Romero-Lankao et al., 2016).

At present, it is quite common to approach cities from
a systems and integrative perspective (Bretagnolle et al.,
2009). For example Sustainability science in general con-
ceptualize cities as social-ecological systems with complex
adaptive dynamics. It is important to acknowledge those dy-
namics as traversing the human-ecological dimensions, be-

cause it re-frames the we understand our relation with the
biosphere. It also points directly to the need to scientifically
investigate this “epistemic object” under new light with the
double objective to understand it, as well as to steer it. Ho-
wever progressive this vision, it still falls short since the sys-
tem is seen as a composite of the social with the biophysical
–with some exceptions such as Alberti (2016)-. Also, alt-
hough it acknowledges it, it struggles in integrating the hu-
man intentional and goal-directed behaviour as constitutive
to the city as a social-ecological system. The ALife commu-
nity is no stranger to either Life and teleology. With its epis-
temic and methodological emphasis on synthesis, it seems a
good candidate to suggest an integrative view of cities that
can properly address such complications. In this sense, the
concept of urban system here advanced is that of an ecosys-
tems mediated by human-built material –green, blue and
grey1- life-worlds that are functionally integrated (organi-
sational closure) by multi-scale life processes –e.g. primary
production, nutrient cycling, and niche construction among
others.

Human material life-worlds, niche
construction and the city organisational

closure by life-processes
No doubt, cities are a collection of purpose and designed

material transformations that cannot be neglected in any de-
finition of an urban system. As any other organism, humans
build their niches. Humans transform their material world
into blue and green, and in the case of cities, into grey in-
frastructure. Those transformations can be intentional –with
added unintentional consequences-, and through processes
of reflexivity, design itself is object of transformations and
intentions.

1In very simple terms, green infrastructure refers to ’nature-
based’ transformations to the urban landscape, such as parks, tree
rows, and vertical gardens. Blue refers to water-based infrastructu-
re like city lakes and constructed wetlands. Green-blue infrastruc-
ture networks –as sometimes are referred- are important because
they conserve ecosystem values and functions. Gray infrastructure
would include things like buildings, roads, pipes, power networks.
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Yet, human-environment interactions are not unidirectio-
nal. Such relationships are both ways in which the environ-
ment contributes substantially to the organism-environment
dynamics. The environment imposes a set of constraints and
it offers a space of possibility, both defined by its materiality,
from its physics to its geo-bio-ecological processes. This is a
relationship known as niche construction: the organism mo-
difies the environment that in turn will modify it back (La-
land et al., 2016).

The interaction implied in the process of niche construc-
tion grounds the idea that an environment is not simply the
physical properties of things as now conceived by physical
science. Instead, they are ecological, in the sense that they
are properties of the environment relative to an animal or
organisms in general (Reed and Jones, 1982). When the in-
teraction is meaningful to an organism, then we are speaking
of a life-world. In other words, a life-world is the world that
is meaningfully experienced by an organism and its commu-
nity. Cities are ecosystems the are possible as they revolve
around a human-built material life-world. This life-world,
due to its materiality transcends individuals & generations
in a way that it becomes part of the process known as ni-
che inheritance, that scaffolds the reproduction of practices,
traditions, and culture.

The material life-world becomes the axis without which
the urban ecosystem wouldn’t be possible. That is because
human induced transformations to the environment become
an opportunity for other organisms to create their own niche,
in this sense, niche inheritance also transcends humans and
affects other organisms.

As humans develop their life-world, other organisms do
as well. Such life-worlds can be conceptualized as niches.
In a word, a niche is more than a habitat it is also the way
an organism lives it. A niche then, is formed by the network
of opportunities for action –also known as affordances- that
an environment offers to an organism in relation to the or-
ganisms exploratory modes and skills, therefore a niche is
always meaningful to an organism (Reed and Jones, 1982;
Heras-Escribano and De Pineado-Garcı́a, 2018).

I suggest that niches also bundle together forming a web.
As organism modify their environment they create opportu-
nities for other organisms niche construction processes, e.g.,
the cables of urban energy supply –a human modification to
the environment- affords squirrels to move all over the city.
The central idea is that niches, by connecting multiple levels
of organization, they channel the flows of energy, matter and
information and sustain and integrate the system as a whole.

According to Mossio and Moreno (2010), organisational
closure is about how a system assures the conditions for its
own production. In the case of ecosystems in general, orga-
nisational closure is attained through constant production of
a web of niches. The ongoing production of such web can
be seen as a constitutive life process that generates the con-
ditions for the continuation of its own unity and identity, as

for its components and system level evolution.

Conclusions
Human-built material life-worlds –green, blue and grey-

and closure by life-processes bring cities to life, . . . lite-
rally. There is an asymmetry that has to be acknowledged
openly: when compared to the actions of other organisms,
human material life-worlds impose the dominant constraints
on flows of energy, matter & information that sustain the city
as an ecosystem; that is why these are among the most im-
portant ecosystems in the Anthropocene. On the other hand,
cities would be sterile and inert if it were not because of its
dynamicity brought by the complex web of interdependent
life forms, creating and connecting niches.

I believe that the ALife community has too much to of-
fer to tackle pressing societal and environmental problems,
such as those present in urban contexts. In Langton’s line of
thought, I believe that social, cultural, economic or political
phenomena are a continuation of Life. The operationaliza-
tion of this idea is highly relevant if we are interested as
a community in ALife becoming part of the solution. This
is why I am interested in advancing such a primitive and
highly speculative definition of cities with the hope of brin-
ging closer to the ALife community the problem of cities as
meaningful complex geo-eco-systems.
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Abstract

Affordances are directly perceived environmental possibili-
ties for action. Born within ecological psychology, they have
been proposed to be one of the main building blocks to ex-
plain cognition from and embodied and situated perspective.
Despite the interest, a formal definition of affordances in in-
formation theory terms that would allow to exploit their full
potential in models of cognitive systems is still missing. We
explore the challenge of quantifying affordances by using
information-theoretical measures. Specifically, we propose
that empowerment (i.e., information quantifying how much
influence and control an agent has over the environment it can
perceive) can be used to formally capture information about
the possibilities for action (the range of possible behaviors of
the agent in a given environment), which in some cases can
constitute affordances. We test this idea in a minimal model
reproducing some aspects of a classical example of body-
scaled affordances: an agent passing through an aperture. We
use empowerment measures to characterize the affordance of
passing through the aperture. We find out that empowerment
measures yield a similar transition to the one found in exper-
imental data in humans in the specialized literature on eco-
logical psychology. The exercise points to some limitations
for formalizing affordances and allows us to pose questions
regarding how affordances can be differentiated from more
generic possibilities for action.

Introduction
Ecological psychology and affordances
According to ecological psychology, affordances are possi-
bilities for action that we directly perceive in our environ-
ments. These possibilities for action emerge from the re-
lations between the capacities of agents and elements of the
environment. The term ‘affordance’ was coined by J. J. Gib-
son and refers to the complementarity of organism and envi-
ronment (Gibson, 2014, 119).

Ecological psychology is an embodied, situated, and non-
representational approach to cognition that presents itself as
an alternative to behaviorism and cognitivism. The way eco-
logical psychology traditionally analyzes perception is not
by focusing on how nervous systems work, but on how or-
ganisms explore the environment so as to find opportunities
for acting (the above-mentioned affordances). In this view,

affordances are key objects of perception from an embodied
and situated approach to cognitive science, since they are
relations between the bodily capacities of agents and certain
environmental elements (Chemero, 2009; Heras-Escribano,
2019). These relations can sometimes be mathematically
quantified or measured in agent-related units (Warren, 1984;
Warren and Whang, 1987), which means that it is possible to
offer a scientific account of these relations that can be use-
ful for other embodied and situated approaches (the enactive
approach, dynamical systems theory, etc.).

While affordances are defined as ‘possibilities for action’,
not all possibilities for action are affordances. For example,
since affordances need to be perceived, activities like ab-
stract thinking or calculating are not considered as such. On
the other side, not all perception is of affordances: colours
or sensations are not affordances either. Thus, affordances
are opportunities for action in the sense that certain aspects
of the environment that we perceive are in relation to our
movement or to our bodily features, like a bottle to grab, a
doorknob to turn, or a door to pass through. In the following
sections, we will call ‘possibilities for action’ or ‘range of
possible actions’ to those movements that the agent can per-
form (exploration, deambulation, etc.). Note that this range
of movements may include those that the agent performs
when taking advantage of a directly perceived affordance.

Affordances are usually classified either as action-scaled
or body-scaled affordances (Fajen et al., 2009). Action-
scaled affordances are those opportunities for acting that de-
pend on the behavior of the agent. For example, how fast
an organism moves in a particular location determines the
possibilities for acting for that organism (e.g., whether the
organism is capable of avoiding moving obstacles). On the
other hand, body-scaled affordances relate a particular di-
mension of the body of an organism to a particular envi-
ronmental element. Although there are many examples of
body-scaled affordances in the literature, here we are going
to focus on the contributions of W. Warren and colleagues
(Warren, 1984; Warren and Whang, 1987) for describing ex-
perimentally the affordance of climbability and that of pass-
ing or walking through apertures.
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A particular aspect of Warren’s contributions is that they
explain how we perceive these affordances from an ecologi-
cal perspective. Based on the active capacities of the organ-
ism as a whole, using an agent-related metric, they highlight
the relational or complementary aspect of the organism-
environment engagement.

Warren (1984) provided one of the first experimental ac-
counts of the body-scaled affordance of climbability, one
that allows organisms with legs to step on obstacles. He ar-
rived to the conclusion that a step is climbable for a human
if its height is less than 0.88 times the height of that human’s
leg regardless their body size (Heras-Escribano, 2019, 53).
This way of describing that a step is climbable for a human
emphasizes the agent-environment interaction inasmuch as
it does not rely on absolute metric (meters, inches) for ex-
plaining in mathematical terms the affordance of climbabil-
ity, but on agent-related metric; that is, the specific leg size
of each agent.

Warren and Whang (1987) used the same agent-related
metric for explaining how humans perceive the affordance
of walking or passing through apertures. They determined
that an agent can perceive the possibility of walking through
an aperture if the aperture is at least 1.3 times the human’s
width for shoulder rotation regardless their body size (War-
ren and Whang, 1987, p. 381). Again, the authors offer an
agent-related metric for quantifying the possibility for acting
of a particular agent.

Exploring affordances with information theory
Although there is experimental evidence in favor of the
quantification of affordances, there is still an open debate
regarding their ontological status.1 This has certain impact
in the scientific practice, since there is no unique or sin-
gle formal definition of affordances that is widely shared by
the scientific community. In particular, a quantitative formal
definition of affordances suitable to be applied to modelling
simulations is lacking.

Here, we explore the challenge of interpreting affordances
formally by characterizing the possibilities for action that

1There is a long debate regarding the ontological status of af-
fordances. For example, Reed (1996) considered that they were
aspects of the environment that exert selective pressure, while
Chemero (2009) claims that affordances are relations between the
abilities of agents and some environmental aspects. Here we of-
fer a neutral approach to the ontology of affordances, although we
could claim that affordances here could be understood as being part
of a dispositional pair that include the agent’s abilities and cer-
tain environmental aspects. This dispositional approach makes it
partially compatible with Chemero’s (2009) approach because an
ingredient of a dispositional approach is a relation as such, but a
disposition is more than a relation: it includes a dimension of actu-
alization that alters the organism-environment system, which with
time it may lead to unexpected changes that may affect the his-
tory of the system (Heras-Escribano, 2019; Heras-Escribano and
De Pinedo-Garca, 2018). For further discussions on the ontology
of affordances, see (Heras-Escribano, 2019, Chapter 3)).

constitute affordances using measures from information the-
ory. Ecological information is crucial for the notion of affor-
dance, as it allows embodied agents to perceive affordances.
Take, for example, the case of vision: from an ecological
perspective, light becomes ecological information when it
forms a heterogeneous structure or pattern caused by the re-
flections and reverberations in the environment. Regarding
the source of light and the position of the agent, there are
differences of intensity in that pattern that, in turn, produce
differences in what the organisms perceive (Gibson, 2014,
45-46). This structure of ecological information shows the
agent the available affordances of the environment as the
agent explores it (Heras-Escribano, 2019, 30-45). Given
the complexity of the light patterns and the variety of el-
ements and variables that we can find in our natural envi-
ronment, it is almost impossible to reproduce in the exact
same terms all these aspects of ecological information and
affordances in modelling simulations. However, we can re-
produce some minimal aspects of it in information-theoretic
terms (as when objects get bigger as they get closer to the
visual field of the modelled agent, for example).

We aim to explore what an information-theoretic inter-
pretation of affordances would imply, and what possibilities
and limitations are entailed by such an interpretation. This
exploration will use minimal models reproducing some as-
pects of well-known experimental setups, which means that
what we offer here is a simplification of real life situations
that also lacks of several aspects taken into account within
the ecological approach. Nevertheless, we think such mod-
els are still able to offer both some of the relevant aspects
about the proposed problem and important insights about
the idea of interpreting affordances in information-theoretic
terms.

Gibson claimed that Shannon’s information theory (Shan-
non, 1948) was inadequate to capture ecological informa-
tion (Gibson, 2014, 231-232). Nevertheless, we understand
that what he rejected was a particular version of informa-
tion theory that included the channel metaphor, because he
interpreted that it implied a tacit commitment to represen-
tationalism and cognitivism. In addition, since Shannon’s
information measures are based on correlational regularities
between variables (they cannot directly capture causal re-
lations), they seem to be limited for measuring ecological
information about causal effects of an agent’s actions. How-
ever, there are modern formulations of information theoretic
measures that are more adequate to describe possibilities for
action in an agent. In this vein, we suggest that an interven-
tionist notion of causality in the sense of Pearl (2009) and the
notion of causal information flows (Ay and Polani, 2008) are
better suited for characterizing ecological information.

Specifically, we propose that there is an information-
theoretic measure that is able to capture possibilities for
action that constitute affordances: the measure of empow-
erment. Empowerment (Klyubin et al., 2005; Salge et al.,
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2014) is defined as the channel capacity between an agent’s
actuators A for a window of time of size n starting at time t,
and its own sensors S at time t + n

E = C(A[t:t+n−1] → St+n) (1)
≡ max
p(a[t:t+n])

I(A[t:t+n−1];St+n) (2)

where A[t:t+n−1] = {At, At+1 . . . At+n−1} and p(a[t:t+n])
is a probability distribution of the possible states of
A[t:t+n−1]. I(X;Y ) is the mutual information between X
and Y , which is defined in terms of entropy and conditional
entropy of the variables

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y ) (3)

H(X) = −
∑

x∈X
p(x) log p(x) (4)

H(X|Y ) = −
∑

y∈Y
p(y)

∑

x∈X
p(x|y) log p(x|y) (5)

In a deterministic world, i.e., one where each ac-
tion leads to one specific outcome, we have that
H(St+n|A[t:t+n−1]) = 0 and empowerment can be simpli-
fied as:

E = max
p(a[t:t+n−1])

H(St+n) = log|SA| (6)

where SA = {st+n ∈ S|∃a[t:t+n−1] ∈ A :
p(st+n|a[t:t+n−1]) ≥ 0} is the set of different sensor states
that can be reached from time t to time t+n with all possible
combinations of available actions.

In this article, we propose that empowerment measures
can be used to measure possibilities for action that com-
pose affordances, and we test this intuition in a model that
replicates the main results from experiments of perception
of passability through apertures from Warren and Whang
(1987). Still, it should be noted that, in general, empow-
erment measures are defined by a single value quantifying
the possibilities available for an agent. Specifically, empow-
erment directly quantifies the possibilities for action as the
average number of bits that an agent’s sensors can perceive
as results of its own actions. In contrast, affordances are
defined as sets of possibilities related with different objects
or parts of an environment. In our comparison with War-
ren and Whang (1987) this is not a problem, since only one
affordance is present and changes in the sensor state of the
agent will be related to it. Thus, the mapping between em-
powerment and affordance becomes straightforward in this
case. However, this issue becomes problematic when there
is more than one affordance and when the environment has
more elements not related to the affordance under study (as
the experiments in Figure 4 will show). A more precise re-
lation between empowerment measures and sets of multi-
ple affordances are left as future work, though measures of

context-dependent empowerment (Salge et al., 2014; Klyu-
bin et al., 2008) could be used to define sets of possibilities
for action related to specific objects in an environment.

Model
Warren and Whang (1987) describe a classical example of
body-scaled affordance by using the ability of an agent to
perceive whether or not it can pass through an aperture. This
ability is related to the capacity of a subject to be sensitive
to the relationship of its own body to the objects in its envi-
ronment. In this work, experimental evidence shows a tran-
sition in the perception of ‘passability’, which is related to
the width of an aperture relative to the body of an agent.
This transition takes place in humans approximately when
an aperture is at least 1.3 times the shoulder width of a per-
son. One of the results of the study, adapted in Figure 2
(top), represents the rate in which subjects with small and
large body sizes judged an aperture of width W as passable
(impassable in the original data). The data (Figure 2, top
left) shows that each group displays a transition for a dif-
ferent value of W . Nevertheless, when the aperture width
is normalized by the subjects’ shoulder width, then Figure 2
(top right) displays an invariant transition for both groups
around W/S = 1.3. This result supports the hypothesis that
scale-invariant critical points govern the perception of such
affordances.

Furthermore, the authors hypothesize that subjects use
eye-height information related to the ground as a source of
intrinsic information about their own size to directly per-
ceive the affordance of an aperture from a distance. In an
experiment using an Ames room, in which the effective eye-
height is distorted, Warren and Whang (1987) show that the
self-perceived eye-height is determinant for characterizing
the location of the transition in Figure 2 (top).

A minimal model of passability
In this paper we design a minimal model to represent the
task described by Warren and Whang (1987), with the aim
to quantify the information about the affordances available
to an agent by using empowerment measures. In previous
work, Slocum et al. (2000) modelled a minimal agent which
was evolved to pass through openings wide enough to ac-
commodate its body while avoiding too narrow openings.
Agents used proximity sensors in the form of rays that pro-
duce a sensor input when intersecting with an object.

Inspired by this work, we present a model (Figure 1) with
an agent that can move inside a room with a wall that shows
an aperture of width W on one side. The agent is shaped
as a rectangular prism of height H and width S, and its
length and width are equal. We test agents with different
widths, but we always maintain a human-like height-width
ratio of H/S = 4. In contrast with the model by Slocum
et al. (2000), we do not model the neural system of the
agents, since it is not necessary for empowerment measures.
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Instead, we design different actions a(t) available for the
agent: move forward, move back, move left, move right or
stand still. The agent moves in discrete time, moving a dis-
tance s = 0.2 in the appropriate direction each step. The
agent cannot move through walls. As we are interested in
studying the perception of the affordance, we restrict the
analysis to the inside of the room and assume that the agent
never crosses the aperture.

The agent projects seven sensory rays from its upper front,
with angles evenly distributed in the horizontal plane be-
tween [−π4 , π4 ] (Figure 1, main). The sensors receive a bi-
nary input, being active when the ray intersects with a wall,
and inactive otherwise. In the example shown in Figure 1,
where the three sensors in the right pass through the aper-
ture (0) and the remaining four sensors in the left intersect
the wall (1), the sensor state is (1, 1, 1, 1, 0, 0, 0). If the agent
moves left, the right sensors will change their state from 0
to 1, until all rays collide with the wall. If it moves right, the
left sensors will change from 1 to 0, while the right sensors
will switch from 0 to 1 when they hit the right side of the
wall. The lateral plane (Figure 1, right box), shows that sen-
sors are projected from the upper front edge of the agent to
the ground of the aperture, to represent the effect of the eye-
height of the agent in its sensory input, retrieving intrinsic
information necessary for performing the task as reported
by Warren and Whang (1987). In practice, this implies that
the distance traveled by the ray will be of

√
d2 + H2, where

d is the horizontal distance between the agent and the aper-
ture. Thus, note that the available sensory configurations
(and therefore the values of empowerment) will change de-
pending on the height of the agent, since for any agent ob-
jects will always be seen from a distance larger than H . This
is included as a way for the agent to have perceptual infor-
mation about its own size in its patterns of sensor activation.
Warren reported height information as critical for perceiv-
ing passability, and we will see here that it has an important
effect.

Empowerment of the agent E(n) is computed as follows:
an agent starts from a specific location and it is allowed to
move n steps. Then, for all the positions available within a
distance of n steps the sensory input received at each final
location is recorded. Then, following Equation 6, the em-
powerment of the agent in a deterministic world is equal to
the logarithm of the size of the set of perceived inputs.

Results
In order to explore the relationship of empowerment with
the size of the agent and the affordances of the environment,
we perform two experiments. In the first experiment, we re-
produce the results reported by Warren and Whang (1987).
Measuring the empowerment of the agent for different sizes
of the aperture and different body-sizes of the agent we find
a scale-invariant transition very similar to the one shown by
Warren and Whang (1987). In the second experiment we

y
y

x

z

Figure 1: Schema of the agent. An agent interacts with
an environment consisting on a wall with an aperture. The
agent can perceive using binary sensors shaped as a set of
rays arranged in a beam. Each step, the agent can move
forward, left or right, or stand still. In the case of the ver-
tical agent (right plot), the rays are not perpendicular to the
floor but they are emitted from the top of the agent’s body at
height H .

compute the empowerment field of an agent in an environ-
ment with two apertures, one larger than the agent and thus
passable, and another one smaller that the agent cannot go
through. In this way, the empowerment can illustrate how
regions of sensorimotor viability and possibilities for action
arise depending on the agent and its environment.

Transition in the perception of passability
First, we explore the case of an agent moving in a finite room
with an aperture. In this case, we assume that the number of
steps n is large enough to explore the whole room (n→∞)
and that the positions of the agent are restricted to all the
positions available within the room. In this way, we compute
the value of empowerment E(n → ∞) assuming the agent
can reach all positions in the room. We consider that the
agent is on a square room with sides of size 8, and that the
side in front has an aperture in the middle of width W .

We compute the empowerment of 5 different agents with
width S equal to 0.5, 0.75, 1, 1.25 and 1.5, for aperture
widths in the range [S/4, 4S]. Empowerment is obtained
from the sensory inputs the agent can perceive from all po-
sitions of the room. The result is displayed in Figure 2 (bot-
tom).

As we can observe, the value of empowerment E presents
a transition at different values of W (Figure 2, bottom left).
However, if we normalize the values of W by the width of
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Figure 2: Top: Mean percentage of ‘passable’ judgments
in experimental tests with humans in static viewing condi-
tion as a function of aperture width (left) and aperture width
normalized for shoulder width (W/S, right). Adapted from
(Warren and Whang, 1987). Bottom: value of empowerment
E(n) of an agent in a room at enough steps n to explore the
whole room (n → ∞) as a function of aperture width (left)
and aperture width normalized for shoulder width (W/S,
right). Note that in both cases we can observe an scale in-
variant transition for values of W/S slightly larger than 1.

the agent (Figure 2, bottom right) all agents present a transi-
tion at the same point (W/S around 1.2), independently of
their size2.

Affordance spaces as sensorimotor regions of
viability
In the previous section, we have measured the empowerment
of the agent assuming it can perform an infinite number of
movements to explore the whole environment. However, if
we restrict the number of available movements, we can com-
pute the value of empowerment for specific positions of the
environment in a finite number of steps n, which will depend
on perceived sensor states in the locations that are accessi-
ble from each initial position. This is useful to characterize
the affordances that appear in particular regions of the space
that an agent can navigate. For an agent of width S = 1 with
n = 15 steps in a 15x60 room with two apertures of widths
2 and 0.5 separated by 20, we observe the distribution of
empowerment values shown in Figure 3 (top). High values
of empowerment are obtained only around the aperture that
is passable by the agent. We can interpret these regions as

2Note that because of the discrete nature of the model, values of
empowerment grows step-wise, and that by transition we refer only
to the point where empowerment starts to grow from a flat state).
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Figure 3: Top: Empowerment of an agent with width S = 1
starting at different positions (x, y) for 15 steps in front of
a wall with two apertures of different sizes, the left one
wider than the agent (WL = 2), and the right one smaller
(WR = 0.5). Empowerment around the wide aperture is
much larger than around the small one, since they are lo-
cated at opposite positions of the transition represented in
Figure 2, above and below the transition point W/S = 1
respectively. Bottom: Same model as in the top figure but
with a flat agent (H = 0), showing the lack of a clear dif-
ference in the empowerment between the wide ‘passable’
aperture and the small ‘not passable’ one. In this case we
cannot find a difference between the small and large aper-
ture, showing that the height is crucial for the agent to get
information about its width.

spaces of viability in which sensorimotor possibilities exist.
To explore what is the effect of the height of the agent,

we compare those results with the empowerment of a ‘flat’
agent (an agent with H = 0). Note that in such agent, ob-
jects are perceived to be at a different distance (since the
agent perceives objects to be at a distance

√
d2 + H2), and

thus the agent’s sensor will lose any information about the
size of the agent. As we can see in Figure 3 bottom, in this
case the viability space is ill-defined, and thus the agent is
in a state of maladaptation (to the behaviour of traversing an
aperture). In this case, both the large and the small aperture
show a similar value of empowerment. In contrast, the area
of viability in the model with height larger than zero is cor-
rectly defined, with large empowerment correlating with the
possibility for exploiting the affordance of passing through
the aperture.

If we try to extend our minimal model to more complex
environments, the relationship between empowerment and
possibilities for action is not as easy as in the previous cases.
If we analyze a wall with two nearby apertures, we can see
that the empowerment measure increases when the sensors
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Figure 4: Empowerment of a model with the same parame-
ters as in Figure 3 (top) but with two nearby apertures, small
and ‘not passable’ in the top (W = 0.5), and larger and
‘passable’ in the bottom (W = 2). The empowerment mea-
sure shows some limitations when considering more com-
plex environments, yielding high values even in the absence
of affordances (top) or mixing the contributions of two af-
fordances (bottom).

have access to both apertures. This increment in empower-
ment, however, does not always correlate with possibilities
of action and affordances. This limitation is illustrated in
Figure 4. We can see in the top of this Figure 4 that empow-
erment is large in the center and relatively close to the aper-
tures, but in this environment there is no affordance avail-
able for this agent. In contrast, in the bottom panel of Fig-
ure 4 both apertures are wider than the agent and thus they
generate two affordances, passing through the left or right
aperture. In this cases, thus, it is not clear how to interpret
the increase of empowerment, which might be because of a
richer environment (even if there is no affordance available)
or due to the fact of having two affordances available.

Discussion
In the previous sections we have studied the challenge of
interpreting affordances using information theory. We have
explored this issue by proposing measures of empowerment
as a natural form of quantifying affordances in information
theory terms. We have applied this idea to a minimal model
reproducing some aspects of Warren’s experiment of per-
ception of passability through apertures. As Figure 2 shows,
we successfully reproduced the scale-invariant transition in
Warren’s experiment with a measure of the empowerment

of the agent. The results are similar since both transitions
are body-scaled. This shows that we can use empowerment
measures to quantify information about a particular inter-
pretation of the affordance of passing through apertures in
information-theoretical terms. Nevertheless, as we claimed
before, this interpretation of affordances in information the-
oretic terms is a simplified simulation of a full-blown scien-
tific, ecological explanation of how we perceive affordances,
so it lacks many key aspects from an in vivo scientific expla-
nation, like a realistic model of visual perception.

In addition, we have shown how empowerment (Figure 3)
can describe a field of behavioural possibilities, characteriz-
ing the area in which a specific affordance exists in informa-
tion theoretic terms. We could connect this with more gen-
eral ideas about the maintenance of regions of viability in
adaptive systems. In this work we have not considered the
behaviour of the neural system of the agent, but we could
think of the family of neural systems that are adapted to a
particular affordance as the ones that maintain the state of
the agent within a region in which the affordance exists.

Still, the results here present some limitations that should
be addressed in further work. First, the empowerment mea-
sure is a good description of possibilities for action that gen-
erate observable results for the agent. Nevertheless, this in-
formation theoretic interpretation of affordances is less re-
strictive than the original one, since not all possibilities for
action are affordances. As we observe in Figure 2 (bottom
right), even in the situation when the affordance doesn’t ex-
ist (W/S < 1) there is some basal level of empowerment
(because the movement of the agent can still cause sensa-
tions of a small aperture). However, when the affordance
appears, it generates a transition in the empowerment met-
ric. Our results suggest that affordances could be quantified
by identifying these transitions in the space of possibilities
for action. Nevertheless, further work could explore whether
this also happens in more complex models and how empow-
erment metric could be refined to capture more specific as-
pects about affordances that are not shared by general possi-
bilities for action.

In this line, we made explicit this limitation by show-
ing that the relation between empowerment and affordances
in our minimal model holds only for simple environments
where either there is one affordance or none. When we
analyzed the case of walls with two nearby apertures, we
found that the empowerment combines contributions from
both apertures, making the absolute value of empowerment
not an indicative measure of the presence of an affordance
or even of the possibility for action. Even if any of the aper-
tures is wide enough for the agent to pass (Figure 4 top),
the empowerment increases around the apertures, but in this
case the region of high empowerment does not correlate with
a viability region where sensorimotor possibilities arise. In-
stead, both viability regions overlap, and we cannot disen-
tangle the contributions of each individual affordance.

37



In order to overcome this limitation, some adaptations
might be necessary to extend its usefulness to more com-
plex situations than the one analyzed here. Nevertheless,
there are refined versions of the measure, e.g. context-
dependent empowerment (Salge et al., 2014; Klyubin et al.,
2008), which might sucessfully be used to separate different
sources of empowerment.

Our description of affordances shows similarities with
some works in the field of robotics that try to simplify ac-
tion spaces (Guttenberg et al., 2017) and with the concept
of ‘intrinsic options’ developed in the field of reinforcement
learning. Options in general are defined as ‘closed-loop poli-
cies for taking action over a period of time’ (Sutton et al.,
1999), but this definition can be restricted to policies with
a termination condition that meaningfully affect the world,
i. e., intrinsic options (Gregor et al., 2016). Therefore, the
main goal of learning intrinsic options is not to predict future
observations, but to control the environment. Information
theory and empowerment measures have also been applied
in this context (Gregor et al., 2016), and theoretical work in
this field might be useful to extend the validity of our inter-
pretation and overcome some of the difficulties mentioned
above.

When computing empowerment there is an important dis-
tinction between open and closed-loop measures. The open-
loop measure assumes that the action sequence is selected in
advance, with each action depending only on the initial state.
However, this is not very realistic for noisy or changing envi-
ronments. When computing closed-loop empowerment later
actions can change depending on the current sensor state,
allowing the agent to adapt to modifications in the environ-
ment during the action sequence. It is important to note that
in the model we analyzed the agent moves in a deterministic
world, meaning that each action is associated with just one
specific outcome. Therefore, the sequence of actions that
the agent follows is known in advance, and only depends
on the initial state, making both open-loop and closed-loop
empowerment measures equivalent in our model.

Another aspect for future exploration is that affordances
are described as specific possibilities for action which the
agent can perceive directly. In our work we have not ex-
plored how an agent can perceive information about its em-
powerment. Future work could explore how information
about the presence of an affordance flows through variables
of the neural system and the body of the agent in a simi-
lar way as the experiments performed by Beer and Williams
(2015). Furthermore, as empowerment is defined in terms
of entropy (of a channel capacity between actuators and
sensors), future explorations could quantify to what extent
the information captured by empowerment metric also flows
through different variables of the agent. Such an analysis
could rigorously determine whether information processing
in the neural system of the agent is involved in the percep-
tion of a particular affordance, or whether this information

is directly available through sensorimotor interaction with-
out internal computation.
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Iñigo Arandia-Romero is thankful to Manuel G. Bedia
and was supported by funding from the Government of
Aragon (Spain) to acknowledge research groups (ISAAC
lab, cod T33 17D). Miguel Aguilera and Iñigo Arandia-
Romero were partially supported by project TIN2016-
80347-R, funded by the Spanish Ministry of Economy and
Competitiveness. Manuel Heras-Escribano developed this
work thanks to a 2018 Leonardo Grant for Researchers and
Cultural Creators, BBVA Foundation (The Foundation ac-
cepts no responsibility for the opinions, statements and con-
tents included in the project and/or the results thereof, which
are entirely the responsibility of the authors), the Project
FFI2016-80088-P funded by the Spanish Ministry of Sci-
ence, and the FiloLab Group of Excellence funded by the
University of Granada, Spain.

References
Ay, N. and Polani, D. (2008). Information flows in causal networks.

Advances in complex systems, 11(01):17–41.

Beer, R. D. and Williams, P. L. (2015). Information Processing
and Dynamics in Minimally Cognitive Agents. Cognitive Sci-
ence, 39(1):1–38.

Chemero, A. (2009). Radical embodied cognitive science. MIT
press.

Fajen, B. R., Riley, M. A., and Turvey, M. T. (2009). Information,
affordances, and the control of action in sport. International
Journal of sport psychology, page 29.

Gibson, J. J. (2014). The Ecological Approach to Visual Perception
: Classic Edition. Psychology Press.

Gregor, K., Rezende, D. J., and Wierstra, D. (2016). Variational In-
trinsic Control. arXiv:1611.07507 [cs]. arXiv: 1611.07507.

Guttenberg, N., Biehl, M., and Kanai, R. (2017). Learning body-
affordances to simplify action spaces. arXiv:1708.04391
[cs]. arXiv: 1708.04391.

Heras-Escribano, M. (2019). The Philosophy of Affordances. Pal-
grave Macmillan, Cham.

Heras-Escribano, M. and De Pinedo-Garca, M. (2018). Affor-
dances and Landscapes: Overcoming the NatureCulture Di-
chotomy through Niche Construction Theory. Frontiers in
Psychology, 8.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2005). Empower-
ment: a universal agent-centric measure of control. In 2005
IEEE Congress on Evolutionary Computation, volume 1,
pages 128–135 Vol.1.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. (2008). Keep Your
Options Open: An Information-Based Driving Principle for
Sensorimotor Systems. PLOS ONE, 3(12):e4018.

38



Pearl, J. (2009). Causality: Models, Reasoning and Inference.
Cambridge University Press, Cambridge, U.K. ; New York,
2nd edition edition.

Reed, E. S. (1996). Encountering the world: Toward an ecological
psychology. Oxford University Press.

Salge, C., Glackin, C., and Polani, D. (2014). Empowermen-
tAn Introduction. In Prokopenko, M., editor, Guided Self-
Organization: Inception, Emergence, Complexity and Com-
putation, pages 67–114. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Shannon, C. (1948). A Mathematical Theory of Communication
- Shannon - 1948 - Bell System Technical Journal - Wiley
Online Library.

Slocum, A. C., Downey, D. C., and Beer, R. D. (2000). Further
experiments in the evolution of minimally cognitive behavior:
From perceiving affordances to selective attention. In From
animals to animats 6: Proceedings of the sixth international
conference on simulation of adaptive behavior, pages 430–
439.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1):181–
211.

Warren, W. H. (1984). Perceiving affordances: Visual guidance of
stair climbing. Journal of Experimental Psychology: Human
Perception and Performance, 10(5):683–703.

Warren, W. H. and Whang, S. (1987). Visual guidance of walking
through apertures: body-scaled information for affordances.
Journal of experimental psychology: human perception and
performance, 13(3):371.

39



The dark room problem in predictive processing and active inference,
a legacy of cognitivism?

Manuel Baltieri and Christopher L. Buckley

Evolutionary and Adaptive Systems Group – Sussex Neuroscience, Department of Informatics,
University of Sussex, Brighton, UK

m.baltieri@sussex.ac.uk

Abstract

The free energy principle describes cognitive functions such
as perception, action, learning and attention in terms of sur-
prisal minimisation. Under simplifying assumptions, agents
are depicted as systems minimising a weighted sum of pre-
diction errors encoding the mismatch between incoming sen-
sations and an agent’s predictions about such sensations. The
“dark room” is defined as a state that an agent would occupy
should it only look to minimise this sum of prediction errors.
This (paradoxical) state emerges as the contrast between the
attempts to describe the richness of human and animal be-
haviour in terms of surprisal minimisation and the trivial so-
lution of a dark room, where the complete lack of sensory
stimuli would provide the easiest way to minimise prediction
errors, i.e., to be in a perfectly predictable state of darkness
with no incoming stimuli. Using a process theory derived
from the free energy principle, active inference, we investi-
gate with an agent-based model the meaning of the dark room
problem and discuss some of its implications for natural and
artificial systems. In this set up, we propose that the presence
of this paradox is primarily due to the long-standing belief
that agents should encode accurate world models, typical of
traditional (computational) theories of cognition.

Introduction
The free energy principle (FEP) and predictive process-
ing (PP) are popular frameworks in the cognitive sciences
that advocate the use of probabilistic generative models to
describe brain processes including perception, action and
higher order cognitive functions (Dayan et al., 1995; Rao
and Ballard, 1999; Knill and Pouget, 2004; Friston et al.,
2006; Hohwy, 2013; Clark, 2015b; Bogacz, 2017; Buck-
ley et al., 2017). In these frameworks, perception is de-
scribed as a process of inferring the most likely hidden prop-
erties of sensory data by minimising the error between ac-
tual sensations and those predicted by a probabilistic gen-
erative model (Dayan et al., 1995; Rao and Ballard, 1999;
Knill and Pouget, 2004). Active inference, a process the-
ory derived from the free energy principle, introduces also
a formal description of action as a way for agents to change
their sensory input to better fit their predictions. Agents thus
actively interact with the environment to produce sensations
that generative models can predict. On this view, behaviour

is generated through interactions with the world defined in
terms that are consistent with the perceptual accounts of
FEP/PP. Motor commands are expressed as predictions in-
stantiated by the same generative model at a proprioceptive
level compared with actual proprioceptive input (Friston,
2011; Adams et al., 2013). These two processes, inferring
properties of the world and inferring actions needed to meet
expectations, close the sensorimotor loop and suggest a deep
symmetry between action and perception.

The “dark room problem” (Friston et al., 2012) is pre-
sented in the context of an agent whose only goal is to reduce
prediction error. Such agent, it is argued, should find the
simplest and most predictable state where prediction error
can be minimised, i.e., a dark room with no sensory input.
This state, however, fails to account for the complexity of the
behaviour that the FEP and PP frameworks claim to account
for. Here we propose that this paradox arises mostly from
the use of “perception centric” views of PP and active infer-
ence theories, with agents seen as simply building generative
models of their sensory observations capturing the complex-
ity of the environment. This perception centric view can be
seen in analogy to, we claim, traditional sense-model-plan-
act architectures (as described by Brooks (1991)), emphasis-
ing the role played by detailed and precise world models.

In this work we introduce a minimal model of perception
centric agents, showing a simple implementation of agents
seeking (and finding) “dark rooms”. We will argue that,
from the Bayesian perspective proposed in active inference,
this is due to the lack of priors that can affect the behaviour
of our agents (cf. Baltieri and Buckley (2017, 2019)), with
actions entirely driven by external stimuli.

Perception centric PP and the dark room
problem

In perception centric approaches to PP, agents can be de-
scribed as “perception machines” whose job is to capture,
encode and possibly predict the richness of their environ-
ment, becoming mirrors of their milieu (Huang and Rao,
2011; Spratling, 2016). This creates, we claim, a GOFAI-
like reasoning system that allows an agent to simulate so-
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phisticated cognitive tasks using an internal (generative)
model that, essentially, mirrors the world (see for instance
Ha and Schmidhuber (2018) for a recent example of these
generative models in machine learning). The only true nov-
elty introduced by PP interpretations is the explicit use of
top-down information flows, inspired by predictive coding
accounts of cortical activity (Rao and Ballard, 1999). On
this view, PP is depicted as a scheme for the construction
of accurate and meticulous world models that serve higher
purposes such as planning, attention and decision-making.
Action is vicariously implemented based on powerful and
accurate models of an agent’s milieu that can be seen as al-
most detached from the world itself (Hohwy, 2013). The
external environment is essentially only “used” during the
initial construction of internal models, implicitly assuming
that it is possible to encode all of the properties needed for
planning and that such properties will not change over time.
If the goal of an agent is to to minimise the surprisal or,
under certain assumptions, a weighted sum of prediction er-
rors of its sensations (Buckley et al., 2017), what is the role
of action in implementations of PP and active inference? An
agent that builds models of the world by inferring proper-
ties that objectively reflect its incoming sensations should, if
prediction error minimisation is its only purpose, also only
act to minimise such prediction errors.

In this light, the “dark room problem” (Friston et al.,
2012; Sims, 2017; Klein, 2018) describes the case where the
best way for an active inference agent to minimise its sen-
sory surprisal is to simply act in order to generate a trivial
and easily predictable sensory input stream, cf. the oriental
Nirvana analogy (Mumford, 1992). In this thought experi-
ment, an agent can access a so-called “dark room”, a place or
a state in the world with no sensory stimuli. It is thus argued
that an active inference agent simply looking to minimise
its sensory surprisal is bound to go to such room, formu-
late trivial hypotheses on the lack of sensory input and never
move again, indefinitely. Staying in a dark room becomes
the best outcome for this agent since the lack of sensations
is explained away by trivial predictions, giving thus a predic-
tion error which is constantly zero. This example represents
a valuable theoretical construct for the discussion of active
inference agents in the context of sensorimotor loops, but as
already suggested in Friston et al. (2012) it can never be the
case for biological systems. Appealing to classical ideas of
homeostasis tracing back to, at least, the good regulator the-
orem (Conant and Ashby, 1970), only agents whose purpose
is to exist while having no realistic physiological constraints
could find themselves preferring a dark-room-like situation.
The living creatures we know of, on the other hand, show
different needs that must be satisfied over time, including for
example the maintenance of a certain body temperature and
several other variables within boundaries (e.g. glucose, cal-
cium and oxygen levels). The variables ensuring an agent’s
survival are proposed to be encoded within an agent through

evolution, and used in a set of homeostatic mechanisms that
regulate different processes (cf. the “essential variables” in
Ashby (1957)) of a system (Seth, 2014). In active infer-
ence, these different drives are represented by priors and
are crucial for the role they play in top-down predictions
of the world. When these predictions are not matched by
the sensory input, errors at the sensory level are generated
and propagated in a bottom-up fashion to trigger processes
of prediction update and action selection. The balance of
top-down and bottom-up flows is modulated by precisions
(inverse (co)variances), a set of weights for prediction errors
that modulate their strength.

To discuss the role of both priors and precisions in the
context of sensorimotor loops, in this work we present some
initial results from computational simulations of active in-
ference agents performing basic homeostatic control. By
focusing on a minimal model of a “Bayesian cruise con-
troller”, similar in spirit to the “Bayesian thermostat” exam-
ple found in Buckley et al. (2017), we emphasise the role of
perception and action in perception centric active inference
agents leading to the dark room puzzle.

A Bayesian cruise controller
In this model, a block of mass = 1 kg (our agent) is placed on
a surface with some sliding friction. The goal of this agent
is to regulate its velocity, which can be perceived through
a sensor, towards a desired set-point vdes (vdes = 10 km/h
unless otherwise stated). The regulation will be described
as a Bayesian inference process, inspired by the free energy
principle and implemented in an active inference set up. The
details behind the mechanism for velocity regulation will not
be specified, since they don’t add any more insight to our
proof of concept. We will simply assume that this agent can
apply a force that moves the block against the effects of fric-
tion which tend to bring the velocity of the block down to
zero. The generative process, describing the dynamics of
the world for our agent, will simply entail the definition of a
velocity variable x (here to be interpreted as hidden state
rather than as a position/displacement) that exponentially
decays over time with a constant rate α due to the effects
of friction. We also describe these dynamics as noisy, with a
random variablew ∼ N (0, σ2

w), and have an action variable
a that represents the force applied by the agent as an input
(in states-space formulations terms) to achieve homeostatic
control. The generative process is presented in the form of
a state-space model as in most implementations of active in-
ference, e.g., Friston (2008); Buckley et al. (2017); Bogacz
(2017); Baltieri and Buckley (2019):

x′ = −αx+ a+ w (1)

To simplify the example, no other exogenous inputs (in
a state-space representation sense) are added, cf. Baltieri
and Buckley (2019) where we also considered forces such
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Figure 1: The agent, a Bayesian cruise controller. A block
of mass = 1 kg, i.e. the agent, is placed on a surface with dy-
namic friction. The goal of the agent is to reach and maintain
a velocity vdes.

as wind. To maintain (mathematical) consistency with pre-
vious formulations we represent the generative process us-
ing a Langevin form where w is weakly autocorrelated in
a Stratonovich sense, i.e., not a Wiener process, even if
the noise variables are implemented as white noise in our
code for simplicity1, see Friston (2008); Baltieri and Buck-
ley (2019) for discussion. The velocity and accelerations
measurements y, y′ are given as noisy readings of x, x′ with
observation noise z ∼ N (0, σ2

z), z′ ∼ N (0, σ2
z′):

y = x+ z y′ = x′ + z′ (2)

The next step requires the definition of the agent’s genera-
tive model (Buckley et al., 2017; Bogacz, 2017), including a
model of the system’s dynamics:

x′ =− αx+ vdes + w (3)

and of measurements:

y = x+ z y′ = x′ + z′ (4)

One of the major assumptions made in active inference is
that the action variable a cannot be observed directly by an
agent (i.e., it’s not part of its generative model) and not nec-
essary for problems of control (Friston et al., 2010; Friston,
2011), giving rise to a different way of implementing regula-
tion (Baltieri and Buckley, 2018a, 2019). In active inference,
one thus assumes that an agent is endowed with a minimal
mapping encoding how actions a modify observations y, y′

(rather than hidden states x, x′) via reflex arcs, as discussed
in Friston et al. (2010); Friston (2011). In this case we also
use, again for consistency, the notation in generalised coor-
dinates of motion defined in Friston (2008); Buckley et al.
(2017) for random variables z, z′. Under Gaussian assump-
tions for z, z′ andw, one can write the above state-space rep-

1https://github.com/mbaltieri/BayesianCruiseController

resentation of the generative model in a probabilistic form:

p(y|x) = N (x, σ2
z)

p(y′|x′) = N (x′, σ2
z′)

p(x′|x, v;α) = N (−αx+ vdes, σ
2
w) (5)

and considering the Laplace-encoded variational free energy
defined in equation (12) in Baltieri and Buckley (2019), here
reported as

F ≈ − ln p(ψ̃, x̃, ṽ; θ, γ)
∣∣
ϑ̃=µ̃

(6)

one can see that the probabilistic description of the gener-
ative model presented here reflects the likelihood and prior
distributions necessary to build the generative density for the
definition of the free energy (Buckley et al., 2017). The gen-
erative density in equation (6) can be decomposed into

p(ψ̃, x̃, ṽ; θ, γ) = p(ψ̃|x̃, ṽ; θ, γ)p(x̃, ṽ; θ, γ) (7)

and after specifying ψ̃ = {y, y′}, x̃ = {x, x′}, ṽ = {vdes},
θ = α and hyperparameters γ encoding properties about
precisions πz, πz′ , πw, one gets

p(ψ̃|x̃, ṽ; θ, γ) = {p(y|x), p(y′|x′)} (8)
p(x̃, ṽ; θ, γ) = p(x′|x, v;α) (9)

The free energy then becomes:

F (y, µ̃x, µv) ≈
1

2

[
πz(y − µx)2 + πz′(y

′ − µ′x)2

+πw(µ′x + αµx − µv)2 − ln(πzπz′πw)
]

(10)

with perception ˙̃µx = Dµ̃x − ∂F/∂µ̃x, following Friston
et al. (2010); Bogacz (2017); Buckley et al. (2017), defined
as:

µ̇x =µ′x −
[
− πz(y − µx) + πwα(µ′x + αµx − µv)

]
=

=µ′x +
[
πz(y − µx)− πwα(µ′x + αµx − µv)

]

µ̇′x =µ′′x −
[
πw(µ′x + αµx − µv)

]
=

=− πw(µ′x + αµx − µv) (11)

and action, ȧ = −∂F/∂a (Friston et al., 2010; Buckley
et al., 2017), as:

ȧ = −
[
πz(y − µx)∂y/∂a+ πz′(y

′ − µ′x)∂y′/∂a
]

= −
[
πz′(y

′ − µx′)
]

(12)

where we use the fact that an implicit model in terms of
reflex arcs (Friston, 2011) is embodied by the agent via

∂y′/∂a = 1, ∂y/∂a = 0 (13)

These equations, when combined, form an action-perception
loop with information inferred from the environment
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through perception and control exerted on the world via ac-
tion. The combination of action and perception is regu-
lated by precision parameters “π”, representing weights in
the weighted sum of prediction errors, see equation (10).
Precisions encode the uncertainty (they are in fact inverse
(co)variances) of different variables of a generative model
in an agent and effectively regulate the minimisation of vari-
ational free energy in equation (11) and equation (12). For
the remainder of this work we will specify (weighted) sen-
sory prediction errors as the errors weighted by sensory pre-
cisions πz or more in general πz̃ and process or (weighted)
system prediction errors as the ones weighted by process
or system precisions πw or πw̃ if dealing with generalised
coordinates of motion (Friston, 2008; Buckley et al., 2017;
Baltieri and Buckley, 2019). This distinction will be useful
when we emphasise the role of precision weights on the min-
imisation of variational free energy, producing behaviours
influenced by their relative strength.

More in general, precision parameters in a generative
model can be unrelated to the actual precisions of the true
hidden states, causes and observations of a generative pro-
cess (i.e. the world dynamics), and in some cases this mis-
alignment is claimed to be necessary for behaviour (Feld-
man and Friston, 2010; Wiese, 2016). Precisions have also
been addressed also in terms of “confidences”, thought to
encode how confident an agent is about its estimates of hid-
den variables. Precisions π’s are in the most general case
dynamic parameters that can change over time allowing for
several types of behaviours to emerge depending on differ-
ent situations and needs of an agent, see for example Feld-
man and Friston (2010). In this work we assume fixed-
valued precisions in order to focus on cases of “precision
engineering” (Clark, 2015b) showing their role in the emer-
gence of different behaviours as in, for instance, Baltieri and
Buckley (2017). More specifically, we focus on “percep-
tion centric” (or passive) agents within the context of ac-
tive inference, agents that heavily rely on perceptual infer-
ence, (over)focusing on estimating hidden properties of their
sensory input. This perception centric view will be imple-
mented with agents whose sensory prediction errors dom-
inate system prediction errors, emphasising the bottom-up
nature of incoming signals, as described in standard models
of predictive processing models for perception Huang and
Rao (2011); Spratling (2016). We will also consider the im-
portance of a closed sensorimotor loop, initially focusing on
agents that can only perceive their environment without act-
ing, and then introducing the ability for agents to affect the
world, once again in a perception centric view of PP.

Just observing, the passive tracker
Passive trackers are agents that can only perceive their world
without the ability to modify any of its properties. They are
an extreme version of the archetypical case advocated by
“perception centric” PP (Huang and Rao, 2011; Spratling,

Table 1: Agents’ parameters and setups. The table sum-
marises the parameters used to simulate our two agents, the
passive tracker and the active tracker, following the imple-
mentation of equation (11) and equation (12).

πz πz′ πw Action
Passive
tracker

exp(1) exp(1) exp(−12) a = ȧ = 0

Active
tracker

exp(1) exp(1) exp(−12) ȧ = ∂F/∂a

2016), already prioritising the estimation of the causes of
observed sensations over adaptive behaviour. Passive track-
ers over-prioritise perception over action and in fact are im-
plemented following equation (11) for perception, while ac-
tions a in equation (12) are not included, i.e., a = ȧ = 0.
They also heavily rely on bottom-up observations over top-
down priors, with weighted sensory prediction errors tak-
ing a dominant role and driving predictions about incom-
ing data. The larger the ratio between sensory and system
prediction errors, the smaller is the role played by prior be-
liefs. As we can see in Fig. 2, in the simplest case, suitable
(although small) priors filter out some of the measurement
noise, separating the signal to be inferred (the black line)
from the noise due to sensors/receptors. Without action, this
agent cannot control its velocity and reach the target veloc-
ity (vdes = 10 km/h), naturally slowing down and eventually
stopping following its autonomous dynamics.
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Figure 2: (The passive tracker) The velocity of the block.
The velocity perceived by the agent (blue line), its best es-
timate according to weak priors (red) and the block’s true
velocity, i.e. without measurement noise (black).

In Fig. 3 we can see that the variational free energy of our
agent is (on average) minimised over time (Fig. 3c), driven
mainly by the weighted prediction errors on sensory input.
Weighted sensory prediction errors vary in the order of 101
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Figure 3: (The passive tracker) Weighted prediction er-
rors and variational free energy. The evolution of (A)
sensory prediction errors on velocity, (B) system prediction
error and (C) variational free energy.

(Fig. 3a and similarly for the acceleration, not reported),
while the system error is in the order of 10−5 (Fig. 3b).

Acting with no reason, the active tracker
Active trackers are agents that can actively interact with
their environment and unlike their passive version, they
integrate action via equation (12) to close the sensorimo-
tor loop together with perception, implemented by equa-
tion (11). However they are just another (although more
elaborate) example of the perception centric description
introduced by Clark (2015a,b), a direct consequence of
Bayesian brain/predictive coding schemes (Rao and Ballard,
1999; Huang and Rao, 2011; Spratling, 2016) endowed with
simple mechanisms for active behaviour and motor control.
These agents can impact their environment through motor
actions but they only do so to better sample sensations in
agreement with their existing predictions, producing a “kind

of self-fulfilling prophecy” (Hohwy, 2013; Clark, 2015a) en-
tirely driven by incoming sensory input. Active trackers
don’t use (possibly relevant) priors to estimate their sensa-
tions and, as in the case of the passive tracker, are completely
enslaved by their observations in a state of pure information
gathering. Actions are only produced to cancel sensory pre-
diction errors, to generate more accurate predictions about
the world. Effectively, this creates the “dark room problem”
for active agents exposed in Friston et al. (2012), i.e., agents
that “predict”, or rather account for, all their observations,
with action simply bound to produce a process of inconclu-
sive behaviour (unless the purpose for a system is to just esti-
mate the hidden properties of its observations, unlike ours!).
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Figure 4: (The active tracker) The velocity of the block.
The velocity perceived by the agent (blue line), its best es-
timate according to weak priors (red) and the block’s true
velocity, i.e. without measurement noise (black).

The estimate of velocity, Fig. 4, becomes a good descrip-
tion of the real variable in the world as in the case of the
passive tracker. In the passive tracker example, however, the
block naturally slowed down and eventually stopped (nearly
stopped, because of the presence of environmental noise)
close to the origin. In the active version of the tracker, the
initial sensory prediction error given by the estimate µx ini-
tialised at 0 triggers an action (see Fig. 5) which will then
be constant over time after the prediction error on velocity is
minimised, i.e. when the agent can predict its velocity. Hav-
ing no other drive but to accurately predict its observations,
this agent maintains its motor action constant since it has
no associated cost. Random initialisations of µx give dif-
ferent set-point equilibria to the system, providing different,
but still accurate, estimates of the block’s motion after ac-
tions bring it into a predictable state more quickly. Similarly
to the passive tracker, the agent cannot control its behaviour
towards the target velocity, but due to the presence of ac-
tions a affecting the environment, it now follows the non-
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autonomous dynamics driven by its own actions, generating
observations more easily predictable from its perspective.
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Figure 5: (The active tracker) The motor action of the
agent. The action induced by the minimisation of varia-
tional free energy following active inference given, in this
case, a weak prior.

As in the case of the passive tracker, (weighted) sensory
prediction errors (Fig. 6a for velocity and the one on accel-
eration, not reported) exert a much larger influence on the
minimisation of variational free energy (Fig. 6c) due to the
precision weighting mechanism enforcing their role. The
only significant difference between the active and the pas-
sive versions is on the process prediction error, cf. Fig. 6b
and Fig. 3b, given by the fact that the active tracker gets fur-
ther away from the “desired” state represented by the prior
thanks to its motor actions, while still fulfilling its only goal
of better predicting its incoming sensations.

Discussion
In theories derived from the Bayesian brain hypothesis
(Knill and Pouget, 2004) and predictive processing (Ho-
hwy, 2013; Clark, 2015b), there is often a strong emphasis
on perceptual processes. This is both due to historical rea-
sons that trace these ideas back to work by Helmholtz and
related theories of analysis by synthesis (Von Helmholtz,
1867; Neisser, 1967; Gregory, 1970), and to a strong tra-
dition in the cognitive sciences to focus on perception and
cognition over action and behaviour (Fodor, 1983; Boden,
2006). The repercussions of this bias in Bayesian theories of
the mind are deep and rooted, constantly re-emerging even
in the most modern proposals on the Bayesian brain. Fol-
lowing the definition given by Clark (2015a,b), we strongly
advocate for a formal distinction between “perception cen-
tric” and “action-oriented” Bayesian approaches to cogni-
tive science (see also Engel et al. (2016)), with implications
potentially capturing aspects of the more general discussion
between traditional and 4E approaches to cognitive science.

In this work we provided a minimal model of a sensori-
motor loop built using active inference and aimed at show-
ing, with an example of homeostatic regulation, some of
the possible misunderstandings of the FEP and related the-
ories. Here we focused on an initial account of the “dark
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Figure 6: (The active tracker) Weighted prediction errors
and variational free energy. The evolution of (A) sensory
prediction errors on velocity, (B) system prediction error and
(C) variational free energy.

room problem” proposed in Friston et al. (2012) following
arguments introduced in Mumford (1992). This problem de-
scribes the contrast between the rich repertoire of behaviours
of real living creatures and the simple mandate of an agent
looking to only minimise the surprisal of its sensations as
advocated by PP and FEP. In particular, agents minimis-
ing their surprisal should, it is claimed, find an easily pre-
dictable state and cease to receive any new input, minimis-
ing their prediction errors while avoiding new sensations,
i.e., a dark room. It was our goal to make the example espe-
cially simple, and for this reason the problem of regulation
was reduced to a (Bayesian) cruise controller for an agent
(i.e. a block) sliding on a surface with dynamic friction. The
friction naturally slows the block down, but the agent is en-
dowed with the ability to apply a force over time that allows
the block to move and maintain a desired speed. With this
example we then explored two cases representing an open
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and closed action-perception loop in active inference. The
weaknesses of stories without motor actions became soon
obvious, but it was nonetheless important to establish the
background over which this work is based (see also Bru-
ineberg et al. (2018), where this point is explored in depth).

Alongside the absence or presence of action to define an
appropriate sensorimotor loop, we also began investigating
the balance of prediction errors. As we can see in equa-
tion (10), the expression for the variational free energy un-
der the Laplace approximation is reduced almost entirely to
a weighted sum of prediction errors. These errors can be di-
vided into (weighted) sensory and (weighted) process or sys-
tem prediction errors, the former encoding mismatches be-
tween the current best estimates of sensory data and bottom-
up (true) sensory data, the latter representing the differences
between top-down prior information and the current best es-
timate of the hidden variables of a system. All these pre-
diction errors are weighted by precision hyperparameters,
the inverse (co)variance of observations and hidden dynam-
ics of a system. As stressed in previous work (Baltieri and
Buckley, 2017, 2019), these hyperparameters need not en-
code true properties of the world and can instead be seen as
quantifying the uncertainty, or confidence, of an agent’s esti-
mates. Considering that precisions are, in principle, defined
over a continuous interval of values, we simplified our initial
analysis by imposing high sensory precisions, πz̃ = exp(1)
and low system precisions, πw̃ = exp(−12). Higher pre-
cisions drive the minimisation of free energy, enforcing the
relative strength of one subset of hyperparameters and rel-
ative prediction errors over the other, see equation (11) and
(12) (and results in Baltieri and Buckley (2017, 2019)).

We initially studied the passive tracker, representing an
extreme version of (almost) purely bottom-up driven percep-
tual processing. The passive tracker passively engages with
new observations, attempting to estimate new observations.
The complete lack of prior information however, forces this
agent to rely entirely on new observations and so, at best,
to track the incoming sensations over time after they have
been observed. For this agent, every sensation is essentially
“surprising” (in statistical terms) since priors play little to
no role in making predictions about incoming data. Sensory
prediction errors have a much greater amplitude and are thus
driving the minimisation of variational free energy. These
agents present in a straightforward way some of the argu-
ments advocated by ideas of analysis by synthesis and the
Bayesian brain hypothesis (Knill and Pouget, 2004; Yuille
and Kersten, 2006), in particular the necessity of top-down
information in the form of priors to disambiguate observa-
tions, whose estimates are otherwise entirely enslaved by
bottom-up signals. In our example, while top-down infor-
mation is available to the agent, it is completely overshad-
owed by the presence of large weighted sensory prediction
errors that drive the minimisation of variational free energy.

In this set up, homeostatic regulation requires both a per-

ceptual process of estimation of the world (i.e. the agent’s
velocity) and an action selection procedure that allows, at
least in principle, an agent to fulfil its “desires”, i.e. targets
encoded in the form of a prior. The agent we investigated
however, the active tracker, follows the same fate of the pas-
sive one, bound to simply attempt to account for its observa-
tions. In the active tracker, action simply enacts behaviour
that generates more predictable sensory input, in analogy to
the dark room problem (Friston et al., 2012). An agent with
no strong priors and whose only purpose is thus to predict its
sensations should look for a state where sensations are triv-
ially predicted, i.e. a dark room. Considering the block in
our set up, the closest state to a “dark room” is any equilib-
rium of the system reached when action is stationary, since
acting is modelled without any associated cost. This agent
simply finds the best way to predict its state by bending the
world to its predictions and generating predictions that better
conform to its sensations.

It has been argued that the presence of strong top-down
prior information that misrepresent the incoming sensations
can generate actions that compensate for sensory prediction
errors generated by the misalignment of top-down priors and
bottom-up sensations, allowing an agent to fulfil its goals
(Wiese, 2016). On this “action oriented” view of PP and
active inference (Engel et al., 2016; Clark, 2015b), genera-
tive models do not encode veridical information of incom-
ing sensations but on the contrary, describe the desires of
an agent with the very purpose of creating mismatch errors
that only active behaviour can minimise. The two example
agents presented in this work, the “passive tracker” and the
“active tracker”, invoke a more traditional notion of gener-
ative model as a stand-in for the environment, providing an
accurate and objective characterisation of the world an agent
traverses. This outlines the connections between “percep-
tion centric” descriptions of PP (Huang and Rao, 2011; Ho-
hwy, 2013; Spratling, 2016) and traditional, computational
accounts of the mind (Newell et al., 1972; Fodor, 1983)
where the necessity of accurate world models is a central
tenet of cognitive processes. On the other hand, the pres-
ence of strong priors may denote a more “action oriented”
perspective of PP and active inference, one where precise
models of the world are not only unnecessary but fundamen-
tally detrimental (Clark, 2015a; Wiese, 2016), as seen in our
simulations where the agent never reached the desired speed.
Agents emphasising the role of priors can (potentially) better
represent the need for ideas inspired by 4E (embodied, enac-
tive, embedded and extended) theories in PP, while still ad-
vocating for generative models of approximate understand-
ings of the world (Baltieri and Buckley, 2018b) and senso-
rimotor contingencies and coupled agent-environment sys-
tems (Baltieri and Buckley, 2017). The in-depth exploration
of an action oriented version of our Bayesian cruise con-
troller with a more central role for priors implemented using
different precision weights is, however, left for future work.
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Abstract 
We describe the design, implementation and on going 
evaluation processes of “NukaBot”, a system built to realize 
Human to Microbe Interaction, aimed to assist production of 
fermented food. Our system senses, records and analyzes in 
real time the fermentation process inside a “nukadoko”, a 
traditional method to produce vegetable pickles in Japan that 
involves a highly complex network of microbes. The flora of a 
nukadoko mainly consists of lactic acid bacteria, yeasts and 
gram-negative bacteria. The novelty of our system lies in 
providing an intuitive user interface that lets its user chat with 
a virtual persona attributed to the nukadoko. The NukaBot thus 
enables non-specialists to discern the complex dynamics of the 
microbial communities within a nukadoko in daily situations. 

Fermentative Bacteria and Human 

Symbiosis with a Dynamic Microbiome 
Nukadoko is a popular traditional form of fermented food 
production in Japan. It consists of a bed of rice bran, mixed 
with salt and water. Billions of lactic acid bacteria and other 
microbes are implanted inside a nukadoko, through the 
vegetables placed inside. The lactic acid bacteria metabolize 
the glucose of the vegetables to produce lactose, which adds 
a unique sour taste to the resulting pickles. 
 The microbiome of a nukadoko is a highly complex 
system where various kinds of bacteria interact dynamically. 
Although lactic acid bacteria such as Lactobacilli and 
Lactococci are considered principal contributors to the 
generation of tasty pickles, it is also known that a sufficiently 
aged nukadoko (from 2 weeks to 100 years) contains a 
considerable amount of gram-negative bacteria such as 
Enterobacter, and natural yeasts, which are said to create a 
deeper flavor to the pickles. 
 The biodiversity of nukadokos is an important 
characteristic when compared with Western pickling culture. 
Traditional European pickles such as the French cornichon 
are immersed in vinegar and are designed to keep the same 
taste homeostatically. In contrast, the taste of nukadoko 
pickles changes dynamically depending on its synthetic 
status, usually on a daily basis. The maintainer of a nukadoko 
needs to stir the rice bran periodically (at least once a day) in 
order to inhibit the excessive proliferation of aerobic bacteria. 
Should the aerobic bacteria become dominant, a nukadoko 
can easily rot, resulting in a clearly unpleasant odor.  

Figure 1: Traditional nukadoko (left), nukadoko with sensors 
(center), NukaBot system (right) 

Designing Human-Microbe Interaction 

Design Motivations and Principles 
We can define nukadokos as risk-sensitive systems, where 
human intervention not only plays a decisive role to their 
survival, but also enables them to generate rewards for 
humans in the form of delicious food. Since taste is a 
subjective value that varies from person to person, it is 
impossible to define an universal good taste for nukadokos. 
 Based on these premises, we started to conceptualize the 
idea of NukaBot, an information and communication system 
that assists humans in keeping their nukadokos in good 
condition. The system should not be a dictating or an 
automated machine that would break the relationship 
between human and nukadoko: rather, it should serve as a 
mediator that contributes to the well-being of both sides, and 
especially empowers human cognition so that the maintainer 
gains more awareness of her nukadoko’s dynamics. 

Hypothetical Aging Model 
Before assembling the system, we have reviewed past 
biological scientific research on fermentation in nukadoko, in 
order to devise a hypothetical model for us to evaluate the 
aging process of a nukadoko by our own. 
 Based on Imai et al. 1983’s analysis on the aging of 
nukadoko and Nakagawa et al. 2001’s study on the shift of 
lactic acid bacteria, we have classified 3 different stages of a 
nukadoko’s growth: at first, the nukadoko resembles a salted 
preservation container, where the fermentative activities are 
low; secondly comes the pickling stage, when the lactic acid 
bacteria become dominant and the generated nukazuke tastes 
similar to European pickles; thirdly, the nukadoko enters a 
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stage where both aerobic and anaerobic bacteria become 
active, and the flavor gains much depth and richness. 

Continuous Experiments 
To test the hypothesis, we have assembled 3 nukadokos 
equipped with affordable sensors and electronic circuits to 
record various data. For the period of October 2018 to 
February 2019, we have logged the pH (potential of 
hydrogen), the ORP (oxidation-reduction potential), internal 
and external temperature, humidity and moisture, electric 
conductance, and 8 different types of gases (NH3, CH4, 
C4H10, NO2, C2H5OH, CO, C3H8, H2), for every minute. 
All sensed data are stored in a cloud relational database, and 
we crafted a visualization dashboard online (Figure 2). 

Figure 2: Example of sensor data graph (pH and ORP) 
 
 During the course of the experiment, we used the collected 
data as proxies to microbial activities. pH values indicate 
increase and decrease of lactic acid bacteria; ORP values 
reflect activities of aerobic (positive ORP) and anaerobic 
(negative ORP) bacteria (Higashi et al., 1985). Electric 
conductance is used to approximate change in salinity. 
Methanol and ethanol show existence of alcoholic 
fermentation by yeasts. Propane, butane, ammonia are signs 
of gram-negative aerobic bacteria. Data were collected both 
in fermenting and in rotting states. 

Data Analysis and System Implementation 
We conducted a Principal Component Analysis using 173 
data points of 15 sensor values collected during the period of 
November 2018 to January 2019, with 3 data points per day 
on average. Figure 3 shows the resulting data obtained from 
1st and 2nd PCs. The Proportion of Variance for the 1st and 2nd 
PCs were 0.366 and 0.189. We found that ORP has a strong 
influence in the 1st PCs. We conjectured that there are 
clusters of sensors with similar data patterns throughout the 
evolution of a nukadoko’s status. 

Figure 3: Principle Component Analysis of sensor data 

 Based on these sensor values, we have implemented a 
preliminary algorithm to evaluate the health status of a 
nukadoko at any moment. We connected a voice recognition 
system with a speaker to the NukaBot, so that it can alert 
human when it needs assistance and answer simple questions 
from human: it can verbalize prediction of taste 
(sourness/bitterness), the current stage of growth (salting, 
pickling, nukadoko), and whether there is a need to stir the 
rice bran (Figure 4). Additional explanatory materials (PCA 
results and videos) can be accessed at the following URL: 
http://infinityloops.xyz/nuka/alife/add.html. 

Figure 4: Schematics of the Human-Microbe Interaction 

Future Outlook and Discussions 
We have so far implemented one complete NukaBot for the 
occasion of an exhibition at the XXII Triennale di Milano. 
Currently, we are continuously collecting data from 1 
NukaBot located in Milan, in addition to 3 nukadokos with 
sensors placed in each co-author’s respective home in Japan. 
 We need to reflect sensory assessment labels into our 
analysis to show correlation between data and actual status of 
nukadokos. Furthermore, the human interaction with the 
NukaBot also needs to be evaluated. How does her 
perception of the innumerable yet invisible microbes change? 
Does it yield more affection to the nukadoko? How can we 
design a valid protocol between human and microbes, so to 
realize a sustainable symbiotic relationship between them? 
We believe that our development leads us to a broader 
discussion about design approaches in representing and 
understanding the coevolution of humans and microbes. 
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Introduction
Not only studying and analyzing real lives on earth but also
creating life as it could be on computer simulations can
be our strong method to understand what life is (Langton,
1989). It becomes the main philosophy in artificial life com-
munity and various types of simulations have been devel-
oped in different levels of life such as artificial chemistry,
evolutionary robotics, multi-agent social system, etc. The
synthetic approaches have been applied not only to com-
puter simulations but also to chemistry and robots in our real
world. Regardless of the virtual or real world as experimen-
tal grounds, when we can reconstruct life there, we could
understand the essential mechanisms that make an entity ca-
pable of being life.

Those experiments have been performed in either real or
virtual world separately. As rather new direction, in this pa-
per, we investigate a hybrid synthetic approach that com-
bines the real and virtual experiments. In biology, there is
a close idea for our hybrid synthetic approach called play-
back experiments where real animals interact with the vir-
tual individuals, which can be robots or computer graphics
displayed on a monitor. For example, Nakayasu et al. ex-
amined how much real medaka (small fish, Oryzias latipes)
can be attracted by the computer graphics animation or the
biological motions, which has been made from the actual
behaviors of medaka (Nakayasu and Watanabe, 2014). They
showed that the color, shape, and movements of the virtual
individuals affect the real medaka’s movements and change
attractiveness.

However, the playback experiments cannot be our hybrid
approach in a sense that real individuals just react to virtual
one and there is no mutual interaction. In the real interac-
tions, the behaviors that individuals have performed in the
past affect the future behaviors of the others mutually. It
is known that the mutuality is important for the interaction
in the human and animal interactions. In this paper, we es-
tablish a hybrid experiment where the real and virtual indi-
viduals interact with each other and investigate if there is a
difference between mutual and playback interactions. We
used medaka for test animals for the sake of the simplicity

Figure 1: Experimental environment.

of establishing an experiment environment.

Experiment
Our experimental environment consisted of an aquarium
tank, OLED display attached on the side of the tank, and
two web cameras to detect the real medaka positions (Fig.
1). The glass walls at the bottom and both sides of the tank
were covered with black plastic sheets to shut out the other
visual stimulus. The three dimensional positions of the real
medaka were detected by two cameras.

The movement of the virtual medaka was controlled by
the Boids rules (Reynolds, 1987). Because the movements
of the virtual medaka are restricted on the 2-D plane of the
monitor, the positions of the real medaka is projected onto
the 2-D plane of the monitor and the virtual medaka moves
on the plane while following the Boids rules. The position
and velocity vectors of the virtual medaka vv , pv were up-
dated according to the Boids rules as follows,

at
v = α(p̄− pv) + β

∑

i

(pi − pv)

‖pi − pv‖
+ γ(v̄ − vv) (1)

where α, β, and γ are coefficients that describing the in-
fluence of cohesion, separation, and alignment, respectively.
The bars show the averages of other individuals including
real and virtual ones. In our current experiment, there are
only one each for the real and virtual medaka, which means
that the average position and velocity are equal to the po-
sition and velocity vectors of the real medaka. The virtual
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medaka has the view rangeR, and moves as described above
when the distance to the real medaka is smaller thanR. Oth-
erwise, it moves simply go straight and turn when reach the
edge of the 2-D space. The motions of the virtual medaka
was created by exchanging the medaka images, which were
prepared using female 3D medaka model shared in figshare
(Watanabe, 2017)

The experiment consisted of three different conditions,
i.e., reactive (mutual), non-reactive (playback) and blank.
No stimulus was presented to the medaka in the blank con-
dition. Under the reactive condition, the virtual medaka
moved in accordance with the Boids rules, which reflected
the current real medaka motions. During this condition, the
whole movements of the virtual medaka were recorded. The
recorded video was replayed under the non-reactive condi-
tion. It means that the visual stimuli to the real medaka of
the reactive and non-reactive period were identical. The dif-
ference is that the movements of the virtual medaka in the re-
active period were generated in an online manner as a result
of ongoing interaction while it was just playback in the non-
reactive period. The experiment was performed in the or-
der of blank (blank1), reactive, blank (blank2), non-reactive
conditions for all medaka participants (N = 10). Each con-
dition lasted three minutes.

Results
We recorded the three dimensional positions of the real
medaka during the experiments. Figure 2 shows the ex-
amples of the spatial distributions of the real medaka dur-
ing reactive and non-reactive conditions. The colors of the
plots indicate the passage of the time. The medaka was
attracted to the display for longer time when the virtual
medaka moved in a reactive way. On the other hand, when
the non-reactive stimulus was presented, the medaka was
hardly attracted to the display.

In order to confirm the effect of mutuality, we measured
the total time when the medaka staying near the display
(within 3cm from the display) during each stimulus period.
Figure 3 shows the average staying time of all 10 medakas
during the period of each condition. The medaka was most
attracted to the display when the reactive stimulus was pre-
sented (red line, about 78 sec over 3 min in total). Soon
after the reactive period, the real medaka tended to stay
close to the monitor as the hysteresis effect but gradually
it went away from the monitor. The staying time in the play-
back period (blue line, about 46 seconds in total) was longer
than the blank1 period (black line, about 21 sec in total).
These results show that the mutuality contributed to attract
the medaka.

Discussion
In our current study, the virtual medaka was controlled by
the Boids rules which can generate realistic swarm behav-
iors. The hybrid approach shows that there is a difference

Figure 2: Examples of spatial distribution of real medaka
during (a) reactive and (b) non-reactive periods.

Figure 3: Averaging time when the distance between the real
medaka and the monitor is less than 3 cm. It is obtained
every minute. The bars show the standard errors.

in the medaka reactions between reactive and non-reactive
experiments. It shows that the Boids interaction rules have
an ability to establish an interaction with the real medaka. It
seems that these abilities of generating realistic swarm be-
haviors among multiple agents and establishing an interac-
tion with real individuals are different but our results suggest
that they might be related. On the hand, it is not clear if the
Boids algorithm is the best for our experiment. The reason
why we chose it is because there is no choice in the other
simple algorithms. To find the better algorithms becomes an
interesting challenge but it would not be simple. This could
be achieved by having ALIFE challenges as a competition.
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Abstract

Artificial life simulations are an important tool in the study
of ecological phenomena that can be difficult to examine
directly in natural environments. Recent work has established
the soundscape as an ecologically important resource and
it has been proposed that the differentiation of animal
vocalizations within a soundscape is driven by the imperative
of intraspecies communication. The experiments in this
paper test that hypothesis in a simulated soundscape in
order to verify the feasibility of intraspecies communication
as a driver of acoustic niche differentiation. The impact
of intraspecies communication is found to be a significant
factor in the division of a soundscape’s frequency spectrum
when compared to simulations where the need to identify
signals from conspecifics does not drive the evolution
of signalling. The method of simulating the effects of
interspecies interactions on the soundscape is positioned as
a tool for developing artificial life agents that can inhabit and
interact with physical ecosystems and soundscapes.

Introduction
Artificial life experiments have become important tools
for exploring biological phenomena. In particular, they
have allowed researchers to study the relationships between
evolutionary processes and ecological theories (Aguilar
et al., 2014), like the emergence of interspecies relationships
like mutualism and parasitism (Watson et al., 2000).

One area of ecology that has received little attention thus
far from artificial life (ALife) studies is soundscape ecology.
The field of soundscape ecology has been formalized by
researchers over the past decade (Pijanowski et al., 2011a),
building on earlier conceptions of the soundscape (Schafer,
1977). One of its foundational theories is the acoustic
niche hypothesis (ANH) (Krause, 1987), which applies the
concept of ecological niches — the distribution of resources
that are used by a species in an ecosystem (Pocheville, 2015)
— to the soundscape.

This experiment tests the proposed mechanisms for the
formation of these niches in a virtual soundscape in order
to understand how species change vocalizations in response
to one another. It models the behaviour of two species in a
virtual ecosystem and tracks how their calls shift through

the audio spectrum in response to different evolutionary
pressures. Through the experiment, evolutionary pressure to
communicate within a species is found to play a significant
role in the formation of acoustic niches.

In examining the emergence of communication between
artificially evolved species, this study draws from a
body (Arita and Koyama, 1998; Wagner, 2000; Sasahara and
Ikegami, 2007) of ALife-based studies of communication
including the work of Floreano et al. (2007) in emergent
communication between robotic agents. However, it is
distinct from these previous studies in its focus on the
effect of the emergent communication on the ecological
phenomena of niche differentiation.

The main contributions of this study are the development
of a simplified model of a soundscape for the purpose of
rapid experimentation and in-depth analysis of population-
soundscape dynamics, and the demonstration of the ANH
on this model.

Background
In the physical world, the concept of soundscape —
the collection of the acoustic features of a landscape —
has roots and influences in a diverse array of academic
fields (Lyonblum, 2017). It grew initially out of the arts
and cultural studies work of Westerkamp (1974), Schafer
(1977), and Truax (1978), but has since expanded into
the sciences. In the field of ecology, the soundscape
is considered an important ecological resource and its
composition is thought to indicate the diversity and stability
of the ecosystem (Pijanowski et al., 2011b). Though the
field of soundscape ecology was only proposed relatively
recently (Pijanowski et al., 2011b), the application of
ecological principles to the study of soundscape has a longer
history. Notably, the concept of ecological niches was
first introduced in the context of sonic resources by Krause
(1987) as the acoustic niche hypothesis.

Acoustic niche hypothesis (ANH)
The acoustic niche hypothesis expands the concept of
ecological niches to the spectro-temporal plane of the
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soundscape. Krause proposed that, in the same way that
niche differentiation leads to species making use of the range
of physical resources available in an ecosystem, species tend
to differentiate their use of an ecosystem’s sonic resources.
This differentiation, according to Krause, occurs spectrally
in the sonic frequencies that animals use for vocalization
and temporally in the time-based patterns of their sounds.
The theory holds that older, more mature ecosystems should
show a greater degree of differentiation between the auditory
niches that long-established species occupy.

The ANH describes the result of acoustic differentiation,
but Endler (1992) proposed the primary mechanism for this
evolutionary driver: sexual selection based on a mate’s
ability to hear a call and the ability to maintain territory.
In this formulation, vocalizations and auditory receptors
have co-evolved to maximize the reception of signals
from members of ones own species (conspecifics), while
minimizing interference from members of other species
(heterospecifics).

This type of spectral differentiation has been observed
numerous times in the wild: in the calls of certain
species of frogs (Feng and Schul, 2007); in the buzzing
of cicadas (Sueur, 2002); and in the overall division of a
soundscape in Borneo between a series of birds, gibbons,
and accompanying insects (Krause, 2008). However, it has
proved difficult to experimentally probe the formation and
division of spectral niches, due to the lengthy timescales
that would be required to allow evolutionary processes
to progress (Miller, 1995) and the complexity of the
systems and soundscapes that are encountered “in the
wild” (Wheeler et al., 2002).

ALife approaches
Where ecological phenomena have been difficult to
experimentally investigate, researchers have proposed that
ALife approaches can be a mode of inquiry that allows
for the manipulation of particular conditions and the rapid
collection of large quantities of data about a simulated
ecological system (Miller, 1995). In 2018, Eldridge and
Kiefer proposed synthetic acoustic ecology (SAC) as a
toolset for exploring questions in the field of soundscape
ecology using ALife methods in virtual ecosystems. Their
study examined one of the assertions of ANH (Krause,
1987) — that one can identify the maturity of an ecosystem
by examining its acoustic signature. Using a multi-agent
system model, they demonstrated that patterns emerge in
two common acoustic indices that indicate the stability of
a model ecosystem.

Niche differentiation mechanisms
The study in this paper uses a virtual soundscape to test
hypotheses in soundscape ecology, building on the work of
Eldridge and Kiefer (2018). While Eldridge and Kiefer’s
study focused on the verification of acoustic biodiversity

metrics, this study examines the mechanisms that breed
interspecific diversity and intraspecific convergence in the
vocalizations of communities in a soundscape. In particular,
it is designed to test Endler’s hypothesis (1992) that the
ability to identify vocalizations from members of the same
species drives acoustic niche differentiation.

The acoustic niche hypothesis posits that soundscapes
niches are differentiated on both spectral and temporal
levels, so that species ensure that their calls are isolated in
both frequency and time. In order to simplify the modelling
and analysis and to allow for a deeper examination of the
effects of differentiation, this study focuses only on the
spectral component of this differentiation.

Approach
The experimental setup for testing the drivers of acoustic
niche differentiation consists of a set of evolving populations
and a soundscape that they communicate within. The
experiment tests two hypotheses: the alternative hypothesis
(H1), that acoustic niche spectral differentiation is driven a
need to identify signals from potential mates or territorial
rivals of the same species; and the null hypothesis (H0) that
spectral differentiation in acoustic niches is not driven by the
need to distinguish the species of the signaller.

In order to facilitate rapid experimentation and ease the
analysis of the emergent signalling systems, the experiments
use a simplified, discretized model of a soundscape instead
of a full-spectrum, temporally-varying acoustic space.
Sounds are modelled as 9-bit vectors that represent the
use of 9 available frequency bands in an instantaneous
signal. These simplifications allow the repetition of the
experiments many times with a large number of generations
and individuals, such that results reflect general trends in
the dynamics of these systems rather than the peculiarities
of any single simulation. The entire system is illustrated
in Figure 1 and described in detail in the sections below.
Lettering in brackets refers diagram labels in Figure 1.

Populations
In soundscape ecology in the physical world, the
communicative process is often assessed in two parts:
sender and receiver. Every individual, of course, is both
sender and receiver, but the processes experience different
evolutionary pressures; “[n]atural selection favors signals
that elicit a response in the receiver that increases or
maintains the fitness of the sender” (Endler, 1992). The
same is true in reverse, such that the sender and receiver of
a particular species evolve alongside one another, but with
sightly different driving forces.

The populations in this experiment are modelled as
artificial neural networks, which are optimized with
the neuroevolution of augmenting topologies (NEAT)
algorithm (Stanley and Miikkulainen, 2002). NEAT models
individual phenotypes as neural networks with a fixed

53



So
un

ds
ca

pe

0

1

Fitness

Fitness

Fitness

Fitness

Sender
o1o0 o2

Receiver
m1m0 m2 m3

o1o0 o2

Sender

m1m0 m2 m3

Receiver

Species A Species B

(a)

(b)

(e)

(c)

(d)

(f)

(g)

(h)

(i)

Figure 1: The experimental setup. Senders (a) encode a 3-bit message (o0..2) into the 9-band soundscape (e) using a neural
network with 3 inputs (c) and 9 outputs (d). Receivers (b) “hear” encoded messages from all species’ senders and predict the
original message (m0..2) and whether the message originates from a conspecific (m3) using the 9 inputs (f ) and 4 outputs (g)
of their neural networks. Sender fitness (i) depends on how well conspecific receivers identify their species and decode their
messages. Receiver fitness (h) depends on how well they identify the species of all senders and how well they decode messages
from conspecifics.
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number of inputs and outputs and an evolvable internal
structure and connectivity. This allows the population to
begin with simple neural structures and to evolve complexity
as necessary to achieve the task.

For the experiment presented here, each species actually
consists of two NEAT populations: a population of senders
(a in Figure 1) and a population of receivers (b in Figure 1).
The populations communicate over a simulated soundscape
(e) that consists of 9-bit vectors, interpreted as acoustic
frequency bands which can be used by senders to transmit
messages. The senders encode 3-bit messages ([o0, o1, o2])
into a representation in the 9 frequency bands using their
3-input (c), 9-output (d) neural network structures. The
structure of 2 species encoding 3-bit messages into a 9-
band soundscape allows for the development of relatively
complex messaging while allowing the soundscape to
remain undersaturated as each species could theoretically
communicate in only 3 of the 9 bands. The frequency bands
form the inputs to the 9-input (f), 4-output (g) receiver neural
networks. The first 3 outputs ([m0,m1,m2]) of the receiver
network are its estimation of the original message and the
final output represents the receiver’s prediction of whether
the message comes from a conspecific (m3 ≥ 0.5) or from
a heterospecific individual (m3 < 0.5).

The soundscape (e) is shared among species but messages
are received serially in order to decouple timing effects;
therefore, each receiver “hears” messages from the senders
of all of the present species, but receives them one at a time.
Additionally, any spatial arrangement of the individuals is
not considered as part of this experiment, so each receiver
“hears” the signals from every sender at the same “volume”
with no attenuation due to a distance or set of obstacles
between them.

Fitness
In a communicative process, the evolutionary pressure on
senders and receivers is related but differs in some crucial
aspects. The fitness functions used in this experiment reflect
these differences. Since communication for mating and
territorial maintenance is hypothesized to drive acoustic
differentiation (Endler, 1992), the sender is indifferent to
how its messages are interpreted by receivers from other
species. The receiver, however, processes all messages
regardless of their origin; it has to learn how to differentiate
messages from conspecifics from those of heterospecifics.

Following this reasoning, the fitness of the sender (i) is
formulated to reflect how well its message is understood —
or correctly decoded — by the receivers of its own species; it
does not depend on how the receivers of the another species
process its messages. The fitness of the receiver (h) reflects
both how well it is able to distinguish the species of the
sender as well as whether it is able to correctly decode the
message.

The ability of a receiver to perform these two tasks

— identifying messages from conspecifics and decoding
messages — is formulated into components of the the fitness
function as fs (species identification fitness, Equation 1)
and fd (message decoding fitness, Equation 2). m is the
decoded message where the first three components (m0..2)
are message as decoded by a receiver. The fourth value
output by the receiver (m3) determines whether the receiver
has identified this message as coming from a conspecific
(m3 > 0.5) or from a member of another species. The
original message is a three-bit string represented by oi.

fs(m) =

{
fadj(1− |1−m3|) if same species
fadj(1− |0−m3|) if different species

(1)

fd(m) = 3 ∗
2∏

i=0

fadj (1− |oi −mi|) (2)

To achieve the desired fitness formulations, these
equations are applied in different ways for senders and
receivers by adjusting the enabling/disabling coefficients es
and ed in Equation 4. For each message produced, a sender’s
fitness is based on the interpretation of the message by all
receivers from its own species. Equation 4 is applied for
each receiver from the sender’s species with es = 1. The
value of ed depends on whether the species is identified
incorrectly (ed = 0) or correctly (ed = 1). IfR the
species is incorrectly identified, then the interpretation of the
message is of no consequence, which is why the fitness of
the message decoding is ignored.

Receivers “hear” messages from the senders from both
species and their ability to identify and ignore messages
that are not from their species is an important component
of their fitness. For each message that a receiver “hears”,
fs is calculated as part of its fitness (es = 1). If the
receiver correctly identifies that a message originated from a
member of its own species, it receives an additional score
for decoding the bits of the original message (fd) and a
bonus multiplier (fb) for correctly identifying multiple bits
(ed = 1), as described in Equation 4.

fb(es, N) =





1.0 if es = 0
N∏

i=0

(
i

10
+ 1) if es = 1

(3)

ft = (esfs(m) + edfd(m)) ∗ fb(es, N) (4)

One detail that requires some explanation is the
adjustment function (fadj) applied to the fitness equations
for species identification (fs) and message decoding (fd).
The results that these equations evaluate are treated as binary
in the operation of the system but the receivers produce
output as decimal numbers between 0 and 1. If the receiver
outputs m3 = 0.6 for a message from a member of its own
species, the consequence is no different from m3 = 1.0 —
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the receiver has correctly decided that the message should
not be ignored. However, an application of Equation 1
without fadj would result in quite different fitnesses for
the two outputs. Equation 5 creates a sharp rise in the
fitness, centred around a value of 0.5 without producing a
discontinuity, which was found to create an effective fitness
landscape for the evolutionary process.

fadj(x) =
1

2
(tanh(8.0 ∗ (x− 0.5)) + 1) (5)

Null model and hypothesis
The model used to test the null hypothesis (H0) uses a
modified formulation of the fitness functions. The null
hypothesis is that the need to identify messages from
members of the same species does not play a role in niche
differentiation. Therefore receivers are assumed to be able
to know a priori which messages come from senders of their
own species and no fitness is assigned for the task of species
identification in this null model.

In the null version of the model, this results in the
receivers only processing messages from members of their
own species and ignoring messages from the other species.
Senders and receivers are evaluated with the fitness function
in Equation 4 with es = 0.

Results
We ran simulations of our ecosystem with senders and
receivers for two species. Each population consisted of 50
individuals and the simulation was run for 300 generations.
The results discussed here are averages and standard
deviations from 20 independent simulations. Additionally,
the results from a representative example simulation are
highlighted in figures and throughout this section in order
to discuss specific features of an individual simulation.

For each simulation, we generated spectrograms that
mirror the type of chart that is often presented in studies
of soundscapes (Krause, 1987; Pijanowski et al., 2011a),
except that the x-axis of these plots represents generations
instead of real-time auditory signals. These diagrams, such
as the one seen in Figure 2, show how the two species’s use
of the frequency bands shifts from generation to generation.
The initial populations’s encoded messages are randomly
distributed across the 9 frequency bands, but the signals
converge over the course of the first 50 to 100 generations
into a subset of bands used primarily by one species. In
this example, after an initial series of about 100 generations,
both species show consistent use of 3 bands — 0, 2, and 4 for
Species A and 1, 5, and 7 for Species B — for the remainder
of the simulation. Species A develops and then eventually
scales down the use of band 3 and band 8, but Species B’s
use of 1, 5, and 7 remains remarkably stable through most
of the latter 200 generations.

The spectral plots provide a useful visual representation
of the divergent signals, but the actual level of separation

can be quantified further and visualized in another manner.
Figure 3a shows a mapping of the high-dimensional
messages to two-dimensions using t-distributed Stochastic
Neighbour Embedding (t-SNE), plotted for particular
generations of interest. The encoded messages generated by
senders from the two species can be seen to rapidly separate
into clusters from an initial state of near-total overlap. This
can be further examined in the plot below the cluster maps
(Figure 3b) which shows the silhouette score for the clusters
over the course of generations. The silhouette score is used
in the evaluation of clustering algorithms and is a measure of
the density of clusters (Rousseeuw, 1987), where a score of
0 indicates overlapping data and a score of 1 indicates dense
and well-separated clusters. The rapid rise of the silhouette
score here indicates the splitting of the spectrum audio
spectrum between the senders in relatively few generations.

The plot shows the average and standard deviations of the
silhouette scores from the series of 20 trials of H1 (dark
grey) alongside the silhouette score from the specific run
from which the clusters in the plot above were derived
(pink). In addition, it shows the average and standard
deviation of silhouette scores from 20 trials of the null model
H0 (light grey). A test of the hypotheses using Welch’s t-test
— because the variance of the samples cannot be assumed
to be equal — reveals that the difference between the two
models is significant after generation 4 (P < 0.01), with an
average P-value of 15× 10−5 for latter 295 generations.

While the null model does produce a level of clustering
of the species’ messages, this is to be expected as a
result of the selection of frequency bands on which to
communicate. However, in the null model, this selection is
not competitively driven by the presence of the other species.
In H1, the receivers of the two species drive their senders
towards diverging frequency bands as their fitness increases
with their ability to identify messages from their own species
and reject those from the other.

We also examined the actual performance of the species
with regard to their ability to recognize and decode messages
from their conspecifics. Figure 4 shows the scores of the
senders and receivers from a species over the course of 300
generations. On average, the proportion of messages that
are correctly identified as being from members of the same
or other species (red) rises sharply in the first generations
before steadying near 80%. The proportions of bits that
are correctly decoded and messages that are fully decoded
correctly are slower to rise, but continue to do so throughout
most of the evolutionary process.

Discussion
The results presented in the previous section demonstrate
that it is possible to drive spectral differentiation in the
acoustic signature of an agent through an impetus to
communicate with other members of the same species.
An analysis of the distance between intraspecies messages
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Figure 2: The use of the 9 frequency bands by the population of senders in the example simulation of H1. The graph shows the
changing use of the frequency bands over 300 generations. In the first generations, both species’s signals are spread across the
9 bands such that the signals from the two species overlap. These signals converge rapidly to a smaller subset of the available
bands. By about the 50th generation, there is little overlap between the two species — A uses mainly bands 0, 4, and 6 while B’s
signals are concentrated on 1, 5, and 7 — though there is some use of bands 2 and 3 by both species. In this example, Species
B uses band 2 heavily but intermittently until just before the 100th generation, when it ceases almost all activity on the channel
and Species A begins to make consistent use of it for the remainder of the simulation. By the generation 300, both species have
converged to the near-exclusive use of 3 channels: 0, 2, and 4 for Species A and 1, 5, and 7 for Species B.

and interspecies messages shows a significant difference
between the test of the alternative hypothesis (H1) and the
null hypothesis (H0), as seen in Figure 3b. Moreover,
Figure 2 provides a visual reference for the division of
the spectrum in a selected simulation of the alternative
hypothesis (H1). The spectrum has been split between the
two species after the first 100 generations, such that Species
A primarily makes use of bands 0, 2, and 4 while Species B
relies on bands 1, 5, and 7. It is interesting to note that, in
the first 100 generations, band 2 is used mainly by Species
B, however this changes around generation 90 as Species A
begins to use the band regularly. Once Species A establishes
regular use of the band, Species B never returns to it with
any stability for the remainder of the simulation.

In models of the null hypothesis (H0), the two species
occasionally achieve a level of differentiation of their
messages, however this occurs only by chance. In both
models, species tend to converge to the primary use of
roughly 3 of the 9 available channels for communication.
Three channels is the fewest that can be used to encode the
three-bit message and it is often the easiest solution for the
evolving neural networks to find. However, in the null case,
the channel selection is not driven by competition between
the species, only by cooperation within a species. This lack
of competition often leads to overlapping channel selections,
which in turn, is responsible for the lower silhouette scores
for the null models (Figure 3b).

While these results cannot be taken as confirmation of the
proposed mechanism of the ANH, they demonstrate that the
mechanism is plausible. The drive to produce signals that
are identifiable and understandable to members of one’s own
species within the finite resource that is a soundscape results

in the formation of acoustic niches for vocalizing species.
This study also demonstrates the efficacy of a highly

simplified model in demonstrating the plausibility of a
particular mechanism for the formation of patterns within
a soundscape. It compliments the work of (Eldridge and
Kiefer, 2018), which explores the way that common acoustic
indices respond to changing populations and signals, and
presents another application for a synthetic acoustic ecology.
Together with other types of computational studies of
soundscapes (Eldridge and Kiefer, 2018), this paper lays
the foundation for a method of rapidly interrogating
evolutionary acoustic processes. In addition to providing
insight into ecological studies, research in this area can
also be used to inform the development and analysis of
evolutionary acoustic agents live “in the wild” and interact
with biological ecosystems.

Conclusion
Though the experiment presented here is based on a highly
simplified model of a physical ecosystem, it demonstrates
that it is possible to rapidly and repeatedly test some of
the basic principles of soundscape ecology. As predicted,
the experiment was able to demonstrate the important role
of intraspecies communication in the partitioning of the
acoustic resources of an ecosystem.

This has important implications for the development of
hardware-based ALife agents for the production of sound
in a physical, hybrid ecosystem. It suggests that, if
one of the goals of that agent is to identify a niche for
itself in the soundscape, it is important to co-evolve the
auditory production with auditory perception to drive the
vocalizations into an empty portion of the spectrum.
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(a) Cluster diagrams of messages in selected generations, mapped to 2 dimensions using t-SNE. Each point is a message generated by a sender
in a single generation (labeled above the plot) of the simulation. The selected generations are marked on the silhouette score plot below with
pink circles. The different colours represent messages originating from members of the two different species. The messages in generation
0 are scattered randomly from both species as the initial neural network connections for the senders are randomly generated. The messages
rapidly converge to two clusters by generation 12. However, these clusters are still evenly spaced internally, as the initial selection pressure
is mainly to differentiate messages between the two species. In later plots, for example in those from generations 175 and 299, smaller
clusters form within the messages from a single species as the senders from each species converge on representations for particular bits and
messages. This clustering drives the increasing bit and total scores in Figure 4. Note that the t-SNE and silhouette scores operate differently
on high-dimensional data, which is the likely cause of an apparent mismatch between some of the diagrams in Figure 3a and Figure 3b. The
t-SNE is a 2D visualization of high-dimensional data, while the silhouette scores reflects cluster validity in n-dimensions which is why, for
example, the clusters in generation 24 appear visually more distinct than those in generation 12, even though the silhouette score in generation
24 is lower.
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(b) Silhouette score of the encoded messages, grouped by species, over the course of 300 generations. Scores reflect the validity of the message
clusters when grouped by species, averaged over 20 runs of the simulation, and plotted with the standard deviation in the background. An
example of an individual run is also plotted (pink) and the generations of that run that are plotted in the cluster diagram above are noted. The
difference between the alternative hypothesis (H1) and the null hypothesis (H0) is significant (P < 0.01) after generation 4. The average
P-value after generation 4 is 15× 10−5.

Figure 3: Cluster validity scores over 20 runs of the simulation. Message clusters are shown above for selected generations of
an example run.
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Figure 4: Performance of a species, showing the receivers’
ability identify the species (yellow), and the rate at
which sender-receiver pairs were able to correctly identify
individual message bits (blue) and the entire message (pink).

In a broader sense, this experiment sets out the foundation
for a method of testing ideas for hardware-based agents in
software simulations to understand the possible dynamics
once they are released in the field. It grounds the inquiry into
a complex phenomenon with a concrete example that solidly
demonstrates the theoretical basis for a physical experiment
through repetition and statistical analysis on a scale that is
difficult to achieve in the field. And it demonstrates the
feasibility of a key theory in soundscape ecology.
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Abstract

Insect-Inspired models of visual navigation, that operate by
scanning for familiar views of the world, have been shown to
be capable of robust route navigation in simulation. These
familiarity-based navigation algorithms operate by training
an artificial neural network (ANN) with views from a train-
ing route, so that it can then output a familiarity score for any
new view. In this paper we show that such an algorithm –
with all computation performed on a small low-power robot
– is capable of delivering reliable direction information along
real-world outdoor routes, even when scenes contain few lo-
cal landmarks and have high-levels of noise (from variable
lighting and terrain). Indeed, routes can be precisely recapit-
ulated and we show that the required computation and stor-
age does not increase with the number of training views. Thus
the ANN provides a compact representation of the knowledge
needed to traverse a route. In fact, rather than losing informa-
tion, there are instances where the use of an ANN ameliorates
the problems of sub optimal paths caused by tortuous training
routes. Our results suggest the feasibility of familiarity-based
navigation for long-range autonomous visual homing.

1 Introduction
Visual homing – the ability to navigate back to a place of in-
terest using visual information alone – is a problem of great
interest for both engineers seeking to build autonomous
robots and neuroethologists seeking to understand its neural
basis in animals (Graham and Philippides, 2014). Solitary
foraging ants are amongst the champion visual navigators in
the animal kingdom (Wehner, 2009). Despite having small
brains and low-resolution vision, these ants can learn visu-
ally guided routes many metres long through complex ter-
rain (Knaden and Graham, 2016). However, in direct con-
trast with most modern robotic methods, insects use route
knowledge not mental maps to navigate between two loca-
tions (Wehner et al., 2006). That is, insects learn procedural
instructions for navigation: “What should I do here?” rather
than “Where am I?”. This allows for simpler representations
of the visual world with corresponding potential for compu-
tational efficiencies. We have shown that route knowledge
can be learnt and represented holistically using an artificial
neural network (ANN) (Philippides et al., 2015), without

specifying when or what to learn (Baddeley et al., 2011a)
and from a single exposure to the route data (Baddeley et al.,
2012). One of the reasons to use an ANN is that route knowl-
edge can be encoded and used with memory and computa-
tional constraints that do not scale with route length, making
ANNs well-suited to a small, power-efficient, robot. While
our ANN-based algorithms have been tested in simulations
of ant habitats, they had not previously been tested in the
real world. In this paper, we show that a single layer ANN
can autonomously guide a robot through outdoor routes of
up to 10 m with all computation performed on-board.

Our route navigation algorithms start with two observa-
tions. First, if an agent stores a view when facing a given
direction, the difference between this view and views from
nearby locations will be minimised when the agent is facing
the same direction as when the original view was stored (Zeil
et al., 2003). Second, for ants and many wheeled robots,
there is a fixed relationship between viewing direction and
direction of travel, meaning that a view implicitly defines
a movement direction. Therefore, when an agent is facing
in a familiar direction, it is likely travelling in the correct
direction. This allows the problem of navigation to be re-
framed in terms of a search for familiar views, that is, views
that are associated with a previously learned route. Based
on this, we have developed a parsimonious insect-inspired
navigation algorithm in which a route, or routes, are learnt
holistically and route recapitulation is driven by a search for
familiar views (Baddeley et al., 2012).

The algorithm proceeds as follows: an agent equipped
with a low-resolution 360° panoramic visual sensor first
travels a route. The views it experiences along this route –
crucially determined by both the agent’s positions and head-
ings (poses) – are used to sequentially train an artificial neu-
ral network (ANN) which learns a holistic representation of
the views encountered. Subsequently, the network is used to
estimate the likelihood of whether a given view – and thus
a pose – has been experienced before. When trying to re-
peat the route, the agent derives a direction of movement
at a position by visually scanning the environment (either
by physically rotating – a behaviour seen in ants (Wystrach
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Figure 1: A Robot platform with onboard computation.
B Environment used for robot testing.

et al., 2014) – or rotating the view ‘in silico’). Each rotated
version of the current view is applied as an input to the net-
work which outputs an estimate of its familiarity. The agent
then moves in the direction corresponding to the view most
similar to those encountered during learning.

Algorithms of this sort have been used to successfully
learn routes through simulations of the habitats of soli-
tary foraging ants, using a variety of neural networks for
route encoding, ranging from restricted Boltzmann ma-
chines (Baddeley et al., 2011b) to a spiking model of a part
of an ant’s brain known as the mushroom body (Ardin et al.,
2016). The paths of these simulated agents were found to
have many of the characteristics of the paths of ants (Wys-
trach et al., 2013). Here, we follow Baddeley et al. (2012)
who showed that a single layer network trained with an Info-
max learning rule (Bell and Sejnowski, 1995) can not only
navigate robustly, but can learn multiple paths to a single
goal after a single training run per path and with perfor-
mance robust to sensor and motor noise. We choose to use
this approach mainly because it only requires a single pass
through the data, meaning that each view is experienced just
once and then discarded. While this algorithm is well-suited
for use on autonomous robots, it had not previously been
tested in the real world. Here, we demonstrate that the robot
shown in Figure 1 can navigate fully autonomously outdoors
using only a single layer neural network, with all processing
performed using a Jetson TX1 (NVIDIA Corporation, 2016)
on-board the robot.

2 Methods
As described above, at the heart of our algorithm an agent
navigates by sampling views from the current position at a
number of headings and finding the direction that is deemed
most familiar when compared to the views perceived along
a training route. We find this most familiar direction in two
ways. Firstly, we train a neural network to output a ‘decision
function’ in response to rotated versions of the current view
based on their familiarity to training views. This results in
a rotational familiarity function (RFF – Figure 2) which, for
each heading faced, gives a decision function value. The
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Figure 2: Example Rotational Image Difference Func-
tion (RIDF) from the Perfect Memory algorithm and Ro-
tational Familiarity Function (RFF) from Infomax.

heading with the lowest decision function value is the most
familiar and sets the movement direction taken. Secondly,
as a baseline and because it allows easier interpretation of
the data (for instance, to identify points in routes that are
easy/hard or contain misleading information), we also im-
plement what we previously termed the Perfect Memory
model. In this variant, rotated versions of the current view
are compared directly in a pixel-wise manner to every train-
ing view in turn (which would not be plausible for an ant). In
the following sections we first describe the Perfect Memory
algorithm before describing the ANN and Infomax learning
rule.

2.1 Route navigation with a Perfect Memory
In our Perfect Memory version of the algorithm, each ro-
tated view is sequentially compared to all of the training
views. The best matching heading is then defined as the one
with the lowest image difference, across all training views
and rotations. Image difference can be calculated by various
functions but here we use the average absolute difference be-
tween each of the image pixels to calculate the Image Dif-
ference Function (IDF) (Zeil et al., 2003):

IDF (C(~a, θ), S(~b, φ)) =
1

p× q

p∑

i=1

q∑

j=1

|Ci,j − Si,j | (1)

where C(~a, θ) is a p × q pixel view captured at location
~a with heading θ, S(~b, φ) is a p × q pixel snapshot stored
in memory and Ci,j and Si,j refers to the intensity of pix-
els in row i and column j of the captured view and stored
snapshot respectively. A Rotational Image Difference Func-
tion (RIDF) is then generated by calculating the IDF across
a range of θ. Where there is a good match, there will be a
minimum in the RIDF which defines the best matching di-
rection. An example RIDF is shown in Figure 2 which has a
clear minimum at the best matching heading of around 60°.
As the RIDF will also have local minima at other headings,
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Figure 3: Example panoramic images from our database. A Raw unprocessed image. B Sky-segmented binary image.

we can use the RIDF to, for example, analyse whether errors
in navigation were the result of visual aliasing.

2.2 Familiarity-based route navigation
To estimate view familiarity we follow Baddeley et al.
(2012) and use a neural network model that was specifically
designed to perform this task (Lulham et al., 2011). The
network consists of an input layer and a novelty layer with
tanh() activation functions. The number of input units is
equal to the dimensionality of the input which in our case
is [120 × 25] = 3000, the number of pixels in a down-
sampled view of the world. The number of novelty units is
arbitrary and here we use the same number of novelty units
as inputs, although using fewer novelty units has worked
in simulation and will be tested in future work. The net-
work is fully connected by feedforward connections wij .
Weights are initialised randomly from a uniform distribu-
tion in the range [−0.5, 0.5] and then normalised so that the
mean of the weights feeding into each novelty unit is 0 and
the standard deviation is 1. The network is then trained us-
ing the Infomax learning rule (Bell and Sejnowski, 1995),
adjusting the weights so as to maximise the information that
the novelty units provide about the input, by following the
gradient of the mutual information using Equation 4 which
performs gradient ascent using the natural gradient (Amari,
1998) of the mutual information over the weights (Lee and
Sejnowski, 1997). During learning the activation of each of
the M novelty units hi is computed as:

hi =

N∑

j=1

wijxj (2)

where xj is a row vector assembled by concatenating the
rows of C(~a, θ) and N = p× q (the number of input units).
The output yi of the novelty units is then:

yi = tanh(hi) (3)

and the weights are adjusted using:

∆wij =
η

N

(
wij − (yi + hi)

N∑

k=1

hkwkj

)
(4)

where η is the learning rate which is set as 0.01 for this paper
following Baddeley et al. (2012). Finally, the response of
the network to the presentation of an unseen N-dimensional

input ~x is computed as

d(C(~a, θ)) = d(~x) =

N∑

i=1

|hi|, (5)

where | · | denotes the absolute value. By applying C(~a, θ)
to the ANN for a range of θ, an RFF can be calculated from
d(~x) and hence the most familiar direction can be found.

2.3 Robot platform
In this work we use the robot platform developed by Domc-
sek et al. (2018) shown in Figure 1a. This robot is based on
a Parallax ‘Shield-Bot’ chassis (Parallax Inc., 2012), with
a Jetson TX1 embedded computer (NVIDIA Corporation,
2016) mounted on top for additional onboard computation
and additional batteries mounted underneath. The Jetson
TX1 is connected via USB to a Kodak PixPro SP360 4K
camera (JK Imaging Ltd., 2016) mounted on top of the robot
which provides panoramic visual input.

2.4 Image processing and data collection
Using a Kodak PixPro SP360 4K panoramic camera (JK
Imaging Ltd., 2016), we recorded 195 images of the Library
Square at the University of Sussex (Figure 3). These were
taken on a 1.2 m grid, aligned with the slabs the square is
paved with. As well as this reference grid of images, we also
recorded videos from the same camera mounted on the mo-
bile robot as we manually drove it along six routes of vary-
ing lengths and tortuosity across the square (Figure 4a). We
tracked the robot by using the Discriminative Correlation
Filter Tracker with Channel and Spatial Reliability (Lukežič
et al., 2018) implementation provided by OpenCV (Brad-
ski, 2000) to extract the position of the robot over time from
video captured by a tripod-mounted camera. Finally, we
used OpenCV to apply a perspective transform to the po-
sitions extracted by the tracker and married these final posi-
tions with the video frames captured by the robot.

As it has previously been shown that the sky can give er-
roneous information for visual homing, and that visual hom-
ing can in fact be achieved using a binary image consisting
of sky/not-sky (Philippides et al., 2011; Stone et al., 2014),
we wanted to compare the use of raw and binary images.
To achieve this in real-time on the robot, we used the water-
shed segmentation algorithm (Beucher, 1979) with markers
placed at the top and bottom of each image. Figure 3 shows
some example images from this database.
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Figure 4: A The 6 numbered training routes, simplified using the Ramer-Douglas-Peucker algorithm (Ramer, 1972). B-E Vector
fields showing the directions an agent, trained on a route, would move at each point within 4 m of the route using a Perfect
Memory algorithm with the skyline extracted using the watershed algorithm. Orange lines shows data from our camera-based
tracking of the robot and blue lines show the version simplified using the Ramer-Douglas-Peucker algorithm (Ramer, 1972).
Green arrows indicate the position and direction the robot starts at. Red and pink arrows indicate positions in the vector field
referred to in later analysis. B Simple route (route 3). C Longer route (route 5) where visual aliasing occurs in the middle
section. D By only considering rotated views within 90° of the route, visual aliasing problems can be avoided in route 5.
E Using Infomax, tortuous elements of route 5 are smoothed out in the vector field.

3 Results
3.1 Offline simulations
We trained both the Infomax and Perfect Memory algo-
rithms on the images taken along the six routes shown in
Figure 4a and used them to find the direction a robot would
move when placed at each grid point within 4 m of the
trained route. Figure 4 shows some example vector fields
obtained by plotting this direction at each of the chosen
grid locations when using the Perfect Memory algorithm
described in Section 2.1 with the watershed segmentation-
based pre-processing discussed in Section 2.4. While the
vector field suggests that the route shown in Figure 4b would
be recapitulated successfully, in the middle section of the
route shown in Figure 4c, errors occur. Figure 5a shows an
RIDF taken at one of the problematic locations on this route
(indicated with a red arrow in Figure 4c) and it is clear that,
as well as the local minimum representing the correct head-
ing at 15°, there is an additional, slightly lower global mini-
mum at 153° which is overriding the correct choice. Figure 5
shows the per-pixel differences between the best-matching
image and the closest image (in terms of distance to the cur-
rent point) taken from the training route; and the rotated ver-
sions of the current image which best match these training
images. Although the shape of the skyline in the closest im-
age (Figure 5c) is clearly better matched than it is with the
best-matching image (Figure 5b), there is a vertical offset
– probably caused by variations in pitch due to uneven ter-
rain. This introduces sufficient difference between the grid

image and the correct route image (Figure 5c) that the Per-
fect Memory model matches the more distant image better.
Therefore, at this grid position, the algorithm selects a direc-
tion corresponding to the more distant point (indicated with
a pink arrow in Figure 4c), resulting in an error.

If we were recapitulating the route using a real robot,
these false-positive matches could be eliminated and com-
putation could be saved by simply not scanning the full
±180° but instead only scanning ±90° around the robot’s
current heading. However, unlike in the live robot tests,
in the database there is no ‘current’ heading. We there-
fore simulated the effect of this modified algorithm using
our database of images by simplifying each route using the
Ramer-Douglas-Peucker algorithm (Ramer, 1972) and cal-
culating the direction of each of the resultant segments. Each
point in the database is then assigned a ‘current’ heading
which is equal to the direction of the nearest segment. Us-
ing these headings, we can then ignore matches that would
involve heading more than ±90° away from the direction of
the nearest section of the route and Figure 4d shows that this
step solves the aliasing problems in this particular case.

In order to quantify the performance of our algorithms,
we used the absolute difference between the most familiar
heading angle obtained at each location on the grid and the
direction of the nearest route segment as an error measure.
The distributions of these errors across all of the routes,
algorithms and image pre-processesing steps is plotted in
Figure 7 and shows that, in fact, only scanning ±90° im-
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Figure 5: Analysis of aliasing shown in Figure 4c using
grid image taken at location marked with red arrow in Fig-
ures 4c and 4d (600 cm, 720 cm). All images were pre-
processed using watershed segmentation algorithm. A Rota-
tional Image Difference function. B Difference image with
visual aliased route image from location marked with pink
arrow in Figure 4c. C Difference image with correct route
image found at location marked with pink arrow in Figure 4d

proves performance in the majority of cases. Furthermore,
Figure 7 also shows that, when using the Perfect Memory
algorithm, sky-segmentation improves performance for al-
most all routes. This is particularly noticeable on route 3
(a straight line) where, when using sky-segmented input im-
ages, all of the algorithms reconstruct the direction of the
route with a very small median error (≈ 4°) which increases
to around 40° when using unprocessed input images. Fig-
ure 6a shows that, unlike the situation explored earlier in
this section, this is not an aliasing problem as there is only a
single minimum present in each RIDF. However, the magni-
tude of the average image differences between the raw im-
ages is much larger than that between the sky-segmented im-
ages and the minimum is located at the incorrect location.
The difference images shown in Figures 6b and 6c suggest
that the incorrect position of the minima when comparing
the raw images is likely to be due to the large differences in
the sky portion of the image due to clouds and the images
having been recorded at a different time of day.

After applying sky-segmentation to the input images and
only scanning ±90° away from the direction of the nearest
section of the route, the Infomax ANN achieves a lower me-
dian error than the Perfect Memory algorithm in 3 of the

−180 −90 0 90 180
Rotation [degrees]

0.1

0.2

Im
ag

e 
di
ff
er
en

ce

A

Raw image Binary image

Figure 6: Analysis of poor performance on route 3 when
using raw input images. Using grid image taken at loca-
tion marked with red arrow in figure 4b (480 cm, 720 cm).
A Rotational Image Difference function. B Difference im-
age based on raw input images. C Difference image based
on sky-segmented binary input images.

6 routes although this difference is not statistically signifi-
cant (p = 0.84, paired, two-sided Wilcoxon signed rank test,
n = 6). Furthermore, comparing Figures 4d and 4e, the vec-
tor field derived from the Infomax ANN appears smoother,
suggesting that rather than losing useful information, the In-
fomax encoding may actually be beneficial for smoothing
out tortuous training routes.

3.2 Computational cost of algorithm
In the previous section, we showed that the algorithms de-
scribed in Sections 2.1 and 2.2 are capable of robustly
extracting heading direction in outdoor scenes. How-
ever, in order to deploy these algorithms on a real robot
with constrained on board processing, their computa-
tional cost is important. In order to measure computa-
tional cost in a controlled scenario, we wrote a bench-
marking application in C++ which runs on the Jetson
TX1 and trains either the Perfect Memory or the In-
fomax algorithm with varying numbers of images and
then measures how long it takes to extract a heading
from a testing image (averaged over 100 iterations) using
std::chrono::high_resolution_clock. Figure 8
shows the performance of our implementation of the Info-
max algorithm compared to the Perfect Memory control us-
ing 120 × 25 pixel input images. Clearly, for small num-
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Figure 8: Performance of visual navigation algorithms run-
ning on Jetson TX1. Reported times are measured us-
ing std::chrono::high_resolution_clock and av-
erage is taken over 100 images. Variances between times are
too small to measure so we do not include error bars.

bers of stored images, extracting heading information us-
ing the Perfect Memory is faster. However, assuming that
training images are sampled every 100 ms, Infomax begins
to be more efficient for routes with only a little over 1 min
of training data making it much more feasible approach for
long-range visual homing.

3.3 Autonomous robot
Using the implementations of Infomax and the Perfect
Memory algorithms from our Brains-on-Board Robotics li-
brary (Dewar et al., 2017), we built a simple application
which can recapitulate learned routes on the robot described
in Section 2.3 by running the following simple algorithm
every 500 ms (based on the performance for 1000 images
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Figure 9: Reconstructed paths of autonomous robot during
training and testing using each algorithm.

established in the previous section):

1. Capture and unwrap a panoramic image.

2. Perform one of the image processing steps described in
Section 2.4.

3. Using either the Infomax or Perfect Memory algorithm,
calculate the familiarity with the processed image in-
silico when rotated through ±90°.

4. Find the orientation with the highest familiarity and, if it is
within 4°, start driving forwards. Otherwise, start turning
in the correct direction to align with the image.

In order to compare the performance of the navigation
algorithms and image processing steps described in Sec-
tions 2.1, 2.2 and 2.4 running on the robot, we first manually
drove the robot along a sinuous route through the wooded
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area shown in Figure 1b, recording training images every
100 ms. We then trained each of the navigation algorithms
on the resultant dataset of 455 images and allowed the robot
to recapitulate the path using the procedure described above.
Throughout this training and testing process, we used the
method described in Section 2.4 to track the robot, resulting
in the data shown in Figure 9. The robot was able to success-
fully recapitulate the training path using each of the naviga-
tion and image processing algorithms with little difference
in performance immediately apparent in Figure 9. We con-
firmed this by calculating the shortest distance to the train-
ing path at each location along each recapitulated path and
found that, in this environment, the different algorithms per-
formed very similarly (differences were within margin of er-
ror for extracting robot location from video) with mean dis-
tance between the training and recapitulated paths of 9 cm
and standard deviation of 8 cm.

4 Summary and Discussion
In this paper we present the first familiarity-based naviga-
tion algorithm that can function effectively in the real world
on board a small mobile robot using an ANN-based route
encoding. Indeed, we show that in some cases, using an
ANN can improve performance as it imposes a level of gen-
eralisation meaning that particularly tortuous elements of the
training route (which we presume to be from a noisy train-
ing process) are smoothed out in the recapitulated trajecto-
ries. While our formulation of the Infomax learning rule is
non-local and therefore not biologically plausible, we have
shown the potential for biomimetic algorithms to efficiently
control small, fully autonomous robots. Additionally, Info-
max implements a form of decorrelation, a process which
has been attributed to insect mushroom bodies (Hige et al.,
2015; Nowotny et al., 2005). Furthermore, local variants of
Infomax have been demonstrated within recurrent spiking
neural networks (Hayakawa et al., 2014) and future work
will explore the use of such, more biologically plausible
learning rules for navigation.

In addition, we reinforce results showing that removing
the sky and using only a binary image make these algorithms
more robust to variability in lighting and weather condi-
tions (Philippides et al., 2011; Stone et al., 2014). Further-
more, these improvements are seen even if the segmentation
is performed automatically on board the robot using an RGB
image processed using a simple watershed algorithm rather
than requiring specialist sensors such as a UV camera. Inter-
estingly, these improvements are not noticeable in the results
collected using the autonomous robot. We believe that this
is due to the fact that we performed these experiments in a
more enclosed environment, where the sky covered a smaller
portion of each image and because the testing and training
both occurred at the same time of day. These two factors
both act to reduce the differences between the raw images
meaning that raw image comparisons are more successful.

Finally, we show that the computation and storage needed
to recapitulate a route using the Infomax ANN does not in-
crease with the number of training views. To put this into
the context of robotic control algorithms, this is not typi-
cally a property of SLAM based localization systems where
more keyframes are accumulated over time although there
has been recent work to cap (Maddern et al., 2012) or at
least cull (Mur-Artal et al., 2015) the number of keyframes
accumulated. While visual SLAM implementations based
around SURF or SIFT can take several hundred millisec-
onds to extract features from each frame (Bay et al., 2006),
recent SLAM implementations such as FLaME (Greene and
Roy, 2017) have been demonstrated running on autonomous
quadrotors at much higher framerates than our current Info-
max implementation can achieve on the Jetson TX1. How-
ever, not only was FLaME implemented on an Intel CPU
which Biddulph et al. (2018) found to be 5× faster than a
Jetson TX1, but the performance of our Infomax algorithm
could be significantly improved. View-based algorithms in
general seem to work well with low-resolution wide-field
views (Wystrach et al., 2016) and this matches the obser-
vation that high-resolution vision in ants is associated with
hunting not with long distance navigation. Therefore, while
120 × 25 pixel images were used throughout the work pre-
sented in this paper, Baddeley et al. (2012) first demon-
strated Infomax for visual navigation using input images
with around half this number of pixels (90 × 17). Because
Equation 5 can be implemented as a matrix-vector product,
the computational complexity of which scales quadratically
with the number of pixels, using input images with half
the number of pixels would reduce the time taken to eval-
uate Equation 5 by 75 %. Furthermore, while our Infomax
implementation uses OpenMP (Dagum and Menon, 1998)
to take advantage of the Jetson TX1’s four CPU cores, it
does not utilise its 256 core GPU. Initial experiments using
the cuBLAS (NVIDIA Corporation, 2007) GPU-accelerated
linear algebra library suggest that Equation 5 could be eval-
uated in around 100 ms for 120 × 25 pixel images – a 5×
speedup over our current implementation. Thus, as with
SLAM which has seen vast increases in performance effi-
ciency, future work on the ANN encoding, visual processing
and behavioural strategy, will extend the range of homing
and reduce computation and training times further.
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Abstract

Predictive coding and its generalization to active inference offer a
unified theory of brain function. The underlying predictive process-
ing paradigm has gained significant attention in artificial intelligence
research for its representation learning and predictive capacity. Here,
we suggest that it is possible to integrate human and artificial gener-
ative models with a predictive coding network that processes sensa-
tions simultaneously with the signature of predictive coding found
in human neuroimaging data. We propose a recurrent hierarchical
predictive coding model that predicts low-dimensional representa-
tions of stimuli, electroencephalogram and physiological signals
with variational inference. We suggest that in a shared environment,
such hybrid predictive coding networks learn to incorporate the
human predictive model in order to reduce prediction error. We
evaluate the model on a publicly available EEG dataset of subjects
watching one-minute long video excerpts. Our initial results indi-
cate that the model can be trained to predict visual properties such
as the amount, distance and motion of human subjects in videos.

Introduction
Predictive processing has been used to explain a large variety
of phenomena in human cognition within neuroscience and
psychology. The notion of predictive coding refers to the idea
that perception involves hierarchical predictive models with ex-
pectation error propagation (Friston and Kiebel, 2009). The more
general framework of active inference suggests that perception
and action exist in a closed loop, maintaining an agent’s generative
model of the world (Adams et al., 2013). These ideas have
recently found traction in machine learning (ML). ML has been
used to classify, predict and learn shared embeddings of stimuli
and brain activation (Du et al., 2017). We propose to interface
human and artificial inference on the basis of predictive coding
as a shared principle. A predictive coding based artificial neural
network processes human neurophysiological data simultaneously
with visual stimuli that are perceived by both human and machine.
The processed neurophysiological signals reflect predictive coding
based inference in the human brain. This means that the artificial
model fuses predictions about changes in the shared environment
and the corresponding physiological response from human
inference. We suggest that this allows the network to subsume
its own and human predictions in a joint generative model, in a
process referred to as hybrid predictive coding (HPC). Here we
focus on augmenting artificial predictive coding using electroen-
cephalography (EEG). The suggested generative model learns to

predict compressed representations of multi-modal sensory states
in the future by means of prediction error minimization. Deep
convolutional neural networks and variational inference are used
to parameterize the low-dimensional latent space at each time step.

Hybrid variational predictive coding
We introduce an architecture that processes stimuli, EEG
and physiological signals by generating multiple views
from a shared latent embedding z: p(stimulus, eeg, z) =
p(z)p(stimulus|z)p(eeg|z). EEG and physiological signal are
treated as a single view, denoted with p(eeg). The distributions
p(z), p(stimulus | eeg), and p(eeg | z) are set to be Gaussian.
The expectationsE[z |stimulus] andE[z |eeg] of the maximum
likelihood solution exist within a shared space that maximizes their
correlations. We use deep convolutional neural networks (CNNs)
to parameterize the means of pΘ(eeg |z) and pΘ(stimulus |z)
and the approximate posteriors qφ(z |eeg,stimulus).

Training with this shared embedding using variational inference
can be done by sampling from qφ(z |eeg). We optimize the lower
bound of the log likelihood L(eeg,stimulus;θ,φ) with stochastic
backpropagation by optimizing the sum of reconstruction losses
and the Kullback-Leibler (KL) divergence between the learned
qφ(z |eeg,stimulus) and p(z). In order to process a total of n
consecutive time-steps, we iteratively feed inputs into the encoders
and compute a total reconstruction loss. For each time-step, an
arbitrary selection of encoders can be active. Decoding from
the latent space however is always executed for all modalities.
The inputs of the first step are directly used to compute the latent
embedding. For time-steps 2 to n, a hierarchy of predictive coding
layers process the latent embeddings of previous time-steps
and predict the current embedding. This module extends the
hierarchical convolutional predictive coding network introduced
by Lotter et al. (PredNet) to multimodal processing and variational
inference (Lotter et al., 2016).

Each layer l of the predictive coding module features recurrent
convolutional network unitsRl that are used to compute predic-
tions Âl for each layer. These predictions are compared with a
target for the corresponding layerAl. For the lowest layer, the tar-
gets are approximate posteriors qφ(z |eeg,stimulus). For higher
layers, the targets are the errorEl betweenAl and Âl. The recur-
rent representation unitsRl receive information about the errorEl
of their layer as well as top-down feedback from the representation
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Figure 1: Predicted segmentation masks indicating the position of
human subjects within presented videos. Each of the 5 presented
examples corresponds to 4 sequential inference steps. Masks for
step 1 are reconstructed with target masks available. Step 2-4 are
predicted using only EEG and physiological signal.

units in the next higher level of the networkRl+1. The error units
and the layer-wise predictions are computed with CNNs and the
recurrent representations are convolutional LSTMs. We iteratively
feed the latent embeddings of time-steps 1 to n−1 as inputs and
use the resulting predictions Âl of the lowest predictive coding
layer for variational inference for time-steps 2−n. Their embed-
dings are replaced with the predicted counterparts. This way, the
model encodes the inputs into representations that minimize the
surprise for future steps. We suggest that this forces the network
to learn temporal representations of the human physiology and
brain signals that are congruent with the model’s own perception.

We refer to this approach of learning a shared generative model
that aims at integrating the model’s own predictions and the
human generative model as hybrid predictive coding. We suggest
that predictive coding of (neuro-)physiological signal resembles
interoceptive predictive coding, i.e. inference on internal states of
the body, which seems to play a crucial role for human cognitive
capacity (Seth et al., 2012).

Predicting with hybrid representations
We used the publicly available DEAP dataset to evaluate the
model for the ability to predict future states (Koelstra et al., 2012).
32 channel EEG was recorded of 22 subjects while watching 40
one-minute long excerpts of music videos as well as the presented
visual stimuli were provided as inputs to the model. Electroocu-
lography (EOG) and electromyography (EMG) signals were
recorded. The electrodes were mounted around the eyes, mouth
and the shoulder blades. EEG and physiological signals were split
into segments of 1 sec duration. The first frame of each second
of video was extracted. We used a pre-trained image segmentation
network to replace each video frame with a segmentation mask
marking human subjects if present. This reduces the complexity
of visual input, but the EEG signal still refers to the complex
stimuli. The data for each subject was split by video identity. The
test set contained only previously unseen stimuli.

We iteratively fed 4 consecutive seconds of EEG and physiolog-
ical data to the HPC encoders. The preprocessed visual stimulus
was only presented for the first step, i.e. steps 2-4 used only EEG
and physiological inputs. The loss was computed as the sum of
the reconstruction losses and the KL divergence for each step.

The network tended to predict the existence of human subjects
more frequently than annotated using the segmentation network.
Interestingly, many of these predictions were wrongly annotated
by the segmentation network but still correctly interpolated by the
HPC network. In longer scenes without visible human subjects,
the HPC network tended to predict many false positives with large
fluctuation between frames. If one or multiple humans were vis-
ible, the HPC predictions tended to be more sparse in comparison.
Upon visual inspection, HPC seemed to improve the quality of its
predictions within the 4 time-steps and often chose to not rely on
visually guided interpolation. Examples for reconstructions within
a single subject are shown in Figure 1). As there is no way for the
model to infer whether a subject will move or appear/disappear
into the frame, these results indicate that the network learns to
guide visual predictions with information from the brain and body.
Information about the initial distance and size of an object could
be inferred from the given video frame or from its physiological
representation. For future frames however, no visual input is pro-
vided. Change in amount, distance or motion in the environment
has to be inferred from the physiological representation.

Conclusion
We proposed a hybrid variational predictive coding architecture
that interfaces artificial and human predictive coding. HPC
performs predictive coding based inference about a shared visual
environment, human physiology and brain signal. The same
stimuli are perceived by human and machine, allowing the
model’s predictions to be modulated by human inference. Our
initial results using an EEG dataset suggest that such a model can
be used to predict aspects of the visual content of future frames
of videos, such as the movement of human subjects.
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Abstract 
To investigate how embodied sensorimotor interactions shape 
subjective visual experience, we developed a novel naturalistic 
Virtual Reality setting combined with motion tracking that 
allow object interactions with a high degree of freedom, which 
we implemented within an adapted breaking continuous flash 
suppression (bCFS) paradigm. This setup allowed us to 
manipulate the sensorimotor contingencies governing 
interactions with virtual objects, while characterising the 
effects on subjective visual experience by measuring 
breakthrough time to awareness of the virtual objects. We 
found that breakthrough times were faster for live compared to 
replayed sensorimotor interactions, demonstrating that visual 
awareness for unfamiliar 3D virtual objects is influenced by the 
contingency of the dynamic causal coupling between a person’s 
actions and their visual consequences, in line with theories of 
perception that emphasise the influence of sensorimotor 
contingencies on visual experience. 

Introduction 

The brain engages with the environment through the body, 
instantiating a closed loop between perception and action. The 
relevance of these interactions for perceptual phenomenology 
is emphasized by the Sensorimotor Theory of Consciousness 
(STC) (Noë, 2004; O’Regan & Noë, 2001).  In STC, 
perceptual phenomenology is shaped by “mastery” of the 
sensorimotor contingencies governing how sensory signals 
respond to actions. STC has been applied, conceptually, to 
many aspects of perceptual phenomenology. One prominent 
application has been to the phenomenology of “objecthood” 
in vision. In STC, objecthood depends on the brain’s 
encoding knowledge about how afferent visual signals change 
given motor actions, such as eye movements. For example, 
when I experience the coffee cup in front of me as a three-
dimensional object with a back-and-sides, it is because my 
brain “knows about” the sensory consequences of moving my 
eyes, or rotating the mug. In this sense, I perceive that the 
mug has a back even though I cannot directly see it (Noë, 
2004; O’Regan & Noë, 2001; Seth, 2014). However, 
empirical tests of the influence of sensorimotor contingencies 
on perception using realistic or real objects have yet to be 
achieved, mainly due to the technical challenges of real-time 
manipulation of sensorimotor contingencies in such contexts. 

Here we address this challenge by leveraging recent 
developments in virtual reality that allow flexible 
manipulations of the sensorimotor coupling of 
morphologically complex virtual 3D objects. To investigate 

how sensorimotor interactions shape subjective visual 
experience, we combined Virtual Reality technologies with a 
variant of the binocular rivalry paradigm, known as breaking 
continuous flash suppression (bCFS) (Stein, Hebart, & 
Sterzer, 2011; Tsuchiya & Koch, 2005). During bCFS, 
perception of a target stimulus presented to one eye is 
suppressed by a series of rapidly changing, high contrast, 
Mondrian patterns presented to the other eye, and the time it 
takes the target to ‘break through’ into awareness is measured. 

Experiment 

 
Figure 1: A. Experimental setup. B. Overview of the virtual 
environment. C. The six virtual objects used in this 
experiment, divided into two categories. D. The objects 
opacity gradually increased over time and was presented to 
the non-dominant eye (Top) and the Mondrian mask was 
presented to the dominant eye (Bottom). 

 
Participants were asked to identify if an object belonged to 
one of two categories (Figure 1C) presented using the bCFS 
paradigm, while performing natural unrestricted rotational 
movements of the object using a stylus attached to a motion-
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tracking device (Figure 1A). The stylus motion was 
transferred to the virtual object (Figure 1B). Virtual objects 
were presented through a head-mounted display to the non-
dominant eye, while a dynamic Mondrian mask was presented 
to the dominant eye (Figure 1D). Participants were required to 
identify the object, using a mouse-click as quickly as possible. 

We compared three aspects of sensorimotor coupling on 
breakthrough times. In the ‘Live’ condition, the object 
responded directly to the participant's rotational movements. 
In the ‘Replay’ condition, the object rotated according to the 
rotational movements of a randomly selected pre-recorded 
practice trial. To provide a baseline for breakthrough times we 
added a ‘Static’ condition, in which the 3D virtual object 
always maintained the same orientation (apparent visual 
angle) with respect to the participant. See our published work 
for more details about the experimental setup and procedure 
(Suzuki, Schwartzman, Augusto, & Seth, 2019). 

Result 

 
Figure 2: Breakthrough time by sensorimotor coupling type 
(Live, Replay, Static). Significantly shorter breakthrough 
times were found for the Live compared to the Replay 
condition. Dots show individual participant results. 
 
31 participants completed the experiment. 2 participants’ data 
were excluded due to extreme differences in reported and 
physical rotation speeds. The remaining data were submitted 
to a 1-way repeated measures ANOVA consisting of the main 
factors Live/Replay/Static. The results revealed a significant 
main effect (F(56,2) = 4.125, p=0.021, η²  = 0.128)  for 
breakthrough time, with Live (M = 3.38 s, SE = 0.18 s) 
showing shorter breakthrough times compared to Replay ( M 
= 3.58 s, SE = 0.21 s) or Static coupling ( M = 3.67 s, SE = 
0.21 s) (Figure 2). Post-hoc t-tests, with Holm–Bonferroni 
correction, revealed a significant difference in breakthrough 
time only between Live and Replay conditions (t(28) = -2.905, 
pholm= 0.021) (Live/Static: t(28) = -2.354, pholm= 0.052; 
Replay/Static: t(28) = 0.732, pholm= 0.470). These analyses 
indicate that breakthrough into awareness of virtual objects 
identity was faster for interactions that were directly coupled 

to (i.e., contingent upon) participants’ movements, compared 
to Replay or Static trials. 

Discussion 

We developed a novel combination of Virtual Reality and 
motion tracking technologies within an adapted breaking 
continuous flash suppression (bCFS) to explore how 
manipulations of sensorimotor contingencies affect visual 
awareness of realistic 3D virtual objects. Our result shows 
that the sensorimotor contingency of a person’s actions and 
their visual consequences influences access to visual 
awareness, in line with theories of conscious perception that 
emphasise embodied sensorimotor interactions. 

The effects of sensorimotor contingency on perception has 
also been investigated using autonomous robotics 
(Braitenberg, 1986; Buhrmann, Di Paolo, & Barandiaran, 
2013). However, empirical studies that attempt to study 
sensorimotor contingencies in humans and artificial systems 
remains sparse. Our study provides a novel setup that could be 
employed to investigate sensorimotor interactions in both 
human and artificial systems, with the results of both open to 
interpretation using the theoretical framework of 
Sensorimotor Theory.    
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Abstract

Human judgement is better described as a heuristic process
rather than maximisation of a utility function. Heuristics are
high cognitive processes of decision-making whose rapid and
effortless implementation is useful to confront risk scenar-
ios that compromise the viability of an individual. They can
be defined in an enactive frame as self-sustained and self-
generated habits of abductive behaviour selection in sensori-
motor agents influenced by the individual history of sensori-
motor contingencies and the environment. In this work, we
analyse the emergence of patterns of behaviour and its nec-
essary ecological conditions when performed decisions are
related to energy intake and energy expenditure. Agent’s sen-
sors and intentions are coupled to a variation of the iterant de-
formable sensorimotor medium (IDSM) (Egbert and Baran-
diaran, 2014). This model explains transparently the gener-
ation of sensorimotor habits in simulated robots through the
influence of registers of previously executed behaviours re-
inforced by repetition. We create a decision-making frame
based on intentions as probabilities of specific actions which
constitute the motor component of sensorimotor states on
IDSM. In this model is seen that specific behaviour corre-
lations with the lifespan of agents depend on the availability
of energetic sources on the environment. Inheritance of the
medium is introduced in agents with a small improvement on
the lifespan of agents.

Introduction
Human decision making is a complex process that goes
beyond the maximisation of probabilistic utility functions.
The traditional ”rational” judgement method is intractable
in practice due to the amount of information and cognitive
capacities that would be required in natural scenarios. Many
species (humans beings among them) constantly face de-
cisions that compromise their survival and somehow they
remain. The apparently non-optimal decision making per-
formed by organisms works fine at least in ecological terms.
Alternative models of decision making were developed con-
sidering efficiency and immediacy as key features. Tversky
and Kahneman (1974) first describe cognitive bias in human
judgement, a decision-making process which simplify orig-
inal problems substituting complex attributes by other com-
putationally less demanding. The idea of bias evolved from

the original conception of a complementary intuitive process
triggered by individual limitations to the concept of heuris-
tics: self-consistent cognitive processes that can generate
the best outputs when environmental conditions are coupled
(Cosmides and Tooby, 1994; Reyna, 2004; Gigerenzer and
Gaissmaier, 2011). Human heuristics arise with a minimum
effort and are applied immediately due to their accessibility.
These features make them valuable in decisions under risk
or uncertainty. Despite the explanatory power of heuristics,
their formation has not been dealt in depth.

In an eco-cognitive perspective heuristics can be framed
as manipulative abduction processes (Magnani, 2015). Ma-
nipulative abduction happens ”... when we are thinking
through doing and no only, in a pragmatic sense, about do-
ing ... Manipulative abduction refers to an extra-theoretical
behaviour that aims at creating communicable accounts of
new experiences to integrate them into previously existing
systems of experimental and linguistics (theoretical) prac-
tices” (Magnani, 2009). Action in heuristics can provide in-
formation unavailable by orthodox mechanisms based on the
logical inference from axioms. Heuristics are selective or
creative models i.e. select already conceived hypothesis or
generates new ones. The epistemological value of heuristics
has been questioned for its apparent ignorance-preserving
nature despite its practical power to enhance knowledge em-
pirically exploiting ecological regularities (Magnani, 2015).
McCarthy (1981) recognises the utility of separation be-
tween epistemological and heuristic problems in artificial
intelligence due to the lack of a formalisation of common
sense in the classical paradigm of mind. The computational
theory of mind explains cognition as the processing of rep-
resentational states of the world as in a computational sys-
tem (Cohen and Feigenbaum, 2014). Under this approach,
any decision-making process besides utility maximisation is
not supposed to produce optimal nor sustainable outputs, but
that is actually what occurs. The strict classification on ”ra-
tional decisions” and ”remaining processes” makes the sec-
ond category ambiguous and prohibits a reliable characteri-
sation of truly intentional, ecologically-successful decision-
making. What is missing to understand the nature of any
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emergent cognitive process is an approach which takes in
account embodiment and experience. The enactive view to
cognition fulfils these conditions offering a paradigm with
no a priori assumptions on the hierarchy of decision-making
processes.

Enactivism is built based on the concepts of embodi-
ment, autonomy, subjective experience and sense-making
(Di Paolo et al., 2010). The enactive identity on a system
comes from the operational closure of the network of self-
produced and self-maintained processes. Those are coupled
with the environment in a sensorimotor loop regulated by
the system itself. Cognition happens when non-passive in-
teraction loop is truly intentional, and this can be possible
if the system lives in precarious conditions (Di Paolo et al.,
2010; Stewart, 2010). The cognitive process has the world
as its own model instead of symbolic representation. Then
the system creates meaning when perceiving. This agrees
with the immediate accessibility on intuitive reasoning mak-
ing the enactive approach appealing to study the formation
of heuristics.

Froese and Ziemke (2009) state two principles in the de-
sign of enactive artificial intelligence: (EAI-1) Agents must
be capable of generating its own systemic identity at some
level, and (EAI-2) must have the capacity to actively reg-
ulate its ongoing sensorimotor interaction in relation to a
viability constraint. De Loor et al. (2009) suggest that the
regulation of the sensorimotor interaction must modify the
environment too, sometimes irreversibly. Is it possible to ad-
dress heuristic behaviours within these principles describing
them as self-maintaining precarious systems of judgement
actively regulated by a sensorimotor loop which resemble
habits of decision-making. The concept of habit has not a
universally accepted definition but is possible to recognise
two branches on the historical development of it: An expla-
nation of habit as an automatic association and an organicist
and ecological definition which links self-organising struc-
tures with the agent and the environment in a co-evolving re-
lationship (Barandiaran and Di Paolo, 2014). Following the
former trend, Egbert and Barandiaran (2014) developed an
enactive model that represents habits of sensorimotor con-
tingencies: the Interant Deformable Sensorimotor Medium
(IDSM). This system has two main features: (1) Sensori-
motor states are points of a continuous space representing a
history of sensory inputs and motor activity, at a mesoscopic
level (2) a weighted record of sensorimotor states associ-
ated with sensorimotor changes which influence agents fu-
ture actions according to her present state. Habits appear as
self-reinforcing repetitive patterns of behaviour in the sen-
sorimotor space. Reinforcement depends on how frequently
and/or recently a pattern of behaviour has been performed.
IDSM has been implemented to represent living organisms
with sensory inputs of metabolic variables with no specifica-
tion of the life-sustaining role of this particular sensorimo-
tor dimension (Egbert and Canamero, 2014). Such that sys-

tems are more likely to keep agents and sensorimotor habits
into their respective viability region. This result suggests
that cognitive and biological structures could be deeply in-
tegrated sharing essential variables.

We model agents as living organisms which take decisions
with bounded cognitive capacities, limited information and
an environment demanding rapid responses. The aim of this
paper is to analyse the effect of history-based control on the
willingness to perform an action. To determine whether is
possible to generate such that influence on intentions we
employ an variation of IDSM where the strict relation be-
tween sensory activation and motor action is substituted by
a relation between the sensory activation and the probabil-
ity to perform the motor action. To portray the effects of
this change we use the formalised sensorimotor coupling be-
tween environment (e), agent bodily configuration (p), inter-
nal state (a) and sensory (s) and motor states (m) proposed
by (Buhrmann et al., 2013) ė = E(e, p), ṡ = S(e, a), ȧ =
A(a, s), ṁ = M(a), ṗ = B(m, e) which permits the oper-
ational description of four types of sensorimotor contingen-
cies (SMCs). Changing ṁ = M(a) for an stochastic func-
tion weakens the lawful closure of the sensorimotor loop
but the sensorimotor contingencies still can be formulated
without a mayor problem as the relationship S(e, a) remains
unchanged. The main advantage of the redefinition of the
motor dynamic is that it gives the system a physical inde-
terminacy which opens an space for the subjectivity of the
simulated enactive agent (Froese and Taguchi, 2019). The
decision model as described also can show an irreversible
co-evolution of agent, heuristics (as habits) and environment
(De Loor et al., 2009).

A decision-making habit tied to a decision problem in-
volving the viability of the agent is likely to be integrated
into the identity cycle of both, the agent and the habit (Eg-
bert and Canamero, 2014). We model agents whose actions
are related with essential variables and whose sensory in-
puts integrate the recognition of the proximity with the vi-
ability limits of essential variables. An organism with this
characteristics can develop an adaptive stochastic behaviour-
changing mechanism to keep essential variables on the via-
bility region. This process of adaptation in the system agrees
with a broader definition of an ultrastable system proposed
by (Izquierdo et al., 2013) in which the separation between
parameter-changing and behaviour-producing mechanisms
is no longer required.

The decision-making problems modelled in this work are
the energy intake and the execution of movement with an en-
ergetic expenditure, both related to long-term energy imbal-
ance. The energy of the agent is evidently an essential vari-
able: A living organism that approaches zero energy starts to
experience a malfunction and eventually death. Some living
systems accumulate energy surplus in their bodies as struc-
tural components or as reserves for periods of scarcity. Hu-
mans store energy excess as fat reserves which, if the surplus
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is maintained, can cause an increase in general and specific-
disease related mortality (Flegal et al., 2005, 2007). The
asymmetrical conflict between drives that increase and re-
duce energy reservoirs suggests a natural tendency to store
as much energy as possible. The dynamics of available ener-
getic sources also play a role in shaping long term behaviour.
For example, a constant strategy consisting in always at-
tempt to eat can keep an agent into the viability region and
can avoid the accumulation of excessive energy reserves in
an environment with a physically or temporally sparse dis-
tribution of food. In this case, the success of such that de-
cision making strategy relies on the high uncertainty of the
achievement of the objectives. Agents face this decision pro-
cess with limited information and a perceived signal of the
internal energy in the form of unpleasant states that trigger
a feeding action (stop or start eating). The limited available
information comes from their embodiment and situatedness
but is plausible to assume that at least part of this informa-
tion is transmitted from ancestral organisms as a phenotype
of behaviour or a cultural context. We study if the congenital
trends of behaviour could be translated into an ecological ad-
vantage in particular environments. The main environmen-
tal feature studied in this work is the availability of energetic
sources.

Agent model
Agents are embedded in a one-dimensional physical envi-
ronment divided into cells with periodic boundary condi-
tions. Every cell have one energetic source. If the source
is eaten, the internal energy of the agent who ate it is in-
creased by Es and a new source can grow in the empty cell
with a probability pg .

Energy expenditure of agent α at time t is composed of a
basal metabolic spendingMbEmax(α) plus a cost for move-
ment CmEα(t) if movement is performed.The basal energy
price, required for the maintenance of the vital functions of
the agent is equal to the product of a constant Mb times
the maximum level of energy ever reached by the agent
Emax(α) at the present time. The change on energy at a
unit of time is given by the following expression,

∆Eα = EsXeat −MbEmax(α)− CmEα(t)Xmove, (1)

where Xeat and Xmove are random variables equal one
when the agent eats and moves, respectively, and zero oth-
erwise. When agent reaches zero energy she dies. Then, as
the internal energy is the only essential variable, the viability
region is defined by Eα > 0.

Agents can eat the energetic source found in the cell, can
move to one of the two neighbour cells (the agent randomly
decides whether to move to the right or to the left), can
perform both actions or none at every unit of time. The
agent’s IDSM controls the volition of every action. It is
compound by nodes (not related with the concept of node

Figure 1: Signal of internal energy described by Eq.2 ac-
cording the parameters on Table 1 and the three distinguish-
able regions of the essential variable Eα.

or vertex in graph theory) which are records of the com-
bination of sensorimotor states and consequent changes on
them. The medium maps a sensorimotor state to a motor
output ft(St,Mt) → Mt+1 and the mapping itself change
as a function ∆f

∆t = g(f, S,M, ∆S
∆t ,

∆M
∆t ) so the trajectories

bias the reinforcement of particular paths of sensorimotor
activity (Egbert, 2018). In the system, the sensory state only
depends on the internal energy Eα. S(Eα(t)) is a sigmoidal
function centred on a threshold value Et, which represents a
soft limit on energy that triggers the sensation of hunger.

S(Eα) =
1

1 + exp (A−BEα)
, (2)

where A and B are such that S(Et) = 0.5. The sensory sig-
nal lead every possible value of Eα(t) into the range (0, 1)
(Fig. 1). The concept of motor dimension was adapted to
include the intention to perform an action. The motor state
is represented by two independent probabilities to consume
energy pc and to move pm instead of the actual actions of
consuming and moving. I keep the term ”motor” to refer
the probabilities of action and the term ”sensorimotor” to
refer the complete sensory-intentional structure of agents’
dynamics. Then the resulting sensorimotor space is three-
dimensional with one sensory and two motor dimensions.

Nodes are tuples of two vectors and one scalar: Np and
Nv; the sensorimotor state and the sensorimotor velocity
that an agent experience when the node is created, respec-
tively, and Nω; the weighting of the node (which is zero
when the node is created). By the construction of the senso-
rimotor space, every component of the state lies in [0, 1].

φ(x) =
∑

N

ω(Nω) · d(Np, x), (3)

ω(Nω) =
2

1 + exp (−kωNω)
, (4)

d(Np, x) =
2

1 + exp kd‖(Np − x)‖2 . (5)

New nodes are added to the medium if the node density
φ(x) (eq. 3) is less than a threshold kt = 1. This function
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combines a factor of the weight of node (eq.4) and a factor
related with the distance of the current state of the agent x
and the state of a given node Np (eq. 5). In these simu-
lations the values of kω and kd are 1000 and 0.0025 as in
the original IDSM model (Egbert and Barandiaran, 2014).
The weight of each node is updated according the following
expression,

dNω
dt

= −kdeg + krej · d(Np, x), (6)

whose parameters kdeg = 1, krej = 10 are related to the
degradation of the weight of the node if the agent does not
visit it frequently and with the rejuvenation of the weight
when the agent is close. After a node is added to the medium
it remains inactive during ten temporal units to avoid its ef-
fects to fully overshadows the rest of the nodes. The influ-
ence of IDSM in the motor state of the agent is:

dµ

dt
=

1

φ∗(x)

∑

N∗

(ω(Nw) · d(Np, x) · (Nv + Γ(Np − x,Nv))µ) ,

(7)

Γ(a,Nv) = a−
(
a · Nv
‖Nv‖

)
Nv
‖Nv‖

, (8)

where φ∗(x) is the node density of the N∗ active nodes
and superindex µ means that only the motor components of
the vector are taken. Medium net influence is built by the
weighted effect of every active node in the agent’s senso-
rimotor state. Node influence has two factors: One which
throws agent away from node meanwhile a second one at-
tracts it to the node. The motor states, the nodes and the
medium (annexation of nodes) are updated continuously. As
actions are performed (according the intention of the agent)
every unit of time, the sensory signal changes in a discrete
time. Then, during a unit of time, the sensorimotor states of
the agent follow a path on a plane of motor dimensions, and
every time step, the plane changes.

Simulations
To explore the creation of self-organised habits we create
IDSM with nodes generated by random walks in the senso-
rimotor medium (Egbert and Barandiaran, 2014; Egbert and
Canamero, 2014; Egbert, 2018). The medium is initialised
with nn random nodes generated by performing nRW ran-
dom walks in the sensorimotor space, starting from a ran-
dom location and with subsequent loci calculated according
to the following equation, li+1 = li + r, where the compo-
nents of r came from a uniform distribution U [−0.05, 0.05]
(if li+1 got out of range, it was inverted). At a locus li a
node (Np = li, Nv = li+1 − li, Nω = 0) was added. This
way of exploring the sensorimotor states does not necessar-
ily generate a homogeneous distribution of nodes and may
favour some possible sensorimotor habit. However, the as-
sembly of agent systems allows recognising which of these

habits, if formed, are maintained for a longer time given cer-
tain environmental conditions. We add an amplifier factor
CIDSM which multiplies the influence of IDSM on inten-
tions and thereto on actions to counteract the weakening
of the sensory-action bond due to the stochasticity of the
model. We compared two types of agents: The first type of
agent uses a randomly initialised IDSM for behaviour con-
trol. The second type of agent inherits her IDSM to her de-
scendants as if the behavioural history could be transmitted
to offspring. The employed parameters are shown in Table
(1).

Parameter Symbol Value(s)
Number of cells Nc 10

Initial internal energy Eα(t = 0) 20
Energy threshold Et 10

Energy signal constants A, B 20, 2
Metabolism rate Mb 0.05

Cost of movement Cm 0.01
Energy on cell sources Es 3

Regeneration probability pg {0.7, 0.8,
0.9, 1.0}

Maximum time tmax 500
Initial motor states (pc, pm) (0.5, 0.5)
Number of nodes nn 5000

Number of random walks nRW 100
Amplification of IDSM CIDSM 3

Repetitions 25
Type of agent random IDSM,

inherited IDSM

Table 1: Simulations parameters.

Sensorimotor behaviour is identified when changes on
sensory inputs follows changes on motor states which fol-
lows changes on sensory states. If a set of behaviours is
sustained and appear recurrently during the life-span of the
agent it is considered a habit. We use the time an agent α
survives (text) and the time her internal energy Eα stays be-
low the thresholdEt (tdam) to classify healthy agents. Every
action is preceded by an intention represented in the motor
variables pc and pm. The effective attainment of the inten-
tion of eating depends on the availability of sources. Any
other decision in this model (not to eat, move and not move)
are always executed by the agents as they do not depend
on any external factor. Eating behaviour can be categorised
as homeostatic if is a coordinating response to an stimulus
which disturbs or jeopardises the agent existence. If the in-
ternal energy decreases to the point where Eα(t) < Et the
sensory signal changes drastically. If this trend continues the
agent can rapidly leave the viability region (Eα > 0) then
eating is an homeostatic reaction. As the system is built,
the agent can increase her willingness to eat but eating still
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depends on the availability of sources in the environment.

Results and discussion
On the 100 experiments in which agents always start with
an untrained medium, the average time the agent survives
is 188 and the mean proportion of time an agent stay below
the thresholdEt (close to the viability limit) is greater than a
sixth. Only in one case the agent is always above the energy
threshold. In 6 scenarios the agents survived 500 temporal
units. In this experiments less than a half of the times the
internal energy of an agent is belowEt, she eats. This rate is
higher than that of the complete set of agents. We can label
this eating behaviour as homeostatic because it pushes the
agent state into the viability region, away from the bound-
ary. Homeostatic eating on agents depends on the percep-
tion of an state of hunger (or any sensory input of a low
level of energy), the decision of eating and the availability
of sources on cell. The rate of homeostatic eating (number
of homeostatic eating events over number of eating events)
by probability of regeneration of sources, agent by agent or
aggregated, does not increase linearly with pg . The rate of
homeostatic eating and the rate of eating (number of eating
events over the lifespan of the agent) are moderately cor-
related with a longer lifespan (0.51 and 0.63 respectively).
Survivors move some more frequently than all the agents
but this increase does not seem to be directly related with
a change on the lifespan of agents (the linear correlation is
0.1). The effect of the availability of energetic sources, cap-
tured in the parameter pg , on the strength of the linear cor-
relation between rates of specific behaviour and the length
of agent’s life is summarised on Table 2. All this behaviours

pg ER vs LS HER vs LS MR vs LS
0.7 0.71 0.61 0.24
0.8 0.58 0.42 0.21
0.9 0.69 0.40 -0.08
1.0 0.65 0.57 0.09
All 0.63 0.51 0.10

Table 2: Linear correlation coefficients of eating rate
(ER), homeostatic eating rate (HER) and moving rate (MR)
against lifespan (LS) in agents grouped by pg of the system.

appear to be more linked with an increase of lifespan for the
lowest availability of energetic sources. Movement’s weak
direct effect on survival of agents disappears for high val-
ues of pg . This is expected as the agent’s chances to find
food in her current cell increases enough to make the search
for food unnecessary. Moving does not correspond to a ra-
tional mechanism for seeking food or expenditure of energy
but the increase of dimensions on the registered memories
extends the possible ways to create habits. The direct rela-
tionship between the eating rate and lifespan is moderate in

every environmental scenario. On the other hand, the home-
ostatic eating behaviour is moderately influential in systems
with a complete availability of sources and systems with a
relatively low availability.

Fig 2 shows the sensorimotor dynamics of surviving
agents. The variations of motor variables pc and pm follow
far larger changes on the signal, and in most of the cases
they have the opposite direction of ∆S(Eα). Some exper-
iments keep the values of the motor dimensions (intention
of eating and moving) close and apparently tied. The be-
havioural dynamic exhibited by surviving agents has not a
cycle of states which could explain the fitness in the six sce-
narios but it shows that the transition states visited when the
agent’s energy is around the thresholdEt generate a reaction
in the motor dimensions (intentions). The distribution of the
possible combined actions (eat and move, eat but not move,
move but not eat, not move nor eat) is almost uniform for
the complete set of agents. For survivor agents, the simulta-
neous execution of eating and moving increases to the detri-
ment of static strategies. We are not imposing any a priori
utility directed behaviour in agents so the pattern of inten-
tions and actions of surviving agents come directly from the
interaction with the environment, the original cognitive set-
ting and the reinforcement of sensorimotor memories. The
aggregated absolute influences of the medium through time
in pc and pm are not correlated for the complete set of ex-
periments but if we only consider surviving agents a weak
correlation appears (0.308) which points to a fragile coordi-
nated influence.

When agents transmit to their descendants their sensori-
motor history they are not spreading a utility function but
a resume of contingencies to be interpreted by the newborn
agents in their own terms. Agents with an inherited senso-
rimotor history have a longer average lifespan than the first
set of agents (200.37 temporal units) but less of them survive
500 generations. This result suggests that these agents have
a less diversified repertoire of habits to face environmental
challenges, but their means of behaviour control, moulded
by generations, increases their life expectancy. There is a
significant change in the distribution of the time that agents
survive (p = 0.03757 on a Mann-Whitney test) but no big
difference in the distribution of the time spent below the
energy threshold (Fig. 3). Agents with the inheritance of
IDSM spent on average a little less time out of the viability
region than their pairs without it. The distribution of com-
bined actions does not change in comparison with agents
with random IDSM. However, the improvement on lifespan
appears at early generations and vanished until be impercep-
tible with the most distant descendants.

Conclusions
Heuristics as habits of decision-making have ideal charac-
teristics for their study as enactive self-sustained and self-
generated systems. We employed a model of enactive con-
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Figure 2: Sensorimotor dynamics of agents wich survive 500 generations ordered inversely according the time time tdam they
spend below the energy threshold Et. The variables shown are the energy signal S(Eα), the probability of consumption pc and
the probability of moving pm. From left to right, top to bottom the value of the tuples (pg, tout) are: A.(1.0, 0), B.(0.7, 5),
C.(0.8, 25), D.(1.0, 33), E.(1.0, 66) and F.(1.0, 119).

trol of sensorimotor events, the iterant deformable sensori-
motor medium (IDSM), based on the repetition and rein-
forcement of previously visited states. We introduced the
intention of performing actions as the motor dimensions
on an iterant deformable sensorimotor medium and created
an agent-based model of decisions related to energy intake
and energy expenditure where agents decide stochastically
if they eat sources on a cell of a periodic ring and/or if they
move to one of their neighbouring cells. Those decisions
are linked to an essential variable: the internal energy of the
agent. The sensor dimension was built based on a sigmoidal
function of the energy where the proximity with the viabil-
ity limit is immediately recognised. Agents with the longest
lifespan does not share a universal behavioural habit but is
observed that homeostatic-eating and moving behaviour ef-
fects on fitness depends on the availability of energy on the
environment. Inheritance of the iterant deformable sensori-
motor medium seems to improve the outputs of the offspring
but reduces the possibility to have very successful agents.
This work is a first step towards an understanding of the
creation of high cognitive decision-making mechanisms ob-
served in organisms with subjective meaning. The enactive
dynamical approach provides the minimal conditions for a
transparent definition of heuristics as something more than
an alternative mechanism. Further work needs to be carried
out to endogenize some features of IDSM, as for example,

the sigmoidal sensory signal of the internal energy which
could be replaced by a linear signal subject to evolve over
time, and to formalise the stochastic functions on the senso-
rimotor coupling.
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Abstract

Referential communication is a ”representation-hungry” be-
havior, and the bee waggle dance is a classical example of ref-
erential communication in nature. We used an evolutionary
robotics approach to create a simulation model of a minimal-
ist example of this situation. Two structurally identical agents
engage in embodied interaction such that one of them can
find a distant target in 2D space that only the other could per-
ceive. This is a challenging task: during their interaction the
agents must disambiguate translational and communicative
movements, allocate distinct behavioral roles (sender versus
receiver), and switch behaviors from communicative to target
seeking behavior. We found an evolutionary convention with
compositionality akin to the waggle dance, correlating dura-
tion and angle of interaction with distance and angle to target,
respectively. We propose that this behavior is more appropri-
ately described as interactive mindshaping, rather than as the
transfer of informational content.

Introduction
Communication in nature shows that there are certain crucial
processes that require referential communication in order to
keep the species alive. The best example in nature is the
waggle dance of the bee (Figure 1), where an explorer bee
goes out of the honey comb in order to search for a source
of food. Once the explorer bee has found a good field the
explorer bee comes back to the honey comb and the dance
starts (Crist, 2004; Dornhaus and Chittka, 2004; Dyer, 2002;
Seyfarth and Cheney, 2003).

Through the waggle dance, the bee communicates the lo-
cation of the source to the foraging bees. In the dance, the
behavior of the bee corresponds with elements present in the
environment that helps the foraging bees to go to the source
of food. In animals, simple associations between world en-
tities and signals are mostly innate, or they can be explained
by mere mechanisms of rote learning and conditional learn-
ing (Cangelosi, 2001). In the case of the waggle dance, the
angle with respect to the sun and the center of the dance
is assumed to be a genetically determined association of a
bee’s movements with a certain state of affairs of the world.

In our previous model (Campos and Froese, 2017) we
found an analogous communicative behavior performed by

Figure 1: Waggle dance of the bee. The communication
of the bee waggle dance depends on the angle at which the
buzzing in the center of the figure of ”eight” with the sun is
performed. In addition the duration of those buzzings cor-
relate with the distance to where the food is located. Figure
taken from (Dyer, 2002)

artificial agents that were evolved to solve a minimal ref-
erential communication task in a 1D environment. When
we analyzed the performance of the agents we found that
the best explanation involves an appeal to both agents as
an extended system formed via their embodied interaction
process: through their interaction the agents shaped the dy-
namical basis of each other’s behavior into giving rise to
an adequate solution to the task. This solution is better de-
scribed as a non-representational form of ”mind shaping”
(Zawidzki, 2013), rather than a traditional Theory of Mind
mechanism. However, it could be argued that the task was
not sufficiently ”representation-hungry,” because its solution
did not depend on the principle of compositionality. Here
we therefore extended the spatial dimension of the model to
a 2D environment and analyzed the resulting behaviors and
internal dynamics. We expect that some of the embodied
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strategies for achieving referential communication will take
advantage of the possibility of separately responding to these
two dimensions, and to do so in a combinatorial manner.

Compositionality in communication
In communication compositionality can be defined as the ex-
pression of a complex content in terms of a function of the
expressions of its parts and their mode of composition.

In other words, the meaning of the whole is determined
by the meanings of the parts and the mode of composition.
Since the receiver knows the meanings of the simple parts,
knows the semantic significance of a finite number of syn-
tactic modes of composition and can parse the expression
(i. e. recognize how it is built up out of simple parts) the
interpreter can work out the meaning of the whole (Pagin,
2003). In this case we can attempt to explain compositional
communication using both agents: how the receiver finds the
right interpretation (meaning) and the sender finds an appro-
priate linguistic item (signal) where the receiver solves a task
of interpretation and the sender solves a task of expression.

In our previous model (Campos and Froese, 2017), there
is no compositionality present in the communicative behav-
ior: the distance toward the target is simply proportional to
the contact time between the agents, and this is sufficient to
make possible their communication.

In order to get an intuitive idea about what compositional
referential communication consists in, we can consider an
alternative modeling approach. The Iterated Learning Ap-
proach (Kirby, 2000; Smith et al., 2003) is a framework to
study the emergence of the language with compositionality
in a sequential model that requires a couple of agents: a ma-
ture user of the language (speaker/mentor) and a new user
of the language (hearer/learner), which will become the ma-
ture agent after learning to teach a new novice agent. Dur-
ing a series of mentor/learner iterations applied to a set of
initially arbitrary meaning-signal pairs, a compositional lan-
guage emerges mainly due to the pressure of keeping the
language easy to learn. In other words, structured parts of
the signal pick out structured parts of the meaning space.

In contrast, in our minimal referential communication
model, there is no predefined meaning-signal pair set and
no predefined communication channels. Instead, the ”mean-
ing” is the target’s location in the environment and the ”sig-
nal” is the movement of the agents in space. There is no se-
quential learning process and the pressure of finding a good
referential communication system derives directly from the
artificial evolution process. Nevertheless, by increasing the
environment to two dimensions, we expect the agents to
evolve a compositional behavior that involves each dimen-
sion of the space (i.e. distance and height) in order to solve
the referential communication task. We can then analyze the
dynamical basis of this behavior to see whether it involves
internal compositional representations, or whether an alter-
native subpersonal explanation exists.

Interactive approach to referential communication
From the perspective of the dynamical approach to cogni-
tion, the components of an agent tend to be in continuous
mutual interaction, and none of the components can be re-
moved without thereby also modifying the behavior of the
other components. In the case of a system consisting of
two agents, this perspective implies that their social inter-
action process should be better conceived of as a collective
property of a brain-body-environment-body-brain system as
a whole (Froese et al., 2014). We applied this idea to study
the phenomenon of referential communication. In addition,
we required that the roles of sender and receiver are initially
ambiguous and must be negotiated as part of a continuous
flow of nonlinear interaction. Moreover, in contrast to a tra-
ditional broadcasting approach to communication, it cannot
be assumed on an a priori basis that the agent that turned out
to adopt the role of the ”receiver” will not play a role in the
successful realization of communication. We call this the
interactive approach to referential communication.

The interactive approach has the virtue of being a broader
perspective that includes the broadcasting approach as a spe-
cial case, in which the dynamics of the sender are endoge-
nously generated and sufficiently decoupled from its envi-
ronment. We employ agent-based modeling to help us to
develop this alternative theoretical framework.

Previous modeling work
In the field of artificial life there is a long tradition of model-
ing the evolution of communication and the composition-
ality of language (Cagnelosi and Parisi, 1998; Cangelosi,
2001; MacLennan and Burghardt, 1993; Williams et al.,
2008; Manicka, 2012; Nolfi, 2005, 2013). In broad terms it
can be said that communication occurs when the behavior of
one agent modifies the future behavior of another agent in a
task-relevant manner. Several researchers have analyzed the
phenomenon as a special example of coordinated behavior
between individuals Di Paolo (1997); Di Paolo (2000). But
there is still a need to explore how the compositionality of
communication can be explained from the dynamical sys-
tems approach, and we propose to do so by developing an
interactive approach of the referential communication.

Our model is inspired by the work of Williams et al.
(2008), who applied the minimal cognition modeling
paradigm to the study of referential communication. In their
model, they placed two embodied agents, a sender and a re-
ceiver, on a 1-D circle. The agents can perceive their own
location on the circle and the presence of each other, but
only the sender can also perceive the location of the target
that the receiver must reach. Following the tradition of re-
search of communication as a form of behavioral coordina-
tion (Ackley and Littman, 1994; Di Paolo, 1997; Di Paolo,
2000; Maturana and Varela, 1987), their model does not in-
clude dedicated communication channels and so the agents
have to learn to distinguish communicative movements from
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translational movements (Quinn, 2001). The task is for the
receiver to end up as close as possible to the target. They
optimized the behavior of the two agents, each controlled by
a structurally distinct continuous-time recurrent neural net-
work (CTRNN) (Beer, 1995), using an evolutionary robotics
approach (Beer et al., 1996; Harvey et al., 2005). They tested
three types of conditions: one involving unconstrained inter-
action between the sender and the receiver, and two condi-
tions involving constrained interaction. In brief, they found
that the easiest solution to the task in the unconstrained con-
dition was for both the sender and the receiver to move to the
target together. In this way the sender could use the location
of its own body to indicate to the receiver where the location
of the target is. However, this solution does not seem to con-
sist in referential communication. To force the evolutionary
algorithm to find a solution that involves a form of referen-
tial communication they introduced a spatial constraint, such
that the receivers position was limited to a subsection of the
circle away from the target. They found that it was possi-
ble to evolve agents that coordinated their behavior in such
a way that the receiver was able to locate a randomly chosen
target of a small set of targets (discrete condition) as well as
of a range of targets (continuous condition).

But why does artificial evolution tend to prefer solutions
to multi-agent coordination problems that are based on joint
embodied action rather than on referential communication?
This open question makes it even more interesting to con-
sider why bees evolved a complex waggle dance, given that
it would be much simpler for the sender bee to directly guide
the receiver bees to the target location by simply flying back
to where it came from. In other words, it is likely that there
is an important constraint that prevents this solution from
being feasible. We will return to this open question in the
discussion.

In our previous 1D version of this model (Campos and
Froese, 2017), we showed that we can reduce the number
of nodes in the agents’ controllers (in that case to 3 nodes),
and use structurally identical artificial neural networks for
the two distinct roles (Izquierdo and Buhrmann, 2008), and
still evolve the agents to make use of their movements in
space as a means for referential communication about tar-
get locations of varying distance. Nevertheless, we still had
to maintain the constraint of preventing the sender to move
directly to the target location; otherwise referential commu-
nication would not emerge.

Also, we found an analogous strategy for the agents to
solve the task, namely that the distance to the target is corre-
lated with the contact time between the agents, which results
from mutually coordinated movements. Therefore, this so-
lution requires both agents to be active in the communicative
process for the task to be achieved successfully. However,
given that the solution consisted in the co-regulation of one
continuous parameter, it did not exhibit compositionality.

The current contribution
The current contribution increases the complexity of our
original model in a way that is intended to facilitate the
emergence of compositional referential communication. We
used the same modeling approach as before, but we ex-
panded the environment from a 1D to a 2D space. We were
interested in exploring the possible space of solutions to this
2D-version of the task. Accordingly, we did not pre-specify
that the agents had to evolve to solve the task in a compo-
sitional manner, although we expected that compositional
embodied behavior would be the most effective solution to
this task. In other words, we evolved the embodied agents
to solve a task that required referential communication be-
tween a sender and a receiver and ideally in a combinato-
rial manner, but without dedicated communication channels,
without dedicated roles, and without dedicated signal com-
ponents.

This kind of scenario is very far removed from tradi-
tional studies of communication based on information the-
ory, which typically already assume a well-defined sender,
receiver, channel, and symbol system. Our model can there-
fore serve as an inspiration for thinking about the origins of
compositional referential communication in nature.

Methods
The model
Following our approach in Campos and Froese (2017), we
created a model in which a pair of embodied agents needs to
find a way for the agent named receiver to move through the
environment to a target position, but only the agent termed
sender knows the exact position of the target. The behavior
of the agents was evolved using the methodology of evolu-
tionary robotics (Harvey et al., 2005), using the structure of
their artificial neural networks (a standard CTRNN) as their
genome. Each artificial neural consisted of 6 nodes, and in
line with related work on minimal cognition we used only
one structural copy of the network for both agents (Izquierdo
and Buhrmann, 2008). We now provide more details of the
model.

The task
The task that both agents must fulfill is relatively straight-
forward: the so-called receiver must arrive at a target area,
which will be one of four possibilities in the environment.
The environment is a 2-unit-side square with center at (0,0),
with a centered interaction zone of 0.6 units side where the
sender is constrained to move. The only agent that can sense
the position of a target is the so-called sender. The so-called
receiver does not sense the target, and the agents only sense
each other agent while both remain inside the interaction
zone. Once the receiver leaves the interaction zone in order
to find the target, there no longer is any possibility for in-
teraction between the agents. Moreover, the receiver cannot
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sense the location of the target, and so must find the location
of the target by relying solely on the history of embodied
interaction between the agents (see Figure 2).

Each pair of agents was tested in four separate trials using
four distinct targets in the environment. These targets were
selected by arbitrarily varying the distance and angle to the
interaction zone within fixed limits.

Figure 2: Simulation of the agents in the environment. The
blue circle represents the sender while the red circle repre-
sents the receiver. The green circle is the target, which is
in a random position along one of the two axes. The square
in the middle represents the interaction zone. After inter-
acting in the interaction zone, the red agent has to leave the
zone and try to locate the target based only on its history of
interaction with the other agent.

The agents
The sensorimotor system we used has six sensors and two
motors, which are the inputs and outputs of an agent’s six-
node CTRNN (see Figure 3).

Three of an agent’s sensors serve to locate the other
agent’s position with respect to the self’s location: a distance
sensor providing a continuous input that varies linearly with
the distance to the other agent, and two sensors providing
the angle to the other agent, i.e. a sensor for Sin(θ) and
another for Cos(θ)). If the receiver moves outside the in-
teraction zone then these three sensors are turned off in both
agents. So the range of the sensor is [0, 1], where 0 is the
maximum distance in the interaction zone (and also any fur-
ther distances, which imply that the receiver is outside the
zone), and 1 indicates that both agents are exactly on top of
each other.

The other three of an agent’s sensors serve to locate the
target’s position with respect to the self’s location: a dis-

tance sensor providing a continuous input that varies linearly
with the distance to the target, and two sensors providing the
angle to the target, i.e. a sensor for Sin(θ) and another for
Cos(θ)). These three sensors are always turned on in the
sender and always turned off (i.e. set to -1) in the receiver.
Given that the sender is constrained to the interaction zone,
the distance sensor is restricted to range [0.2, 0.8].

Each agent has a body in the shape of a circle of radius
0.05 that has two simulated wheels, one on each side, giving
the agent a facing property. The velocity of a wheel is con-
trolled by the output of a dedicated neuron, and these motor
neurons were arbitrarily chosen to be the nodes also con-
nected to the distance sensors. The agents control their over-
all velocity using differential steering control, which means
that for an agent to move forward at a certain speed it is nec-
essary that both wheels have the same velocity. Collisions
are not modeled.

Artificial neural network
The behavior of each agent is modulated by a continuous-
time neural network (CTRNN) (Beer, 1995) (Figure 3),
whose equation is the following:

τi . . .i = −si +

N∑

j=i

(ωijσ(sj + θi)) +GiIi i = 1, ..., N (1)

where is s the state of each neuron, τ is the time constant,
ωij is the weight of the j−th neuron to the i−th neuron, θ is
the bias, σ(x) = 1

(1+e−x) is the standard logistic activation
function, G is the gain constant of the input of the neuron
and I is the input of each neuron.

The CTRNNs of the two agents are structurally identical.
The integration step size was set to 0.1.

Evolution of the agents
The parameters of the neural network were encoded using
floating-point numbers and then were optimizing using an
artificial evolution procedure. We perform 50 separate evo-
lutionary runs and in each we used 100 individuals that were
evolved for 1,000 generations. In each generation, the indi-
viduals were evaluated in the environment as follows:

At the start of a trial the agents are placed randomly in-
side the interaction zone within a circle of radius 0.3, and
always facing rightward (0 degree). They are then allowed
to behave for 300 units of time. At the end of the trial their
fitness score for that trial is calculated with the following
equation: fitness = 1− finalDistanceToTarget. Every
time we picked a target, we calculated the mean fitness over
the population of pairs. Once the fitness increased by 20%
from this initial value, we switch the target for a different
randomly selected target location. This was done to allow
local task optimization but without losing generality.

Each pair of agents is evaluated for 10 trials. Overall fit-
ness of the pair is calculated as the inverse weighted average
score of all 10 trials.
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Figure 3: Illustration of artificial neural network structure.
Green circles represent each node of the six-node network.
Orange diamonds represent the six sensors, and the blue
rectangles show the two motors.

The evolutionary algorithm employed the hill-climbing
method: each solution generates a new solution by apply-
ing Gaussian mutation with variance of 0.2 to each param-
eter, and this descendant replaces the parent solution if its
performance is better.

Results
Once the 50 independent evolutionary runs finished, we
saved the best pair of agents of each run. With these re-
sulting 50 pairs of agents we performed several tests to see
the performance of the agents for different initial conditions.

Behavior analysis
By looking at the 50 best agents we noticed that this is a
challenging task. Most of the runs failed to give rise to
strategies involving referential communication. Instead the
agents relied on suboptimal strategies, such as getting to a
certain target spawning position. In some cases the agents
apparently got too entrained in the interaction and the re-
ceiver never left to find the target in the first place. In other
cases the interaction between the agents resulted in complex
behavior of the receiver, but without getting close to the tar-
get.

Just one evolutionary run out of the 50 runs accomplished
the task successfully: the two agents interacted at the begin-
ning of the trial and then the receiver moved to where the
target is. The rest of our analysis focuses on this successful
pair of agents.

To confirm that their strategy relied on referential com-
munication rather than on direct influence on each other’s
behavior via the agent sensors, we ran a test trial where we
removed the sender as soon as the receiver first goes out-
side the interaction zone. Using this setup, most trials still
achieved the task. A few failed, but this was because we
broke the interaction too soon for the receiver to fulfill the
task (i.e. the receiver had returned into the interaction zone
but the sender was no longer there).

To improve the success of these trials we introduced this
pair of agents in a new optimization process. This time we
generated a population of 300 individuals that begin with
the same CTRNN, and we change the task by adding the
constraint that once the sender has left the interaction zone
he can’t enter again and interact with the sender. We let the
population evolve through 300 generations.

At the end of this new evolutionary run, the best pair of
agents found the target on all of the trials. We further tested
these agents as described in the following subsections.

Overall performance
We performed 1,000 test trials with these best agents, plac-
ing random targets all over the environment. More specifi-
cally, at the start of each trial a target was randomly placed
inside a space defined by x-range [-1, 1] and y-range [-1, 1],
but not inside the interaction zone (ranges [-0.6, 0.6]). We
got the following distribution of final distances between the
receiver and the target (Figure 4).
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Figure 4: Distribution of 1,000 randomly placed test target
locations. Shading represents distances between the receiver
and the target at the end of a trial. Light green represents
closer to the target and darker represents further away.

For the 1,000 trials we got an average distance to the tar-
get of 0.262094, where the most of the trials with the tar-
get at the right of the agent’s interaction zone the distances
range between 0.15 and 0.05. The worst case was located
at [−0.8858,−0.4051] with a distance of 0.6014 one of the
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right most target appearances. We can say that the agents
generalized well the task for most of these targets, because
the agents were evolved to achieve the task only for 4 differ-
ent angle locations.

In general, the agents perform the task with the following
behavior. First, they spend some time interacting inside the
interaction zone. This typically involves spiraling in ever
larger circles. Then, the receiver eventually is on a trajectory
that takes it out from the interaction zone, and then it starts
its movement trajectory to the target to end up as close as
possible based on the history of interaction with the sender.

Strategy per target position

We are interested in finding the strategy that the agents per-
form to achieve the task.

First, we compared the final interaction distances between
the sender and receiver, i.e. their distance at the moment
when the receiver leaves the interaction zone, with the dis-
tance from the center of the space to the target location. We
wanted to see if there is a correlation between their distance
and target distance. And indeed, we find such a correlation,
at least for some areas of the space (see Figure 5).
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Figure 5: Distribution of 1,000 randomly placed test tar-
get locations. Shading represents the distance between the
agents before their interaction breaks off, i.e. before the re-
ceiver leaves the zone of interaction. Light corresponds to a
shorter and dark corresponds to a longer distance. There is
a tendency for targets that are further away from the inter-
action zone to be associated with greater distances between
the agents (darker dots).

Next, we analyzed the angles exhibited by the agents
when their interaction ends (Figure 6). What we found is
that there is also a relation between the angle between the
agents at the end of their interaction and the angle from the
center of the interaction zone to the target position. This
relation complements the previous relation.

The agents found a strategy, in general, using two com-
ponents: their distance to each other and their angle with
respect to each other. This is the compositionality we tried
to find, similar to the compositionality of the bee’s dance,
albeit in our model there was not such a clear demarcation
of the components of the referential communication given
that everything is embedded in a parallel manner in a con-
tinuously spiraling mutual interaction.
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Figure 6: Distribution of 1,000 randomly placed test target
locations. Shading represents the difference between the an-
gle between the agents at their final point of contact and the
angle from the center of the interaction zone toward the tar-
get’s location. The shades of green represent the angle dif-
ference going from −π

2 to π
2 , which is the possible range

of angle differences for the quadrant in which the target is
located.

Attractor analysis of the artificial neural network
In order to get an intuitive grasp of the state space configura-
tion of the CTRNN of the best pair of agents, we performed
10 tests with different initial conditions with the isolated
neural network. We found that the trajectories in CTRNN
state space converged toward a single attractor located at
coordinates [-7.10114 , 4.76134 , -6.69269 , 10.3879 , -
8.68615 , 0.199544]. The fact that the agent’s dynamical
system contains a single attractor means that the complexity
of the behavioral solution of the task is strongly dependent
on the interaction between the agents in the environment. It
is a solution that is better conceived of as a property of the
system as a whole than as a property of an agent’s neural
network activity. This is consistent with what we found in
our previous 1D model.

In other words, it appears that increasing the complexity
of the referential communication task has only increased the
complexity of the collective system but not the internal com-
plexity of the agents. This increase in interaction complexity
without concomitant increase in internal complexity is con-
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sistent with findings reported from another multi-agent sys-
tem modeling study that investigated this relationship more
systematically (Candadai et al., 2019).

In Figure 7 we show the states of three neurons of the
isolated CTRNN starting from arbitrary initial states, where
in this 3D-space all the states converge on the same attractor.
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Figure 7: Neural states of 3 representative neurons of the
agent’s decoupled CTRNN during 10 trials with different
initial conditions. The colored lines represent each trial and
the point represents the attractor of the system

Discussion
This model illustrates the interactive approach to referen-
tial communication, where the agents tend to be in continu-
ous mutual interaction. We chose a task that cannot be ac-
complished by the receiver alone, because the information
about the target is only available by the sender. However,
the sender also cannot behave as expected without the pres-
ence of a receiver that interacts in the right manner, giving
rise to a mutual interaction process.

The artificial neural network of both the sender and re-
ceiver is structurally the same. That is why the agents must
negotiate their respective roles during their embodied inter-
action before one of them attempts to go to the target. Once
the interaction begins they must coordinate their behavior to
break their interaction at the right moment. This means that,
in accordance with the interactive approach, successful ref-
erential communication is co-created by both agents: their
individual behaviors give rise to the interaction process but
the interactive process shapes their individual behaviors.

As we can see in figures 5 and 6 we can analyze their
mutual interaction process into separate components that to-
gether help the receiver to reach the target position in space.
This can be seen as the compositionality of referential com-

munication that was absent in our previous 1D version of the
model.

Interestingly, the complex behavior of the agents does
not require equally complex internal organization of their
CTRNNs. As Figure 7 shows, the agents succeed with a
CTRNN that in its decoupled mode only exhibits a single
attractor. In other words, the complexity of the behavior is
outsourced into the complexity of the interaction itself. This
finding is in line with the enactive approach to social inter-
action, which holds that social cognition can be constituted
by social interaction (De Jaegher and Froese, 2009), and that
this can lead to performance that would otherwise be outside
the agents’ reach in practice and even in principle (Froese
et al., 2013).

Future work
In order to be able to evolve agents that were able to per-
form the 2D version of the referential communication task,
we had to increase the number of CTRNN nodes to six nodes
from the three nodes we used for the 1D version. It is pos-
sible that this increased internal dimensionality is needed
for the receiver to sufficiently cope after being decoupled
from the sender, as was also found in related modeling work
(Fernandez-Leon and Froese, 2010). This requires further
analysis, but it seems that more nodes may facilitate the pro-
duction of more robust internal dynamics for the agents.

The best-evolved strategy also needs to be analyzed in
more detail. While we found that two components of the
relationship between the agents at the end of their mutual
interaction, namely their distance and angle, tended to corre-
spond to the distance and angle to the target, this correspon-
dence was perhaps not as consistent or uniform as would
normally be expected from a genetically evolved referential
communication strategy such as the bee’s dance. In future
work we would therefore like to apply other measures.

Another interesting direction for future research is to in-
crease the number of agents in the model. For instance, if
several senders had to compete with each other in the in-
teraction zone (similar to the chaotic situation of multiple
concurrent dances in a bee’s hive), it would not be conve-
nient for the sender to simply return to the target’s location
with other agents in tow. In other words, perhaps the ex-
ternally imposed restriction of the sender to the interaction
zone would no longer be necessary under such more realistic
conditions.
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Abstract

Swarms consist of many agents that interact according to a
simple set of rules, giving rise to emergent global behaviours.
In this paper, we consider swarms of mobile robots or drones.
Swarms can be tolerant of faults that may occur for many
reasons, such as resource exhaustion, component failure, or
disruption from an external event. The loss of agents reduces
the size of a swarm, and may create an irregular structure in
the swarm topology. A swarm’s structure can also be irreg-
ular due to initial conditions, or the existence of an obstacle.
These changes in the structure or size of a swarm do not stop
it from functioning, but may adversely affect its efficiency or
effectiveness. In this paper, we describe a self-healing mech-
anism to counter the effect of agent loss or structural irreg-
ularity. This method is based on the reduction of concave
regions at swarm perimeter regions. Importantly, this method
requires no expensive communication infrastructure, relying
only on agent proximity information. We illustrate the ap-
plication of our method to the problem of surrounding an oil
slick, and show that void reduction is necessary for full and
close containment, before concluding with a brief discussion
of its potential uses in other domains.

Introduction
The natural phenomenon of swarming in organisms such as
insects, fish and birds has, for a long time, served as in-
spiration for algorithmic solutions to problems (Blum and
Merkle, 2008). Swarm-based algorithms use a number of
agents which behave according to local rules (locality of-
ten being defined in terms of spatial proximity), but which -
collectively - are capable of synergistically cooperative be-
haviour. Problems to which such methods have been applied
include path finding (Hou et al., 2009), distribution across a
space (Ekanayake and Pathirana, 2010; Gazi and Passino,
2002, 2004a), or foraging as a colony (Gurfil and Kivele-
vitch, 2007; Hereford, 2011). In order to model inter-agent
interactions, many algorithms use field effects, which cap-
ture attractive and repulsive forces between agents (Andreou
et al., 2009; Barnes et al., 2006a,b; Bennet and McInnes,
2009; Gazi and Passino, 2002, 2004b, 2005, 2011; Mohan
and Ponnambalam, 2009). Attraction is used as a cohesive
force to bring agents close together, and repulsion is used to
prevent collisions.

bSb

Ob

Cb

Rb

b′

neighbour of b′

Figure 1: Agent field ranges. Rb implements repulsion, Cb

implements cohesion, Sb is the agent’s sensing range, and
Ob is used to manage collisions with obstacles.

Forces are generally defined in terms of ranges around
an agent, and the field effects are derived as vectors from
these ranges (Figure 1). For any agent, b, all ranges must
fall within the sensing capability of the agent, Sb, which
might represent a visual or auditory range, some chemical
sensing capability, or (in the context of mobile robotics) a
communication range. It is usual for the cohesion field, Cb,
to have a radius which is larger than the repulsion radius, Rb

(so that agents are encouraged to group together, but not too
closely). When another agent, b′, moves into the cohesion
range of b then b′ becomes a neighbour of b; when b′ moves
into the repulsion field of b, then b is also subject to repul-
sion. When the repulsion magnitude exceeds the cohesion
magnitude, then b has a tendency to move away from b′, i.e.,
it is repelled. When b moves too close to an obstacle, i.e., an
obstacle is within the obstacle repulsion range, Ob, the re-
pulsion vector is applied and the agent tends to move away
from the obstacle.

When cohesion and repulsion are the only field effects
used to create a swarming effect, the number of stable struc-
tures that can develop is limited (Eliot, 2017). These struc-
tures effectively take the form of either straight edges or par-
tial lattices (Figure 2). The maintenance of a well-structured
swarm is crucial to their effective deployment in a number
of applications, including reconnaissance or artificial polli-
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Figure 2: Stable swarm structure containing two types of
anomaly.

nation, where coverage “blind spots” are eliminated (Elam-
vazhuthi and Berman, 2015), and containment, where the
swarm is used to surround an object or region (Cao et al.,
2012). Over time, the perimeters of partial lattices may con-
tain so-called anomalies, such as concave “dents” or convex
“peaks”, and these anomalies all contribute to the disruption
of an otherwise well-structured swarm. The key, therefore,
is to ensure that concave voids are dynamically removed
from a swarm.

Here, we describe our void reduction technique for swarm
management, which is a form of self-healing that encour-
ages a swarm to coalesce into a more geometrically sta-
ble shape. This is achieved by removing voids and con-
cave edges. Importantly, the techniques defined in this paper
function without the need for inter-agent or global messag-
ing (which can carry a significant overhead), and rely only
on local proximity detection.

The rest of the paper is organized as follows: we first
briefly review related work in the area of self-healing
swarms, and then describe the baseline swarming model and
our novel perimeter detection and void reduction mecha-
nisms.We describe the results of computational studies in
a specific application domain (surrounding an oil slick), be-
fore we conclude with a brief discussion of our results, and
give pointers to possible future work.

Related Work
A prototype framework for self-healing swarms was de-
veloped by Dai, et al., which considered the problem of
agent failure in hostile environments (Dai et al., 2006).
This was similar to work carried out by Vassev and
Hinchey, who modelled swarm deployment using the ASSL
(Autonomic System Specification Language) (Vassev and
Hinchey, 2009). This technique was used by NASA (US Na-
tional Aeronautics and Space Administration) when devel-
oping their ANTS (Autonomous Nano Technology Swarm)
for use in asteroid belt exploration. However, this work was
focused more towards the failure of an agent’s internal sys-
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θ4

Figure 3: Swarm model: representation of interaction with
neighbouring agents.

tems, rather than on the removal of anomalies in a swarm
distribution.

In the context of swarm structure maintenance, Roach, et
al. focussed on the effects of sensor failure, and the im-
pact that this has on agent distribution (Roach et al., 2015).
Lee and Chong identified the issue of concave edges within
swarms in an attempt to create regular lattice formations
(Lee and Chong, 2008), and the main focus of their work is
the dynamic restructuring of inter-agent formations. Ismail
and Timmis demonstrated the use of bio-inspired healing us-
ing granuloma formation, a biological method for encapsu-
lating an antigen (Ismail and Timmis, 2010). They have also
considered the effect that failed agents can have on a swarm
when traversing a terrain (Timmis et al., 2016).

Our void reduction technique is an extension of the work
presented in (Ismail and Timmis, 2010; Timmis et al., 2016),
and also builds on the work of Lee and Chong on concave
edge identification (Lee and Chong, 2008), and on the work
of McLurkin and Demaine on the detection of perimeter
types (McLurkin and Demaine, 2009). However, the tech-
nique employed in this paper does not explicitly require the
identification of the perimeter type, as this would require a
communication infrastructure.

Swarm Model
In this Section, we define the baseline swarm model. A
swarm, S, comprises a number of agents; in our application
context, each agent is a mobile robot or drone, but this may
remain unspecified. An agent b ∈ S has a sensor range, Sb,
within which it may detect other agents in the swarm, and
determine both their range, r, and bearing, β (Figure 3).
At each time step, the agent generates a set of neighbours,
Nb, comprising other agents that are within a specific range
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(usually defined as the range of the cohesion field, Cb), as
given in Equation 1. These range and bearing pairs contain
the relative position vector for each neighbour, b′, with re-
spect to the sensor reference frame of agent b. This model
was defined by Eliot, et. al. in a paper which introduced
a new magnitude-based metric for the analysis of swarms
(Eliot et al., 2018).

Nb = {(r, β) . . .} (1)

In order to calculate the new vector, v, for b, Equation
2 defines a weighted model that includes cohesion, repul-
sion, direction and obstacle avoidance (vc(b), vr(b), vd(b),
and vo(b), respectively). The weightings kc, kr, kd, ko allow
each component to be scaled in order to tailor the swarming
effect.

v(b) = kcvc(b) + krvr(b) + kdvd(b) + kovo(b) (2)

Repulsion, vr(b), defined in Equation 3, is the directional
movement required to prevent agents colliding. Rb is de-
fined as the set of agents that are within the repulsion range
of b.

vr(b) =
1

|Rb|



∑

b′∈Rb

(
1− |b

′|
Rb

)
b′


 (3)

Cohesion, vc(b), defined in Equation 4, calculates the
movement required to make an agent move towards other
agents in order to form a cohesive structure. Cb is defined as
the set of agents that are within the cohesion range of b.

vc(b) =
−1

|Cb|



∑

b′∈Cb
b′


 (4)

Direction, vd(b), defined in Equation 5, generates a direc-
tional vector for an agent to move towards some destination,
d.

vd(b) = d (5)

Obstacles, like agents, may be represented as a point. As
an agent moves, it may enter an obstacle’s repulsion field. If
this occurs, then the agent should move away (as we assume
that an obstacle is unable to take evasive action itself). Here,
agents have a fixed obstacle repulsion field, Ob. If an obsta-
cle enters the field, a vector of magnitude Ob is applied. If
more than one obstacle is present within the field, the applied
repulsion vector is the sum of the repulsion vectors (Figure
4). The resultant vector is normalised and scaled such that
the magnitude is the same as the field distance, Ob, as given
in Equation 6.

Equation 6 shows the repulsion vector, vo(b), for an
agent. Ob is the set of obstacles within the range of agent

b

Ob

b′

b′

resultant vector

obstacles

Figure 4: Repulsion from obstacles.

b. The obstacles are identified by comparing their Carte-
sian distance to the fixed obstacle repulsion field Ob, so
∀o ∈ Ob : |o| ≤ Ob. The applied repulsion is calculated by
scaling the normalised sum of the normalised vectors ô by
Ob. Note that ˆ is the equivalent of v̂ = v

|v| , the normalised
vector.

vo(b) = Obq̂o (6)

where qo =
∑

o∈Ob

ô

vo(b) = Ob

(∑

o∈Ob

ô

)∧

An agent’s movement vector is defined as the sum of all
the component vectors, as shown in Equation 2 (similar to
that used by Hashimoto, et. al. (Hashimoto et al., 2008)).
In order for a vector to be used for movement, it must be
normalised before the agent’s speed, sb, can be applied. The
resulting movement vector, mb, is defined in Equation 7,
and is calculated using unit time, speed and the normalised
movement vector.

mb = sbv̂(b)t (7)

Over time, applying the calculations described in this Sec-
tion to all agents in turn creates the global swarming effect.
This provides the baseline algorithm for swarm movement.
We now describe how the swarm may be dynamically recon-
figured, which is the main novel contribution of this paper.
After describing our new algorithm for void reduction, we
show how it may be applied to a specific problem.

Perimeter Detection
In order to dynamically restructure a disorganised swarm,
we must first identify the perimeter agents. This is due to
the fact that anomalies occur at swarm boundary locations.
With reference to Figure 5, these agents may form part of an
outer (green) or inner (red) edge.
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Figure 5: Outer and inner swarm perimeters.

Our detection mechanism detects both the outer edge of
a swarm and any internal features (voids) that satisfy the
same set of conditions (Figure 5). It is therefore possi-
ble to have both voids and “islands” of agents within the
same swarm. Voids are best defined as perimeters that are
both concave (Equation 15) in nature and which exist in-
side another perimeter. McLurkin (McLurkin and Demaine,
2009) describes two types of perimeters, convex and con-
cave, where a convex perimeter is an edge where the average
angle of the exposed faces of relevant agents is > 180◦, and
a concave perimeter is one where the average exposed angle
is < 180◦.

The set of neighbours, Nb (Equation 1) is sorted into the
sequence Pa, in ascending order of bearing:

Pa = 〈(r0, β0), . . . , (rn, βn)〉 (8)

such that β0 < β1 < . . . < βn
This set of agents forms the perimeter of an enclosing

polygon of agent b. Each consecutive pair of agents in the
sequence defines an edge, which has length d and an angle θ
given by the difference in bearings of successive neighbours.
The sequence of edges that forms this polygon is:

Pe = 〈(d0, θ0), . . . , (dn, θn)〉 (9)

where
θi = βi+1 − βi (10)

The index addition is modulo |Nb|, making β0 the suc-
cessor bearing to βn (n + 1 = 0). The angles θ must lie in
the range 0 < θ ≤ 2π. This restriction on the values of θ
enforce the condition that

∑
θi = 2π (11)

The length of a perimeter edge is given by the cosine rule

d2i = r2i+1 + r2i − 2ri+1ri cos θi (12)

An agent is therefore on the perimeter of the swarm if it is
not enclosed by the polygon defined inPe. Simple geometry
shows that this is the case, given by the predicate in Equation
13.

∃θi ∈ Pe : θi ≥ π (13)

The polygon is considered to be “open” if two successive
agents on the perimeter are unable to “see” one another; that
is, their separation, d, is greater than the range of the attrac-
tive field. An open polygon does not enclose the agent b, so
it is considered to be on the perimeter.

Formally, an agent, b, is on the perimeter of the swarm if
the predicate in Equation 14 is true.

∃di ∈ Pe : di > Cb ∨ ∃θi ∈ Pe : θi ≥ π (14)

An agent is at the apex of a concave region of the perime-
ter if

∃(θi, di) ∈ Pe : di > Cb ∧ θi < π (15)

The orientation is independent in so much as: if the agent
b is rotated through an angle of γ then the bearings are ro-
tated by −γ,

βi 7→ βi − γ

The angle between successive agents is now

θi = (βi+1−γ)−(βi−γ) = βi+1−βi−γ+γ = βi+1−βi

Void Reduction

In a static swarm, where there are essentially no destina-
tion vectors, void reduction will result in a restructuring mo-
tion that creates a more “rounded’ swarm. Void reduction
also creates a surrounding effect, as it removes voids from a
swarm. This is discussed in more detail in the next Section.
Although these effects improve the potential applications of
swarms, negative effects may also be introduced (e.g., in
some circumstances void reduction can create an artificial
destination vector, in that the swarm will appear to have a
directional movement).

In order to implement void reduction, full perimeter de-
tection is required in order to identify candidate agents
(Eliot, 2017). Void reduction does not require the perime-
ter type to be identified, and no communications infras-
tructure is required. Many existing swarm coordination
algorithms require inter-agent communication (Jung and
Goodrich, 2013; McLurkin and Demaine, 2009; Saldana
et al., 2012; Navarro and Matı́a, 2009; Zhang et al., 2013),
and this imposes a significant limitation on swarm size, due
to the requirement for message propagation. Our method
avoids the problems associated with this.
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Figure 6: Agent void reduction motion: agents b′ and b′′

form a concave edge (depicted by the lighter line). Agent b
must therefore move to remove this edge.

Void Reduction: Agent Movement
The addition of a further characteristic to the motion of
a swarm means that we must augment the existing agent
model (Equation 2). With void reduction, this revision is
based on the identification of the agents that are connected
by a concave edge, as shown in Figure 6 as (b

′
, b, b

′′
).

When an agent is identified as being a component of
a void characteristic (Equation 15), the normal movement-
direction vector is replaced by a void reduction vector. This
new vector causes the agent to move in a direction that will
reduce or remove a concave edge, by moving the agent to-
wards the identified gap. This either straightens an outer
perimeter, or reduces/removes a void. The change in direc-
tion also affects the distance and magnitude variances. Fig-
ure 7 shows this effect in more detail; the top figure shows
the initial positions of the agents before void reduction is ap-
plied , and the bottom part of the figure shows the effects on
its relationship with its neighbours. The aggregate change is
an increase in the inter-agent distances, and an increase in
the resultant magnitude effects.

As part of the perimeter detection process, we may gen-
erate a set of agents, Gb, that produce a gap for a particular
agent, b (that is, the first two agents identified as creating a
“gap” in agent b’s neighbours). Equation 16 is then used to
calculate the centroid of the “gap” agents:

Dpos(b) =
1

2

∑

b′∈Gb

b′ (16)

The centroid Dpos(b) is then used to calculate the void
reduction vector:

D(b) = Dpos(b)b (17)

D(b) is the vector from the coordinates of agent b to the
centroid coordinates, D(b). This new vector is used as the
void reduction vector in order to implement the necessary
void reduction movement (Equation 17).

Figure 7: Initial position (top), and reduced position (bot-
tom). +/- labels show relative changes in inter-agent magni-
tude.

In addition to agent proximity, the void reduction move-
ment process must also include obstacle avoidance (Equa-
tion 18). As with the earlier vector-based calculations, a
weighting, kcr, is applied to the void reduction vector in or-
der to allow the model to adjust the application of the effect.
The resultant void reduction vector is normalised to produce
a directional vector, as shown in Equation 18. This is then
applied to the agent in order to effect movement.

V (b) = (kcrD(b) + kovo(b))ˆ (18)

Experimental Results: Oilslick Containment
In this Section we give the results of experiments to simu-
late a specific scenario; that of oilslick containment using a
mobile robot swarm. Oil spills (from ships or drilling oper-
ations) can cause significant environmental, social and eco-
nomic damage, and removing them can be hazardous and
expensive. Several alternatives to traditional spill disper-
sal/containment procedures have been proposed, with some
proposals relying on the use of robot swarms to surround a
spill (Fritsch et al., 2007; Kakalis and Ventikos, 2008; Zhang
et al., 2013) (details of remediation processes are outside
the scope of this paper, but they may include skimming of
the surface, deposition of a dispersal agent, or oil contain-
ment using a boom). However, these proposals all require
the use of a communications infrastructure to facilitate mes-
sage passing between agents. Our proposed method has the
significant benefit of not requiring any such mechanism, re-
lying only on local proximity detection.

The scenario is schematically depicted in Figure 8; we
have an oil slick in some environment, and a swarm of robots
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Figure 8: Oil slick containment scenario.

that are deployed by boat around the perimeter of the slick.
Figure 9 shows the results of simulating the containment
process using both the baseline movement algorithm (top)
and the baseline method with void reduction (bottom). In
our simulation, we use 200 agents, which is significantly
greater than the number of agents than are generally simu-
lated when inter-agent communication is required.

Without void reduction (i.e., simply using the field-effect-
based movement algorithm) the swarm expands and then
stabilises into a structure containing a void. The swarm “vi-
brates” slightly as cohesion and repulsion forces fluctuate to
maintain the swarm’s structure, but the void does not fully
close, and full and “tight” containment is not achieved. The
agents that do come in contact with the obstacle are repelled
by the obstacle repulsion field. If, however, we activate
void reduction, then the swarm expands as expected, due
to the field effects, but then the void is completely removed,
achieving full and close containment of the slick.

Figures 10 and 11 show the effect of the void reduc-
tion on the distribution of agents compared to the baseline
method. Figure 10 shows the distance distribution of the
swarm for both the baseline method (grey/black) and the
void reduction method (red). The baseline swarm initially
expands, then settles after approximately 6 seconds (this is
also the case for the void reduced swarm). Following the ini-
tial expansion, the baseline swarm remains relatively slow-
changing with respect to distance and magnitude. However,
the void reduced swarm is affected more significantly; after
approximately 10 seconds the swarm’s internal void perime-
ter makes contact with the oil spillage (obstacle). This has
the effect of disrupting the average distance and average
inter-agent magnitudes. This effect diminishes slightly after
approximately 18 seconds, when the swarm’s void reduction
vectors cause the swarm to surround the spillage. The slick
surrounding process is followed by a few remaining changes
caused by the “snapping” of agents at the spillage perimeter,
and then the containment process is complete.

Figure 11 compares inter-agent magnitudes for the base-

line and void reduction swarms. When initially deployed,
the swarm is so dense that the average inter-agent magni-
tude is negative, indicating a high level of expansion. Within
2 seconds the expansion has reached a point where the aver-
age magnitude is positive, indicating the swarm is cohesive.
This means that the swarm will remain as a single entity,
and therefore be capable of surrounding an object without
breaking apart.

When the swarm shrinks to surround the obstacle, we see
an erratic change in the number of perimeter agents. Fig-
ure 12 shows the number of perimeter agents over the du-
ration of the simulation. We see that the baseline swarm
perimeter size decreases steadily and then settles (the swarm
has not enclosed the spillage). The perimeter count has set-
tled, but, as shown in Figures 10 and 11, the agents are still
moving (magnitude variance and magnitude >0); however,
the movement does not affect the overall structure.

When the void reduction swarm encounters the obstacle
at approximately 10s there is a change due to “snapping”,
as the agents “fold” around the obstacle. Snapping is an os-
cillation of relations between four agents (Eliot, 2017). The
perimeter size then continues to fall gradually as the void
percolates out of the system. The perimeter size then sta-
bilises as the slick obstacle is fully surrounded.

Conclusion
In this paper, we have shown how the structure of a sim-
ulated swarm of robots may be controlled by the identifi-
cation and removal of perimeter anomalies. Importantly,
the identification of anomalies is achieved locally by indi-
vidual agents using only proximity detection, without any
need for an inter-agent communication structure. This could
offer significant benefits in terms of cost, simplicity, and
fault-tolerance. The technique works with arbitrary-sized
swarms; here we use 200 agents, but we have successfully
simulated swarms of up to 500 agents with no appreciable
performance degradation.

This work demonstrates one possible application of our
void reduction technique. Future work will focus on its use
with mobile swarms (e.g., for reconnaissance) which must
navigate past/around a number of obstacles whilst maintain-
ing a coherent and compact structure.
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Abstract

The long term vision of the Autonomous Robot Evolution
(ARE) project is to create an ecosystem of both virtual and
physical robots with evolving brains and bodies. One of the
major challenges for such a vision is the need to construct
many unique individuals without prior knowledge of what
designs evolution will produce. To this end, an autonomous
robot fabrication system for evolutionary robotics, the Robot
Fabricator, is introduced in this paper. Evolutionary algo-
rithms can create robot designs without direct human interac-
tion; the Robot Fabricator will extend this to create physical
copies of these designs (phenotypes) without direct human
interaction. The Robot Fabricator will receive genomes and
produce populations of physical individuals that can then be
evaluated, allowing this to form part of the evolutionary loop,
so robotic evolution is not confined to simulation and the
reality gap is minimised. In order to allow the production of
robot bodies with the widest variety of shapes and functional
parts, individuals will be produced through 3D printing, with
prefabricated actuators and sensors autonomously attached in
the positions determined by evolution. This paper presents
details of the proposed physical system, including a proof-of-
concept demonstrator, and discusses the importance of con-
sidering the physical manufacture for evolutionary robotics.

Introduction
This paper outlines a long-term vision towards robots that
reproduce and evolve in real-time and real space as well as
an ongoing research project concerned with the first tangible
implementation of such robots; evolving physical robots will
be a significant step towards robotic artificial life. Specifi-
cally, we discuss the challenge of robot (re)production and
present our first results with the ‘Robot Fabricator’ for au-
tonomously producing robot phenotypes.

The long-term vision behind this research has a two-fold
motivation. Firstly, it is to create a new type of artificial evo-
lutionary systems that depart from the evolution of digital
artefacts—Evolutionary Computing—and realizes the evo-
lution of physical artefacts: the Evolution of Things as in-
troduced in (Eiben et al., 2012). Such systems will represent
a third incarnation of Darwinian principles. To date, these
principles can be observed and studied in wetware (Life on

Figure 1: Illustration of the ARE environment, showing the
three main stages of the Triangle of Life model and a recy-
cling facility.

Earth) and software (Evolutionary Computing); the Evolu-
tion of Things will realize them in hardware, cf. Eiben and
Smith (2015). Such hardware models of evolution will facil-
itate fundamental research into, for instance, the macro-level
mechanisms of evolution, the emergence of (embodied) in-
telligence, and the simultaneous evolution of the body and
the brain without suffering from the infamous reality gap
(Jakobi et al., 1995).

Secondly, evolving robots is interesting from an engineer-
ing perspective. The fact that Life on Earth has populated
practically all possible environmental niches demonstrates
that natural evolution is very successful in producing spe-
cialised life forms. Hence, it is a reasonable hypothesis that
artificial evolution will be capable of producing specialised
robots for various environments and tasks. Furthermore, an
autonomously evolving robot population has the ability to
adapt to previously unknown and/or changing conditions,
thus creating new types of machines that are able to adapt
their form and behavior.

The field of Evolutionary Robotics has addressed the evo-
lution of robot controllers (brains) with considerable suc-
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cess but evolving the morphologies (bodies) has received
much less attention (Nolfi et al., 2000, 2016; Doncieux et al.,
2015). This is somewhat understandable, given the diffi-
culty of implementing such systems in the real world, i.e.
the lack of technologies for automated (re)production of
robots. However, advances in robotics, 3D-printing, and au-
tomated assembly mean it is now timely to work on physical
robot systems with evolvable morphologies (Winfield and
Timmis, 2015). The Autonomous Robot Evolution (ARE)
project1 is concerned with developing the first such system,
illustrated as a concept in Figure 1. The work will allow
for radically new autonomous systems, where robots are de-
signed and manufactured by algorithms and machines rather
than by humans.

The main contribution of this paper is the proposal of a
novel approach to robotic evolution, where an automated fa-
cility enables the (re)production of robot populations, and
thus robot evolution in the physical world. After discussing
previous related work on evolving physical robot morpholo-
gies, the paper outlines the overall system architecture for
the ARE project. This is followed by a more detailed de-
scription of the required physical infrastructure, focusing on
the proposed Robot Fabricator system (RoboFab) to achieve
an automated assembly process, with a proof-of-concept
demonstration presented.

Related Work
As of today there have been very few examples of au-
tonomous robot fabrication for evolutionary robotics in the
literature. Most approaches involve evolving the robots in
different simulators and manually assembling the resulting
robots. In addition, those robots that are autonomously as-
sembled have generally been very simple with a single type
of actuator and no sensors.

The important link between morphology and control
(Pfeifer and Bongard, 2007) suggests that they should be
evolved together in order to unlock the potential of evolu-
tionary robotics; however since the breakthrough work of
Sims (1994), the majority of brain and body evolution has
occurred in simulation.

A logical progression from simulation studies has been
the simulate-then-transfer paradigm, such as the Golem
project (Pollack and Lipson, 2000; Lipson and Pollack,
2000), in which the evolution of simple robots (without sen-
sors and with fixed controllers) occurred in simulation af-
ter which a select few individuals were physically manufac-
tured. However this does not allow for any selection based
on the physical robots, and so evolution stops at the point
of physical manufacture. Although this paradigm has been
shown to be successful for problems such as antenna de-
sign (Hornby et al., 2011), the complex interactions of mo-
bile robots with their environment are difficult to simulate

1see https://www.york.ac.uk/robot-lab/are/

accurately, leading to the reality gap (Jakobi et al., 1995),
which could be bypassed by evaluating robots in the physi-
cal world.

Evolution of controllers where virtual models of the
robots are updated according the performance of physical
robots has been achieved previously, e.g. (Bongard and Lip-
son, 2004; Hwangbo et al., 2019).

One approach for creating populations of physical robots
may be through self-replicating robots. Zykov et al. (2005,
2007) demonstrated modular robots capable of such repro-
duction. However the physical robots only created exact
copies of themselves, without variation and therefore with-
out evolution in hardware.

There has been some progress toward a fully automated
system for creating physical robot phenotypes (which in
ARE is termed the Robot Fabricator). Brodbeck et al. (2015)
used a “mother robot” (a robot arm) to create physical indi-
viduals by gluing cuboid modules together. They demon-
strated model-free morphological evolution, with 100 in-
dividuals for each evolutionary run physically created and
tested; a major breakthrough. However, the robots used were
limited to a single type of actuator (servo-motor) and the
robots had no sensors—evolving more complex morpholo-
gies is likely to present further challenges.

3D printing is a rapidly developing field, offering excit-
ing new opportunities to create complex robotics systems
with minimal manual intervention (MacCurdy et al., 2016),
with a particular interest in printed soft robots (Hiller and
Lipson, 2012; Bartlett et al., 2015). However, 3D printing
cannot yet be used to create mechatronic components, mak-
ing essential robot functions of sensing and actuation im-
possible. This motivates a combined approach in the ARE
project, where some components are 3D printed (allowing
arbitrary shapes), while sensor and actuator ‘organs’, with
electronics and motors, are hand designed and built.

The Triangle of Life concept (discussed below) has been
demonstrated with a simplified setup by Jelisavcic et al.
(2017), where physical robots were 3D-printed and hand-
assembled, also using prefabricated organ, such as servo mo-
tors and Raspberry Pis. The ARE project will take this fur-
ther through the automated Robot Fabricator, allowing larger
numbers of individuals and a complete evolutionary system
to be fabricated.

Overall System Architecture
A general architecture for evolving robots in real time and
real space has been suggested in the conceptual framework
named the Triangle of Life by Eiben et al. (2013), shown in
Figure 2. A real-world implementation of this is envisaged
by the notion of an EvoSphere as introduced and extensively
discussed in Eiben (2015) and modified for the ARE project
in Figure 1; this forms a design template for an evolutionary
robot habitat and provides the basis of the physical environ-
ment in the ARE project.
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Figure 2: Generic system architecture for robot evolution
conceptualized by the Triangle of Life. The learning meth-
ods in the Infancy stage are not necessarily evolutionary.

The Triangle of Life consists of three stages: morphogen-
esis, infancy, and mature life, as illustrated in Figure 2. Con-
sequently, an EvoSphere consists of three components. The
Robot Fabricator is where new robots are created (morpho-
genesis). The Training Facility provides a suitable environ-
ment for individuals to learn during infancy, providing feed-
back, perhaps via a computer vision system and/or a human
user, so individual robots can learn to control their (possibly
unique) body to perform some simple tasks. The Training
Facility increases the chances of success in the Arena and
plays an important role: it prevents reproduction of poorly
performing robots and saves resources. It also enables re-
finement of controllers learned in a simulated environment
that do not transfer properly due to the reality gap. If a robot
acquires the required set of skills, it is declared a fertile adult
and enters the Arena, which represents the world where the
robots must survive and perform user-defined tasks, and may
be selected for reproduction. The selection mechanism can
be innate in the robots (by choosing “mates”) or executed by
an overseer, which can be algorithmic or a human “breeder”.

An essential feature of the EvoSphere concept and the
ARE system is the centralised, externalised reproduction.
For reasons of ethics and safety we reject distributed repro-
duction systems, e.g. self-replicators or the robotic equiv-
alents of cell division, eggs, or pregnancy, and deliberately
choose for one single facility that can produce new robots.
This facility, the Robot Fabricator, serves as an emergency
switch that can stop evolution if the users deem it necessary.

The ARE system features deep integration of virtual and
physical robot evolution. In essence, there are two concur-
rently running implementations of the Triangle of Life, one
in a virtual environment and one in the physical environ-
ment. The Ecosystem Manager is a program to control the
hybrid physical-virtual system, providing the link between

Ecosystem
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Evolutionary 
algorithm

Results
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genotypes from other 

environment

Evolutionary 
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Robot Fabricator
(Morphogenesis)

Training Facility
(Infancy)
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(Mature Life)
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FitnessGenotypeFitnessGenotype

Results

Figure 3: Diagram of the ARE system components: the vir-
tual environment, the physical environment, and the Ecosys-
tem Manager. Simulated and physical evolution are running
concurrently, supervised and controlled by the Ecosystem
Manager.

the two, as illustrated in Figure 3. This integration is made
possible by using the same genetic representation in both
worlds, enabling cross-breeding so a new robot in either en-
vironment could have physical or virtual parents, or a com-
bination of both. An individual can also be copied between
environments simply by transferring its genotype from one
environment to the other. This integration must be controlled
by the Ecosystem Manager, which optimises the working
of the hybrid evolutionary system, maximising task perfor-
mance. It reacts to flows of information from both subsys-
tems, and to human-specified goals, either hand-directed or
running autonomously.

This integration seeks to combine the advantages of the
real and virtual worlds. Physical evolution is accelerated
by the virtual component that can find good robot features
with less time and resources than physical evaluation, while
simulated evolution benefits from the influx of genes that
are tested favourably in the real world. This means while a
single physical robot is evaluated in the physical evolution,
hundreds of simulated generations will be evaluated at the
same time. As consequence of this a huge proportion of the
population will be virtual. In order to compensate for this we
will give greater weighting to results obtained from physical
robots.

It is important to mention that the size of the population
in the physical world will dynamically change over time, as
new robots are added (from the virtual world or randomly
created) and due to physical robots malfunctioning or being
removed due to poor performance.
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The evolutionary algorithms are kept separate, as shown
in Figure 3, to allow for different configurations (of popula-
tion size, mutation rate etc.) suited to these different envi-
ronments, with settings dictated by the Ecosystem Manager.

Autonomous Manufacturing in the Physical
Environment

This section describes the proposed method for the physical
manufacture of robots in the context of the ARE project.

The Robot Fabricator is a system to automate the process
of morphogenesis: the conversion of genotypes into phys-
ical robot phenotypes, as outlined in Figure 3. The final
objective is to remove human intervention from this process
as far as possible, creating a manufacturing system for the
autonomous production of complete robots, which will al-
low the evaluation of physical individuals to form part of the
evolutionary process.

The proposed design for the Robot Fabricator is described
below.

The organs are defined as active components which indi-
vidual robots can use to perform their task(s). It is expected
each robot will have a single “brain” organ, which contains
the electronic control hardware and a battery to provide the
robot with power. Other organs provide sensing and ac-
tuation, with their type and location being specified in the
genome written by the evolutionary algorithm. These other
organs will typically each comprise a single sensor or ac-
tuator, such that evolution is free to select the quantity and
arrangement of the active parts of the robot. In practice,
once a robot is no longer needed, the physical organs can be
removed and recycled to create new individuals. Examples
of physical and virtual organs are shown in Figures 4 and 5.

The skeleton is the structure that physically connects the
organs together. Specifically, the skeleton will be com-
prised of thermoplastic and made by additive manufacture
(3D printing). The skeleton is generally expected to be non-
functional except for serving as a scaffold to hold the organs
in place relative to each other.

In this way, the robots created will feature organs which
are designed to be re-usable for many different designs and
the skeleton, which will be made specifically for a particu-
lar individual. This organ and skeleton approach is flexible
enough to allow for a wide range of sensors and locomo-
tion methods, including wheel organs and/or joint organs for
constructing robots with limbs. Furthermore, certain organs
could also be designed such that some part(s) can be indi-
vidually 3D printed and attached autonomously at the time
of assembling the robot, for instance the radius (or even the
shape) of wheels, or the fingers of a gripper, so that these as-
pects of the organs can also be evolved. As such, the Robot
Fabricator is intended to allow for experiments where the
search space can be large and diverse enough for fundamen-
tal research into evolutionary robotics (and perhaps evolu-
tion in general), and the robots capable enough to perform

Figure 4: Prototype organs in the physical world. From left
to right: a sensor organ, brain organ and wheel organ.

Figure 5: Models of the organs from Figure 4 for use in the
virtual environment.

useful and interesting tasks.
One potential ethical issue is the waste produced by large

numbers of bespoke plastic skeleton parts, which cannot be
re-used. To minimise the environmental impact of this, the
material chosen is a plant-based polymer (PLA), which is
recyclable and biodegradable. After the useful life of an in-
dividual, the organs will certainly be removed and re-used
for future individuals; it may also be possible to melt down
the skeleton parts and make new filament, to be used for new
individuals.

The Robot Fabricator System
The skeleton, which holds the organs in their positions,
needs to take an arbitrary shape depending on the organ lo-
cations specified. To achieve this, it is made using a 3D
printer (LulzBot TAZ 6) by the Fused Deposition Modelling
(FDM) approach to form 3D shapes from a thermoplastic
(polylactic acid, commonly known as PLA).

The organs, in comparison, are much more complex, as
they require electrical and electronic components and many
different materials to allow for a range of actuation and sens-
ing technologies; these will be prefabricated and attached to
the skeleton using a multi-axis manipulator (a robot arm, in
this case a Universal Robots UR5e).

To allow the robot arm to easily pick up each required
organ, they are stored in an organ bank, where each organ is
held in a known and accessible position.

While the organs are attached, the semi-constructed robot
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must be held securely, but then must be released once the
assembly is complete. This will be achieved by a fixture in
the assembly area which can mate to a feature on the bot-
tom face of the brain organ which forms the core of each
individual.

The 3D printing of the skeleton is likely to take several
hours, much longer than the assembly, and so the production
rate can be increased by having multiple printers operating
in parallel, tended to by a single robot arm. A proposed
layout for these components is shown in Figure 6.

To demonstrate some of the key steps in this process, a test
setup has been created. This process is depicted in Figure 7
and the supplementary video2. The manufacturing sequence
is described as follows:

1. The Robot Fabricator receives the required coordinates of
the organs and one or more mesh file(s) of the shape of
the skeleton.

2. The skeleton is produced by the 3D printer (Figure 7-1).
3. The robot arm transfers the skeleton to the assembly area.

This is currently done manually (Figure 7-2).
4. The organs are attached to the appropriate locations by the

robot arm (Figure 7-3).
5. The robot arm connects the organs together by cables to

provide power and communications (Figure 7-4).
6. Any remaining organs that cannot be attached by the robot

arm, such as wheels, are attached manually (Figure 7-5).
In the final design this step will be eliminated.

7. The robot is complete and ready to be transferred to the
Training Facility (Figure 7-6).

From a Virtual Robot to a Physical Robot
The robot morphologies shown in this paper were initially
evolved in the simulations using a steady state evolutionary
algorithm (EA), i.e. with overlapping generations. Travel-
ling distance is the measure of fitness. The parameters val-
ues used for the EA are the following: the population size
of 20, generation number of 200 and mutation rate of 0.2.
An example of equivalent virtual and physical phenotypes is
shown in Figure 8.

The robots shown in this paper were generated with direct
encoding. The position and orientation of each organ is ex-
plicitly specified in the genome. The organs are connected
directly to the brain with vertical and horizontal segments.
This representation is used because of its simplicity, but fur-
ther work will evaluate and compare other methods. The
code that generates such morphologies can be found in the
supplementary material of this paper.

Once the best individual is found, the list of coordinates
of each organ is sent to the Robot Fabricator together with
the mesh file that represents the shape of the body. The mesh
file is used to create the skeleton with a 3D printer and the

2Supplementary material available at: https://www.
york.ac.uk/robot-lab/are/alife2019/

list of coordinates is used to attach the organs to the body
using the robot arm.

Even though a large diversity of robots with different
shapes can be generated with evolutionary algorithms, not
all the robots can be built. The practical limitations of the
Robot Fabricator impose various constraints on what can be
physically produced. Therefore, before a genome is sent to
the Robot Fabricator, it is very important to make sure that
its phenotype can be manufactured. This evaluation is de-
scribed below.

Viability Test
Before a genome is sent to the Robot Fabricator, it is sub-
ject to a viability test to make sure that its phenotype can be
manufactured. Only viable robots will be produced, to avoid
wasting time and resources attempting to manufacture only
to find it cannot be made. Trying to produce a non-viable
individual may also risk damage being caused to the organs
or Robot Fabricator.

The viability test must check for violation of the limita-
tions of the Robot Fabricator manufacturing process, which
are constraints that would not exist for simulation, and
would change depending on the assembly process chosen,
such as those in Table 1.

The viability test may optionally be extended to cover not
only individuals that cannot be manufactured, but also detect
some cases of individuals with no chance of a decent per-
formance, and therefore should not be manufactured. This
could avoid wasting resources and speed up the overall evo-
lution. For example, this could be a test of fundamental
functionality—if a robot must sense its surroundings and act
upon the information received, then it most possess at least
one sensor and one actuator. Whether this type of addition
to the viability test does significantly speed up evolution, or
if they have negative side-effects, is an area to be explored.

In this paper we present some examples of robots gener-
ated with and without viability test from evolution. Robots
are subjected to a series of checks when the the viability
test is enabled, shown in Table 1; if a robot fails one of the
checks it is considered as non-viable and a fitness of zero is
assigned to this robot. All the checks are ignored and all the
robots are considered viable when the viability test is dis-
abled. An example of a robot that passes the viability test is
shown in Figure 9.

Without the restrictions of the viability test, evolution will
exploit any means of increasing the fitness function, which
may not result in robots that can be manufactured. Figure 10
shows some examples of robots that evolved which would
have failed the test, selected by manually inspecting the fi-
nal generation to demonstrate different issues. Figure 10(a)
shows an example of overlapping organs (although in this
case a high fitness is achieved through a simulation bug, and
is not the intended target of the viability test). With no lim-
its to how many organs a robot can have, evolution can add
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Figure 6: Concept layout for the final Robot Fabricator design to facilitate automated production of complete robots. The
skeleton is printed on one or more printers, and assembled by the robot arm together with organs from the organ bank.

1 2 3

4 5 6 7

Figure 7: Robot production: (1) skeleton is 3D printed, (2), manual transfer to assembly area, (3) organs attached, (4) cables
connected between organs, (5) manual wheel attachment, (6) robot is finished and (7) is tested. These images are from a video
which is available online at www.york.ac.uk/robot-lab/are/alife2019/.

Figure 8: Equivalent virtual and physical phenotypes.
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Constraint Description
3D printer volume The maximum size of a 3D-printed part (i.e. a piece of skeleton) is limited by the print

volume of the 3D printer. This does not prohibit several parts (e.g. limbs) being made
separately and then joined to form a complete robot larger than this.

Assembly area size The overall size of any robot, after all the organs and limbs are connected, will be limited
by the physical size of the assembly area.

Overlapping organs In simulation organs can overlap and share space. In the physical world, this cannot be
achieved.

3D Printing overhangs 3D printing works by building in layers; each layer must be supported by the layer below
so there is a limit to the angle by which a face can overhang; additional support material
would be difficult to remove autonomously.

Organ attachment and
connections

The robotic arm requires access to attach each organ, so there must not be any 3D printed
skeleton material, or a previously attached organ, in its path. Equivalent access is also
required for each cable connection.

Number of Organs The organs must be pre-made, and therefore there will be a fixed number available, limit-
ing the quantity of organs that can be assigned to each individual.

Table 1: Manufacturing constraints to be considered by the viability test.

Figure 9: Robot evolved with viability test. This robot meets
the physical constraints.

more than are available to the Robot Fabricator, such as the
robot shown in Figure 10(b). In a similar way, evolution can
exploit the size of the robot, resulting in skeleton sections
larger than the print volume of the Robot Fabricator, as with
the robot shown in Figure 10(c). Of course, some of these is-
sues could be addressed by manipulating the fitness function
or constraining the range of parameters within the genome,
but it remains clear that there will be robots that are viable
in a simulator but that cannot be manufactured for multiple
reasons, therefore the viability test is essential.

It is worth mentioning that assigning a fitness of zero to
a robot failing the viability test is not the only treatment for
non-viable robots. Each robot could be repaired, or each
robot could be kept in the population with low fitness, as
it may be beneficial to allow movement through infeasible
regions of the search space to find regions of higher fitness.

Conclusions
The ARE project envisions an environment where au-
tonomous systems (robots) are not designed by humans (or
indeed designed at all), but are created through a series of
steps that follow evolutionary processes. These robots will

be “born” through the use of 3D additive manufacturing,
with novel materials and a hybridised physical-virtual evo-
lutionary architecture. Newly created robots will learn in
a safe and controlled environment where success will be re-
warded. The most successful individuals will make available
their genetic code for reproduction and for the improvement
of future generations. Such a process may ultimately lead to
a change in the way things are designed and manufactured.

This paper describes the first step towards this vision, cre-
ating the Robot Fabricator system in which physical individ-
uals can be fabricated autonomously. This is a challenging
task, but the Robot Fabricator operates within the constraints
of current technologies, to create a feasible system for the
automatic production of robot bodies, while maximising the
diversity of possible morphologies. Automated manufacture
of evolved robots in the real world will allow us to address
interesting and important questions around morphological
evolution in hardware, the reality gap, and how these sys-
tems can be implemented, with potential for fundamental
advances in the field.
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Abstract

In nature, group behaviours such as flocking as well as cross-
species symbiotic partnerships are observed in vastly dif-
ferent forms and circumstances. We hypothesize that such
strategies can arise in response to generic predator-prey pres-
sures in a spatial environment with range-limited sensation
and action. We evaluate whether these forms of coordina-
tion can emerge by independent multi-agent reinforcement
learning in simple multiple-species ecosystems. In contrast to
prior work, we avoid hand-crafted shaping rewards, specific
actions, or dynamics that would directly encourage coordi-
nation across agents. Instead we test whether coordination
emerges as a consequence of adaptation without encouraging
these specific forms of coordination, which only has indirect
benefit. Our simulated ecosystems consist of a generic food
chain involving three trophic levels: apex predator, mid-level
predator, and prey. We conduct experiments on two differ-
ent platforms, a 3D physics engine with tens of agents as
well as in a 2D grid world with up to thousands. The re-
sults clearly confirm our hypothesis and show substantial co-
ordination both within and across species. To obtain these
results, we leverage and adapt recent advances in deep re-
inforcement learning within an ecosystem training protocol
featuring homogeneous groups of independent agents from
different species (sets of policies), acting in many different
random combinations in parallel habitats. The policies uti-
lize neural network architectures that are invariant to agent
individuality but not type (species) and that generalize across
varying numbers of observed other agents. While the emer-
gence of complexity in artificial ecosystems have long been
studied in the artificial life community, the focus has been
more on individual complexity and genetic algorithms or ex-
plicit modelling, and less on group complexity and reinforce-
ment learning emphasized in this article. Unlike what the
name and intuition suggests, reinforcement learning adapts
over evolutionary history rather than a life-time and is here
addressing the sequential optimization of fitness that is usu-
ally approached by genetic algorithms in the artificial life
community. We utilize a shift from procedures to objectives,
allowing us to bring new powerful machinery to bare, and
we see emergence of complex behaviour from a sequence of
simple optimization problems.

Introduction
Our natural world is the ultimate example of a self-
organizing system (Ashby, 1947). Species and individuals

adapt to each other in competition and cooperation, often
as predators and prey in food chains. One ubiquitous ex-
ample of cooperative group behavior is flocking, which can
be found on land, sea and air, and numerous benefits from
flocking for both predators and prey have been discussed in
the literature (Handegard et al., 2012; Ruxton, 2012). For
instance, if predators are sparse, a flocked group of prey is
not much more likely to be detected than any single indi-
vidual. Thus, if the predator eliminates at most one individ-
ual per detection, it follows that fewer prey will be eaten if
they stick together. Further, if the prey are collectively more
likely to detect the predator and thus to avoid predation, this
improves individual survival chances. Flocking is not only
used by prey species but also by predators: it can enable
predators to cut off escape routes for a group of prey (e.g.
seatrout hunting juvenile gulf menhaden) (Handegard et al.,
2012); enable species to jointly capture larger prey, e.g. hu-
mans hunting whales (Alvard, 2003); or reduce individual
nutritional variability by sharing captures. A second exam-
ple of group behavior are symbiotic partnerships between
species, for example humming bird nests are safer from jay
predation when a hawk, which threatens the jays, is situated
on top of the same tree (Greeney et al., 2015).

We hypothesize that group strategies like flocking and
symbiosis can result in response to very generic predator-
prey pressures and opportunities in a spatial environment
with range-limited sensation and action, and we test this
hypothesis experimentally by deploying independent rein-
forcement learning (RL) agents in generic simulated ecosys-
tems. RL agents, like e.g. genetic algorithms, learn across
the full (evolutionary) history and not primarily during
episodes (life-times) and is primarily here viewed as a pow-
erful way to optimizing the sequence of optimization prob-
lems posed by the ecosystem including the policies of the
other species at the relevant times.

Our environments have three trophic levels (prey, preda-
tors and apex predators) and thus enable the emergence of
partnerships within and across species. Further, unlike prior
work (Morihiro et al., 2006; Hung, 2015; Yang et al., 2018)
we do not shape the dynamics, actions or rewards to specif-
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ically encourage or facilitate particular group behaviors, In-
stead we show that such behaviors can emerge in simple
general contexts. We use two simulation platforms for this
study, to highlight the generality of the findings and show
that implementation details are not important. First, the
Mujoco physics engine (Todorov et al., 2012) in which RL
agents control a spherical body with continuous steer and
roll actions, which sense the position and velocity of nearby
others and their own physical state. These agents are re-
warded (or penalized) according to their proximity to prey
(or predator) agents. Second, we use a 2D gridworld with
partial observations (agents locally sense a window of pix-
els around themselves) as used in Leibo et al. (2017). The
former environment allows richer movement patterns while
being more challenging to learn in, while the latter allows
for very large numbers of agents.

One choice to make in both platforms is the population
size at each trophic level. We believe that flocking is more
likely when there is a spatial concentration of the predators
and/or prey of the species in question. For a species to seek
protection from an apex predator we believe it must be hard
to escape from its predators because of its density or abil-
ities. Due to these considerations, we opt for a relatively
large middle population while a few individual agents at the
bottom level represent a large amount of food (e.g. a group
of individuals). The apex predators will be the fewest in
numbers but have the most impact (on reward).

We find that the agents of the middle trophic level learn
a coordinated hunting (flocking) strategy that makes them
more successful at hunting their prey. There are at least two
benefits from collective hunting; reducing the set of escape
trajectories for the prey and collective navigation including
information gathering. Cross species collaboration patterns
are one of the new possibilities that arise with more than
two trophic levels. We observe this in both the 3D physics
simulation and the 2D gridworld. The agents at the bottom
of the food chain learn to seek out the top apex predator
(the hawk) for protection (from jays) and even form a sort of
“partnership”.

Further, to investigate if at a large scale, like Yang et al.
(2018), we also see population dynamics of a form that
in some ways resemble nature (e.g. oscillations around a
mean), we introduce a variation with spawning and van-
ishing (from predation) agents. This enables the population
levels to reflect the success of the species (policy). We ob-
serve several learning phases with lasting equilibria in be-
tween quicker changes when superior strategies are discov-
ered. Within each episode, population levels fluctuate reg-
ularly around the average, which changes between episodes
as all agents learn. Further, we are able to see the aforemen-
tioned group behaviours playing a pivotal role. Most inter-
estingly, we see first the failure and then success of group
defence without direct individual reward, and it is strength-
ened by a partnership.

In summary, in our food chain simulations we observe
several instances of sophisticated spatial coordination strate-
gies emerging without having shaped the environment dy-
namics or rewards. For example, we see flocking strategies
for predators. While this kind of pattern was also seen re-
cently by Yang et al. (2018) in a grid world, they relied on
an explicit ”join group” action and introduce prey explicitly
requiring sufficiently large groups to hunt.

Related work
Besides the prior work that has been reviewed above, we
here review further relevant literature in Reinforcement
Learning, Ecology and Artificial Life.

Predator-Prey dynamics have been widely studied (Levin,
2009), both through data gathering in nature and with math-
ematical modelling and simulation (Harfoot et al., 2014).
Often these models are defined at the population level and
deal primarily with numbers or densities in an area. Also,
research generally focuses on two trophic levels, a predator
species (e.g. foxes) and its prey species (e.g. rabbits). A
more intricate line of work (Fretwell, 1987) has considered
three or more trophic levels, which permit trophic cascade
effects. All of the above are explicit mathematical models
and do not involve agents that learn.

A famous example of a trophic cascade is the green world
hypothesis (Hairston et al., 1960), which explains the rich-
ness of plant life on earth as resulting from predation keep-
ing herbivore population size in check. A more recently
discovered example (Greeney et al., 2015) is the aforemen-
tioned partnership between humming birds and hawks. The
natural world contains a tremendous diversity of other intel-
ligent group strategies, including how ants search for food,
which has inspired the ant colony optimization class of al-
gorithms (Dorigo, 1992). Flocking has also inspired a long
line of work for robot navigation (Reynolds, 1987) enabling
drones with weak individual sensors to reach their target
more robustly together. Other work has replaced the explicit
flocking model with reinforcement learning in an MDP con-
structed so as to learn flocking (Morihiro et al., 2006), e.g. to
fly a group of UAVs in formation to a location (Hung, 2015).

Artificial ecosystems have been studied for a long time
(Conrad and Pattee, 1970; Packard, 1987; Ray, 1991; Hraber
et al., 1994; Yaeger, 1993; Adami and Brown, 1994). Many
of these do not contain an element of spatial navigation.
Polyworld developed in Yaeger (1993) is the clearest exam-
ple that does contain navigation in two dimensions. How-
ever, none of these works have reported the emergence of
flocking behaviour. Although symbiosis has been a possi-
bility from the earliest models (Conrad and Pattee, 1970),
interactions between individuals has not been a main con-
cern (Pachepsky et al., 2002). In their continuation, such as
Lenski et al. (2003); Yaeger (2009), these lines of work fo-
cused more on the evolution of individual complexity. In the
area of artificial life, work on swarm intelligence (Bonabeau
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et al., 1999) usually involves explicit models as reviewed
above. Further, in this area as in this article, work has also
focused on generic ecosystems aiming to capture essentials
and not biological specifics (Bedau, 2007). Many of these
works focus on genetic algorithms due to them being in-
spired by genetic evolution, while we shift the attention to
the sequence of optimization problems addressed by those
procedures, and deploy state-of-the-art deep reinforcement
learning that have seen much recent success.

Simple predator-prey inspired environments have also
been used as test problems for multi-agent reinforcement
learning, but not in the same way as explored here. For ex-
ample, Lowe et al. (2017) model two trophic levels and do
not closely investigate the solution strategies, instead com-
paring algorithms based on accumulated reward.

Reinforcement Learning in Ecosystems

As is common in RL (Sutton and Barto, 1998), we rely on an
agent-environment framework (Russell and Norvig, 2010)
where an agent interacts sequentially with an environment
over a sequence of time steps. The agent selects actions
and the environment returns observations and rewards. The
agent’s performance is measured by cumulative reward, pos-
sibly using a discount to encode a preference for the near-
term. Multi-agent reinforcement learning (MARL) models
a collection of agents interacting with an environment and
learning, from these interactions, to optimize individual cu-
mulative reward. MARL is typically modelled as a Markov
game (Littman, 1994). The special case of a Markov game
with one agent is a partially-observed Markov decision pro-
cess (POMDP) (Sutton and Barto, 1998).

The 3D-physics based environment proposed here, fea-
tures continuous actions, but discrete time. The environ-
ment has underlying smooth (classical physics) dynamics
with continuous time. 3D physics and continuous control of
forces, provide a rich world allowing for more realistic and
explicit behaviours, but can be more difficult to learn. For
example, it requires a long sequence of actions to perform
an apparently simple maneuver.

Ecosystem training We use an ecosystem training (Fig-
ure 1) approach where we keep three species (sets of poli-
cies), one set each for prey, the predators and apex preda-
tor, and for each episode we create a habitat by sampling
one policy from each species and use it for all the rele-
vant players. We do this in many parallel threads. Hence,
at all times experience is gathered for each policy in many
different combinations and for several instances of itself in
each ongoing episode. The experiences are gathered and
sampled from for each policy, which is learned indepen-
dently through updates performed to its network weights
using state-of-the-art RL algorithms; Maximum a-posteriori
Policy Optimization (MPO) (Abdolmaleki et al., 2018) for
the continuous case and Impala (Espeholt et al., 2018).

Figure 1: Simple example of ecosystem training: Sampling
from two species (blue and red) of three policies (here cir-
cles) each, to be placed in habitats (here row of three rectan-
gles) for two identical blue and one red.

A Physics-Based Food Chain Environment
We introduce a physics based food chain environment (see
Figures 2 and 4) and describe its observations and rewards,
as well as how agents process these and learn in an ecosys-
tem training framework with three species. We base our en-
vironment on the MuJoCo physics engine (Todorov et al.,
2012), utilized in much recent continuous reinforcement
learning work including Brockman et al. (2016); Heess et al.
(2017); Bansal et al. (2017); Abdolmaleki et al. (2018). In
this environment, each agent controls a sphere with a two di-
mensional action space; acceleration forward/backward and
rotational to steer. We have three different roles in the envi-
ronment; apex predator, predator and prey, so we have three
agent types or species. For visualization we render each
agent type with different colors; green(prey), blue(predator)
and red(apex predator). These spheres travel on a square
floor bounded by walls on each side. The environment fur-
ther contains two large square blocks which serve as physi-
cal barriers and introduce additional structure in the environ-
ment. The predators always spawn randomly within a large
square in the middle. The apex predator and prey spawns
according to two equally likely patterns. In the first they
spawn in the same central square as the predator, or they
each spawn independently in (a square in) a uniformly ran-
dom corner. Both spawn patterns are displayed in accompa-
nying videos1 and are simply chosen to force the learning of
varied behaviours, but are not designed to generate any spe-
cific outcome. In one, the predators (and the apex predator)
has to start with searching, in the other the prey has to start
with escaping.

Proximity based rewards The agents receive rewards
based on proximity to other agents. Predators receive pos-
itive reward for being near prey while prey agents receive
negative reward. Similarly, the apex predator receives a pos-
itive reward when it is sufficiently close to a predator agent
which receives a negative reward in turn. The reward func-
tion is only dependent on distance between the agents and

1https://docs.google.com/presentation/d/1u86oapziZ35MfphcrIC3zbMMg9It-
Bhf6fJEqyoeBwg/edit?usp=sharing
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Figure 2: Physics based ecosystem environment. Left: An
example of close red-green partnership in the middle of a
large floor. Right: An illustration of two predators (blue)
with a larger conspecific radius and a smaller by which it
can see the prey (green).

we choose a sigmoid with a cut-off threshold. We define,

φ(d) =

{
1 − tanh (0.5d) if d < radius

0 otherwise
(1)

and if di is the distance (at time t) from a certain predator
agent to the prey agent i, and if ej is the distance to the
apex predator agent j, then this predator agent receives the
instantaneous reward

∑
i φ(di) − 2.5

∑
j φ(ej). The factor

2.5 for the term that represents being predated on by the apex
predator, is to not make being close to one or two prey more
important then avoiding the predator. A prey agent’s reward
only depends on its distance to the predator agents, and if
the distance to the predator agent l is dl, then its instanta-
neous reward is −∑

l φ(dl). An apex predators agent’s re-
ward only depends on its distance to the predator agents, and
if the distance to the predator agent l is el, then its instanta-
neous reward is

∑
l φ(el).

Observations Every agent observes their own position,
velocity and accelerometer information as well as the vector
to each corner of the two blocks that can be seen in the fig-
ure. Each agent further observes egocentrically represented
positions and velocities of other agents within its sensor ra-
dius. Next, we introduce how the agents process these ob-
servations and map onto actions.

Perception Network As is common with swarm agents,
motivated by both biological inspiration as well as learn-
ing complexity, we only want our agents to take the species
of another agent into account and not individual identity.
Further, we let each agent in the environment of the same
species have the same policy. We want agents to have the
capacity to generalize across different numbers of sensed
other agents and potentially scale to very large numbers. We
achieve this, as shown in Figure 3, by first applying a two
layer feed forward neural network to every other agent’s po-
sition and velocity (within the focal agent’s sensor radius),
and then we can combine these for each agent type by ei-
ther summing or computing the mean, with similarity to

Figure 3: Diagram showing how the perception network first
process the different parts of an observation separately and
then combines the resulting representations.

Hüttenrauch et al. (2017).
Policy Network The policy that produces the continuous

action vector is constructed as follows. The network that en-
codes the position and velocity of each other agent within
the relevant sensor radius, is a two-layer feed forward net-
work with 8 hidden units in each layer. For the predator
agents (as many as 40 in the physics based experiments), we
combine these representations by computing their mean. For
the prey and apex predator agents, which are few (5 and 1),
we use the sum to distinguish different numbers of agents
in the same place. After this, we concatenate the result for
the three types of other agents as well as the agent’s own
proprioception and the vectors to the corners of the boxes
on the floor. The resulting total representation is first pro-
cessed by a two layer feedforward network with 128 and 64
units (with tanh activation) and then a recurrent network, an
LSTM (Hochreiter and Schmidhuber, 1997) with 32 units.
The final layer produces Gaussian distributed actions. Note
that while parameters are shared between agents of the same
type within an episode, agents are entirely independent in
terms of action selection.

Locally observed grid worlds
In this section, we introduce a grid world ecosystem that
is similar to the 3D physics based world, in the abstract
ecological sense. The agents environment is a square map
and they can rotate 90 degrees left or right, step forward
or backward, or launch a yellow beam that represents pre-
dation. The predation beam is a difference to the physical
3D simulation where an agent only has to be near its prey
to predate. In the grid world the agent has to be near and
directed towards the prey, and choose this action, which is
supplied by the platform Leibo et al. (2017). It is our strat-
egy to only make as minimal and obvious design choices on
top of the generic platforms as possible. However, it also
comes with new possibilities including the possibility of en-
abling defense against predation and it makes a form of cap-
ture of prey even more important. Again, we have agents
of three different varieties; prey(green), predator(blue) and
apex predator(red). The apex predator gets reward +1 if pre-
dating on a predator (meaning that the predator is in the apex
predator’s yellow beam), while the predator gets −1. Sim-
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Figure 4: One prey (green) getting surrounded by most of
the predators (blue).

ilarly a predator gets +1 for predating on prey, which then
gets −1. These are the rules that defines the environment
shown in Figure 5.

The agents are trained using a ecosystem training protocol
like in the 3D physics case, while differing by the learning
update used. We replace MPO with impala learning updates
(Espeholt et al., 2018) for this case in which the action space
is discrete. The agents observe a small 9x9 window around
the agent. Figure 5 shows screens from the resulting simula-
tions when using a modest 5 apex predators, 10 prey and 50
predators. In the next section, we will also consider agents
that spawn and vanish during very long episodes with thou-
sands of agents, yielding population dynamics reflecting the
relative success of each species over time.

Experiments
This section presents results from experiments with the in-
troduced ecosystems that test our hypothesis that flock-
ing and symbiosis can result in response to very generic
predator-prey pressures in a spatial environment with range-
limited sensation and action. We also investigate how the
emergence of the relevant strategies depends on levels of
predation pressure and the range of conspecific (within
species) sensing among the predators.

Physical worlds
Our first range of experiments in ecosystems with 3D-
physics, is varying the radius (5 vs 10 in a square with side
length 48) within which predator agents can see each other,
to see how well they make use of that information and what
the consequences for the ecosystem are. All experiments
features a radius of 5 both for sensing agents of other types,
for the apex predator and the prey to see their conspecifics
and the environment reward cut-off radius. We measure both
the reward achieved for each type of agent during training,
which was performed with 200 parallel habitats, and dur-
ing regular evaluation against fixed pretrained prey and apex
predator agents.

conspecific radius 5 10
number of predators 20 20
evaluation reward 2.7 ± 0.1 5.1 ± 0.2
symbiosis 0.6 ± 0.2 1.5 ± 0.4
predator group size 5.5 ± 1.4 9.3 ± 2.5
apex predator rewards 29.7 ± 5.8 51.8 ± 5.1
predator rewards 5.6 ± 1.5 9.3 ± 0.4
prey rewards −36.0 ± 4.6 −64.0 ± 13

conspecific radius 10 10
number of predators 40 10
symbiosis 1.7 ± 0.3 0.96 ± 0.22
predator group size 16.8 ± 2.8 4.2 ± 1.3
apex predator rewards 119 ± 20 25.9 ± 8.7
predator rewards 12.9 ± 8.7 8.5 ± 5.2
prey rewards −128 ± 18 −22.2 ± 9.1

Table 1: Results in 3D-physics ecosystems (at the end of
training) for evaluation predator reward against fixed apex
predator and prey, as well as on symbiosis measured by
the average number of prey near the apex predator, predator
group size measured by the average number of other preda-
tors near a predator and training reward for each species.
The result are from three full runs of each of four experi-
ments, pooling results for each species (3x10 policies) and
calculating averages and standard errors. For reward, it is
just the standard error for the three means. The ecosystems
features 1 apex predator, 10, 20 or 40 predators, 5 prey and
conspecific radius 5 or 10.

Unlike the results against the prey and the apex predator
that the predators are learning with and that keeps chang-
ing, the results against the pre-trained agents provide a con-
sistent well-defined evaluation. Further, during training we
also measure distances between pairs of predator agents as
well as between the apex predator and prey pairs of agents.
From these we can judge to what extent predator agents flock
and to what extent prey and the apex predator stay together.
The results can be found in Table 1 based on species aver-
ages over the last 0.5e10 of 3.0e10 training steps.

Predator coordination: Predators perform better when
able to sense other predators with a larger sensor radius as
can be seen in Table 1 (5.1 > 2.7). We also see larger preda-
tor groups (9.3 > 5.3) when the conspecific sensor radius is
larger. We believe that where there is a larger concentration
of predators, there is likely to be a prey, and it is easier to
join such groups if one can sense further.

Apex predator-prey coordination: Another observa-
tion is that the number of prey on average within a circle
around the apex predator is much higher (1.5 > 0.6) when
the predator has the wider conspecific sensor radius, which
makes them a more effective hunter and increases the in-
centive of protection for prey. The smaller number (0.6) can
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Figure 5: Grid world ecosystem showing group captures
(predators of prey, highlighted by orange ellipses) and the
apex predator-prey partnerships (orange rectangles).

largely be due to the apex predator chasing a group of preda-
tors that is chasing a prey and thereby, keeping the prey and
the apex predator near each other. The stronger pattern (1.5)
is clearly a more direct partnership pattern as can be seen in
the videos1, from which Figure 2 was taken. When the prey
is chased by a flock of predators it cannot escape, it heads
to the middle where it meets the apex predator that breaks
up the pursuing predators. The videos1 also show an exam-
ple with a smaller world where the two prey and the apex
predator find each other and the three stay together.

It is interesting that the apex predator earns substantially
more reward when this partnership pattern with prey has
emerged. The end result of predators getting better at hunt-
ing is that its own predator (the apex predator) is a big win-
ner, via the adaptation by the prey. This is an example of the
fascinating and indirect possibilities that arise from model-
ing more than two trophic levels. Figure 2 shows an example
situation at the end of the learning for this case, while Figure
4 shows a situation generated by the very same agents (same
weights) as in Figure 2, but here a lone prey is surrounded
by a very large number of predators and does not find an es-
cape route until the apex predator agent arrives. The prey
here suffers catastrophic reward.

Varying numbers of predators: We compare varying
numbers of predators, all with conspecific sensing radius
10. We see (Table 1) that the apex predator-prey partner-
ship emerges more with 40 predators when the pressure on
prey is obviously higher, and much less with 10 predators.

Grid worlds
In a first grid world ecosystem experiment with 5 apex
predators, 10 prey and 50 predators, we consistently see
groups of predators capturing prey agents, both in the middle
of the floor (by 4 predators) and against walls (3 predators)
or in corners (2 predators). We also see prey learning the de-
fence strategy of sheltering near the apex predator, and the
apex predator staying with the prey as it can enjoy reward
for predating on approaching predators. These two strate-
gies are visible multiple times in Figure 5.

Figure 6: Top three on the left:The number of prey (top),
predators (middle) and apex predators (bottom) present on
average per episode. Top three on the right: The number
of prey (top), predators (middle) and the apex predator (bot-
tom) during the last episode. Bottom two rows: Peace (frac-
tion of time agents on average is present in the environment
(not vanished), numbers of predators near (within 3 cells on
each side) prey, apex predators near prey (sheltering) and
predators near the apex predator.

Large scale worlds with spawning and vanishing
agents. In our final experiment, we extend our experiments
both in scale and to introduce population dynamics, in the
simplest way available. We give each agent a total amount
of health (5) at the start, which is depleted by one unit each
time they are preyed upon. Upon depletion, agents sit out
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of the game for a certain amount of time (200) and then are
respawned. While neither this, nor a fixed spawn rate as in
Yang et al. (2018), represents the multiplicative nature of
biological population dynamics, we do still get an environ-
ment where the relative population size indicates how well
a certain agent type performs at a point in learning history.
Within episodes we get a fluctuating curve with a significant
oscillatory component around this mean, as is also familiar
from ecology (Levin, 2009) if not in an identical manner.

In addition, our design allows for defence by prey species.
That is, a predator can fire its yellow beam at the apex preda-
tor to reduce its health by one, and similarly prey can defend
against predators. The structure of this defence indirectly
encourages group strategies, since it takes a while for de-
fence to eliminate the predator. While better for all agents if
predators are eliminated, each individual can selfishly opti-
mize reward by running away and allowing one’s peers to
defend them. While reminiscent of the sequential social
dilemmas of Leibo et al. (2017), here a solution involving
a familiar partnership with the third species is found.

From the perspective of the prey, we see a progression
from annihilation to initiating defence to seeking shelter
near the apex predator and jointly decimating the predator,
which decrease its predation and peace increase. After this,
the apex predator must hunt the predator more actively, and
the predator gradually increase its predation on the prey.

Figure 6 showz the result of this experiment. Each (very
long 10000 step) episode starts with 1000 prey, 500 preda-
tors and 100 apex predators, in terms of population level
at different times of learning, and how the numbers varies
within an episode. After the first 100 (parallel) episodes (24
hours on the compute cluster), we see a drop in prey num-
bers to near extinction, and in the within episode results, we
see a complete annihilation early in the episodes. Predators
have learnt early on to efficiently hunt prey. Closer inspec-
tion shows that the prey mostly individually flee, while they
also start using their beam at the predator. After a period
of nearly 300 episodes (3 days on cluster), prey numbers
quickly increase while predator numbers now plummet be-
fore they adapt to this situation and gradually improve at the
expense of both prey and apex predators. In Figure 6 (bot-
tom right) we can see that the number of apex predators on
average around a prey, climbs up to a peak just at the time
when the change starts around episode 200. After this, we
can see that this is followed by peace (low predation) to in-
crease. We see predation levels between all species decrease
substantially and we also see in Figure 6 that the species
are now less frequently near each other. Our interpretation
is that the predators decreased their pursuit of prey as a re-
sponse to an apex predator-prey partnership that made it face
a combination of predation and defence it was decimated by.

Conclusions
In this work, we have approached emergence of complex
group behaviours in ecosystems as a sequence of optimiza-
tion problems where each species is optimizing its fitness
based on the current policies of other species. We use state-
of-the-art deep reinforcement learning methods to address
these optimization problems and consistently found the hy-
pothesized emergence of strategies like flocking and sym-
biosis. These group patterns, which appear widely in dif-
ferent forms and contexts in nature, emerge through interac-
tions of independently incentivized self-interested reinforce-
ment learning agents acting in simple ecosystems that are
not shaped to encourage the emergence of these particular
strategies. Taken together, our results demonstrate that state-
of-the-art reinforcement learning agents combined with our
open-ended ecosystem training protocol can generate inter-
esting coordinated behaviours familiar from nature.
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Abstract

A computer produces outputs from inputs, and to do so reli-
ably, its internal noise and variability must be managed effec-
tively. Traditional computer architecture requires hardware
determinism, but such perfect repeatability is increasingly in-
compatible with large-scale and real-world systems. Natu-
ral living systems, without the luxury of deterministic hard-
ware, manage variability across the computational stack—
and using such principles, soft artificial life offers a route
to much larger and safer manufactured computers. This pa-
per describes the engineering development of C214, a next-
generation self-constructing digital protocell. C214 struggles
to survive in a challenging environment that, while not lit-
erally malicious, goes well beyond merely non-deterministic
to deliberately destructive. Improved self-repair mechanisms,
as well as active defenses in depth, give the new cell’s mem-
brane a median survival time more than ten times greater than
that of the earlier C211. A new grid-based cytoplasm is also
presented, standing to offer a more stable environment for fu-
ture layers of the ‘living computation stack’, and some basic
cellular software engineering techniques are highlighted.

Soft artificial life and society
The ALIFE 2019 conference theme asks us: “How can Ar-
tificial Life help solve societal challenges?” Indeed, while
making even software-based alife is a grand challenge on its
own—and the results can be fascinating purely as objects
of study—this author agrees that alife is also called to help
address urgent problems in human technological society.

As an example, the author’s research and development
program seeks to show that ‘soft’ alife, deployed on a new
computer architecture, offers a radical but coherent solution
to one of technological society’s ‘wicked problems’: The
inability to make computer systems securable and robust.

This paper is a progress report for ongoing work with
“digital protocells”—spatially-extended software constructs
designed for the indefinitely scalable “Movable Feast Ma-
chine” (MFM) computer architecture (see, e.g., Ackley,
2013). These protocell designs, as well as performing life-
like tasks such as growth and repair, are intended to serve
as foundational components for future “multicellular” com-
putations that are inherently robust—able to survive, even
flourish, without global hardware determinism.

While the original protocells presented in Ackley (2018)
operated in an otherwise empty universe, these new C214
cells struggle under the “DReg and Res” (DR&R) computa-
tional regime—in which any atom adjacent to a DReg atom
may be erased at random without notice, no matter the vic-
tim’s possible importance in any ongoing computation.

In the rest of this introduction, we provide motivation and
context for the MFM architecture and the soft alife approach
to robust-first computing, then outline the rest of the paper.

Computer scalability and securability

Since the 1940s, manufactured digital computers have revo-
lutionized many areas of human society. Untold billions of
units are now deployed in myriad uses and physical forms—
but virtually all of them presume global hardware deter-
minism: The hardware is to produce perfectably repeatable
software execution, over the entire computer, however much
time or available memory the software consumes. Any po-
tential failures are to be eliminated during system design, for
example by error-correcting codes or other fault tolerance.

The resulting determinism guarantee makes computations
easier to implement, because application software need not
worry about processor errors, or check its work, or confirm
that values in memory are still good. Deterministic execu-
tion is a powerful and clean separation of concerns between
hardware and software—but guaranteeing it becomes just
unaffordable as computational systems grow. As the super-
computer community already knows (Cappello et al., 2009),
for example, if you run enough hardware long enough, it will
deliver undetected errors to software—and. . .Then What?

Because of software’s relentless focus on correctness and
efficiency only, computing today has virtually no answer to
that question. When, for whatever reason, something does
go wrong in a delivered system, we simply have no idea how
badly the ongoing computation will be damaged; we have no
general way to estimate how wrong its output is likely to be.

Another—at present much worse—problem is that even
when some task does fit comfortably within global hardware
determinism’s limited ‘globe’, software’s systemic lack of
redundancy also means it has no structural defense against
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unexpected changes caused not by hardware failures but by
malicious attacks. While redundancy, recomputation, and
cross-checking are no guarantee of ‘cybersecurity’, if ap-
plied across the computational stack they can make crafting
attacks much more expensive and their payoffs much more
modest. By deploying redundancy effectively, we can also
use statistical reasoning to estimate damages, long after our
logical reasoning has collapsed due to perfection lost.

If deterministic execution gives way to indefinitely scal-
able best-effort computing, the ‘exotic’ techniques of artifi-
cial chemistry and soft alife—spatial processing and local
memory, self-organization and repair, mobile and reproduc-
ing structures, etc.—will eventually become computation as
usual. Getting there will take much work, but facing the ab-
symal state of computer security given traditional architec-
ture, this author contends that society sorely needs artificial
life researchers to help accelerate that transition.

Outline of the paper
The next section briefly places the present work into the con-
text of some existing work, in computation broadly, and ar-
tificial life more specifically. The following sections sum-
marize the goals and mechanics of the DR&R physics, then
present the new C214 protocell, focusing on its design im-
provements over the C211 cell previously reported Ackley
(2018), and then offer data on the relative impacts of the im-
provements. A short discussion and conclusions follow.

Related Work
Though this project uses a novel architecture, discussed fur-
ther below, there is of course much work—both in and out of
alife—employing similar goals, concepts, or mechanisms.

For example, work in distributed systems routinely han-
dles non-deterministic execution and many kinds of er-
rors, with decades of empirical and theoretical results (e.g.,
Saltzer et al., 1984; Clement et al., 2009). Self-stabilizing
systems (e.g. Dijkstra, 1974; Dolev, 2000) are also related,
as is work in spatial and amorphous computing (e.g., Abel-
son et al., 2000; Orhai and Black, 2012, is very relevant).
One view is the present work applies such distributed sys-
tems principles to traditionally ‘single host’ computations.

Also, although the spatialization and other details differ,
the goal of using programmable soft alife to engineer useful
computations is shared between the present effort and al-
ife work such as ‘chemical networking protocols’ built with
lovely Fraglets language (e.g., Meyer and Tschudin, 2009).

Indefinitely scalable artificial chemistry
Traditional computer architecture specifies dedicated and
highly-differentiated spatial structures for CPU, RAM, their
interconnections and input and output channels, and that’s it.
Though there are bigger and smaller CPUs and other com-
ponents, they are all necessarily limited in size—RAM, for
example, cannot extend too far from CPU, or access time

suffers. About systems much bigger than those limits, tradi-
tional computer architecture has little to say.

The trap of deterministic cellular automata That fun-
damental boundedness stands in stark contrast to cellular
automata (CA) computational models. Their dimensional-
ities and details vary, but CAs virtually always specify spa-
tially isotropic processing: At some level of description, the
same function is performed at all locations in computational
space. Though any CA instance must be finite, and spatial
isotropy may be violated at its edges, the powerful implica-
tion is that any finite size could be chosen.

But CA models that require deterministic execution lack
indefinite scalability and violate that assumption. As ar-
chitectures, deterministic CAs are doomed to lose exactly
that spatial unboundedness that made them so appealing at
first. Much has been learned from them, but for truly large-
scale computations, deterministic cellular automata are a
trap. They are climbing a tree to get to the stars.

Artificial chemistries and the MFM Alife work based on
artificial chemistry (Banzhaf and Yamamoto, 2015, is a good
overview) begin with a physics model, where the primitive
objects and processes represent ‘atoms’ or ‘molecules’ and
‘reactions’, from which ‘biological’ agents are constructed.

Unlike CAs more generally, artificial chemistries typi-
cally avoid the trap of determinism—for example, the ex-
act order of reactions is usually random—but other assump-
tions can limit the scalability as well. Models that critically
depend on floating-point accuracy are problematic, for ex-
ample. Similarly, some dimensional assumptions—such as
Fontana (1992)’s classic ‘0D’ well-stirred reactor—must be
reexamined as well: Bigger beakers take longer to stir well.

The present research program focuses on chemistries that
are implementable on the 2D ‘Movable Feast Machine’
(MFM) (e.g. Ackley and Ackley, 2016; Ackley et al., 2013).
The MFM is designed first and foremost to be an indefinitely
scalable computer architecture, and it jettisons everything
that might prevent such open-ended scalability. Though it
uses discrete sites and local transition rules like typical CAs,
the MFM offers only best-effort reliability and guarantees
essentially nothing about the cellular automata site update
orders, or even the rates of receiving update events over time.

Those assumptions and others make MFM programming
much more complicated than traditional software—but that
added effort up front stands to pay off indefinitely, as the
underlying hardware expands and improves.

An energetic, corrosive environment
The basic ‘laws of physics’ examined in this paper begin
with DReg and Res, two of the oldest MFM elements, first
reported in Ackley and Cannon (2011), and considered at
length in Ackley (2013). DReg and Res form a homeostatic
mechanism designed to help manage free space and con-
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Figure 1: DReg reactions overview, with inputs (circles with out-
bound arrows), outputs (circles with inbound arrows), and approx-
imate reaction probabilities (small black boxes). DReg may create
Res or (more) DReg, or destroy DReg or any other type of atom.
Empty sites are explicitly modeled in these pseudo-chemical reac-
tions because the Movable Feast Machine is based on conservation
of space rather than of matter. See text. (From Ackley, 2013).

trol crowding. Res (R) represents a ‘generalized Resource’
element that does nothing, on its own, except diffuse ran-
domly into empty sites—but it can be employed or con-
sumed however a computation wishes. By contrast, DReg
(DR)—a ‘Dynamic Regulator’ element—randomly creates
Res (and more DReg), while also randomly consuming ev-
erything—including, in particular, pieces of whatever other
computation is running. Figure 1 depicts the DReg reactions.

It’s important to note that this DR&R mechanism is not in-
herent in or enforced by the underlying MFM architecture—
it’s purely ‘opt-in’ from the point of view of the element
programmer. We don’t have to include DR&R in the ‘table of
elements’ of our program, and if we do, we can easily write
state transition code that simply erases every DReg atom that
our element encounters. Similarly, we don’t have to wait for
a Res to create new atoms if we don’t want to.

But if we choose to opt-in to the DR&R execution environ-
ment, we play along with its ground rules:

• Don’t create or destroy DR; only DR itself does that.

• Don’t grow unless we can consume R to do so. And,

• DR creates R ‘de novo’, but we can create R only if we
destroy something previously made from R.

The current protocell violates DR&R rules in one major
way: The membrane grows and shrinks as it pleases, without
consuming or shedding R. But the risk of runaway growth
is minimized by the membrane clinging to the cytoplasm—
which mostly does obey DR&R rules—and by the previously-
developed membrane internal consistency checks.

If our computation can persist and make progress while
co-existing with DReg, we will have a limited but legitimate
basis for calling it ‘robust’. The goal of the present work is
a simple but robust protocell worthy of the name.

(a) C211 (b) C214
Figure 2: Sample C211 and C214 protocells. See text.

A tough protocell for a harsh environment
The original C211 protocell, and the ‘SPLAT’ spatial pro-
gramming language used to implement it, both debuted at
last year’s Artificial Life conference (Ackley, 2018). C211
provided a range of useful ‘cell-like’ properties such as spa-
tial isolation, mobility, and fission and fusion. It has a two-
layer ‘membrane’ made of InnerMembrane (‘atomic sym-
bol’ IM) and OuterMembrane (OM), plus an amorphous ‘cy-
toplasm’ element called Content (Co). It had some abilities
to repair damaged membranes, but it was not explicitly de-
signed for nor extensively tested in the DR&R regime.

The new C214 protocell addresses that limitation. C214
uses updated versions of IM and OM, plus two new cytoplasm
elements called ‘HardCyt’ (HC) and ‘SoftCyt’ (SC). Figure 2
provides samples of the old and new protocells, and the rest
of this section discusses the changes between them.

A more robust membrane for controlled isolation

Figure 3: An unmatched
C211 state.

C212 membrane development
Initial tests of C211 cultured in
DReg/Res revealed, among other
things, some uncovered edge
cases in its spatial transition
rules. For example, a configura-
tion such as in Figure 3 proved
to be a ‘pinning state’ because,
as it happened, no rules matched
that shape. That didn’t matter
originally, because such an ‘exposed IM’ state cannot arise
during error-free growth of a C211 in an empty universe—
but given DReg’s random depredations, such frozen shapes
do arise. The rest of the C211 membrane continues to move
around it, but eventually further DReg damage breaches the
membrane entirely.

This lacuna was handled via a new SPLAT rule for IM:
160 == Rules: IM management (shrink and die)
161 given @ isa InnerMembrane
162 given i isa InnerMembrane

165 given c isa OuterMembrane

168 given o isa OuterMembrane
169 let x = i|o
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182 ___ ...
183 c@c -> .c. # Cap off
184 oxo ...

(where the specific line numbers refer to the C214 version of
QMembrane.splat, which incorporates these changes). The
excerpts in lines 161–169 declare a variety of ‘keycodes’
for matching purposes; more than one keycode is sometimes
declared for the same type (e.g., lines 165 and 168) to make
the state transition rule more specific (discussed below.)

The left-hand side (LHS) of the spatial pattern rule at
lines 182–184 matches states including the yellow-circled
one in Figure 3: Three empty sites (line 182), then an OM,
IM, OM sequence (line 183, with the @ keycode defining the
center of the event), then finally two OMs with either an IM or
and OM between them (line 184).

When that pattern matches (as it could, 180◦ rotated, in
Figure 3), the right-hand side (RHS) of the spatial pattern
rule is performed. On the RHS the keycode . means do
nothing, while the keycode c means “write a copy of the
‘winning’ c chosen from the LHS.” Both of the cs on the
LHS must have matched to reach this RHS, so one of them is
chosen at random and copied to the event center, with the net
result is that the center IM becomes a copy of an adjacent OM,
and the membrane invariant (see Ackley, 2018) is restored.

One might wonder why that rule was chosen, rather than
a simpler one such as:

___ ...
o@o -> .o. # Cap off
oxo ...

which would also restore the membrane invariant in cases
such as Figure 3. The more complex rule ensures that the
copied OM is from an immediately adjacent site, while with
the latter rule any of the four LHS os might have been cho-
sen. Although the result is the same if all OM instances are
identical, in a complex physics the atoms involved may actu-
ally be subclasses of OuterMembrane possessing additional
state that differentiates them.

Minimizing spatial damage Using the rule as shown en-
sures that—should an ‘emergency repair’ to the membrane
invariant be necessary—it will be done in a least spatially
damaging way, by copying from a nearest neighbor of
the appropriate type, chosen at random to preserve spatial
isotropy. Such nearest-neighbor copying may or may not be
what some higher-level computation might want—but it is
defensible as the best choice to make absent any other infor-
mation, purely on the basis of geometry—and we suggest
that this is an example of what best-effort spatial software
engineering looks like (but see Section Selective permeabil-
ity via virtual stigmergy below for additional discussion).

A few other discovered corner cases were handled simi-
larly. For example, although C211 had a simple rule to cor-
rect a missing OM:

8 given @ isa OuterMembrane
9 given i isa InnerMembrane

81 i_ .@
82 i@ -> .. # Square off (outer)

which copies the @ OM into an inappropriately empty adjacent
site, a somewhat similar rule for IM needed to be added:

84 _i i.
85 i@ -> .. # Square corner (inner)

The result of these membrane self-repair modifications
was dubbed C212. Its DR&R median survival time (tested
below) was a clear improvement over C211, but one could
certainly hope for better still, considering that each of these
protocells represents a significant investment in construction
time and space, possibly embodying considerable state in-
formation of use to some higher-level computation.

C213 membrane development How can membrane sur-
vivability be improved further, after the locally-detectable
membrane self-repairs are done? One might add a third
‘OuterOuterMembrane’ layer, for example. That would al-
low more time to repair DReg-induced damage before the
membrane was completely breached, but it would also incur
significant area costs as well as a major codebase redesign.

A more feasible alternative holds that the ‘real problem’
is the DReg itself. The DR&R regime makes it a sin to kill a
DReg, but says nothing about trying to keep them away from
the membrane. To that end, the rule shown in Figure 4 was
developed. The spatial rule at lines 39–40 divides the world
into three categories: Ds, Xs, and the OM itself (@). D, defined
purely in SPLAT, is a vote for a DReg. While SPLAT given
declarations introduce constraints that all must be true for a
rule LHS to match, vote declarations, by default, will suc-
ceed if any LHS appearance of the given keycode receives
more than zero votes. The rule in Figure 4 will match if one
or more of the three Ds is a DR, at which point the expression
$D.$winsn will represent a site number containing a DR.

The vote X declaration (at lines 30–35) uses a block state-
ment, in {}’s, using ulam code (Ackley and Ackley, 2016) to
express a relatively complex weighted voting criterion: Any
X site containing a DR or any subclass of QMembrane (which
includes both IM and OM), receives zero votes and so can-
not be selected; otherwise votes are assigned based on the
squared distance from the site being voted upon ($cursn) to
the event center (@). If the X in line 39 matched, for example,
that site, at (-2,-1), would receive five votes ((−2)2+(−1)2),
while the leftmost X in line 40, at (-3,0), would score nine.

If the rule overall matches—meaning at least one X re-
ceived votes and at least one D matched a DR—the RHS
changes are performed. A limitation of the SPLAT spa-
tial rule syntax is that it has no direct way to express a
transformation like “Swap whichever sites won the D and
X votes”, so that desire is expressed sententially instead, via
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7 == Rules: OM management Part 1 (miscellaneous business)
8 given @ isa OuterMembrane

28 # Fight DReg
29 vote D isa DReg
30 vote X {
31 . return ($curatom is DReg // Swapping DReg inward doesn ’t help
32 . || $curatom is QMembrane) // and moving membrane could be disruptive
33 . ? 0u // So no votes for them
34 . : (Votes) ew.getCoord($cursn ). euclideanSquaredLength (); // Else farther is better
35 .}
36
37 change D { ew.swap($X.$winsn ,$D.$winsn ); }
38
39 XD ..
40 XXD@ -> D...
41 XD ..

Figure 4: A rule to push DReg away from the membrane, excerpted from the C214 QMembrane.splat. See text.

the change D declaration at line 37.1

Note this ‘DReg-fighting’ rule is quite aggressive. It’s
willing to swap a DR with anything suitably farther away that
isn’t a cell membrane or already a DR—and that absolutely
could disrupt some significant structure that happened to be
near a protocell’s outer membrane. Wearing a traditional de-
terministic ‘top-down programming’ hat, one would want to
ask if that could actually happen, and handle it ahead of time
somehow—but again, from a best-effort, bottom-up, spatial-
ized point of view, that isn’t strictly necessary. If the need is
great enough, from the point of view of whoever is having
the event (here, OM, with the potential destruction of its pro-
tocell at stake), that is sufficient grounds for action, full stop.
If some other structure thereby gets disrupted, well then it’s
that structure’s fault for being too close to OM and DR.

Overall, the C213 membrane is identical to C212’s but for
that single added rule, and it makes a dramatic improvement
in membrane lifetime, as discussed below.

C214 membrane development Pushing DReg is a great
help, but it is not a panacea for at least two reasons:

1. Each event happens with a randomly-chosen symmetry.
A DReg-pushing opportunity may be missed because the
OM was looking in the wrong direction.

2. The MFM makes no guarantees about event delivery or-
der. It’s unlikely but possible that a DReg could approach
and burn all the way through a membrane, before the
nearby membrane atoms got even one chance to react.

Bad luck can never be completely eliminated—and that
is almost a mantra for best-effort computing—but it can be
minimized statistically. And perhaps the most fundamen-
tal way to swing the statistics your way is to control more

1It is (perhaps unfortunately) necessary that D appear some-
where in the RHS to have any effect, but its specific location is
ignored when an explicit change D declaration is provided.

space—which is what the C213 DReg-pushing rule tries to
do. The C214 membrane, in turn, moves the battlefield even
farther from the protocell, by deploying ‘cilia’ (Ci), which
in this case are free-floating individual atoms, rather than
literally hair-like structures. Unlike all other protocell com-
ponents, the cilia live outside the outer membrane, but they
remain near and in service to OM. Ci are created by transmut-
ing available R, using an OM rule like:

# Deploy cilia
given Z : !( $curatom is Cilium ||
. $curatom is QMembrane)
vote Z isa Res
change Z {ew[$Z.$winsn ]= Cilium.instanceof ;}

ZZZ ...
ZZZ@ -> Z...
ZZZ ...

which combines given, vote, and change declarations with
a spatial pattern to express essentially this transition: “If
there are no Ci, IM, or OM nearby, but there is at least one
R, change such an R into a default instance of Ci.”

A Cilium atom, in turn, has a variety of rules to push
away DR, referencing a nearby OM to decide which direction
is “away”, as in these excerpts from Cilium.splat:

10 given @ isa Cilium

22 # Push DReg
23
24 vote o isa OuterMembrane
25 vote d isa DReg
26
27 change d { ew.swap($_.$winsn ,$d.$winsn ); }
28
29 _ddd@oooo -> .d.......

37 @oo -> ...
38 _doo d...

where keycodes o and d use multiple sites and voting to help
the rule match more often. Ci also have rules to diffuse near
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the membrane, and to set their own site to empty (E) if no OM
can be located—and such DR→ R→ Ci→ E reaction chains
are one way that R are ‘metabolically consumed’ by proto-
cell operations. Overall, Ci is the signature addition differ-
entiating C213’s membrane from C214’s, and experimental
data shows that deploying Ci produced a qualitative jump in
the membrane survival time, as discussed below. Figure 5
depicts a small C214 protocell, with a developing cloud of
Ci around it.

Figure 5: A young C214
protocell developing cilia.

Although the Ci were devel-
oped, initially, solely to provide
defense-in-depth against DR, they
have since proved useful for other
purposes. For example, some pro-
tocell operations consume R to
obey the DR&R regime—and just
as Ci can push DR away, these ex-
cerpts from Cilium.splat show
how they can also, if deemed ap-
propriate, pull R in:

6 == Data members
7 u Bool mPullRes = true;

62 == Rules (Pull res)
63 given @ isa Cilium : $self.mPullRes
64
65 vote o isa OuterMembrane
66
67 vote r isa Res
68 change r { ew.swap($_.$winsn ,$r.$winsn ); }
69
70 rrr@_oo -> ....r..
71
72 rrr_@oooo -> .r.......

where the ‘: $self.mPullRes’ given condition on line 63
depends on the value of the data member declared (in ulam
code) at line 7. Ci’s mPullRes defaults to true, but after
that it is turned off and on by an additional C214 OM rule—
and how that rule knows whether another nearby R is likely
to be a help or a hindrance, at the moment, is discussed in
Section Selective permeability via virtual stigmergy, below.

In the near future we expect Ci will gain yet more use-
ful abilities, such as assisting with protocell mobility and
perhaps various types of environmental sensing. Its notable
immediate utility during C214 development was a reminder
of yet another bottom-up mantra: Space is the place.

A quieter cytoplasm for bounded centralization
The protocell membrane is a crucial component, but of
course a container with nothing to contain is only half a
story. A version of the Mob element (originally discussed
in Ackley and Ackley, 2015), formed the protocell inte-
rior ‘cytoplasm’ for C211. That Mob-like element—called
Content (Co)—performed controlled growth from a seed,
was collectively mobile, and used gossiping to disseminate
movement commands. Those movement commands could

originate from anywhere inside the cell, because Co was
completely also decentralized—which was satisfying from
a first-principles robustness and ‘bottom-up purist’ point of
view, but it also proved a challenge when it came to adding
further functionality and programmability to the cell.

Figure 6: The de
novo C214 configu-
ration, created by a
Seed atom.

With that experience in mind, the
new cytoplasm design goes a differ-
ent way. Rather than an amorphous
and centerless cloud akin to Mob, the
C214 cytoplasm is basically a semi-
rigid grid spaced on two site centers
(see Figures 2b and 5), more like the
Router elements discussed in Ackley
(2016). The grid is constructed from
atoms of HardCyt (HC), which grow
opportunistically by R transmutation
starting from a single HC created (in
the de novo case) by a Seed atom, which sprouts, as its only
transition, into the configuration shown in Figure 6.

Once created, HC atoms do not move—although they can
‘melt’ into movable SoftCyt (SC) atoms—and HC’s relative
rigidity underpins a cell-spanning local coordinate system.
Each HC works to localize itself within the bounding box of
all HC inside the membrane, by maintaining a four number
array, as seen in these excerpts from HardCyt.splat:

17 == Data members

19 u typedef Distance DistanceArray [4];
20 u DistanceArray mDistances; // WNSE

where Distance is defined as a four-bit unsigned integer
with a maximum value of 15. These distances are updated,
during most HC events, by observing either another HC or a
membrane atom in a randomly-chosen direction. When we
(as the HC having an event) see a membrane atom, that is (the
current) ground truth, and we set our distance in that direc-
tion to zero. When we see another HC, we set our distance
in that direction to one more than theirs (though saturating
at 15), and we set our distance in one of the two orthogonal
directions to the max of their distance and ours.

If the HC happen to fill an axis-aligned rectangular shape,
this process quickly finds consistent positions for all. More
commonly, HC estimates partially settle and then jitter, de-
pending on whether an HC listens to its neighbors or trusts its
own eyes. But, in another signature of best-effort comput-
ing, although position estimates may be unstable or wrong,
other C214 processes use them as if they are correct.

In particular, once the estimated protocell volume has
reached a minimum level, HC that find themselves near the
center begin competing to be the ‘leader’ of the cell. Once
some such HC is strong enough, in one fell event it declares
itself the leader, and begins suppressing the neighboring
HC. After a leader has arisen, an estimated distance-from-
leader gradient forms—in addition to the ongoing position
estimates—across all the HC. With leader competitions spa-
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tially limited in this way, we virtually never see multiple sep-
arate leaders rising within a connected HC pool.

Having a single leader—like having a single queen bee—
is a great help for coordinating protocell actions, and we
look forward to fleshing out such uses soon. Of course, a
single leader is also a single point of failure, but since the
hierarchy’s stability depends on the leader (like the queen)
actively suppressing competitors, if the leader is somehow
lost, central competition soon resumes and another rises.

Evaluation of membrane survival times
Here we present the results of a small experiment to assess
the effects of the membrane changes discussed above.

An experimental fixture To evaluate survival time
changes due to the membrane modifications from C211 to
C214, a new Alien Explosion (AX) element was created.
AX inherits from QContent, so it is recognized as ‘self’ by
IM, but its behavior is simple and drastic: If an AX ever finds
itself next to anything other than a QContent or an Empty, it
erases itself after ‘triggering’ all nearby AX to do the same.

Figure 7: The membrane
survivability experimen-
tal fixture is a single size
‘H’ tile (52 × 32 active
sites), with 49 AX (white),
4 DR (black), 32 IM (light
blue-green) and 40 OM
(dark blue-green) of the
particular membrane be-
ing tested. See text.

In effect, any contiguous
cluster of AX vanishes almost
immediately once any member
of the cluster encounters an
‘alien’ atom. Using the ‘mfms’
simulator’s command line ar-
guments ‘--halt-if-extinct
AX’ and ‘--haltafteraeps
500000’, the time that a mem-
brane was breached, up to a
maximum of 500KAEPS2, can
be assessed with good accuracy.

Figure 7 shows the test fixture
used in the experiment. A short
distance from a membrane-
enclosed block of AX, four DR
are positioned, which gradually
populate the extracellular envi-
ronment with a mix of DR and R, as discussed above.

Results Membranes of the C211–C214 protocells were
tested 25 times each, and the membrane failure times
recorded. Figure 8 presents all the data, with median sur-
vival times for each membrane called out.

Over the trials the original C211 membrane rarely
survived for 100KAEPS and never reached 200KAEPS;
C212 did notably better in most cases but never reached
200KAEPS either. C213, on the other hand, exceeded
200KAEPS over 30% of the time and once even reached the
500KAEPS test limit. Finally, C214’s cilia-waving monster
membrane exceeded 500KAEPS on more than 50% of runs.

21 KAEPS is an average of 1,000 events per site.

At present, longer runs remain to be performed, so no
credible estimate of C214’s unbounded median membrane
survival time is yet known. Of course death eventually
comes to us all, and the details remain to be developed,
but intuitively at least, the C214 membrane feels survivable
enough to support protocell growth and maturation and a
productive computational lifetime, before that happens.

Cellular software engineering
It is unusual to see much real code in an alife paper, but pro-
gramming for an indefinitely scalable machine is different
and more challenging than for traditional architecture. Code
matters. Programmers think in code, and the metaphoric and
literal shape of code subtly but strongly influences what fu-
ture developmental directions will seem feasible. Here we
focus briefly on indefinitely scalable software engineering.

‘Metabolic’ regulation C211 used a ‘telomere’ count-
ing mechanism to decide when its Co cytoplasm should
stop growing, where C214 now uses a combination of ‘R
metabolism’—as dictated by the DR&R regime—plus cyto-
plasmic volume estimation via the bounding box described
above. If the cell seems big enough, HC production shuts
down and R import (discussed below) slows. Though this
mechanism does not strictly conserve energy or matter or
anything, it is quite effective, and—unlike the internally-
facing telomere mechanism—it automatically adjusts, at
least crudely, to a changing environment.

Selective permeability via virtual stigmergy C214, un-
der the DR&R rules, grows by importing R into the cell.
At first we used an IM data member to specify an im-
portable element type—but that was limited to one type,
and it was unclear how or when IM should reset that type,
and it consumed 16 precious state bits. A much better so-
lution was to have QContent specify a function ‘virtual
Bool shouldImport(Atom)’ and have the IM call it during
its event to determine if a given atom should be imported.

This way, subclasses can easily customize shouldImport
to their needs, and it costs zero state bits in IM, and it’s never
obsolete. It’s so nice that a shouldExport method was also
defined, and C214’s IM can actually import and export si-
multaneously in a single event, using only one SPLAT rule.

This shows a third way to handle context, between defin-
ing explicit state to internalize it, and simply ignoring it like
the repair rules in Section Minimizing spatial damage. The
key to it is spatiotemporal contiguity: Having QContent reli-
ably close enough that IM can run code on it during an event.
Cilium, by contrast, uses a stateful mPullRes data member,
despite its problems, to move freely as a forward fighter.

Towards living computation for society
Obviously, this is all just a beginning. There is a tremendous
amount of work to do before we can demonstrate robust con-
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Figure 8: Survival time distributions of the four tested membranes, with medians and their 95% confidence intervals. See text.

crete system control using these indefinitely scalable, living
computation methods. In at least one way, in fact, the C214
protocell takes a step backwards: Its mobility is quite lim-
ited compared to C211. Some blame goes to the rigidity of
HC compared to Co, but, in retrospect obviously, it is also due
simply to the existence of DReg and Res, compared to the ut-
terly empty environment around C211. Now, blind motion
attempts soon create a ‘shockwave’ of R, DR, and Ci that
impedes forward progress. Current work is developing dy-
namic control methods to alter the protocell aspect ratio, and
we expect more advanced Ci will also help clear the way.

Yes, there is much to do, but also look how far we have
already come. We have a growing palette of spatial and dis-
tributed programming patterns (topological invariant main-
tenance, gradient formation, leader election, etc.)—all fa-
miliar in other contexts, but now united under an indefinitely
scalable architecture. And the goal of robust multicellular
programmability for that architecture is closer than ever.

Indefinitely scalable soft alife is coming.
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Abstract

Our MetaChem framework supports the definition and com-
bination of artificial chemistries. Here we describe an im-
plementation of MetaChem in an object oriented language.
We briefly define MetaChem, and provide an example in
the form of a toy AChem: StringCatChem. We present the
class hierarchy used to define MetaChem such that the imple-
mentation can run directly from a graph description of some
AChem. This matches the description given by the formal
framework definition. We also describe some generic func-
tions of MetaChem that have been implemented and used in
StringCatChem. This implementation is available on GitHub.

Introduction
Artificial chemistries (AChems), like other areas of artifi-
cial life, are predominantly software based. Mathematical
models of our systems provide rigour in our definitions,
yet they must also be implementable. We have developed
MetaChem, a mathematically rigorous framework for defin-
ing single AChems, and for compositing different AChems
into larger systems; it aims to provide a unified description
language for all AChems. The formal MetaChem framework
is defined in (Rainford, 2018); here we give a brief summary.

Our framework is designed to replace the only earlier
framework for describing AChems presented in (Dittrich
et al., 2001). That system is not designed with implemen-
tation in mind; rather, it is a tool to help describe AChems
and draw comparisons. It splits an AChem definition into
three parts, using the triplet (S,R,A): a set of particles S,
rules for reactions R, and the algorithm A. All non-particle
aspects of a system are combined in A as part of the algo-
rithm, including spatiality, rule application, global variables,
timing, and logging.

That framework is helpful and complete for describ-
ing the well-mixed tank-based systems of early work, but
since its introduction AChems have changed considerably.
For example, many systems have spatial elements (Ono
and Ikegami, 2001; Hutton, 2007). There are subsym-
bolic chemistries where particles have internal structure
(Faulconbridge, 2011; Faulkner et al., 2018), and automata
chemistries with instruction sets packaged with processors

for particles (Hickinbotham et al., 2010; Ofria and Wilke,
2004). There are even AChems without direct interaction
between particles (Sayama, 2011). These new AChems pose
difficult questions for the old framework: is position an as-
pect of the particle S or the algorithm A? Is the processor in
S or A? If we have no physical linking, what is in R?

Our new framework encompasses this increased com-
plexity by considering the entire system as a sequence of
events occurring on objects in an environment, rather than
as a function of rule application to particles. With this we
are able to better describe and compare the diverse set of
AChems.

A generic description language such as this should also
aim to make implementation easier. The ability to build
tools that work for multiple systems is one of the primary
goals for making these AChems compatible. This means
that we need to be able to implement the framework in or-
der to fully leverage its potential power. Previous work on
implementation of AChem systems has been done (Bersini,
1999). However that work focused on a single AChem and
does not generalise.

We have implemented our MetaChem framework and
used it to combine two quite dissimilar AChems into a sin-
gle system (Rainford et al., 2018a). In this paper we fo-
cus on implementation issues: how to convert the formal
mathematical framework into a generalised reusable object-
oriented implementation. We illustrate and examine the
implementation of MetaChem here using StringCatChem,
a toy AChem based on string concatenation. A Python
implementation of the MetaChem framework, including
StringCatChem, is available at github.com/faulknerrainford/
MetaChem.git

A key requirement is that our implementation matches
our framework as closely as possible. This makes it easy
for different users to translate from one format to the other.
Additionally, we want our implementation of the high level
MetaChem structure to be independent of the implementa-
tion of the lower level AChem-specific particles and algo-
rithms, to allow rapid integration.

119



Primary Focus Auxiliaries

Objects: Particles Variables
Containers: Tanks Environment

Table 1: Common parts of AChem Systems

MetaChem
Modularising Artificial Chemistries
There are axiomatic concepts in all AChems that we build
on. We work on the basis of small components interacting
to generate our systems. We are interested in the emergent
properties and behaviours of these systems. To differenti-
ate an AChem from an Individual Based Model we add re-
quirements for simplicity and tractability in our particles and
their interactions. The intention is that these systems work
over large collections of individuals over long time periods,
though most are currently limited by computational capabil-
ity. To consider computational issues in our models we need
our frameworks and models to consider implementation.

From these axiomatic concepts we identify many com-
mon elements of AChem systems. We use these as the basis
for a bottom-up approach to systematic modularisation of
AChems. Small, simple individuals and their interactions
are our primary focus. We call these individuals particles.
These exist in all AChem systems. Systems also have other
variables, properties and values; we describe these in the
environment. Much like in real chemistry, we separate the
description of the “glassware” from our consideration of its
particle contents. We have multiple containers in our sys-
tem, which allow us to isolate particles and move them (anal-
ogous to the “beakers”, “pipes”, and “valves” comprising the
“glassware”). This splits the dynamic parts of our system as
shown in Table 1.

These components handle the “things” in our systems.
There are also commonalities in the algorithms of AChems
(and often their implementations) that we abstract out in our
framework. Control flows, related to time and generations,
occur in most systems. Some systems update across all ob-
jects in the system at once; others continuously update ob-
jects at random. If we can identify the modularised control
that produces these timing systems, designers could switch
between them. This would then allow designers to focus on
the new AChem-specific features of their design, whilst us-
ing pre-existing elements to implement less unique aspects
of their systems.

Having divided our “things”, we define our control flow
in relation to these divisions. We modify particles, similar
to reactions and interactions in chemistry. We record obser-
vations of our system. We modify the environment, such as
by changing the temperature of the system. We move parti-
cles around our system. We decide which of these things we
should do next. These control flow actions form the building

System

Containers

Particle Containers Environment

Tank Sample
Particles

Composites

Atoms

Values

Control

Action Administrative Nodes

Control Admin

Decision

Particle Admin

Sampler

Observer

Information Flow
⇐⇒

Control Flow
~ww�

Figure 1: Conceptual structure of modularisation of
AChems

blocks of our MetaChem.
We conceptualise these components into the structure

shown in Figure 1, which we use to build a graph-based for-
malism. We have the overarching concepts of the System,
made up of the elements formalised as graph nodes (Con-
tainers, Control), and as graph edges (Information Flow,
Control Flow).

Control items are static nodes in the graph: their location
and connectivity defined at the start, and remains unchanged
as the AChem executes. These control nodes are connected
by Control Flow edges, which together define the system’s
specific algorithm.

Containers are also static nodes in the graph. They map to
(“contain”) the dynamic particles and environmental values
in the system.

Information Flow edges allow control nodes to influence
the connected containers’ states (contents). Information can
flow in either direction along an edge: read or pulled from
containers’ state to the control node, and pushed from con-
trol nodes in order to update containers’ state.

We now describe these nodes and edges in sufficient detail
to explain their implementation. For full formal definitions,
see (Rainford, 2019).

Control nodes and Edges
The control flow of our system defines the AChem’s algo-
rithm. The control evaluates a node’s definition, and moves
to the next node. In the implementation, it iteratively exe-
cutes a node’s transition function, and moves on to the next
node; by traversing the graph in this manner it performs the
relevant computation.

All control nodes execute the same basic state transition:
the state changes, then control moves to the next node. The
overall transition is defined through five individual transition
functions: read(), check(), pull(), process(), push(), executed
sequentially:

transition = read # check # pull # process # push
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where # indicates strict ordering of function application from
left to right.

Each of these transition function components plays a dif-
ferent role in the transition and thus uses a different aspect
of the state.

read(): the current node collects information from (con-
nected) external containers into temporary local containers,
for used by the remaining transition functions. This action
does not modify the external containers in any way. One can
think of it copying the read particles and values.

check() : the current node uses its local information to
generate a threshold probability value p, which it uses to
determine if the rest of the transition function (the part that
actually alters containers) occurs. In the implementation, it
generates a uniform random number r; if p < r, execution
continues, otherwise it exits and moves to the next node.

pull(): remove particles and change information in exter-
nal containers where appropriate. Any information so pulled
must already been copied to local containers by read(),
where it is available for local processing. Note that read
information does not have to be pulled (that is, it can be
copied, rather than moved).

process(): the main computation for the node, where the
“chemistry” happens. It modifies the state of local particles
and variables, including creating new particles and variables
and destroying old ones.

push(): push variables and particles from the local vari-
ables into external containers; wipe the local containers’
contents.

Transition functions operate on local state, which exists
only for the duration of the transition. Local particle con-
tainers and local environment containers are destroyed as
soon as the transition function is completed, so the control
nodes have no lasting state or memory. Any information
used by a control node must come from containers at the
start of a transition by using read() or pull(); any informa-
tion or objects that need to remain in the system are written
back to a container by push().

These operations are summarised in Figure 2 and dis-
cussed in the context of specific node types below.

Control node subtypes
Our control nodes are partitioned into four subtypes: action,
decision, sample and observer. We define these node sub-
types by requiring some of the transition function parts to be
null (identity), or by limiting the types of containers they can
interact with during the transition, Table 2. The constraints
on these subnodes help control the complexity of the system
definition.

Action : read in information, check if an interaction oc-
curs, process the particles in the system for the reaction to
happen. It is not limited by which transition functions it ex-
ecuted, but it is limited by which containers it can push()

Figure 2: Summary of movement and processing of infor-
mation done by transition functions in a node. A,B,C,D
are container contents; A∗ ⊆ A.

to, see Table 3. The limit to modify only samples allows
parallelisation, and encourages controlled modification. The
designer is required to consider what they wish to modify
before they modify it, as they must first sample it from the
tanks.

Decision : process the information from its containers and
return a choice of the possible next nodes. It is limited to
just read() and process(), so it cannot change the contents of
any of the containers.

Sampler : move particles between containers. It does not
compute or process the information, and it does not modify
any particles or environment variables. It therefore has only
a read(), pull() and push() function.
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action decision sample observer

read X X X X
check X
pull X X X

process X X X
push X X X

Table 2: Transition functions used by different types of con-
trol nodes; unchecked functions always return their default
behaviour

action decision sample observer

tank X
sample X X

environment X X

Table 3: The set of container nodes that can be modified
(push()/add() or pull()/remove()) by a control node, read()
can always be performed on any container

Observer : observe but do not modify particles; modify
the environment. It has a read() to view containers, and a
pull() to allow it to edit environment variables only. It has
a process() that allows it to compute summary statistics and
changes to the environmental variables, and a push() to com-
mit those changes back to the environment.

Container nodes
Container nodes are partitioned into two subtypes: Particle
nodes and Environment nodes.

Particle nodes : mappings that take the node and the state
of the system, and returns the set of particles in that con-
tainer at that state. When the system is in a particular state
the set of mappings of all the containers forms a partition-
ing of all the particles in the system. There are two types of
particle nodes: samples and tanks. Tanks are protected con-
tainers. Particles in tanks can be moved in and out but cannot
be changed; any changes must be made over samples, so the
designer has to decide what will be changing.

Examples : A beaker being used for an experiment, a
pipette, a petri dish.

Environment nodes : similar to particle nodes, except
that they contain non-particle objects and information in the
system. The system can have multiple environments, to
make reference to the things in the environment easier. For
example, one might want to store a time record separately to
summary statistics or log information. These are all still ac-
cessed via a mapping from the node and state of the system
to the dynamic information and objects.

Examples : Temperature readings, Bunsen burner, stirrer,
observation log.

Use of mappings. It is key that containers work using
mappings. Any container has three ways to access the in-
formation stored in them: read(), which returns a copy of
all the information in the container; remove([particle list]),
which removes all particles (or variables in the case of en-
vironment containers) in the list from the container (this is
called by pull() during transitions so should be preceded by
a read()); and add([particle list]), which adds the particles
to the container (or adds a variable to the environment in the
case of environment containers).

These mappings are a way to keep nodes independent of
implementation. They define an interface. As long as the im-
plementer can provide these three functions, they can store
the items in what ever way they wish. This also means that
control nodes that move objects and read them can be inde-
pendent of the implementation of their storage. This allows
for greater reuse of control nodes across systems.

The limits on access to containers placed on control nodes
is given in Table 3. The read() action is always possible for
a control node of any container node (information is always
knowable). However, we limit the modification of contain-
ers by nodes to make it easier to track activity in the system.
This should also encourage limiting the scope of individual
nodes to a basic action that may be reusable.

Example: StringCatChem
To help illustrate the use and power of MetaChem we intro-
duce StringCatChem, a toy AChem. Its atoms are characters,
the standard 26 lower case letters of the English alphabet.
Composite particles are strings formed via concatenation.
StringCatChem is situated in a collection of well-mixed (as-
patial) tanks. When particles combine or split they remain
in the tank. When we select a string we check if it contains
any adjacent repeated letters; if so we split it between them.
If not we select a second string at random and concatenate
the two. We also randomly transfer strings between tanks.

The simplicity of this system means StringCatChem will
continue to run until everything has formed a small num-
ber of large particles in each tank, all with matching letters
at the starts and ends of them and no internal repeated let-
ters. After this the system will not change. StringCatChem
is therefore not a good choice of AChem if one wishes to
study open-endedness or the transition to life. However, it
makes a good example of implementation: the whole system
can be implemented with 4 container nodes and 13 control
nodes. The graph representation (and code) of the system is
given in Figure 3.

The graph is a formal definition of the system itself; it is
not merely a helpful visualisation of it. The code below it is
a different concrete syntax of the same graph: it is the textual
form for input to our interpreter. This is a description of the
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1 edges = [[Sload, Otime], [Otime, Ssamplertank], [Ssamplertank, Ssamplerstring],
2 [Ssamplerstring, Ddecomp],
3 # Ddecomp splits control
4 [Ddecomp, Ssamplerstringdecomp],
5 [Ddecomp, Asplit], [Ssamplerstringdecomp, Aconcat],
6 # Control merges again at Sreturn
7 [Asplit, Sreturn], [Aconcat, Sreturn],
8 [Sreturn, Scommit], [Scommit, Oreaction], [Oreaction, Dupdate],
9 # Dupdate splits control again

10 [Dupdate, Stransfers],
11 [Dupdate, Ssamplertank], # Loop to the start of reaction
12 [Stransfers, Otime]] # Loop to the start to the generation
13

Figure 3: Graph for StringCatChem in visual and code form. For a key to the graph node shapes, see Table 4.

graph in terms of edges as pairs of nodes. The only further
information the interpreter needs to run the StringCatChem
is a limit on the number of transitions, and the specific im-
plementations of the relevant transition functions.

The MetaChem framework is based on transitions rather
than generations, as this is the natural step component; the
MetaChem system has no built-in knowledge of generations
or number of reactions.

Implementation
Now that we have overviewed the components of our graph-
based MetaChem, here we discuss the implementation of
the framework in Python. The hierarchical framework (Fig-
ure 1) translates readily to a class diagram, Figure 4.

Control nodes

The basic control node is defined as a transition function
(Listing 1), which uses the five sub-functions. The transition
function itself is used by almost all the subclasses. We also
provide default null versions (which immediately return) of
all of these five functions for use as null behaviours.

Our subclass nodes then use the default function in the
top-level class for those functions not used by that type of
node. The remainder of the functions are overwritten with
default functions that perform basic functionality for that
type of sub-node. For example, in the subclasses the de-
fault behaviour for read() is to read all information from all
connected containers.

1 def transition(self):
2 self.read()
3 if self.check() < random.random():
4 self.pull()
5 self.process()
6 self.push()
7 pass

Listing 1: Transition function as defined in ControlNode
class

1 def transition(self):
2 self.read()
3 return self.process()

Listing 2: Transition function as defined in Decision class

Decision does overwrite transition(), Listing 2, as in the
case of Decision the transition needs to return a value back
to the graph handler so it can transition to the correct node.

The graph handler checks if the node is running is a De-
cision and expects it to return a value.

Container nodes
Our container subclasses are very similar to the Container-
Node superclass. As long as a subclass implementation of
a container provides a read(), add() and remove() function,
the actual storage method is not important at this level.

For example, for StringCatChem we implement a list-
based container. Listing 3 shows the initialiser and read()
functions for this class.
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Figure 4: Class diagram of the implementation of MetaChem

1 class ListTank(node.Tank):
2
3 def __init__(self):
4 super(ListTank, self).__init__()
5 self.list = None
6 pass
7
8 def read(self):
9 return self.list[:]

Listing 3: ListTank class definition including initialiser and
read function

We could replace this list with a dictionary. Or we could
use a database, with add() adding new records and remove()
deleting them or modifying them so they are not recorded as
part of the tank. Or we could use an array or file instead. We
can use any such implementation, as long as we can reduce
the interactions with it to read(), add() and remove(). So we
can choose an appropriate implementation for any particular
system at a particular size without needing to have this affect
our control nodes and algorithm.

Given our containers are all so similar, why do we imple-
ment these subclasses? We do this so that we can type-check
containers to ensure the different types of control nodes are
modifying only allowed nodes.

Generic common nodes
There are common nodes that we will use multiple times in
a system and in many different systems. We implement such
types of nodes in their own two modules, one for containers
and one for control nodes.

One obvious such common node is a counter node, which
increments a particular variable that is later used by a de-
cision node to control looping. Such a counter and deci-
sion, implemented as ClockObserver and CounterDecision,
are given in Listings 4 and 5. The ClockObserver requires
that the pull and push actions modify the same value, and
takes an amount by which the value is incremented. The
CounterDecision is set to look at the same variable, and is

1 class ClockObserver(node.Observer):
2
3 def __init__(self, containersin, containersout,

readcontainers=None, increment=1):
4 if containersin != containersout:
5 raise ValueError("Clock must read and write

to same variable")
6 else:
7 super(ClockObserver, self).__init__(

containersin, containersout, readcontainers)
8 self.increment = increment
9 self.clock = 0

10 self.variable = self.containersin
11 pass
12
13 def read(self):
14 self.clock = self.variable.read()[0]
15 pass
16
17 def pull(self):
18 self.variable.remove(self.clock)
19
20 def process(self):
21 self.clock = self.clock + self.increment
22 pass
23
24 def push(self):
25 self.variable.add(self.clock)
26 pass

Listing 4: ClockObserver node code

initialised with a threshold that determines next node.
Both of these generic nodes are used in StringCatChem

to track and respond to the number of reactions that have
happened. Their use in StringCatChem is given in Listing 6.
Here we loop until 200 reactions have occurred.

Edges
The graph module interprets our graphs, given in textual
form, and runs them. It stores the set of nodes into a dic-
tionary. Each node is a key; the value is the node or list of
nodes to which it has outgoing edges. This allows the inter-
preter to move on to the next node. In most cases there is
only a single control node as the value; in the case of deci-
sions there is a list of control nodes.
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Element Description

Containers

T Tank containing particles.

S Sample containing an editable subset
of particles.

V Environment containing non-particle
variables and information in the sys-
tem.

Control

s
Information administration node
moves particles between containers
by sampling them

o
Observes particles and produces sum-
mary statistics (saved in the environ-
ment), also an information adminis-
tration node.

d
Control administration node makes
weighted decisions on control flow
based on the state of the particles and
the environment

a
Performs actions on particles based
on state of particles and environment

Information Flow

Reads information from container into
control node.
Pull moves information out of a con-
tainer into the control nodes local stor-
age during it’s operation.
Writes information from control node
into a container.

Control Flow

Arrow between Sampling, observer
and action nodes to indicate control
flow in system.

Table 4: Legend of types nodes and edges used in
MetaChem graphs

1 class CounterDecision(node.Decision):
2
3 def __init__(self, options=2, readcontainers=None,

threshold=1):
4 if isinstance(readcontainers, list):
5 raise TypeError("CounterDecision takes only

a single readcontainer")
6 if options == 2:
7 super(CounterDecision, self).__init__(

options, readcontainers)
8 self.threshold = threshold
9 self.check = 0

10 else:
11 raise ValueError("CounterDecision takes

exactly two control options")
12 pass
13
14 def read(self):
15 self.check = self.readcontainers.read()
16
17 def process(self):
18 if self.check >= self.threshold:
19 return self.options[1]
20 else:
21 return self.options[0]

Listing 5: CounterDecision node code

1 Oreaction = control.ClockObserver(Vreactions, Vreactions
)

2 Dupdate = control.CounterDecision(2, Vreactions, 200)

Listing 6: Use of clock and counter nodes in StringCatChem

Discussion
We have successfully implemented our mathematical
MetaChem framework in a reusable generic manner. With
the correct set of system-specific nodes this allows us to de-
fine our graph structure and run our algorithm.

We don’t provide results based on StringCatChem here.
This system is very simple and over time the particles form
into a very small number of large particles and stay that
way. There isn’t much to analyse in this. For results from
other systems built on the basis of MetaChem see Rainford
(2018); Rainford et al. (2018b).

The independence of our containers’ implementation
from our control node definitions allows us to implement
generic nodes, which can be interchanged between different
chemistries and experiments.

As an extension of this we can use subgraphs for common
control systems. This immediately includes spatial and time
systems e.g. the clock and counter combination described
above implements a generational time system.

Our container implementation allows us to use simple
storage, such as lists or dictionaries, for smaller/ simpler
systems. For larger systems implement a database interface
that could handle larger numbers of particles, longer runs,
and different particle types.

MetaChem can be used to implement any AChem. A rea-
sonable level of Python knowledge is needed to implement
specific unique nodes and particles for a particular AChem.
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Once the nodes have been implemented the chemistry itself
can be instantiated and run without anything more than basic
Python.

In our current implementation, available on GitHub, this
is done by implementing the module stringcat nodes.py,
containing class specifications for all nodes required by
StringCatChem. We then can run an experiment in this
AChem using a script, stringcat graph.py, that generates in-
stances of nodes and a graph, then runs it for a number of
transitions.

Further Work
The implementation of core Static Graph MetaChem code
described here means we can start porting other systems
to run in our framework. An earlier version of MetaChem
is used to combine SwarmChem and JA-AChem (Rainford
et al., 2018a). Porting further existing AChems would be
the beginning of building a comprehensive code base for
AChems. It could be expanded to include analysis tool that
work across different systems, allowing direct comparisons
of a range of AChems.

Next, we will expand the existing code to allow the graph
to change at run time, allowing our AChems to be more dy-
namic: this is analogous to changing the “glassware” as a
chemistry experiment runs, based on the results of reactions.
This will use graph transformation rules to allow the graph
to change and develop in response to the state of the system.

The naming of MetaChem is not just to imply that it is
a meta system for handling AChems. It is capable of be-
ing an AChem itself. Nodes are atomic particles, edges are
links, and an AChem graph is a composite particle in the
MetaChem. Such an approach could allow us to evolve and
generate AChems as products of a MetaChem.
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Abstract

We introduce a new sub-symbolic Artificial Chemistry, called
the Meta-Atom Artificial Chemistry. It treats composite par-
ticles (composites of random boolean networks, RBN) as a
new type of higher level atom, a meta-atom. These complex
structures, together with a new kind of link, then form even
larger, multi-level, structures. We show that Meta-Atom Ar-
tificial Chemistry exhibits rich behaviour, including reaction
pathways that resemble catalytic reactions.

Introduction
We wish to use Artificial Chemistries to build and investi-
gate open-ended systems. As such, we wish to minimise
the number of explicit rules and properties needed, yet still
get rich behaviours. For this reason we have developed sub-
symbolic artificial chemistries (Faulkner et al., 2018), where
the properties and dynamics of atomic and composite par-
ticles emerge from the underlying structure of the particles
themselves. This is in contrast to more traditional AChems
(Dittrich et al., 2001; Banzhaf and Yamamoto, 2015), in
which the atomic particles have no underlying structure.

Spiky-RBN AChem (Krastev et al., 2016, 2017) is one
such sub-symbolic artificial chemistry. In the original Spiky-
RBN AChem, the lowest level structure, an atomic parti-
cle, is a random boolean network (RBN) (Gershenson, 2004;
Drossel, 2008). An RBN has N nodes; at initialisation each
node is assigned K inputs selected at random from K of the
N nodes (possibly including the node itself), and a randomly
generated Boolean function of these inputs; each node has a
Boolean-valued state. The node’s function is used to update
the state of the node from the states of its input nodes at each
timestep. When started from some initial state, the dynam-
ics of the RBN goes through two phases: a transient phase
of progressing through states, followed by an attractor cy-
cle where states that are periodically revisited (Wuensche,
1998). The transient phase and attractor cycle have a rich
variety of emergent properties; for K = 2 both these phases
are relatively short, so calculating the properties is compu-
tationally tractable.

In Spiky-RBN, the RBN nodes are assigned to functional
groupings known as spikes, which act as bonding sites for

Figure 1: Spiky-RBN atomic particle. The specific node
functions and connections of the underlying RBN result in
emergent properties captured as spikes. Blue spikes have a
positive intensity value and red spikes have a negative inten-
sity value. After (Krastev et al., 2016)

the particle. Spikes consist of an interaction list, which is a
list of all the nodes in the spike, and an intensity, which is
a signed integer value related to the states of the nodes in
the interaction list. These spikes, and hence the particle’s
bonding properties, are emergent properties of the underly-
ing structure and dynamics of the underlying RBN; for de-
tails of how they are calculated from the properties of the
RBN, see Krastev et al. (2016). An atomic particle is shown
in Figure 1.

Particles can form a link (bond) if they have spike inten-
sities of equal and opposite magnitude; the nodes in each
particle have their inputs redirected to link together to form
a composite particle (Figure 2). A composite particle may
decompose, or may react with another particle. This leads to
reaction pathways in which novel composite particles form
from the reactions of an initial set of particles in a reac-
tor. Krastev et al. (2016, 2017) show that the Spiky-RBN
AChem has a rich behaviour and is able to form compos-
ite particles of varying sizes and structures through complex
reaction pathways.
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Figure 2: A composite particle composed of two atomic par-
ticles. After (Krastev et al., 2016)

Here we introduce two variants of the original Spiky-RBN
AChem. Firstly, we define Frozen-Node-Spiky-RBN (FN-
SRBN), in order to explore how further emergent properties
of RBNs can be exploited as bonding properties. Secondly,
we use this new variant as the basis of Meta-Atom Artificial
Chemistry. This Meta-Atom AChem reacts composite par-
ticles through a higher level kind of bond, using ‘dangling
nodes’ in lower level bonds as the bonding criterion. As with
Spiky-RBN AChem, the aim is to build an AChem where the
bonding properties emerge from its underlying structure and
dynamics. Here the underlying structure is that of the lower
level bonds in composite particles formed in FN-SRBN.

The Frozen-Node-Spiky-RBN AChem
In this section we introduce a modified version of the Spiky-
RBN AChem, the Frozen-Node-Spiky-RBN (FN-SRBN)
AChem. We discuss why this AChem has been developed,
and describe the structure of atomic particles and the new
bonding process. We conclude the section with the intro-
duction of a special composite particle called a ring, and an
experiment to generate ring structures, which will be used as
the basis of the later Meta-Atom AChem experiments.

Atomic Particles in the FN-SRBN AChem
FN-SRBN AChem is used to explore if other emergent prop-
erties of RBNs, here frozen nodes (see later), can be used as
part of an AChem, and to see how other approaches to gener-
ating the interaction lists affect the behaviour of the AChem.
This allows us to explore new Spiky-RBN AChems and to
see if they have the rich behaviour which is required for a
useful AChem.

Spiky-RBN AChem generates interaction lists by follow-
ing the connections of the nodes in the RBN ordered by
their ‘influence’ (number of outgoing connections). In the
FN-SRBN AChem we instead follow the connection of ran-
domly selected nodes. The algorithm which builds the inter-
action list is shown below in Algorithm 1.

Spiky-RBN AChem calculates the intensity of the spikes
as a function of the state changes of the nodes over the

Data: N: List of all nodes in the RBN
while N is not empty do

Create new empty Interaction List ILi;
Remove random node n from N;
Append n to ILi;
while ∃ n′ ∈ N where n′ is an input to n do

Remove n′ from N ;
Add n′ to ILi ;
n← n′ ;

end
i++ ;

end
Algorithm 1: Building interaction lists for an RBN

RBN’s attractor cycle. In the FN-SRBN AChem the inten-
sity of the spike is instead dependent on the states of the
‘frozen’ nodes in the attractor cycle. Frozen nodes are nodes
whose states remain constant over the attractor cycle, and
are a prominent feature of RBNs. Each node n in a spike S
is assigned a weighting nw:

nw =





1 if node frozen in True state
−1 if node frozen in False state
0 if node is not frozen

(1)

The intensity of an FN-SRBN spike Si is the sum of
weightings for each node in the interaction list ILi of the
spike:

Si =
∑

n∈ILi

nw (2)

As with Spiky-RBN AChem, this gives a spike with a
magnitude and a sign. The intensity is constrained by the
length of the interaction list:

−#ILi ≤ Si ≤ #ILi (3)

FN-SRBN AChem introduces a new parameter called spike
type ST which influences how easy it is for two spikes to
bond. The spike type ranges from 1 to 3 and is a function of
the length of the interaction list of the spike

ST =





1 if #ILi < 5

2 if 5 ≤ #ILi < 10

3 if 10 ≤ #ILi

(4)

The attractor cycle is found from an initial state of all
nodes being false, and the number of inputs each node takes
is K = 2 in order to obtain stable rather than chaotic be-
haviour (Wuensche, 2008).

Bonding Atomic Particles
FN-SRBN AChem forms bonds in the same manner as
Spiky-RBN AChem, with two spikes from different atomic
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Atomic particle

Bond

Figure 3: A ring of four atomic particles. The green circles
are atomic particles, each with exactly two spikes, and the
lines between atomic particles are bonds.

particles linking together as in Figure 2. Spiky-RBN AChem
requires that the intensity of both spikes must sum to zero
before bonding for the bond to form, and after bonding for
the bond to remain stable (the intensity may change on bond-
ing since the linked RBNs have a different dynamics from
the unlinked ones; this decomposition property arises natu-
rally from the emergent intensity property).

In FN-SRBN AChem the bonding condition depends on
both the intensity and the spike type. Let the spike from the
first particle be S1 with intensity S1

i and type S1
T , and the

spike from the second particle be S2 with intensity S2
i and

type S2
T . Then the two particles can bond if the spikes meet

the appropriate condition specified in eqn. 5:

|S1
i + S2

i | = 0 and S1
T = 1 ∨ S2

T = 1 (5a)

|S1
i + S2

i | ≤ 1 and 2 < S1
T + S2

T < 6 (5b)

|S1
i + S2

i | ≤ 2 and S1
T = 3 ∧ S2

T = 3 (5c)

This condition reduces to the Spiky-RBN AChem behaviour
if either IL is very short (just one node), but becomes more
relaxed as the ILs get longer. This more relaxed behaviour
is needed to ensure sufficiently rich behaviour, to compen-
sate for the different distribution of spike intensities in FN-
SRBN.

If the condition continues to be met after bonding, then
the bond is stable. If the bond is unstable, it breaks.

Rings of Atomic Particles
A ring is a special composite particle consisting of atomic
particles each of which have two bonded spikes and no un-
bonded spikes. A ring of four atomic particles is shown in
Figure 3.

This ring structure can be considered an ‘inert’ composite
particle. Since all its spikes are bonded, it cannot bond to
any other particles. We use this structure for our initial Meta-
Atom AChem studies here, since we do not need to consider
any lower level reactions between these inert rings.

Experiment: Growing a Set of Rings
The aim of this experiment is to generate a set of rings using
FN-SRBN AChem. The set can then be used as the basis for
a higher level AChem.

while true do
// Phase 1 – find atomic set
chain := empty
while empty chain do

R := 20 randomly created atoms
tries := 0
while empty chain and tries < 95 do

a1, a2 :∈ R
if a1, a2 can bond then

chain := bonded (a1a2)
end
++tries

end
end
// Phase 2 – build a ring
if head,tail of chain can bond then

ring := bonded chain
exit

end
tries := 0
while tries < 700 do

a :∈ R
if a, chain can bond then

chain := bonded (a,chain)
if head,tail of chain can bond then

ring := bonded chain
exit

end
end
++tries

end
end

Algorithm 2: Building a ring from random atoms

This is done using a well stirred reactor with no spatial
component. The reaction contains a set of 20 atomic parti-
cles. To form this set, atoms are randomly generated with a
size N chosen uniformly between 2 and 15 nodes. An atom
is kept provided it has exactly two spikes, which it needs to
be a link in a ring. Atoms are randomly generated in this
manner until there is a set of size 20.

The algorithm to build a ring has two phases, see algo-
rithm 2.

Phase one finds a suitable atomic set, by producing a short
chain of two atoms. The reactor is initialised with 20 ran-
domly generated atoms. Two atoms are selected at random,
and a bond is attempted. Selection of pairs of atoms con-
tinues until a bond is formed. If after 95 attempts no initial
bond is formed, another set of atomic particles is generated.

Phase 2 generates a ring. It starts with the initial pair of
bonded atoms, and the atomic set, from Phase 1. A bonding
attempt is made between the head and tail of this chain of
two atoms, attempting to form a minimal ring. If no ring
forms, a further atom is selected at random from the set,
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Figure 4: Chart showing size of rings against number of
rings of this size. Total number of rings is 625, smallest
size is 2, largest is 38.

and a bond is attempted with the short chain. This random
selection is continued until the chain is lengthened by one
atom. Each time the chain is lengthened, there is an attempt
to bond the head and tail to form a ring. If no ring forms,
the chain is further lengthened. If no ring has been created
after 700 lengthening attempts, then entire process is started
again.

Using this algorithm, 625 rings were generated. The dis-
tribution of ring sizes for atomic particles consisting of up
to 15 nodes and an attractor cycle length of 3 is shown in
Figure 4. The figure shows that the majority of rings consist
of less than five atomic particles.

It is possible to obtain much larger rings, up to size 38
in this experiment, although this is rarer. There are two
reasons for this rarity. Firstly, the algorithm is biased to-
wards smaller rings, since it incrementally increases ring
size, and stops once a stable ring forms. Secondly, larger
rings have more bonds, increasing the likelihood of an ex-
isting bond becoming unstable and breaking when a further
bond is formed during lengthening.

The Meta-Atom Artificial Chemistry
In this section we introduce the Meta-Atom AChem.

Meta-Atoms
FN-SRBN AChem can be used to bond particles with one
kind of bond, as demonstrated above. Meta-Atom AChem
introduces a new kind of bond, to bond composite particles
formed in FN-SRBN in a new manner. Meta-Atom AChem
has its own ‘atomic particles’, called meta-atoms. A meta-
atom’s behaviour and dynamics emerge from its underlying
structure, which here is that of a ring of bonded FN-SRBN
AChem atomic particles. We can consider the Meta-Atom
AChem as a higher level sub-symbolic artificial chemistry,

Bonded 

nodes

Dangling 

node

Figure 5: Two spikes bonded together resulting in a single
dangling node. The colours of the spikes and connections to
nodes outside of the interaction list have been removed for
clarity.

as its properties and dynamics emerge from a lower level
sub-symbolic artificial chemistry.

We use FN-SRBN rings as meta-atoms in this initial
study, as they are inert at the FN-SRBN level, and so re-
actions between low level particles does not need to be con-
sidered. In principle, composite particles that are not inert
could be used as a basis for meta-atoms. Meta-atoms of re-
active composite particles will be added in future iterations
of our Meta-Atom AChem, where we will investigate the
interaction of the two bonding mechanisms. Such interac-
tion could result in new reaction pathways and new products
emerging.

Dangling nodes

Figure 2 shows a composite particle composed of two
atomic particles. Figure 5 shows a zoomed view of the bond
between the two particles. Figure 5 shows that when two
spikes bond, not all of the nodes in a spikes need to be
rewired to connect to the other spike. Such nodes play no
direct part in the bond; we refer to these as dangling nodes.
If there are multiple dangling nodes in a bond, we refer to
this as a dangling tail. Nodes that are directly involved in
the bond are referred to as bonded nodes.

Dangling nodes and tails are an emergent property of the
bonding process between atomic particles. Dangling nodes
and tails arise when the lengths of the ILs of the two bonded
spikes are unequal. The number of dangling nodes, γ, in a
bond is the difference in the lengths of the ILs of the two
spikes:

γ = |#IL1 −#IL2| (6)

Each dangling node is associated with a spike, which has
an intensity and type. We assign the dangling node an inten-
sity and type equal to the intensity and type of its spike.
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Figure 6: A meta-atom consisting of a ring of size four and
two dangling nodes. The green circles are atomic particles;
black lines are bonds between atomic particles; the light blue
dashed lines emerging from two of the atomic particles rep-
resent bonding possibilities via dangling nodes, or dangling
tails.
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Figure 7: Dangling nodes bonding. This causes bonds in the
low level structure of the atomic particle to break.

Meta-Atom bonding
As with the FN-SRBN AChem, there needs to be a mech-
anism that allows meta-atoms to bond in order to generate
larger structures. To bond meta-atoms, we use the emer-
gent dangling nodes within bonded spikes. We represent
a meta-atom diagrammatically as a ring of atomic particles
with dangling nodes (Figure 6).

Here FN-SRBN AChem is used as the lower level AChem
to generate rings for meta-atoms. Future work will extend
Meta-Atom AChem so that the low level structure of meta-
atoms can be made up of composite particles generated by
other Spiky-RBN AChems (Krastev et al., 2016).

For dangling nodes to attempt to bond, as with bond-
ing spikes, we need to see if the intensity and type obey
the bonding criterion (eqn. 5). If the condition is met, the
dangling nodes swap connections (Figure 7). We refer to
bonded meta-atoms as a meta-molecule.

The swapping of connections alters the underlying struc-

tures of the atomic particles in the ring. This means that
higher level bonding alters the lower level structure of both
meta-atoms involved in the bonding. Hence the properties of
every spike in the ring need to be recalculated after a higher
level bond has occurred. Bonding at the higher level can
lead to intensities of the spikes changing (and thus the inten-
sity of dangling nodes). This can cause the bond between
dangling nodes to break and can also cause bonds in the low
level structure to become unstable and break. A change in
higher level bonding can perturb the low-level structure and
alter it. A change in the low-level structure can then affect
the higher level bonds in turn. Thus after meta-atoms bond
to form a meta-molecule, there can be a period of instability
in which the meta-atom’s internal structure and the higher
level bonds can change.

This period of instability post meta-atom bonding means
that the structure of a meta-molecule needs to be reanal-
ysed until all of its meta-atoms are stable. A stable meta-
molecule is one in which all of its composite meta-atoms
bond. Both high-level and low-level particles must meet
the appropriate stability criteria as defined in eqn. 5. If
the higher-level bonds between meta-atoms break, the meta-
molecule is checked for meta-atoms which no longer have
high-level bonding with other meta-atoms. If a meta-atom
with no bonds to the meta-molecule is found, it is removed
from the meta-molecule as it has ‘broken away’ from the
meta-molecule.

Experimental Implementation
The FN-SRBN and Meta-Atom AChem where implemented
using the Python programming language and the NumPy nu-
merical libary. An object-oriented design approach is used
and the software is available on GitHub1.

Analysis of Meta-Atom Bonding
The simplest case of meta-atom bonding is two meta-atoms
M1, M2, each with one dangling node, coming together and
attempting to bond. The eight possible outcomes of this re-
action are shown in Table 1. In this table, R1 (Ring 1) Stable
shows whether the underlying structure of M1 is affected by
the higher-level bonding between the meta-atoms. If R1 Sta-
ble is false, the underlying structure is affected by the bond-
ing, and the ring will break one or more low-level bonds.
MB Stable indicates whether the Meta-Bond is stable. For
example, a type 5 reaction results in the low level structure
M1 changing, but the bond between M1 and M2 is stable
and the low level structure of M2 is stable. An example of a
possible meta-molecule formed through a type 5 reaction is
shown in Figure 8.

From Table 1 we can see that there is a symmetry between
reaction types 3 and 5, and that there is also a symmetry be-
tween reaction types 4 and 6. Figure 8 is a pictorial repre-

1github.com/iw596/Meta-AChem
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Type R1 Stable R2 Stable MB Stable

1 True True True
2 True True False
3 True False True
4 True False False
5 False True True
6 False True False
7 False False True
8 False False False

Table 1: Reaction types between two meta-atoms with a sin-
gle bond between them.

sentation of Table 1, showing the resulting product of each
reaction type.

Type 1 Reaction
A type 1 reaction results in a meta-molecule as there is sta-
ble bond between the two meta-atoms. The internal struc-
ture of both meta-atoms is unchanged by the reaction. This
reaction type is analogous to a standard successful collision
in the lower-level FN-SRBN AChem where two atomic par-
ticles react together to form a composite particles. Instead
of atomic particles forming composite particles, now meta-
atoms form meta-molecules.

Type 2 Reaction
Type 2 reactions are elastic collisions between meta-atoms.
This reaction results in no stable bond between the two
meta-atoms and the internal structure of both meta-atoms
are not altered by this elastic collision. This is analogous to
an elastic collision in the lower level FN-SRBN AChem.

Type 3 & 5 Reactions
Both type 3 and type 5 reactions result in a meta-molecule
consisting of two meta-atoms. One of the meta-atoms is un-
changed by this bond but the other meta-atom is altered by
the bond. The alteration to the meta-atom could be small,
e.g a single low level bond breaking. The alternation could
be large, e.g many atomic particles breaking away from the
ring. This reaction type results in the previously inert lower-
level structure becoming reactive. This means that it is now
possible to have further reactions in the lower-level struc-
ture. With meta-atoms with more than one higher level
bonding site, a type 3 or 5 reaction could result in a meta-
molecule which is reactive at both the higher and lower lev-
els.

Type 4 & 6 Reactions
Both type 4 and 6 reactions result in the meta-atoms being
temporarily bonded. This in turn results in one meta-atom
being altered while the other is unchanged. This change one

1

2

3 & 5

4 & 6

7

8

Figure 8: A potential product from each reaction type 1 to
8 listed in Table 1. Symmetric reaction types are grouped
together.
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meta-atom’s structure causes the high-level bond between
the meta-atoms to become unstable and break. A type 6
reaction is shown in Figure 9 in more detail. These reac-
tions are interesting as they can be viewed as analogous to
reactions between a reagent and a catalyst. The reagent is
changed but the catalyst is not. Catalysts are thought to be
important in the origin of life (Belmonte and Mansy, 2016;
Russell, 2018), so having analogous behaviour in the Meta-
Atom AChem shows that the AChem has some emergent
properties which are potentially similar to real world sys-
tems. It further shows that this AChem has rich behaviour
and warrants further exploration. These reaction types are
a partially destructive collision, as no meta-molecule is
formed and one of the meta-atoms has been altered by the
reaction.

Type 7 Reaction
Type 7 reactions are similar to type 3 and 5 reactions in they
result in a stable meta-molecule. The underlying structure
here of both meta-atoms has been altered, and it is now pos-
sible to have further reactions in the lower-level structure of
the meta-atoms.

Type 8 Reaction
A type 8 reaction is a fully destructive collision as the meta-
atoms do not form a stable bond and both meta-atoms have
their internal structure altered by the attempt to bond. This
reaction type moves from having two meta-atoms that are
inert at the lower level to having two meta-atoms that are re-
active at both the lower and the higher level. This reaction
type could be useful as it provides a way of creating very re-
active meta-atoms, which could be used as a building block
for generating complex meta-molecules.

Analysis
Our experimental tests have generated all of the reaction
types in Table 1. These tests were performed using the set
of rings shown in Figure 4. This shows that the Meta-Atom
AChem has a rich behaviour as it exhibits all the possible
reaction paths. These results also show that the AChem is
capable of generating new structures.

Further tests, of bonding dangling tails rather than sin-
gle dangling nodes, show that meta-atoms with dangling
tails also can exhibit all the reaction pathways shown in Ta-
ble 1. Reactions between meta-atoms that have two dangling
nodes (or tails) on separate spikes result in products such
as the one shown in Figure 10. One of the dangling nodes
has bonded, which here has resulted in one of the rings in
a meta-atom to break. Since there are still dangling nodes
available, this meta-molecule could continue to bond with
other meta-atoms to generate yet more complex products.
With each meta-atom made up of composite particles, large
composite particles consisting of many atomic particles can
be generated in this way.

meta-atom 2

meta-atom 1

meta-atom bond broken

Figure 9: Reaction pathway for a type 6 catalytic reaction.

Figure 10: A meta-molecule with unbonded dangling nodes.
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Conclusion & Outlook
We present a novel multi-level sub-symbolic AChem, Meta-
Atom AChem, in which the structure and dynamics emerge
from a lower level Spiky-RBN AChem (Krastev et al., 2016,
2017). Bonding in this Meta-Atom AChem exhibits a wide
range of reaction pathways (Figure 8). Examples of these
pathways include a catalytic reaction pathway. Meta-Atom
AChem may be a way to analyse the structure, dynamics and
stability of large composite particles.

Further analysis of bonding in the Meta-Atom AChem is
required. For example, the distribution of reaction types be-
tween meta-atoms to determine the most frequent reactions
is necessary. Furthermore, it needs to be investigated how
the structure of a meta-atom affects the likelihood of a re-
action pathway occurring. This would assist in the predic-
tion of products from a reaction. To fully understand the
dynamics of this new AChem, further work is also required
in analysing the difference in strength between higher and
lower-level bonds. Understanding this property would also
aid in the prediction of products from a reaction.

Future work will involve extending the functionality of
this AChem. Two main areas of interest are energetics and
spatiality. By adding these features the Meta-Atom AChem
may increase its richness.

Adding energetics could lead to new reaction pathways
emerging. Energetics would modify the set of all possi-
ble reactions with a probability of occurrence at the current
temperature. The effects of a reaction may cause a change
in temperature. As the temperature varies, the probabilities
vary, and so we would get a feedback coupling between re-
actions that occur and the probabilities of subsequent reac-
tions.

Currently the AChem has no spatial components to bond-
ing. Introducing emergent spatial properties to bonds could
lead to interesting products being formed.

Additionally, further work will investigate if this high-
level AChem could form the basis of another, even higher-
level AChem. The possibility of using the Meta-Atom
AChem as the basis of a higher level AChem will also need
to be explored once functionality such as energetics are in-
troduced. Emergent behaviours due to these extensions may
occur and could be a natural property to form a higher level
AChem.
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Abstract

Spending by the UK's National Health Service (NHS)
on independent healthcare treatment has been in-
creased in recent years and is predicted to sustain its
upward trend with the forecast of population growth.
Some have viewed this increase as an attempt not
to expand the patients' choices but to privatize pub-
lic healthcare. This debate poses a social dilemma
whether the NHS should stop cooperating with Pri-
vate providers. This paper contributes to health-
care economic modelling by investigating the evo-
lution of cooperation among three proposed popula-
tions: Public Healthcare Providers, Private Health-
care Providers and Patients. The Patient population is
included as a main player in the decision-making pro-
cess by expanding patient's choices of treatment. We
develop a generic basic model that measures the cost
of healthcare provision based on given parameters,
such as NHS and private healthcare providers' cost
of investments in both sectors, cost of treatments and
gained benefits. A patient's costly punishment is intro-
duced as a mechanism to enhance cooperation among
the three populations. Our findings show that co-
operation can be improved with the introduction of
punishment (patient's punishment) against defecting
providers. Although punishment increases coopera-
tion, it is very costly considering the small improve-
ment in cooperation in comparison to the basic model.

Introduction
The NHS is a free healthcare service at the point of
delivery in the UK funded through taxpayers' contri-
butions (Slawson, 2018). Many public healthcare ser-
vices are currently allocating amounts of their bud-
gets to sourcing services from Independent Health-
care Services Provider (ISP)/private sector. Motivated
by the NHS’s Five Year Forward View (FYFV), we
choose the patient as the core focus of healthcare plan-
ning who is to be included in the decision-making
process (England, 2014; Ham, 2017) for better health,
patient care and financial sustainability. Several sys-
tematic studies looking into the improvement of clin-
ical decision-making find that most patients expect to
be informed about their situation and the treatment
required, and play an important role in their clinical
decision-making. However, little attention has been
given to understanding the patients' role quantitatively
as part of dynamic system modelling.

To investigate the dynamic system interactions
among Public and Private health sectors and Patients,
we resort to an Evolutionary Game Theory (EGT)-
based solution. Researchers have applied EGT in
a wide range of disciplines running the gamut from
economics, politics and security, to ecology, mathe-
matical biology, and computer science (Adami et al.,
2016). EGT allows us to understand and analyze the
complex healthcare system, interactions between in-
dividuals from various populations in a game, and
how strategic behavior might evolve among individ-
uals (Nowak, 2006a; Morgenstern and Von Neumann,
1953).

The main challenges of using EGT lie in formu-
lating a valid payoff matrix and defining the ties be-
tween parameters within the proposed payoff matrix
of each population. Some research on the evolution
of cooperation has focused on the human willingness
to engage in behavior that would involve paying a
cost in return for imposing punishment on defectors or
perceived wrongdoers (Sigmund et al., 2010; Dreber
et al., 2008). Punishment is one mechanism that can
enhance cooperation between individuals caught in
social dilemmas (Hauert et al., 2007). Punishment can
be seen applied in human society, such as by punish-
ing free-riders (Sigmund et al., 2010), and in gover-
nance or institutional systems that impose rewards and
punishments on agents (participants) (Andreoni et al.,
2003). Different types of punishment can be imple-
mented based on the structure of the played game:
peer punishments, pool punishments and institutional
punishments (Sigmund et al., 2010).

In this article, we consider the patient's role when
developing an EGT decision-based model of health-
care services through a tripartite, one-shot EGT game
(Gigerenzer and Gaissmaier, 2011; Elwyn et al.,
2012). In our proposed model, we measure pa-
tients satisfaction and healthcare providers' reputa-
tion which impact the quality of healthcare services
(Ham, 2017; Robertson et al., 2017). The model is
aimed at identifying dynamic interactions that could
enhance cooperation between the three populations. It
will allow us to ascertain how selecting certain deci-
sions within a dynamic system would influence pa-
tients' satisfaction with the provided service and their
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willingness to cooperate. This could have important
implications for addressing the significant, alarming
drop in public satisfaction with NHS-provided ser-
vices in recent years (Robertson et al., 2017). The so-
cial norm behavior of individuals is analyzed by ap-
plying EGT using one-shot game.

The dynamic of the game is computed through
stochastic selection of strategies based on pa-
tients' satisfaction with received treatments and
providers' reputations. The main question in this ar-
ticle is about how patients influence the dynamics of
their cooperation in an EGT-based framework of three
populations. The main contribution of this article is to
build a basic model for the interactions of the three
populations that closely capture the costs and benefits
of every strategy combining decisions by agents in fi-
nite populations on either cooperation or defection.
We further introduce peer punishment into the model:
the patients' punishment which takes the form of com-
plaints for clinical negligence (Bryden and Storey,
2011; Cooper et al., 2011).

The main contributions are summarized below.

• We develop a simple, yet expressive, basic math-
ematical model to formulate interactions among
the three populations: Patients, Private and Public
health sectors. This is the first dynamical model
that captures the interactions of these populations
in healthcare economic modelling research;

• We develop a mechanism to study the behavior of
individuals in each population and extend the basic
model by introducing punishments in their interac-
tions;

• We analyze the models and examine how the rel-
evant factors would influence cooperation among
individuals within the populations;

• We conduct a comprehensive simulation analy-
sis to determine various types of behavior most-
frequently adopted by individuals based on certain
factors.

Related Work
The rapid development in research on the learning of
social behavior has significantly increased our under-
standing of the dynamic interaction among individ-
uals from different populations (Nowak, 2006a; Sig-
mund et al., 2010). Cooperation is one of the fun-
damental indicators to measure the strength and dy-
namism of a population (Smith, 1974; Kurokawa and
Ihara, 2009; Encarnação et al., 2016). It can be stud-
ied by applying EGT using different types of mech-
anisms, such as reciprocal behaviors, mutual reci-
procity among populations, replication, kin selection
and costly punishment (Nowak, 2006b; Hofbauer and
Sigmund, 1998). Researchers seeking to understand
the behavior of different agent representations within
the healthcare system use AI (Anh et al., 2013), game

theory (Brekke and Sørgard, 2007), multi-agent sys-
tems (De and Gelfand, 2017) and big data (Murdoch
and Detsky, 2013) to predict and understand behaviors
within the system.

(Brekke and Sørgard, 2007) argued that having a
blurred line between the private and public health-
care providers within the NHS might lead to im-
balances in the costs of provided health services
and a drift towards privatisation. While (Wu et al.,
2016) developed their proposed set of various non-
cooperative and cooperative games for the Emergency
Department response based on different types of pa-
tients. Another research investigates different dilem-
mas based on a three-population EGT framework in-
volving the cost for prescribed antibiotics via health-
care providers (Bettinger, 2016). The main limitations
are related to the actual cost paid for prescriptions
and efficiency in quantifying incentives of patients
for selecting the most satisfying or preferred provider.
Another research by Encarnação (Encarnação et al.,
2016) shows that the advent of the civil sector adds
another layer of complexity to a scene that used to be
dominated by two sectors: private and public.

Cooperation level is analysed by frequency-
dependent selection of strategies within the popula-
tions (Kandori et al., 1993; Taylor et al., 2004). In
this context, we seek to show how a drift towards a
cooperate strategy in interactions between the three
populations can be promoted by the adoption of the
most dominant strategy (social behavior) in our pro-
posed model. Based on the stochastic factors and pro-
cesses associated with the healthcare model, this ar-
ticle intends to investigate evolving societal behavior
between patients and different sectors in the health-
care dynamic system. The selection of the patient
population in our model was made for the follow-
ing reasons: finding the best behavior and strategy for
decision-makers among the three populations; deter-
mining the impact of implemented peer punishments
by a patient and how this social mechanism could in-
fluence the decision-making process for better cooper-
ation; and, finding the best strategy for involved pop-
ulations by computing the interaction between private
and public sectors (Cooper et al., 2011; Brekke and
Sørgard, 2007).

A stochastic multi-objective auto-optimisation
model was introduced by Bastian et al. to effectively
manage resource allocation for the military health sys-
tem with an eye to achieving a more efficient funding
and staffing distribution between the Army, Air Force
and Navy (Bastian et al., 2017). Bastian et al.'s re-
search suffers from serious limitations; primarily, that
the model introduced was not generic and depended
on fixed inputs.

The Patient population in our model plays a ma-
jor role (as discussed in the results) in influencing
decision-making. Our analysis significantly improves
our understanding of the model structure and the fac-
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Parameters' description Symbol
Reputation benefit for the Public and
Private healthcare providers

bR

Patient's benefit bP
Cost of investment spent by the Pub-
lic/Private healthcare provider

cI

Cost of treatment acquired by the
healthcare provider

cT

Cost of healthcare management cM
Extra Patient's benefit when both
providers cooperate

ε

Strategies Payoffs
P1 P2 P3 Public Private Patient
C C C bR−cI−cT bR−cI−cM bP +εbP
C C D −cI −cI 0
C D C bR−cI−cT 0 bP
C D D −cI 0 0
D C C 0 bR−cI−cM bP − cT
D C D 0 −cI 0
D D C 0 0 −cT
D D D 0 0 0

TABLE 1: The healthcare model (Public healthcare
providers P1, Private healthcare providers P2 and Patient
P3).

tors that lead to cooperation. It helps us answer impor-
tant questions such as: What factors might influence
the patient's rating of the healthcare services? What
factors would induce healthcare providers to seek bet-
ter reputations when the patient derives no or little
benefit from the treatment (e.g. the patient files a com-
plaint for receiving bad healthcare services).

EGT-Based Solutions
Basic Model and Extended Model
Model I - Basic model In this model we consider
three populations: Public providers, Private providers
and consumers/Patients. While Public represents the
NHS or the Public healthcare providers, Private inde-
pendent healthcare providers sell healthcare services,
and Patients represents a person seeking treatment(s).
An individual from each population (Public, Private
and Patient) can choose from two strategies: pro-
vide/accept sustainable treatment(s) identified as co-
operating, otherwise can’t provide/refuse treatment(s)
leading the patient to seek alternative treatment(s)
from other providers. An agent's payoff is acquired
based on the strategy played by each individual from
the three populations, as explained in Table 1.

Every individual or agent in each of the three
populations experiences one of the following sce-
narios based on two strategies namely, cooperate
(C) and defect (D). This allows us to understand
how cooperation evolves in altruistic interactions
among individuals in a game. The following are the
strategies an individual within each population can
select (refer to Table 1):

FIGURE 1: Evolution dynamics of the simplex's edges rep-
resents three-player actions (Basic model).

Public healthcare providers: 1 (Cooperate, C) of-
fers treatment paid for from taxpayers' money, in
return gets a reputation benefit. (In case of coopera-
tion, the public commits to invest (cI ) from allocated
budget). 2 (Defect, D) does not want to pay for the
treatment.
Private healthcare providers: 1 (Cooperate,
C) offers treatment either paid by Public (when
Public cooperates) or self-paid by Patient (so the
main cost involved is represented by management
cost (cM )), and obtains a reputation benefit (bR). In
case of cooperation with the Patient, Private commits
to invest (cI ) from its revenue. 2 (Defect, D) does
not want to offer the treatment.
Patient: 1 (Cooperate, C) accepts the treatment and
pays for the treatment (cT ) in the Private instance;
Patient obtains health benefit (bP ) if one provider
cooperates and an extra health benefit (εbP ) when
both providers cooperate. 2 (Defect, D) rejects the
treatment and looks for alternative treatment mostly
overseas.

The main issue we investigate in this article is the
spending and cost effectiveness in the healthcare sys-
tem with an eye to elucidating the social dilemma
as mapped in Table 1. The dilemma questions the
probability of cooperation (C) among the two sectors
(Public and Private) and consumers (Patient) result-
ing in sustainable spending and cost effectiveness of
the provision of treatment funded from the taxpay-
ers' money1.

When applying the evolutionary rules as explained
in Fig. 1 on the matrix given in Table 1, the pay-
off is a simple representation of the healthcare cost-
effectiveness, healthcare providers' reputation benefit
and patient's benefit. The eight possible strategic sce-
narios are described below:

• Individuals from all three populations choose to
cooperate, (CCC). In this case, the Public opts to pay

1O'Connell in this https://bit.ly/2VBY4im, article talks
about finding a structural change to reduce NHS spending
and enhance the tendency towards saving.
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FIGURE 2: Evolution dynamics of the simplex's edges rep-
resents three-player actions (Extended model with patient's
punishment).

for the treatment provided by the Private sector and
the Patient accepts the provided treatment in pursuit
of her/his own benefit of wellbeing and better health.
The Public bears the costs of investment and pays for
the Patient's treatment (cI+cT ) from its allocated bud-
get. It gains reputation benefits (bR) derived from the
treatment provided by the Private healthcare provider.
Reputation benefits are derived from the Patient's sat-
isfaction with the provided service. On the other hand,
the Private sector will provide the required treatment
to the Patient and receive the payment covering the
costs from the Public. The cost of investment (cI ) of
the Private healthcare provider is to invest in staffing
and healthcare facilities, while (cM ) includes admin-
istrative and operational costs. Consequently, both
the Private and the Public obtain a reputation bene-
fit (bR). Patient obtains extra health benefit (εbP ) as
both healthcare providers are cooperating, where (ε)
captures a fraction of the Patient benefit.

• Both the Private and Public healthcare providers
want to pay and provide treatment to the patient, but
the patient rejects the service (CCD). The payoff in-
dicates that the Public healthcare provider will still
invest (cI ) back in the Public as it is set to cooper-
ate. Similarly, the Private sector only invests (cI ) back
into its own resources, which include staffing, equip-
ment and research, and gets nothing in return. The Pa-
tient's payoff is 0 as no treatment cost was involved;
nor did she/he get health benefits from the services of
the healthcare providers involved.

• The Patient accepts the treatment to be provided
by the Private sector and paid for by the Public but
the Private refuses to provide the treatment (CDC).
The Public's payoff consists of the cost of investment
and treatment (cI + cT ), which are covered from its
allocated budget, and a reputation benefit (bR) is ac-
cumulated based on patients' satisfaction. The cost of
accepting the treatment for the Patient is 0 and s/he
obtains health benefit (bP ).

• The Public is the only party willing to provide
treatment, but the Patient rejects the treatment of-
fered (CDD). So, there is neither treatment cost nor

Parameters' description Symbol
Patient's punishment cost v
Fee paid by punished agent u

Strategies Payoffs
P1 P2 P3 Public Private Patient
C C C bR−cI−cT bR−cI−cM bP + εbP
C C D −cI −cI 0
C D C bR−cI−cT -v bP − u
C D D −cI 0 0
D C C -v bR−cI−cM bP−cT−u
D C D 0 −cI 0
D D C -v -v −cT − 2u
D D D 0 0 0

TABLE 2: The healthcare model with Patient's Punish-
ment (Public healthcare providers P1, Private healthcare
providers P2 and Patient P3).

benefit returned. Hence, the payoff for both the Pri-
vate healthcare provider and the Patient is 0, while
the Public still bears a cost of investment (cI ) in new
treatments (Sapiña et al., 2018).

• The Public healthcare provider opts out of provid-
ing treatment and refuses to pay for it; therefore, the
payoff for the Public is 0 (DCC). As the Public does
not want to provide and pay for the Patient's treatment,
the Patient would look for treatment provided by a Pri-
vate sector in a competitive market. The Private sec-
tor's payoff is derived from the gains it makes in its
own reputation benefit (bR); even when it is not coop-
erating with the Public. The payment received goes
towards defraying the costs of investment and man-
agement (cI + cM ). The Patient, on the other hand,
gets health benefits and pays the cost of the treatment
(bP − cT ).

• Only the Private healthcare provider offers to pro-
vide treatment with a specified price tag while neither
the Public wants to pay for the treatment nor the Pa-
tient is accepting the treatment (DCD). The payoff for
the latter two agents is 0, while the transaction in-
volves an investment cost (cI ) to be taken out of the
Private provider's budget.

• None of the healthcare providers is willing to pro-
vide treatments (DDC). This situation leads the Pa-
tient to look for alternative treatments, both domesti-
cally and possibly overseas, and certainly the Patient
has to pay for a treatment cost (cT ).

• The situation depicts all three agents choosing not
to interact with one another (DDD). Hence, there will
be no winner or loser and all agents get a 0 payoff.

Model II- Model with Patient's Punishment This
model extends the basic version by introducing peer
punishment. Patient has the choice to punish defected
healthcare providers after a one-shot game has been
played. Costly punishment means the patient pays a
cost u to force the defecting healthcare provider to pay
a cost of clinical negligence v. The model payoff ma-
trix is provided in Table 2. (Here we assume that, u <
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v) (Fowler, 2005).
When an individual from healthcare providers fails

to fulfill their commitment to provide acquired health-
care services up to standards, a patient's punishment
would be meted out to the defecting individual(s)
from healthcare providers v; simultaneously a cost u
is accrued from the patient in this process. Further-
more, if a co-player refuses to commit, the payoff for
both is 0. The transition probability of a mutant play-
ing strategy D to invade a population of C players can
be measured following the method explained below.

Method: Evolutionary Dynamics for Three
Populations
EGT method is adopted to study the evolutionary
dynamics and interactions among individuals from
three distinct finite populations: Public healthcare
providers P1, Private healthcare providers P2 and Pa-
tient P3. Here, we assumed that the populations are
of a fixed size N. Every individual in each population
will be involved in one of the eight strategic scenar-
ios as mentioned earlier. Individuals have the choice
to cooperate, (C) or to defect, (D) in a paradigm shift
fashion. In our proposed model, there are eight possi-
ble paradigms corresponding to the the eight possible
combinations of the basic strategies within the three
populations, namely, CCC, CCD, CDC, CDD, DCC,
DCD, DDC and DDD. Denoting the numbers of co-
operators in P1, P2 and P3 by x, y, and z, respectively,
the payoff of each strategy can be written as follows:

PPublics (x, y, z) = Psyz
PPrivates (x, y, z) = Pxsz
PPatients (x, y, z) = Pxys,



 (1)

where Pxyz and x, y, z ∈ {0, 1}, is the payoff for the
strategy selected by individuals from one of the stated
populations, and (x,y,z) represents the selected strate-
gies C or D. For instance, individuals from P1 have
the options to play C or D. The selected strategy will
replace the s at x vertex, while y and z vertices remain
unchanged for every selected strategy for the Public
population in this instance. The payoff of randomly
selected individuals A and B in the population depends
on the proportion of both players in the population. In
each time step an individual B with fitness πB imi-
tates a randomly selected individual A with πA fitness
adopting pairwise comparison rule. The probability
ρ that A adopts B's strategy is given by the Fermi's
function (Sigmund et al., 2010; Traulsen et al., 2007)

ρ = [1 + e−β[πA−πB ]]
−1

(2)

where the parameter β ≥ 0 represents the ‘inten-
sity of selection’or ‘imitation strength’(β = 0 rep-
resents neutral drift where imitation decision is ran-
dom, while for large β → ∞ the imitation deci-
sion is increasingly deterministic). In order to con-
struct a symmetric matrix, the fitness of an individual

FIGURE 3: The plots represent the frequency of all strate-
gies adopted by the populations. Panel (I) represents the fre-
quency of all strategies adopted by the populations based on
the basic model's matrix. Panel (II) examines the frequency
of the model's with punishment strategies for varying (bP
and bR) as stated, where: u = 0.5 and v = 1.5. Other pa-
rameters: cI , cT , cM = 1, bR = 2 and 3, ε = 0.2, N =
100 and β = 0.1.

adopting a strategy s within a population is derived
from the average obtained from the tripartite one-shot
game described in Table 1. The social dynamics of
the three finite populations interacting in eight strate-
gies as a combination of Cs and Ds is represented
by a death-birth process using pairwise comparison
(Traulsen et al., 2006; Nowak, 2006a). Individuals
with the highest payoff reproduce and their social be-
havior is adopted by weak opponents, i.e. the invad-
ing agent. For instance an agent B from the Public
population imitates the successful strategic behaviour,
C, by another regional healthcare provider as agent
A. Subsequently, the transition matrix is evaluated by
values given to the associated parameters as depicted
in Table 1. At each time step, there is a probability of
stochastic selection of an individual from a population
whereby an individual B from one of the populations
playing D with payoff fD may imitate another ran-
domly selected individual A with payoff fC from the
same population. The probability of the occurrence
of this action (Nowak, 2006a; Kandori et al., 1993) is
stated in the equation above. The transition probabil-
ity drifts for agent A playing C from k to k± is given
by:

T±(k) =
k

N

(N − k)

N
[1 + e∓β(ΠC(k)−ΠD(k))]−1 (3)

As mentioned earlier, the process has two absorb-
ing states k = 0 and k = N . In mixed populations,
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FIGURE 4: Stationary distribution and fixation probabili-
ties. It illustrates the parameters values as stated for each
simplex, whereas: red arrow represents transition towards
defection, blue arrow transition towards cooperation and
dashed line refers to neutral state. A high percentages 80%
of individuals would adopt cooperation with lower bP in
(II-A) compared to (I-A), whilst an adequate 1% increase
in cooperation with higher bR in (II-B) compared to (I-B)
is registered. The transition probability and frequency de-
pendency are normalised (1/N ), where N = 100. Other
parameters: cI , cT , cM = 1, ε = 0.2 and β = 0.1.

one of the absorbing states at the end would be a pop-
ulation with either all-C or all-D. Determining the dif-
ferent fixation probabilities ρD,C is given by:

ρD,C =


1 +

N−1∑

i=1

i∏

j=1

T−(j)

T+(j)



−1

(4)

The transition matrix Λ with a set of {1, . . . , s} strat-
egy (Encarnação et al., 2016; Nowak, 2006a; Anh
et al., 2013) is:

Λij,j 6=i =
ρji
3

and Λii = 1−
s∑

j=1,j 6=i
Λij (5)

The various fixation probability acquired from ρij is
that a population at a single state i transits to another
state j when a mutant from one of the populations
adopts an s different strategy. In games with large N,
an invader can emerge as the stronger if the condition
below is correct (Sigmund et al., 2010):

N−1∑

i=1

ΠC(k) >

N∑

i=0

ΠD(k) (6)

FIGURE 5: Frequency of strategy CCC for varying the main
parameters bR and bP : (I) for the basic model, (II) extended
model with costly punishment. In (II) u = 0.5 and v = 1.5.
In general, CCC preforms better when punishment is in-
troduced to the basic model. Additionally, significant co-
operation is achieved for sufficiently low bR and large bP .
Other parameters cI , cT , cM = 1, ε = 0.2, N = 100, and
β = 0.1.

Results
Pathways to healthcare cooperation
In conducting a numerical and systematic analysis for
the basic model, we focus on the social interactions
between players in each population and how their
decision influences the level of cooperation to sus-
tain cost-effective services and better patient satisfac-
tion. (Fig. 3 I) represents the computation investigat-
ing the frequency of adopting one of the eight strate-
gies in the basic model by analysing the stochastic
behavior of mutation in one of the three populations
based on the frequency for each of the eight strategies
given in (Table 1). That allows us to measure the ul-
timate behavior of those adopting the same strategy
following the rules of social learning (Rendell et al.,
2010).

In the basic model, refer to (Fig. 3 I-A), where bR
is small (bR = 2), the defection strategy DDD is per-
vasive. The players of each of the three populations
spend most of their time adopting defecting strategies
rather than cooperating strategy. By simulating the
matrix implementing (Eqs. 4 and 5) with a selected
range of examined parameters (bP and bR), as stated
in (Fig. 4), the analysis shows that the DDD strategy
dominates the populations dynamic by 99%. In other
words, healthcare providers have to invest more ef-
forts in order to satisfy patients as better cooperation
CCC is achieved when (bR) is sufficiently high.

As has been observed in the basic model where
punishment is absent, players of each population
spend most of their time at defecting strategies (see
Fig. 4 I-A&B). We started by pairwise computation
of the interaction strategies in the payoff matrix (Ta-
ble 2) based on different values of the parameters (bR
and bP ) to measure the stationary distribution and the
frequency of the eight strategies. Recalling that in our
model the patient has the option to mete out a costly
punishment v to the defecting healthcare provider(s)
at u cost (i.e. legal fees).
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FIGURE 6: Robustness of the results across game configurations and parameters of the model with or without punishment
(using 10000 samples). For the basic model: (I) Parameter values: 0.5 ≤ bP ≤ 5, 0.5 ≤ bR ≤ 5. (II) the model with
punishment, where parameter values: 0.5 ≤ bP ≤ 5, 0.5 ≤ bR ≤ 5, 0 ≤ u ≤ 3 and u ≤ v ≤ 10u randomly sampling from
uniform distributions on the intervals. Other parameters: cM , cI , cT = 1 and ε = 0.2, N = 100,
β = 0.1.

Most finite populations drift towards cooperation
(i.e, CCC) as the most dominant strategy. In the pres-
ence of patient's punishment (see Fig. 4 II-A & B),
cooperators invade defectors when there is a large
enough patient's benefit (namely, bP > 1), where the
populations spend 100% of their time in cooperation.
Our simulation suggests that, regardless of the repu-
tation's benefit, cooperation is highly achievable (see
Fig. 4 II).

Robustness of Parameters
A more compelling analysis has been carried out by
computing 10000 samples with the set of parameters
stated in (Fig. 6) to obtain the stationary distribution
of cooperation for both the basic model and the ex-
tended model. Considering the collected results in the
plot for the basic model in (Fig. 4), it is noticeable that
the mean outcomes in (Fig. 6 I&II) are approximate.

Discussion and Conclusions
In summary, this paper investigates the behavior of individ-
uals within the three finite populations to achieve better co-
operation. By analyzing the performance of each popula-
tion and its preferred path towards evolving and adopting a
new strategy, we explored how to move towards cooperation
while taking into consideration the cost of effectiveness and
patient satisfaction with the provided services. Basically, the
cooperation rules of each of the model's dynamics explained
in (Fig. 1 & 2) clearly show that there are some paths mov-
ing toward full cooperation (see the panels in Fig. 1).

In contrast, avoiding the enveloped state (where some
critics alluded to great fear of collaboration with private
healthcare providers as ‘the beast of the (P-Privatisation)’)
is represented by the DDD node; the public sector repre-
sents the main agent that can take the lead in changing the

rules and influence the behavior of the private sector and pa-
tient by introducing new policies. For different values of bR
and bP , the frequency of strategy CCC has improved in the
extended model (as apposed to the basic model), (see Fig. 5
A & B).

Moreover, the initial result yielded by the basic model
is generally moving towards defection, apart from cases
where a considerably high reputation value is imposed on
the computation process, in which case there is a drift to-
wards defection. In comparison, the results obtained when
patient’s costly punishment is introduced for the populations
show a heightened tendency towards cooperation. This re-
quires not only high patient's satisfaction but also a high
reputation gained by healthcare providers; however, a full
cooperation can be achieved within the basic framework
on considerably low patient’s satisfaction. In this case,
the imposed peer punishment enhances cooperation with
low patient's satisfaction, but it is proved too costly to be
adopted in the proposed healthcare model. Realistic scenar-
ios could be derived from some elective treatments such as
hip replacements (Moscelli et al., 2016). In fact, data col-
lected by the NHS and Care Quality Commission (CQC)
(CQC, 2019), and The Patient Reports Outcome Measures
(PROMs) (NHSDigital, 2019) are well represented in our
proposed model in addition to some NHS statistics that sub-
stitutes for the cost of treatment and expenditures. We do
recognise that our proposed models have some limitations,
such as that our models are not validated against real health-
care data (it will be considered in future work) and the lack
of comparison with other techniques. In this work, we only
focus on analysing the behavior between agents using basic
factors.
Future work will involve investigating the implementation
of institutional punishment, expanding the model (i.e., by
introducing new factors) to study the relation between the
new elements and the dynamic behaviour of individuals. Fi-
nally, our proposed model directs attention to how the pa-
tient’s decision would impact the process of collaboration
between healthcare providers, and to the effectiveness of
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management decisions made by the private sector in influ-
encing the patient's choice of cooperation.
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Evolutionary game theory (EGT) has become a powerful
mathematical framework for the modelling and analysis of
complex biological/economical systems whenever there is
frequency dependent selection – the fitness of an individual
does not only depend on its strategy, but also on the com-
position of the population in relation with (multiple) other
strategies (Maynard Smith and Price, 1973; Hofbauer and
Sigmund, 1998). The payoff from the games is interpreted
as individual fitness, naturally leading to a dynamical ap-
proach. Random evolutionary games in which the payoff
entries are random variables form an important subclass of
EGT. They are necessary to model social and biological sys-
tems in which very limited information is available, or where
the environment changes so rapidly and frequently that one
cannot describe the payoffs of their inhabitants’ interactions
(Fudenberg and Harris, 1992; Gross et al., 2009). As in
classical game theory with the Nash equilibrium, see e.g.
(McLennan, 2005), the analysis of properties of equilibrium
points in EGT has been of special interest, see e.g. (Gokhale
and Traulsen, 2010). These equilibrium points predict the
composition of strategy frequencies where all the strategies
have the same average fitness. In random games, due to the
randomness of the payoff entries, it is essential to study sta-
tistical properties of equilibria. How to determine the distri-
bution of internal equilibria in random evolutionary games
is an intensely investigated subject with numerous practi-
cal ramifications in ecology, population genetics, social sci-
ences, economics and computer science providing essential
understanding of complexity in a dynamical system, such as
its behavioural, cultural or biological diversity and the main-
tenance of polymorphism. Properties of equilibrium points,
particularly the probability of observing the maximal num-
ber of equilibrium points, the attainability and stability of the
patterns of evolutionarily stable strategies have been stud-
ied recently (Gokhale and Traulsen, 2010; Han et al., 2012;
Gokhale and Traulsen, 2014). However, as these papers used
a direct approach that consists of solving a system of poly-
nomial equations, the mathematical analysis was mostly re-
stricted to evolutionary games with a small number of play-
ers, due to the impossibility of solving general polynomial

equations of a high degree.
In this extended abstract, we present a summary of our

recent works (Duong and Han, 2015, 2016; Duong et al.,
2018b,a), in which we analyze random evolutionary games
with an arbitrary number of players. The key technique
that we develop is to connect the number of equilibria in an
evolutionary game to the number of real roots of a system
of multi-variate random polynomials (Bharucha-Reid and
Sambandham, 1986; Edelman and Kostlan, 1995). Assum-
ing that we consider d-player n-strategy evolutionary games,
then the system consists of n − 1 polynomial equations of
degree d− 1:

∑

0≤k1,...,kn−1≤d−1,
n−1∑
i=1

ki≤d−1

βi
k1,...,kn−1

(
d− 1

k1, ..., kn

) n−1∏

i=1

yki
i = 0,

for i = 1, . . . , n − 1. Here βi
k1,...,kn−1

:= αi
k1,...,kn

−
αn
k1,...,kn

where αi0
k1,...,kn

:= αi0
i1,...,id−1

is the payoff of the
focal player and ki, 1 ≤ i ≤ n, with

∑n
i=1 ki = d − 1, is

the number of players using strategy i in {i1, . . . , id−1}. In
(Duong and Han, 2015, 2016), we analyze the mean number
E(n, d) and the expected density f(n, d) of internal equi-
libria in a general d-player n-strategy evolutionary game
when the individuals’ payoffs are independent, normally dis-
tributed. We provide computationally implementable for-
mulas of these quantities for the general case and charac-
terize their asymptotic behaviour for the two-strategy games
(i.e. E(2, d) and f(2, d)), estimating their lower and upper
bounds as d increases. For instance, under certain assump-
tions on the payoffs, we obtain

• Asymptotic behaviour of E(2, d):
√
d− 1 . E(2, d) .

√
d− 1 ln(d− 1).

As a consequence,

lim
d→∞

lnE(2, d)

ln(d− 1)
=

1

2
.
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• Explicit formula of E(n, 2): E(n, 2) = 1
2n−1 .

For a general d-player n-strategy game, as supported by ex-
tensive numerical results, we describe a conjecture regard-
ing the asymptotic behaviours of E(n, d) and f(n, d). We
also show that the probability of seeing the maximal possi-
ble number of equilibria tends to zero when d or n respec-
tively goes to infinity and that the expected number of stable
equilibria is bounded within a certain interval.

In (Duong et al., 2018b) we generalize our analysis for
random evolutionary games where the payoff matrix entries
are correlated random variables. In social and biological
contexts, correlations may arise in various scenarios particu-
larly when there are environmental randomness and interac-
tion uncertainty such as in games of cyclic dominance, co-
evolutionary multi-games or when individual contributions
are correlated to the surrounding contexts (e.g. due to lim-
ited resource)(Szolnoki and Perc, 2014; Santos et al., 2012).
We establish a closed formula for the mean numbers of in-
ternal (stable) equilibria and characterize the asymptotic be-
haviour of this important quantity for large group sizes and
study the effect of the correlation. The results show that de-
creasing the correlation among payoffs (namely, of a strate-
gist for different group compositions) leads to larger mean
numbers of (stable) equilibrium points, suggesting that the
system or population behavioral diversity can be promoted
by increasing independence of the payoff entries.

As a further development, in (Duong et al., 2018a) we
derive a closed formula for the distribution of internal equi-
libria, for both normal and uniform distributions of the game
payoff entries. We also provide several universal upper and
lower bound estimates, which are independent of the under-
lying payoff distribution, for the probability of obtaining a
certain number of internal equilibria. In addition, the asymp-
totic behaviour of the probability of having no internal equi-
libria is then obtained (Can et al., 2018). The distribution
of equilibria provides more elaborate information about the
level of complexity or the number of different states of bio-
diversity that will occur in a dynamical system, compared to
what obtained with the expected number of internal equilib-
ria.

In short, by connecting EGT to random polynomial the-
ory, we have achieved new results on the expected number
and distribution of internal equilibria in multi-player multi-
strategy games. Our studies provide new insights into the
overall complexity of dynamical systems, including biologi-
cal, social and Artificial Life ones, as the numbers of players
and strategies in an interaction within the systems increase.
As the theory of random polynomials is rich, we expect that
our novel approach can be extended to obtain results for
other more complex models in population dynamics such as
the replicator-mutator equation and evolutionary games with
environmental feedback (Weitz et al., 2016).
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Abstract

Self-organized and distributed control methods are increas-
ingly important as they allow multi-agent systems to scale
more readily than centralized control techniques. Further-
more, these methods increase system robustness and flexi-
bility. In the online multi-object k-coverage domain stud-
ied here, a collective of autonomous agents must dynami-
cally form sub-teams to accomplish two concurrent tasks:
target discovery and coverage. Once a target is discovered,
the collective of agents must create a sub-team of k-agents
to cover the target. The work presented here introduces a
novel, entropy-based task selection technique that incorpo-
rates signal suppression behaviors found in bee colonies. We
test the technique in the online multi-object k-coverage do-
main while exploring three team properties: heterogeneity,
team size, and sensor ranges, and their impact on multi-task
accomplishment. Results show that signal suppression helps
avoid over-provisioning of team resources to individual tar-
gets, dynamically creating sub-teams that simultaneously ac-
complish target discovery and coverage tasks.

Introduction
Computational systems composed of several independent
subsystems often rely on central coordination to achieve
shared goals. However, as the size of the system increases,
centralized controllers become overwhelmed by increasing
complexity, resulting in the need for decentralized control
approaches. This becomes even more challenging when
different tasks need to be tackled concurrently to achieve
an overall goal. In order to meet this challenge, this
work presents a novel self-organizing approach using an
entropy-maximization task selection technique that incor-
porates signal suppression behaviors found in bee colonies.
The technique enables autonomous agents to dynamically
select and form teams to tackle different but complemen-
tary tasks. These teams are formed exploiting local knowl-
edge gained from on-board sensors and information shared
among nearby agents. At the same time, the suppression sig-
nal limits information sharing to a specific number of agent
required to accomplish the task.

The authors test the technique in a version of the online
multi-object k-coverage problem (Esterle and Lewis, 2017).

In this domain, all agents can sense targets within their re-
spective sensing range. If an agent has a target within its
sensing range, it may elect to follow it, once followed, the
target is considered covered. Together, the collective of
agents aims to maximize the number of targets covered by k
agents.

The chosen domain presents several challenges. One, the
set of targets is not fixed and may change over time. This
means targets can arise or disappear at any moment, creat-
ing the need for agent robustness and flexibility. Two, agents
do not know the number or locations of targets within the
global environment, constraining agent knowledge. Three,
both targets and agents are not static, moving freely through
the environment, challenging the agent collective to contin-
uously find and cover targets.

This problem gives rise to an interesting agent dilemma:
should an agent follow a target in order to maximize the
number of agents covering it or continue to search through
the space in order to increase the probability of detecting
new targets. We aim to overcome this dilemma by introduc-
ing multiple teams for different purposes. First, we divide
the agents into two teams where the first team’s emphasis is
on target discovery while the second team focuses on cov-
erage of those targets. Second, the covering agents dynam-
ically team up to ensure each target is provisioned with k
agents. The relation between the team sizes and the amount
of targets and its effect on the overall team performance is
previously unexplored. Therefore, this work also studies the
impact of three team and agent properties: heterogeneity,
team size, and sensor ranges, on team performance in ac-
complishing target detection and coverage goals.

Specifically we are interested in the following three re-
search questions:

1. Can an entropy-maximization technique, aided by bee
colony based signal suppression, be used to inform a
collective autonomous decision making process, where
agents decide whether to cover a target or continue search-
ing for other targets? Furthermore, what is the effect of
such an approach on dynamic team formation and selec-
tion?
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2. Is a homogeneous team of tracking agents, employed with
target detection and coverage, more effective than hetero-
geneous teams composed of tracking and observer agents
each tasked with different goals, i.e. detection and cover-
age of targets over time?

3. What is the impact of the communication and sensing
ranges of individual robots on the achieved rates of de-
tection and k-n coverage when employing homogeneous
and heterogeneous teams?

The remainder of this paper is structured as follows. First
we give an overview of related work and the state-of-the-
art. Afterwards, we discuss the problem in detail and our
methodology. Thereafter, we present and discuss the results
and outcomes of our experiments. We finish the paper with
a summary and an outlook on future work.

Related Work
This work investigates the potential benefits of team work
through the lens of heterogeneous and homogeneous teams
engaged in a two-dimensional, k-n coverage domain. The
methodology presented here tests three team properties: an
entropy-based agent decision function, group size, and sen-
sor ranges, and their impact on goal accomplishment.

The k-coverage problem combines the Cooperative Multi-
robot Observation of Multiple Moving Targets (CMOMMT)
problem introduced by Parker and Emmons (1997) and the
k-coverage problem associated with sensor networks pro-
posed by Huang and Tseng (2005). The problem’s main
premise is for a population of agents to discover random tar-
gets in space and assign k agents to them, where k is a prede-
termined number of agents. Researchers have used various
methods to try and solve the k-coverage problem. For ex-
ample, Werger and Matarić (2001) assigned weights to each
target based on the number of robots and targets in the en-
vironment, and agents would broadcast their eligibility to
engage the target to allow for team coordination. However,
these assignments occurred with a priori knowledge which
is not realistic in real-world environments.

To overcome this limitation, Jung and Sukhatme (2006)
proposed enabling robots to calculate target weights at run-
time which allowed robots, who shared this information with
the collective, to distribute themselves accordingly through
the search space. Kolling and Carpin (2007) allowed agents
to request help from others to create longer loiter times for
agents over assigned targets. They also added a signaling
feature where agents could request help in covering targets
as they appeared.

In a similar manner, bee colonies use direct signaling to
marshal help from other bees. As foragers return to the
colony, they recruit other bees to help collect resources via
vigorous waggle dances (Rajasekhar et al., 2017). In en-
gineered systems, Tolba et al. (2016)’s agents used signal-
ing to gather underwater search vessels towards a discov-

ered sunken target, while agents in Beard et al. (2002) used
signaling to coordinate flight plans and rendezvous points.
Similarly, in a search and rescue domain, robots in Jennings
et al.’s (1997) experiments used signaling to ask others for
help in accomplishing their tasks. Signaling in both natu-
ral and engineered systems serves as a coordination medium
over which information, such as target locations and agent
capabilities, are shared. In this work, agent signaling is used
to inform, i.e. share target locations, as well as to influence
other agent behaviors, akin to bees suppressing the waggle
dances of other bees (Lakhtakia and Martı́n-Palma (2013)).

Theraulaz et al. (1998) suggested that individual agents
should both be able to autonomously select teams, as well
as switch teams when necessary. Lewis et al. (2015) showed
that team performance can be increased if individual agents
change behaviors based on the current system state. Al-
though Groß et al. (2008) argued against agent specializa-
tion, and showed that teams could accomplish goals without
it, many natural systems do evolve specialized agents.

Wilson (1979) theorized that environmental pressures cre-
ated the conditions for the emergence of specialized castes
in ant colonies. It is logical to assume that such specializa-
tion serves the needs of the ant colony in a manner that is
worth the energy required to create different types of ants in
the same colony. This work tests the effectiveness of het-
erogeneous teams, i.e. teams with specialized agents, and
homogeneous teams, i.e. teams without specialized agents.
Agent behaviors rely on both agent suppression signals as
well as an entropy-based decision process.

Using entropy to guide agent decisions is a relatively re-
cent approach in multi-agent systems. Agents in Parunak
and Brueckner (2001), Wissner-Gross and Freer (2013), and
Mann and Garnett (2017), used entropy calculations to guide
immediate agent decisions. Each showed that some mea-
sure of system entropy could enable dynamic agent coordi-
nation and team building. King and Peterson (2018) used
entropy maximization to guide target selection in an Un-
manned Aerial Vehicle (UAV) search domain. Similar to
this work, simulated UAVs searched a 2D space for moving
targets. UAVs would swarm to detected targets within sensor
range; however, the UAVs were not held to specific k-n cov-
erage demands. Instead, agents evenly divided themselves
among available targets by polling local neighbors and se-
lecting the target that resulted in the highest increase in lo-
cal entropy. As even task coverage is inadequate for the k-n
coverage problem in this work, a suppression signal - a be-
havior inspired by bee colonies - was incorporated into the
agent decision process.

The suppression behavior creates a dynamic
decentralized-control mechanism to prevent over-
provisioning. Unlike previous works, such as Hefeeda
and Bagheri (2007), Fusco and Gupta (2009), and Liu et al.
(2013), both agents and targets move through the space.
As targets randomly appear, and disappear, a priori based
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approaches, e.g. Elhoseny et al. (2018), cannot be used, as
agent teams must adapt at run-time to detected targets. The
environmental dynamics requires teams to self-organize
into sub-teams to be able to meet both goals of k-n coverage
and target detection. Dynamic team self-organization can
be accomplished by specialized agents, or encoded behavior
responses to local phenomena.

The methodology presented here extends previous work
by incorporating entropy-maximization and agent signal-
ing suppression techniques to create a decentralized-control
mechanism. This mechanism allows dynamic team, and
sub-team, formation in response to current environmental
conditions. Additionally, it explores the potential benefits
of specialized teams in a dynamic, k-coverage domain.

Problem Statement
At its core, this is a k-assignment problem coupled with re-
source constraints. Agents must position themselves in the
environment to effectively detect a large number of targets
whose appearance, time and position, are unknown a pri-
ori. Furthermore, once agents detect targets, they must meet
agent-target distribution (i.e. k-n coverage) requirements
while still positioning themselves to find, and cover, any ad-
ditional targets that may appear.

Formally, given a set of targets, Ot = {o1, o2, ..., on},
at time t and a set of agents embodied in mobile robots,
R = {r1, r2, ..., rm}, agents must discover and provide a
k-n coverage of targets who appear with a probability of
ρ = 0.60 and duration of λ = [500, INF ). The point,
li(t) = (xi, yi), represents an agent’s or target’s location in
2D space at time t. All agents and targets move through the
2D space at a set velocity, vi(t), and heading, ωi(t) with all
agents being assigned a random initial heading at t0. Agents
have a sensing range σ and may communicate within a set
range χ.

Two types of target discovery and tracking agents ex-
ist: trackers and observers. Tracker agents can discover
and track, i.e. cover, detected targets within sensor range,
or those shared by observer agents. Observer agents can
only discover targets. Once a target is discovered, Observer
agents broadcast the location of the target to all agents within
range. Tracker agents add the target to their target lists,
and then decide whether to cover the target or not. Tracker
agents never broadcast the location of any discovered targets
to their neighbors.

We consider that an agent detects targets when they are
within the sensing range of the robot, i.e. for a distance dij
between a target i and an agent j and dij < σj . Further,
deti = 1 if ∃j ∈ R(dij < σj) indicates that a target i has
been detected by at least one robot. Agents are unaware of
the total number of targets in the environment. They are only
aware of targets within their sensor range, or those shared
by observer agents. The first goal of the set of agents is to
maximize the number of detected targets in the environment:

detmax = max

n∑

i=1

deti (1)

The second goal of our agents is to maximize the number
of targets being covered by k agents:

kcovmax = max

n∑

i=1

kcovi. (2)

We consider a target i covered covij = 1 by a robot j
if the agent decides to follow the target and kcovi = 1 if∑m
j=1 covij = k or 0, otherwise.

Entropy-based Team Self-organization
Our proposed approach aims to enable agents to achieve two
goals: detect targets as they appear and provide k-n cover-
age of detected targets. Agents create k-n coverage of tar-
gets through entropy-maximization and signaling. When a
target is detected, agents poll all agents within their com-
munication range to create an agent-centric distribution of
agents to targets. Using Shannon’s entropy equation (Equa-
tion 3) (Shannon, 1948), agents select the target that creates
the highest entropy value for their neighborhood.

H = −
∑

i

pi log2 pi (3)

Specifically, in Equation 3, pi is calculated by dividing
the number of known agents currently assigned to target i
by the total number of agents within sensor range. Each
agent adds itself to the number of agents assigned to both
the target and population for each known target, resulting in
a local entropy score for that target. The agent then selects
the target that produces the highest resultant entropy score,
i.e. maximizes its local entropy score.

The shortfall with this method is agents will create a uni-
form distribution across known targets which, for k-n cov-
erage problems, is insufficient. To overcome this, agents
already engaged in a target with maximized coverage send
suppression signals to other agents within their communi-
cation range. When an agent receives a suppression signal,
it drops that target from its detected list, allowing it to ei-
ther engage other known targets, or continue to search for
undiscovered ones.

Tracker, observer and target agents possess different up-
date rules that follow Reynold’s flocking method (Reynolds
(1987)) with respect to separation and goal seeking behav-
iors. Tracker agents update their position by moving towards
any detected targets, gi(t), while avoiding other tracking and
observer agents, sepi(t) (4). Observer and target agents up-
date their positions similarly, only adding the separation vec-
tor, sepi(t), to their update rule (5). Resultant vectors were
capped by a max movement value of 0.688 pixels per time
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Table 1: Control and independent variables.
Control:
Visual Field 360 degrees
Velocitymax 0.688 pixels/time-step
Steering Forcemax 0.50
Targets 10
Prob Target Appearing 0.60
Prob Target Disappearing 0.50

Independent:
Tracker Team Size 5, 10, 15, 20, 25
Observer Team Size 0, 5, 10, 15
Tracker Sensor Range 100, 150, 200
Observer Sensor Range 200, 250, 300, 350

step. The behavior of an agent ai at time ti can be described
as:

li(t+ 1) = li(t) + vi(t) + sepi(t) + gi(t) (4)

li(t+ 1) = li(t) + vi(t) + sepi(t) (5)

ωi(t+ 1) = ωi(t) + αi(t) (6)

Each agent autonomously updates their internal heading
vector, ωi(t), with respect to its desired heading, αi(t),
capped by a max steering force of 0.05 at each time-step.

Experiment
Experiments ran a mixed number of trackers, [5-25], and
observers, [0-15], through 1,000 simulations of 5,000 time
steps a piece. Teams without observers, i.e. observers = 0,
were considered homogeneous. Heterogeneous teams were
composed of any number of tracker and observer agents
where the number of observers was greater than zero. Both
tracker and observer agents were allowed to move freely
about a 1,000 by 1,000 pixel grid. Tracker sensor and
communication ranges were initialized at 50 pixel intervals
[100,200] with observer sensor ranges spanning 50 pixel in-
tervals [200-350]. Up to two targets from a ten target pool
were randomly selected and placed into the environment ev-
ery 500 time steps. Targets freely floated through the grid
guided solely by one avoidance rule: keep a 25 pixel dis-
tance between it and any other object. All agents and targets
were bounded by the grid. Initial positions for all agents
and targets were randomly assigned. We uploaded a video,
showing a single experimental run1. See Table 1 for control
and independent variables.

1Video of simulation: https://vimeo.com/337228864
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Figure 1: Average detection rates across all sensor ranges
with teams of n trackers and m observers (x-axis), k = 3.

Results
Figures 1 and 2 show the average detection and coverage
rates achieved by n tracker and m observer teams across
all sensor ranges. Results indicate that the entropy maxi-
mization with signal suppression method creates dynamic
teams capable of high target detection and coverage rates.
Specifically, the method leads to dynamic, self-organization
of sub-teams capable of providing the desired k-n coverage
rates (i.e. k = 3 in this case). Furthermore, it becomes clear
that the suppression signal used in our approach, prevents
over-provisioning targets with more than k agents. However,
distinct differences in team behaviors appear as the number
of observers increases across all sensor ranges.

Results show a positive correlation between heteroge-
neous teams, i.e. those composed of specialized observer
and tracker agents, and k-n coverage rates. However, as
the number of observer agents increase in these teams, the
detection rate immediately decreases. As more observer
agents are added, a slow, positive increase in detection oc-
curs, but never reaches the success of homogeneous teams
in the space.

Although this result may be surprising, a closer inspection
of heterogeneous team behavior explains the disparity. As
observer agents locate targets and propagate target locations
to tracker agents within sensor range, tracker agents begin
clumping together. Information sharing ends up creating
dense pockets of tracker agents pursuing targets in the same
vicinity. The tracker agent sensor and communication range
limitations cause a delay in suppression behaviors. The de-
lay ends up altering the course of multiple tracker agents,
resulting in multi-agent sensor overlap, decreasing the sen-
sor range of the entire population. However, these pockets
do result in higher coverage rates as more agents reside in
an area to cover discovered targets.
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Figure 2: Average saturation rates across all sensor ranges
with teams of n trackers and m observers (x-axis), k = 3.

Homogeneous teams, not sharing new target information,
spread out across the grid, increasing the rate of task detec-
tion. Furthermore, signal suppression occurs immediately as
sensor and communication ranges are equal for all agents,
which avoids agent clumping. Homogeneous teams, how-
ever, do have the lowest coverage (i.e. saturation) rates,
which makes sense given their population density is lower
across the entire domain. The authors conclude that these
behaviors create a trade-off between homogeneous and het-
erogeneous teams in the k-n domain.

From Figure 1, it is clear that heterogeneous teams do not
approach the detection rates of homogeneous teams even
when outnumbering homogeneous teams by a margin of
5:1. Coverage rates are a little more difficult to generalize
as some heterogeneous teams peak with teams that contain
10 observers, while others, require less (e.g. teams with
15 tracking agents), or more (e.g. teams with 10 tracking
agents). However, all experience a positive increase in cov-
erage rates as the population size of observers increases. No-
tably, target coverage rates do approach the desired k = 3
rate. Theoretically, a pure 3:1 rate would require 30 tracker
agents to cover 10 tasks; however, the results indicate that
the desired 3:1 rate can be accomplished with fewer tracker
agents. This shows that both the introduction of observer
agents and entropy-based, dynamic team formation can re-
duce the number of tracker agents required to cover certain
regions.

Table 2 presents the top three performing teams for de-
tection and coverage tasks across all sensor ranges. Overall,
homogeneous teams make up 47% of the highest perform-
ing detection teams with a 74.47% average detection rate
compared to heterogeneous teams that achieved a 72.16%
detection rate. This result again highlights the difficulty het-

Table 2: Top 3 teams and their detection and saturation rates
across all sensor ranges. TR and OR represents sensing
range of tracker and observer agents, respectively. High 3
D and High 3 S the three highest results for detection and
saturation (k-n coverage), respectively. T and O stands for
the number of used tracker and observer agents, respectively.

TR OR High 3 D T O High 3 S T O
100 200 0.65 10 0 2.986 25 10

0.64 10 5 2.963 15 10
0.63 15 5 2.937 20 5

100 250 0.9 25 0 3.11 25 15
0.75 25 15 2.801 25 10
0.72 20 0 2.775 5 10

100 300 0.68 25 0 3.479 25 10
0.67 20 10 3.066 5 10
0.67 10 0 2.981 15 10

100 350 0.78 20 10 3.014 15 10
0.78 20 0 2.93 25 10
0.75 10 15 2.92 25 5

150 200 0.68 20 0 2.847 15 15
0.67 25 10 3 25 10
0.67 20 0 2.835 25 15

150 250 0.69 25 5 3.392 20 10
0.69 25 0 3.073 20 15
0.68 25 15 3.002 15 5

150 300 0.7 15 0 2.867 25 15
0.69 25 0 2.815 25 0
0.69 20 10 2.769 15 5

150 350 0.91 20 0 2.81 25 15
0.8 10 5 2.793 20 15
0.77 15 10 2.793 20 5

200 200 0.85 10 0 3.152 25 10
0.75 25 15 3.131 15 10
0.73 15 15 3.081 20 5

200 250 0.67 20 15 3.196 15 15
0.66 25 15 3.007 15 5
0.66 25 0 2.956 20 10

200 300 0.77 25 0 2.842 25 15
0.76 15 0 2.792 20 15
0.75 20 15 3.789 20 10

200 350 0.88 20 0 3 25 5
0.85 15 10 2.976 25 10
0.78 20 5 2.828 10 0

erogeneous teams have in balancing detection rates with re-
quired coverage costs. For coverage rates, heterogeneous
teams comprise 94% of the top performing teams with an av-
erage 3.00 saturation rate, with teams of 25 tracking agents,
with 10 to 15 observer agents, making up the majority of the
top performers. These results further solidify the argument
that heterogeneous teams, i.e. teams with specialized agents,
can create a benefit to the entire population with respect to
task completion.

In our next set of results, we used Boneabau’s Fixed
Threshold Model (FTM) (Bonabeau et al., 1999) (Equa-
tion 7) to create a correlation coefficient for detection and
saturation rates.

Tθ(S) =
sni

sni + θni
(7)

Normally, agents use the FTM to decide which task to en-
gage. It is used here for its mathematical properties to yield
a correlation value along the interval, (0,1]. The stimulus
parameter, si, represents the team detection rate with pa-
rameter, θi, representing the normalized team k-n coverage
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Figure 3: Correlation between detection and k-n coverage
for mixed teams of 5 trackers and n observer agents across
tested sensor ranges, with k = 3.

value. If detection dominates, then the FTM produces values
close to 1, while if k-n coverage dominates, then the FTM
produces values close to 0. If si and θi are close to equal,
then the FTM produces values near 0.5. Once graphed, these
values yield an intuitive understanding of how the team per-
formed with respect to both detection and coverage tasks.

Figures 3-7 present correlation plots using Bonabeau’s
FTM function for all possible teams types across all sensor
range combinations. These plots provide a measure of how
well certain team combinations work towards both goals si-
multaneously, i.e. target detection and coverage. For exam-
ple, in Figure 3, a heterogeneous team of 5 tracking agents
and 5 observer agents with sensor ranges set to 150 and 200
pixels respectively provides an almost perfect balance (cor-
relation = 0.500) of detection and coverage. These plots
also provide insight on teams that excel at either target de-
tection or coverage. Again from Figure 3, a team of 5 track-
ing agents and 20 observer agents with sensor ranges of 100
and 300 provides the best coverage rate, while a homoge-
neous team of 5 tracking agents with a sensor range of 150
provides the best detection rate.

A closer inspection of these correlation plots yields some
interesting behaviors with respect to the difference in sen-
sor ranges in heterogeneous teams. As far as detection rates,
there is a general increase in detection rates as the differ-
ence between tracker and observer sensor ranges grows. Al-
though this increased detection rate never exceeded the de-
tection rates of the homogeneous teams, one could hypothe-
size that the detection rates of heterogeneous teams would
eventually match, and possibly exceed, the homogeneous
teams. Coverage rate results were more difficult to decipher.

In the 5 and 10 tracker team scenarios (Figure 3 and 4),
correlation measures do not show any sensor range patterns
other than a chaotic, oscillatory nature. However, starting
at 15 tracker teams (Figure 5), a couple of heterogeneous
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Figure 4: Correlation between detection and k-n coverage
for mixed teams of 10 trackers and n observer agents across
tested sensor ranges, with k = 3.
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Figure 5: Correlation between detection and k-n coverage
for mixed teams of 15 trackers and n observer agents across
tested sensor ranges, with k = 3.

teams begin showing more stable behavior. In the 15 tracker
team scenario, both the homogeneous 15 tracker team and
the heterogeneous 15 tracker, 5 observer agent team exhibit
small oscillatory behaviors but the highs and lows remain
numerically close, i.e. fairly stable. Similarly, in the the
20 and 25 tracker team scenarios (Figures 6 and 7) both
20:5, 25:5, 20:15, and 25:15 heterogeneous teams exhibit
the same, mostly stable, behavior across all sensor ranges.
It is possible that larger teams are less affected by the dif-
ferences in sensor ranges between tracker and observation
agents, yielding more stable dynamics and behaviors, lend-
ing further validity to the conclusion that specialized teams
are better than non-specialized ones in multi-task domains.
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Figure 6: Correlation between detection and k-n coverage
for mixed teams of 20 trackers and n observer agents across
tested sensor ranges, with k = 3.
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Figure 7: Correlation between detection and k-n coverage
for mixed teams of 25 trackers and n observer agents across
tested sensor ranges, with k = 3.

Discussion
The experimental results showed that homogeneous and het-
erogeneous teams excel in different tasks. Homogeneous
teams were able to discover more targets on average than
heterogeneous teams. In fact, almost all homogeneous
teams experienced a decline in detection rates when observer
agents were added to the team. Heterogeneous teams dom-
inated the coverage task. The majority of top performing
teams with the coverage task goal (k = 3) were heteroge-
neous with a mix of 25 tracking agents and 10 to 15 observer
agents. These results indicate a trade-off between target dis-
covery and coverage for heterogeneous teams.

As discussed earlier, heterogeneous teams create dense
pockets of tracking agents, reducing the effective sensor
range of the team in 2D space. However, these pockets lead

to better saturation rates over time as more tracking agents
are able to move towards a newly discovered target. Addi-
tionally, as the agents are in closer proximity to one another,
suppression signals keep coverage teams to the desired k-
n ratios, in turn minimizing the wast of resources per tar-
get. As no clear team compositions dominated any others,
we cannot conclusively state which teams would fare bet-
ter in certain sensor range combinations, although we can
conclude that heterogeneous robot teams outperform homo-
geneous teams in target coverage.

Results clearly show that agents using a local entropy
maximization technique, coupled with a signal suppression
strategy, produces robotic teams capable of high target de-
tection and k-n coverage rates. Entropy-maximization based
techniques lead to even agent distributions, showing that
the signal suppression strategy is pivotal for the technique
to reach the desired k-n coverage ratios. Other techniques,
such as agent auctioning, would have to be tested against
the entropy-maximization technique before one can draw
any clear conclusions on effectiveness. Additionally, these
future tests would need to track and compare the number
of messages passed between agents to establish whether the
technique is more efficient.

The impact of communication and sensing ranges of indi-
vidual robots on the achieved detection and saturation rates
appears mixed. All of the heterogeneous teams exhibited
oscillatory behaviors with no apparent correlation to sensor
range differences between tracker and observation agents.
Although, at larger team populations, some heterogeneous
teams showed less variability in their correlation values,
meaning the amplitude of their oscillations were smaller.
The authors can only conclude that sensor ranges increases
are positively correlated to the accomplishment of both tar-
get detection and coverage. However, no correlations were
found in the differences between tracker and observer agent
sensor ranges.

Conclusion
The methodology presented here showed that agent special-
ization provided benefits only in the accomplishment of de-
sired k-n coverage tasks. Homogeneous teams were able to
outperform heterogeneous teams in detecting more targets.
However, as the number of agents in the heterogeneous team
grew, they closed the detection rate gap. These results indi-
cate that a possible ratio of tracker to observer agents could
exist in which heterogeneous teams are able to exceed ho-
mogeneous team accomplishment scores in both tasks.

Furthermore, experiments showed the validity of entropy-
based agent decision functions. Entropy-maximization cou-
pled with suppression signals created the conditions for the
emergence of tracker agent sub-teams capable of both de-
tecting targets and providing k-n coverage. Interestingly,
teams using the entropy technique were able to meet the de-
sired k-n coverage percentage (i.e. k = 3) without requiring
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the theoretical population to achieve the 3:1, agent to task
ratio, showing a possible resource efficiency.

Future work could start by comparing different self-
organization algorithms and techniques with respect to not
only task detection and coverage, but also the number of
communication messages required for coordination. Other
work could compare and contrast centralized versus decen-
tralized techniques in a similar manner. Finally, alternative
autonomous agent decision functions could be created and
tested.
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Abstract 
Change is inevitable in this fast-moving world. As the 
environment and people’s needs continuously change, so must 
the project. In our previous work, we developed an agent-based 
model of human collaboration that incorporates individual 
personalities. In this work, we applied a genetic algorithm to 
select the optimal personality combinations of a team in order to 
cope with different types of project change. We studied change 
in the context of three types of tasks: disjunctive (team 
performance is the performance achieved by the best performing 
individual), conjunctive (team performance is the performance 
achieved by the worst performing individual), and additive (team 
performance is the total performance of the group). Results 
reveal that different compositions of team personalities are 
suitable for different dynamic problems and task types. In 
particular, optimal personalities found for static problems differ 
from optimal personalities found for dynamic problems. 

Introduction 
Dynamically changing problems are a fact of life. Teams of 
people face change every day. Software developers frequently 
find themselves chasing a moving target as clients change their 
minds about features to be implemented (Lim & Finkelstein, 
2011). Architects and builders must change their solutions as 
regulators decide there have been infringements of rules. 
Doctors must modify their treatments as illnesses follow 
unexpected courses. Engineers must change their processes as 
new technologies emerge. Companies must alter their products 
as markets change. People are remarkable in their adaptability 
and ability to cope with such change. Yet not all people are 
suited for all types of change. In every team, some may be 
better suited to cope with certain forms of change compared to 
others, and this may be related to their personalities.  

In a pioneering study of group processes and productivity, 
Steiner (1972) found that tasks can be classified based on how 
individual contributions of members of a group are combined. 
For example, in disjunctive tasks, team performance is the 
performance achieved by the best performing individual (e.g., 
mathematicians proving a theorem), in conjunctive tasks, team 
performance is the performance achieved by the worst 
performing individual (e.g., a factory assembly line), and in 
additive tasks, team performance is the total performance of the 
group (e.g., a relay race or tug of war). 

In our previous work, we developed an agent-based model 
of human collaboration and studied the effectiveness of 
different personalities at solving problems with different levels 
of noise (Lim & Bentley, 2018). We also used the model to 
investigate the effects of diversity in background and 
personality on team performance (Lim & Bentley, 2019). 

In this work, we hypothesise that different combinations of 
personalities are needed for different dynamic problems and 
task types. We modify the model in order to simulate dynamic 
problems and types of task, and add a genetic algorithm in order 
to optimise the best team personalities to solve each task type 
and dynamic problem.  

The rest of the paper is organised as follows. The next 
section describes the background, the section after that 
describes the agent-based model of human collaboration. Then 
we describe the modifications we made to the model for this 
work, followed by the experiments, results and conclusions. 

Background 
Agent-based models have been used to study the effects of 
human personalities in collaborative work, such as termites 
gathering food (Salvit & Sklar, 2012), ant colony (Ahrndt et al., 
2015) and crowd movement (Durupinar et al., 2011). In these 
models, each agent is provided with a human personality, 
which determines how it behaves and interacts with other 
agents. 

Agent-based models have been optimised in previous work 
using genetic algorithms (GAs). Heppenstall et al. (2007) used 
a GA to optimise an agent-based model of a retail market. They 
model petrol stations as agents and integrated additional system 
behaviour through the use of spatial interaction model. A GA 
is then used to optimise the model, producing results that match 
those derived by expert analysis through rational exploration. 

Wang et al. (2009) used a GA to optimise partner selection 
for virtual enterprises that reduces their collaboration time and 
cost. They consider three types of collaborations (logistics, 
information transmission and capital flow) and two task 
allocation scenarios (allocating all tasks to one partner and 
allocation each task to different partners). 

Knoester et al. (2013) used the AVIDA platform (Lenski et 
al., 2003) to study the evolution of consensus, a cooperative 
behaviour in which members agree on information sensed in 
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their environment. They used a form of evolutionary 
computation where a population of digital organisms is subject 
to instruction-level mutations and natural selection, and placed 
them into groups with fitness determined by their ability to 
perform consensus. Their experiments found that while genetic 
heterogeneity within groups increases the difficulty of the 
consensus task, a surprising number of groups were able to 
evolve this cooperative behaviour. 

Lim and Bentley (2019) used a GA to investigate the effects 
of differing initial knowledge within team members as they 
collaborate on a shared task. The GA is used to evolve the 
optimal starting positions of each team member (representing 
their initial idea about the solution) and diversity is measured 
as the distance between their starting positions. The 
experiments found that diversity in team members’ initial 
knowledge improves team performance, although teams with 
diverse personalities are more resilient to effects of diversity.  

In this work we model teams collaborating to solve 
dynamically changing problems. Most research on dynamic 
optimisation has so far concentrated on tracking the moving 
optima as closely as possible (Jin, 2011). In practice, this is 
costly, if not impossible. To address dynamic optimsation 
problems more practically, Jin et al. (2013) introduced an 
optimisation algorithm that aims to find an acceptable (optimal 
or sub-optimal) solution that changes slowly over time, rather 
than the moving global optimum. A local approximation model 
is constructed using its neighbouring historical data in the 
database to estimate a solution’s past performance. 

In summary, despite related work touching on many aspects 
of this topic, there do not exist any agent-based models that 
attempt to understand which combinations of personalities are 
optimal for dynamic problems or for different kinds of task. 
Given that evolutionary algorithms have been shown to be 
effective at optimising agent-based models, we use this 
approach to optimise the agent-based model in this work. 

Agent-based Model of Collaboration 
The model used in this work, proposed in (Lim & Bentley, 
2018), is designed to model human behaviour as team members 
collaborate to solve a shared task. The agent-based model uses 
a unique variant of particle swarm optimisation (PSO) to 
simulate the differing behaviours of people according to their 
personalities. The model has the following key abstractions: 
• Problem. The shared goal of all agents is abstracted as 

the shared task to optimise a function (i.e., find the values 
of 𝐱 such that 𝒇(𝐱) is maximised). 

• Agent psychology. The current “mental state” of each 
agent is modelled by giving it a position in the solution 
space (denoting the solution its mind has found so far), a 
velocity vector (denoting the direction and speed of its 
thought process), and acceleration vectors (representing 
the force of ideas and influences that modify the direction 
and speed of thought), the latter determined by its 
personality (behaviour algorithm). 

• Agent communication. The distribution of information 
between agents is modelled as they each try to solve the 

same problem. The exact type of information perceived 
by each agent and its use is determined by its personality. 

Figure 1 shows the algorithm of the model, and the following 
sections describe each component in detail. 
 

 

Figure 1: Algorithm of the model (Lim & Bentley, 2018). 

Initialise 
The model is initialised with: 
• a problem space 𝐃 ∈ ℝ( 
• an objective function 𝑓(𝐱) 
• the number of timesteps 𝑇+,- to run the model	
• a population of agents 𝑁010, each agent 𝑖 ∈ 31,… , 𝑁0107 

is initialised with:	
o a personality type 𝐏9 (one of the MBTI 

personality types, defined by a corresponding 
genotype (see later))  

o a random position 𝐱9: ∈ 𝐃: 𝐱+9( ≤ 𝐱9: ≤ 𝐱+,-  
o a random velocity 𝐯9: ∈ ℝ(:−𝐯9(9? ≤ 𝐯9: ≤

𝐯9(9? 
o personal best 𝑓9@AB? = 𝑓(𝐱9:) 

• Group best for timestep 0, 𝑓D@AB?: (see later)  

Update 
For each timestep 𝑡 ∈ {1,… , 𝑇+,-}, each agent 𝑖’s position 𝐱9? 
is updated using Equation 1: 

𝐱9? = 𝐱9?HI + 𝐯9? (1) 

with the velocity 𝐯9? calculated using Equation 2: 

𝐯9? = 𝐯9?HI + 𝐚9? (2) 

If |𝐯9?| > 𝐯+,-, it is scaled to equal 𝐯+,-, in order to prevent 
excessive speed (an individual with high velocity would 
literally become too “set in their ways” and would find it 
impossible to change its direction of thought into a useful 
direction). 

Acceleration 𝐚9? is used to change the direction and speed of 
thought, as determined by the agent’s personality – one of the 
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16 MBTI personality types (Myers, 1962). The interpretation 
provided here is designed to enable each personality to have an 
equally good chance of finding the solution. Interpretations 
were created to represent MBTI personality types appropriately 
and were not tuned in order to achieve any specific result in 
later experiments. 

The MBTI consists of 16 personality types based on a 
person’s preferences on four opposing dichotomies: 
Extraversion (E) – Introversion (I), Sensing (S) – Intuition (N), 
Thinking (T) – Feeling (F), and Judging (J) – Perceiving (P) 
(Myers, 1962). J – P defines the person’s preferred manner 
(either S–N or T–F) of dealing with the outer world. Each 
personality type has a dominant Jungian function (more 
developed) supported by an auxiliary Jungian function (less 
developed) as shown in Table 1.  

Table 2 defines the Jungian attitude, and perception and 
judgment functions. Each attitude (extraversion and 
introversion) is used as a source of information for each 
function (Thinking, Feeling, Sensing, Intuition), resulting in 
Jung’s eight psychological types: extraverted Thinking (Te), 
introverted Thinking (Ti), extraverted Feeling (Fe), introverted 
Feeling (Fi), extraverted Sensing (Se), introverted Sensing (Si), 
extraverted iNtuition (Ne), introverted iNtuition (Ni).  

The Jungian intuitive functions (Ne and Ni) includes the 
notion of intuiting solutions, i.e., from sparse data they 
interpolate missing information, sometimes resulting in 
remarkable predictions (and sometimes not). This is modelled 
through a Gaussian process regression function which builds, 
from the data available to the agent, an internal imaginary view 
of the solution space for that agent. The agent then samples its 
imaginary space and is attracted to the area that it “believes” is 
a maximum. The Gaussian Progress Regressor from the Scikit-
learn Python library (implemented based on Algorithm 2.1 in 
Rasmussen and Williams (1996)) is used with default options. 

Acceleration 𝐚9? is calculated using Equation 3: 

𝐚9? = 𝐚N9? + 𝐚O
9
? (3) 

where 𝐚N9? is the judging acceleration is calculated using Table 
3 and 𝐚O9? is the perceiving acceleration calculated using 
Equation 4: 

𝐚O9? =PrR(cR − x9?HI)
U

RVI

 (4) 

where 𝑟I = 0.5, 𝑟[ = 0.3, and 𝑟U = 0.2, and 𝐜I, 𝐜[ and 𝐜U are 
the top 3 candidates derived using Table 4 with 𝑓(𝐜I) ≥
𝑓(𝐜[) ≥ 𝑓(𝐜U). In both tables, agent 𝑖’s neighbours are defined 
as the five nearest agents to agent 𝑖 measured by Euclidean 
distance, i.e., the peer group of each agent comprises those who 
share similar ideas to the agent. To ensure that the auxiliary 
component plays a lesser role compared to the dominant 

component, 𝐚N9?	is scaled down such that `𝐚N9?`
[
= a𝐚bcda

e

[
 if 

`𝐚N9?`
[
> a𝐚bcda

e

[
 (if 𝐏9 has dominant perception and auxiliary 

judgment, otherwise vice versa). 
 

Type ISTJ ISFJ INFJ INTJ 
Dominant 
Auxiliary 

Si 
Te 

Si 
Fe 

Ni 
Fe 

Ni 
Te 

Type ISTP ISFP INFP INTP 
Dominant 
Auxiliary 

Ti 
Se 

Fi 
Se 

Fi 
Ne 

Ti 
Ne 

Type ESTP ESFP ENFP ENTP 
Dominant 
Auxiliary 

Se 
Ti 

Se 
Fi 

Ne 
Fi 

Ne 
Ti 

Type ESTJ ESFJ ENFJ ENTJ 
Dominant 
Auxiliary 

Te 
Si 

Fe 
Si 

Fe 
Ni 

Te 
Ni 

Table 1: Myers-Briggs Type Table Showing the 16 Personality 
Types, with Dominant and Auxiliary Functions (Myers, 1962). 
 
Attitude Extraversion: Directs perception and judgment on 

outer world of people and things. 
Introversion: Directs perception and judgment on 
outer world of people and things. 

Perception Sensing: Concrete perception, finds interest in 
actualities (made aware directly through the senses), 
prefers to rely on objective, concrete facts.  
Intuition: Abstract perception, finds interest in 
connecting concepts and drawing parallels (made 
aware indirectly by way of the unconscious).  

Judgment Thinking: Analyses and determines the truth or 
falseness of information in an impersonal fashion, 
comes to conclusions based on a logical process, aimed 
at an impersonal finding (facts and ideas). 
Feeling: Person-centred assessment, comes to 
conclusions based on a process of appreciation, giving 
things a personal, subjective value. 

Table 2: Jungian Attitudes, Perceptions, and Judgments 
(Jung, 1923). 

Evaluate 
Agent 𝑖’s fitness at timestep 𝑡 is evaluated as 𝑓9? = 𝑓(𝐱9?). The 
agent’s personal best (𝑓9@AB?) and group best at timestep 𝑡 
(𝑓D@AB??) are evaluated as described in the next section. 

Updates to the Model 
In this work, we update the existing model by (1) modelling 
task types, (2) modelling dynamic problems, and (3) using a 
genetic algorithm to optimise team personalities. 

Task Types 
We model different task types by calculating group best 𝑓D@AB?? 
at timestep 𝑡 based on each task type as follows: 
• Disjunctive. Group performance is the performance of 

its best member, 𝑓D@AB?? is the best 𝑓9@AB?, 𝑖 ∈
31,… , 𝑁0107. This is the scenario most commonly used in 
optimisation algorithms. 
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Function Implementation 
Te: The agent is influenced by its neighbours’ best 
personal best. It accelerates towards its neighbours’ 
best personal best from the previous timestep. 

𝐚fA9? = 𝐱(9@AB??HI − 𝐱
9
?HI                                                                                           (5)                                                                                   

where 𝐱(9@AB??HI is agent 𝑖’s neighbours’ personal best position in the previous timestep 
that results in the highest 𝑓(𝐱), and 𝐱9?HI is the agent’s position in the previous timestep.                                      

Ti: The agent focusses on its own personal best (the 
outcome of its own thoughts). It accelerates towards 
its own personal best, with randomness added to 
enable exploration.  

𝐚f99? = (𝐱9@AB??HI − 𝐱
9
?HI) + 𝜑                                                                                   (6)                                                                                      

where 𝐱9@AB??HI is agent 𝑖’s personal best position in the previous timestep, 𝐱9 ?HI is the 
agent’s position in the previous timestep, and 𝜑 is a random float in the interval 
[−2.0,2.0].  

Fe: The agent “identifies with other agent’s feelings” 
and “seeks harmony” by matching its neighbours’ 
average velocity (direction of thought) from the 
previous timestep and to a lesser extent accelerates 
towards its neighbours’ best personal best from the 
previous timestep. 

𝐚jA9? = 𝜔I ∙ 𝐯mn9?HI + 𝜔[ ∙ 𝐚fA
9
?                                                                                   (7)                                                                          

where weights 𝜔I = 0.8, 𝜔[ = 0.2, 𝐯mn9?HI is agent 𝑖’s neighbours’ average velocity in 
the previous timestep, and 𝐚fA9? is calculated using equation (5). 

Fi: The agent “empathises with” its neighbours’ ideas 
by accelerating towards its neighbours’ average 
position from the previous timestep. It also cares 
about its own personal thoughts, so accelerates 
towards its own best position.  

𝐚j99? = 𝜔I ∙ (𝐂𝒏9?HI − 𝐱
9
?HI) + 𝜔[ ∙ (𝐱9@AB??HI − 𝐱9?HI)                                            (8)                                              

where weights 𝜔I = 0.8, 𝜔[ = 0.2, 𝐂𝒏9?HIis the centroid (arithmetic mean position) of 
agent 𝑖’s neighbours’ positions in the previous timestep.  

Table 3: Jungian Judging Functions and Their Use in Calculating Judging Acceleration, 𝐚𝑱𝒊𝒕 (Lim & Bentley, 2018). 

 
Function Implementation 
Se: The agent sees its neighbours’ positions and their 
quality. Candidates are the positions of the agent’s 
nearest neighbours in the previous timestep. 

ℂvA9? = {𝐱9(I?HI, … , 𝐱
9
(w?HI}                                                                                        (9)                                                             

where 𝐱9(I?HI is agent 𝑖’s first neighbour’s position in the previous timestep, and 𝐱9(w?HI 
is agent 𝑖’s fifth neighbour’s position in the previous timestep. The candidates for current 
and previous timestep ℂvA9? and ℂvA9?HI are then sorted in the order of decreasing 𝑓(𝐱). 

Si: The agent remembers all its own previous 
positions and a few nearby points and their quality. 
Candidates are the agent’s previous path and new 
points near to their position. 

ℂv99? = {𝐱9:, … , 𝐱9?HI} ∪ 𝑷                                                                                          (10)                                                                  
where P is the set of points near to 𝐱9?HI. Given 𝐱9?HI = (𝑥I, 𝑥[, … , 𝑥(), 𝑷 =
{(𝑥I + 𝛿, 𝑥[, … , 𝑥(), (𝑥I − 𝛿, 𝑥[, … , 𝑥(), (𝑥, 𝑥[ + 𝛿, … , 𝑥(), (𝑥I, 𝑥[ −
𝛿, … , 𝑥(), … , (𝑥I, 𝑥[, … , 𝑥( + 𝛿), (𝑥I, 𝑥[, … , 𝑥( − 𝛿)} where 𝛿 is a random number from 
a normal distribution 𝑁(𝜇, 𝜎) with 𝜇 = 1 and 𝜎 = 0.01. The quality of old solutions is 
reduced as follows: every solution in the agent’s previous path {𝐱9:, … , 𝐱9?HI} that are 
more than 10 timesteps old are reduced in quality by decrementing the fitness by 0.001 
each timestep. The candidates for current and previous timestep ℂv99?  and ℂv99?HI are then 
sorted in the order of decreasing 𝑓(𝐱). 

Ne: The agent sees its neighbours’ positions and uses 
them to create an “imaginary solution space”. 
Candidates produced from Se (data from the 
environment) are used as input to train the Gaussian 
process regression function. Candidates are then the 
best quality solutions resulting from sampling this 
imaginary space. 

𝑓∗ = 𝒢𝒫:	𝑡𝑟𝑎𝑖𝑛(ℂvA, 𝑓(ℂvA)); 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡�ℂnA9?�                                                          (11)                                                       
where 𝒢𝒫 is the Gaussian process regression function (Williams & Rasmussen, 1996), 
training on ℂvA 𝑎𝑛𝑑  𝑓(ℂvA), and ℂnA9? is a vector of points in 𝐃, sampled every 10 points. 
The candidates for current and previous timestep ℂnA9? and ℂnA9?HI are then sorted in the 
order of decreasing 𝑓∗. 

Ni: The agent sees its own previous positions and a 
few nearby points and uses them to create an 
“imaginary solution space”. Candidates produced 
from Si (internal data) are used as input to train the 
Gaussian process regression function. Candidates are 
then the best quality solutions resulting from 
sampling this imaginary space. 

𝑓∗ = 𝒢𝒫:	𝑡𝑟𝑎𝑖𝑛(ℂv9, 𝑓(ℂv9)); 	𝑝𝑟𝑒𝑑𝑖𝑐𝑡�ℂn99?�                                                           (12)                                                                              
where 𝒢𝒫 is the Gaussian process regression function, training on ℂv9 and 𝑓(ℂv9), and 
ℂn99?  is a vector of points in 𝐃, sampled every 10 points. The candidates for current and 
previous timestep ℂn99?  and ℂn99?HI are then sorted in the order of decreasing 𝑓∗. 

Table 4: Jungian Perceiving Functions and Their Use in Getting Candidates (Top Three Candidates Returned as 𝒄𝟏, 𝒄𝟐 and 𝒄𝟑) (Lim 
& Bentley, 2018). 

 
• Conjunctive. Group performance is the performance of 

its weakest member, 𝑓D@AB?� is the worst 𝑓9@AB?, 𝑖 ∈
31,… , 𝑁0107. 

• Additive. Group performance is a sum of all individual 
performances, 𝑓D@AB?? is the sum of all 𝑓9@AB?, 𝑖 ∈
31,… , 𝑁0107. 
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Each agent’s personal best, 𝑓9@AB? , is calculated as the 
agent’s best fitness in the last 10 timesteps, i.e., 
𝑚𝑎𝑥	(𝑓9?, 𝑓

9
?HI,… , 𝑓

9
?H�,𝑓

9
?H�
). Retaining the memory of all 

best fitnesses for the entire run is not appropriate for dynamic 
problems where the optimal solution changes over time. 

This work evaluates the performance of groups of agents as 
they collaborate to solve dynamic problems over time, thus 
fitness scores are obtained throughout the run. The final group 
performance 𝑓�D@AB?  (used as the fitness function for the GA) 
is calculated using Equation 13: 

𝑓�D@AB? =
∑ 	𝑓D@AB??
f����[�]
?Vf����[:]

5
 (13) 

where 𝑇01�� is a list of timestep values and 𝑓D@AB?? is the group 
best at timestep 𝑡. 

Dynamic Problems 
To model dynamic problems, we use a simple two-dimensional 
problem with a clear gradient as in (Lim & Bentley, 2018). The 
objective function 𝑓(𝑥, 𝑦) is described in Equation 14: 

𝑓(𝑥, 𝑦) = −�(𝑥 − 𝑎)[ + (𝑦 − 𝑏)[ (14) 

where agent i’s position at time t, 𝐱9? = (𝑥, 𝑦), the values of 𝑎 
and 𝑏 are varied over time and 𝑓(𝑥, 𝑦) is normalised such that 
𝑓(𝑥, 𝑦) 	∈ 	 [0,1] ∶ 		∀	𝑥		 ∈ 	 [𝑥+9(, 𝑥+,-], ∀		𝑦	 ∈ 	 [𝑦+9(, 𝑦+,-]. 
Figure 2 shows the heatmap and surface plot when 𝑎 = 0 and 
𝑏 = 0. 

We investigate the following types of change: 

• Static: This is the baseline scenario with no change, 
where 𝑎 = 0 and 𝑏 = 0 for the entire duration. 

• Linear: The position of the maximum moves from left to 
right on the x-axis. At 𝑡 = 0, 𝑎 = −25 and 𝑏 = 0. The 
maximum starts at (-25, 0) and 𝑎 increments by 1 at every 
timestep, so at 𝑡 = 𝑇+,-, the maximum is at (25, 0), see 
Figure 3. This models a simple “moving target” problem, 
for example a design specification that changes over time 
as the team tries to find the solution. 

• Oscillating: The position of the maximum moves from 
left to right on the x-axis and returns to where it started. 
At 𝑡 = 0, 𝑎 = −25 and 𝑏 = 0, and 𝑎 increments by 2 at 
every timestep until 𝑎 = 25 and 𝑏 = 0, then 𝑎 decreases 
by 2 at every timestep so at 𝑡 = 𝑇+,-, 𝑎 = −25 and 𝑏 =
0, see Figure 4. This models a problem where best 
solutions oscillate and repeat, e.g., in trading, sometimes 
it is good to buy, sometimes it is good to sell. 

• Rotary: The position of the maximum moves 90° 
clockwise every 10 timesteps. At 𝑡 = 0, 𝑎 = 0 and 𝑏 =
50, at 𝑡 = 11, 𝑎 = 50 and 𝑏 = 0, at 𝑡 = 21, 𝑎 = 0 and 
𝑏 = −50, and so on, see Figure 5. This models a cyclic 
problem, e.g., designing gifts for different seasons 
throughout a year. 

   
Figure 2: Surface plot (left) and heatmap (right) for 
normalised Equation 14 with a maximum in (0, 0). Colour 
ranges from blue (minimum) to red (maximum). 
 

   

Figure 3: Linear at t=0, 25 and 50. 
 

   

Figure 4: Oscillating at t=0, 25 and 50. 
 

     

Figure 5: Rotary at t=0–10, 11–20, 21–30, 31–40, and 41–50. 

Genetic Algorithm for Optimising Team Personalities 
We used a genetic algorithm to evolve an optimal combination 
of agent personalities for each dynamic problem. For a team of 
n=4 members as used in the experiments, their personalities are 
specified by a 16-digit binary genotype. For example, the 16-
digit genotype 1100000110001010 corresponds to the 
phenotype INTJ, ESTP, ISTJ, ISFJ.  

A standard canonical GA is used with population size of 20, 
each individual solution representing the personalities of a 
team. Each team has four members, for each member of the 
population, fitness is calculated by decoding the genotype to 
produce four personalities for the team members. The agent-
based model is run 50 times for the team to produce average 
team performance. The group best at the end of each run is 
recorded and team performance is measured by their average 
group best, which is the total group best for all runs divided by 
total number of runs. Based on fitness, 8 individuals are chosen 
as parents. 20 child teams are created using single-point 
crossover from the parents. A single bit flip mutation occurs 
with a probability of 0.2 per chromosome.  
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The GA is run for 20 generations. Values were found 
following preliminary experiments to determine fastest and 
most effective settings. 

Experiments 
Our experiments investigate each task type (Disjunctive, 
Conjunctive, Additive) with each dynamic problem (Static, 
Linear, Oscillating, Rotary) as illustrated in Table 5. 
  

Static Disjunctive Static Conjunctive Static Additive 
Linear Disjunctive Linear Conjunctive Linear Additive 

Oscillating Disjunctive Oscillating Conjunctive Oscillating Additive 
Rotary Disjunctive Rotary Conjunctive Rotary Additive 

Table 5: Task types with dynamic problems. 
 

For each experiment, we ran the GA ten times and analysed 
personalities selected by the GA. The model was initialised 
with constant settings in Table 6. For each task type and 
dynamic problem, we measured the number of times each 
personality is used by the GA to assemble teams. We also 
measured the average fitness over generations and average 
fitness over time for each task type and dynamic problem. 
Finally, we counted the opposing MBTI dichotomies used by 
the GA to assemble teams, i.e., Extraverts vs. Introverts (E vs. 
I), Sensors vs. Intuitives (S vs. N), Thinkers vs. Feelers (T vs. 
F), and Judgers vs. Perceivers (J vs. P). 
 

Constants Values 
𝑇+,- 50 
𝑁010 4 
𝐯+,- 5.0 

𝑥+9(,	𝑦+9( -100 
𝑥+,-, 𝑦+,-	 100 

𝐯9(9? (1.0, 1.0) 
𝑇01�� [10, 20, 30, 40, 50] 

Table 6: Constants Settings for The Model 

Results 
Different personality types are selected at different frequencies 
as the best team compositions for different tasks and dynamic 
problems, as illustrated by the heatmap in Figure 6. The GA 
never chooses teams made from a single personality type, 
rather, it selects mixtures of different personalities to work in 
combination. The GA is able to optimise all types of task and 
dynamic problem, although disjunctive tasks are the easiest to 
optimise, with the highest average fitness over generations for 
all types of change, followed by additive tasks and conjunctive 
tasks (Figure 7). Figure 8 illustrates the average team 
performance over 50 timesteps for all the ten best teams 
selected by the GA. Good combinations of personalities are 
found, resulting in improvement over time by the agents as they 
solve each type of problem, even the difficult rotary problem, 
where performance drops when change occurs, but the teams 
are still able to gradually improve the performance over time 
(Figure 8). 

  
Figure 6: Heatmap of personality type in teams for dynamic 
problems and task types. 
 

 

Figure 7: Average fitness over generations for dynamic 
problems and task types. x-axis is generations, y-axis is 𝒇𝒇𝒈𝒃𝒆𝒔𝒕. 
 

 

Figure 8: Average team performance over 50 timesteps for all 
10 best teams selected by the GA for types of task and change. 
x-axis is timesteps, y-axis is 𝒇𝒈𝒃𝒆𝒔𝒕. 
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Personalities best suited for static problems are different 
from those suited for dynamic problems (Figure 9). For all 
static problems, the GA evolved more Introverts compared to 
Extraverts, with Static Disjunctive exclusively composed of 
Introverts. For all dynamic problems, the GA evolved more 
Extraverts compared to Introverts. This is because Extraverted 
team members communicate more, which is essential when 
facing a moving target. The finding is supported by literature, 
where extraverted personalities has been found to be positively 
correlated to adaptability (Teixeira et al., 2012).  

Similarly, for all static problems, the GA evolved teams with 
more Judgers compared to Perceivers, with Static Disjunctive 
exclusively composed of Judgers (Figure 9). For all dynamic 
problems, it evolved more Perceivers compared to Judgers, 
with Rotary Conjunctive being exclusively composed of 
Perceivers. Perceivers put more weight on the current state of 
their environment when making decisions, enabling them to 
detect and react to change, and management literature has 
found that Judging individuals prefer to regulate and control, 
while Perceivers prefer to understand and adapt (Nutt, 1993). 

For all static problems, the GA evolved teams with more 
Thinkers compared to Feelers, but evolved teams with more 
Feelers compared to Thinkers for all dynamic problems except 
for Linear Disjunctive (more Thinkers than Feelers) and Linear 
Additive (equal numbers of Feelers and Thinkers) (Figure 9). 
This is because Feelers are more influenced by the behaviour 
of their companions compared to Thinkers. Such personalities 
have been found in existing research to be more consultative 
and adaptive to change (Nutt, 1993).   

Comparison between Sensors and Intuitives are less clear 
cut. For all static problems, the GA evolved more Sensors 
compared to Intuitives, while for dynamic problems, Intuitives 
are used more frequently than Sensors for all disjunctive tasks 
and linear and rotary additive tasks (Figure 9). When fitness is 
determined by using the best solution from any team member, 
the GA chooses team members that “intuit” the solution space 
and anticipate where to move. Figure 10 illustrates the solution 
space as perceived by a team in one run, sampled over time. At 
t=50, team member INTJ (last column row 2) has correctly 
mapped the solution space, finding four distinct optimal regions 
corresponding to the locations where the optimal rotates to 
every 10 timesteps. A study by Allinson et al. (2000) of more 
than 150 founders of high growth companies found that these 
founders exhibit higher intuition compared to general 
population of managers and the intuition has helped them to be 
quick at identifying and exploiting opportunities. In 
evolutionary computation literature, gaussian process 
modelling have been used to improve speed and quality of 
optimisation (e.g., Büche et al. (2005), Zhang et al. (2010), and 
Han et al. (2017)). For conjunctive tasks, when fitness of a team 
depends on the fitness of the worst team member, the GA 
optimises teams with more Sensors compared to Intuitives.  

Finally, in all disjunctive tasks, we found an unusual 
behaviour by this PSO-based model: instead of team members 

converging onto one solution, the team spreads themselves 
more widely so that members become more likely to catch the 
moving target as it passes by. This is evident in Figure 11, 
where all disjunctive tasks have a higher average distance 
between team members compared to other tasks. In particular, 
for rotary change, the distance is up to four times more than the 
other changes, as it is beneficial for team members to be 
stationed at (0, 50), (-50, 0), (50, 0) and (0, -50). 

 

 

Figure 9: Personality count for task types and dynamic 
problems in terms of opposing MBTI dichotomy: Extraverts 
vs. Introverts (E vs. I), Sensors vs. Intuitives (S vs. N), Thinkers 
vs. Feelers (T vs. F), and Judgers vs. Perceivers (J vs. P). x-axis 
is the MBTI dichotomies, and y-axis is the personality count. 
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Figure 10: Solution space as perceived by each team member 
in one of the teams selected by the GA for Rotary Disjunctive, 
sampled at t=1, 11, 21, 31, 41, 50. The circle o in each image 
denotes the agent’s position for that timestep. 
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Figure 11: Average distance between team members at t=50 for all teams selected by the GA. Error bars represent standard deviation. 
 
 

Conclusions 
Dynamic optimisation is a commonly found class of problem 
in the real world, and teams of people handle such problems 
regularly in their working lives. This research used a genetic 
algorithm to optimise the constituent members of teams as they 
tackled dynamic problems and task types. The teams were 
represented by an agent-based model of personality, each 
corresponding to a different PSO-based behaviour and 
communication strategy. 

We found that different combinations of personalities are 
selected for different dynamic problems. The GA evolved 
teams comprising heterogenous personalities, with different 
combinations of personalities for each type of problem. 
Introverts, Sensors, Thinkers and Judgers are used frequently 
by the GA for static problems, while Extraverts, Intuitives, 
Feelers and Perceivers are used more frequently for dynamic 
problems. Analysing the movement of the agents over time and 
their internal representations of the problem, it is clear that 
Intuitive types learned to “anticipate” repeating solutions, 
working as a team to spread themselves across the likely good 
solution areas, rather than behaving in the more typical manner 
of converging to a single point in the solution space.  
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Abstract

The repeated prisoner’s dilemma (RPD) game has revealed
how cooperation and competition arise among competitive
players in long-run relationships. In the RPD game with no
errors, zero-determinant (ZD) strategies allow a player to uni-
laterally set a linear relationship between the player’s own
payoff and the opponent’s payoff regardless of the strategy
of the opponent. On the other hand, unconditional strategies
such as ALLD and ALLC also unilaterally set a linear rela-
tionship. However, little is known about the existence of such
strategies in the RPD game with errors. Here, we analytically
search for the strategies that enforce a linear payoff relation-
ship under observation error in the RPD game. As a result,
we found that, even in the case with observation errors, the
only strategy sets that enforce a linear payoff relationship are
either ZD strategies or unconditional strategies.

The two-player repeated prisoner’s dilemma (RPD) game
is a model for exploring the players’ long-run relationships,
which mathematically reveals how cooperation and compe-
tition arise among competitive players. In the long history
of the RPD game, strategies that can unilaterally control op-
ponent’s payoff have been unknown. However, in 2012,
Press and Dyson found a novel class of strategies which con-
tain such ultimate strategies, called zero-determinant (ZD)
strategies (Press and Dyson, 2012). ZD strategies impose
a linear relationship between the payoffs for a focal player
and his opponent regardless of the strategy that the oppo-
nent implements. The discovery of ZD strategies inspired
various relevant studies, which promote an understanding of
the nature of human cooperation. In contrast, unconditional
strategies such as ALLC and ALLD can also unilaterally
set a linear payoff relationship to the opponent. A previous
study revealed that those two types of strategies are the only
sets which enforce a linear payoff relationship (Ichinose and
Masuda, 2018).

These two strategies were found in the case of no er-
rors. Errors are unavoidable in biological organisms and
it may lead to the collapse of cooperation due to negative
effects. Thus, the effect of errors has been considered in
the literature of the RPD game. However, except for Hao
et al. (2015), the effect of errors has not been considered for
strategies that enforce a linear relationship. In this study, we
incorporate observation errors within our model. In human
interactions, observation errors refer to the misunderstand-

ing of the opponent’s action, which often happens in a real
society. The purpose of this study is how those errors af-
fect the strategies that enforce a linear payoff relationship.
Specifically, we aim to investigate whether those strategies
can exist even in the case where observation errors are con-
sidered.

Here, we consider the symmetric two-person prisoner’s
dilemma game. Each player i ∈ {X,Y } chooses an action
ai ∈ {C,D}. Each player cannot directly see what action
the opponent chose. Instead, they can only observe a signal
ωi ∈ {g, b}, where g and b denote good and bad signals,
respectively. The signal cannot be observed by the other
player, meaning that the signal is private information. Each
player’s signal ωi basically depends on the opponent’s action
but is also affected by noise from the environment, which is
a stochastic variable. In other words, a player observes g
(or b) when the other player chooses an action C (or D).
However, when an error occurs, a player observes b (or g)
although the other player chooses an action C (or D). Let
ϵ be the probability that an error happens to one particular
player but not to the other and ξ be the probability that an
error happens to both players. Then, the probability that an
error occurs to neither player is 1 − 2ϵ − ξ. The realized
payoff for each player depends only on the action he chose
and the signal he received. Then the payoff matrix is given
by

( g b

C R S
D T P

)
. (1)

The entries represent the payoffs that the focal player gains
in a single round of a repeated game. Each row and col-
umn represents the action that the focal player chose and
the signal he observed, respectively. The expected pay-
offs under different action profiles (C,C),(C,D),(D,C) and
(D,D) are denoted as RE , SE , TE and PE , where RE =
R(1− ϵ− ξ) + S(ϵ+ ξ), SE = S(1− ϵ− ξ) + R(ϵ+ ξ),
TE = T (1−ϵ−ξ)+P (ϵ+ξ), PE = P (1−ϵ−ξ)+T (ϵ+ξ),
respectively. We assume that TE > RE > PE > SE and
2RE > TE + SE , which dictates the repeated prisoner’s
dilemma game.

Consider two players X and Y that adopt memory-one
strategies, with which they use only the outcomes of the
last round to decide the action to be submitted in the current
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round. A memory-one strategy is specified by a 4-tuple; X’s
strategy is given by a combination of p = (p1, p2, p3, p4),
where 0 ≤ p1, p2, p3, p4 ≤ 1. The subscripts 1, 2, 3 and
4 of p mean previous outcome Cg, Cb, Dg and Db, respec-
tively. p1 is the conditional probability that X cooperates
when X cooperated and observed signal g in the last round,
p2 is the conditional probability that X cooperates when X
cooperated and observed signal b in the last round, and so
forth. Similarly, Y ’s strategy is specified by a combina-
tion of q = (q1, q2, q3, q4), where 0 ≤ q1, q2, q3, q4 ≤ 1.
Because both players adopt a memory-one strategy, the
stochastic state of the two players in round t is described
by v(t) = (v1(t), v2(t), v3(t), v4(t)), where the subscripts
1, 2, 3 and 4 of v mean the stochastic state (C,C), (C,D),
(D,C) and (D,D), respectively. v1(t) is the probability that
both players cooperate in round t, v2(t) is the probability
that X cooperates and Y defects in round t, and so forth.

The state transition matrix for the game can be described
by M . Then, the stochastic state of the two players in round
t + 1 is calculated by v(t + 1) = v(t)M . The stationary
distribution for M is a vector v such that v = vM . The dot
product of an arbitrary vector f = (f1, f2, f3, f4) with the
stationary distribution vector v, v · f ≡ D(p, q,f), can be
described by the form of determinant as follows:
∣∣∣∣∣∣∣

τp1q1 + ϵp1q2 + ϵp2q1 + ξp2q2 − 1 µp1 + ηp2 − 1 µq1 + ηq2 − 1 f1
ϵp1q3 + ξp1q4 + τp2q3 + ϵp2q4 ηp1 + µp2 − 1 µq3 + ηq4 f2
ϵp3q1 + τp3q2 + ξp4q1 + ϵp4q2 µp3 + ηp4 ηq1 + µq2 − 1 f3
ξp3q3 + ϵp3q4 + ϵp4q3 + τp4q4 ηp3 + µp4 ηq3 + µq4 f4

∣∣∣∣∣∣∣
(2)

where µ = 1− ϵ− ξ, η = ϵ+ ξ. Then player X’s expected
payoff in the stationary state is represented by

sX =
v · SX

v · 1 =
D(p, q,SX)

D(p, q,1)
, (3)

where SX = (RE , SE , TE , PE) is X’s payoff vector. Simi-
larly, player Y’s expected payoff is represented by

sY =
v · SY

v · 1 =
D(p, q,SY )

D(p, q,1)
, (4)

where SY = (RE , TE , SE , PE) is Y’s payoff vector.
We search for player X’s strategies which impose a linear

payoff relationship between the two players, i.e.,

αsX + βsY + γ = 0. (5)

Here, the linear combination of sX and sY is given by

αsX + βsY + γ =
D(p, q, αSX + βSY + γ1)

D(p, q,1)
. (6)

If the numerator of the right side of Eq. (6) is zero, that is,
D(p, q, αSX + βSY + γ1) = 0, the right side of Eq.(6)
becomes zero and it holds Eq.(5). We use the following de-
terminant theorem for the analysis: For an n × n matrix A,
the following holds: det(A) = 0 ⇔ The columns of the
matrix A are dependent vectors. Under this condition, we
searched for X’s strategies which impose a linear relation-
ship between the two players’ payoffs. The result showed
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Figure 1: Left: Extortioner (Player X) vs 1,000 randomly
generated strategies (Player Y ). Right: ALLD (Player X)
vs 1,000 randomly generated strategies (Player Y ). In both
cases, player X always enforces a linear payoff relationship
to player Y . (T,R, P, S) = (1.5, 1, 0,−0.5).

that the only strategies that impose a linear relationship be-
tween the two players’ payoffs are either

µp1 + ηp2 − 1 = αRE + βRE + γ

ηp1 + µp2 − 1 = αSE + βTE + γ

µp3 + ηp4 = αTE + βSE + γ

ηp3 + µp4 = αPE + βPE + γ,

(7)

or
p1 = p2 = p3 = p4. (8)

The former corresponds to the ZD strategies and the latter
corresponds to the unconditional strategies, respectively.

Figure 1 shows the numerical realizations of Extortioner
(example of ZD; left panel) and ALLD (example of uncondi-
tional strategies; right panel). In each panel, player X (ver-
tical axis) adopts Extortioner (left) or ALLD (right), respec-
tively. We randomly generated 1,000 strategies for player Y
(horizontal axis) for each panel. We numerically confirmed
that Extortioner and ALLD can enforce a linear payoff rela-
tionship to player Y even in the case that errors are consid-
ered (ϵ+ ξ = 0.1, 0.2, 0.3).

In conclusion, we analytically found that, in the RPD
game with observation errors, the only strategy sets that en-
force a linear payoff relationship are either the ZD strategies
or the unconditional strategies, which are consistent with the
case of no errors. This result suggests that, in any case, those
two sets are only types of strategies that enforce a linear pay-
off relationship between two players.
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Abstract

When starting a new collective venture, it is important to un-
derstand partners’ motives and how strongly they commit to
common goals. Arranging prior commitments or agreements
on how to behave has been shown to be an evolutionary vi-
able strategy in the context of cooperation dilemmas, ensur-
ing high levels of mutual cooperation among self-interested
individuals. However, in many situations, commitments can
be used to achieve other types of collective behaviours such
as coordination. Coordination is arguably more complex to
achieve since there might be multiple desirable collective out-
comes in a coordination problem (compared to mutual co-
operation, the only desirable outcome in cooperation dilem-
mas), especially when these outcomes entail asymmetric ben-
efits or payoffs for those involved. Using methods from Evo-
lutionary Game Theory (EGT), herein we study how prior
commitments can be adopted as a tool for enhancing coordi-
nation when its outcomes exhibit an asymmetric payoff struc-
ture. Our results, both by numerical simulations and analyti-
cally, show that whether prior commitment would be a viable
evolutionary mechanism for enhancing coordination strongly
depends on the collective benefit of coordination, and more
importantly, how asymmetric benefits are resolved in a com-
mitment deal.

Introduction
Achieving collective behaviours among individuals with
their own personal interest is an important social challenge
in various societies (Ostrom, 1990; Pitt et al., 2012). From
coordinating individuals in the workplace to maintaining co-
operative relationship between nations, it is often jeopar-
dised by individual self-interest. The study of mechanisms
that support the evolution of such collective behaviours has
been of great interest in many disciplines, ranging from Evo-
lutionary Biology, Economics, Physics and Computer Sci-
ence (Nowak, 2006; Sigmund, 2010; West et al., 2007; Han,
2013). Several mechanisms that can promote the emergence
and stability of collective behaviours among such individu-
als, have been proposed. They include kin and group selec-
tion, direct and indirect reciprocities, spatial networks, re-
ward and punishment (Nowak, 2006).

Recently, the capacity to create, and commit to, prior
agreements (Nesse, 2001; Frank, 1988; Han et al., 2017,

2015a) has been proposed as an evolutionarily viable strat-
egy inducing cooperative behaviour in the context of co-
operation dilemmas; namely, the Prisoner’s Dilemma (PD)
(Han et al., 2013) and the Public Goods Game (PGG) (Han
et al., 2017). It provides an alternative to different forms of
punishment against inappropriate behaviour and of rewards
to stimulate the appropriate one (Martinez-Vaquero et al.,
2015; Sasaki et al., 2015; Powers et al., 2012). These works
have solely focused on the roles of commitments for en-
hancing mutual cooperation among self-interested individ-
uals. However, commitments can be adopted as a tool for
enhancing other types of collective behaviour such as coor-
dination (Nesse, 2001; Ostrom, 1990; Barrett, 2016). In the
context of cooperation dilemma games such as the PD and
PGG (Nowak, 2006), mutual cooperation is the only desir-
able collective outcome to which all parties are required to
commit if an agreement is to be arranged. In contrast, in
a coordination problem, there might be multiple optimal or
desirable collective outcomes and players might have dis-
tinct, incompatible preferences regarding which outcome a
mutual agreement should aim to achieve (e.g. due to asym-
metric payoffs). Consider for instance a situation where two
investment firms competing within a same product market
who need to make strategic decision on which technology to
adopt (Zhu and Weyant, 2003), a low-benefit (L) or a high-
benefit (H) technology. Individually, adopting H would lead
to a larger benefit. However, if both firms invest on H they
would end up competing with each other leading to a smaller
accumulated benefit than if they could coordinate with each
other to choose different technologies. However, given the
asymmetry in the benefits in such an outcome, clearly no
firm would want to commit to the outcome where its option
is L, unless some form of compensation from the one select-
ing H can be ensured.

In this paper, we explore how arranging a prior agreement
or commitment can be used as a mechanism for enhancing
coordination and social welfare in this type of coordination
problems. Before individuals embark on a joint venture, a
pre-agreement makes the motives and intentions of all par-
ties involved more transparent, thereby enabling an easier

163



coordination of personal interests (Nesse, 2001; Cohen and
Levesque, 1990; Han et al., 2015b). Although our approach
is applicable for a wide range of coordination problems (e.g.
single market product investments as described above), we
will use technology investment strategic decision making as
a case study, allowing us to describe the problem clearly.
Namely, we will describe a technology adoption game cap-
turing the competitive market and decision-making process
among firms adopting new technologies (Zhu and Weyant,
2003), with a key parameter α representing how competitive
the market is (thus describing how important coordination
is). Similar to previous commitment models, we will rely
on theoretical analysis and numerical simulations based on
dynamical methods from Evolutionary Game Theory (EGT)
(Hofbauer and Sigmund, 1998).

Our results show that whether pre-commitment would be
a viable mechanism for enhancing coordination and social
welfare strongly depends on α. Moreover, we demonstrate
that agreements for coordination (with asymmetric benefits)
exhibit more complex decision points than in previous mod-
els on cooperation dilemmas, leading to a larger behavioural
space and a larger set of strategies. For instance, the firms
will need to decide which desirable coordination outcome
they want to propose to others. Moreover, since for such a
coordination outcome, players receive different benefits, a
commitment proposer needs to decide how much compen-
sation for the one who agrees to commit to select L is re-
quired, depending on the cost of arranging commitments as
well as the costs and benefits of adopting available technolo-
gies. We show that the outcome of evolutionary dynamics
significantly depends on the compensation amounts.

The next section discusses related work, which is fol-
lowed by a description of our models and details of the EGT
methods for analysing them. Results of the analysis and a
final discussion will then follow.

Related Work
The problem of explaining the emergence and stability of
collective behaviours has been actively addressed in dif-
ferent disciplines (Nowak, 2006; Sigmund, 2010). Among
other mechanisms, such as reciprocity and costly punish-
ment, closely related to our present model is the study
of cooperative behaviours and pre-commitment in cooper-
ation dilemmas, for both two-player and multiplayer games
(Han et al., 2013, 2017; Sasaki et al., 2015). It has shown
that to enhance cooperation commitments need to be suf-
ficiently enforced and the cost of setting up the commit-
ments is justified with respect to the benefit derived from
the interactions—both by means of theoretical analysis
and of behavioural experiments (Ostrom, 1990; Cherry and
McEvoy, 2013). Our results show that this same observa-
tion is seen for coordination problems. However, arrang-
ing commitments for enhancing coordination is more com-
plex, exhibiting a larger behavioural space, and furthermore,

their outcomes strongly depend on new factors only appear-
ing in coordination problems; namely, a successful com-
mitment deal needs to take into account the fact that mul-
tiple desirable collective outcomes exist for which players
have incompatible preferences; and thus how benefits can be
shared through compensations in order to resolve the issues
of asymmetric benefits, is crucially important.

There have been several works studying the evolution of
coordination, using the so-called Stag Hunt game, see e.g.
(Skyrms, 2003; Pacheco et al., 2009; Santos et al., 2006; Sig-
mund, 2010). However, to the best of our knowledge there
has been no work studying how prior commitments can be
modelled and used for enhancing the outcome of the evolu-
tion of coordination. As our results below show, significant
enhancement of coordination and population welfare can be
achieved via the arrangement of suitable commitment deals.

Furthermore, it is noteworthy that commitments have
been studied extensively in Artificial Intelligence and Multi-
agent systems literature, see e.g. (Castelfranchi and Fal-
cone, 2010; Chopra and Singh, 2009; Rzadca et al., 2015).
Differently from our work, these studies utilise commit-
ments for the purpose of regulating individual and collec-
tive behaviours, formalising different aspects of commit-
ments (such as norms and conventions) in multi-agent sys-
tems. However, our results and approach provide important
new insights into the design of such systems as these re-
quire commitments to ensure high levels of efficient collab-
oration and coordination within a group or team of agents.
For example, by providing suitable agreement deals agents
can improve the chance that a desirable collective outcome
(which is best for the systems as a whole) is reached even
when benefits provided by the outcome are different for the
parties involved.

Models and Methods
We first describe a two-player technology adoption game
then extend it with the option of arranging prior commit-
ments before the game. We then describe our method based
on Evolutionary Game Theory for finite populations, for
analysing the games.

Technology Adoption (TD) game
We consider the scenario that two firms (players) compete
for the same product market, and they need to make a (strate-
gic) decision on which technology to invest on, a low-benefit
(L) or a high-benefit (H) technology. The outcome of the in-
teraction can be described in terms of costs and benefits of
investments by the following payoff matrix (for row player):

( H L

H αbH − cH bH − cH
L bL − cL αbL − cL

)
=

(H L

H a b
L c d

)
, (1)

where cL, cH and bL, bH (bL ≤ bH ) represent the costs and
benefits of investing on L and H, respectively; α ∈ (0, 1)
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indicates the competitive level of the product market: the
firms receive a partial benefit if they both choose to invest
on the same technology. Collectively, the smaller α is (i.e.
the higher the market competitiveness), the more important
that the firms coordinate to choose different technologies.
The entries of the payoff matrix are denoted by a, b, c, d, as
above. We have b > a and c > d. Without loss of generality,
we assume that H would generate a greater net benefit, i.e.
c = bL − cL < bH − cH = b.

Note that although we describe our model in terms of
technology adoption decision making, it is generally ap-
plicable to many other coordination problems for instance
wherever there are strategic investment decisions to make
(in competitive markets of any products).

Commitments
We now describe our extended model where players can
arrange a prior commitment before a TD interaction. A
commitment proposal is to ask the co-player to adopt a dif-
ferent technology. That is, a strategist intending to use H
(resp., L) would ask the co-player to adopt L (resp., H). We
denote these commitment proposing strategies as HP and
LP, respectively. Similarly to previous models of commit-
ments (for PD and PGG) (Han et al., 2013, 2015a), to make
the commitment deal reliable, a proposer pays an arrange-
ment cost ε. If the co-player agrees with the deal, then the
proposer assumes that the opponent will adopt the agreed
choice, yet there is no guarantee that this will actually be the
case. Thus whenever a co-player refuses to commit, HP and
LP would play H in the game. When the co-player accepts
the commitment though later does not honour it, she has to
compensate the honouring co-player at a personal cost δ.

Differently from previous models on PD and PGG where
an agreed outcome leads to the same payoff for all parties
in the agreement (mutual cooperation benefit), in the cur-
rent model such an outcome would lead to different payoffs
for those involved. Therefore, as part of the agreement, HP
would compensate after the game an amount θ1 to accepted
player that honours the agreement; while LP would request
a compensation θ2 from such an accepted co-player.

Besides HP and LP, we consider a minimal model with
the following (basic) strategies in this commitment version:

• Non-proposing acceptors, HC and LC, who always com-
mit when being proposed a commitment deal wherein
they are willing to adopt any technology proposed (even
when it is different from their intended choice), honour
the adopted agreement, but do not propose a commitment
themselves. They play their intended choice, i.e. H and
L, respectively, when there is no agreement in place;

• Non-acceptors, HN and LN, who do not accept commit-
ment, play their intended choice during the game, and do
not propose commitments;

• Fake committers, HF and LF, who accept a commitment
proposal yet play the choice opposite to what has been
agreed whenever the game takes place. These players
assume that they can exploit the commitment proposing
players without suffering the consequences;

Note that similar to the commitment models for the PD game
(Han et al., 2013), some possible strategies have been ex-
cluded from the analysis since they are dominated by at least
one of the strategies in any configuration of the game: they
can be omitted without changing the outcome of the anal-
ysis. For example, those who propose a commitment (i.e.
paying a cost ε) but then do not honour (thus have to pay the
compensation when facing a honouring acceptors) would be
dominated by the corresponding non-proposers.

Together the model consists of eight strategies that define
the following payoff matrix, capturing the average payoffs
that each strategy will receive upon interaction with one of
the other seven strategies (where we denote λ = θ1 + θ2,
λ1 = b − ε − θ1, λ2 = c − ε + θ2, λ3 = a − ε + δ and
λ4 = d− ε+ δ, just for the sake of clear representation)




HP LP HN LN HC LC HF LF
HP b+c−ε

2
2b−ε−λ

2
a b λ1 λ1 λ3 λ3

LP 2c−ε+λ
2

b+c−ε
2

a b λ2 λ2 λ4 λ4

HN a a a b a b a b
LN c c c d c d c d
HC c+ θ1 b− θ2 a b a b a b
LC c+ θ1 b− θ2 c d c d c d
HF a− δ d− δ a b a b a b
LF a− δ d− δ c d c d c d




.

(2)
Note that when two commitment proposers interact only

one of them will need to pay the cost of setting up the com-
mitment. Yet, as either one of them can take this action they
pay this cost only half of the time (on average). In addition,
the average payoff of HP when interacting with LP is given
by 1

2 (b− ε− θ1 + b− θ2) = 1
2 (2b− ε− θ1− θ2). When two

HP players interact, each receives 1
2 (b− ε− θ1 + c+ θ1) =

1
2 (b+ c− ε).

We say that an agreement is fair if both parties obtain
the same benefit when they honour it (after having taken
into account the cost of setting up the agreement). For that,
we can show that θ1 and θ2 must satisfy θ1 = b−c−ε

2 and
θ2 = b−c+ε

2
1, and thus, both parties obtain b+c−ε

2 . With
these conditions it also ensures that the payoffs of HP and
LP when interacting with each other are equal.

Our analysis below will first focus on whether and when
the fair agreements can lead to improvement in terms of co-
ordination and the overall social welfare (i.e. average pop-
ulation payoff). We will then study how different kinds of
agreements (varying θ1 and θ2) affect the outcome.

1These can be obtained for instance by comparing the payoffs
of HP and HC when they interact, i.e. b−c−θ1 = c+θ1. Solving
this equation we would obtain θ1 = b−c−ε

2
. Similarly for θ2.
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Evolutionary Dynamics
In this work, we will perform theoretical analysis and nu-
merical simulations (see next section) using EGT methods
for finite populations (Nowak et al., 2004; Imhof et al.,
2005). In such a setting, individuals’ payoff represents
their fitness or social success, and evolutionary dynamics
is shaped by social learning (Hofbauer and Sigmund, 1998;
Sigmund, 2010), whereby the most successful individuals
will tend to be imitated more often by the other individuals.
In the current work, social learning is modelled using the
so-called pairwise comparison rule (Traulsen et al., 2006),
a standard approach in EGT, assuming that an individual A
with fitness fA adopts the strategy of another individual B
with fitness fB with probability p given by the Fermi func-
tion, pA,B =

(
1 + e−β(fB−fA)

)−1
. The parameter β repre-

sents the ‘imitation strength’ or ‘intensity of selection’, i.e.,
how strongly the individuals base their decision to imitate
on fitness difference between themselves and the opponents.
For β = 0, we obtain the limit of neutral drift – the imi-
tation decision is random. For large β, imitation becomes
increasingly deterministic.

In the absence of mutations or exploration, the end states
of evolution are inevitably monomorphic: once such a state
is reached, it cannot be escaped through imitation. We thus
further assume that, with a certain mutation probability, an
individual switches randomly to a different strategy without
imitating another individual. In the limit of small mutation
rates, the dynamics will proceed with, at most, two strate-
gies in the population, such that the behavioural dynamics
can be conveniently described by a Markov Chain, where
each state represents a monomorphic population, whereas
the transition probabilities are given by the fixation proba-
bility of a single mutant (Imhof et al., 2005; Nowak et al.,
2004). The resulting Markov Chain has a stationary distri-
bution, which characterises the average time the population
spends in each of these monomorphic end states.

Let N be the size of the population. Denote πX,Y the
payoff a strategist X obtains in a pairwise interaction with
strategist Y (defined in the payoff matrices). Suppose there
are at most two strategies in the population, say, k individu-
als using strategy A (0 ≤ k ≤ N ) and (N − k) individuals
using strategies B. Thus, the (average) payoff of the individ-
ual that uses A and B can be written as follows, respectively,

ΠA(k) =
(k − 1)πA,A + (N − k)πA,B

N − 1
,

ΠB(k) =
kπB,A + (N − k − 1)πB,B

N − 1
.

(3)

Now, the probability to change the number k of individ-
uals using strategy A by ± one in each time step can be
written as(Traulsen et al., 2006)

T±(k) =
N − k
N

k

N

[
1 + e∓β[ΠA(k)−ΠB(k)]

]−1

. (4)

The fixation probability of a single mutant with a strategy A
in a population of (N − 1) individuals using B is given by
(Traulsen et al., 2006; Nowak et al., 2004)

ρB,A =


1 +

N−1∑

i=1

i∏

j=1

T−(j)

T+(j)



−1

. (5)

Considering a set {1, ..., q} of different strategies, these
fixation probabilities determine a transition matrix M =
{Tij}qi,j=1, with Tij,j 6=i = ρji/(q − 1) and Tii = 1 −∑q
j=1,j 6=i Tij , of a Markov Chain. The normalised eigen-

vector associated with the eigenvalue 1 of the transposed
of M provides the stationary distribution described above
(Imhof et al., 2005), describing the relative time the popula-
tion spends adopting each of the strategies.

Risk-dominance An important measure to compare the
two strategies A and B is which direction the transition is
stronger or more probable, an A mutant fixating in a popula-
tion of individuals using B, ρB,A, or a B mutant fixating in
the population of individuals using A, ρA,B . It can be shown
that the former is stronger, in the limit of largeN , if (Nowak
et al., 2004; Sigmund, 2010)

πA,A + πA,B > πB,A + πB,B . (6)

Results
Conditions for the viability of commitments

First of all, using pair-wise analysis (using Equation 6) it
can be shown that if θ1 + θ2 < b − c then HP is preferred
(i.e. risk-dominant, see Methods) to LP. Otherwise, LP is
risk-dominant against HP.

We now derive the conditions regarding the commitment
parameters for which HP and LP are viable strategies, i.e.
when they are risk-dominant against all other non-proposing
strategies. Namely, using Equation 6 we can derive that HP
and LP are risk-dominant against all other six non-proposing
strategies, respectively, if and only if

ε < min{b+ c− 2a, 3b− c− 2d,
3b− c− 2a− 4θ1

3
,

3b− c− 2d− 4θ1
3

,
b+ c− 2a+ 4δ

3
,
b+ c− 2d+ 4δ

3
},

ε < min{b+ c− 2a, 3b− c− 2d,
3c− b− 2a+ 4θ2

3
,

3c− b− 2d+ 4θ2
3

,
b+ c− 2a+ 4δ

3
,
b+ c− 2d+ 4δ

3
}.

(7)

Note that each element in the min expressions above cor-
responds to the condition for one of the six non-proposing
strategies HN, LN, HC, LC, HF, LF, respectively.
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Figure 1: Frequency of the eight strategies, HP, LP, HN, LN, HC, LC, HF and LF, as a function of α, for different values of ε and game
configurations. In general, the commitment proposing strategies HP and LP dominate the population when α is small while HN and HC
dominate when α is sufficiently large. The thresholds of α for which HP and LP dominate, in all cases, are in accordance with the analytical
condition described in Equation 11. Parameters: in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1); Top row) bH = 6 (i.e. b = 5) and bottom
row) bH = 3 (i.e. b = 2); Other parameters: δ = 6; β = 0.1; population size N = 100; Fair agreements are used, where θ1 and θ2 are given
by θ1 = (b− c− ε)/2 and θ2 = (b− c+ ε)/2.

?1 = 10
?2 =  0
Max = 1.66356
Avg. at Fair Agreement = 1.60627

    ? =0.1    ? =0.5

a b c
1

0

   ? =0.9

Figure 2: Total frequency of commitment strategies (i.e. sum of the frequencies of HP and LP), as a function of ε and δ, for different
values of α. In general, the commitment proposing strategies dominate the population whenever ε is sufficiently small and δ is sufficiently
large. Furthermore, the smaller α, these commitment strategies dominate for a wider range of ε and δ, especially when α is smaller. Parame-
ters: in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5). Other parameters: β = 0.1; population size N = 100; Fair
agreements are used, where θ1 and θ2 are given by θ1 = (b− c− ε)/2 and θ2 = (b− c+ ε)/2.
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Figure 3: Average population payoff as a function of α, when
commitment is absent and when it is present, for different val-
ues of ε. In general, we observe that when α is small, signifi-
cant improvement in terms of the average population payoff can
be achieved through prior commitments, while when α is suffi-
ciently large, little improvement can be achieved, especially when
bH/bL is small (compare panels a and b). Parameters: in all pan-
els cH = 1, cL = 1, bL = 2 (i.e. c = 1); in panel a) bH = 6
(i.e. b = 5) and in panel b) bH = 3 (i.e. b = 2); Other parame-
ters: δ = 6; β = 0.1; population size N = 100; Fair agreements
are used, where θ1 and θ2 are given by θ1 = (b − c − ε)/2 and
θ2 = (b− c+ ε)/2.

Thus, we can derive the conditions for θ1, θ2 and δ:

θ1 <
1

4
(3b− c− 3ε− 2 max{a, d}) ,

θ2 >
1

4
(b− 3c+ 3ε+ 2 max{a, d}) ,

δ >
1

4
(3ε− b− c+ 2 max{a, d}) .

(8)

In particular, for fair agreements, i.e. θ1 = (b− c− ε)/2 and
θ2 = (b− c+ ε)/2, we obtain

ε < min{3b− c− 2d, b+ c− 2max{a, d}},

δ >
1

4
(3ε− b− c+ 2max{a, d}) .

(9)

Since the first inequality can be simplified further, we obtain

ε < b+ c− 2max{a, d},

δ >
1

4
(3ε− b− c+ 2max{a, d}) .

(10)

(since 3b− c− 2d > b+ c− 2 max{a, d}, which is due to
b > c and max{a, d} ≥ d)

In general, these conditions indicate that for commitments
to be a viable option for improving coordination, the cost of
arrangement ε must be sufficiently small while the compen-
sation associated with the contract needs to be sufficiently
large (see already Figure 2 for numerical validation). Fur-
thermore, for the first condition to hold, it is necessary that
b + c > 2 max{a, d}. It means that the total payoff of two

players when playing the TD game is always greater when
they can coordinate to choose different technologies, than
when they both choose the same technology.

Moreover, the conditions in Equation 10 can be expressed
in terms of α and the costs and benefits of investment, as
follows (see again the payoff matrices in Equation 1)

α < 1 + min{cH + bL − cL − ε
2bH

,
cL + bH − cH − ε

2bL
},

α < 1 + min{cH + bL − cL − 3ε+ 4δ

2bH
,
cL + bH − cH − 3ε+ 4δ

2bL
},

which can be rewritten as

α < 1 + min{cH + bL − cL − γ
2bH

,
cL + bH − cH − γ

2bL
}, (11)

where γ = max{ε, 3ε− 4δ}.
This condition indicates under what condition of the mar-

ket competitiveness and the costs and benefits of investing in
available technologies, commitments can be an evolutionar-
ily viable mechanism. Intuitively, for given costs and bene-
fits of investment (i.e. fixing cL, cH , bL, bH ) , a larger cost of
arranging a (reliable) agreement, ε, leads to a smaller thresh-
old of α where commitment is viable. Moreover, given a
commitment system (i.e. fixing ε and δ), assuming similar
costs of investment for the two technologies, then a larger
ratio of the benefits obtained from the two technologies,
bH/bL, leads to a smaller upper bound for α for which com-
mitment is viable.

Remarkably, our numerical analysis below (see already
Figure 1) shows that the condition in Equation 11 accurately
predicts the threshold of α where commitment proposing
strategies (i.e. HP and LP) are highly abundant in the popu-
lation, leading to improvement in terms of the average popu-
lation payoff compared to when commitment is absent (Fig-
ure 3).

Numerical Results
We calculate the stationary distribution in a population of
eight strategies, HP, LP, HN, LN, HC, LC, HF and LF, us-
ing methods described above. In Figure 1, we show the fre-
quency of these strategies as a function of α, for different
values of ε and game configurations. In general, the com-
mitment proposing strategies HP and LP dominate the pop-
ulation when α is small while HN and HC dominate when α
is sufficiently large. That is, commitment proposing strate-
gies are viable and successful whenever the market competi-
tiveness is high, leading to the need of efficient coordination
among the competing players/firms to ensure high benefits.
Notably, we observe that the thresholds of α below which
HP and LP are dominant, closely corroborate the analytical
condition described in Equation 11, in all cases. Namely,
for the parameter values in the first and second rows of Fig-
ure 1, α ≈ 0.66, 0.58, 0.5 and α ≈ 0.81, 0.67, 0.5, for
α = 0.1, 1, 2, respectively.
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Max = 1.66356
Avg. at Fair Agreement = 1.60627
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Figure 4: Average population payoff as a function of θ1 and θ2, for different values of α. When α is small (panels a and b), the highest
average payoff is achieved when θ1 is sufficiently small and θ2 is sufficiently large, while for large α (panel c), it is the case when θ1 is
sufficiently large and θ2 is sufficiently small. Parameters: in all panels cH = 1, cL = 1, bL = 2 (i.e. c = 1), and bH = 6 (i.e. b = 5). Other
parameters: δ = 4, ε = 1; β = 0.1; population size N = 100.

This observation is robust for varying commitment pa-
rameters, i.e. the cost of arranging commitment, ε, and the
compensation cost associated with commitment, δ, see Fig-
ure 2. Namely, we show the total frequency of commitment
strategies (i.e. sum of the frequencies of HP and LP) for
varying these parameters and for different values of α. It
can be seen that, in general, the commitment strategies dom-
inate the population whenever ε is sufficiently small and δ is
sufficiently large. This observation is in accordance with
previous commitment modelling works for the cooperation
dilemma games (Han et al., 2013, 2015a, 2017). Further-
more, we observe that in the current coordination problem,
that the smaller α is, these commitment strategies dominate
the population for wider range of ε and δ. Our additional
results show that these observations are robust with respect
to other game configurations.

Now, in order to determine whether and when commit-
ments can actually lead to meaningful improvement, in Fig-
ure 3, we compare the average population payoff or social
welfare when a commitment is present and when it is absent.
In general, it can be seen that when α is sufficiently small
(below a threshold), the smaller it is, the greater improve-
ment of social welfare is achieved through the presence of a
commitment deal. Moreover, the smaller the cost of arrang-
ing commitments, ε, the greater improvement is obtained.
On the other hand, when α is sufficiently large, little im-
provement can be achieved, especially when bH/bL is large
(which is in accordance with the analytical results above).
We can observe that the thresholds for which a notable im-
provement can be achieved is the same as the one for the
viability of HP and LP (i.e. as described in Equation 11).

We now consider what would happen if HP and LP can
customise the commitment deal they want to propose, i.e.
any θ1 and θ2 can be proposed (instead of always being fair).
Namely, Figure 4 shows the average population payoff vary-
ing these parameters, for different values of α. We observe
that when α is small, the highest average payoff is achieved
when θ1 is sufficiently small and θ2 is sufficiently large,
while for large α, it is reverse for the two parameters. That

is, in a highly competitive market (i.e. small α), commit-
ment proposers should be strict (HP keeps sufficient benefit
while LP requests sufficient payment, from their commit-
ment partners), while when the market is less competitive
(i.e. large α), commitment proposers should be more gener-
ous (HP proposes to give a larger benefit while LP requests
a smaller payment, from their commitment partners). Our
additional results confirm that this observation is robust for
different values of ε, δ and game configurations.

Conclusions and Future Work
The present paper describes a novel model showing how
prior commitments can be adopted as a tool for enhanc-
ing coordination when desirable coordination outcomes ex-
hibit an asymmetric payoff structure. For that, we described
a technology adoption game where technology investment
firms would achieve the best collective outcome if they can
coordinate with each other to adopt different technologies,
with a parameter α capturing the competitiveness level of
the product market and how beneficial it is to achieve co-
ordination. In such a context, there are multiple desirable
outcomes and players have distinct preferences in terms of
which outcome should be agreed upon, thus leading to a
larger behavioural space than in the context of cooperation
dilemmas (Han et al., 2013, 2017). We have shown that
whether commitment is a viable mechanism for promoting
the evolution of coordination, strongly depends on α: when
α is sufficiently small, prior commitment is highly abundant
leading to significant improvement in terms of social wel-
fare, compared to when commitment is absent. Importantly,
we have derived the analytical condition for the threshold of
α below which the success of commitments is guaranteed.
Furthermore, whenever commitment proposers are allowed
to freely choose which deal to propose to their co-players,
our results show that, in a highly competitive market (i.e.
small α), commitment proposers should be strict (i.e. shar-
ing less benefits), while when the market is less competitive,
commitment proposers should be more generous.

In short, our analysis has demonstrated that commitment
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is a viable tool for promoting the evolution of diverse collec-
tive behaviours among self-interested individuals, beyond
the context of cooperation dilemmas where there is only one
desirable collective outcome (Nesse, 2001). In future work,
we will consider how commitments can solve more com-
plex collective problems, e.g. in a technological innovation
race (Han et al., 2019), where there might be a large number
of desirable outcomes or equilibriums, especially when the
number of players in an interaction increases (Duong and
Han, 2015). Also, we aim to compare data on technology
adoption from developed and undeveloped countries with
our model predictions.
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Abstract

Human social hierarchy has the unique characteristic of ex-
isting in two forms. Firstly, as an informal hierarchy where
leaders and followers are implicitly defined by their personal
characteristics, and secondly, as an institutional hierarchy
where leaders and followers are explicitly appointed by group
decision. Although both forms can reduce the time spent
in organising collective tasks, institutional hierarchy imposes
additional costs. It is therefore natural to question why it
emerges at all. The key difference lies in the fact that insti-
tutions can create hierarchy with only a single leader, which
is unlikely to occur in unregulated informal hierarchy. To in-
vestigate if this difference can affect group decision-making
and explain the evolution of institutional hierarchy, we first
build an opinion-formation model that simulates group deci-
sion making. We show that in comparison to informal hierar-
chy, a single-leader hierarchy reduces (i) the time a group
spends to reach consensus, (ii) the variation in consensus
time, and (iii) the rate of increase in consensus time as group
size increases. We then use this model to simulate the cost of
organising a collective action which produces resources, and
integrate this into an evolutionary model where individuals
can choose between informal or institutional hierarchy. Our
results demonstrate that groups evolve preferences towards
institutional hierarchy, despite the cost of creating an institu-
tion, as it provides a greater organisational advantage which
is less affected by group size and inequality.

Introduction
Why do humans choose their leaders? A meta-analysis of
sixty independent studies shows that leadership effective-
ness is not always correlated with leadership emergence
(Judge et al., 2002). In other words, groups sometimes
choose incompetent individuals as leaders. For instance,
experiments on leader choice showed that “evaluations of
beauty explain success in real elections better than evalua-
tions of competence, intelligence, likability, or trustworthi-
ness” (Berggren et al., 2010). Yet, despite these risks, most
modern human hierarchies spend time and resources to ex-
plicitly choose leaders, even if efficient leaders are already
designated by their characteristics and skills.

Social organisation plays an important role in the nu-
merous decisions that groups take to efficiently coordinate

(Calvert, 1992). In social hierarchies, only a minority of in-
dividuals (leaders) are involved in the decision-making pro-
cess, while the majority of individuals (followers) have lim-
ited influence on collective decisions. At the opposite ex-
treme, ancient human hunter-gatherer societies were marked
by a relatively equal input from all individuals in group de-
cisions (Boehm, 2001). The transition between these two
extremes is believed to have been initiated by the advent
of agriculture, which created a surplus of resources and in-
creased group size (Bocquet-Appel, 2011). In return, larger
groups produced more resources thanks to division of labour
and specialisation (Pindyck and Rubinfeld, 2001). On the
flip side, the need for greater numbers of individuals to co-
ordinate their actions is translated into higher costs of organ-
isation (Calvert, 1992). Hierarchy appears as an adaptation
to reduce these costs of organisation (Van Vugt et al., 2011),
and in particular, to address the increase in cost of organisa-
tion as a group grows, i.e. scalar stress (Johnson, 1982). In
large societies, the benefits created by hierarchy counterbal-
ance the cost of any resulting inequality, eventually leading
to its stable emergence.

Human adaptation to hierarchy appeared under two forms
(Pielstick, 2000), expressed in (i) human behaviours (Judge
et al., 2002), and (ii) human preferences. In an informal
hierarchy, leaders and followers are defined by their in-
trinsic characteristics. For instance, leader effectiveness is
highly correlated with particular psychological traits such as
openness and extroversion (Judge et al., 2002). The second
form is formal hierarchy where leaders and followers are ap-
pointed by group decision. For example, groups confronted
by other groups in collective games explicitly elect and iden-
tify an individual as a leader (Sherif et al., 1954). We call
this form here institutional hierarchy to stress that it is sup-
ported by institutional rules, which are created by group de-
cision and actively enforced by monitoring and punishment
(Ostrom, 1990; Hurwicz, 1996). The emergence of informal
or institutional hierarchy can both be explained by the fact
that they reduce costs of organisation (Powers and Lehmann,
2014; Perret et al., 2017). However, institutional hierarchies
are surprisingly pervasive in modern societies, given that
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they carry additional costs in comparison to informal ones.
A key to this puzzle lies in the particularity of institutions
which allow humans to hand-tune their behaviours, e.g. by
designating a single leader, in comparison to informal hier-
archies in which leaders emerge through blind evolutionary
processes. However, it remains unclear whether this differ-
ence could drive the appearance of institutional hierarchies.

Currently, independent explanations for the evolution of
informal and institutional hierarchy have been provided
(Powers and Lehmann, 2014; Perret et al., 2017), but there
is no model that investigates the competition between these
two forms of social organisation. To fill this gap, we first
investigate if the single-leader model found in institutional
hierarchy facilities group decision-making, i.e. leads to
shorter coordination times. Second, we evaluate whether
this benefit is sufficient to lead to the evolution of cultural
preferences toward institutional hierarchy despite the addi-
tional costs of maintaining the institution. To do so, we de-
scribe group decision-making using an opinion-formation
model (Castellano et al., 2009) that simulates a sequence
of discussions between individuals, and has been shown
to reflect the organisational advantage brought by leaders
(Gavrilets et al., 2016). We define leaders and followers by
their capacity to influence others, and analyse the effect of
the number of leaders on the time a group spends to reach
consensus. We then integrate this model into an evolutionary
model where the time spent to reach consensus is translated
into the cost of organising collective tasks. The model simu-
lates a population structured around patches where individ-
uals organise and carry out a collective action, which pro-
duces additional resources. Individuals can choose between
informal social organisation where leaders and followers are
defined by individuals’ characteristics, or institutional social
organisation where leaders and followers are defined by the
institution. Our results show that in comparison to informal
hierarchy, hierarchy with a single leader reduces (i) the con-
sensus time, (ii) the variation in the consensus time, and (iii)
the increase in consensus time as group size increases. We
demonstrate that individuals evolve cultural preferences to-
wards institutional hierarchy because it provides a greater
organisational advantage than informal hierarchy, and re-
duces the detrimental effect of group size and inequality on
the time spent to organise collective actions.

The effect of the number of leaders on group
decision-making

We define social organisation by the proportion of leaders
and followers present in a patch. This ranges from a perfect
egalitarian organisation described by all individuals being
followers or leaders, to the most hierarchical organisation
with one leader and the rest of the group as followers. We
define political organisation as the process by which lead-
ers and followers are defined. The political organisation of
a group can either be informal, i.e. leaders and followers

are defined by default by individual characteristics, or insti-
tutional, i.e. leaders and followers are defined by group de-
cision (Hurwicz, 1996). It is worth noting that we constrain
an institutional group to be a hierarchy, but a group can have
an informal political organisation with either an egalitarian
or hierarchical social organisation.

Model definition
We develop an opinion-formation model to simulate group
decision-making based on previous work (Deffuant et al.,
2000; Perret et al., 2017). It is an individual-based model
which consists of a sequence of discussions between indi-
viduals until their opinions are close enough i.e. the group
has reached a global consensus. Opinion-formation mod-
els are well-known tools to study social dynamics (Castel-
lano et al., 2009), and have been shown to reflect the ben-
efit of leaders on group decision-making (Gavrilets et al.,
2016; Perret et al., 2017). Individuals are described by an
opinion x, and a value of influence α. These are both con-
tinuous values defined on [0,1]. The trait α represents the
influence of an individual and affects (i) the capacity of one
individual to modify the opinion of another individual to-
wards its own opinion, (ii) the reluctance of an individual to
change its opinion, and (iii) the probability that an individual
talks to other individuals. These three traits, i.e. persuasive-
ness, stubbornness and talkativeness, are highly correlated
in leaders personalities (Judge et al., 2002) and are the key
factors in explaining how leaders reduce time to reach con-
sensus (Gavrilets et al., 2016). Individuals can have one of
two profiles: a leader l = 1 with a high influence value αl,
or a follower l = 0 with a low influence value αf , where
αl > αf .

The opinion x is randomly generated at the beginning of
the opinion formation. At each time-step, there is a discus-
sion event where one speaker talks to Nl listeners to bring
the followers’ opinion closer to its own. The probability P
of an individual i to be chosen as a speaker u is an increasing
function of its α value as follows:

Pi(t) =
(αi(t))

k

∑N
n=1(αn(t))k

. (1)

In the simulations we chose k = 4 so that in a group of large
size i.e. 1000 individuals, with the most extreme hierarchy
(one leader with maximum influence, N − 1 followers with
minimum influence), the probability that a leader is chosen
as a speaker is close to 90%. The speaker talks with Nl

listeners randomly sampled within the other individuals in
the group. This limit on the number of listeners models time
constraints, and cognitive constraints of human brains (Dun-
bar, 1992). We assume that every individual can be chosen
as a listener, i.e. the social network is a complete network,
in order to avoid explicitly modelling the network structure
and to keep the model tractable. We also consider that indi-
viduals interactions are not limited to individuals with close
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Figure 1: Effect of number of leaders on decision-making.
(A,B) Mean consensus time t∗ as a function of number of
leaders in a group of 500 individuals (C.) Mean consensus
time t∗ as a function of number of leaders and group size.

opinions i.e. bounded confidence, because this model de-
scribes a consensus seeking process where individuals are
willing to convince each other. During a discussion event,
a listener v updates its preference to a value x′v following
the equation below, where v represents the listener and u the
speaker:

x′v = xv + (αu − αv)(xu − xv). (2)

We assume that the position of speaker gives a slight in-
fluential advantage over the listeners. Therefore, the min-
imum difference of influence αu − αv is set to a positive
low value, here 0.01. This assumption is necessary to avoid
a systematic convergence of the preferences towards the in-
dividual with the highest α, a phenomenon not observed in
real life. The individuals repeat the previous step until con-
sensus is reached, i.e. the standard deviation of the prefer-
ences x is less than a threshold xθ. The number of discussion
events that occurred to reach consensus is called the consen-
sus time, t∗.

Analysis
We use the opinion-formation model to investigate the dif-
ference in consensus time between hierarchy with a single
leader and multiple leaders. Because of this heterogeneity,
we use numerical simulations to analyse the model. The de-
fault parameters are for the consensus threshold fθ = 0.05,
the number of listeners Nl = 50, the influence of leaders
αl = 0.75 and the influence of followers αf = 0.25. The
results presented are the mean across 1000 replicates. The
error bars represent the standard error from the mean.

Figure 1.A confirms that hierarchy (i.e. a small number of
leaders) provides an organisational advantage by reducing
the consensus time. Figure 1.B shows that (i) the presence
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Figure 2: Density distribution of individual opinion as a
function of number of discussion events for different num-
ber of leaders: from top to bottom 0, 1, 2, 10. For illustra-
tion, the difference between the opinions of leaders are set
to be maximum and equidistant.

of a single leader reduces the average consensus time com-
pared to multiple leaders, and (ii) the presence of a single
leader assures a consistently lower consensus time (shown
by the low variance). The presence of two leaders provides
a variable advantage, which ranges from the same result as
the single leader to the result from a group without a leader.
As the number of leaders increases, the time to consensus
increases while the variability decreases. Finally, Figure
1.C shows that the rate of increase of consensus time grows
more slowly with group size when the number of leaders is
smaller. In other words, the benefit of single leader increases
with group size.

Figure 2 illustrates the opinion formation and the effect of
the number of leaders on group decision-making. First, we
see that in the absence of leaders, or with a single leader, in-
dividuals’ opinions slowly and consistently converge. The
presence of a single leader speeds up this process as the
leader quickly convinces the majority of the group. The
presence of multiple leaders creates a more heterogeneous
pattern of convergence. The presence of two leaders results
in the majority switching from one leader to another: leaders
alternatively convince individuals from the group but nei-
ther leader has enough followers to reach consensus. When
more than two leaders are present, the majority of opinion
fluctuates between the different leaders. In both cases, lead-
ers’ stubbornness slows convergence of leaders towards the
others, which in turn slows down the whole process. To
conclude, hierarchy with a single leader clearly provides a
benefit to group organisation which is (i) stronger, (ii) more
constant, and (iii) more resistant to group size increase than
multiple leaders. Thus, a slight change in the number of
leaders can have a drastic effect on group organisation.
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An evolutionary model of political
organisation

We now develop an evolutionary model to investigate if the
benefit of single leader hierarchy is sufficient to lead to the
evolution of cultural preferences towards institutional hier-
archy. Individuals carry two evolving traits: their social per-
sonality s and their preference for political organisation h.
The trait s represents the intrinsic personality of an indi-
vidual in a social interaction (e.g. talkativeness, boldness,
charisma) and can be either dominant s = 1, or compliant
s = 0. It defines an individual’s influence α in informal or-
ganisation, and the probability to be chosen as a leader in
institutional organisation. The trait h represents the prefer-
ence in terms of political organisation of an individual: 0
represents a preference for informal organisation, and 1 a
preference for institutional organisation. In addition, indi-
viduals are described by a value of influence α as described
previously. The influence is either defined by an individ-
ual social personality s in an informal hierarchy, or by their
assigned individual social position in institutional hierarchy
(explained below). The initial values of the social person-
ality of individuals, s, are randomly generated. The initial
values of preference for political organisation h are set to
0 to represent the initial absence of institutions. The two
traits s, h carried by individuals are transmitted vertically
from parent to offspring, e.g. by social learning as is com-
mon in hunter-gatherer groups (Hewlett et al., 2011). They
mutate following a mutation rate of µ. As these traits are
assumed to be at least partly cultural, the mutation rate is
higher than for a classical genetic trait. When a mutation
occurs, the trait value is flipped.

Life cycle and social traits We consider an island model
with a population of individuals that is subdivided into a fi-
nite number of patches Np (Wright, 1931). The life cycle
consists of discrete and non-overlapping generations as fol-
lows:

1. Individuals decide whether to create an institutional hier-
archy and appoint a leader; or defaults to an informal or-
ganisation where leaders and followers roles are defined
by individuals’ personality s. Individuals creating an in-
stitutional hierarchy pay a cost ch.

2. Individuals play a decision-making game on their patch
as defined above (equations 1, 2). The time taken to reach
consensus is translated into an opportunity cost of organ-
isation (equation 3).

3. After consensus is reached, all individuals on a patch take
part in a collective task which produces an amount of ex-
tra resource, discounted by the cost of organisation (equa-
tion 4).

4. The resource obtained from the collective task is dis-
tributed among all individuals on the patch. Leaders get

a surplus of resources modulated by a parameter d which
modulates the inequality between leaders and followers
(equation 5)

5. Individuals produce a number of offspring drawn from a
Poisson distribution, with the mean determined by the re-
sources received (equation 6)

6. All individuals of the previous generation perish.

7. Offspring migrate with a fixed probability m. Migrating
individuals enter a patch chosen at random from the pop-
ulation (excluding their natal patch).

Political organisation Each group within a patch is de-
fined by a political organisation h∗. At the beginning of each
generation, individuals decide if they want to design an insti-
tutional hierarchy and appoint a leader (h∗ = 1); this occurs
if the majority of individuals in the group have a preference
toward institutional hierarchy i.e. 1

Nj(t)

∑Nj(t)
i hij(t) >

0.5. In the absence of institutions (h∗ = 0), a group is or-
ganised by default as an informal hierarchy.

In an institutional hierarchy, one single leader is randomly
selected from the individuals with dominant personality s =
1 and its influence is set to αl. The rest of the individuals
within the patch adopt a follower profile and their influences
are set to αf (independently of their social personality). In
an informal hierarchy, an individual’s influence α is defined
by its social personality with αl for dominant individuals
s = 1 and αf for compliant individuals s = 0. In order
to be sustainable, institutions require resources to monitor
individuals and punish transgressors (Ostrom, 1990). Thus,
individuals creating an institutional hierarchy pay a cost ch.

Organisation by decision-making Once individuals have
chosen their political organisation, they organise a collec-
tive task through group decision-making as described above.
The consensus time is translated into a cost of organisation:

Coj(t) = t∗jCt (3)

The cost of organisation comes from the time dedicated to
organisation instead of carrying out the actual task – groups
that take too long to reach a decision may lose resources
or pay other opportunity costs. This cost is modulated by
Ct, which is a parameter representing the time constraint on
decision making and depends of the limitation of time on
the task, for instance, the speed of depletion of resources
or the need to build defences before an enemy arrives. We
consider here that the final decision reached has no effect on
the benefit produced by the collective task – the benefit is
only affected by the time taken to reach consensus.

Collective task At each generation, individuals take part
in a collective task and produce additional resources Bj(t):

Bj(t) =
βb

1 + e−γb(Nj(t)−bmid)
− Coj(t). (4)
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The collective task simulates the numerous cooperative tasks
realised during the lifetime of an individual. It can encom-
pass many actions such as hunting of large game or construc-
tion of an irrigation system. The benefit is calculated from
a sigmoid function described by βb, bmid and γb, respec-
tively the maximum, the group size at the sigmoid’s mid-
point, and the steepness of the increase in the benefit induced
by additional participants. We assume economy of scale
in which additional participants increase the benefit super-
linearly (Pindyck and Rubinfeld, 2001). But as is standard
in micro-economic theory, we also make the conservative as-
sumption that the benefit of the collective task eventually has
diminishing marginal returns which overcomes the economy
of scale because of other limiting factors (Foster, 2004).

Distribution of resources The resources produced by the
collective task are distributed between the individuals on a
given patch. The share of an individual, pij(t), is then equal
to:

pij(t) =
1 + li(t)d∑Nj

i=1(1 + li(t)d)
. (5)

Leaders (l = 1) receive a surplus of resources modulated
by the level of ecological inequality d. For d = 0, the
distribution within a patch is egalitarian and the influence
of individuals does not affect the share of each individual.
Such a scenario is close to that observed in societies of pre-
Neolithic hunter-gatherers. For d = 1, leaders receive twice
the amount a follower receives. It is assumed for simplic-
ity that d is the same for all patches, and is determined for
example by the state of technology, e.g. food storage and
military technologies.

Reproduction After receiving their share of the additional
resources, individuals have a number of offspring sampled
from a Poisson distribution centred on the individual fitness,
w. The fitness of individual i on patch j at time t is described
by the following equation, where Nj(t) is the total number
of individual on patch j:

wij(t) =
ra

1 +
Nj(t)
K

+ rbij(t) − chh
∗
j − cnsij . (6)

The fitness of an individual is the sum of an intrinsic growth
rate ra limited by the carrying capacity K, and additional
growth rate resulting from the extra resources produced by
the collective task, rbij(t). The fitness of individuals with
institutional organisation is discounted by a cost of institu-
tion ch, which represents the cost to monitor and enforce
the institutional rule. The fitness of dominant individuals
is discounted by a cost of negotiation cn which represents
the extra time and resources that an individual with domi-
nant personality allocates to persuade others. The additional
growth rate rbij(t) is calculated as follows:

rbij(t) = βr(1 − e−γr(Bj(t)pij(t))). (7)

The term rbij(t) is calculated from a logistic function de-
scribed by γr and βr, respectively the form and the max-
imum of the increase in growth rate induced by the addi-
tional resources. The additional resources are given by the
total amount of benefit, Bj(t), multiplied by the share the
individual receives, pij(t). The increase of the growth rate
follows a logistic relation because of the inevitable presence
of other limiting factors. After reproduction, offspring indi-
viduals migrate with a probability equal to a fixed migration
rate m. Migrating individuals enter a patch chosen at ran-
dom from the population (excluding their natal patch).

Analysis
We use this model to answer the following question: Can
the organisational benefit of single leader hierarchy lead to
a transition from informal to institutional organisation de-
spite the additional cost of institutions? Because of the non-
linearities of the model, which result from the interactions
of all of the variables, we analyse it using replicated numer-
ical simulations. We focus on the effect of the following
parameters: (i) the level of ecological inequality d (ii) the
cost of institution Ch and (iii) the time constraint Ct. The
default parameters used in the simulations, unless otherwise
specified, are Np = 50, Nj(0) = 20, K = 20, ra = 2,
βb = 10000, γb = 0.005, bmid = 250, βr = 3, γr = 0.05,
µm = 0.01 and m = 0.05. These parameters are chosen
in order to allow the transition between tribe size (50 to 100
individuals) to chiefdom size (1000 individuals). The de-
fault parameters for the group decision-making are the same
as previously. Finally, we want to allow for hierarchy even
when the political organisation is informal. To do so, we
choose a high cost of negotiation CN which limits the evo-
lution of too many leaders and allows relatively stable infor-
mal hierarchy. The results presented are the mean across 32
replicates when the result is as a function of generations; and
across 32 replicates and 5000 generations when the results
are as a function of a parameter. Where the result is de-
scribed as a mean, it is the mean value across patches. The
error bars represent the standard error from the mean and are
not represented when they are too small to be visible (< 5%
of the maximum value).

Figure 3 demonstrates that for a moderate cost of institu-
tion, individual preferences evolve towards institutional hi-
erarchy and thus, most of groups switch from informal to
institutional hierarchy. Groups have in average only slightly
more than 50% of individuals with preference toward insti-
tutional hierarchy because having any proportion above 50%
has the same effect on political organisation and therefore
the fitness of all individuals within the group. The small pro-
portion of groups with informal hierarchy are explained by
the cost of the institution and random mutations in individ-
ual’s preferences, which can lead some groups to temporar-
ily switch back to informal hierarchy. The prevalence of
institutional hierarchy remains stable for long period (5000
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Figure 4: (A) Evolution of mean additional resources B
(dark) equal to total resources produced discounted by cost
of organisation Co (light) across generations. (B) Evolution
of mean group size across generations.

generations). Figure 4 shows that the total amount of re-
sources produced and thus the group size increases through
time. The cost of organisation also increases but remains
low enough so that a large group provides more resources
than a small group. Figure 4 shows that two increases in
production and group size happen. The first corresponds to
the emergence of informal hierarchy, and the second to the
subsequent emergence of institutional hierarchy. This result
and the results presented in Figure 5 demonstrate that insti-
tutional hierarchy allows a higher production and a larger
group size. This is because a group with institutional hierar-
chy has (i) a lower cost of organisation and, (ii) a larger pro-
duction of surplus resources due to the larger size they reach.
When both types of organisation are allowed, groups reach
an intermediate size and productivity because of the cost of
institution and the presence of a minority of small groups
with informal hierarchy. To summarise, groups developing
institutional hierarchy strongly reduce their cost of organi-
sation. They grow larger, which improves their productiv-
ity, while hierarchy limits the increase in the cost of organ-
isation. As a consequence, these groups export a greater
number of migrants, who carry their cultural preferences for
institutions to other groups, leading to the global spread of
institutions.

Figure 6 shows that an increase in the cost of institution
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Figure 6: Distribution of (A) political organisation h∗ and
(B) mean group size as a function of the cost of an institution
Ch.

Ch reduces the proportion of institutional hierarchy and the
average group size. This result is explained by the high cost
of institution overcoming the benefit brought by institutional
hierarchy. However, institutional hierarchy still evolves even
for a moderate cost of institutions. Indeed, a cost of 1 means
that all individuals within a group need a growth rate twice
higher and thus, to produce approximately twice as much
resources to sustain the same fitness (see equation 6. More-
over, Figure 6 shows that individuals develop institutional
hierarchy even if it doesn’t significantly modify the average
group size e.g. same size between Ch = 1 and Ch = 2. This
is explained by single leader hierarchy providing a more
constant organisational benefit than the multiple leaders of
informal hierarchy. Figure 7.A shows that a larger propor-
tion of groups develop institutional hierarchy when the time
constraint on the decision making Ct is high e.g. a time
limited task such as warfare. This is because the shorter
consensus time brought by single leader hierarchy has more
consequences on the absolute group production.

Figure 7.B shows that a higher proportion of groups de-
velop institutional hierarchy when the level of ecological in-
equality d is higher. This result is explained by Figure 8
which shows that the benefit provided by institutional hier-
archy persists even under high inequality. On the contrary,
Figure 8.A shows that in an informal organisation, an in-
crease in the level of inequality leads to an increase in the
number of leaders. This results in a collapse of hierarchy,
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Figure 8: (A) Mean distribution of social personality and
(B) mean group size as a function of the level of ecological
inequality d.

a high cost of organisation and smaller group size (Figure
8.B). This difference in the effect of inequality is explained
by institutional hierarchy having only one expressed leader
even if multiple individuals want to be leaders. In addition,
only one individual attains the status of leader and hence
receives a surplus of resources, which ultimately limits the
increase in number of dominant individuals.

Discussion
Human social hierarchy can be formed because individuals
act as leaders and followers, i.e. informal hierarchy, or be-
cause certain individuals are chosen as leaders and follow-
ers, i.e. institutional hierarchy. But why do human groups
create costly institutional hierarchies if hierarchy already
emerges naturally from individual behaviours? The key dif-
ference is that single leaders can appear in institutional hier-
archy designed by group decision, but are highly unlikely in
informal organisation shaped by blind evolution of person-
ality traits. Thus, in this paper, we have focused on the dif-
ference between single and multiple leader hierarchies and

have shown that institutional hierarchy with a single leader
reduces more (i) the consensus time, (ii) the variation in the
consensus time, and (iii) the increase in consensus time as
a group grows. Our evolutionary model demonstrates that
this difference results in individuals’ preferences evolving
towards institutional hierarchy even if this has an additional
cost. To conclude, group organisation is facilitated by hierar-
chy but is highly intolerant to multiple leaders. This partic-
ularity provides one possible explanation for the evolution
and wide spread of institutional hierarchy. To understand
how critical and general is this explanation, further work
should (i) explore more widely the model and its parame-
ters and (ii) use data to test the prediction e.g. compare the
cost of organisation in informal and institutional hierarchy.

The results of the opinion-formation model confirm pre-
vious work which shows that an informal leader with the
features defined here speeds up consensus time (Gavrilets
et al., 2016). This prior work showed that an increase in
the number of leaders slows down the consensus, because it
creates more stubborn individuals. Our result adds that mul-
tiple leaders also slow down the consensus, because leaders
persuade each others’ followers, creating conflict of inter-
est between a large proportion of the group. It results in
a more detrimental effect of multiple leaders on consensus
time, which is amplified by group size. Previous theoretical
work have investigated the emergence of either informal or
institutional hierarchy, but ignored the competition between
the two forms. Powers and Lehmann (2014) developed an
evolutionary model in which individuals favour institutional
hierarchy over an egalitarian organisation. Other theoret-
ical models have shown that a similar process can drive
the evolution of individuals towards leader and follower be-
haviours, thus creating an informal hierarchy (Johnstone and
Manica, 2011; Perret et al., 2017). We confirm and connect
these works by showing that institutional hierarchy can be
favoured over informal hierarchy because it provides addi-
tional benefit to group decision-making, in terms of consen-
sus time.

Our model predicts that institutional hierarchy evolves
when (i) group size is high (and so productivity and cost
of organisation are high), and (ii) inequality is high. These
predictions fit with the environmental and social changes ob-
served following the advent of agriculture. Agriculture cre-
ated a durable surplus of resources which increased produc-
tivity and inequality (Bocquet-Appel, 2011; Mattison et al.,
2016). However, our model also predicts that the produc-
tivity benefit of institutional hierarchies can be counterbal-
anced by a high cost of institutions. It is hard to evaluate the
costs implied by institutions, but it is worth noting that they
result mostly from the resources and time allocated to moni-
tor and punish individuals not complying with the rules, i.e.
here individuals trying to become leaders. Our model has
shown that institutional hierarchy limits the number of in-
dividuals aspiring to become leaders, and thus suggests that
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the costs of institutions remain limited even in large groups.
It is worth noting that instead of competing, the two forms of
political organisation could have interacted and even facili-
tated the development of each other. First, the development
of informal hierarchy also leads to a higher group size and
higher inequality. Second, the influence of an individual is
in truth defined by both an individual’s personality and its
social position. Integrating a composite value of influence
in this model could provides more insight into the interac-
tions between these two forms of political organisation.

In this model, we have explored only one form of institu-
tion and one function of hierarchy. It would be interesting
to explore other types of institutions, such as those allowing
multiple levels of hierarchy, or restrict the number of people
involved in the decision-making, as found in representative
democracy. Other functions of hierarchy could also be in-
vestigated, e.g. to enforce cooperation (Hooper et al., 2010).
However, it is worth noting that extending the model to inte-
grate the possibility of voting for more leaders would carry
similar qualitative results with individuals evolving a pref-
erence toward one leader. The presence of multiples leaders
appears only later in human history, with the rise of complex
states composed of multiple layers of hierarchy that con-
strain the behaviour of different leaders (Johnson and Earle,
2000).

Institutions are believed to be crucial innovations for the
emergence of human societies. We have shown here that one
of their major benefit is to provide humans with a finer tool
to modify their behaviour, which can be crucial for some
processes such as shown here with hierarchy. More than
a new innovation, the development of institutions marks a
transition in the dynamics shaping human behaviours: from
long and blind evolutionary process to fast cultural dynam-
ics.
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Abstract

At large scales, typologies of urban form and corresponding
generating processes remain an open question with important
implications regarding urban planning policies and sustain-
ability. We propose in this paper to generate urban configura-
tions at large scales, typically of districts, with morphogene-
sis models, and compare these to real configurations accord-
ing to morphological indicators. Real values are computed
on a large sample of districts taken in European urban areas.
We calibrate each model and show their complementarity to
approach the variety of real urban configurations, paving the
way to multi-model approaches of urban morphogenesis.

Introduction
The study of forms of the built environment, and more pre-
cisely of the urban environment, has been the subject of
different disciplines such as architecture, urban planning,
or geography, with different approaches corresponding to
various scales and processes (Moudon, 1997; Gauthier and
Gilliland, 2006; Kropf, 2009). Artificial life approaches
have in that context contributed to the study of generative ur-
ban processes, within the broader theoretical framework of
morphogenesis (Doursat et al., 2012). Establishing typolo-
gies of urban morphologies, and understanding their link
with underlying urban growth processes, is nowadays a cru-
cial issue for sustainability as a large majority of the world
population live in cities and energy consumption is closely
related to urban form through e.g. mobility patterns and au-
tomobile dependance (Newman and Kenworthy, 2000).

Although there is neither a unified definition of urban
form, nor unified generative models and quantitative indica-
tors to measure it, several approaches are close to the spirit
of artificial life and generative social science (Bonabeau,
1997; Epstein, 1999). Procedural modeling (Watson et al.,
2008) aims at generating realistic cities, but is mostly fo-
cused on the visual impression given and does not consider
realistic generative processes. It is furthermore developed
largely at larger scales than the one of the district (Parish and
Müller, 2001). Merrell et al. (2010) generate in that context
plans for interior of buildings, whereas Cruz et al. (2017)
use a cellular automaton model for building morphogenesis.

Approaches linked to urban planning have focused on the
spatial distribution of land-use, at multiple resolutions (Liu
et al., 2017), and proposed cellular automata models for ur-
ban sprawl, generally at the scale of the metropolitan area
(Herold et al., 2003). For example, Horner (2007) proposes
a link between urban form based on land-use and commut-
ing.

Urban form can furthermore be characterized considering
different components of the urban system, such as building
themselves as in several examples given before, but also for
example transportation networks such as road networks (Ye
and Van Nes, 2014). To what extent these layers are comple-
mentary remains an open question, despite a few investiga-
tions coupling the two such as Raimbault (2018c) suggesting
indeed complementary dimensions. Regarding the geomet-
rical properties of building layouts at the scale of a district,
that we denote to simplify as urban form at a large scale,
systematic characterizations and generative models remains
rather rare. Achibet et al. (2014) for example describes a
model of co-evolution of building layout and road network.

This paper proposes a first step towards a systematic un-
derstanding of generative models of the urban form, at a
large scale. The approach taken here is similar to the one
taken by Raimbault (2018a), which computes urban form
indicators at a mesoscopic scale (metropolitan area) and cal-
ibrates a reaction-diffusion morphogenesis model. We con-
sider real urban configurations at the scale of the district
(fixed spatial window of 500m), compute their morpholog-
ical characteristics, and use these measures to calibrate dif-
ferent generative models of urban layouts at the same scale.
Our contribution is twofold: (i) we synthesize a set of in-
dicators relevant at this scale, and compute them on a large
sample of real urban configurations in European urban ar-
eas; (ii) we provide three different generative models com-
plementary in the type of processes taken into account, and
calibrate these models on the real morphological measures.
We show therein the complementarity of the different pro-
cesses to produce the variety of real urban forms considered.
This is to the best of our knowledge the first time several
generative models at this scale are systematically compared
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on a large number of real configurations through quantitative
measures.

The rest of this article is structured as follows. First, we
present the methods used in our work, including the mea-
sures allowing the comparison of urban forms, the proposed
generative models and the method used to retrieve real ur-
ban configurations. The results of the proposed approach are
then explained together with the tools used in the calibration
of the models. Finally, the results are discussed.

Methods
The approach taken requires both a robust way to quantify
urban forms, through indicators that can be understood as
features in the sense of machine learning, and generative
models.

Quantifying urban forms
The quantification of urban form is in itself covered by a
vast literature. Recent work have proposed to apply deep
learning techniques directly on vector data, such as Moosavi
(2017) does, for a worldwide classification of road net-
works. Such an approach avoids the question of isolating
relevant features. However, as we aim at calibrating gener-
ative models, our quantification will make more sense with
interpretable measures. Boeing (2018) proposes an exten-
sive review of existing measures from a large extent of dis-
ciplines, their implications for planning and design, and the
relation with urban complexity. Webster (1995) uses image
processing techniques such as contrast or Fourier analysis,
to extract synthetic descriptions of urban areas from satel-
lite imaging. Fumega et al. (2014) provide a typology of
cities in relation with energy consumption in the perspec-
tive of climate change. Rode et al. (2014) relate indicators
of urban form with residential heat-energy demand. Other
complexity-related approaches such as fractal dimensions
have been introduced as for example by Batty and Longley
(1987).

In practice, we use a variety of indicators capturing dif-
ferent aspects, each being detailed below. We consider the
local urban space as a square grid of width

√
N with cells

1 ≤ i ≤ N , and an urban configuration is a binary function
si ∈ {0; 1} on these cells. For the computation of indica-
tors, we consider underlying complementary networks, the
building network B defined as nodes in centroids of occu-
pied cells and links between two occupied direct neighbor
cells (one cell unit of distance between centroids), and the
free space network B̄ defined similarly on empty cells. This
raster representation is convenient as compatible with the
various types of indicators and generators as described be-
low. We will consider

√
N = 50 in the following, and real

windows of width 500m.

Basic indicators Simple descriptive indicators considered
are (i) the total building density A = 1

N ·
∑
i si; (ii) the

number of buildings given by the number of connected com-
ponents of B; (iii) the average building area, i.e. the aver-
age size of B connected components; (iv) Moran index cap-
turing spatial autocorrelation (see Raimbault (2018a) for its
definition in a similar setting), with a simple inverse distance
weight function; (v) average distance between non-empty
points (which also captures a level of concentration).

Network indicators We also use indicators computed
with the underlying networks: the average detour computed
in the free space network B̄, computed by randomly sam-
pling 50 pairs of points in a connected component of B̄ and
computing the ratio between the network distance and the
euclidian distance dB̄/dE . This measures captures in a way
the sinuosity of streets from a mobility viewpoint. We also
consider the average size of open connected areas as the av-
erage size of the connected components of B̄.

Mathematical morphology indicators Finally, indicators
inspired from the field of mathematical morphology (Serra,
1983) have already been applied to the quantification of ur-
ban form as for example by Pesaresi and Bianchin (2003).
Mostly used in image processing, these techniques proceed
to the convolution of the image with a filter for example to
simplify some morphological detail, what can be interpreted
as a kind of spatial smoothing. We use here an indicator
based on erosion with a filter of smallest size, which here
removes points which 4 closest neighbors are not also occu-
pied. We consider the total number of steps to fully erode
the image, which is linked to building size. Similarly, us-
ing the operation of dilation, which in the contrary occupies
points with at least one occupied neighbor, we consider the
total number of dilation steps to fully fill the grid. This cap-
tures the size of open spaces. We do not consider indicators
linked to opening and closing operations, as these would re-
quire more complex filters and for example their behavior as
a function of kernel size.

Combining these morphological indicators, we have a to-
tal number of 9 indicators that can be computed on any bi-
nary grid, and that we will use in the following to compare
real grids with generated grids of the same size.

Generative models

We detail now the generative models introduced. The mod-
els developed below capture both bottom-up self-organizing
processes and top-down planning processes. They also in-
clude different urban aspects, either filling the space with
built artefacts or focusing on linking empty spaces. A null
model is also considered, to ensure the relevance of the mor-
phological measures and the adjustments on these. It con-
sists in a random grid generator, where each cell is occupied
if a random uniform number between 0 and 1 is below a
density parameter dR.
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(a) Blocks (b) Kernel mixture

(c) Network percolation (d) Random

Figure 1: Examples of patterns produced by the synthetic
generators.

Blocks generator The most simple “realistic” generator
is similar to procedural modeling or marked point processes
and distributes building blocks into the space (see Fig. 1a).
Given a number NB of blocks, random positions are drawn
and block of a random height and width (with minimal value
mB and maximal value MB as parameters) are placed at
these.

Kernel mixture generator Kernel mixture are a classical
way to represent the spatial distribution of population den-
sity in an urban area (Anas et al., 1998) (see Fig. 1b). They
remain relevant at our scale, as they can be interpreted as a
superposition of “density hotspots”, as can the planning or
the self-organization of a district can be. Given a number
of centers NK , ~x1≤j≤NK

random position are drawn in the
grid, at which kernels are applied, such that si = 1di≥θK
where the density di for the point at position ~yi is given by

di =
1

NK
·
∑

j

exp (−‖~xj − ~yi‖ /dK) (1)

where dK is a range parameter giving the extent of kernels.

Network percolation model The last generator we used is
based on network percolation, in the spirit of capturing the
constraints imposed by flows traversing a given urban area
(see Fig. 1c). While the two previous generator were based
on building processes, this one relies on streets, and thus
on processes linked to transportation. The idea is to link a
fixed number NP of border points, which can be understood
as entrances/exits of the area. Starting with a grid network

Figure 2: Samples extracted from OpenStreetMap.

without links and nodes at a regular spatial sampling (fixed
with a step of 5 units in our case), an iterative procedure (i)
draws a random number and adds a random link at an empty
potential link if it is smaller than a parameter called the per-
colation probability pP ; (ii) computes the largest connected
component of the network and the number of nodes of this
component on the boundary of the world; (iii) stops if this
number is equal to the parameter NP . Cells not covered by
the resulting giant component are then occupied, at the ex-
ception of cells within a neighborhood LP of a link of the
giant component. This way, this component can be under-
stood as a circulating area linking NP entrances and exits,
with a constraint on width through LP .

Note that our generators will be “fairly compared” in
terms of calibration, as they have the same number of pa-
rameters (although we do not introduce any information cri-
teria that would yield the same penalization for overfitting).
We show in Fig. 1 visual representations of some outputs of
each generator, including a random generator (see Fig. 1d).

Results
Simulation results and real measures are available on the
dataverse repository at https://doi.org/10.7910/
DVN/LGK0US. Source code is available on the git
repository of the project at https://github.com/
openmole/spatialdata. The model and indicators
were coded in scala langage for performance purposes. This
furthermore allows a seamless integration into the Open-
MOLE workflow engine for model exploration (Reuillon
et al., 2013), which provides methods for numerical experi-
ments (in our case sampling methods) and transparent access
to high performance computation environments (model sim-
ulation were run on the European Grid Infrastructure for an
equivalent of one year and one month CPU time).

Real measures
We compute the morphological indicators given above on
a large sample on real urban areas. For practical compu-
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Figure 3: Typology applied to OpenStreetMap samples. The first class correspond mostly to a high density of linear buildings,
recalling modern urbanism projects; the second disparate large buildings that can corresponds to industrials buildings in the
outskirt of cities; the third disparate small buildings closer to periurban settlements; the fourth are denser and more complicated
patterns evoking historical urban centers.

tational reasons, we restrain our geographical area of study
to European functional urban areas as provided by Bretag-
nolle et al. (2019). We expect to already have a good repre-
sentativity, although not universal, of existing urban forms
with this sample, as it is known that European cities al-
ready have a significant morphological diversity (Le Néchet,
2015). We collect building layouts from OpenStreetMap
(illustrated in Figure 2), as this source has been shown to
have a good quality especially in Europe (Mooney et al.,
2010). Using the osmosis tool, buildings are filtered from
the openstreetmap raw dump for Europe (downloaded from
http://download.geofabrik.de/ in March 2019)
and inserted into a Postgis database, which can then be ef-
ficiently queried for a specific bounding box. Indeed, al-
though the library developed provides a direct access to the
OpenStreetMap API, query limitations do not allow such a
systematic sampling. We sample N = 72, 000 points into
polygons corresponding to urban areas, first by selecting the
area with a uniform selection weighted by population of ar-
eas, then by drawing uniform spatial coordinates within the
polygon with a polygon sampling heuristic.

After removing the empty areas and areas with a too low
(lower than 0.05) or a too high (higher than 0.8) density,
we end with 17, 612 real points on which the morphological
measures are computed. The effective dimension is rela-

tively low, echoing literature on urban form at other scales,
as the first principal component on normalized indicators
captures 70.3% of variance, the second a cumulated propor-
tion of 85.9% and the third 92.8%. The order of magnitude
are similar to the ones found by Schwarz (2010) for exam-
ple. The first component captures low density (coefficient
-0.43 for density) but clustered configurations (-0.35 for av-
erage distance), confirmed by the positive influence of di-
lation steps (0.44). On the contrary, the second component
captures dispersed configurations (negative Moran and pos-
itive average distance) with large blocks (negative dilation
steps).

We obtain a broad variety of forms, measures such as the
Moran index varying between 0.02 (small disparate settle-
ments) to 0.93 (one huge block), with a median at 0.10 (sev-
eral medium size buildings). Similarly, the number of dila-
tion steps varies from 3 (narrow streets only) to 80 (mostly
open spaces) with a median at 26. The mean density is 0.21,
what means that around 21% of the soil is covered with
building in average in the space we sampled, confirming that
the most of urban areas are not dense contrary to the highly
dense centers which are a minority.

To obtain typical representative points, we proceed to an
unsupervised clustering on the two first principal compo-
nents of these points. Using a k-means algorithm (5000
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stochastic repetitions), varying the number of clusters shows
an endogenous transition in the within-cluster variance pro-
portion, suggesting to take k = 4. Examples within the
classes are shown and commented in Fig. 3. The centroids
will be used as typical objectives for model calibration.

We can also consider the distribution of these measures
within sampled urban areas. Keeping the areas with more
than 10 sample points, we obtain 219 areas, for which we
can compute the proportion of points within each morpho-
logical cluster. An Herfindhal diversity index on these pro-
portions pk ∈ [0, 1] computed as h = 1 −∑

k p
2
k ranges

between 0.31 and 0.75 with an average of 0.63, suggesting
very different profiles of urban areas. A chi-squared test be-
tween the country and a discretization with 10 levels of this
diversity is not significant (p=0.7), but the diversity index
negatively correlates (ρ = −0.11, Fisher 95% confidence
interval [−0.24, 0.02]) with longitude, meaning that Western
cities are more diverse than Eastern cities, and more slightly
with latitude (ρ = 0.08 [−0.04, 0.21]).

Model simulation and calibration
A simulation experiment provides an insight into the pat-
terns produced by the different generators in the morpho-
logical space. We sample the parameter space using a Latin
Hypercube Sampling, with 10000 points for each generator
respectively, and with 100 stochastic repetitions for each pa-
rameter point. This sampling is achieved with scripting the
models into the OpenMOLE platform (Reuillon et al., 2013).

Regarding the stochastic variability of generators, we
compute for each indicator and each parameter point the
sharpe ratios on repetitions, defined as the ratio between the
estimated average and the estimated standard deviation. The
indicators with the lowest values (high values indicate a low
influence of stochastic fluctuations in comparison to varia-
tions due to parameters) are Moran index with a minimum
of 0.22 and a median of 4.8, and the average detour with
a minimum of 0.7 and a median of 5.2 (what could have
been expected for this one as it is stochastically estimated).
All other indicators have minimal sharpe ratios above 1.5
and medians above 5.4, meaning that models are overall not
much sensitive to stochastic fluctuations. This confirms that
considering single realisations as representing one parame-
ter set remains reasonable.

We turn now to the comparison of generated configura-
tions with real configurations. We work in the projected two
dimensional space of the two first principal components of
real points described above, in order to capture the maxi-
mum of variability in the real point cloud rather than in the
simulated one. Note that working in the full indicator space
makes no sense given the effective dimensions obtained (the
simulated point cloud captures 93% of variance at its third
principal component, which is just a bit more than the real
point cloud).

The point cloud of simulated and real points is shown in

Fig. 4. We do not plot ensemble averages but all simulated
points, as discussed above regarding the low influence of
stochasticity. First of all, we observe that the null model
consisting in random grids is far from all other points (ex-
cept a tiny fraction of the percolation generator in turquoise)
and in a way describes a boundary in the projected indicator
space. This control confirms the relevance of projected indi-
cators and of their comparison. Then, as expected since gen-
erators were conceived to capture different generative pro-
cesses of the urban form, the point clouds of each generator
are rather disjoint in the morphological space. The perco-
lation generator produces separate clouds which correspond
to different value of the link width LP parameter, and these
are disjoint from the two other generators. The exponential
mixture (green) and block (red) generators do overlap in a
central area, but also have their own morphological “exclu-
sion zone”, where the forms can not be generated by other
generators considered here.

When looking at the real point cloud, we see that most of
it is covered by some generated points, and that generators
are complementary to approach all covered points. This is
an important result in line with the targeted complementarity
of generative processes, and advocates for multi-modeling in
urban morphogenesis. Interestingly, there is an area not cov-
ered, corresponding to the transition between the percolation
generator (narrow streets) and the block generator.

For each centroid of the clusters in the real point cloud
described above, that can be considered as a typical calibra-
tion objective, we provide example of the closest real con-
figuration and the closest simulated one. Visually, forms are
rather satisfying, at the exception of the percolation genera-
tor fitting a complicated urban center. Indeed, this centroid
(number 4) is at the boundary of the percolation point cloud,
and the real point cloud is more difficultly captured in this
area compared to the block and mixture generators.

To quantify the level of calibration of each generator re-
garding each centroid, and in average regarding stochastic
repetitions, we provide in Table 1 the aggregated minimal
values of distances, for each generator and each calibration
objective, with their standard deviations. This mainly con-
firms the previous results, with however interesting varia-
tions: (i) for the second centroid, the exponential mixture is
in average no longer the best, and furthermore has a higher
variability; (ii) centroid three and four are the easiest to
reach, despite the latest being in the boundary; (iii) the per-
colation generator performs well on this point and has a very
low variability.

This experiment has therefore shown the possibility to
calibrate the generative models on morphological measures
against real configurations, and furthermore unveils their
complementarity to approach the diverse existing forms.
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(1) (2)

(3) (4)

Figure 4: Comparison of real morphologies with patterns produced by the synthetic generators. All points are projected into
the first two components computed on the real measures only. Points in dark blue correspond to real configurations. The type
of generator is given by the color in legend. Dark circle correspond to the centroids of clusters on which the calibration is
done, their number giving the corresponding configurations shown above. For each, we successively show the best synthetic
configuration ((1) block generator with NB = 12,mB = 5,MB = 12, (2) exponential mixture generator with NK = 6, dK =
3.8, θK = 0.42, (3) block generator with NB = 11,mB = 1,MB = 14, (4) percolation generator with pP = 0.35, NP =
5, LP = 3.7), and the real configuration from OSM beside each.

https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-363.jpg&w=504&h=472


Random Blocks Exp. Mixture Percolation
Centroid 1 0.424± 0.011 0.106± 0.063 0.303± 0.101 0.325± 0.019
Centroid 2 0.809± 0.022 0.164± 0.099 0.184± 0.141 0.947± 0.019
Centroid 3 0.428± 0.019 0.095± 0.054 0.109± 0.064 0.541± 0.019
Centroid 4 0.515± 0.005 0.311± 0.077 0.589± 0.149 0.083± 0.025

Table 1: Aggregated distance in the morphological space, for each generator and each calibration objective (real clusters
centroids). Euclidian distance in the projected space are aggregated in average on stochastic repetitions, and the minimal
average value is reported with its standard deviation.

Discussion

Our approach provides a first step towards systematic mod-
eling of generative processes of urban form at large scales.
Some direct limitations could be tackled in a short term.
Testing slightly different processes and heuristics in gener-
ator may be a way to cover the part of the real point cloud
which is missed by our generators. As it seems correspond
to complicated urban centers, it may be however compli-
cated without more elaborated models. Also, we did not use
minimization algorithms to calibrate the generators, and the
and a further step would consist in checking the robustness
of our result using such optimization heuristics (genetic al-
gorithms for example), but also diversity algorithms such as
pattern space exploration proposed by Chérel et al. (2015),
to ensure the effective feasible space of each generator.

This work can also be extended in several ways. First of
all, we focused on the built environment but neglected trans-
portation infrastructures, whereas spatial network morpho-
genesis models have been proposed for example by Cour-
tat et al. (2011) or Raimbault (2018b) in a multi-modeling
approach. Taking into account multiple dimensions of the
urban system is an important extension and hybrid models
such as co-evolution models (Raimbault et al., 2014) should
be investigated. Our approach can also be a preliminary step
towards the study of urban sustainability issues, for example
the relations between urban form and energy consumption
(Le Néchet, 2015). Extending the generators with the third
dimension, i.e. taking into account building heights as done
by Brasebin et al. (2017), could also be an important com-
ponent for the study of local energy efficiency.

Furthermore, we tested the complementarity of generators
only in a static way. Adaptive and dynamic generators, com-
bining processes of different nature within the same model
with an endogenous switching or combination, would be an
important direction to better understand urban morphogen-
esis. In the same context, the generators compared here
had all the same number of parameters, but richer gener-
ators implying different numbers would require the use of
information criterions to avoid overfitting, which, however,
remains an unsolved issue for such generative simulation
models (Piou et al., 2009).

Finally, as extensively reviewed above, the way to quan-

tify urban form strongly depends on the scale considered.
A more integrative understanding of it would require multi-
scale approaches able to relate these different definition and
measures within a single multi-scalar framework.

Conclusion
We have proposed here a new insight into the generative sim-
ulation of urban morphologies at large scales, namely the
scale of the district considering the layout of buildings. Af-
ter computing morphological measures on a large sample of
real urban areas, we showed the complementarity of differ-
ent generators capturing various aspects of urban morpho-
genesis processes. Despite not implying generative agents
(developers, inhabitants, companies) and thus staying close
to procedural modeling, this work however paves the way
towards a more systematic understanding of generative pro-
cesses of urban form at this scale.
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d’exploration et de distribution appliquées à la simulation des
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Abstract

We study the evolution of fairness in a multiplayer version
of the classical Ultimatum Game in which a group of N Pro-
posers offers a division of resources to M Responders. In
general, the proposal is rejected if the (average) proposed of-
fer is lower than the (average) response threshold in the Re-
sponders group. A motivation for our work is the exchange
of flexibilities between smart energy communities, where the
surplus of one community can be offered to meet the demand
of a second community. In the absence of any Responder
selection criteria, the co-evolving populations of Proposers
and Responders converge to a state in which proposals and
acceptance thresholds are low, implying an unfair exchange
that favors Proposers. To circumvent this, we test different
rules which determine how Responders should be selected,
contingent on their declared acceptance thresholds. We find
that selecting moderate Responders optimizes overall fair-
ness. Selecting the lowest-demanding Responders maintains
unfairness, while selecting the highest-demanding individu-
als yields a worse outcome for all due to frequent rejected
proposals. These results provide a practical message for in-
stitutional design and the proposed model allows testing poli-
cies and emergent behaviors on the intersection between so-
cial choice theory, group bargaining, competition, and fair-
ness elicitation.

Introduction
Many social dilemmas in society can be formulated and
studied using game theoretic methods (Gintis, 2000). In
particular, the question how cooperation can come about
in a society of self-interested individuals has attracted con-
siderable interest in the research community (Axelrod and
Hamilton, 1981; Hofmann et al., 2011; Rand and Nowak,
2013; Ranjbar-Sahraei et al., 2014; Santos et al., 2018). Typ-
ically such social dilemmas are cast as a normal form game,
in which a set of players simultaneously and without prior
communication choose an action to play, and the resulting
joint action determines the payoff to each player. Despite the
simplicity of these one-shot interactions, normal form games
can still capture many of the intricate dynamics of complex
strategic interactions (Axelrod and Hamilton, 1981; Skyrms,
2004).

One example of such a game is the Ultimatum Game (UG)
(Güth et al., 1982), in which one player, the Proposer, offers
a certain split of a resource to a Responder, who decides
to accept or reject the offer. If accepted, the players re-
ceive their share per the offer; if rejected both players receive
nothing. We propose and study a Multiplayer version of the
classical Ultimatum Game, in which a group ofN Proposers
offers a division of resources to a group of M Responders.
Henceforth we refer to this interaction as NvM-person Ulti-
matum Game (NM-MUG). While a multiplayer version of
UG was previously discussed in the context of one Proposer
and N Responders (Santos et al., 2015, 2016, 2019), con-
sidering proposals by groups of Proposers is relevant in the
context of rival public goods division, where 1) Proposers
may be tempted to free-ride and lower their proposals ex-
pecting other Proposers to compensate and 2) the group sizes
of Proposers and Responders may not match, reducing the
per-capita share in one of the groups. In general, we assume
that a proposal is rejected if the (average) proposed offer is
lower than the (average) response threshold in the Respon-
ders group. We study under which conditions a fair outcome
is achieved, in which Proposers offer a substantial split to
the Responders. In particular, we study the mechanism by
which the Responders are selected from the population in
order to elicit the best deal.

The NM-MUG can be used to study social settings in
which groups of people wish to negotiate a deal. For exam-
ple, deals between companies or between national legisla-
tive bodies are often discussed by committees representing
each side, and as a result the selection of committee mem-
bers with specific individual strategies can have a great in-
fluence on the final result (Hagan et al., 2001). Multiplayer
versions of the Ultumatum Game are also played in the con-
text of group buying (Jing and Xie, 2011). A specific ex-
ample motivating our work are smart energy communities,
such as the Amsterdam pilot sites Schoonschip1 and De Ceu-
vel2, in which a number of households share a single point
of coupling with the national energy grid. Behind this point

1http://schoonschipamsterdam.org/en/
2https://www.jouliette.net/
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of coupling, the households can exchange energy flexibili-
ties (demand and supply) locally and thus more efficiently
(Chakraborty et al., 2018). The summed remaining flexibil-
ity of each community could be used in negotiation with a
different community, as a second layer of local or regional
energy exchange (Lezama et al., 2018). This suggests a mul-
tiplayer bargaining game between two groups (the Propos-
ing and Responding communities) which fits well within the
general layout of the NM-MUG.

We simulate this scenario by means of a co-evolutionary
process in which groups of Proposers and Responders are re-
peatedly selected from separate populations. The NM-MUG
is used to compute the resulting fitness of individuals in each
population, which then evolve following imitation dynamics
and mutation. When selecting randomly composed groups
of Proposers and Responders (that is, each individual has
an equal probability of being selected for the group of Pro-
posers or Responders), we find that the average offer of Pro-
posers and acceptance thresholds of Responders co-evolves
to an unfair state where Proposers get (almost) all the share.
From this baseline, it is possible to test mechanisms for se-
lecting the Responder groups, aiming to find arrangements
that equalize the average gains of both populations. This
model can thus lay out directions for future research in the
areas social choice, group bargaining, competition, and the
emergence of fairness in co-evolving communities.

Background and Related Work
The Ultimatum Game (UG) is a well-known interaction
paradigm, widely used to evince the conflict between pay-
off maximization and fairness — and the puzzling human
preference for the latter (Güth et al., 1982). As mentioned
in the previous section, in this game two players interact in
two distinct roles. One is called the Proposer and the other
is denominated Responder. The game is composed by two
sub-games, one played by each role. First, some amount of a
given resource, e.g. money, is conditionally endowed to the
Proposer; this agent must then suggest a division with the
Responder. Secondly, the Responder will accept or reject
the offer. The agents divide the money as it was proposed, if
the Responder accepts. By rejecting, none of them will get
anything. The strategy set of the Proposers comprises any
possible division of the resource. The strategies of the Re-
sponders are acceptance or rejection, contingent on the offer
made. Often, Responders’ strategies are assumed to be prob-
abilities of acceptance that are non-decreasing on the offer
made. Frequently it is assumed that any Responder decision
is codified in a threshold of acceptance: below this thresh-
old offers are rejected (i.e., accepted with probability 0) and
above the threshold offers are accepted with probability 1
(Page et al., 2000).

While the UG is a sequential game usually expressed
in extensive-form, by having Responders deciding on their
thresholds of acceptance in advance we can also formalize

this interaction as a normal-form game. In either case, the
rational behaviour in the UG can be anticipated using tra-
ditional game-theoretical equilibrium analysis. Of special
interest in this setting is the sub-game perfect equilibrium
(Osborne et al., 2004), which can be inferred by applying
the method of backward induction. The Responder, facing
the decision of rejecting (earn 0) or accepting (earn some
money, even if a really small quantity), would always prefer
to accept. Secure about this certain acceptance, the Proposer
will offer the minimum possible, maximizing her own share,
thus yielding the equilibrium in which both the offer and the
acceptance threshold are as close as possible to zero.

The UG is a 2-person game, however, many real-world
situations require bargaining within (and between) groups
of individuals. Here we focus on a multiplayer extension
of the ultimatum game in which a group of N Proposers
offers a division of resource to a group of M Responders
(NM-MUG). A previous formalization of Multiplayer Ulti-
matum Game (MUG), close to the one that we follow here,
was proposed by Santos et al. (2015). In that work, a sin-
gle Proposer makes an offer to a group of Responders. In-
dividually, each Responder in the group states acceptance
or rejection; the group of Responders as a whole accepts
the offer provided that a minimum number of acceptances
exist. A more recent study resorts to reinforcement learn-
ing (the Roth-Erev algorithm) to show that higher proposals
are likely to emerge when stricter group decision rules (re-
quiring more accepting Responders for group acceptance)
are considered (Santos et al., 2016), also in the context of 1
Proposer versus N Responders. An alternative multiplayer
(3-person) formulation of the UG was proposed by Takesue
et al. (2017). Also, in a seminal work, Fehr and Schmidt
(1999) explicitly considered the effect of competition be-
tween Proposers and Responders in a market game closely
related with the UG. In this game, either 1) a group of sell-
ers (Proposers) compete to sell one unit of a good to a buyer
(Responder); or one Proposer suggests an offer that leads
many Responders to compete against each other to accept it.
In these market games, subjects tend to adopt unfairer strate-
gies, differently to what happens with the 2-person UG and
as predicted by the rationality self-interest model.

Nevertheless, both in the 2-person and the multiplayer
ultimatum game, the predictions assuming perfect rational-
ity were challenged by experimental and theoretical works
(Fehr and Schmidt, 1999; de Jong and Tuyls, 2011; Santos
et al., 2019). Instead of resorting to equilibrium notions of
classical game theory to study the behavior of agents when
interacting in a multi-Proposer multi-Responder ultimatum
game, we adopt methods from population ecology, such as
evolutionary game theory (EGT). EGT has been used to
analyze strategic interactions in several domains such as
auctions (Phelps et al., 2004) or market dynamics (Bloem-
bergen et al., 2015) (as an example). In a social context,
EGT can describe individuals who revise their strategies
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through social learning, being influenced by the behaviours
and achievements of others (Sigmund, 2010). One of the
most traditional tools to describe the dynamics of an evo-
lutionary game model is the replicator equation (Taylor and
Jonker, 1978). This equation, justified in a context of trait
evolution in biology or cultural evolution across human so-
cieties, assumes that populations are infinite and evolution
proceeds favouring strategies that offer a fitness higher than
the average fitness of the population. However, it has also
been argued that the replicator equation might not be an ac-
curate model of human behaviour, due to its assumption of
an infinite and well-mixed population, and that agent-based
models might be more appropriate to study the social dy-
namics of fairness (Alexander, 2000).

Given these considerations, here we analyze the NM-
MUG resorting to an agent-based model that similarly as-
sumes that strategies performing better than average are se-
lected over time. For that, we consider a pairwise compar-
ison rule (Traulsen et al., 2006). As will be clarified be-
low, we consider a finite population of agents. After play-
ing several rounds, agents revise their strategy by observing
a role-model agent, randomly picked from the population.
Imitation (i.e., copying the strategy used by the role-model)
occurs with a probability that grows with fitness difference:
strategies performing better have a higher probability of be-
ing imitated. Under certain limits (large population size and
low selection intensity) the replicator dynamics is recovered
in this process (Traulsen et al., 2006).

NvM-Person Ultimatum Game
Let us start by describing the NvM-person (i.e., multi-
Proposer, multi-Responder) Ultimatum Game, the interac-
tion paradigm used throughout this paper. In any given NM-
MUG interaction a group of Proposers makes an offer to a
group of Responders. The offer made by the group results
from a function of individual offers of Proposers in the group
(e.g., the average); this offer is accepted if it is higher than
a function of Responders’ individual acceptance thresholds
(e.g., if the offer is higher than the maximal threshold —
guaranteeing that every Responder in the groups is satisfied
— or if, again, the offer is higher than the Responders’ av-
erage threshold). In case of acceptance, each Proposer re-
ceives the share she did not offer, which stresses the social
dilemma in the Proposers’ group: individually, each one has
interest in offering the minimum possible but, in order to
prevent a rejection, it is beneficial for all to have the largest
possible collective offer.

In the context of smart energy communities, each group
can be seen as a possible community, while the selection
mechanism determines the attitude of its members. The pro-
posals and response thresholds can be thought of as some
combination of kWh and price, or the difference to the mar-
ket price, illustrating the potential gain from the interaction.

Formally, we model the NM-MUG by two populations

Proposer(s) Responder(s)

NM-MUG

ZP

N M

ZR

pi
qj

Figure 1: The NvM-person Ultimatum Game (NM-MUG).
Groups of N Proposers and M Responders are drawn from
a population of Proposers ZP and Responders ZR, respec-
tively. The groups’ joint proposal and threshold for accep-
tance determine the success of the interaction.

ZP and ZR, representing the Proposers and Responders, re-
spectively (see Figure 1). Each individual i in the popula-
tion of Proposers is defined by her personal proposal value
pi ∈ [0, 1], for i ∈ ZP . Similarly, Responders are defined
by their individual threshold of acceptance qj ∈ [0, 1], for
j ∈ ZR. At each iteration, a group of Proposers N ⊆ ZP
and Responders M ⊆ ZR is selected, following predefined
rules 3. These groups induce a joint proposal p̄ = P(N)
and joint Responder threshold q̄ = Q(M). In a simple
scenario (such as the one we will consider below) P and
Q are the average function, i.e. p̄ = |N |−1∑i∈N pi and
q̄ = |M |−1∑j∈M qj . The proposal is accepted iff p̄ ≥ q̄.
The question is now: how to select the groups of Proposers
and Responders from each population?

Base Scenario
In the base scenario, the Proposers, forming a group of fixed
size N , are selected randomly from Zp. The joint proposal
offered by the group is taken to be the average proposal of
individuals in the group, p̄ = |N |−1∑j∈N pj . The Re-
sponder group M is composed of those Responders that are
willing to accept p̄, such that j ∈M : qj ≤ p̄.

In this case, the Responders in M will have a payoff

URi = min(p̄, p̄
N

M
), (1)

whereas all Responders outside M earn 0. The min opera-
tor signifies that the Responders cannot jointly receive more
than what the Proposers offer, nor can one individual con-
sume more than a unit share. At the same time, Proposer i
taking part in the collective proposal by group N , offered to
the group of Responders M , will have a payoff of

UPi = min(1− pi, (1− pi)
M

N
), (2)

3To simplify notation, we use N and M interchangeably as the
group size of Proposers and Responders, respectively, as well as
groups of selected Proposers and Responders. When an explicit
distinction is necessary we use |N | and |M | to denote group sizes.
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where pi is the proposal by individual i. Again, the min op-
erator ensures that Proposers cannot jointly offer more than
the Responders accept; unit offers that are not accepted are
lost in the context of the deal. This loosely reflects a typical
scenario in which flexibilities are exchanged between smart
energy communities (Lezama et al., 2018), where each indi-
vidual household has a maximum amount of flexibility it can
offer, and the total sum of flexibilities exchanged between
the communities should balance out in the deal.

Responder Competition Scenario
As we detail below (Section “Experiments and Results”) al-
lowing any individual i ∈ ZP to take part in the group of
Responders (those that will accept or reject the offer and
profit from it) has the pernicious effect of inducing a long-
term reduction in the average values of q adopted in the
Responders’ population which, in turn, incentives the Pro-
posers to lower their p and enact highly unfair offers. Many
institutional arrangements affecting the process of Respon-
der selection can be tested, departing from the base scenario
presented above. For now, we discuss the role of Respon-
der competition based on a declared threshold of acceptance
— partly inspired by Fehr and Schmidt (1999). While Pro-
posers are still randomly selected, we sort the Responders’
declared thresholds of acceptance, partitioning the Respon-
ders based on this ordering, and select for the group the in-
dividuals declaring the thresholds ranked from the mth to
the (m+M − 1)th ascending position. As an example of
extreme cases, m = 0 and M = 10 means that the 10 low-
est acceptance thresholds are selected and, in a population
of 100 Responders, m = 90 and M = 10 means that the 10
highest acceptance thresholds are selected.

In this case, assuming that |N | and |M | are fixed exter-
nally, proposals are accepted only whenever p̄ ≥ q̄, where
q̄ = |M |−1∑j∈M qj , and M is formed by the demands
qi which, after being sorted in an ascending order, stand in
the positions ranging from the mth to the (m + M − 1)th

position. We study the evolutionary trajectories of strategy
adoption when different rules for the selection of Respon-
ders are introduced (i.e., different m and M ).

Evolutionary Dynamics
In order to study the evolutionary dynamics associated with
each Responder selection rule (m and M ), we implement
an agent-based model in which individuals resort to social
learning to adapt their behavior over time (Algorithm 1). Ini-
tially, values of p and q characterizing each agent are sam-
pled from a uniform distribution. For a large number of gen-
erations, individuals will adapt their values of p and q. In
each generation, |ZP | + |ZR| individuals are sampled with
replacement, following a uniform probability; with a prob-
ability µ the selected individual will randomly explore the
strategy space, adopting a random value of p (if Proposer)
or q (if Responder). This is akin to a mutation in genetic

Algorithm 1: Pseudo-code of the main cycle of our sim-
ulations. Algorithm 2 sketches how fitness(·) is com-
puted.

Initialize all pi ∈ ZP , qi ∈ ZR = X ∼ U(0, 1)
for t← 1 to Gens do Main cycle of interaction and
strategy update:

for j ← 1 to ZP+ZR do Select agent to update:
if X ∼ U(0, 1) < ZP/(ZP+ZR) then Update
Proposer strategy:
/* Sample two agents from

Proposer population */
A← X ∼ U(1, ZP ) (agent to update)
B ← X ∼ U(1, ZP ) (model agent)

else Update Responder strategy:
/* Sample two agents from

Responder population */
A← X ∼ U(1, ZR) (agent to update)
B ← X ∼ U(1, ZR) (model agent)

if X ∼ U(0, 1) < µ then Mutation:
pA ← X ∼ U(0, 1)

else Imitation:
fA ← fitness(A)
fB ← fitness(B)
prob← 1/(1+e−β(fB−fA))
if X ∼ U(0, 1) < prob then

pA ← pB + imitation error ∼ U(−ε, ε)

evolution. With probability 1 − µ the selected individual A
will resort to imitation. In this case, a model agent B from
the same population is selected. The fitness of both agents
is calculated as the average payoff obtained in a large num-
ber of NM-MUG interactions (Algorithm 2).4 Imitation will
occur with a probability that follows the Fermi function for
pairwise comparison (Traulsen et al., 2006) such that

probA←B =
1(

1 + e−β(fB−fA)
)

where fA is the fitness of the imitator, fB is the fitness of the
model, and β is the so-called intensity of selection, control-
ling how dependent the imitation process is on agents’ fit-
ness values. When imitation occurs, the value of p or q char-
acterizing agent B will be adopted by agent A. The adopted
strategies are subject to a small perturbation: we add a value
between −ε and ε, sampled from a uniform probability dis-
tribution. We guarantee that pi, qj ∈ [0, 1],∀i, j, truncating
the adopted value if necessary.

4Note: while Proposers are drawn independently of their strat-
egy, Responders are selected based on their qi which is why we
need to take this into consideration in Algorithm 2.
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Algorithm 2: Sketch of fitness computation of individual A
based on selection of M Proposers and N Responders.

Function fitness(A)
accumulatedF itness = 0;
for i← 1 to Samples do

if A ∈ ZP then Select Proposers including A:
Sample |N | − 1 other Proposers

else
Sample |N | Proposers

Select group of Responders M (for instance,
ordering their q values, ascending, and picking the
agents having the thresholds in the range mth to
(m+ |M | − 1)th

p̄ =
∑
j∈N pj/|N |

q̄ =
∑
k∈M qk/|M |

if p̄ ≥ q̄ then Proposal accepted:
if A ∈ ZR ∧A ∈M then Compute Responder

payoff:
fitness← URA (using Equation 1)

else Compute Proposer payoff:
fitness← UPA (using Equation 2)

accumulatedF itness += fitness

return accumulatedFitness/Samples

During the simulations, we record 1) the average strat-
egy used in the population of Proposers and Responders, 2)
the average acceptance rate of proposals, 3) the average fit-
ness of Proposers and Responders and 4) the time-series of
strategy adoption. We are particularly interested in under-
standing how strategy dynamics are impacted by different
Responder selection rules (i.e., different values of m and
M ). We report these results next.

Experiments and Results
We simulate the NM-MUG as described previously (Algo-
rithm 1) and present the results in the following. We average
over 100 runs of 20,000 generations each, and we use 100
samples for each fitness computation (Algorithm 2). We set
ZP = ZR = 100, µ = 0.001, ε = 0.01, and β = 10.

We are interested in the fairness of accepted deals which,
for simplicity, we here define as (expected) payoff equality
within and between the populations. For our scenarios, this
means that fairness between populations is achieved when

p̄ =
|M |

|M |+ |N | (3)

such that proposers and responders on average receive the
same utility (by Equations 1 and 2). Fairness within popu-
lations is similarly achieved when all individuals share the
same expected utility, which in our scenario means that
pi = pj ,∀i, j ∈ ZP and qi = qj ,∀i, j ∈ ZR. While

more elaborate measures of fairness are possible (de Jong
and Tuyls, 2011), we leave these for future work and instead
focus on the role of Responder selection in this paper.

Base Scenario
After simulating the co-evolving dynamics of agents playing
the NM-MUG, and adapting their p and q strategies accord-
ingly, we realized that the base scenario, where all accepting
individuals are selected, nurtures long-term unfair divisions
between Proposers and Responders. We verified that the p
and q evolve, on average — taken over the whole popula-
tion(s), over 20,000 generations and over 100 runs — to val-
ues close to 0.01 and 0.1, respectively. This results in a large
proportion of rejected deals and, in case a deal is accepted, a
highly unfair (between populations) outcome. The same re-
sult is obtained when selecting randomly composed groups
of Responders with a fixed size M.

Responder Competition
We proceeded to test how competition for taking part in the
Responder group affects these dynamics. We measured the
average strategy usage, acceptance rate and fitness given a
range of values for the rank parameter m, yielding both ex-
treme (very low or very high m) and moderate (m ≈ ZR/2)
Responder groups.

As Figure 2a conveys, increasing m increases the average
values of p and q adopted by individuals in the long-run.
Notwithstanding, selecting strict Responders — that have
the highest values of q — is pernicious by leading to low
acceptance rates, as evidenced by Figure 2a (bottom panel).
Selecting groups that are characterized by the lowest values
of q (low m) is disadvantageous for the Responders popu-
lation as, over time, Proposers learn to offer extremely low
proposals. Selecting groups formed by the highest values
of q (high m) is equally harmful: due to the high fraction
of proposals being rejected, individuals are unable to ob-
tain high values of fitness. The optimal selection rule selects
those representatives with a value of q close to the popula-
tion median (i.e., m ≈ ZR/2), as evidenced in Figure 2b.
Note that this figure presents the relative average fitness as
a ratio with respect to the case m = 0. For example, when
m = 45 a Responder receives on average approximately 32
times more payoff compared to m = 0. Conversely, in this
case a Proposer earns slightly above 50% of what she would
receive for m = 0. Using this relative scale allows an eas-
ier comparison with the base (unfair) scenario m = 0. As
|N | = |M | in this case, a between populations fair outcome
is achieved whenever p̄ ≈ 0.5.

Changing m has a profound impact on the evolving dy-
namics of p and q, as shown in Figure 2c, where time-series
corresponding to exemplifying runs form = 30 (a),m = 45
(b), m = 50 (c), and m = 90 (d) are presented. We see a
clear difference between situation (a), with high acceptance
rates and low fairness, and (d), with almost arbitrary dynam-
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(a) The average p, population-q (taken over the whole population)
and group-q (taken over the selected groups of Responders). On the
bottom we show the average acceptance rate, which is representative
of the utilitarian social welfare in our scenario. Responder compe-
tition causes both values of p and q to increase when m increases
(top). However, too large values of m result in an increasing number
of rejected proposals (bottom).
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(b) The fitness of Responders is maximized when intermediate
groups of Responders (i.e., with the median values of q) are selected
to form Responders’ group. We represent the relative average fitness,
as a ratio taken over the base scenario m = 0.
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Figure 2: Responder competition: Proposals are made by random groups of Proposers with size N = 10 and the group of
Responders (with size M = 10) is formed by the Responders with the mth to the (m+M − 1)th highest values of q.

ics due to the low acceptance rate and thus indiscriminate
fitnesses within the population. Situation (b), with (on av-
erage) median ranked Responder groups yields high accep-
tance rates while simultaneously maintaining fair (between
population) proposals. Interestingly, when the choice of qs
to form the Responder groups is dictated by m = 50 (c),
a cycling dynamic is often observed, representing periods
of fairness and unfairness that repeatedly succeed over time.
We extend the analyses of the average strategy used over
time by presenting, in Figure 3, the full distribution of pro-
posals (left) and acceptance thresholds (right) within those
populations for m = 45 (top) and m = 50 (bottom). We
find that the distribution of strategies is kept close to the
mean, thus suggesting high within-population levels of fair-
ness. In addition, we confirm that the cycles observed in
Figure 2c for m = 50 do not result from the populations

being divided in groups with different strategies that grow
and shrink alternatingly — instead all agents adopt a similar
strategy throughout.

Effect of Proposer Group Size
Finally, we investigate the effect of increasing the Proposers’
group size, N . As hypothesized, increasing N yields a
stricter social dilemma for the Proposers, akin to a public
goods game: individuals will maintain a low value of p,
expecting to maximize their share while hoping that others
propose an offer high enough to guarantee acceptance by the
Responders. As observed in Figure 4, this dilemma is more
pressing in larger Proposer groups, as the average p adopted
decreases with N . We also plot the between-population fair
proposal value (black dashed line). By increasing the Pro-
poser group size, the minimum proposal required to ensure
a fair offer is relaxed: for the same Responders’ group size
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Figure 3: Distribution of strategies within the population for
scenarios b (top) and c (bottom) highlighted in Figure 2. We
find that agents adopt strategies that are close to the mean
in each population, which implies high levels of within-
population fairness.

(M ), increasing N means that, individually, each Proposer
is required to offer less, in order to maintain an even divi-
sion between all Proposers and Responders involved in the
transaction. In general, we find that fair proposals are easier
to obtain when M is low and m is high. The average offer
decreases whenever Proposers organize in larger groups.

Conclusion
In this paper we investigated the evolution of fairness within
a new multiplayer version of the Ultimatum Game, the NM-
MUG, in which a group of N Proposers offers a division of
resources to a group of M Responders. Agent-based simu-
lations showed that, in the absence of any Responder selec-
tion mechanism, the co-evolving populations of Proposers
and Responders converge to a state in which proposals and
acceptance thresholds are low, leading to unfair outcomes.
This effect is more pronounced when the Proposers’ groups
are larger. We then investigated different Responder selec-
tion rules, contingent on their declared acceptance thresh-
olds. We found that selecting extreme individuals is detri-
mental to the Responders’ long-term payoff: selecting the
lowest-demanding Responders incentives Proposers to do
low offers, while selecting the highest-demanding Respon-
ders leads to many rejected offers. Moderate groups — i.e.,
selecting Responders with acceptance thresholds close to the
population median — elicit the highest long-term gains for
the Responders population as a whole, with high levels of
fairness both between and within populations.

Figure 4: Effect of increasing Proposers’ group size N on
the average proposal level p̄. We plot p̄ for Responders’
group sizes M = 10 (top), M = 20 (middle), and M = 30
(bottom). Inside each panel, different Responders’ selection
rules (m) are plotted, moreover the black dashed line rep-
resents the between-populations fair proposal value (Equa-
tion 3), given the Proposers’ and Responders’ group sizes.

Although our model is based on several simplifying as-
sumptions, due to its generality we believe that our results
can nonetheless provide a practical message for institutional
design (Bullock, 2016), both in the context of regional flex-
ibility exchange between smart energy communities as well
as in the broader context of group bargaining. The proposed
model allows testing policies and emergent behaviors on the
intersection between social choice theory, group bargaining,
competition, and fairness elicitation.

We see many interesting avenues for further research
based on our findings. A variety of selection rules can be
envisioned and tested, for both the Responders as well as
for Proposers. In addition, the utility functions used can be
further tailored to specific real-world scenarios. Also, more
elaborate measures of fairness can be investigated and could
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even be incorporated into the utility function directly (as in
e.g. de Jong and Tuyls 2011) or explicitly assuming traits
such as empathy (Szolnoki et al., 2012), yielding potentially
more complex and interesting dynamics. Finally, the effect
of different selection rules can be analyzed in the context of
spatially arranged individuals (Page et al., 2000; Szolnoki
et al., 2012) or assuming iterated (multiplayer) ultimatum
games (Ichinose and Sayama, 2014).

Acknowledgements
We are grateful to Michael Kaisers for helpful comments
and feedback on earlier versions of this paper. This project
has received funding in the framework of the joint program-
ming initiative ERA-Net Smart Energy Systems’ focus ini-
tiative Smart Grids Plus, with support from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 646039. F.P.S. acknowledges
support from the James S. McDonnell Foundation.

References
Alexander, J. M. (2000). Artificial justice. In Proceedings of Arti-

ficial Life VII, pages 513–522.

Axelrod, R. and Hamilton, W. D. (1981). The evolution of cooper-
ation. Science, 211(4489):1390–1396.

Bloembergen, D., Hennes, D., McBurney, P., and Tuyls, K. (2015).
Trading in markets with noisy information: An evolutionary
analysis. Connection Science, 27(3):253–268.

Bullock, S. (2016). Alife as a model discipline for policy-relevant
simulation modelling: Might worse simulations fuel a better
science-policy interface? In Proc of the 2018 Conference on
Artificial Life, pages 28–29. MIT Press.

Chakraborty, S., Baarslag, T., and Kaisers, M. (2018). Energy con-
tract settlements through automated negotiation in residential
cooperatives. In 2018 IEEE SmartGridComm, pages 1–6.

de Jong, S. and Tuyls, K. (2011). Human-inspired computational
fairness. Auton. Agents Multi Agent Syst, 22(1):103–126.

Fehr, E. and Schmidt, K. M. (1999). A theory of fairness, competi-
tion, and cooperation. The Quarterly Journal of Economics,
114(3):817–868.

Gintis, H. (2000). Game theory evolving: A problem-centered in-
troduction to modeling strategic behavior. Princeton Univer-
sity Press.
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Szolnoki, A., Perc, M., and Szabó, G. (2012). Defense mechanisms
of empathetic players in the spatial ultimatum game. Physical
Review Letters, 109(7):078701.

Takesue, H., Ozawa, A., and Morikawa, S. (2017). Evolution of
favoritism and group fairness in a co-evolving three-person
ultimatum game. EPL (Europhysics Letters), 118(4):48002.

Taylor, P. D. and Jonker, L. B. (1978). Evolutionary stable strate-
gies and game dynamics. Mathematical Biosciences, 40(1-
2):145–156.

Traulsen, A., Nowak, M. A., and Pacheco, J. M. (2006). Stochas-
tic dynamics of invasion and fixation. Physical Review E,
74(1):011909.

194



Investigating the Origins of Cancer in the Intestinal Crypt with a Gene Network 
Agent Based Hybrid Model 

Arturo Araujo1, 4, Hanxiao Zhang2, Albert Rübben3 and Peter J Bentley1,4 

1 Braintree Ltd, London, United Kingdom 
2 CoMPLEX, UCL, London, United Kingdom 

3 Euregio Skin Cancer Center, Department of Dermatology, University Hospital RWTH, Aachen, Germany 
4 Department of Computer Science, UCL, London, United Kingdom 

a.araujo@braintree.com 
 

Abstract 

Colorectal cancer (CRC) is the second most common tumour in 

the world (Bray, 2018). It has been proposed that morbidity and 

mortality could be mitigated by screening methods that identify 
key genetic mutations in the DNA of a patient’s biosample 

(Traverso, 2002). However, for this to work, a theoretical 
understanding of the most likely mutations that initiate 

malignant transformation, and how they affect subsequent 
microevolution, is needed. Specifically, we hypothesise that 

there is a CRC-proliferative mutation that is more likely to be 

initially fixated in the crypt. To investigate this, we developed an 
agent-based model of cells in the colon crypt that shows 

emergent biological homeostasis at the tissue level from the 
cellular and molecular interactions. We equipped each of the 

cells with a molecular gene network which, in their wildtype 

state, regulates homeostasis in the crypt and recapitulates known 
behaviour. We identified and modelled key genes implicated in 

CRC which, when mutated, alter the rate of death and division 
of cells. We used this model to study the biological first 

principles of the fixation of mutations, offering key spatial and 
temporal understanding of this process. We discuss the impact 

and clinical relevance of proliferative genetic mutations in 

isolation, pointing to the KRAS gene as a likely mutation to be 
initially fixed in the crypt. 

Introduction 

The development of colorectal cancer (CRC) is thought to 
occur in marked stages happening throughout an entire decade 
(Williams, 2016); however, the precise mechanisms of 
oncogenic initiation are still debated. Because of this slow 
development, CRC is a highly suitable system for investigating 
the emergence and accumulation genetic alternations that many 
cancers have in common. However, in vivo and in vitro models 
usually take place in a matter of days or weeks, not being able 
to fully recapitulate the microevolutionary oncogenic process. 
Current research points to CRC having an origin at the base of 
colonic crypts: flask shaped invaginations in the inner lining of 
the intestine, which produce new cells to support the tissue 
(Figure 1). Cells at the top of the crypt are continuously worn 
away by the process of nutrient absorption (through the villi) 
and passing food, and thus are being continually renovated by 
stem cells at the bottom. These stem cells divide to replace 
worn cells and may even displace other stem cells so that at a 
given time the whole crypt becomes monoclonal- a descendant 
of one single stem cell. Because of the high rate of division, it 
is here that key oncogenic mutations are thought to arise 

(especially during cell division, which is the most vulnerable 
state for the DNA of the cell).  

It is very difficult to investigate in vivo or in vitro the impact 
that key genetic mutations have in isolation. However, this gap 
in our understanding needs to be addressed to investigate how 
these initial mutations may shape the subsequent evolution of 
the disease, and thus offer some therapeutic insights. We 
propose to overcome the limitations of time, cost and 
tractability of wet-laboratory experiments with the aid of 
theoretical approaches, such as agent-based modelling and 
gene networks. The focus of this work is to determine whether 
there is a CRC-proliferative mutation that is more likely to be 
initially fixated in the crypt. To answer this question, we have 
abstracted the natural processes of crypt homeostasis and 
distilled current genetic knowledge into a network. With this 
realistic simulation, we can recreate the in vitro scenario that 
isolates the probability of key CRC implicated mutations to be 
fixated and thus become the steppingstone in oncogenic 
transformation. 

Background 

ALife has helped model emergent phenomena in human 

diseases such as the emergence and evolution of brain 

tumours (Swanson, 2003). Alife researchers have used the 
distilled essence of biological behaviour to develop nature-

inspired computational techniques that will help us create 

better tools (Andrews, 2008). It is with this virtuous cycle 

of the development of ALife methods in mind that we seek 

to formalize the simulation of complex biosystems and 

apply these to the understanding of cancer (Araujo, 2010) 

(Rubben, 2013), with the ultimate goal of discovering novel 

therapeutic targets such as key switches in cell-cell 

communication (Bentley, 2014). The ALife methods that us 

and others have used, such as agent-based modelling, have 

allowed us to investigate the genetic mutations that occur at 

a molecular level, but which have repercussions at the tissue 
level; as well as the cross-talk between cell types that make 

up the tumour microenvironment (Araujo, 2014). 

Importantly, these modelling approaches can connect the 

different time and space scales are needed (Rejniak, 2010), 

and have shown the feasibility of modelling cells with 

internal genomes to study cancer initiation (Fontana, 2010). 
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Figure 1. An intestinal crypt is an invagination in the inner lining 

of the intestine. Stem cells at the base constantly replenish the 

tissue. 

Modelling Colorectal Cancer 

There have been advances in the computational study of CRC, 
such as the effects of variation of cell cycle rate in that may 
disrupt homeostasis in colon crypts (Smallbone, 2013). Bravo 
and Axelrod measured the variation in stem cells, proliferating 
cells, and differentiated cells in multiple crypts in normal 
human biopsy specimens, offering a metric of the robustness 
with which crypts recover from chemotherapy and radiation 
scheduling protocols (Bravo, 2013). Meineke  used a lattice-
free cylindrical surface to model experimental data showing 
that cell movement is a consequence of mitotic activity 
(Meineke, 2001). Venturing into molecular modelling, 
Leeuwen developed a hybrid model that incorporates the WNT 
ligand gradient along the crypt axis that is shown to regulate 
the cell cycle and cell division (Van Leeuwen, 2009), being one 
of the first truly multiple-scale abstractions that link the 
subcellular, cellular and tissue level processes.  

Agent-Based Modelling (ABM) theory has been further 
developed to study subcellular behaviour. Using such 
advances, Mirams was able to show theoretically that the 
probability of mutations fixation is only weakly associated with 
the destruction of WNT-dependent cell proliferation (Mirams, 
2012). Introducing space into the already complex dynamics, 
Buske developed one of the first 3D crypt models to study 
combined effect of WNT and Notch signalling on cell 
proliferative behaviour (Buske, 2011). There are other ABMs, 
such as those proposed by (Dunn, 2013) and more recently by 
(Ingham-Dempster, 2017), that abstract the concept of anoikis 
(programmed cell death) for a systemic investigation of 
emergence behaviours and migration dynamics that are 
difficult to study in vitro. The researchers were able to localize 
cell death to a small region at the top of the crypt and 
identifying it as an emergent property in response to changes in 
cell proliferation rates. 

Mutations in the Intestine Crypt Evolution 

Recent work in genetics and molecular biology has helped 
identify key genetic alternations implicated in the 
tumorigenesis of CRC. These genes have been generally 
classified as either tumour-suppressor genes (TSGs), due to 
their anti-growth properties; or proto-oncogenes (POG), which 
drive proliferation and will be the focus of our investigation. 
CRC mutations inactivate TSG function, or increase POG 
function (the mutated version termed oncogene). Typically, 
mutations are recessive in TSGs but dominant in proto-
oncogenes; this means both alleles need to be altered in TSGs 

for loss-of-function to occur, whereas mutation in one of the 
copies of proto-oncogenes is enough to promote proliferative 
behaviour, and thus have a more measurable effect (Evan 
2006). It has been calculated that in normal human cells, the 
average mutation rate is ~2.5×10−8 mutations/nucleotides 
(Nachman, 2000). Mutations can manifest as point mutations 
altering one specific gene or through small structural 
aberrations such as short gene duplications, deletions or 
inversions. Furthermore, cancers may demonstrate 
chromosomal instability (CIN), where defects during cell 
division leads to daughter cells with large chromosomal 
amplifications, deletions or whole chromosome 
rearrangements (aneuploidy). CIN that lead to changes in 
chromosome number or structure accounts for 85% of sporadic 
colorectal cancers (Tsang, 2014). These mechanisms may lead 
to the loss of a TSG or to a gain in POGs such as KRAS.  

Although much work has been done to elucidate the genetic 
signalling pathways, the connections between all the genes 
involved in CRC oncogenesis is still not fully understood. The 
current evidence points to the existence of some key mutations 
that are consistent in CRC. Amplifications and mutations of 
POGs KRAS and BRAF have been consistently observed in 
CRC; especially in CIN tumours (Pino and Chung 2010). While 
some mutations have been studied both biologically and 
clinically, the knowledge on the role they have when combined 
with mutations in other OGs or TSGs is still limited. It is 
therefore of importance to determine the chances that different 
mutations have to get fixated in the crypt, as these would then 
synergise with subsequent mutations in the path to malignant 
transformation.  

We hypothesise that there is a CRC-proliferative mutation 

that is more likely to be initially fixated in the crypt. To provide 
evidence for this, we will simulate key mutations in an agent-

based model that can help us understand 1. how long does it 
take for a random mutation to be fixed in the crypt? and 2. how 

fast would a key mutation fixate in the crypt? We will perform 
multiple simulations on CIN conditions (such as copy number 

decreased to 1 or 0 or copy number increased to 3) and point 
mutation in each POG abstraction.  

The System 

In order to investigate the role that the individual mutations 
have in CRC initiation, we have designed a computational 
model that exhibits the same homeostatic behaviour of a 
healthy crypt. We have abstracted the behaviour at a cellular 
level and modelled each cell as a circular agent. As described 
in Figure 1, the colon crypt is an invagination that is in constant 
renewal. For representation, we have adapted the invagination 
into a two-dimensional plane made up of cells with a 
continuous boundary to the left and right of the cells, thus 
preserving the original three-dimensional geometry (Figure 2). 
In our computational model, cells are represented by agents that 
react to the morphogens in the microenvironment, enabling 
cells to divide, quiesce or die (Figure 3). During normal 
homeostasis, three populations of morphogen-regulated cells 
coexist: Stem Cells (SCs) at the bottom, Transit Amplifying 
Cells (TACs) in the middle and fully differentiated Epithelial 
Cells (ECs) at the top (Figure 2). Cells are physically able to 
push other cells in all directions, with higher probability of 
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pushing cells up or sideways up, a low probability of dividing 
sideways and an even lower probability of going downwards to 
the sides or downwards (Table 1). SCs proliferate at the bottom 
compartment, pushing cells up and supplying a fresh batch of 
TACs that eventually differentiate at the top of the crypt and 
are shed away. 

We previously studied the intestinal glands in the colon, or 
colon crypts: invaginations in intestinal tissue that help absorb 
nutrients as food passes through them (Figure 1). We found that 
ALife techniques are ideal to address biological complex 
systems at the molecular, cellular and tissue level; and capable 
of shedding light on in vivo experiments that report seemingly 
different findings. Specifically, we were able to bridge different 
values reported for these contributors, and thus reconcile 
theories on which one is the biggest contributor the time it takes 
for a crypt to become the descendant of a single basal stem cell, 
also known as monoclonality (Araujo, 2018). In our work we 
focused on two key morphogens the process of cell renewal in 
the crypt: WNT (promoting the stem-cell phenotype) and EGF 
(promoting cell division and regulating cell differentiation). 
We modelled both morphogens as being maximum at the base 
of the crypt, as they are thought to be provided by Paneth cells 
which reside there (Sato, 2011). It is currently thought that the 
morphogens concentrations decrease in a gradient throughout 
the length of the crypt (Bach, 2000). In our homeostatic model, 
the WNT ligand concentration, keeping all the cells in contact 
with it in a stem cell phenotype, is completely depleted 10 to 
30 μm (approximately one to three cell diameters) above the 
base. When cells are out of the WNT concentration, but still 
within the EGF gradient, they lose stem cell properties, start 
aging, and are able to divide proportionally to the bio-
availability of EGF. Once these transit-amplifying cells are 
pushed outside of the EGF gradient (approximately 31 μm 
above the base of the crypt) they become fully differentiated 
epithelial cells, stop dividing and their likelihood of being shed 
away or dying is 100%. Besides EGF, other morphogens have 
been implicated in the regulation of TAC cells (Carulli, 2014) 
and EGF in the model is only representative of a putative 
morphogen acting by a gradient. 

 

Figure 2. The compartments that make up the colon crypt 
model. The WNT morphogen (right) maintains cells in SC 
state, while EGF regulates cell division.  

Our previous results (Araujo, 2018) show that the geometry 
of the crypt such as the total number of stem cells (Fletcher, 
2012), the proportion of side cell displacement (Ritsma, 2015) 
and the number of basal stem cells (Kozar, 2013) all have a 
profound impact on the time to monoclonality. We showed that 
a niche of stem cells dividing from the bottom provide a 
continuous influx of new cells, and that eventually the 
dynamics (such as cell displacement), generate observable 
global effects such as a change in the frequency of 
monoclonality. This is important because it offers a metric for 
the possible fixation of mutations; but it doesn’t consider the 
phenotype changes that an altered genotype might confer. To 
obtain a true metric by which genetic alterations will spread 
through the crypt it is important to include realistic abstractions 
of oncogenic mutated cells in the intestine. 

The Algorithm 

We had previously developed an ABM that recapitulates the 
known mechanics of the healthy crypt (Araujo, 2018). Novel in 
this work, we have completely redesigned our agents, giving 
them an internal genetic circuit for decision making. As in the 
original model, every cell is queried at every time step in an 
asynchronous update. A random cell that has not been 
previously updated during the time step is picked and follows 
the update algorithm by which it is given the chance to decide 
whether to die, divide or do nothing per cell cycle (Figure 3). 

The cell identity is decided by its position with respect to the 
WNT concentration (SC) and the EGF gradient (TAC) though 
a probabilistic calculation. SC cells have a fixed rate of 
division, divisionSC, while under the influence of WNT, which 
might be altered by a mutation. Their probability of division 
100% throughout the wildtype SC compartment is then 
calculated as: 

R(SCdiv)= 100*(divisionSC) 

Wildtype TACs have 100% chance of dividing as they leave 
the WNT concentration but are still in contact with the EGF 
gradient. The wildtype TACs chance of division, TACdiv, 
decreases linearly to 0% as it travels to the top of the EGF 
gradient. To achieve this, we normalize the difference between 
the EGF and WNT, Dgrad, and calculate the vertical distance, 
yPos, between the TAC cell and the end of the WNT ligand 
concentration, which modulates division TAC: 

R(TACdiv)= 100*(divisionTAC)*(yPos-Dgrad)/Dgrad 

Where divisionSC and divisionTAC are biological parameters 
for wildtype cells, as shown in (Table 1). When a cell divides 
it pushes one of its neighbours, selected with the baseline 
probabilities shown in Table 1. The probability of death is 
100% when leaving the EGF gradient. We model aging as a 
decrease in telomere length, therefore reducing the number of 
times a cell can divide (initially 5 divisions) and persist within 
the TAC-compartment. Each round, the algorithm queries the 
system for a user defined condition. For this work we will use 
one of three user-specific queries: 1. a set time (in days), 2. if 
the basal SCs have become monoclonal, and 3. if a mutation 
has disappeared from the basal SC compartment. If the user 
specific query is not met, it continues updating cells, and 
advancing to a new time step when every cell has been updated 
or stopping when the query has been met. 
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Figure 3. Algorithm for cell dynamics. The program ends when 
the user specific query (E.g. reaching monoclonality) is met. 

Agent design  

We designed the agents to offer different information that could 
be displayed visually with regards to key metrics of interest. In 
the wildtype visualization, SCs (cells inside the WNT ligand 
concentration) are tagged green, TACs (cells outside the WNT 
and in the EGF gradient) are marked white, and ECs (cells 
outside of both gradients) are coloured peach (Figure 2). To 
track the lineage of cells, we give a tag number to each of the 
initial basal SC which is inherited by their progeny throughout 
the simulation. In the initial baseline condition, as shown in 
Figure 2, we assume that cells that are in the column 
immediately on top of the SC are progeny of it and therefore 
inherit this number, which is displayed at the centre of each cell 
in the visualization. This gives a representation and a clear 
pathway of how cell mixing and eventually monoclonality 
occur. Other metrics such as the number of divisions and age 
are also stored in each agent and can be shown as the number 
displayed on each cell.  

Biological Parameters 

The structure of the seven gene network used in this paper was 
extracted from and confirmed against literature (De Roock, 
2011) (Sartore-Bianchi, 2016) (Strubberg, 2017) (Pan, 2017) 
(Berg, 2012). Inputs (WNT and EGF levels at crypt positions), 
outputs (calculated cell properties) and trigger values 
(threshold levels for different outputs) of the gene network 
algorithm in the baseline case (no mutations), were selected 
based on the parameters from Table 1, while mutation impacts 
are shown in Figure 3. The gene output for copy number 
changes, gene inactivation/activation mutations, signal 
thresholds for output changes were selected to reproduce the 
expected mutation impact outputs (Figure 4 and Table 2). 

The gene signalling pathway diagram was converted into a 
simple algorithm (Figure 4) which returns cell parameters for 
proliferation probability, death probability, cell cycle length 
and cell fate (stem cell, TAC or differentiated cell) based on the 
position of the cell in the crypt. Also included in the algorithm 
are abstracted impacts for activating or deactivating point 
mutations and copy number changes e.g. if KRAS was 
activated proliferation probability was increased. Each stage of 
the algorithm represents a gene receiving a signal of a certain 
strength either from the previous gene in the network or from 
the initial signalling protein (EGF or WNT).  

  

Figure 4. Simplified gene network. The network was 
constructed based on the mutation frequency of key CRC 
related genes documented in the COSMIC database ((Forbes, 
2017); cancer.sanger.ac.uk). Black arrows with solid line: gene 
activation; Black arrows with dash line: effects; Red arrows: 
inhibition; red boxes: proto-oncogenes; blue box: tumour 
suppressors. The input and output variables as well as the 
calculation for signal integration are a first approximation to 
reconcile in-vivo (Ritsma, 2015) and in-vitro (Snippert, 2013) 
data with yet-unquantified but known genetics (Forbes, 2017. 

Parameters      Value Reference 

Cell Diameter 10 μm (Bach, 2000) 

Width and length of 
crypt 

16 x 
25 cells 

(Bach, 2000; 
Totafurno, 1987) 

SC division rate 
(divisionSC) 

Once every 
24 hours max 

(Fischer, 2016) 

TAC division rate 
(divisionTAC) 

Once every 
12-24 hours 
max 

(Kozar, 2013) 

Probability of Side 
Displacement per 
cell division (SDisp) 

0.24 (0.12 
each side) to 
0.74  

(Ritsma, 2015) 
 
(Snippert, 2013) 

Probability of 
Downwards 
Displacement 
per cell division 

0.08 for 
TACs, 
0.00 for SCs 

(Ritsma, 2015) 

Table 1: Baseline parameters used to simulate a murine small 
intestine crypt.  
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Genetic Alteration Change in Probability 

Gene copy number increase to 3 
or more 

output gene signal > 100% 

Gene copy number decrease to 1 output gene signal < 100%  

                >  0% 

Gene copy number decrease to 0 output gene signal = 0% 

 

Activating mutation output gene signal > 100% 

regardless of input 

Minimum cell cycle length 12 hours (normally applies 

to TAC) 

Maximum cell cycle length 24 hours (normally applies 
to SC) 

Table 2- Altered probabilities from mutations in the abstracted 
gene network. The actual values of the variables as well as the 
calculations describing signal transduction are still being 
elucidated, and thus we have abstracted these values in a first 
approximation to recapitulate published data. 

Model Validation 1: Positional Mitotic Index 

We compare our model with a metric used by us and others in 
the past: mitotic activity, which causes a pressure-driven 
passive movement from the bottom to the top of the crypt, as 
described in (Meineke, 2001). We ran 100 simulations and 
defined our end user-query as a 30-day period. When tested, the 
average division per row (Figure 5) recapitulates the data for 
mitotic index distribution in the crypt presented in Fig 4.iv of 
(Sunter, 1979), where there is a maximum of mitotic activity a 
few rows after leaving the base of the crypt and decreases 
throughout the rest of the rows.  

Model Validation 2: Neutral Drift Dynamics 

We test for evidence of a neutral drift in the cellular dynamics 
of intestinal stem cells, and compare to results found by 
(Snippert, 2010). In their experimental system, a 14 basal stem 
cell population was calculated to have a probability of side 
displacement of 0.74, demonstrating neutral competition 
amongst SCs. In 100 simulations of such experiment (Figure 6) 
we find found that the dynamics exhibited by the updated 
model agree with that reported in Figure 7D of (Snippert, 
2010).  

Experiments 

We hypothesise that there is a CRC-proliferative mutation that 
is more likely to be initially fixated in the crypt. To provide 
evidence for this, we focus on answering: 1. how long does it 
take for a random mutation to be fixed in the crypt? and 2. how 
fast would a key POG mutation fixate in the crypt? To 
investigate the time to mutation fixation and quantify the role 
that the individual mutations have in CRC initiation, we first 
establish a baseline to fixation. Subsequently we simulate 
experiments that explore mutational scenarios. Our 
experiments are: 

Experiment 1- Baseline time to monoclonality. In their cell-
tracking experiments Ritsma et al. measured the time it takes 

for one basal SC sub-clone to divide sideways enough to make 
the entirety of the crypt a descendant of this cell, or monoclonal 

(Ritsma, 2015). The researchers performed this experiment 
with a number of crypts and describe in their results the 

percentage of crypts that have become monoclonal in a 140-
day period. The researchers use 8 basal SC and 16 suprabasal 

SCs, each with a probability of side displacement of 0.24% 
(0.12 each side) per division. We perform 100 simulations with 

the baseline model, as shown in Figure 7, based on the accepted 
parameters shown in Table 1 and Table 2, and measure our 

results using this same methodology.  

  

Figure 5. Mitotic index distribution in the crypt (upwards form 
the crypt as described in in Figure 2) of 100 simulated crypts 
with 8 basal and 16 suprabasal stem cells over a 30-day period. 
We compare it to data presented in Fig 4.iv of (Sunter, 1979).  

 

 

Figure 6. Frequency of monoclonal crypts over time as a 
percentage of surviving SC clones (out of initial 14) as 
predicted by neutral drift dynamics (Snippert, 2010). 

  
Figure 7. Progression from 8 stem cell lineages towards 

monoclonality of stem cell 7 (marked purple) over 24 days. 
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Figure 8: Simulation of biological data for monoclonality based 
on experiments reported on (Ritsma, 2015). From 100 
simulations (as shown in Figure 7) we measure every 10 days 
the percentage of simulations that have become monoclonal. 
By day 140, 100% have reached this state. 

 

 

Figure 9. Time to a mutation fixation within 100 days (black 
boxes) from 4000 simulations. They grey box shows the 
number simulations that still contained a mutant at the basal SC 
compartment that could spread throughout the crypt given more 
simulated time. 

 

    

Figure 10. Time to a mutant loss from the crypt from 4000 
simulations.  

Experiment 2- Time to Mutation Fixation. In Experiment 2, 
a genetic mutation is randomly introduced into one of the basal 
stem cells (BSC). Mutations that lead to changes in the output 
signal of the gene in Figure 4 will ultimately alter proliferation 
probability, cell death probability and cell cycle length. 

 

Figure 11. Probability of fixation for each genetic mutation as 
a cumulative distribution function for the oncogenes KRAS, c-
Myc, EGFR, BRAF and AKT1. 

The crypt is allowed to evolve for 100 days and the 
simulation is stopped when one of the three conditions is 
satisfied: 1. The time limit is reached. 2. Mutation is fixed. or 
3. The mutation population is swept from the crypt. The 
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mutation is assumed to be fixed when the mutated lineage takes 
over all BSCs, as eventually, all cells in the crypt will have the 
same ancestor and inherit the same type of mutation. Similarly, 
the mutation is assumed dead when mutated ancestors is lost 
from the first row. 

Experiment 3- Fixation Probability of Oncogenes. Finally, 
we simulate a point mutation and compare it to the gain of one 
gene and the loss of one alleles of the proto-oncogenes EGFR, 
KRAS, BRAF, c-Myc, and AKT1, with the altered probabilities 
shown in Figure 4. 200 simulations were run for each genetic 
mutation with basal stem cell number set to 8. 

Results 

Results 1: Establishing a baseline time to monoclonality. In 
our baseline simulations for monoclonality (Figure 8), 100% of 
the crypts become monoclonal, or fixed, by day 140 following 
the same trend as that reported by Ritsma (Ritsma, 2015). 
These dynamics are important to our understanding of the 
genetic evolution of the crypt, since they would give us an 
estimate of how fast we can expect a neutral mutation to spread 
through a healthy crypt. Using this as our baseline, we will 
proceed to analyse the results of Experiments 2, 3 and 4.  

 

Results 2: Time to Mutation Fixation. Results from 
Experiment 2 show a distribution of the time it took for a 
mutation to become fixed in the crypt. The data collected from 
4000 simulations ran for 100 days of simulated time shows that, 
if a mutation arises, it is mostly likely to be fixed within 20 to 
40 days (Figure 9). Interestingly, 102 simulations contained at 
least one mutant cell which could dominate the crypt given 
more simulated time.  

Figure 10 summaries the times at which the mutated ancestor 
was washed out from the crypt, showing that the survival rate 
for a mutation is low. Most mutant cells were swept from the 
crypt within the first 2 days. The results suggest that mutant 
domination is a slow and inefficient process, as most mutant 
cells are replaced by WT clone in a stochastic manner (Figure 
10). This highlights the importance of monoclonal conversion 
in cancer initiation as it prevents the accumulation of 
mutations.  

 

Results 3: Fixation Probability of Oncogenes. Figure 11 
shows the probability of fixation for known proto-oncogenes 
under the scenario of a point mutation (blue), an increase in 
copy number (red) and loss of a gene (pink). The more likely 
scenario for true oncogenes activation is an activating mutation 
or an increase in copy number via CIN. Broadly, the cumulative 
distribution function for the oncogenes KRAS, c-Myc, EGFR, 
BRAF and AKT1 under our theoretical conditions (Figure 4) is 
under 20% by day 100. Specifically, AKT1 showed an increase 
in fixation when losing copy numbers (Figure 11.e). Some 
oncogenes have also been implicated in key cell maintenance 
processes, so having more than one role makes their precise 
contribution difficult to predict. Models such as this have 
helped us detangle the isolated effect of single mutations and 
suggest a metric for their contribution in oncogenesis. In the 
case of c-Myc (Figure 11.b) and EGFR (Figure 11.c), the model 
suggests a higher frequency of fixation via point mutations, 

while gene amplification leads to the highest fixation of BRAF 
(Figure 11.d) and KRAS (Figure 11.a). The model points to 
KRAS having the highest likelihood of being fixated. These 
distributions, although in general agreement with reported 
behaviour in literature, do not by themselves explain a mutation 
fixation reported to be more than 25% for APC and possibly 
higher for KRAS (Vermeulen, 2013). Further, recent studies 
show that more than 97% of KRAS mutations in CRCs could 
be due to point mutations, conferring perhaps more plasticity 
(Bronte, 2015). Our results suggest that the precise mechanisms 
of oncogenic alterations for the fixation of mutations are not yet 
fully understood. Collectively, these results suggest that the 
theoretical impact of individual initiating mutations must be 
refined to fully capture the complexity joint mutations, which 
will be the next step in our research. 

Conclusions 

In this work, we investigated whether there is a kind of CRC-
proliferative mutation that is more likely to be initially fixated 
in the crypt. We focused on modelling the EGFR and WNT 
genes and their connectivity, with special interest on CRC 
implicated proto-oncogenes. The evidence provided by the 
abstracted model suggests that KRAS could be heavily 
responsible for cancer initiation. In addition, in agreement with 
biological observations, oncogenes generally have higher 
fixation probability for activating mutations and lower 
probability for non-activating mutations. These results align 
with clinical evidence. Clinical studies for the rest of genetic 
mutations in CRC initiation are limited. In particular, the 
mechanism underlying aberrant activation of c-Myc is 
unknown. A major reason for this is that majority of these 
genetic mutations may occur in later stages of cancer 
progression or presented in an alternative pathway to CRC, thus 
further evaluation on the genetic network is required. The 
simplified model was able to provide a theoretical insight into 
the nature and significance of each genetic mutation in early 
tumour formation, and we aim for it to help both biologist and 
computational cancer researchers to interesting areas of 
exploration. 

For our next step, we aim to further investigate the genetic 
and epigenetic interdependencies in CRC initiation, focusing 
on in silico experiments that cannot be done in vitro or in vivo, 
but which may have a significant impact on colorectal adenoma 
(Lao, 2011). The current model already allows shared 
information across multiple scales, so it can be readily extended 
to consider a multiple sequence of mutations. Also, epigenetic 
events (i.e. DNA methylations) that affect the regulation of key 
genes could be added to the molecular level. Quantifying the 
impact from both genetic and epigenetic abnormalities can help 
us shed light on non-intuitive mechanisms underlying cancer 
initiation. Finally, if information such as patient characteristics 
and carcinogen influence is available, the model could yield 
clinically relevant results. 

The crypt model aims to investigate individual contribution 
of key genetic mutation in early stage of colorectal cancer. Our 
simulated results are in general agreement with evidence from 
the literature, and we believe that the next step is to further 
extend this bridge to clinically-relevant human data for 
therapeutic discoveries. Much work remains to be done to fully 
understand the CRC pathogenesis. 
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Abstract

Slime mould (Physarum) may not have brains, but they are
capable of solving many significant and challenging prob-
lems. Existing models for studying the intelligent behaviour
of Physarum have overlooked its foraging behaviour under
competitive settings. In this research, we propose a new
model based on Cellular Automata (CA) and Reaction Dif-
fusion (RD) system, where multiple Physarum interact with
each other and with their environment. The novelty of our
model is that the Physarum has six neighbours at equidistant
(hexagonal CA), furthermore, we have extended the model to
3D and multi-dimensional CA grid. The growth of Physarum
is determined by the balance between attraction force to-
wards food resources (determined by mass and quality) and
repulsion forces between competing Physarum according to
their power (mass) and hunger motivation. To validate this
model, numerical experiments were conducted. Physarum
with more mass succeeded in engulfing a larger number of
food resources with high quality in shorter time (number of
iteration). It also occupied larger area of the grid (territory)
and excluded its competitors. We also conducted empirical
analysis to compare the time complexity between the hexag-
onal and Moore neighbourhood, and it showed that hexagonal
neighbourhood is more efficient than Moore in terms of com-
putational cost. To the best of our knowledge, we are the first
to present Physarum in competition mathematical model and
the algorithms inspired from such a model has demonstrated
its promising performance in solving several real world prob-
lems such as mobile wireless sensor networks, and discrete
multi objective optimization problems.

Introduction
Swarm intelligence is one of the most interesting topics
dealing with the collective behaviour of decentralized and
self-organized systems. It consists of a population of sim-
ple agents which can communicate locally with each other
and to their local environment. These interactions can lead
to the emergence of very complex global behaviour (Tan
and Shi, 2017). A variety of swarm intelligence algorithms
for optimization problems such as particle swarm optimiza-
tion (Eberhart and Kennedy, 1995), ant colony optimiza-
tion (Dorigo et al., 1996), Artificial Bee Colony (ABC)
(Karaboga and Basturk, 2007) have been developed with in-
creasingly wide applications in real-world.

In recent years, cellular computational models based on
single cellular organisms function, become an important
branch of biology-inspired computing; Bacterial colonies
(Kim et al., 2007) and Physarum Polycephalum (Slime
mould) (Adamatzky, 2010) are examples. Just like so-
cial insects and animals, Physarum too exhibits swarm in-
telligence; it shares many features of collective behaviour
such as synchronization, communication, positive feedback,
leadership, and response thresholds (Reid and Latty, 2016).
The primitive intelligence of Physarum polycephalum is
mostly demonstrated during its plasmodium stage (a giant
amoeba-like multi-nucleated single cell). Physarum senses
gradients of chemo attractants and repellents and forms a
mycelial yellowish vascular network in search of nutrition
(Cavender, 1995). The Physarum foraging behaviour con-
sists of two simultaneous self-organized processes of expan-
sion (exploration) and shrinkage (exploitation) (Nakagaki
et al., 2001). Physarum protoplasmic flux is changing in
a continuous way with the change of external environmental
conditions(chemotaxis, phototaxis and thermotaxis) (Caven-
der, 1995; Jones et al., 2017). This characteristic allows
Physarum to have great potentials in dealing with network
graph-optimization problems in dynamic environment.

It has been demonstrated that Physarum is capable of find-
ing the shortest path between two points using a simple
heuristic while foraging for food (Nakagaki et al., 2000).
This has inspired computer scientists to develop novel, bio-
inspired algorithms capable of solving many hard prob-
lems (Adamatzky, 2010). Much research has confirmed and
broadened the range of its computation abilities to spatial
representations of various graph problems. Please refer Sun
(2017); Zhang et al. (2016b) for more detailed discussions.

In this paper, we present a novel mathematical model to
simulate multiple Physarum foraging behaviour in compe-
tition settings, based on the trade-offs between their moti-
vation for food, the value of resources (food patch quality),
and in the presence of competitors. We assume that the in-
dividual skills of competition is more efficient to achieve an
optimal balance between exploration and exploration, and
fundamental for the process social collaboration and popu-
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lation diversity. We assume that the individual skills of com-
petition is more efficient to achieve an optimal balance be-
tween exploration and exploration, and fundamental for the
process social collaboration and population diversity.

The rest of this paper is structured as follows: In Section
2, some related work is reviewed. The novelty of our model
is discussed in Section 3, then we proceed to explain our
proposed model in Section 4. Numerical examples are given
to demonstrate how the proposed model simulate multiple
Physarum decision making in competition settings in Sec-
tion 5. Finally, the paper ends with conclusions and sugges-
tions for further researches.

Related Work
Mathematical Models
Many mathematical models have been proposed to study
the Physarum foraging behaviour, for example the flow-
conductivity model (Tero et al., 2007), the cellular model
(Gunji et al., 2008), the multi-agent model (Jones, 2011),
and the shuttle streaming model (Siriwardana and Halga-
muge, 2012) are examples. These models were able to solve
problems such as finding the shortest path in directed or
undirected networks (Zhang et al., 2014), designing sup-
ply chain networks (Zhang et al., 2016a), and simulating
transport networks (Tsompanas et al., 2015). Up to now
these models consider the foraging behaviour when only one
Physarum is presented. They did not address the responses
of individual Physarum in competition settings, which can
lead to the emergence of very complex global behaviour, far
beyond the capability of individual Physarum.

Physarum Competitive Behaviour
Competition is generally referred to the negative effects
caused by the presence of neighbours, usually by reduc-
ing the availability of resources (exploitation-competition).
Competition is very important in driving natural selection as
a superior competitor can eliminate an inferior one from the
area, resulting in competitive exclusion (Hardin, 1960). Im-
perialist Competitive Algorithm (ICA) (Bernal et al., 2017)
and Competition Over food Resources (COR) (Mohseni
et al., 2014) are examples of competition algorithms.

There is increasing evidence that simple organisms like
Physarum have complex social behaviours including co-
operation and competition. Physarum is capable of mak-
ing complex foraging decisions based on trade-offs between
risks, hunger level and food patch quality (Latty and Beek-
man, 2011). Physarum always initiated foraging behaviour
quicker if it was hungry and in the presence of a com-
petitor (Stirrup and Lusseau, 2019). We still do not fully
understand how competitive behaviour is integrated in the
Physarum decision-making processes in realistic competi-
tion settings, so we started by postulating possible heuristics
that Physarum might employ in competitive environments.

Work Novelty
Model Selection

After reviewing the literature on several models, we
have decided to extend Tsompanas et al. (2016) model,
which is based on Cellular Automata (CA) and Reaction-
Diffusion (RD) system, to simulate the foraging behaviour
of Physarum in the presence of competition. However this
model needs modification to address new requirements of
competition settings.

Why Cellular Automata and Reaction-Diffusion Sys-
tems? After Wolfram (1984), CA have received extensive
academic interest for their fundamental characteristics and
capabilities to effectively simulate physical systems, bio-
logical systems, and solving scientific problems (Feynman,
1982). CA can capture the essential features of systems
where global behaviour arises from the collective effect of
simple components, which interact locally. Gunji et al.
(2008) have developed a model based on CA to simulate the
motion of Physarum as a local protoplasmic flow system.

RD systems are mathematical models which correspond
to several physical phenomena. The most common is the
change in space and time of the concentration of one or more
chemical substances, which causes the substances to spread
out over a surface in space. RD systems are naturally ap-
plied in chemistry, however, they can also describe dynami-
cal processes of non-chemical nature like in biology (Kondo
and Miura, 2010).

Basic Principals for Physarum Mathematical
Model in Competition Settings

In the following subsections, we will show how our model
differs from the previous model of Tsompanas et al. (2016),
which considered only single Physarum foraging behaviour.

Hexagonal Cell Automaton Neighbourhood There are
different types of neighbours that can be considered during
the experiment design to capture Physarum diffusion direc-
tion. Some researchers decided to use four neighbourhood
of Von-Neumann (Fig. 1-A) as in Shirakawa et al. (2015),
however diagonal diffusion of Physarum (North East, North
West, South East and South West) is longer; but it still can
occur with lower probability. Other researchers used eight
neighbourhoods of Moore (Fig. 1-B) as in Tsompanas et al.
(2016). For these reasons, we have considered a new model,
where Physarum will have six neighbours (hexagonal pat-
tern) (Fig. 2-A) at equidistant. This will allow circular diffu-
sion of Physarum in contrast to the two of the most famous
neighbourhood (Von-Neumann neighbourhood and Moore
neighbourhood). Furthermore, this hexagonal grid has the
densest packing, the 3D voxels are more sphere-like, and has
the highest volumetric quotient (Nagy and Strand, 2009).
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Figure 1: Von Neumann / Moore neighbourhoods.

Figure 2: Hexagonal neighbourhood.

Modelling Multiple Physarum and Multiple Food
Resources Unlike previous models based on single
Physarum, we considered a Physarum competitive be-
haviour, where a group of Physarum with different power
(masses) and motivation (Hunger / Satiety) each having au-
tonomous behaviours react to each other and their own local
environment. We also modelled the presence of multiple
food resources with different quality.

Attraction / Repulsion Forces affecting Physarum Explo-
ration Unlike previous models which addressed only the
attraction force of Physarum towards a food resource, we
considered other forces acting on Physarum based on meta-
heuristics inspired from Physarum behaviour in a competi-
tion setting. We assume that competing Physarum will exert
repulsion forces on each other which will affect the evolu-
tion of the whole system. We created a new formula to com-
pute two forces acting on Physarum: (A) the chemo attrac-
tion force based on the combination of chemical mass and
chemical quality, and (B) the repulsion negative forces that
competing Physarum exert on each other.

Modelling Physarum Shrinkage (Exploitation) We in-
troduced a new rule on the Physarum diffusion process to
imitate the natural process of Physarum shrinkage, where
if a Physarum cell is not contributing to the path towards
food resource for a certain time (number of iterations), the
whole Physarum mass is migrated to the nearest neighbour
cell contributing to the path of food resource attraction.

The Proposed Physarum Competition
Mathematical Model

As stated before, our proposed model is based on CA and
RD systems. We will discuss in details in the following two
sections the model state and model rules.

Cellular Automaton (CA) Model State

In order to model the Physarum foraging behaviour in
competition settings, where a set of Physarum (P =
p1, p2 . . . pm) are competing on a set of Chemicals (food
resources) (CHM = chm1, chm2 . . . chmn). We con-
sider a CA grid in the two-dimensional space, where it is
divided into a matrix (X × Y ) of identical hexagon cells,
each cell c(i,j) at location (i, j) in the grid has six neigh-
bours as shown in Figure 2-B. Moreover, this CA space
can be extended to multi-dimensional hexagonal grids as
Hexagonal/Body-Centered-Cubic (bcc) grid using the fol-
lowing definition:

Definition 1. Let p = (p(1), p(2), . . . , p(n)) and q =
(q(1), q(2), ..., q(n)) be two points in Zn.
q is 1-neighbour to p if q(1) ≡ q(2) ≡ . . . ≡ q(n) (mod2)
and |p(i) − q(i)| ≤ 1 for 1 ≤ i ≤ n and

∑n
i=1 (p(i) −

q(i))2 ≤ n.

These grids are the three-dimensional ”equivalent” to the
two-dimensional hexagonal grid (Nagy and Strand, 2009).

The state of a cell ct(i,j) at iteration t is described by its
type. Initially all cells are empty until it is occupied by
food resource and/or Physarum, an obstacle cell (Ex:- Wall),
or remain empty (Equation 1). Chemical is defined by its
mass and quality while Physarum is defined by its mass and
hunger motivation.

CT(i,j) =





FREE
OBSTACLE
PHY SARUM
CHEMICAL





(1)

where CT(i,j) represents the cell type.

Cellular Automaton (CA) Model Rules

The CA model rules are mainly based on the diffusion equa-
tion (Chopard and Droz, 1991) combined with Physarum
heuristics in competition settings. These rules are applied on
both Physarum’s mass to define the exploration of Physarum
on the search space and on food resources’ mass to define
their diffusion over the grid.

Physarum Competition Heuristics

(i) A cell can be occupied by one or more chemical class
(Ex:- Food resource) and by at most one Physarum in each
cell.
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(ii) Chemo attraction forces exerted on Physarum will be a
function of food resource (with different mass and qual-
ity) and Physarum hunger motivation. If Physarum is sat-
isfied, it would appreciate the quality of chemical rather
than the mass, and if it is hungry, vise versa.

(iii) Competing Physarum will exert repulsion forces on each
other which will be calculated as negative force.

(iv) When two Physarum are competing for the same cell, the
one with higher power (mass) will occupy it.

(v) Food resource engulfed by a Physarum will be excluded,
and this Physarum mass will grow at this point according
to this food resource quality.

(vi) In the Physarum exploration phase, if the mass of the
Physarum is less than a critical value the Physarum will
stop diffusing to prevent the Physarum from spreading all
over the board (as exhibited by Physarum in real experi-
ments).

(vii) In the Physarum exploitation phase, the Physarum tend to
shrink and collect its body mass to move towards resource
of attraction.

(viii) Physarum hungry motivation is a parameter that increases
with the number of iteration it was unable to find food
resource.

(ix) When a Physarum engulfs food resource, it will be sa-
tiated (reset hungry motivation), and stop searching for
food for a certain time (number of iterations).

CA Diffusion Equations Every cell occupied by chemical
at iteration (t) uses the values of its six neighbours cell to
calculate the value of the mass at iteration (t + 1). The total
chemical mass for a cell c(i,j) at iteration (t+1) is described
in Equation 2.

CM t+1
(i,j) = CM t

(i,j)+

∑

(k,l)

{
CD ∗ (CM t

(k,l) − CM t
(i,j)) if C AA(i,j),(k,l) = 1

0 otherwise
(2)

∀(k, l) : i− 1 6 k 6 i + 1,

j − 1 6 l 6 j + 1,

k 6= l

where,
CM t+1

(i,j) defines the diffusion of chemical mass for the next
generation (t + 1) at cell c(i,j).
CM t

(i,j) is the current mass of the chemical at iteration (t)
for cell c(i,j).
CM t

(k,l) is the current mass of the chemical at iteration (t)
for neighbouring chemical cell c(k,l).
CD is the chemical diffusion coefficient.

C AA(i,j),(k,l) defines whether chemical at cell c(i,j) is
available to diffuse towards a neighbouring cell c(k,l) as de-
fined in Equation 3.

C AA(i,j),(k,l) =

{
0, if CT(k,l) = ”OBSTACLE”

1, otherwise
(3)

Every cell occupied by Physarum at iteration (t) uses the
values of its six neighbours cell to calculate the value of the
mass at iteration (t+ 1). The total Physarum mass for a cell
c(i,j) at iteration (t + 1) is described in Equation 4.

PM t+1
(i,j) = PM t

(i,j)+

∑

(k,l)





(PF ∗ PD)(PM t
(k,l) − PM t

(i,j))

if P AA(i,j),(k,l) = 1,

PM t
(i,j) > Diff limit

0, otherwise
(4)

∀(k, l) : i− 1 6 k 6 i + 1,

j − 1 6 l 6 j + 1,

k 6= l

PF = 1 + P AttForce(i,j),(k,l) + P RepForce(i,j),(k,l)

where,
PM t+1

(i,j) defines the diffusion of Physarum mass for the next
generation (t + 1) at cell c(i,j).
PM t

(i,j) is the current mass of Physarum at cell c(i,j).
PM t

(k,l) is the current mass of neighbouring Physarum at
cell c(k,l).
P AAt

(i,j),(k,l) defines whether Physarum at cell c(i,j) is
available to diffuse towards a neighbouring cell c(k,l) as
defined in Equation 5.
PD is the Physarum diffusion coefficient.
Diff Limit is the limit which in which the Physarum
mass must exceed in order to diffuse.
PF is the sum of forces affecting Physarum.
P AttForce(i,j),(k,l) defines the value of attraction forces
applied on Physarum at cell c(i,j) coming from its neigh-
bouring cell c(k,l) as defined in Equation 6.
P RepForce(i,j),(k,l) defines the value of repulsion forces
applied on Physarum at cell c(i,j) exerted by its neighbour-
ing cell c(k,l) as defined in Equation 7.

P AA(i,j),(k,l) =





1, if CT(k,l) = ”FREE”

1, if CT(k,l) = ”PHY SARUM”,

P ID(i,j) = PID(k,l)

0, otherwise
(5)

where,
PID(i,j) is the ID of the Physarum at cell c(i,j).
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As seen in the equation calculating the Physarum diffu-
sion, there are attraction and repulsion forces affecting the
diffusion of Physarum. The attraction forces as described in
Equation 6 determines the movement of Physarum towards
the chemical (food resource). It is a function which com-
bines chemical (mass and quality) and Physarum motivation
(hungry/satiated).

P AttForcet(i,j),(k,l) =




WM(i,j) ∗
CM t

(k,l)

Total NCM(i,j)
+ WQ(i,j) ∗

CQt
(k,l)

Total NCQ(i,j)
,

if CM t
(k,l) = MAX(CM t

(i,j))

0, otherwise
(6)

WM(i,j) =
PHt

(i,j)

100
,WQ(i,j) =

100− PHt
(i,j)

100

where,
WM(i,j) is the weight assigned to the chemical mass that
will attract Physarum to it.
CM t

(k,l) is the current mass of the chemical at iteration (t)
for cell c(k,l).
Total NCM(i,j) is the total summation of chemical mass
for the first neighbour of cell c(i,j).
WQ(i,j) is the weight assigned to the chemical quality that
will attract Physarum to it.
CQt

(k,l) is the current quality of chemical at iteration (t) for
cell c(k,l), where CQ ∈ [0 − 10]; 0: Low quality, 10: High
quality.
Total NCQ(i,j) is the total summation of chemical quality
for the first neighbour of cell c(i,j).
MAX(CM t

(i,j)) is a function which returns the maximum
value of chemical mass among the neighbourhood of cell
c(i,j).
PH(i,j) is the hunger motivation of the Physarum, where
PH ∈ [0− 100]; 0:Satiated, 100:Hungry.

The repulsion forces as described in Equation 7 repre-
sent the competition between Physarum, in which every
Physarum tries to repel other competitors. This function is
based on the neighbour Physarum mass of the opposite di-
rection.

P RepForcet(i,j),(k,l) =




PM t
opp(k,l)

Total NPM(i,j)
if PID(i,j) 6= PIDopp(k,l),

PM t
opp(k,l) > Rep Limit

0, otherwise

(7)

where,
PM t

opp(i,j) is the neighbour Physarum mass of the opposite
direction of cell c(i,j).
Total NPM(i,j) is is the total summation of Physarum

Table 1: Parameters values for the experiments

Parameter Value Parameter Value

CD 0.1 SD 0.05
CM 3000 PM [1,000-10,000]
CQ [0-10] PH 80

DIFF LIMIT 5 REP LIMIT 5

mass for the first neighbour of cell c(i,j).
Rep Limit is a limit where Physarum must reach to repel
neighbouring Physarum.

Experimental Results
The core model was implemented in Java with Processing
package https://processing.org/ being used for
graphical simulation. To validate our model, we have con-
ducted two experiments using the same parameters of diffu-
sion equation as mentioned in Tsompanas et al. (2016) (Ta-
ble 1). Each experiment was conducted for 100 times to get
unbiased results and were statistically analysed using SPSS
package.

Experiment (I): Competition and Decision Making
In this experiment design, two Physarum of different masses
(high power and low power Physarum) will be competing for
multiple (six) food resources placed in a (50×50) hexagonal
grid. The aim of the experiment is to show how many food
resources are engulfed by the high and low power Physarum
and the time (iteration) needed to engulf food resources ac-
cording to their quality.

This experiment has two different competition settings.
In the first setting (A), the two competing Physarum will
be randomly placed, and the 6 food resources will be ran-
domly placed each having the same quality. In the second
setting (B), the two competing Physarum will be placed in
the middle of the grid, three food resources with high qual-
ity will be placed randomly in the upper part (North field) of
the grid, and three food resources with low quality will be
placed randomly in the lower part (South field) of the grid.
This experiment was also conducted in duplicate, where the
two Physarum exchange location to nullify the chance of
better location.

The results were statistically assessed using independent
samples t-test to compare means, in the first setting (A) of
the experiment, it is shown that Physarum of higher mass
(power) succeeded in engulfing larger number of food re-
sources (3.71 ± 1.23) versus (2.29 ± 1.23) by Physarum
with lower mass (power) with p-value < 0.001. Nearly the
same results were obtained in the duplicate experiment af-
ter changing the two Physarum location which proved that
the distance between Physarum and food resource influence

207



Figure 3: Represents the first setting (A) of Experiment (I)
where Physarum of higher mass (P1) engulfed more food
resources than Physarum of lower mass (P2).

Figure 4: Represents the second setting (B) of Experiment
(I) where Physarum started and ended engulfing food re-
sources of high quality (F1) faster than food resources of
low quality (F2) as indicated by less number of iterations.

competition but is not the only determining factor. (See
Figure 3). In the second setting (B) of the experiment,
Physarum forages faster for food resource of high qual-
ity as indicated by having fewer iterations (See Figure 4),
Physarum start engulfing food resource of high quality after
(180 ± 155) iterations and ends by (489 ± 210) iterations
versus (279± 280), and (698± 242) iterations for food re-
source of low quality with p-value < 0.001.

Experiment (II): Physarum imitation of natural
Competition scenario
The aim of the experiment is to show the competition and
the interaction between multiple Physarum over limited sup-
ply of food resources, and territory. In this experiment, ten
Physarum of different masses ranging from 1000 to 10000
were randomly placed over CA grid to compete over six
food resources, three of them are of high quality (HQF),

Figure 5: Graphical simulation of 10 Physarum foraging be-
haviour in competition settings after engulfing all food re-
sources, where yellow cells indicate engulfed food resource
and the number inside indicates Physarum (ID) engulfed this
food resource, white cells indicate empty cells and other
coloured cells indicate Physarum and the number inside in-
dicates the ID of the Physarum (ranging from 1 to 10) and
their mass range from 1, 000 to 10, 000 respectively.

and the other three of low quality (LQF). A graphical sim-
ulation of 10 Physarum in competition setting, illustrat-
ing food engulfment and territory area, is shown in Fig-
ure 5 with video demonstration in this hyperlink https:
//youtu.be/oKTGVtanEjE.

In this experiment we have used bivariate correlation
(Pearson correlation coefficient) to assess the effect of
Physarum power (mass) on the number of food resources
engulfed, territory area (number of cells occupied by each
Physarum) , and its survival (number of iteration for
Physarum to vanish). The results of our experiment showed
that Physarum mass significantly correlate with the num-
ber of food resources engulfed whether of HQF or LQF
with r-value 0.105, 0.102 and p-value < 0.001, 0.001 re-
spectively. Physarum with bigger mass (best competitor)
was able to occupy larger territory with r-value 0.249 and
p-value < 0.001, and would always exclude its competi-
tors and has longer survival with r-value 0.128 and p-value
< 0.001.

Finally, we conducted empirical analysis to compare the
computational complexity between hexagonal and Moore
neighbourhood. In this analysis, we measured the time com-
plexity using our own defined function that counts the num-
ber of execution of the diffusion equation. It showed that
hexagonal neighbourhood on average is efficient than Moore
neighbourhood by 11%.
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Conclusions & Future Work
In this study, we presented complex patterns observed in
Physarum polycephalum generated in competition settings.
This model is based on Cellular Automata and Reaction-
Diffusion system, where the growth of Physarum is the re-
sultant of chemo attraction towards food resources and re-
pulsion forces between competing Physarum. The exist-
ing models are based on imitating single Physarum forag-
ing behaviour and it did not address the skills of individ-
ual Physarum in competition settings. To the best of our
knowledge, this is the first time Physarum will have been
simulated in a hexagonal grid, which is more applicable to
Physarum natural diffusion in a circular pattern to equidis-
tant cell neighbours.

Experimental results clearly showed that our model was
able to simulate Physarum complex competition behaviours,
where multiple Physarum compare information on reward
(food resources’ mass and quality), and negative effects of
competing neighbours according to their hunger motivation
in order to make correct and adaptive decisions. Physarum
with higher mass (best competitor) succeeded in engulfing a
larger number of food resources, and was able to occupy
larger area of the grid (territory). Also According to the
competitive exclusion principle, Physarum less suited (lower
mass) to compete for resources will die earlier than strong
competitors as measured by number of iterations, which is
an important hypothesis in natural selection.

Our model has been proved to be useful in solving mul-
tiple origin-destination network optimization problems as in
mobile wireless sensor networks (Awad et al., 2019a, 2018),
and discrete multi objective optimization problems (Awad
et al., 2019b). This new model will be feasible for biologists
to carry out wet-lab experiments for model validation and
increasing our understanding of the possible heuristics that
Physarum use in complex foraging decisions in competition
settings.
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Abstract

Cellular types of multicellular organisms are the stable re-
sults of complex intertwined processes that occur in biologi-
cal cells. Among the many others, chromatin dynamics sig-
nificantly contributes—by modulating access to genes—to
differential gene expression, and ultimately to determine cell
types. Here, we propose a dynamical model of differentiation
based on a simplified bio-inspired methylation mechanism in
Boolean models of GRNs. Preliminary results show that, as
the number of methylated nodes increases, there is a decrease
in attractor number and networks tend to assume dynamical
behaviours typical of ordered ensembles. At the same time,
results show that this mechanism does not affect the possi-
bility of generating path dependent differentiation: cell types
determined by the specific sequence of methylated genes.

Introduction
Eukaryotic cells are characterised by the organisation of
DNA in a condensed structure, called chromatin. Chromatin
is composed of nucleosomes, structures of DNA wrapped
around octamers of histone proteins. Histone methyla-
tion and histone acetylation change—by adding methyl and
acetyl groups to histones—the degree of compactness of the
chromatin, in this way facilitating or obstructing gene ex-
pression. These processes are defined as epigenetic mecha-
nisms 1.

Although methylation effects depend on the particular po-
sitions on histones on which it acts, it most often leads
to tightly packed regions of chromatin called heterochro-
matin (Gilbert and Barresi, 2016; Perino and Veenstra,
2016; Schuettengruber and Cavalli, 2009). These regions
are not accessible neither by transcription factors nor by
RNA polymerases and so the expression of genes belong-
ing to these DNA areas is inhibited. Biological cells ex-
ploit differential methylation to modulate their gene expres-

1In a manner conforming with molecular biology, with the
term epigenetics we refer to the series of heritable mechanisms
not directly derived from changes in DNA that modify the cells’
behaviour. This is not to be confused with the different con-
cept of “epigenetic landscape” (Waddington, 1957; Huang, 2012),
metaphor introduced by Waddington to represent the developmen-
tal landscape determined by the GRN.

sion during development and differentiation. It is important
to note that, along lineages, the attained configurations of
DNA methylation are inherited and progressively extended
as cells become more specialised (Kim and Costello, 2017).
Therefore, methylation contributes to maintain and stabilise
the attained gene expressions that ultimately characterise the
identities of the various cell states.

It is worth mentioning that methylation is tightly regu-
lated by complex interactions, and that epigenetic dysreg-
ulation is very common in a lot of disorders, from cogni-
tive, neurological and chronic diseases to cancer. Given the
complexity of these mechanisms, the adoption of models can
support the analysis of the role of epigenetics in pathophys-
iological processes. Several mathematical approaches have
been proposed with the aim of disentangling the effects of
epigenetics in development, differentiation and also in the
establishment of aberrant cellular states—like cancer.

Noteworthy is the work (Miyamoto et al., 2015) in which
the authors investigate the mechanisms of differentiation and
cellular reprogramming introducing a continuous model of a
minimal gene regulatory network (GRN) able to give rise to
both pluripotent and differentiated states. In their modelling
approach, an epigenetic process—introduced as a gene ex-
pression fixation—turns out to be important to increase the
stability of the attained differentiated states and to reproduce
with more accuracy the phenomenology of the reprogram-
ming process.

In the works (Turner et al., 2017, 2013), the authors have
ascertained that the addition of an epigenetic layer—in the
form of Boolean switches that dynamically change the ac-
tual network topology—within recurrent neural networks
lead to better performance in the achievement of certain tar-
get tasks, as compared to models without it.

To the best of our knowledge, the specific role of epige-
netics in the dynamics of discrete models of GRN has been
addressed only by (Bull, 2014). The author does not focus
on the differentiation process as such, but instead, he evalu-
ates the potential of Random Boolean networks (RBNs) with
epigenetic control—which is interpreted as additional nodes
that change the regular transcription dynamics—in NK land-
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scapes (Kauffman and Levin, 1987).
Of fundamental relevance for this discussion are the

works of Kauffman and Huang (Kauffman, 1969; Huang
et al., 2009, 2005; Huang and Ingber, 2000) that have laid
the foundations for a mathematical description of GRN dy-
namics in terms of dynamical systems, with attractors that
model cell types.

Recently, an abstract mathematical model of differentia-
tion based on Noisy RBNs has been proposed (Villani et al.,
2011; Villani and Serra, 2013; Serra et al., 2010). This
model has proven to be able to describe the most relevant
properties of the differentiation process, such as different
degrees of differentiation, stochastic and deterministic dif-
ferentiation, and cell reprogramming. The model focuses on
the dynamics of a single cell represented as an autonomous
system2 subject to intracellular noise. Cell types are defined
as the portions of the space of states in which the dynamics
remains trapped, under a specific noise level. Changes in the
intracellular level of noise drive the differentiation process:
high noise levels correspond to pluripotent cells while the
low levels to fully differentiated ones. Experimental analy-
sis on RBNs subject to stochastic dynamics (Braccini et al.,
2018) and the successful evolution of networks able to attain
not trivial differentiation dynamics (Braccini et al., 2017;
Benedettini et al., 2014) proved the expressiveness and plau-
sibility of this model.

Differentiation represents a major challenge for every
model of gene regulatory networks that, like RBNs, is based
on deterministic dynamical systems which asymptotically
reach stable attractor states, to be identified with the differ-
ent cell types. Indeed, under the action of the deterministic
dynamics, a stable attractor does not change any longer so
it must represent a fully differentiated cell type. Therefore
cells which are found at intermediate differentiation levels
(e.g. pluripotent cells) should be associated to transients—
an unsatisfactory proposal, since it is known that there exist
long-lived pluripotent cells, which should rather be repre-
sented by metastable states.

The way out of this conundrum requires a mechanism to
escape from the deterministic attractors. While this mech-
anism is provided in our previously described model by
means of intracellular noise, in this work we want to ex-
plore an alternative—complementary—possibility, i.e. that
it is due to an external signal. In this way, the system is no
longer autonomous, and escaping from the attractors of the
corresponding deterministic system becomes possible. Ex-
ternal signals are indeed known to affect embryo evolution,
and the simplest way to describe their effect in a GRN model
is that of clamping the values of some network nodes to fixed
values.

2Here we adopt the terminology of dynamical systems in which
the adjective autonomous is used to denote systems that are not
subject to inputs, therefore their state may change in time only ow-
ing to internal mechanisms.

This paper is organised as follows. The next section de-
scribes the proposed model with its theoretical implications
in BN models and its contribution to the understanding of
the biological process of methylation. The subsequent sec-
tion details the experimental setting of our in silico experi-
ments and illustrates results that show the properties of the
model. Finally, we conclude with an outlook to future work.

Model
Boolean networks are discrete-time and discrete-state dy-
namical models of GRN introduced by Kauffman (Kauff-
man, 1969, 1993). In their original formulation BNs can be
represented by a directed graph with n nodes each having as-
sociated a Boolean variable xi, i = 1, . . . , n and a Boolean
function fi = (xi1 , . . . , xik) which depends on k other
nodes, avoiding self loops. Despite their simplifications they
proved to be suitable systems to represent the dynamics of
biological GRNs to many level of abstractions (Graudenzi
et al., 2011; Serra et al., 2006, 2007; Shmulevich et al.,
2005).

As previously discussed, methylation—even if it is not the
only phenomenon in place—has a non negligible impact on
cell fate determination and maintenance. Here we are es-
pecially interested in its abstract role in simplified models
of GRNs, namely in Boolean networks. Indeed, borrow-
ing the idea of a progressive methylation state of the chro-
matin along the development and differentiation of biologi-
cal cells, we propose an analogous mechanism in BN mod-
els. Similarly to what happens in the heterochromatin con-
dition, the expression of some BN nodes is blocked to value
0; these nodes will be referred to as frozen in the following.

Theoretically, the formulation of this peculiar methylation
mechanism implies a sort of simplification of the network,
as it reduces the nodes that are actually subject to a dynamic
update, and so restricting the number of combinations that
the system itself can assume. Therefore, it is not a priori
clear whether this mechanism can accommodate path de-
pendent differentiation: cell types determined by the spe-
cific sequences of methylated genes.

This model relies on the hypothesis—to be verified in
RBNs—that the progression of frozen nodes imposes the ar-
row of time of the differentiation process and, at the same
time, different patterns of methylated nodes give rise to dis-
tinct lineages, and so cell types. Indeed, biological differen-
tiation is characterised by the presence of different stages of
differentiation and by progressively specialisation of cells.

A schematic representation of this Boolean methylation-
inspired mechanism is depicted in Figure 1. In this work
we undertake an experimental analysis of the main dynami-
cal properties of RBNs subject to this process of progressive
methylation. For this mechanism to be useful in a plausi-
ble BN differentiation model, it should (i) progressively sta-
bilise the network and (ii) give origin to different lineages
depending on the nodes chosen to be frozen. If these prop-
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Figure 1: Schematic representation of the methylation
mechanism introduced. Grey nodes represent frozen nodes
(nodes constrained to assume the value 0, regardless of the
actual values of its inputs). The specific patterns of frozen
nodes in the ennuples that represent the state of the BN over
time have no other meaning than to exemplify the methyla-
tion process introduced.

erties are attained in RBN ensembles, then we could suppose
that evolution may act to tune the dynamics of the network
so as to achieve a specific differentiation lineage tree. The
choice of setting to 0 the nodes to be frozen is motivated by
the inhibition effect of most methylation mechanisms and
introduces an asymmetry in the RBNs model, as it progres-
sively bias the Boolean functions to 0. However, this is not a
limitation of the model, which can be extended to take into
account also actions in which nodes are clamped to 1 and so
provide even more variability in the lineages.

Results
The random Boolean networks used in these experiments are
subject to a synchronous and deterministic dynamics, there-
fore fixed points and cycles are possible asymptotic states.
For all the experiments, statistics are taken across 100 RBN
with n = 500 and k = 2. We focused only on networks
with k = 2 because the size of the network, combined with
the other chosen parameters, would have made the experi-
mental analysis computationally prohibitive. The Boolean
functions are defined on the basis of the bias parameter p,
which defines the probability to assign value 1 in a row of
a node truth table. The variation of the parameter p makes
it possible to determine the dynamical regime of the system
(ordered, critical or chaotic) (Bastolla and Parisi, 1997): so,
the limitation due to the choice of a specific connectivity
is thus eliminated. Since we want to analyse the emerging
generic properties induced only by the proposed methyla-
tion mechanism in ensembles of RBNs, we used an exact
bias. Exact bias is computed by generating each time a ran-
dom permutation of a vector of Boolean values with a length
equal to the number of nodes in the network and a fraction
p of 1’s, and by using partitions of this vector to define the
output values of Boolean functions. In this way, we remove

from the statistics any possible contribution produced by a
variance in network dynamic regime. We generated RBNs
with p = 0.1, i.e. in the ordered regime, and p = 0.5, cor-
responding to the critical regime. As results with ordered
RBNs are rather uninformative, we only show results for
critical RBNs.

Figure 2: Distribution of the number of attractors for the
configuration n = 500, k = 2, p = 0.5 as the number of
frozen nodes increases from 0 to 200 with a frozen step of 5
nodes at a time. The continuous line illustrates the trend of
the mean.

Attractor number distribution To providing the trend of
the number of attractors as the fraction of frozen nodes in-
creases we generated 100 RBNs and for each number of
frozen nodes we performed a search of the attractors starting
from 104 random initial states. The range of frozen nodes
considered varies from 0 to 200 with a step of 5 nodes. Box-
plots showing the the distribution of the number of attractors
as a function of the number of frozen nodes are depicted in
Figure 2, along with the mean of these distributions. As ex-
pected, the number of attractors decreases with the number
of frozen nodes, even though it remains non negligible up
to one fifth of frozen nodes. A question may arise as to how
many attractors are fixed points, as one expects an increasing
number of fixed points as the RBNs become more ordered.
This expectation is indeed confirmed, as shown in Figure 3.

Derrida parameter With the aim of assessing the in-
tuition suggesting a progressive shift towards an ordered
regime of the ensemble of RBNs subject to the methylation
mechanism, we computed the distribution of the Derrida pa-
rameter (Bastolla and Parisi, 1997) λ, computed after one
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Figure 3: Distribution of the number of fixed points over the
number of attractors for the configuration n = 500, k = 2,
p = 0.5 as the number of frozen nodes increases from 0 to
200 with a frozen step of 5 nodes at a time. The continuous
line illustrates the trend of the mean.

step. This parameter is evaluated by taking, for each state
considered (103 in total), the means of the Hamming dis-
tances after one update between the state and the perturbed
one (a logic negation of a single node value) in all not frozen
nodes, taken one at a time. In particular, statistics report the
distributions of the 100 means of the means, one parameter
value for each RBN which summarises the overall behaviour
observed along the 103 random states. For this investigation,
we consider a number of frozen nodes represented by a per-
centage of {0, 10, 20, 50} of all nodes. Figure 4 depicts the
boxplots summarising the distribution of λ for the ensembles
sampled; the trend towards an increasing order is confirmed
(the results for p = 0.1, on the left in Figure 4, are provided
as a comparison).

The results shown so far support the conjecture that a pro-
gressive freezing pushes RBNs towards order. One may ar-
gue that a result not in agreement with this expectation might
indeed sound surprising, nevertheless it is important to as-
sess it experimentally in particular because this trend is not
trivial at all in finite-size RBNs. While in infinite-size RBNs
just a tiny fraction of frozen nodes leads to a complete sta-
sis of the network3, in finite-size RBNs we observe that the
number of attractors and the Derrida parameter are kept at
significant values even in the presence of a non-negligible
fraction of frozen nodes. This result suggests that in finite-
size RBNs, while a progressive freezing tends to increase
order in network dynamics, it may still be open to variabil-

3a formal model of this behaviour is subject of ongoing work

Figure 4: Distribution of the Derrida parameters as the num-
ber of frozen nodes increases, for both ordered and critical
ensembles of 100 RBNs with N = 500.

ity. This last characteristic is relevant especially with respect
to the possible paths across attractors that are feasible as the
consequence of different choices in the nodes to be frozen.

Diversity estimation In previous sections we have sum-
marised with path dependent differentiation the property of
generating different cell types as a result of different se-
quences of methylated genes. We can characterise the ten-
dency of this mechanism to give rise to this property by in-
specting the diversity caused by different combinations of
methylated genes at any attained differentiation stage. For
this purpose, we generate for each state of the methyla-
tion process (state represented by the already frozen nodes
and the attractor reached) 102 couples of triplets of nodes,4

among the non-already methylated nodes. This triplet is
frozen while the network is in an asymptotic state, there-
fore after this perturbation the BN dynamics is subject to a
transient and subsequently the network can either return to
an attractor equal to the current one—except for the frozen
triplet—or reach a different one. The freezing step may
be taken at any state—i.e. phase—of the current attractor;
as the phase of the attractor may be a source of variability
and here we want to assess the contribution of the choice of
frozen nodes only, once the attractor is reached after freez-
ing a triplet of nodes, its minimum state according to the

4The choice of 3 nodes is somehow arbitrary, but motivated by
the requirement of involving a small number of nodes to be frozen,
while keeping the possibility of significantly perturbing the attrac-
tor. However, previous preliminary experiments on different net-
work size and number of frozen nodes confirm the qualitative be-
haviour we show in this work.
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Figure 5: The trend of the number of equal reached asymp-
totic states considered in pairs and after removing the part
of the already frozen nodes (x-values) and the set of nodes
that constitute the triplets. (a) Triplets randomly chosen
among all the non-frozen nodes, (b) triplets randomly cho-
sen among the non-frozen nodes with value 1.

lexicographic order is chosen. As networks are random, this
choice does not introduce any bias and in this way we rule
out any possible contribution of attractor phase in the diver-
sity of paths originated by freezing steps. 5 The diversity is
then measured depending on the characteristics of the new
asymptotic states on which the dynamics settles after the
triplet is frozen. As we aim at providing general results, not
bound to a specific definition of phenotype 6, which should
be supported by motivations on a concrete biological case,
we analyse the arising diversities in various condition. Par-
ticularly, we count:

• the number of equal reached asymptotic states considered
in pairs and after removing the part of the already frozen
nodes and the set of nodes that constitute the triplets;

• the differences among all the reached attractors caused by
the generated triplets, by considering subset of genes (pat-
terns in the following) of different sizes (10, 50, 100) ran-
domly chosen;

• the differences among all the reached attractors caused by
the generated triplets, by considering the states vectors in
their entirety.

5In other words, we pose us in the condition of minimal diver-
sity.

6See the following parts of the text for a more detailed discus-
sion.

Figure 6: The trend of the number of diversities caused by
200 triplets of frozen nodes. The triplets are randomly
chosen among the non-already frozen nodes. Diversities
are measured by considering if the reached attractors are dif-
ferent (all tuples case) or by means of randomly chosen pat-
terns (of sizes equal to 10, 50, 100) which select the nodes
on which perform the comparison between the reached at-
tractors.

By doing so we will have an overall picture of how this
mechanism behaves in ensembles of RBNs, without limiting
ourselves to particular points of view. As for the attractors
distribution analysis, the range of frozen nodes considered
varies from 0 to 200 with a step of 5 nodes. We stress that
in this model the various degrees of differentiation are char-
acterised by a distinct number of frozen nodes: the higher
the number of frozen nodes the more differentiated the cell
types. The triplets to be frozen are chosen at random among
all the non already frozen nodes; we also made experiments
with conditioning this choice to nodes that assume value 1
in the attractor state chosen for the perturbation. In this way,
we can assess the highest level of variability that can be at-
tained, as all the three nodes are actually perturbed by freez-
ing.

The distribution of the frequency of equal pairs of attrac-
tors is shown in Figure 5; we observe that the median fre-
quency of equal pairs increases from about 7/100 to 20/100
with the number of frozen nodes, while it is limited to low
percentages when frozen nodes are chosen among the ac-
tive ones (value 1). This result shows that the probability of
choosing two different triplets7 leading to the same asymp-
totic state after being frozen is rather low; therefore, at least

7As triplets are chosen at random among at least 300 nodes, the
fraction of equal ones is negligible.
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Figure 7: The trend of the number of diversities caused by
200 triplets of frozen nodes. The triplets are randomly
chosen among nodes that have value 1, in the chosen
phase of the starting attractor.. Diversities are measured
by considering if the reached attractors are different (all tu-
ples case) or by means of randomly chosen patterns (of sizes
equal to 10, 50, 100) which select the nodes on which per-
form the comparison between the reached attractors.

for RBNs with at most 2/5 of frozen nodes, the different
paths generated by freezing are a significant fraction of all
the possible ones, despite the tendency towards a more or-
dered regime. This observation is confirmed also by the
statistics involving the total number of different patterns.
With the term pattern we refer to a projection of the network
dynamics in subset of nodes. So, patterns in this context
define the observable phenotypes in a way strongly related
to the concept of macrostate introduced in (Borriello et al.,
2018; Moris et al., 2016). These latter results are shown in
Figures 6 and 7. It is worth observing that, even when dif-
ferences are estimated on the basis of 10 nodes, the fraction
of overall different patterns is still non-negligible up to 100
frozen nodes out of 500.

These results support the hypothesis that different freez-
ing patterns in RBNs are very likely to produce different tra-
jectories along attractors, and therefore variability in differ-
entiation paths can be attained also by means of this mecha-
nism.

Conclusion
In this work we have explored the possibility of incorpo-
rating epigenetic mechanisms—methylation in particular—
into BN models of GRNs. We focused on those processes
responsible for high chromatin compaction, that influences

gene transcription by controlling the accessibility of DNA to
transcription factors and RNA polymerases. Accordingly, in
our model we progressively freeze—i.e. clamp to 0—a sub-
set of nodes and analyse the impact of this modification on
network dynamical features, namely on attractor number—
in analogy with the number of cell types—, on the Derrida
parameter—to assess the extent to which RBNs with frozen
nodes tend to an ordered regime—and on attractor diversity
as attained by different combinations of frozen nodes.

We observed that the number of attractors in RBNs de-
creases with the number of frozen nodes and the same does
the Derrida parameter, suggesting that, from an ensemble
point of view, the larger the fraction of frozen nodes the
more ordered the RBNs. These results are in agreement with
the intuition that, by clamping to 0 a fraction of RBN nodes,
not only the state space is reduced with respect to the orig-
inal network, but frozen nodes absorb perturbations and so
they favour network stability. These properties are to some
extent the abstract counterpart of progressive reduced alter-
natives and stability along differentiation stages. Moreover,
results show a very interesting property of RBNs: they main-
tain diversity in terms of possible asymptotic states originat-
ing from different combinations of frozen nodes, both dur-
ing the process of progressive freezing itself and in the final
reached states. We assessed this diversity by means of three
metrics, so as to attain general results. We found that dif-
ferent choices in nodes to be frozen are very likely to lead
to different asymptotic states, implying that diverse differ-
entiation paths can be generated. As expected, this diversity
tends to decrease with the fraction of frozen nodes in the
network.

As future work, we plan to add in our model mechanisms
to reproducing open chromatin structure, where genes are
made more accessible and their transcriptions eased. The
combined effects of both closing and opening chromatin
structure on attractors and other relevant features of BNs
will be consequently analysed. Moreover, since epigenetic
is expected to have an impact on cell type stability, we are
devising a set of experiments to measure how attractor ro-
bustness changes along the path of differentiation, for exam-
ple by measuring the impact of external signals—possibly
modulated—during different stages of differentiation. To
conclude, epigenetic is only one of the factors that are re-
sponsible for cell type transitions and definitions. Signalling
cues, typically generated by other cells, are another crucial
actor in the process of differentiation. In this perspective, we
are planning to study models involving networks of BNs, so
as to explore the possibility of modelling differentiation in a
multi-cellular setting.
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Abstract

Collective dynamics is a behavior of living systems that can
improve their survivability in harsh and complex environ-
ments. Towards improving the vulnerability of engineering
systems against power-source limitations, we focused on an
oscillatory-growth dynamics of Bacillus subtilis biofilms. We
developed a minimal reaction-diffusion model that captures
the essence of the bacterial growth, nutrient consumption and
electrical signalling. Numerical simulation of the model suc-
cessfully recapitulated the oscillatory dynamics of bacterial
biofilms. Thus, our model provides a first step forward to-
wards designing biofilm-inspired engineering systems such
as swarm robots and power supply networks.

Collective dynamics enables a variety of living systems
to survive under unpredictable and complex natural environ-
ments where available food sources are limited (Carter and
Wilkinson (2015)). Such collective dynamics could offer
excellent novel bio-inspired designs to improve the surviv-
ability of engineering systems. To this end, we argue that
extracting simple and abstracted mathematical structure un-
derlying the collective dynamics is important for developing
robust engineering systems that can survive in severe and
unpredictable environments.

We focus on the oscillatory expansion of biofilm as a
model case of collective dynamics. Biofilms are structured
communities of microbes which can be found on almost any
surfaces; e.g. a slime in the kitchen sink. It has been shown
that B. subtilis biofilms can exhibit oscillatory dynamics of
colony growth, which is coordinated by bacterial electrical
signalling and a metabolic co-dependence between interior
and peripheral cells (Liu et al., 2015; Prindle et al., 2015).
Importantly, this collective growth oscillation improves the
survivability of biofilms as a whole when exposed to an-
tibacterial chemicals.

While the models proposed in the previous studies well
describe the physiological processes of electrical signalling
or growth oscillation (Liu et al., 2015; Prindle et al., 2015),
designing engineering systems based on these findings re-
quires further integration and simplification of the core de-
sign principle of biofilm collective dynamics. In this study,

we developed a unified mathematical framework that ac-
counts for both biofilm growth oscillation and electrical sig-
nalling, using simple reaction-diffusion equations (Turing
(1990)).

Based on the findings of the previous literature (Liu et
al., 2015; Prindle et al., 2015), we considered three key el-
ements of the biofilm oscillation: namely, bacterial density
v(r, t), nutrient u(r, t) and electrical signal z(r, t). Electri-
cal signalling is mediated by potassium waves, which de-
polarize cells and consequently suppress the nutrient uptake
(Prindle et al., 2015). We simplified the model by not distin-
guishing the biofilm-interior cells from the peripheral cells.
Since the biofilm dynamics appeared symmetric to all radial
directions (Liu et al., 2015), we simulated the model in one-
dimensional environment. The time evolutions of each ele-
ments are described by reaction-diffusion equations as fol-
lows:

v̇(r, t) = −kvv +Dv · ∇2v + kfv · f(k1(u− k2z − β)),

(1)

u̇(r, t) = −kuu+Du · ∇2u+ uin − kfv · f(k1(u− k2z − β)),

(2)

ż(r, t) = −kzz +Dz · ∇2z + kvz(1− f(kh(u− α))),

(3)

where kv, ku, kz, kf , k1, k2, kvz, kh, α, and β are positive
constants, Dv , Du, and Dz denote the diffusion coefficients,
uin denotes an external input. The function f denotes a
sigmoid-function f(x) = 1

1+e−x . The first and second terms
of Eq.(1)-(3) denote the decay and diffusion, respectively.
The third term in Eq.(1) represents the bacterial activities
to uptake nutrients from their external environments. This
becomes larger with greater nutrient availability u(r, t) and
larger cell density v(r, t). Electrical signalling, z(r, t), has
an opposite impact to this term: larger z give rise to smaller
values. The fourth term of Eq.(2) shows u(r, t) decreases
due to the uptake of nutrient by cells. The third term of
Eq.(3) represents that bacterial cells efflux potassium ions
under starvation (lower u(r, t)).

The simulation was performed under the following initial

218



(b)

(a)

�r0
<latexit sha1_base64="GN47XPI0xV5fo7fEYLRwSWkrSOM="></latexit>

r0
<latexit sha1_base64="g380lVk5TlXLFxN14VboWWemf3E="></latexit>

0
<latexit sha1_base64="VQvbz+fJnaDDjLv8mca07UF3ZUc="></latexit>

0
<latexit sha1_base64="5yvhP05DVBuuHFjZbaWix3kQSO4="></latexit>

9.0⇥ 106
<latexit sha1_base64="unvbPUaoGCw1aWTI0V0r2xX6bqA="></latexit>

0
<latexit sha1_base64="VQvbz+fJnaDDjLv8mca07UF3ZUc="></latexit> time step

<latexit sha1_base64="LNsfZbAmxoBk2/k2v+rea8UchsE=">AAACh3ichVFNTxNBGH66gtCKUvFi4mXTD+OpvluSCpxQLhyhWCBhsdldp2XCfmV32gQb7sY/4METJIQYE69w58If4MBPMB4h4cKBd7ebECTqO5mZZ555n3eembFDV8aK6DynPRgZfTg2ni88mnj8ZLL4dGo1DnqRI1pO4AbRum3FwpW+aCmpXLEeRsLybFes2dsLyf5aX0SxDPz3aicUm57V9WVHOpZiql0sVczI05X0hKnHSoSVQrUyWyMzYWLdoA+NSrtYphqlod8HRgbKyGIpKB7CxEcEcNCDBwEfirELCzG3DRgghMxtYsBcxEim+wK7KLC2x1mCMyxmt3ns8mojY31eJzXjVO3wKS73iJU6qnRG3+mCTukH/aLrv9YapDUSLzs820OtCNuTX56vXP1X5fGssHWr+qdnhQ5mUq+SvYcpk9zCGer7n75erMw1q4OXtE+/2f8endMJ38DvXzoHy6L5DQX+AOPP574PVus1Y7pGy/Xy/LvsK8bxAiW84vd+g3ksYgktPvczfuIIx1pee601tJlhqpbLNM9wJ7S3N0bwlCc=</latexit>

15
<latexit sha1_base64="R/90ZfuLRRhmp+lwQ11hAX9nO0s="></latexit>

u
(r,t)

<latexit sha1_base64="DBHdinaVdSEvkYxSxcoXL8Qh/GE="></latexit>

C
oo

rd
in
at
e
r

<latexit sha1_base64="msMGkRGlT9jR8Bm3/d+1etMUvY4="></latexit>

Figure 1: Simulation results (a) Spatio-temporal plot of
u(r, t). Black lines denote the contour lines of v(r, t) =
9.7682. (b) Enlarged view of the framed area in Fig.1(a)

conditions:

v(r, 0) =

{
v0 (|r| ≤ s0)

0 (s0 < |r| < r0)
(4)

u(r, 0) = u0 (|r| ≤ r0) (5)
z(r, 0) = 0 (6)

where v0, s0, and u0 are positive constants. The simulation
space was bounded at r = ±r0, and the Neumann boundary
condition was used. To mimic the experimental condition in
the previous work (Liu et al., 2015), an external source of
nutrient is given at both ends of the simulation space.

uin =

{
u1 (|r| = r0)

0 (otherwise)
(7)

where u1 is a positive constant. The parameter values em-
ployed in the simulation were kv = 0.01, ku = 0.1, kz =
10, kf = 5.5, k1 = 100, k2 = 90, kvz = 5.5, kh =
300, α = β = 2.1, Dv = 10, Du = 4000, Dz = 5000, v0 =
50, u0 = 10, s0 = 10, r0 = 300, u1 = 300, and dt =
0.000001.

Fig.1(a) shows spatio-temporal plots of u(r, t). v(r, t)
and the low value area of u(r, t) expand synergistically, and
exhibit an oscillation (movie: https://youtu.be/1Y_
cp_rwEFI). An enlarged view of cell density over space
and time (Fig. 1(b)) clarifies the oscillation: the expansion
periodically halts (indicated by black arrows). These re-
sults demonstrate that our mathematical model successfully
recapitulated the biofilm oscillatory expansion. Note that

the oscillation disappeared when parameters changed. For
example, when kf is large/small, the nutrition u remained
small/large and does not oscillate.

The plot of u(r, t) in Fig.1(b) showed that the nutrients
diffuse into the biofilm as the biofilm edge stops expand-
ing. This result can be explained by the following mech-
anism. Biofilm expands as bacterial cell density increases
by consuming nutrients. This results in nutrient depletion
in interiors, which triggers the electrical signalling that in-
hibits the nutrient uptake. When the electrical signal diffuses
and reaches to the periphery, the peripheral cells stop tak-
ing up nutrient, which allows the diffusion of nutrient to the
interior. The interior cells which get nutrient stop the elec-
trical signalling and the signal disperses gradually. Then,
the biofilm expands again. This process well agrees with
the mechanism proposed in the previous works (Liu et al.,
2015; Prindle et al., 2015); thus, our model well captures
the essence of biofilm oscillation.

In conclusion, we proposed a simple mathematical frame-
work that captures both biofilm oscillation and electrical sig-
nalling. The key of the proposed model is that individuals
exposed to nutrient depletion emit signals so that other in-
dividuals relieve the situation by refraining from taking up
nutrients. The mathematical framework for this altruistic
strategy marks an important step towards designing highly
survivable engineering systems, beyond biofilms. We be-
lieve that this study may lead to new control schemes for
various engineering systems such as swarm robotics (Barca
and Sekercioglu, 2013) and power supply networks (Kan-
tamneni et al., 2015).
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Abstract

Avian Influenza Viruses (AIV), specifically H5N1, are highly
adaptive and mutate continuously throughout their life-cycle.
The accumulation of constant mutations causes antigenic
drift, leading to the spread of epidemics which result in bil-
lions of dollars in socioeconomic losses each year. Conse-
quently, the containment of AIV epidemics is of vital impor-
tance. Computational approaches to the study of epidemi-
ology, such as phylodynamic simulations, enhance in vivo
analysis by examining the impact of ecological parameters
and evolutionary traits, as well as forecasting the rise of fu-
ture variants. We propose an improvement on existing phy-
lodynamic simulation models through the introduction of: ¶
actual Hemagglutinin (HA) protein sequences, · simulating
mutations, ¸ and implementing an amino-acid level antigenic
analysis algorithm to model natural selection pressure. In
contrast to prior approaches that use abstract antigenic mod-
els, our method uses and yields actual HA strains enabling
robust validation and direct application of results to inform
vaccine design. We assess the validity of our method against
the current World Health Organization (WHO) H5N1 nomen-
clature phylogram for 3 countries. Our calibration and val-
idation experiments use > 10,000 simulations with 1,000s
of different parameter settings requiring over 2,500 hours of
computing time. Our results show that our calibrated mod-
els yield the expected evolutionary characteristics but with a
compromise of ~10× longer simulation times.

Introduction
Avian Influenza Viruses (AIVs), specifically H5N1
serotype, cause billions of dollars of socio-economic losses
every year. Endemic in multiple species of waterfowl,
H5N1 transmits both directly between hosts as well as
indirectly via environmental contamination. Influenza
strains that fall under the subtype H5N1 are able to spread
to poultry, in turn causing widespread devastation. One of
the more prominent examples of its impact was between
the years of 2014-2015 where over 45 million chickens and
turkeys were culled in order to stop the spread of a major
epidemic (Giridharan and Rao, 2016).

AIV epidemics are perpetuated by continuous change to
the nucleotide structure of the protein haemagglutinin (HA)
which defines the receptor shape on the surface of influenza

viruses. Small changes to the protein structure are intro-
duced over time, accumulating into larger changes that dras-
tically morph the shape of the receptors on AIVs. The ac-
cumulation of mutations in phylogenetic code is called anti-
genic drift, and is the primary source of epidemics.

Challenges with current in vivo methods
There are a variety of approaches used in the containment of
AIVs such as livestock isolation, vaccination of at-risk pop-
ulations, and culling of infected hosts. Vaccinations are the
primary method used to prevent epidemics, allowing recip-
ients to gain immunity against the most common influenza
strains in their region (WHO, 2012). Vaccine design in re-
spect to in vivo analysis involves the collection of viral data
from infected hosts, tracking host migration patterns, and
sequencing collected viral data in order to make informed
decisions on the prevalence of different AIV strains. This
process can be lengthy in regards to the evolutionary time
line of AIV epidemics, requiring 10 to 18 months to final-
ize analysis. The demand for new strain selection dictates
vaccine candidates to be identified every 6 to 8 months. An-
other drawback to this methodology is that the analysis is
reactionary and does not allow analysts to predict future epi-
demics. Limitations also arise due to the spatial and tempo-
ral locality of surveillance and sampling. Hence, in vivo
analysis is ineffective alone when it comes to informing
H5N1 containment efforts.

In silico approaches & shortcomings
Computational analysis methods enhance in vivo efforts by
providing a platform for predictive modeling with results
delivered in the span of days or weeks. Of particular in-
terest are phylodynamic simulations (discussed in detail in
Section Background and related works) which enable explo-
ration of the effects of selection pressure, ecological parame-
ters, and regional factors on the spread of viruses to forecast
future epidemics. Future forecasts are of particular impor-
tance as they can be used to inform time lines for design of
new vaccines and validate containment measures (Bedford
et al., 2012; Giridharan and Rao, 2016; Volz et al., 2013).
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Figure 1: Overview of the current state-of-the-art antigenic
modeling approach

The evolutionary and antigenic models used in phylody-
namic simulations play a critical role in enabling effective
modeling and analysis. Current state-of-the-art phylody-
namic simulations merely use an abstract 2-dimensional or
multidimensional space to represent evolutionary changes as
summarized in Figure 1. Mutations in viral strains are mod-
eled by changing their associated coordinate values. The eu-
clidean distances are then used to approximate phylogenetic
differences and their ensuing antigenic differences.

Shortcomings of state-of-the-art: The contemporary ge-
netic and antigenic modeling approaches shown in Figure 1
have several shortcomings, including:

1. They do not model the actual viral strains. Consequently,
mutations are grossly approximated.

2. Due to abstract nature, the mutation rates in the simulation
do not directly reflect mutation rates observed in nature,
such as those reported by Dang et al. (2010).

3. The antigenic characteristics are also approximated. Con-
sequently, all mutations are deemed equally significant, a
stark contrast to actual antigenic behaviors that primarily
arise from mutations to epitope regions.

4. Since the phylodynamic simulations cannot output actual
viral strains, forecasting to inform vaccine design is not
straightforward.

The aforementioned shortcomings significantly limit the
applicability of current phylodynamic methods.

Proposed enhancements: Our contributions
In this study we propose and assess an alternative antigenic
model. It addresses the aforementioned shortcomings of the
Euclidean model (shown in Figure 1) via the following three
improvements, namely:

1. We propose to use actual HA sequence(s) instead of the
abstract Euclidean model, starting with the root HA se-
quence (A/turkey/England/5092/1991) correspond-
ing to the root of the WHO H5N1 nomenclature (WHO,
2012).

2. We simulate realistic mutations based on observed mu-
tation rates in nature as reported by Dang et al. (2010).
However, the mutation rates are further calibrated to char-
acterize phylogenetic diversity in a given region.

3. Antigenic diversity is measured using an amino-acid
level comparison algorithm, called P-Epitope proposed by
Gupta et al. (2006).

This paper presents a detailed overview of our proposed
enhancements in Methods section. Experiments & Vali-
dation section presents results from experiments conducted
to calibrate and verify our model enhancements. In addi-
tion, results from sensitivity analysis are also discussed to
identify influential parameters in the model. Conclusions
presents concluding remarks along with a summary of our
envisioned future work.

Background and related works
Phylodynamic models are used to characterize the epidemi-
ological and evolutionary characteristics of viruses (Volz
et al., 2013). Computational phylodynamic simulations typ-
ically use agent-based models in conjunction with discrete
time simulation. Simulations enable analysis of the inter-
play between ecological processes and viral phylogenies.
Figure 2 represents an abstract view of the ecological pro-
cess that our phylodynamic simulations recreate. Waterfowl
hosts are seeded with an initial viral strain and the virus
then begins to mutate. For up to 8 days the virus will be
shed from infected individuals, with the potential to infect
not only other waterfowl but also the environment the host
has contact with (Wibawa et al., 2014). Water sources are
particularly vulnerable and can harbor infections for up to
20 days (Roche et al., 2014). Host immunity prevents hosts
from acquiring a new infection if the virus strain is antigeni-
cally similar to a recent previous infection. The mutations
that occur within individual hosts accumulate over time,
causing antigenic drift. Antigenic drift causes new viral
strains to diverge from their ancestral lineage, enabling them
to escape host immunity and cause new infections. Figure 2
summarizes this process and exemplifies how new virus lin-
eages diverge into new clades, or groupings, of viruses.

Infected hosts shed viruses (until 
host gains immunity to current 
strain) with genetic changes.

Antigenically different viruses 
cause new infection in hosts.
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Figure 2: Ecological model of the influenza life cycle

The current leading practices for phylodynamic model-
ing were introduced by Gog and Grenfell, who utilize the
classical model for epidemiological studies (Gog and Gren-
fell, 2002). This model is based on classic compartmental
epidemic models, such as: susceptible (S), exposed (E), in-
fective (I), and recovered (R). However, for avian influenza
which is endemic in waterfowl, we use a S-I-S model. Hosts
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that are susceptible have not been in contact with a specific
viral strain but can potentially be infected. A viral strain
can infect a host only if an antigenically similar strain is not
present in the immune history of a host. A host remains in
the infective category until the infection has run its course.
While in the infective compartment, the host can spread the
virus to susceptible hosts that it comes into contact with. In
addition, an infective host also contaminates its environment
by shedding the virus. After the host acquires immunity
against a viral strain they transition back to the susceptible
state and the cycle repeats.

PhySim: A phylodynamic simulator
PhySim is the computational implementation of the ecology
of avian influenza shown in Figure 2. PhySim is an adap-
tation of a general simulation tool named Antigen (Bedford
et al., 2012). As discussed by Giridharan et al. (Giridha-
ran and Rao, 2016), PhySim’s enhancements include: ¬ en-
abling simulation of avian influenza strains,  simulation of
multiple species with different birth and death rates; ® births
occurring only during specific brooding seasons rather than
throughout the year; ¯ genetic and antigenic properties of
viruses are independently modeled; ° antigenic distances
between simulated HA strains are estimated using the cross-
immunity approach proposed by Gog et al.; ± phylogenetic
trees are constructed based on genetic differences rather than
difference in emergence times; and ² infection rates and in-
fective periods account for seasonal variations in the coun-
tries.

Written in Java, PhySim uses Gillespie’s Stochastic Sim-
ulation Algorithm (SSA) with Tau-Leap optimization. In or-
der to simulate epidemic progression with sufficient accu-
racy, PhySim uses a time step of 0.1. PhySim uses an an
Individual-Based Model (IBM) for modeling epidemic pro-
gression. PhySim only moves hosts between the susceptible
and infective compartments to form an S-I-S model where
the exposure of infections is simulated by probability at the
point of contact and hosts move directly to infective, once
the infection dies off in the host they are returned to the sus-
ceptible compartment. An S-I-S model is used due to the
endemic nature of H5N1 in waterfowl, the Exposed com-
partment is modeled as a transition from S to I as infections
immediately take hold in the host. Hosts become immedi-
ately susceptible to new infections after recovery as the R
compartment becomes the transition from I back to S. Fig-
ure 3 represents a broadened view of how the S-I-S and eco-
logical models for our simulation interact.

We are able to analyze the impact of a variety of param-
eters summarized in Table 1. Hosts represent a group of
waterfowl from a specific species, where multiple species
can be present in each simulation. We can target specific
countries and model the spread and mutation of an influenza
virus for that country by setting parameter values specific
for the waterfowl found in the region. Nigeria and Turkey

S I

𝛽 1 + Ω ∙ 2𝜋𝑡

𝜈

𝜇𝑑𝜇𝑑

𝜇𝑏

𝜇𝑏

Infection from antigenically
different strain

birth (during brooding)

birth

(recovered from infection)

Figure 3: Ecological and SIS Modeled with example param-
eters from PhySim

were identified as high risk countries using a combination of
Phylodynamic and Phylogeographic analysis and will be the
focus of our attention (Giridharan and Rao, 2016). A point
of interest in our model is that we take seasonal temperature
fluctuation into consideration when determining transmis-
sion of potential infections. By using a sinusoidal curve as
a modulation factor we can increase the chance of infection
in colder seasons and decrease the chance of transmission
during warmer months.

µb Species specific daily birth rate during brooding season
µd Species specific daily death rate derived from lifespan
β Contact rate (direct) between hosts for a region
Ω Sinusoidal seasonal modulation factor
ψ Average daily phenotypic mutation rate
ν Inverse of infectuous period

Table 1: A sample of PhySim ecological parameters for a
multi-species simulation model

The models for phylodynamic simulations can be vali-
dated by setting ecological parameters such as those in table
1 to produce phylograms that mirror those constructed from
in vivo analysis. By examining the parameters that produce
the best matching phylograms we are able to deduce what
factors play the most impact on the spread of AIVs and can
succinctly inform vaccine design. Simulations are run with
a burn-in period of 15 years to simulate the time leading
up to current day, by stepping past the burn-in period sim-
ulations are able to then effectively predict what the evolu-
tionary landscape will look like in the future. Parameters
such as contact rate can be abstractly represented as live-
stock isolation, and features such as average mutation rate
can be mapped to vaccination efforts.

Comparisons with recent related works
Current phylodynamic simulations (Bedford et al., 2012;
Giridharan and Rao, 2016) model AIV strains as abstract
2D-vectors representing evolutionary data. Euclidean dis-
tance between two vectors represents phylogenetic distance
between two viral strains, we will call this the geometric
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approach (Gog and Grenfell, 2002). Antigenic similarity is
merely approximated using Euclidean distances as summa-
rized in Figure 1.

Our research proposes to improve upon the current mod-
eling standards used in phylodynamic simulations by re-
lying on a new measure of antigenic distance called P-
Epitope (Gupta et al., 2006). P-Epitope has been shown to
have a higher correlation to vaccine efficacy when compared
to other measures of antigenic distance such as P-Sequence
which is the current measure used by the WHO (Gupta et al.,
2006).

In order to utilize P-Epitope as a measure of antigenic dis-
tance our representation of AIV strains in PhySim has been
enhanced. We propose to implement amino acid sequencing
and use an amino acid substitution model to represent com-
peting viral strains and adjust our mutation model to reflect
the current 2D-vector approach. Our work is distinguish-
able from recent state-of-the-art in a variety of ways. Instead
of distancing ourselves from biological functions we instead
embrace the computational complexity of working with pro-
tein sequence data in order to derive a simulation model that
better reflects vaccine efficacy and natural mutation. The
amino acid substitution model we chose to implement in our
approach has been shown to be a top performer in regards
to predicting future phylograms using machine learning ap-
proaches (Dang et al., 2010). This work is similar to ours
in that we are also striving to predict future phylograms, but
our work distinguishes itself from the machine learning ap-
proaches explore by (Dang et al., 2010) in that we are pro-
ducing HA protein sequences in a more organic way through
selection pressure, environmental influence, and relying on
strain comparisons using a method that is more closely re-
lated to vaccine efficacy.

Methods

PhySim is progressed on a daily basis, and actions are con-
trolled used a time step value (e.g. delta=0.1 means a day
is divided into 10 time steps). The daily rate of contact and
mutation are defined through input parameters. Simulation
runs are conducted to match with WHO H5N1 nomenclature
– i.e., starting with 1991, with 15 years of burn-in time to
produce strains for 2006–2010 for constructing phylograms.

Hosts are introduced and removed from both the sus-
ceptible and infective compartments at the same rate on
a daily basis in order to maintain a stable population for
each waterfowl species. The birth and death rates account
for abundance and lifespans of different high-risk water-
fowl species (that are endemic to a given region), includ-
ing – A.Acuta (Northern Pintail), A.Crecca (Common Teal),
A.Fuligula (Tufted Duck), A.Penelope (Eurasian Wigeon),
L.Canus (Common Gull), L.Limosa (Black-tailed Godwit),
P.Pugnax (Ruff), and V.Vanellus (Northern Lapwing).

Antigenic model enhancements
PhySim was originally adapted to simulate changes in the
nucleotide structure of H5N1 HA protein sequences. One of
the major assumptions of this model is that changes in pro-
tein sequences are uniform and random, this is known to not
be the case under in vivo analysis and is a limitation to the
original geometric model. FLUModel, an amino acid substi-
tution matrix derived from a database of currently spreading
H5N1 strains, is our solution to this limitation (Dang et al.,
2010). Given a parameter value for t a substituion matrix
can be calculated from an instantaneous rate of change ma-
trix and steady state vector for amino acids in HA proteins.
FLUModel was derived from the same set of H5N1 protein
sequences that we are looking to recreate.

(a) Rate Matrix (b) Substitution Matrix

Figure 4: Using matrix exponentiation figure (a) is trans-
formed into figure (b), this example is done using a large
value for t to show the differences in substitution rates

Figure 4 illustrates the transformation from a rate of
change matrix to a substitution matrix. Given the rate of
change matrix q and a steady state matrix π we can get the
ensuing substitution matrix P(t) using the following calcula-
tions:

qxy = πrxy, qxx = −Σx6=yqxy
P (t) = etQ

A value of t = 1.0 represents the substitution rates for all
amino acids over the course of an entire branch. The sub-
stitution rates have been shown to be exceptionally accurate
for small values of t.

Algorithm’s 1 and 2 exemplify how the two methods of
mutation differentiate between the geometric and P-Epitope
simulation models. Algorithm 1 is the current geometric
substitution model, a percentage of the infective population
has their associated infection mutated approximately once
per day based on the time step delta value. The mutation
rate ψ was computed from in vivo sequence analysis, the di-
rection of the mutations are controlled using sin and cosine
waves (Cattoli et al., 2011).

Algorithm 2 is our proposed substitution model. Its as-
sumed that amino acid substitutions are independent and
generally time reversible. That is to say in one example mu-
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tation there could be multiple amino acid substitutions that
occur, and their substitution rates are mutually exclusive.

Algorithm 1 2dMutate(delta)
1: I = Σspecies.I, for all species in model
2: I ′ = poisson(I ∗ delta)
3: while I ′ > 0 do
4: i = getInfected(uniform(I))
5: v = i.getV irus()
6: θ = uniform(2π)
7: v.traitX = v.traitX + ψ ∗ cos(θ)
8: v.traitY = v.traitY + ψ ∗ sin(θ)
9: I ′ = I ′ − 1

10: end while

Algorithm 2 subMatrixMutate(delta)
1: I = Σspecies.I, for all species in model
2: I ′ = poisson(I ∗ delta)
3: while I ′ > 0 do
4: i = getInfected(uniform(I))
5: v = i.getV irus()
6: for aminoAcid ε v.HASequence do
7: substitute(aminoAcid, uniform(1))
8: end for
9: end while

This mutation model allows us to represent actual changes
in protein structure over the course of the simulation. More
importantly it enables the use of P-Epitope to measure anti-
genic distance between competing viral strains.

Algorithm 3 canInfect(virus v, susceptibleHost s)
1: minRisk = 1− homologousImmunity
2: maxRisk = homologousImmunity
3: risk = 0.0
4: for viεs.immuneHistory do
5: distance(v, vi)
6: if distance < risk then
7: risk = distance
8: end if
9: end for

10: risk = min(maxRisk, risk)
11: infectF lag = uniform(1) < risk
12: return infectF lag

The method of determining if an infection occurs in a host
is described in Algorithm 3. After contact has been estab-
lished the distance between the virus and every virus in the
hosts immune history is calculated. If a uniform random
number generated at the time of contact is less than the risk
associated with the immune history then the host is infected.

It is here that we propose to use P-Epitope to determine
the risk factor of a potential infection. As shown in the re-
search conducted by Gupta et al. there are various examples
of past vaccination regimes failing due to strain selection re-
lying on P-Sequence (Gupta et al., 2006). Had P-Epitope
been used to compare strains for vaccine selection a more

successful vaccination regime could have been promoted in
many of the examples cited. Gupta et al. showed that there is
a higher correlation between P-Epitope and vaccine efficacy
than other measures of antigenic distance when examining
past vaccination regimes.

Algorithm 4 pEpitope(virus v1, virus v2)

1: pEpitope = 0
2: for epitope ε epitopeRegions do
3: localDifference = 0
4: for residue ε epitope do
5: if v1[residue] 6= v2[residue] then
6: localDifference = localDifference+ 1
7: end if
8: end for
9: difference = localDifference/epitope.size

10: if difference > pEpitope then
11: pEpitope = difference
12: end if
13: end for
14: return pEpitope ∗ pEpConv

P-Epitope is described in detail in Algorithm 4. The epi-
tope regions to be compared can be fed into PhySim as a
parameter, there are five major epitope regions in HA pro-
tein sequences A, B, C, D, & E where a recent survey iden-
tified which residues can be attributed to respective epitopes
(Peng et al., 2014). A scalar value is attached to P-Epitope
to obtain a parabolic risk function. The advantage of cal-
culating antigenic distance using P-Epitope is that we are
able to identify antigenic similarity between virus strains
that other measures of antigenic distance would overlook.
Figure 5 illustrates the area of overlap that other measures,
such as P-Sequence, are unable to detect. As seen in the
Figure there is significant overlap between the frequency
distributions when using P-Epitope to compare strains from
the same clade and strains from different clades which were
grouped using P-Sequence. These are similarities that mea-
sures such as P-Sequence can not detect.

Figure 5: A sample of 100 H5N1 HA protein sequences
from 10 different clades were compared using P-Epitope,
frequency of P-Epitope values for inter and intra -clade dis-
tances is plotted
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Experiments & Validation
We calibrated the model with respect to the following sim-
ulation outputs: ¬ Infective and susceptible populations for
each time step,  Number of clades in resulting phylogram,
® antigenic diversity. The outputs of the simulation using
the new model were compared against the previously cali-
brated geometric model.

(a) Calibration Heat Map (b) Infected Population Compar-
isons

Figure 6: A window of the calibration efforts for PhySim
with the antigenic model implemented

The starting point of the calibration effort consisted of es-
timating the average mutation rate for the new model based
on the average nucleotide mutation rate used in the geo-
metric model. The expected amino acid substitution rates
were approximated to within 1% of the nucleotide substitu-
tion rates. This was done by adjusting the t parameter value
for the substitution matrix, generating probabilities for each
amino acid substitution and multiplying by the average num-
ber of each amino acid in a typical HA protein sequence.

Figure 6 illustrates an example of how the simulation
model was validated for Turkey. The majority of parameter
settings were kept consistent between the geometric model
and our new model. In order to properly calibrate and test
the new model only the mutation and contact rates were ad-
justed. Subfigure 6a shows a narrow window of calibration
settings that produced consistent results, a more exhaustive
calibration effort was conducted to find this window that re-
quired hundreds of different parameter combinations rang-
ing the contact rate from 1.0 to 3.0 and the mutation rate
from 0.002 to 0.10 in varying step sizes. The window illus-
trated represents the success rate of parameter combinations
with a contact rate between 1.8 and 2.6 in steps of 0.2, and
mutation rates between 0.008 and 0.012 in steps of 0.001.

Each simulation was seeded with slightly mutated root se-
quence variants equivalent to the number of initial infected
individuals. Due to the discrete steps mutations take in the
new model the initial propagation period is susceptible to
low mutation rates, and can cause the number of infected in-
dividuals to zero out early. This was combated by spawning
the slight variants, ensuring what is the equivalence of 100
simulation days of mutations. This results in the initial spike
of infective individuals in subfigure 6b.

(a) Antigenic (b) Geometric (c) Reference

(d) Antigenic

0.014

(e) Geometric

0.016

(f) Reference

Figure 7: Antigenic phylograms were produced using our
enhanced model (sucess is 2 clades for Turkey, 4 for Nige-
ria). Subfigures(a-c): Turkey. Subfigures(d-f): Nigeria

Parameter analyses
In this study we have used Generalized Sensitivity Analy-
sis (GSA) (Guven and Howard, 2007) to assess the influ-
ence of parameter settings in our model. GSA is based on a
two-sample Kolmogorov-Smirnov Test (KS-Test) and yields
a dm,n statistic that is sensitive to differences in both central
tendency and any differences in the distribution functions of
parameters. The dm,n statistic (0 ≤ dm,n ≤ 1.0) is the
maximum separation between cumulative probability distri-
butions observed in a two-sample KS-Test. The dm,n statis-
tic is computed for each parameter by varying its value over
a ±25% range, in steps of 10%, around its calibrated setting
as shown in Figure 8. At each setting, 10 stochastic sim-
ulations are conducted and the number of successful (i.e.,
simulation produces phylogram with same number of clades
as reference in vivo phylogram) and unsuccessful outcomes
are recorded. We have used the model for Turkey to conduct
the sensitivity analysis.

The data is used to compute the cumulative probability of
success and failure for each parameter as shown in Figure 8.
The maximum difference between the cumulative success
and failure probabilities is the dm,n statistic shown in red
for each parameter. For example, from Figure 8, the dm,n

statistic for Contact rate (β) is 0.256. Figure 9 shows
a summary comparison of the influence of the parameters.
The lightly shaded bands show the 95% Confidence Inter-
vals (CI) computed using standard bootstrap approach using
5000 replications with 1000 samples in each.

As illustrated by the GSA dm,n statistic values, the fol-
lowing parameters do not have a strong influence on the
model’s characteristics – the initial population of birds (N),
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Figure 8: Detailed results from Generalized Sensitivity
Analysis (GSA). The x-axis in each sub-chart indicates
range of values for each parameter. In all sub-charts the y-
axis is the dm,n statistic.

initial number of infected birds (I), variance in the abun-
dance of different species (Skew), and the antigenic scaling
parameter used with p-epitope. In other words, assumptions
made about the values of these parameters do not have a sig-
nificant impact on the validity and outcome of our analyses.
Insensitivity to these assumed parameter values is an impor-
tant aspect of our model. It enables us to draw inferences
with sufficient confidence without requiring to have a good
estimate of waterfowl populations, waterfowl species abun-
dance, initial infections etc.

On the other hand, the most influential factors that primar-
ily drive diversity of viral strains are: recovery rate (ν) at
0.386, contact rate (β) at 0.256, and mutation rate at 0.152.
The recovery rate for H5N1 has been set to the putative value
of 5 days. Accordingly, the two key parameters whose val-
ues have been determined via calibration are β and ψ, which
are specific to each region being analyzed. These three in-
fluential parameters are also the primary targets for contain-
ment and prophylaxis efforts.

Correlation analysis: Consistent with interrelationships
in nature, the parameters in the model have inherent cor-
relations as illustrated by the correlogram in Figure 10. The
correlogram has been plotted using results from successful
configurations, i.e., parameter settings that yield the correct
number of clades, i.e.,, the same number of clades as in the
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Figure 9: Parameter comparisons based on GSA

reference phylogram. The corellogram has been plotted us-
ing R and the PerformanceAnalytics package.
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Figure 10: Correlation between parameters elicited by GSA

The correlogram shows that the recovery rate (1/ν) is
strongly, negatively correlated to contact rate (β), mutation
rate (ψ), p-epitope scale (p-Ep), and initial population (N ).
These negative correlation are expected because of the na-
ture of these parameters. For example, decreasing mutation
rates (ψ) but increasing recovery time (ν) essentially main-
tains the antigenic diversity. Similarly, increasing contact
rate (β) enables more infections to occur and hence, even
with decreasing ν, overall antigenic diversity is maintained.
The correlogram shows that the recovery rate ν plays a cen-
tral role in anchoring other epidemiological and ecological
parameters in the model. This observation also emphasizes
the need for surveillance and assay-based identification of at
least one of these four parameters in emergent epidemics and
other parameters can be estimated via phylodynamic simu-
lations.
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Conclusions
Vaccinations are widely used to contain and mitigate epi-
demics caused by antigenic variants of Avian Influenza
Viruses (AIVs), including the H5N1 serotype. However,
vaccines need to be regularly updated to compensate for
antigenic drift in AIVs. Currently, expensive in vivo assays
are required to regularly update vaccines to compensate for
antigenic drift. Furthermore, such in vivo assays and anal-
yses do not provide insight into the underlying ecological
processes that is necessary to inform containment and pro-
phylaxis strategies. Consequently, in vivo methods are en-
hanced using computational or in silico approaches involv-
ing phylodynamic simulations. The antigenic models used
for phylodynamic simulations play a critical role in over-
all effectiveness of in silico methods. Current state-of-the-
art models merely use an abstract multidimensional space to
approximate both genetic and antigenic changes.

This paper proposed and evaluated a novel antigenic
model which is distinguished from current research by: ¶
use of actual Hemagglutinin (HA) protein sequences, ·
simulating mutations occurring to the HA sequence(s) and
further calibrating the mutation rates to mirror ecological
niches, and ¸ and implementing an amino-acid level anit-
genic analysis algorithm. The paper discussed the motiva-
tion for the aforementioned enhancements and presented an
algorithmic overview. The models were verified and vali-
dated using over 10,000s of simulations with 1,000s of dif-
ferent parameter settings and requiring over 2,500 hours of
compute time. We assess the validity of our method us-
ing the current World Health Organization (WHO) H5N1
nomenclature for Turkey and Nigeria.

The influence and impact of parameters in our model has
been explored via Generalized Sensitivity Analysis (GSA).
Our GSA analysis showed that recovery rate (ν), contact
rate (β), and mutation rate (ψ) strongly influence the anti-
genic diversity. Correlation analysis revealed a strong, neg-
ative correlation between recovery rate (ν) and contact rate
(β), mutation rate (ψ), p-epitope scale (p-Ep), and initial
population (N ). This correlation emphasizes the need for
surveillance and assay-based identification of at least one of
these four parameters in emergent epidemics. Once a puta-
tive value for one of the parameters is identified, the other
parameters can be estimated via phylodynamic simulations.

This study lays the groundwork for using detailed anti-
genic models in phylodynamic simulations. A key issue that
we encountered was the high computational times for the
simulations. Currently, we are exploring solutions to reduce
the computational times.

Nevertheless, we contend that the benefits accrued from
our methods offset the higher computational times. The sig-
nificance of this research is that not only are we able to in-
form containment efforts similar to the current state-of-the-
art, we also produce actual HA protein sequences that can
be used in different methods of analysis in the future. As an
example, with a fine-tuned model there is the possibility to

explore and monitor evolutionary characteristics and niches
of avian influenza viruses. Unlike analysis done using cur-
rent state-of-the-art models direct connections between clus-
ters of viruses in our simulations to real world clades can be
made, and the direct impact on containment efforts on the
structure of real world avian influenza viruses will be able
to be examined.
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Abstract

Espinosa-Soto and Wagner (2010) introduced a domain with
weak assumptions on biology and environment, where mod-
ular structures emerge under simple evolutionary processes.

We found a number of anomalous behaviours: modularity
emerged in this domain, but could not dominate populations
as observed in biology. Highly fit, modular solutions exist in
the search space, can be readily found by a simple determin-
istic procedure (and presumably could dominate populations
if found), but evolutionary search never found them, despite
mutation biases that appear to favour those solutions. More-
over, emergence of modularity was promoted by stochastic
dynamicity in the fitness function: a stochastic but fixed fit-
ness function generated much less modular solutions.

Introduction
Adaptability is an essential property of both biological and
artificial evolutionary systems (Yang et al., 2013). Biolog-
ical organisms have already evolved it through modular-
ity (Gerhart and Kirschner, 2007), giving hope for artificial
systems to also generate modular, adaptable systems (Pfeifer
and Scheier, 2001).

Lack of modularity is a key factor limiting scaling of arti-
ficial biological systems to higher complexity (Kashtan and
Alon, 2005; Pfeifer and Bongard, 2006). Artificial neural
networks are usually densely connected (Jain et al., 1996),
where brains have modules taking different responsibilities
– hippocampus for novel situations, amygdala for emotional
controls (Coward, 2013). Thus it is important to under-
stand the conditions under which modularity spontaneously
emerged through biological evolution. Engineers may lever-
age them to generate modular systems, while understanding
may help to winnow the evolutionary theories of biology.

Formally, modularity is the division of structures or func-
tions into sub-units that perform autonomously (Schlosser
and Wagner, 2004). A module is a group of elements which
associate preferentially within the group (Newman, 2006;
Espinosa-Soto and Wagner, 2010). Many biological activ-
ities and structures can be modeled as networks – animal
brains, signaling pathways, etc. (Barabasi and Oltvai, 2004).

A modular network can be partitioned into highly con-
nected components, with only sparse connections between
them (Freeman, 1977; Clune et al., 2013). Elements within
a module preferentially undertake coherent functions inde-
pendent of outside elements (Espinosa-Soto and Wagner,
2010; Larson et al., 2016). Such modules appear everywhere
in biology (Coward, 2013), at multiple levels of organi-
sation (Espinosa-Soto and Wagner, 2010; Coward, 2013).
Modularity can promote the evolvability of organisms, i.e.
the ability to rapidly adapt to novel environments (Pigli-
ucci, 2008). Modular networks allow changes in one mod-
ule without disturbing others; and modular structures can be
reused and recombined to perform new functions (Espinosa-
Soto and Wagner, 2010; Wagner and Altenberg, 1996).

Despite decades of research into modularity (Wagner
et al., 2007), there is no consensus on its biological ori-
gin (Wagner and Mezey, 2004; Espinosa-Soto and Wag-
ner, 2010). Three theories stand out, as their precondi-
tions may commonly arise in nature (Wagner et al., 2007):
modularly-varying evolutionary goals (Kashtan and Alon,
2005), biological parsimony pressures (Clune et al., 2013),
and specialisations in gene activity patterns (Espinosa-Soto
and Wagner, 2010). In the first, modular changes in en-
vironments generate an impetus toward modularity (Kash-
tan and Alon, 2005). Organisms whose environmental sub-
components change repeatedly show more modularity than
those from stable environments (Parter et al., 2007). Fluc-
tuations are omnipresent in real environments (Espinosa-
Soto and Wagner, 2010; Yachi and Loreau, 1999). How-
ever it is unclear to what extent these fluctuations are mod-
ular (Espinosa-Soto and Wagner, 2010). While links in net-
works often incur costs, as Clune et al. assert, it is less clear
that the cost is so uniform across the many forms of biolog-
ical networks as to fully account for modularity’s ubiquity.

Gene regulatory networks (GRNs) commonly regulate to
preserve specific gene activation patterns against external
disturbance – the target pattern may differ over time or lo-
cation (Jones and Taylor, 1980). Espinosa-Soto and Wag-
ner (2010) suggested this may promote modularity, and de-
fined a GRN abstraction to test it. In the model, there
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was initially a single target; over evolutionary time, ad-
ditional modularly-structured targets were added. They
used a mutation-only (crossover-free) evolutionary algo-
rithm. Modularity was observed to emerge, though in con-
trast to biological systems, it was not seen to dominate pop-
ulations. Subsequently, this work was extended by Larson
et al. (2016), who examined the effects of different recombi-
nation mechanisms. Among other results, they first demon-
strated an evolutionary impact from crossover hotspots, a
phenomenon in which we were already interested.

We originally intended to extend this work, concentrat-
ing on two widespread biological phenomena, diploidy and
crossover hotspots. To establish a baseline, we experi-
mented with variants of standard genetic algorithms, yield-
ing anomalous and difficult-to-explain results. This paper
details some further results of our explorations, revealing
further anomalies and leading to deep questions about our
intuitions on both the structure of this problem, and biologi-
cal evolutionary landscapes in general.

Methods
We use genetic algorithms as our evolutionary simulation
tools. The GRN domain was originally proposed by Wag-
ner (1996) and customised by Espinosa-Soto and Wagner
(2010) and Larson et al. (2016). All simulation code was
implemented in Java 1.8.0 and Python 2.7.10. Modularity
was evaluated using the NetworkX package with the com-
munity API (Hagberg et al., 2008).

Model
Cells in an organism display heterogeneity in functionali-
ties and morphologies, yet generally contain the same genes.
This heterogeneity primarily arises from differing gene ex-
pression profiles resulting from differing gene-gene regula-
tion (repression or activation). Cells interpret the same ge-
netic material in different ways so that their behaviors and
structures vary. These distinct interpretations are due to reg-
ulation, among other mechanisms via the activation and re-
pression of genes by other genes, Such a GRN may be ab-
stracted as a weighted directed graph with the weights lim-
ited to +1 (activation) and -1 (repression) (Wagner, 1996).

We used the Espinosa-Soto and Wagner (2010) represen-
tation: a GRN with N genes is represented as an N2 adja-
cency matrix A = aji with aji ∈ {−1, 0, 1} with 0 repre-
senting independence of gene i from gene j. The gene activ-
ity pattern of this network at time t is a Boolean row vector
st = [s0

t , ..., s
N−1
t ]. Gene i can either be active (sit = 1) or

inactive (sit = −1). The state transition is modeled by:

st+1 = σ[

N∑

j=1

ajis
j
t ] (1)

where σ(x) equals 1 if x > 0 and -1 otherwise. For a more
detailed explanation and justification of the model, please

refer to the above paper.

Fitness
Biological GRNs are commonly able to maintain specific
activation states in cells in the face of random external per-
turbations (Aderem, 2005). The abstraction by Espinosa-
Soto and Wagner (2010) generated a set of P perturbations
of the target, with each gene having 0.15 probability of mu-
tating to the opposite state (they used P = 500, Larson et al.
(2016) used P = 300). The GRN was recursively applied
to each perturbation. Preliminary experiments indicated that
it normally took fewer than 20 transitions to reach an attrac-
tor (Wagner, 1996). In that case, the Hamming Distance
D between attractor and target state was returned; other-
wise the maximum possible Hamming distance Dmax was
returned. In either case, the value γi = (1−D/Dmax)5 was
computed for each perturbation i, with 1 ≤ i ≤ P . Finally,
the mean value γ̄ over all γi was used to compute the fitness
of the GRN g over a particular target t as:

ft(g) = 1− e−3γ̄ (2)

This process, of randomly sampling a set of perturbations
of the target, and evaluating the GRN’s ability to robustly
return them to the target, was repeated each generation.

In stage one, the system evolved to regulate only the first
target state. Subsequently, the fitness function rewarded reg-
ulation of newly introduced states, while maintaining pres-
sure to regulate earlier ones, computing the overall fitness
f(g) as the arithmetic mean of ft(g) over all targets t.

We followed the strategy of Espinosa-Soto and Wagner
(2010) (please see their paper for fuller detail), using only
two targets: evolving for 500 generations with one target,
then adding the second for a further 1500 generations. We
based our choice of the number of perturbations (75) on a
trade-off between the observation of Totten (2015) that 75–
100 perturbations are sufficient for emergence of modularity,
and the practical need to minimise runtime.

Larson et al. (2016) applied a different approach to evalu-
ating the fitness of networks, by sampling a static (but larger)
set of perturbations at the beginning of each run, and using
this same set of perturbed targets whenever network fitness
was calculated. This method has important computational
cost advantages, since the fitness value of a given GRN on a
given target remains fixed from generation to generation, so
that cacheing and hashing methods can be used to give sub-
stantial speedups However it converts the original stochas-
tically dynamic fitness evaluation into a static, deterministic
one. This has potential implications for search.

Evolutionary Simulations
Espinosa-Soto and Wagner (2010) imposed a mutation bias
towards networks with a relatively low link density. A node
u in the network has a probability µ = 0.05 to mutate every
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generation; if it does, it either loses or gains an interaction.
The probability for u to lose an interaction is:

p(u) =
4ru

4ru +N − ru
(3)

where N is the number of genes in the target activation pat-
tern, and ru is the number of regulators of gene u (Espinosa-
Soto and Wagner, 2010), i.e. the number of incoming edges.
The probability an interaction is 1 − p(u). This bias acts
to preserve the sparseness of the network, which computa-
tional biology research suggests is necessary for modularity
to emerge.

(a) A modular example (b) A non-modular example

Figure 1: Modular and Non-modular networks. Different
node colors represent distinct modules (based on the

modular changes in target values). Green/red edges mean
activation/repression.

Espinosa-Soto and Wagner (2010) defined modules as
components of targets that followed similar activation his-
tories. In the most-used example, with two targets of length
ten, the activations of the first five locations in both targets
were identical, while the activations of the second five were
inverted between the targets. Thus the modules treated as
the connected components in the GRN involving nodes 1–5
and nodes 6–10. Figure 1 shows typical examples.1

Espinosa-Soto and Wagner (2010) used no crossover;
Larson et al. (2016) used horizontal crossover, exchanging
blocks of rows: when matrices A1 and A2 cross over at in-
dex i, the sub-matrices A1[0 : i−1, :] and A2[0 : i−1, :] re-
main unchanged, while the remainders are exchanged. How-
ever it ignores the diagonal symmetry of modules (if aij
is in a module, then so is aji). We defined a ‘diagonal
crossover’ using a diagonally symmetric interchange: given
a random crossover point [i, i], we preserve the sub-matrices
A1[0 : i − 1, 0 : i − 1] and A1[i : 9, i : 9] (and also for
A2), while exchanging the rest. Compared with horizontal
crossover, as Figure 2 illustrates, this should better preserve
community structure.

1These color conventions are used throughout this paper. While
color in the images conveys additional information, the key distinc-
tions are still observable in black and white.

(a) Parental network 1. (b) Parental network 2.

(c) Child network 1. (d) Child network 2.

Figure 2: Illustration of diagonal crossover

Modularity Metric
In most of this paper, we used the Q modularity metric de-
fined in Newman and Girvan (2004). This measures whether
there are more inter-module edges than would be expected
from the total number of edges. Formally:

Q =

K∑

i

[
li
L
− (

di
2L

)2] (4)

Q falls in the range [− 1
2 , 1), the upper bound depending

on the number of modules ( 1
2 for two, 3

4 for three).

Preliminary Experiments:
Modularity Surprises

Figure 3: Modularity decreased after target change (marked
by the vertical line).
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Our baseline-setting experiments, using a standard ge-
netic algorithm with an elite of 10 and tournaments of size 3,
revealed surprising differences in the emergence of modular-
ity from the results of Espinosa-Soto and Wagner (2010) and
Larson et al. (2016). Recall that in their experiments, overall
modularity increased after a second target was added to the
fitness function. In our initial experiments (using the Lou-
vain metric (Blondel et al., 2008) rather than the Q metric we
use elsewhere), we instead observed a decrease immediately
following the addition of the second target, with the over-
all modularity eventually stabilising to a level substantially
below that of the first phase (see Figure 3).

Our settings differed from the previous work in the fol-
lowing ways:

1. Use of crossover (difference from the former only)

2. Tournament instead of proportional selection

3. Incorporation of elitism

4. Omission of the age–fitness Pareto mechanism (difference
from the latter only, (Bongard, 2017))

5. Use of the Louvain metric

Of these differences, item 1 seems unlikely to explain our
result since Larson et al. also used crossover, while items 3
and 4 both increase the relative eagerness of our search. The
Louvain and Q metrics measure closely related properties,
so seemed unlikely to be the cause. Item 2 is more complex,
since a tournament of size 3 exerts relatively weak selection
pressure, but the relative pressure of tournament and propor-
tional selection varies with the stage of the algorithm. Pro-
portional selection depends on relative differences in fitness,
so it typically exerts fairly strong pressure in early stages
of search, but as the population fitness converges and dif-
ferences reduce, pressure weakens; by contrast, tournament
selection, being dependent only on fitness rank order, exerts
a relatively constant selection pressure throughout. In par-
ticular, when populations are relatively converged (as at the
time of the target switch), we would expect even relatively
small tournaments to be more selective than proportional.

Based on the above, we decided to test the joint effects of
elitism and tournament selection. The results bore out this
hypothesis: the same algorithm and settings, with elitism
eliminated and proportional substituted for tournament se-
lection, led to the emergence of modularity, see Figure 4.

Experiment Settings
Tables 1 and 2 show the gene activity patterns and the es-
sential parameters of our evolutionary simulations. Unless
otherwise specified, all experiments used the stochastic fit-
ness evaluation of Espinosa-Soto and Wagner (2010). The
only parameters that varied from the tables are the selection

Figure 4: Without elitism, modularity increased after target
change (marked by the vertical line).

Table 1: Gene Activity Patterns
1

Target Pattern Generation where
Pattern is added

+1 -1 +1 -1 +1 -1 +1 -1 +1
-1

0

+1 -1 +1 -1 +1 +1 -1 +1 -1
+1

500

type (tournament) and size, and the elite size. The detailed
explanations of these parameters are given in Table 3.

The evaluation metrics for experiments are the eventual
fitness values and Q scores from the last generation. All are
significance tested using Wilcoxon’s Signed-Rank Test.

Experiments and Results
Diagonal Crossover Promotes Modularity
We ran trials comparing horizontal, diagonal and no
crossover, in all cases without elitism. As Tables 4 and
5 show, diagonal crossover generated significantly higher
fitness and Q score than horizontal crossover, which in
turn generated significantly higher Q score, though non-
significantly lower fitness, than absence of crossover.

This Boolean model was proposed in Wagner (1996), who
showed that random recombination made no difference to
evolution of stability. Our experiments suggest that more
structured forms of recombination (which occur in biology)
can contribute to evolvability. Diagonal crossover can pre-
serve underlying network modules. Although horizontal
crossover did not preserve community structures as well as
diagonal, its partitioning is still based on a modular struc-
ture, and thus partially preserves modularity.

Greediness Reduces Modularity
Elitism Reduces Modularity
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Table 2: Parameters of the Evolutionary Simulations

Edge Size Number of
Perturbations

Per-location
Perturbation
Rate

20 75 0.15

Mutation Rate Population Size Selection Type

0.05 100 Proportional

Reproduction
Rate

Maximum
Generation

Elite Size

0.9 2000 0 or 10

Trials per
Treatment

Significance
Test

40 Wilcoxon
Signed Rank

Elitism increases greediness of search by deterministially
retaining the fittest individuals. We compared an elite of 10
with no elite, finding significantly lower fitness and modu-
larity in the former case (Tables 6 and 7).

Comparing Best Fitness and Modularity between Pro-
portional Selection and Tournaments of Various Sizes
Tables 8 shows final generation best fitness increased with
decreasing tournament size, with proportional selection
falling between tournaments of sizes 2 and 3, though none
of these differences reached significance (Table 9). Mod-
ularity showed a similar pattern, although with proportional
selection yielding lower modularity than tournaments of size
3; however only the differences with tournaments of size 10
were significant.

Further Analysis and Discussion
Emergence rather than Dominance

Modularity in biological networks is remarkably robust; spe-
cific GRN modules cross not merely species boundaries,
but are shared across kingdoms, having survived billions of
years. They do not merely appear in populations, they are
generally common to all individuals in a species (Schlosser
and Wagner, 2004). By contrast, modularity in this prob-
lem domain is a delicate flower. It does not appear at all
if selection pressure is strong, and its emergence is heavily
dependent on evolutionary details; not merely the dynamic
fitness variation emphasised in the problem definition, but
the details of whether stochasticity in the fitness evaluation
is static or dynamic (see below).

What should we make of this? One possible reaction is to
follow Clune et al. (2013) and ascribe biological modular-
ity emergence to direct linkage costs, so that further inquiry
is unnecessary. However our further confirmation that this

Table 3: Explanations of simulation parameters

Target
Patterns

patterns that are perturbed, and to-
wards which gene regulatory net-
works evolve

Target Addition
Generations

the generations where new targets are
introduced

Edge Size the initial number of edges in the gene
regulatory network

Perturbation
Number

the number of perturbed versions of
each gene activity pattern

Perturbation
Rate

the expected proportion of corrupted
genes in a pattern

Mutation Rate the probability of a GRN node to gain
or lose an interaction

Population Size the number of individuals in the pop-
ulation

Selection Type the type of selection used, and where
tournament, the size of the tourna-
ment

Reproduction
Rate

the proportion of the population re-
produced without change, vacancies
being filled by the selection mecha-
nism

Maximum gen-
eration

the generation when the simulation
will terminate

Table 4: Final Generation Best Fitness and Q Score with
No, Horizontal and Diagonal Crossover

No
Crossover

Horizontal Diagonal

Fitness 0.9476 0.9446 0.9488

Q Score 0.1961 0.2919 0.3386

domain does promote the emergence of modularity, albeit
somewhat fitfully, deserves further investigation.

We looked more deeply at the diagonal crossover data of
Table 4; we assumed that the data might reflect some fit-
ness advantage from modularity (i.e. that over many runs,
fit but highly modular individuals might be fitter than their
non-modular cousins). So from each diagonal crossover run,
we collected the fittest individuals among those that had the
highest modularity value, and conversely, the least modular
among those that had the highest fitness. Averaged over all
runs, the latter were fitter than the former (Table 10) – the
less modular networks could more robustly recover the un-
perturbed pattern. Thus the failure of the modular networks
to dominate was less surprising: they could not do so be-
cause fitter, non-modular ones would take over.

We wondered whether this could arise from insufficient
complexity in the targeted gene activity patterns. The num-
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Table 5: Wilcoxon Ranked Sign Values for Table 4

Fitness P Q Score P

No < Horz 1.7090e-6
Horz ≤ No 0.0882

Horz < Diag 0.0006 0.0019

Table 6: Final Generation Best Fitness and Q Score with
and without Elites

No Elite Elite Size 10

Fitness 0.9488 0.9472

Q Score 0.3386 0.2735

ber of genes in patterns might be too simple, or the number
of targets might be too few, to reflect natural environments.
Perhaps modular networks might give great performance on
complex tasks, but worse than non-modular ones for sim-
ple tasks. Using the basic set-up of subsection ‘Diagonal
Crossover Promotes Modularity’, we ran more complicated
evolutionary simulations using patterns comprising 15 nodes
and three sub-patterns (for which the maximum modular-
ity score is 0.75, rather than the 0.5 for two sub-patterns),
encountering a sequence of seven different targets. Evolu-
tion was extended to 35,000 generations and during the final
epoch from (26000 → 35000) generations, it was evolving
to robustly recover all seven targets. We repeated the pre-
ceding analysis; the results in Table 11 resemble those of Ta-
ble 10. Overall, the number and complexity of targets could
not resolve the issue: less modular networks still recovered
the target more robustly than more modular networks. How-
ever the differences in modularity were smaller, suggesting
that modularity dominance might emerge with sufficiently
complex problems – perhaps beyond the bounds of compu-
tational feasibility with current techniques.

Are Inter-Module Edges Critical to High Fitness?
Finally convinced that inter-module edges were essential to
robust target recovery, we decided to validate this by an ex-
treme meaure. From the 40 runs in the first experiment
of this section, we extracted the least modular individuals
among those having the maximum fitness value found in
the run, yielding 40 fairly non-modular but highly fit indi-
viduals. We then simply removed all inter-module edges.
Naturally the resulting networks were perfectly modular, but
we expected them to be highly unfit. This expectation was
borne out in 16 cases. But in the majority (24) this crude

Table 7: Wilcoxon Ranked Sign Values for Table 6

Fitness P Q Score P

Elite 10 < No Elites 0.0003 0.0022

Table 8: Final Generation Best Fitness and Q Score for
Proportional Selection and Different Sized Tournaments

Proport Tourn
Size 2

Tourn
Size 3

Tourn
Size 10

Fitness 0.9488 0.9404 0.9404 0.9371

Q Score 0.3386 0.3697 0.3623 0.2783

Table 9: Wilcoxon Ranked Sign Values for Table 8

Fitness P Q Score P

Proportional > Tourn Size 2 0.7401 0.0467

Tourn Size 3 < Size 2 0.9313 0.7881

Tourn Size 10 < Size 3 0.0164 0.0015

Tourn Size 10 < Propor-
tional

0.0227 0.0054

operation resulted in an increase in fitness. Figure 5 shows
a real example of this process. The ’Before removal’ GRN
had a fitness of 0.9472. After removing ≈20% of its edges
to make it completely modular, its fitness rose to 0.9502. So
the inter-modular edges were not merely inessential to the
GRN’s fitness, they were an impediment. Which leaves the
question: since the resulting completely modular, very high
fitness solutions were available to the search algorithm, why
could it not find them?

Originally, we suspected this anomaly might result from
the lower edge density of the ’after removing’ networks –
perhaps they were too much below the edge density targeted
by the biased mutation operator, so that this soft constraint
eliminated them from search. Further investigation revealed
that on average, they still retained approximately 30 edges,
which is above the targeted density of the mutation operator
(equation 3), so far from being difficult to reach, the biased
mutation operator favored moving toward them.2

In order to further understand this phenomenon, that

2We found this result so surprising that we suspected a bug in
our implementation of the mutation bias. We turned off selection
completely, giving every individual the same fitness. The average
size stabilised at a little over 22 edges (because of asymmetry in the
mutation distribution - a GRN must have at least zero edges, but has
a finite probability of more than 40 - a small deviation above the
mutation target of 20 is unsurprising).

Table 10: Modularity dominance for data underlying
Table 4

Generation
Range

Modularity Fitness

(500, 2000) 0.5000 0.9482

0.1736 0.9502
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Table 11: Modularity dominance for extended runs from
more complex environments

Generation
Range

Modularity Fitness

(26000, 35000) 0.5506 0.9100

0.4151 0.9419

(a) Before removal (b) After removal

Figure 5: Illustration of inter-module connection removal.

our evolutionary simulations could not find a path to the
trimmed networks, we recorded all fitness values that could
be obtained by removing one inter-module edge in turn, until
all have been deleted, and plotted them as graphs. Figure 6 is
typical. We could usually see a steadily improving fitness as
edges were deleted, along a path that was favored by the bi-
ased mutation operator, yet our genetic algorithm could not
find these paths.

Fitness and Modularity benefit from Dynamic
Fitness Evaluation
One important difference between the work of Larson et al.
(2016) and of Espinosa-Soto and Wagner (2010) is the for-
mer’s sampling perturbations only once across a run. Thus
there is a single change in the fitness function (the changed
target after generation 500), while for the latter, the chang-
ing perturbation sample varies the fitness evaluation every
generation. Preliminary experiments had already shown that
static fitness evaluation substantially decreased both ulti-
mate fitness and modularity (Qin et al., 2018); we decided to
try to improve the performance of the static version by lim-
iting diagonal crossover to location [5, 5] (i.e. the module
boundary) – remarkably unsuccessfully, as lines 1 and 3 of
Table 12 show. Unlike the fitness difference, the modularity
difference was highly significant (p = 2.6879 ∗ 10−5).

To further understand this phenomenon, we collected
the gene regulatory networks of the final generation, and
mutated each network 499 times to generate neighbours.
We measured the fitness values of these neighbours with
the target perturbations from this generation, and deter-
mined their maximum. In this fashion, we would have 40
neighbourhood-maximum fitness values for both dynamic
and static fitness evaluation. We repeated this process for

Figure 6: Fitness Values along all Inter-module Edge
Removal Paths from a High Fitness, Low Modularity

Network that results in Increased Final Fitness.

Table 12: Fitness and Q Scores for Neighbours of Final
Generation Fittest Individuals in Static and Dynamic

Environments

Dynamic Static

Final Fitness 0.9461 0.9323

Best Neighbour
Fitness

0.9410 0.9323

Final Q 0.3374 0.1851

Best Neighbour
Q

0.3791 0.2223

the modularity Q score. As Table 12 shows, the fittest indi-
viduals in the final generation for the dynamic problem were
generally local optima, whereas for the static problem, they
were generally on a fitness plateau, with equally fit neigh-
bours, and a substantially lower fitness than found in the dy-
namic problem. In both scenarios, there were neighbours
of substantially higher modularity than the original individ-
ual, but overall modularity, both of the final generation best
individual and of its neighbours, were much higher in the
dynamic problem than in the static. Again, fitness differ-
ences between dynamic and static were not significant, but
modularity differences were (p = 2.6956 ∗ 10−5).

Conclusions
The modularity-inducing problem of Espinosa-Soto and
Wagner (2010) is clearly important for understanding the
evolution of network modularity, in that it relies on much
weaker assumptions about the world that provides the evolu-
tionary context (namely that some parts of the fitness target
change independently of others) than do other explanations.
It also provides potential insights into other aspects of bio-
logical evolution. The results of Larson et al. (2016) reveal
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connections between modularity and recombination, and of
particular importance, the first results known to us to suggest
an evolutionary advantage to the ubiquitous phenomenon of
recombination hotspots. Our own results suggest connec-
tions to homologous recombination, and to stochastic vari-
ation in fitness landscapes. They also reveal some puzzles:
why don’t modules dominate populations in this environ-
ment as they do in nature? Why can’t the many different
algorithms we tried find the very high fitness, completely
modular solutions that we know to exist? Why does stochas-
tic sampling generate fitter and more modular solutions than
static sampling? We have ended up with more (but more
detailed) questions than we started with. Clearly, further re-
search and new analyses are needed...
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Abstract 
In this contribution, we propose a system-level compartmental 
population dynamics model of tumour cells that interact with 
the patient (innate) immune system under the impact of 
radiation therapy (RT). The resulting in silico - model enables 
us to analyse the system-level impact of radiation on the 
tumour ecosystem. 
 The Tumour Control Probability (TCP) was calculated for 
varying conditions concerning therapy fractionation schemes, 
radio-sensitivity of tumour sub-clones, tumour population 
doubling time, repair speed and immunological elimination 
parameters. The simulations exhibit a therapeutic benefit when 
applying the initial 3 fractions in an interval of 2 days instead 
of daily delivered fractions. This effect disappears for fast-
growing tumours and in the case of incomplete repair. The 
results suggest some optimisation potential for combined 
hyperthermia-radiotherapy.  
 Regarding the sensitivity of the proposed model, cellular 
repair of radiation-induced damages is a key factor for tumour 
control. In contrast to this, the radio-sensitivity of immune cells 
does not influence the TCP as long as the radio-sensitivity is 
higher than those for tumour cells. The influence of the tumour 
sub-clone structure is small (if no competition is included). 
This work demonstrates the usefulness of in silico – modelling 
for identifying optimisation potentials. 

Introduction 

Cancer remains to be one of the most elusive widespread 
diseases – accounting for an estimated 16% of worldwide 
deaths.1 In the last decades, many improvements concerning 
equipment and treatment planning tools have driven anti-
cancer radiation therapy (RT) towards precise applications of 
radiation doses. Remarkable progress has been made regar-
ding geometrical precision. In contrast to these more enginee-
ring – related aspects, the biological knowledge about growth 
dynamics and therapy response of tumours seems to remain 
behind technology development. This may be a reason for the 
upcoming discussion of a biologically adapted RT (Thor-
warth, 2017). 
 One of the reasons for the comparably slow progress of 
biological understanding lies in the differences between the 
behaviour of tumour cells in vitro, in vivo (mouse model) and 

                                                             
1 https://ourworldindata.org/causes-of-death 

in patient, which, on the one hand, prevent a direct transfer of 
knowledge gained by experiments to clinical treatment, and on 
the other hand, indicate that cancer is a systemic disease that 
can only be understood by treating tumours as complex 
systems that are intricately coupled to their host environment 
including the immune system. 

Several studies consequently hypothesize that the major 
cause of radio-resistance observed during RT treatments may 
be related to the heterogeneity of tumour tissues (Horsman et 
al., 2012; Baumann et al., 2016). Under this systemic perspec-
tive, cancer might be regarded as an evolving ecosystem of 
diverse cell populations (different tumour sub-populations or 
sub-clones, host tissue, endothelial cells / vascular system, 
immune cells) with a dynamic behaviour influenced by the 
boundary conditions of RT. In such a framework, radiation-
induced cell killing would constitute a selection pressure that 
leads to survival of radio-resistant sub-populations. Loss of 
competition between the different cancer sub-populations and 
host tissue might lead to an accelerated progress of disease. 
Evolutionary dynamics of cancer (Crespi & Summers, 2005) 
could be responsible for an adapted response of the tumour to 
anti-cancer therapy.  

Ecological aspects of anti-cancer therapy have been discus-
sed by different authors (Pienta et al., 2008; Basanta et al. 
2015; Basanta et al., 2012). Merlo et al. (2006) considered 
cancer as an evolutionary and ecological process. Gatenby et 
al. pointed out the role of evolutionary dynamics for cancer 
prevention (Gatenby et al., 2010). Ecological principles have 
also motivated the investigation of the invasion of meta-
stasizing cancer cells into bone marrow (Chen & Pienta, 
2011). The connection between artificial life and cancer 
research has been pioneered by Maley and Forrest (2000) who 
developed an agent based model of precancerous cells that 
might develop into cancer by adopting mutations at atypically 
high rate. Population dynamics of tumours have been further 
studied by Gonzales-Garcia et al. (2002) and Sole (2003) who 
concluded through agent-based modelling that spatial genetic 
heterogeneity observed in tumours naturally follows from 
simple ecological competitor dynamics. Since then, many 
multi-agent models of tumour growth with increasing physical 
accuracy have been proposed (Abbott et al. 2006, Zhang et al. 
2009, Bentley 2013, Ozik et al. 2018 and others). Yet, few of 
these approaches take into account the dynamics of and 
interaction with the tumour environment, particularly host 
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tissue, immune system, and boundary conditions imposed by 
anti-cancer therapies. 

Scheidegger et al. (2010) demonstrated by a combined 
population model in silico that - in certain situations - the 
tumour response to radiation is dominated by the radio-
sensitivity of the endothelial cells. In the light of these results, 
there is certain evidence that tissue dynamics could play a 
pivotal role in development and therapy response of tumours. 
Scott et al. (2016) investigated the impact of spatial metrics 
onto the radiation efficacy using a hybrid cellular automaton 
model.  

Despite this increased appreciation of ecological and evolu-
tionary aspects of cancer dynamics, relatively little work has 
been performed that attempts to transfer well-established met-
hodological approaches from theoretical ecosystem analysis to 
the domain of RT. 

We here propose a high-level population dynamics model 
of tumour cell populations that interact with a simplified im-
mune system under the impact of RT treatment (Fig. 1).  
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Structure with the different sub-models of a simpli-
fied tumour - immune system model. IC med. elimination 
means immune cell mediated cell killing. 

 
 

Due to the shear complexity of the biological tumour system 
and its response to both, the immune system and RT, we 
regard it as unpromising to bring the mechanistic details of the 
tumour ecosystem into a computer model: many of details are 
un-known and quantifiable experimental insight into most of 
the different dynamic processes is missing. Therefore, we 
propose a system dynamics-based phenomenological model, 
in order to support hypothesis generation and design of 
experiments in vitro or clinical trials. While our approach 
sacrifices many of the mechanistic details underlying tumour 
growth and treatment, the model has been developed with 
clinical applicability in mind: model parameters are in 
principle measurable and chosen to represent realistic 
parameter ranges, and model predictions are reported through 
clinically meaningful quantifiers. 

By improving the systemic understanding of tumour eco-
systems, quantitative in silico analysis of system-level cancer 
models could subsequently help to improve or optimize anti-

cancer treatment strategies. This broadened ecological and 
evolutionary view on the impact of RT onto tumours could be 
an important step for understanding the dynamics responsible 
for treatment response and may serve as a basis to optimize 
and improve RT treatments.  

In this work, we will focus on the optimisation potential 
regarding fractionation schemes in External Beam Radiation 
Therapy (EBRT). In case of an EBRT, the radiation is applied 
by fractions with a dose per fraction of e.g. 2 Gy for prostatic 
adenocarcinoma (Fowler et al., 1995). Typically, the standard 
fractionation scheme for EBRT for adeno-carcinomas is a 
daily application of the fractions (5 days per week). There is a 
recent discussion about hypo-fractionation (less fractions with 
a higher radiation dose) for example using daily fraction doses 
of 2.75 Gy (e.g. non-small lung cancer; De Dios et al. 2017). 
Arguments for choosing a fractionated application are related 
to the 4 R’s in RT: Repair (host tissue has faster repair 
compared to tumour cells, fractionation leads to a larger, so 
called “therapeutic window”), Repopulation (longer interval 
will allow tumours to repopulate), Re-oxygenation (reduction 
of tumour mass will enhance oxygenation and therefore 
increase radio-sensitivity of the tumour cells for subsequent 
fractions) and Redistribution (mitotic cells are more radio-
sensitive and radiation-induced cell killing can cause a 
synchronisation of tumour cells regarding the cell cycle). 
Fraction size and time interval between fractions should be 
optimised: long intervals lead to unwanted tumour growth and 
complete repair of tumour cells, short intervals to less re-
oxygenation and decreasing difference between cellular repair 
of tumour cells and host tissue (smaller therapeutic window). 
It has to be pointed out here that this is only a simplified 
explanation, not referring to the full ecosystem dynamics and 
excluding the aspect of immune system interaction. Exploring 
artificial life in silico could support modelling the immune 
system interaction and improve the understanding of the 
complex dynamics including pattern recognition.  

Materials and Methods 

The model describes tumour cell populations ( )k kT T t inter-
acting with an immune cell population ( )M M t . Both, im-
mune cells and tumour cells are considered to be radio-sen-
sitive. For modelling the radiation-induced elimination, a sim-
plified -LQ-model is applied (Scheidegger et al. 2011a). In 
this model, the elimination rate of tumour cell is determined 
by the radio-sensitivity constants  and  (which are consi-
dered to be population-specific) and the radiation dose rate R: 
 

  2k
k k k k

Rad

dT
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dt
          

 (1) 

 
and for the immune cells: 
 

  2M M M
Rad

dM
R M

dt
          

 (2) 

 
The dose equivalent  (Transient Biological Dose Equivalent 
TBDE, the unit is Gray (Gy)) is rising with the dose rate R 
and decaying with cellular repair: 
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In contrast to the full -LQ-model (Scheidegger et al. 2011a), 
dose rate dependence is not considered (fixed dose rate) and 
repair is switched off during irradiation. Integration of Eq.3 
leads to the well-established linear-quadratic model, where the 
logarithm of the surviving fraction S is given by a linear and a 
quadratic term of the radiation dose D: 2log ( )S D D    . 
For repair, first order kinetics is assumed: , , ,( )k M k M k Mf    . 
For the tumour cells (TBDE = k ), two cases are examined: 
Complete repair - is assumed when the remaining dose 
equivalent (TBDE) is smaller than 1 mGy – and incomplete 
repair (TBDE ≥ 1mGy). 

The growth of the tumour cell populations is determined 
by a growth constant Tk which is here chosen to be constant 
for all populations (sub-clones). Tumour cells can mutate with 
the rate mut kk T  to form or join another tumour sub-clone 1kT  . 
In addition to the radiation-induced elimination, tumour cells 
can be eliminated by the immune cells M. The development of 
the population size of the tumour cell population kT  is given 
by: 

 

 1 ,( )k k
T k mut k k k ime k k

Rad

dT dT
k T k T T w k T M

dt dt
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kw is an immune-response specific weighting factor for the 
population k. Different weights can be explained by the fact 
that the immuno-biological sensitivity may be influenced by 
the mutation in two ways: (i) Higher sensitivity is gained by 
an increased genetic instability of tumour cells collecting 
more mutations and (ii) decreasing immuno-sensitivity can be 
achieved by an evolutionary process due to immune-system 
driven selection of tumour cells expressing less detectable an-
tigens on their surface (immunoediting by immune system 
(Vesely et al. 2011); escape from the immune response by 
reduction of self-antigen presenting Class I Major Histo-
compability Complex MHC). 

Tumour cells that have been eliminated from the 
population kT are transformed to apoptotic or necrotic cells 

kN . These cells - and with them, the amount of radiation 
induced Damage Associated Membrane Proteins DAMP’s 
(Grimsley et al., 2003) - can be eliminated by apoptosis and 
phagocytosis: 
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In this model, no explicit pathway (apoptotic or necrotic, s. 
discussion) is chosen. In vivo, apoptotic cells are removed by 
macrophages, whereas necrosis may be accompanied by 
inflammation, leading to a more complex immune response. 
Natural killer cells can respond in absence of self-antigen 
presenting MHC and may be activated by DAMP’s. DAMP’s 
such as Heat Shock Proteins HSP (Srivastava, 2002, Daugaard 

et al., 2007) can be produced by ionizing radiation and are 
thus expressed in higher levels after RT (Nytko et al., 2019). 
The presented in silico model includes only one immune cell 
population. For simplicity, the activation of the (innate) 
immune system is assumed to be governed by the abundance 
of DAMP’s in the tumour compartment, leading to an 
invasion of immune cells until an equilibrium level (or 
response level) respM  is reached. Immune cells can be 
eliminated by radiation in the tumour compartment during RT. 
In consequence, the immune cell population in the tumour 
compartment is described by: 
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The DAMP-activation of the response level respM  is assumed 
to be dependent on the sum of damaged cells by the following 
model: 
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minM and maxM are limiting the amplitude of the response to a 
range between a minimal concentration ( minM  per tumour 
compartment volume) of immune cells and a saturation level. 
Both levels may be dependent on patient specific immune 
response capability.  
 For clinical evaluation of the RT treatments, the Tumour 
Control Probability (TCP) is a well-established quantity. The 
TCP is calculated in the following way: 
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The concept behind Eq.8 is based on the fact that the 
description using differential equations delivers average popu-
lation sizes. For small amounts of cells, statistical variation 
has to be taken into consideration. 

In this study, EBRT was simulated by 32 fractions, each 
fraction with a radiation dose of 2.5 Gy. The fractionation 
schemes differ by the interval between the applications of RT 
fractions. A scheme with daily application was compared to 
fractionation with larger intervals of 2-4 days and a mixed 
scheme, where the initial 3 fractions have a spacing of 2 days, 
followed by daily application of subsequent fractions. 

The simulations were carried out by numerical integration 
using a 4th order Runge-Kutta algorithm. The time increment 
was set to 5 110 dt    . 

Results 

Parameters used for the different simulations are summarized 
in Tab.1. The resulting TCP’s are displayed in Fig. 2 and Fig. 
3. In general, the selection of the parameter values is made in 
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regard to the resulting TCP: The parameter values are 
restricted to a range which results in a rising TCP (0.01 < TCP 
< 0.99) between a dose of 35 Gy and 80 Gy. This represents 
more or less the clinical observations for the selected radio-
biological parameters. 
 
 
 

 Parameter values 
 

Diagram No. 
 

Fig.2 Fig.3 

M  /Gy-1 0.5 0.5 

M  /Gy-2 0.2 0.2 

k  / Gy-1  varying 0.310 (k=1)

k  / Gy-2  varying 0.0625 (k=1)
 k / d

-1 10 (for all k) varying 

Tk  / d-1 23.46 10  
except. Fig. 2d 

23.46 10

mutk / d-1 35 10 35 10  

riek / d-1 810  810  

imek / d-1 910 , varying 
for sub-clones 

varying 

Mk / d-1   

minM  106 106 

maxM  109 varying 
r 10-3 10-3 

 
Table 1: Parameter values used for the simulations:  and  
for the tumour are in the upper range, especially when 
comparing to clinical studies but these values and the /-
ratios are strongly varying across different patients and 
tumours (van Leeuwen et al., 2018); kT is corresponding to an 
intrinsic tumour doubling time of 20 d (for clinical observed 
doubling times s. Mehrara et al., 2007). 

 
 
The sensitivity of the model regarding the radio-biological 
parameters of the immune cells have been investigated by 
simulations using different M and M values: For simu-
lations with the parameter set of Fig. 2, varying M values 
do not have a significant impact on the TCP (less than 1%), as 
long as M > 0.3 Gy-1. This is also the case for varying M-
values (set to 10 d-1; invading immune cells are considered as 
not pre-irradiated). 

In a first step, the influence of different tumour cell popu-
lations on the dynamics of the system is investigated. In Fig. 
2, different scenarios regarding the radio-sensitivity and im-
munological interactions of tumour sub-clones (5 different 
populations) are shown.  The simulation included a phase of 
tumour evolution during 300 days before start of RT. The 
initial population size was set to 109 cells, leading to approx. 

123 10 tumour cells at the beginning of the treatment. It was 
assumed that all populations have a doubling time of 20 days 
(accordingly Tk  = 23.46 10  d-1).  

In Fig. 2a & 2b, the tumour sub-clones are considered to 
become more radio-sensitive with increasing mutations (due 
to higher genetic disorder). With every mutation, the value of 
 increases with an equidistant step: 20.3 2 10 ( 1)k k      . 

A similar relation was applied for the -values: 
30.06 5 10 ( 1)k k      . The values for k=1 represent the 

case of an adeno-carcinoma. From an immunological perspec-
tive, tumour sub-clones may develop in two different direc-
tions: Increasing mutations can lead to a better immunological 
elimination (due to the decreased expression of “don’t eat 
me”-signals such as CD47 or inappropriate expression of 
other membrane-bound signalling molecules). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: Tumour Control Probability TCP for a treatment of a 
tumour consisting on different sub-clones and different frac-
tionation schemes (1 d = 1 day interval between fractions, 2 d 
= 2 days interval etc., mixed = 2 days interval between the 
initial 3 fractions, subsequent fractions in 1 day interval). (a) 
sub-clones with increasing weights wk; (b) sub-clones with 
decreasing wk; (c) single sub-clone scenario with average 
radio-sensitivity and (d) single sub-clone scenario with 
varying tumour doubling times. 
 
 
 
The case with an enhanced immunological elimination for 
increasing k (with ,ime k imek k k  ) is shown in Fig. 2a: 
Increased intervals between the fractions lead to a decreased 
tumour control (TCP-curves shifting to the right). The best 
tumour control can be achieved with the so called mixed 
protocol (first 3 fractions in an interval of 2 days, subsequent 
fractions daily). The explanation for this behaviour can be 
found by investigating the temporal development of the 
tumour cell population: After the first RT-fraction, a high 
amount of tumour cells are eliminated by radiation, leading to 
a high amount of apoptotic (or necrotic) cells. These cells are 
activating the immune response which in turn “co-eliminates” 
viable tumour cells. Depending on the selected invasion speed 
(governed by Mk ), the elimination rate is low shortly after the 
end of irradiation, increases to a maximum after approxi-
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mately 1 day and then decreases again. This effect can only be 
observed during the early (first to third) fractions. For the 
subsequent fractions, the immune system - mediated response 
becomes smaller due to the reduced amount of eliminated 
tumour cells and the radiation-induced elimination of immune 
cells during each irradiation. Therefore, repopulation (which 
is counteracting the immunological elimination) drives the 
outcome towards lower TCP-values, especially for larger 
intervals. This explains the lower tumour control for 
fractionation schemes having large intervals throughout the 
therapy course. 

Decreasing immunological elimination (Fig. 2b) with 
incresing k ( 1

,ime k imek k k ) leads to similar results as in Fig. 
2a. The effect of the mixed protocol is stronger compared to 
Fig. 2a and the difference between 1 day and 2 days interval is 
smaller, indicating the positive effect of immunological 
elimination during longer intervals at the beginning of the RT-
course. It has to be pointed out here, that this result is influ-
enced by the tumour evolution during the 300 days before 
therapy starts (initial conditions: T1(0) = 109, Tk>1(0) = 0). 

The comparison of the different cases (Fig. 2a & b) leads 
to the question how important the detailed modelling of 
different tumour sub-clones is. Fig. 2c shows a tumour where 
only one tumour population is taken into consideration. To 
achieve a comparable TCP, the radio-biological parameters 
are adapted to 1 0.310  Gy-1 and 1 0.0625  Gy-2. The 
resulting TCP curve does not remarkably differ from the case 
exhibited in Fig. 2b, indicating a relatively small influence of 
the number of tumour cell populations considered in the 
model. 

Since repopulation is counteracting the cell killing, simu-
lations using different tumour doubling times (20 days, 10 
days and 5 days) were carried out (Fig. 2d). The comparison 
of the mixed protocol with daily applied fractions reveals a 
disappearing therapeutic gain of the mixed protocol for fast 
repopulating tumours. This can be explained by the smaller 
decrease of the tumour cell population during the 2-day 
intervals compared to the case with slow repopulation. 
Especially during the second day of these intervals, faster 
repopulation compensates the immune-related elimination.  

In Fig. 3, the response of one single tumour cell popu-
lation onto the mixed protocol vs. daily fractions is shown for 
different conditions for repair and immunological elimination. 
The effect of incomplete repair leads to a strongly increased 
tumour control for both, mixed and daily fractionation. The 
difference between mixed and daily fractionation disappears at 
 = 2 d-1. The remaining dose equivalent  after one day 
interval is 0.4 Gy, representing moderate incomplete repair. 
With  = 1 d-1, the remaining dose equivalent   is 1.5 Gy. In 
this case, the mixed protocol exhibits a slightly lower TCP 
compared to the daily fractionation, indicating the strong 
influence of repair onto the outcome. 

For an increased immunological elimination (kime = 10-8) 
and incomplete repair (Fig. 3b), the mixed protocol reaches 
always higher TCP values, but the effect remains small. Fig. 
3c shows the outcome for an increased immune cell density 
(governed by Mmax). In this case, the effect of the mixed 
protocol becomes clearly larger for complete repair. For 
incomplete repair ( = 1 d-1), the difference between the two 
fractionation schemes remains small. Interestingly, this 
behaviour does not change when Mmax is increased to 1013 and 

kime is set to 10-8 (Fig. 3d). The explanation for this small 
difference is the fact that after the first fraction of the 
treatment, the total number of tumour cells is reduced by over 
a factor 500 one day after irradiation. Therefore, subsequent 
fractions will not produce large amounts of apoptotic cells, 
resulting in a smaller activation of the immune system. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3: Tumour Control Probability TCP for a treatment of a 
tumour with varying repair speeds (k =  = 1 d-1 = complete 
vs. ( = 2…10 d-1 = incomplete repair) and varying immune-
mediated elimination. Only mixed vs. daily fractionation is 
displayed. (a) kime = 10-9 d-1, Mmax = 109; (b) kime = 10-8 d-1, 
Mmax = 109; (c) kime = 10-9 d-1, Mmax = 1011; (d) kime = 10-10 d-1, 
Mmax = 1013. 
 
 

Discussion and Conclusions 

The presented model contains a simplistic approach to the 
tumour-immune system interaction. Therefore, the question is: 
What can we learn from such an artificial system in silico? 
Certainly, the presented model cannot be used as a predictive 
model, due to lack of any validation. Validation would require 
a comparison of model output to clinically observed TCP’s 
and measuring immune cell densities during treatment.  

The model includes an innate immune system type response 
and does not differentiate between the diverse populations of 
immune cells and their specific role in developing immune 
reaction. The interference with the adaptive immune response 
via antigen-presenting cells may strongly modify the tumour-
specific response. 

For assessing the kinetic constants, tumour-immune system 
interactions should be tracked during treatment to acquire 
time-resolved data. This is associated with big challenges even 
for a clinical trial and is not realistic in clinical routine. A 
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refinement of the immunological model would introduce a 
large number of additional parameters, many of them with 
large, patient-specific variations. To overcome these funda-
mental restrictions and difficulties, new approaches of model-
ling are needed. Looking to the immune system in its comp-
lexity, several network-structures involving signalling path-
ways and receptor signalling can be identified. Considering an 
adaptive immune system as a trainable network could lead to 
new insights to the dynamics of the tumour-immune-system 
interaction and – based on this - to new treatment concepts. 

However, there are some concerns for modellers and clini-
cians as well. The process of modelling itself and simulations 
often helps to refine ideas and concepts about the investigated 
system. Regardless of the uncertainty concerning the para-
meter values, the range of parameter values was restricted to 
achieve more or less clinically realistic tumour control. In this 
range, the presented model depicts some aspects of the funda-
mental dynamics regarding innate immune system activation 
in combination with radiation-induced cell killing. 

The model does not include competition between the 
tumour cell population and / or the host tissue, representing 
the situation of aggressive and fast growing tumours. In this 
regimen, considering different tumour sub-populations with 
varying radio-biological and immunological properties exhi-
bits only a small influence on the tumour control, at least for 
the investigated parameter range. Detailed modelling of sub-
clone – and host tissue interactions may become important 
when competition between the different populations reaches 
certain strength. 
 For description of the system, a compartmental model using 
ordinary differential equations is used. One may argue that 
some aspects of the ecosystem dynamics are related to the 
spatial distribution of cells / populations. Histological images 
from aggressive, highly malignant tumours often exhibit a 
more or less chaotic patchwork of host tissue, normoxic, hyp-
oxic and necrotic areas, proliferating and apoptotic tumour 
cells etc.. Considering highly malignant tumours, the added 
value of spatio-temporal models is unclear. Therefore, the 
influence of spatial aspects in function of tumour malignancy 
on tumour evolution is an interesting and important research 
topic.  
 The general system behaviour exhibits the strong influence 
of repair on tumour control for the selected  – and  – values 
(representing a tumour with comparably high radio sensiti-
vity). The reduced repair speed of tumour cells compared to 
the host tissue leads to a “therapeutic window” between TCP 
and Normal Tissue Complication Probability NTCP. No repair 
( = 0 d-1) will lead to survival which follows the linear-
quadratic law, independent of fractionation. This results in a 
non-realistic TCP. Depending on the repair speed, immune 
system mediated response seems to be circumstantial 
compared to the cell-intrinsic radiation biology (incomplete 
repair). But for the most of the investigated cases (over a wide 
range of parameter values), the mixed protocol exhibits a 
slight and for stronger immune response a clear advantage 
compared to the daily applied fractions. In clinical practice, 
daily application of RT fraction is normally limited to 
Monday-Friday with an interruption every week end. This 
results in a “mixed” fractionation scheme, where the 
appearance of the larger intervals during treatment course is 
defined by the starting day of the treatment. It has to be 

pointed out that there are many other fractionation schemes 
such as hypo-fractionation (e.g. de Dios et al., 2017), 
brachytherapy or stereotactic radio-surgery, which may 
support the idea of a biological treatment planning using in 
silico - models.  

There is some evidence for decreased tumour doubling time 
or increased rate of repopulation at the end of a treatment 
(Steel, 1977; Kim et al., 2005). This may be related to a 
smaller amount of tumour cells and related to this, less 
hypoxic cells or less competition. Another factor may be the 
selection of faster repopulating sub-clones during treatment 
course. The presented results are based on a constant tumour 
doubling. An accelerated growth at the end of RT treatment 
may be an additional argument for introducing longer inter-
vals at the start of the treatment course. 

For some indications, moderate hyperthermia is applied in 
combination with RT (HT-RT). In such therapy schemes, 
typically 3-6 RT-Fractions are combined with a hyperthermic 
treatment by heating the tumour tissue up to 42-43°C for 60-
90 minutes. The effect of moderate hyperthermia in combina-
tion with Radiotherapy (HT-RT) was demonstrated in clinical 
trials (e.g. Wust et al. 2002) and experimentally in vitro and in 
vivo. Several mechanisms which potentially contribute to the 
treatment response have been discussed (Streffer, 1995). The 
impact of heat in combination with radiation on the level of 
the tumour ecosystem has not yet been investigated. Beside 
many other effects, hyperthermia leads to an increased tissue 
perfusion. This may result in an improved accessibility of 
immune cells (and to a changed tumour micro-environment). 
In combination with the heat-induced expression of heat-
shock proteins (HSP), hyperthermia may enhance the intra-
tumour immune cell activity leading to additional cell killing. 
An indication for the importance of this process is the fact that 
HT-RT seems to have improved clinical outcome with only a 
small number of combined HT-RT fractions compared to the 
total number of applied RT-fractions. Regarding the results 
presented above, it could be an interesting option to combine 
heating and irradiation with longer intervals at the beginning 
of the HT-RT course. For avoiding thermotolerance induction, 
HT-RT treatments are applied with a spacing of 3-7 days. This 
has to be taken into consideration for optimising treatment 
schemes. Population-based models for combined HT-RT such 
as the Multi-Hit Repair (MHR) model (Scheid-egger et al. 
2013) can be integrated in the proposed frame-work to 
support therapy optimisation. 
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Introduction
Biological organisms exhibit a tremendous range of diver-
sity across many different scales. At a genetic level, one of
the starkest distinctions is between how genetic material is
arranged in prokaryotes (such as bacteria) and eukaryotes
(such as plants and animals). When a given biological pro-
cess, such as enzymatic degradation of an energy source,
requires several steps, it is common in eukaryotes for the
genes encoding these steps to be widely dispersed through
the organism’s genome, though perhaps not as widely as
would be expected from a purely random distribution (Lee
and Sonnhammer, 2003). In contrast, bacterial genomes are
typically arranged in operons, where some or all of the com-
ponents needed for a particular function are found together
in one section of the genome (Land et al., 2015). What might
account for this difference in genome organization?

One intriguing possibility is that the greater extent of
genome modularity in bacteria could be driven by horizontal
gene transfer (HGT). HGT refers to a set of ways in which
organisms can acquire genetic material from a source other
than their direct parent(s), whether through ingesting nucleic
acids as energy sources, accepting a plasmid from another
cell, or even having nucleic acids injected by a virus (Soucy
et al., 2015). HGT is generally seen as pervasive in bac-
teria, while considered less common in eukaryotes (Mad-
damsetti and Lenski, 2018; Koonin, 2016). Because HGT
can insert genes into new host organisms, it provides a po-
tential selective benefit toward genomic arrangements where
the instructions needed for a particular function are arranged
compactly. An organism with all of the information needed
for a complete function is more likely to manage to spread
this genetic material via HGT if that material is localized to
one genomic segment, instead of being diffuse throughout
the genome (Lawrence, 1999; Lawrence and Roth, 1996).
This very spread of information via HGT could even act
to make bacterial genomes more modular (Kreimer et al.,
2008). These processes can reinforce each other – a more
modular genome makes for more effective HGT, which then
causes the resulting genomes to be even more modular.

Testing the evolutionary impacts of either allowing or dis-

allowing particular types of mutations is exceptionally diffi-
cult in physical organisms. Therefore, we chose to address
these questions by harnessing the power of digital evolution.

Study System and Experimental Design
Avida (Ofria et al., 2009) is a digital evolution software plat-
form in which self-replicating computer programs compete
for digital resources. Within this system, we evolved popu-
lations in two fundamental treatments. Both treatments in-
volved cycling between two environments, which differed
in whether performing particular Boolean logic tasks was
rewarded or punished, a setup we have previously shown
to promote evolvability (Canino-Koning et al., 2018). We
evolved populations for 200,000 updates, alternating be-
tween our changing environments every 500 updates. Each
evolving population was placed into one of two treatments.
In one treatment, we included in the set of possible instruc-
tions one that, when executed, produced an HGT event; in
the other treatment, no HGT was possible. At the end of
each run, we took the numerically most abundant genotype
and analyzed both its genotype (sequence of instructions)
and phenotype (which tasks it did and did not perform). We
ran 50 replicates of each treatment. 5 of these 100 runs
crashed and thus do not contribute to the current study; we
are rerunning those seeds for a complete data set.

Results and Discussion
The inclusion of HGT leads to the evolution of more tasks
(Fig. 1). Among the final organisms, more tasks were per-
formed by individuals in the treatment where HGT was pos-
sible than the one where it was not (mean task number 2.956
v 2.149, Wilcoxan rank sum test W = 1642, two-tailed p
<<0.0001). This difference is not only significant, but also
substantial; on average, HGT leads to more than a 35% in-
crease in the number of different tasks being performed by
the organism. Even within the context of a changing envi-
ronment the addition of HGT further increases the number
of tasks that the most abundant organisms perform.

The organisms that evolved in the presence of HGT also
have more modular genomes. The number of tasks that a
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Figure 1: Number of tasks in final dominant organism. La-
bels indicate the evolutionary environment

given site in the genome contributes to is slightly higher
in the HGT-enabled treatment (mean number of tasks per
site: 1.474 vs 1.350, Wilcoxan rank sum test W = 1396,
two-tailed p = 0.0082), but this difference is of a much
smaller relative magnitude (approximately 13.8%) than the
difference in the number of tasks performed (approximately
37.6%). When we normalize the number of tasks per site by
the total number of tasks in an organism, there are fewer in
the populations that have experienced HGT (mean 0.5077 v
0.6293, Wilcoxan rank sum test W = 592.5, p <0.0003), a
reduction of approximately 19.3%.

We recognize that the number of tasks that a given site
is involved in performing is not the only way to measure
the modularity of a genome. See, for example, (Misevic
et al., 2006) for methods of measuring both physical and
functional modularity in digital genomes. Work is ongoing
to more fully characterize the evolved genomes under vari-
ous measurements of modularity.

Conclusions
In a changing environment, Horizontal Gene Transfer
(HGT) leads to the evolution of more tasks than are found
in a corresponding treatment without HGT. The resultant
genomes are also more modular, with fewer tasks encoded
per site when accounting for the total number of tasks per-
formed by the organism. This evidence supports the hypoth-
esis that HGT itself may explain some of the different pat-
terns in genome organization found in different types of bi-
ological organisms; those that undergo extensive HGT may
have more modular genomes as a direct consequence of this
parasexual process.

Scripts and Reproducibility
The configuration settings for Avida used in this ex-
periment, as well as the R script used to analyze
the results, are available at http://github.com/
mjwiser/ALife2019HGT .
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Abstract

We present recent results concerning the attrac-
tor landscape, memory, hysteresis and computa-
tion that can emerge in simple convective obsta-
cle flows. In these systems a single phase fluid is
heated from below and cooled from above. Small
obstacles (one or two) are placed on the horizon-
tal mid plane of the system and extract some frac-
tion of the fluid’s horizontal or vertical momen-
tum. Horizontal momentum sinks tend to attract
convection plumes. Vertical momentum sinks are
bistable; the obstacle will either align with a con-
vection cell centre or convection plume depending
on initial conditions and the history of the system.
The resulting attractor landscape can be exploited
to produce a single bit memory or even elemen-
tary Boolean logic.

In this work we use numerical simulations of
2D convection flows to illuminate the rich dy-
namical behaviours that thermal fluids can exhibit.
Natural convection has been studied for centuries,
but many aspects of this non-linear phenomenon
are still a matter of active research (e.g., Ahlers
et al., 2009; Manneville, 2006). In this study we
explored the effects of small obstacles placed in a
driven thermal fluid system. The boundary tem-
peratures are held constant and adjusted such that
the dimensionless driving force is also constant.

Obstacles placed in such flows cause a break
in their horizontal translational symmetry. When
such obstacles, or momentum sinks, extract only
horizontal momentum, the flow aligns plumes
(maxima of vertical momentum) with the sink, as
shown in Fig. 1(a). A similar attractor occurs
when both horizontal and vertical momentum are
extracted, as illustrated in Fig. 1(b).

These two attractors are identical except for the
fact that the total momentum sink (Fig. 1(b)) is
removing a significant quantity of kinetic energy
from the flow, whereas the horizontal sink (Fig.
1(a)) is not extracting any energy since the flow

(a)

(b)

Figure 1: Typical flow structure of a convective
fluid driven at a Rayleigh number of Ra = 105 in
the presence of a small sink of momentum placed
at [x, y] = [W/2, H/2] (the white crosshairs show
its location, its size is only ∼ 0.7% of the system
height). a) Horizontal momentum extraction, b)
Total momentum extraction.

field at that point (plume centre) is purely vertical
(no horizontal momentum to extract).

When only vertical momentum is extracted by
the sink, there are two types of attractor that oc-
cur: one in which either vortex centre aligns with
the sink (Fig. 2(a)), and another in which either
convection plume aligns with the sink (Fig. 2(b)).
A detailed analysis of the fluid dynamical basis of
these effects is given in Bartlett and Yung (2019).

The bistability and attractive/repulsive be-
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(a)

(b)

Figure 2: The two different types of attractor of
a convective fluid driven at a Rayleigh number of
Ra = 105 in the presence of a small sink of verti-
cal momentum placed at [x, y] = [W/2, H/2]. a)
Clockwise vortex attractor, b) Upwelling plume
attractor.

haviour outlined above can be exploited to confer
information storage and processing capabilities.
Fig. 3 shows the history-dependence of the state
of a flow system in which vertical momentum is
extracted by the sink, but horizontal momentum
extraction is switched on and then back off. Ap-
plying horizontal momentum extraction shifts the
state of the system to the plume attractor, which is
an absorbing state. Thus, when the parameters are
returned to their original values, the system does
not return to its original configuration. Convec-
tion flows can therefore store at least a single bit of
information using this state history dependence.

Furthermore, simple Boolean logic, such as the
OR gate, can be implemented using this simple
system. In fact, several logic gates can be instan-
tiated when two obstacles are placed in the flow
Bartlett and Yung (view). These results suggest
a new direction for the field of fluid computation
(Adamatzky, 2018; Foster and Parker, 1970; Kat-
sikis et al., 2015; Prakash and Gershenfeld, 2007),
which has so far not explored the use of convec-
tion flows for simple computational logic.

We are now exploring the integration of con-
vective logic gates such that entire computational
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Figure 3: Phase space behaviour for a convective
obstacle simulation with time-varying horizontal
momentum extraction.

circuits can be constructed using only thermal
fluid units. Results such as these suggest the use
of information theory and computer science to
understand a wide range of non-linear and non-
equilibrium systems that traditionally lie outside
of these fields (Feldman et al., 2008).
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Abstract

Sexual selection is a powerful yet poorly understood evolu-
tionary force. Research into sexual selection, whether bio-
logical, computational, or mathematical, has tended to take a
top-down approach studying complex natural systems. Many
simplifying assumptions must be made in order to make these
systems tractable, but it is unclear if these simplifications re-
sult in a system which still represents natural ecological and
evolutionary dynamics. Here, we take a bottom-up approach
in which we construct simple computational systems from
subsets of biologically plausible components and focus on ex-
amining the underlying dynamics resulting from the interac-
tions of those components. We use this method to investigate
sexual selection in general and the sexy sons theory in par-
ticular. The minimally necessary components are therefore
genomes, genome-determined displays and preferences, and
a process capable of overseeing parent selection and mating.
We demonstrate the efficacy of our approach (i.e we observe
the evolution of female preference) and provide support for
sexy sons theory, including illustrating the oscillatory behav-
ior that developed in the presence of multiple costly display
traits.

Introduction
Sexual selection occurs when a member of one sex selects
mates based on traits displayed in individuals of another
sex. The effects of sexual selection are clearly evident in
natural systems, from the bright coloration of male cichlid
fishes (Payne and Krakauer, 1997) to the sweeping antlers
of cervids (deer, elk and moose) (Clutton-Brock, 1982) to
the brilliant tail feathers of peacocks (Petrie et al., 1991).
In addition to being attractive to mates, such display traits
can be costly both to produce (Hunt et al., 2004) and to se-
lect for (Pomiankowski, 1987; Head et al., 2005). Despite
an abundance of literature, a unified understanding of the
mechanisms that drive and maintain sexual selection in the
face of costs has not yet been formulated.

A number of theories have been developed to explain
some mechanisms of sexual selection based upon observa-
tions of natural and theoretical systems. Primary among
these theories are runaway selection (Grier, 1930), good
genes (Rowe and Houle, 1996), sexy sons (Weatherhead and

Robertson, 1979), sexual conflict (Chapman et al., 2003) and
the handicap principle (Zahavi, 1975). While these are often
viewed as competing theories, a growing community is de-
veloping that argues that they are actually complementary,
each explaining some aspect of sexual selection dynamics
(Kokko et al., 2002).

Here we study sexual selection using a dynamic agent-
based system composed of many parts that can each be de-
signed independently. Our approach is not to attempt to
model any particular natural system, but rather, to define
system parts that each simulate different aspects of naturally
occurring sexual selection. This ‘system of parts’ will allow
for modeling of both naturally occurring as well as plausi-
ble, but not currently existing phenomena. As each part of
the model is validated, we will develop new parts to increase
the complexity of the phenomena that can be studied and im-
prove the systems applicability to nature. Since the system
of parts will be built up rather then designed to mimic spe-
cific natural systems, we can also remove parts to determine
if they are critical to a particular phenomenon.

We have chosen to focus on the sexy sons theory (see be-
low) because of its simplicity. In order to observe sexy sons
behavior we needed only a small number of elements: (1)
mutable and heritable genomes, (2) genetically determined
preferences and displays (with assignable costs), and (3) a
process capable of overseeing parent selection and mating.
In particular to investigate sexy sons, we did not need to con-
sider significantly more complex system parts that would be
needed to allow for phenomena such as condition dependent
displays, developmental processes or, complex behaviors re-
lated to life histories, nuptial gifts, or parental care.

Sexy Sons Theory

Ronald Fisher first proposed the idea of runaway sexual se-
lection, a condition in which a trait that signals fitness be-
comes preferred by sexual selection and subsequently is ex-
aggerated to such an extent that the trait becomes costly. The
sexy sons theory extends Fisherian selection with the idea
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that a female’s preference for a potentially costly male trait1

could increase the offspring production of males with that
trait. It logically follows from sexy sons theory that it would
be beneficial for a female to select these preferred males so
that her male offspring can inherit their father’s attractive-
ness (sexy sons) and those sons’ increased offspring count
would improve her long term fitness.

While sexy sons is generally accepted as theory, few em-
pirical studies have tested its critical hypothesis (Huk and
Winkel, 2008) and significant doubts remain (Kirkpatrick,
1985). This lack of empirical evidence is due primarily to
challenges that limit testing sexy sons in biological con-
texts. For example, how can an experimenter ensure that
a male display is a sexy sons trait? (i.e., that the trait pro-
vides no beneficial information). Even if such a trait can be
identified, assessing the reproductive success of organisms
would require long-term, highly controlled experiments, ex-
tensive genotyping, and accurate phylogeny reconstruction.
A computational approach, however, will be faster and pro-
vide perfect data collection, allowing for clearer insight into
the dynamics of sexual selection.

In this paper we turn to computational agent-based evo-
lution to investigate sexy sons. Previous research has em-
ployed theoretical methods, both mathematical and compu-
tational, to attempt to understand the sexy sons hypothesis
(see Kokko et al. (2006) for a survey of the topic), but prior
work has tended to model only a single sexy sons trait reg-
ulated by a single genetic loci and then investigate under
what conditions that trait will be selected. Pomiankowski
and Iwasa (1998) did examine multiple trait sexual selection
using a system of equations to model two traits, but their
formulation was not agent based and did not included either
inheritance or mutation. Interestingly, even though Pomi-
ankowski’s system is quite different from ours, it did pro-
duce cyclic display and preference behavior that aligns with
our results. We and others (Mead and Arnold, 2004) argue
that the two loci approach and other simplifications that are
often employed in generating models lack the complexity
needed to model sexual selection properly.

Here, we ask: What effect does the number of costly
traits have on the dynamics of sexual selection? Using
this system we show that the behavior generated by sexual
selection when only a single costly display trait is available
creates a illusion of stability. We then show that when mul-
tiple equally costly display traits are available, female pref-
erence will oscillate between the available traits.

Methods
We used the MABE (Modular Agent Based Evolver) frame-
work (Bohm et al., 2017) to implement and evaluate popu-
lations of evolving digital organisms with genetically deter-

1In this paper we will use the convention that females act as
selectors and males are selected. This division is common in nature
due to differential offspring investment costs, but is not universal.

mined sex, sexual preferences, and sexual displays. MABE
is a general-purpose evolutionary computation and artificial
life research tool that allows researchers to construct exper-
iments by combining different modules. Modules in MABE
have five different types: Brains (neural/cognitive digital
architectures), Genomes (sources of mutable and heritable
information), Worlds (problem descriptions/environments),
Optimizers (parent selection and population management)
and Archivists (data tracking and recording). For this work
we developed an optimizer called Two Sexes Optimizer that
manages gene detection, sex determination, parent selection
and reproduction. Aside from the Two Sexes Optimizer we
were able to rely on existing modules. We used the Circular
Genome and Default Archivist modules. Due to the simple
nature of our experiments we did not need to use either a
brain or world module.

The digital organisms in this work each had a hap-
loid genome (a list of 1000 integers valued 0 to 255).
An organism’s sex, sexual preference, and sexual display
level were determined by scanning its genomes for spe-
cific genes, each indicated by a different sub-sequence (start
codon). Sex genes used a 4-digit start codon (the values
101,102,103,104) with the parity of next site determining
the sex. Preference genes also used a 4-digit start codon
(105,106,107,108) with the value of the next site determin-
ing which trait is preferred in a mate (using the modulus op-
erator and the number of available display traits). Organisms
were required to have one and only one sex gene and one
and only one preference gene or they were removed from
the population without having an opportunity to reproduce.
Display genes each had a unique 2-digit start codon and the
number of each display gene start codon found within the
genome was used to determine the level of the associated
display. While an organism could have any number of genes
for each display trait in their genome, the display values
were capped at 50 (i.e. an organism with 51 or more genes of
a particular display appears to females as though they had 50
genes of that display). Random selection was implemented
by adding a display trait with a fixed value of 0, which was
not associated with any gene, to all males. This constant dis-
play trait allowed for random selection; as all males had the
same display value for this trait, females selecting based on
this trait were selecting randomly.

Each organism received a score, S, which determined the
organism’s number of mating opportunities relative to the
rest of the organisms of the same sex in the population. In all
of the experiments in this manuscript, we allowed one ben-
eficial display trait, and zero or more costly display traits.
Females scores (SF ) were calculated by

SF = min(tb, 60) (1)

where tb is the number of beneficial display trait genes in
their genome.
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Male scores (SM ) were calculated by

SM = min(tb, 60) − C
∑

t∈Tc

max(0, t− 10) (2)

where tb is as above, C is the cost coefficient (which sets
to cost of costly traits), and Tc is the number of display trait
genes in their genome for each display trait in the set of
costly traits in the current experiment. In other words, both
males an females receive a base score equal to the level of
their beneficial trait (to a maximum of 60). Females pay no
costs, and males pay a cost relative to the number and level
of their costly displays but only for those displays that are
above 10.

While exploring parameter values (such as cost coefficient
and population size) there were a number of essentially arbi-
trary decisions we needed to make. Two of these decisions,
while not necessary to generate the effects observed, did sig-
nificantly improve the consistency of the results.

First, the score cap for the beneficial display trait was
set at 60 but the value for display traits where females can
no longer detect differences was set at 50. This difference
means that the beneficial display trait continued to provide
benefits even after changes to the trait were undetectable to
females. As a result, if the beneficial display trait were to
drift away from its optimal value (60) it would not immedi-
ately create a signal that was detectable to females, which
might become a focus for selection. Similar beneficial traits
are likely found in nature; perhaps fur color, where preda-
tors have more sensitivity to the color range then females,
or a vocalization that acts both as a warning and a mating
call where the auditory range of the target of the warning is
greater then that of the females.

Secondly, costs were not applied on male display traits
when they were less then or equal to 10 because we found
that if these displays were costly at any level, then the as-
sociated genes generally would be purged from the genome
when not being selected for. Once a gene had been entirely
purged a rare mutation would be required for it re-appear.
The costly display traits describe traits that at low levels are
not significantly costly. This type of costly display can be
thought of as tail length in a species where short to medium
tail length has no significant fitness effect, but beyond some
limit, tails become costly either because of upkeep, preda-
tion risk, or some other factor.

To initialize each run, we generated a population with
1000 organisms with randomized genomes. We seeded each
organism’s genome with one sex gene at genome location
250 and one preference gene at location 750. The spacing
between sex and preference genes ensured that these genes
would be able to be inherited separately (i.e. low linkage).
Since the sex and preference of each organism was based on
the site following the start codons, the sex and preference of
each initial organism were random. The genomes were also
seeded with five randomly positioned copies of each of five

display trait genes, one beneficial, and four costly. For con-
sistency, we seeded genomes with the five different display
trait genes in every condition even though not all five were
used in all experiments.

We evolved each population for 10,000 generations. Ev-
ery generation each organism’s sex, sexual preference and
display trait levels were read from that organisms genome.
Organisms that did not have exactly one sex gene and one
preference gene were considered to have experienced a
lethal mutation and were discarded. We then divided the
remaining population into females and males. A female was
selected using roulette selection (fitness proportional) and
then a collection (a lek) of 20 males were selected, also us-
ing roulette selection, for that female to choose from. The
female mated with the male in the collection with the highest
display level matching the females preference (or a random
male from the collection if the female had no preference)
and produced an offspring. This process was repeated many
times to produce the next generation of 1000 organisms. The
parents were then discarded; that is, organisms lived for ex-
actly one generation.

Mating consisted of crossing the selected parents
genomes and applying mutations to the resulting genome.
We setup genomes to have to have 19 equally-spaced
crossover points, generating 20 genome segments. For each
pair of segments, the system selected a random parent from
the mating pair and used that parents genome for the first
genome segment of the offspring genome. Then the second
genome segment was contributed by the other parent. This
process of was repeated for the remaining segments. This
process is comparable to a 10-chromosome genome where
each parent randomly contributed 1

2 of each of their chro-
mosome to each offspring chromosome.

Two types of mutations were possible: point mutations
and indel mutations. Point mutations changed the value of
one site from its current value to a random number in the
range of 0 to 255. Indel mutations copied a section of the
genome (from 2 to 12 sites) and replaced another section
of the genome of the same length with the copied values.
Note that these mutation types were selected because they
maintain genome length. We found that if insertion mu-
tations were allowed the system would produce extremely
large (and therefore slow to convert) genomes. Point muta-
tions occurred at a rate of 0.001 per genome site (on average
1 per genome). Indel mutations occurred at a rate of .0001
per genome site (on average 1 per 10 genomes).

We chose to define display traits with 2-digit start codons
so that there would be a non-trivial chance for them to spon-
taneously emerge as the result of mutation. Specifically,
there is a 1

65,536 chance that two randomly selected numbers
will generate a specific pair. With a population size of 1000
organisms evaluated for 10,000 generations the creation of
display start codons by mutation, while rare, becomes likely.
Of course, once one or more genes exist, indel mutations can
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Figure 1: Average results of 100 replicates of Condition 1. 1.a
and 1.b show percent of females selecting either for a beneficial
trait (red) or randomly (black dotted) over 10,000 generations (1.a
provides a detail of the first 600 generations). 1.c and 1.d show
the display level of the beneficial trait over the same time scales.
Initially selection for the beneficial trait is high, but as the trait
passes 50 (the greatest value at which females are able to detect
trait variation) selection drifts, eventually to a level equal to random
selection. The trait eventually achieves a value slightly above 60
(the greatest value at which trait increases are rewarded). Shaded
areas display 95% confidence.

copy these and the likelihood of an indel mutation resulting
in a copied gene increases as there are more of that gene
present. On the other hand, we did not want a high rate of
creation of sex and sex preference genes. The 4-digit sex and
preference start codons are far less likely to arise by muta-
tion ( 1

4,294,967,296 ) and so additional copies of these genes
would most likely be the result of indel mutations.

We tested five conditions.
Table 1: Experimental Conditions.

Condition Num. Costly Traits Trait Cost
1 0 NA
2 1 1.0
3 1 0.1
4 4 1.0
5 4 0.1

In all five conditions, one beneficial display trait was vis-
ible to selection, as was the option for females to choose a
mate randomly. Condition 1 served as a control, with no
costly traits. Conditions 2 and 3 examine when a single
costly trait was also available at a high or low cost, respec-
tively. Conditions 4 and 5 expanded this test to four costly
traits, again with high or low cost, respectively.

Costs were manipulated by altering the cost coefficient (C
from equ. 2).

We ran 100 replicates of Condition 1 and 300 replicates
each of Conditions 2,3,4, and 5. Each replicate was run with
a different random seed for 10,000 generations with a popu-
lation size 1000.

Readers wishing to replicate the results from this paper
are directed to the supplemental materials which include
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Figure 2: The results of a typical replicate from Condition 1. 2.a,
shows the % of random selection. 2.b, shows the level of the bene-
ficial display trait (black) and the % of selection for that trait (red).
Selection for the beneficial trait is high until it reaches 50, after
which selection drifts between random selection and the beneficial
display trait.

files and instructions for generating the data presented in
this paper (see: http://github.com/cliff-bohm/
ALIFE-2019-On-Sexual-Selection).

Results
The results of Condition 1 (one beneficial trait) are shown in
Fig.1. We observed that selection tended to fix on the benefi-
cial display trait and remain fixed until that trait reached 50,
the level over which females are unable to detect variation.
Female preference then appeared to drift. Fig 1.b illustrates
that random selection and selection for the positive trait ap-
pear to stabilize at approximately 50% each for remainder of
the 10,000 generations. Condition 1 demonstrates that sex-
ual selection in our system can target displays and will select
for a beneficial display when there is detectable variation in
the display and furthermore that if the beneficial trait’s vari-
ation is undetectable to females, then the trait will be as at-
tractive as random selection. Fig 2 shows behavior of a sin-
gle replicate of Condition 1 and illustrates that the apparent
selection stability between random selection and selection
for the beneficial trait is really the result of averaging drift
with higher variance across 100 replicates.

The results of Condition 2 (one beneficial trait and one
costly trait at high cost) are shown in Fig 3. We observed
that like Condition 1, sexual selection tended to select for the
beneficial display trait early, but where Condition 1 resulted
in drift once the beneficial display trait has reached 50, we
see selection for the costly display trait develop. Once this
trait reaches 50, we did not see the system tending to drift
as in Condition 1. Rather, we observed persistent selection
for the costly display trait and low occurrences of selection
for the beneficial display trait or random selection. Fig. 5.a
through c. show the behavior of an arbitrary replicate of
Condition 2.

In Condition 3 (one beneficial trait and one costly trait at
low cost), shown in Fig. 4, the reduced cost coefficient re-
sulted in lower interest on the part of females for the costly
display trait. As opposed to Condition 2 where selection
for the costly display trait was consistently at or near 100%,
in Condition 3, selection for the costly display trait hovered
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Figure 3: Average results of 300 replicates of Condition 2. 3.a and
3.b show the percent of females selecting either for a beneficial
trait (red), a costly trait (black solid), or randomly (black dotted)
over 10,000 generations (3.a provides a detail of the first 600 gen-
erations). 3.c and 3.d show the display level for the beneficial trait
(red) and the costly trait (black) over the same time scales. Initially
selection for the beneficial trait is high, but as the trait passes 50
(the greatest value at which females are able to detect trait varia-
tion) selection shift to the costly trait. The beneficial trait eventu-
ally achieves a value slightly above 60 (the greatest value at which
trait increases are rewarded) while the costly trait stabilizes around
50. Shaded areas display 95% confidence.

around 75% after the beneficial display trait had exceeded
50. Random selection and selection for the beneficial dis-
play trait both maintain values near 12%. Interestingly, se-
lection for the beneficial trait seemed to behave in the same
manner as random selection supporting the idea that selec-
tion for the beneficial display trait provides the same benefit
as random selection once the beneficial trait exceeded the
level of female detection. 5.d though f. show the behavior
of arbitrary replicate of Condition 3 and illustrate that the
selection levels are not in fact stable and that the apparent
stability in Fig. 4 is a the result of averaging replicates.

The results of Condition 4 (one beneficial trait and four
costly traits at high cost) are shown in Fig 6. We observed
the same early preference for the beneficial display trait that
was seen in Conditions 1 and 2. Once the beneficial display
trait reached 50 though, we did not observe a single costly
trait being selected for, but rather we observed that all four
of the 4 costly display traits are being selected for at compa-
rable levels, about 25% and that the display levels all seem
to be approximately the same, at a level of about 12. Fig.
8.a through f. show the behavior of an arbitrary replicate of
Condition 4. Looking at the single replicate it is evident that
the 4 costly traits are not at equilibrium as Fig. 6 suggests,
but rather preference and trait values are constantly shifting.
Note, that the averaged lines of the four traits overlap in Fig.
6, suggesting that each trait spent similar time under selec-
tion when compared across replicates.

In Condition 5 (one beneficial trait and four costly traits
at low cost), shown in Fig. 7, the reduced cost coefficient re-
sulted in comparable rates of selection among the four costly

0.00

0.25

0.50

0.75

1.00

se
le
ct
io
n

0 200 400 600
generations

20

40

60

di
sp
la
y

0 2000 4000 6000 8000 10000
generations

a b

c d

Figure 4: Average results of 300 replicates of Condition 3. This
condition is identical to Condition 2 except that in Condition 2 the
cost coefficient was 1.0 and here it is 0.1. See Figure 3 for descrip-
tion.
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Figure 5: The results of two typical replicates, one from Condition
2 and one from Condition 3. 5.a, 5.b, and 5.c show the results of
a Condition 2 replicate (one beneficial display trait and one costly
display trait with cost coefficient = 1.0). 5.a, shows the % of ran-
dom selection, 5.b, the level of the beneficial display trait (black)
and the % of selection for that trait (red), and 5.c, the level of the
costly display trait (black) and the % of selection for that trait (red).
5.d, 5.e, and 5.f show the same data for a replicate from Condition
3 (cost coefficient = 0.1). In both conditions, selection for the bene-
ficial trait is high until it the beneficial trait reaches 50, after which
selection is predominately focused on the costly display trait. The
primary differences between conditions is the consistency of selec-
tion for the costly display trait (more focused when the cost is high)
and, to a lesser extent, the consistency for the level of the costly trait
itself. It can be observed in the low costly condition both random
selection and selection for the beneficial trait appear to be targeted
frequently when selection is not focused on the costly trait.

display traits as was observed in Condition 4, but higher lev-
els in the costly display traits themselves. Perhaps these
higher levels resulted from a slower decay rate due to the
reduced selection pressure exerted by the decreased cost co-
efficient. 8.g though l. show the behavior of an arbitrary
replicate of Condition 5. Here again like in Condition 4, os-
cillations between different preferences and traits were seen.

Discussion
Costly display traits can be a preferred target for sexual
selection. More surprisingly, they can even be preferred
over neutral or even beneficial traits particularly when those
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Figure 6: Average results of 300 replicates of Condition 4. 6.a
and 6.b show the percent of females selecting either for a benefi-
cial trait (red) or randomly (black dotted) over 10,000 generations
(6.a provides a detail of the first 600 generations). 6.c and 6.d show
the display level for the beneficial trait over the same time scales.
6.e and 6.f show the percent of females selecting for each of 4
costly traits. 6.g and 6.h show the levels of these four traits. The
four costly traits all have the same cost and so are not individually
labeled. Initially selection for the beneficial trait is high, but as
the trait passes 50 (the greatest value at which females are able to
detect trait variation) selection drifts and appears to be evenly di-
vided among the four costly traits (each approximately 25 percent).
The beneficial trait eventually achieves a value slightly above 60
(the greatest value at which trait increases are rewarded) while the
costly traits each stabilize near 12. Shaded areas display 95% con-
fidence.

traits fail to provide discriminatory information. This work
demonstrates this result conclusively. The costly display
traits were designed to provide no benefit, but clearly they
must, and the most logical explanation for that benefit is the
sexy sons hypothesis.

In the introduction we posed the question, What effect do
the number and cost of costly traits have on the dynamics
of sexual selection? We designed a series of experiments to
demonstrate both the efficacy of our system and then to in-
crementally add complexity in the form of costly displays to
explore system dynamics. We will now provide conjecture
for what we believe are the driving factors that explain the
observed behavior.

In Condition 1 we observe that selection for the benefi-
cial display is high only when the beneficial display has de-
tectable variation. Moreover, we observe that female prefer-
ence for the beneficial trait behaves in the same manner as
random selection, once that beneficial trait no longer has de-
tectable variation. The fact that the beneficial trait maintains
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Figure 7: Average results of 300 replicates of Condition 5. This
condition is identical to Condition 4 except that in Condition 4 the
cost coefficient was 1.0 and here it is 0.1. See Figure 6 for descrip-
tion.

a high level (slightly above 60) is reasonable as those organ-
isms who have this display at a higher then average level are
provided more mating opportunities. Fig. 2 shows a typ-
ical replicate of Condition 1 and illustrates that preference
is not actually balanced between random selection and the
beneficial trait, but rather drifts between the two.

In Conditions 2 and 3 we observe the system with a single
beneficial display and a single costly display. These con-
ditions demonstrate that a sexy sons trait can (and in this
system will) become the target of selection, once it is the
only available target for selection. Females could have se-
lected for either the beneficial display trait or accepted ran-
dom mates. Instead, when presented with a collection of
males, females overwhelmingly chose to mate with the male
that had the lowest probability to have been selected to be
part of that collection.

The increased rate of selection for the costly trait in Con-
dition 2, versus Condition 3, may seem counter intuitive;
Should we not observe lower levels of selection for the
costly display when the display is more costly? We hypoth-
esize that when the costly display value reaches 50 or above,
selection for that trait begins to drift. At high cost, as female
preference drifts there is greater pressure for males to reduce
the level of their costly display which creates a greater vari-
ation and this creates a stronger signal and thus provides a
larger sexy sons benefit.

In Condition 4 and 5 we considered the system with a sin-
gle beneficial display and four costly displays. Fig. 6, sug-
gests that the system stabilizes at around 25% selection for
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Figure 8: The results of two typical replicates, one from Condi-
tion 4 and one from Condition 5. 8.a through 8.f show the re-
sults of a Condition 4 replicate (one beneficial display trait and
four costly display traits with cost coefficient = 1.0). 8.a, shows
the % of random selection, 8.b, the level of the beneficial dis-
play trait (black) and the % of selection for that trait (red), and
8.c through 8.f, the level of each of the costly display traits (black)
and the % of selection for that trait (red). 8.g through 8.l show
the same data for a replicate from Condition 5 (cost coefficient =
0.1). In both conditions, selection for the beneficial trait is high
until it the beneficial trait reaches 50, after which selection os-
cillates among the four costly traits. The primary differences be-
tween conditions is the duration of the periods of selection for each
costly display trait (more focused when the cost is high) and the
slower rate at which the costly display traits fall when not un-
der selection. Unlike Fig. 8, random selection or selection for
the beneficial trait are rare. Data from additional replicates can
be found in the supplemental material (http://github.com/
cliff-bohm/ALIFE-2019-On-Sexual-Selection).

each of the four costly traits. This apparent result is not the
case though. Fig. 8 shows the behavior of typical replicates
of Conditions 4 and 5 and reveals that rather than stability,
we observe oscillations among the four costly display traits.
In Conditions 2 and 3, once the costly trait maxed out and
begin to decay, there was no other viable option for female
preference (neither the random option nor the beneficial trait
had detectable variation), so any small variation in the costly
trait was the only signal that selection could target). In Con-
ditions 4 and 5 when one costly display trait maxes out, there
are always three other, equally viable, options. This is the
primary result in this paper: when there are multiple costly
traits the stable state of the system is a state of constant
change.

How does the difference in the cost coefficient explain the
differences between the results in Conditions 4 and 5? Fig.
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Figure 9: Compares the lengths of periods where a significant ma-
jority of females are selecting for a single display trait in Condi-
tions 4 and 5 - one beneficial trait and four costly traits at high cost
(4) and low cost (5). A period begins when the % of selection for
a trait exceeds 90% and ends when it drops below 50%. All repli-
cates from each condition were averaged, so values show average
counts per replicate. The x-axis lists length of the periods from 1
generation to 1000 generations and the y-axis shows the average
number of runs which were at least this long among all replicates
in the higher cost Condition 4 (solid line) and lower cost Condition
5 (dashed line). The results illustrate that while Condition 4 had
less overall runs they tended to be longer. Shaded areas are 95%
confidence.

9 shows that at higher cost (in Condition 4) there are fewer
total runs (defined as a period when a single display trait is
being selected for by a majority of females), but these runs
tend to last longer. We argued that in Condition 2, the rel-
atively high cost of display causes a rapid decay in display
once selection for that display begins to drift and this faster
rate of decay, in turn, results in a stronger signal. We ex-
pect that the same phenomena may explain the relationship
between cost and run length here. The stronger signal gener-
ated by higher cost results in more focused selection on the
trait that is currently preferred.

What about the Handicap Principle and the Good
Genes Theory?

Two models often cited to explain the existence of costly
displays are the Handicap Principle and the good genes the-
ory. We would be errant not to address these directly.

The Handicap Principle, argues that evolution may result
in some costly displays that ”serve as marks of quality” since
an organism would need to be fit in order to survive with
such handicaps (Zahavi, 1975). The handicap principle can
not apply here since it requires the existence of condition
dependant displays and the displays here are entirely genet-
ically based.

The Good Genes theory, posits that an arbitrary display
may be linked with some beneficial hidden gene. Essen-
tially, the good gene provides an honest signal that a male
contains a particular beneficial gene. Clearly the beneficial
display trait in our experiments is a good gene. It is directly
observable and is directly associated with mating opportu-
nity. On the other hand, the costly display traits are clearly
not. Good genes theory can not be used to explain the se-
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lection of costly displays that we observe. It may be reason-
able to argue that costly display traits are sometimes good
genes. If females find a particular costly display trait at-
tractive and select for that display to such an extent that it
outweighs the cost then the presence of the gene in a male
does (for a time) communicate that the male’s offspring are
likely to have higher than average reproductive success. Is
there room in good genes theory for transient good genes?
For a different approach to the same argument, see Kokko
(2001).

Conclusion
In this work we demonstrated that sexual selection on costly
traits can occur and that sexy sons provides a sound expla-
nation. We also demonstrated that multi-trait sexual selec-
tion can result in a semi-stable state of constant change. This
work investigated only a subset of parameters possible in the
system used. From here we will continue to investigate the
sexy sons theory, examining how this system responds to
different costs, including female search costs and develop-
ing methods to investigate genetics effects such as how sexy
sons and trait oscillation affects genomic rates of change. In
the longer term, we will extend our system to include more
complex features of sexual selection such as threshold se-
lection, condition dependant traits, parental care, and sexual
display signal fidelity.

Understanding sexual selection is not only important to
understanding biology’s history and predicting its future, but
also may provide dynamics that could support open-ended
evolutionary processes. Deeper understanding of the os-
cillatory behaviors generated by costly selection and how
this phenomena alters genomes and phenotypes may explain
how some species have been able to navigate away from lo-
cal optima or across seemingly impossible fitness valleys.
Finally, if we were able to control sexual selection it could
even be used in engineering and machine learning contexts
as a more naturalistic form of diversity search.
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Abstract

In the 1950s, the famous cyberneticists Gordon Pask and
Stafford Beer conducted a series of remarkable electrochem-
ical deposition experiments. By applying an electric po-
tential across electrodes submerged in an acidic solution of
ferrous sulfate, they could bias the growth of electrochemi-
cal deposition so as to form functional structures including
sensory structures capable of distinguishing between differ-
ent sounds. Unfortunately, the details of their apparatus and
methods are unavailable. As a consequence, their experiment
has not been replicated, and the precise mechanisms under-
lying their results remain unknown. As preliminary steps to-
ward recreating their remarkable results, this paper presents a
new computational model that simulates the growth and de-
cay of dendritic structures similar to those investigated by
Beer & Pask. We use this model to demonstrate a plausible
mechanism through which an electrochemical system of this
kind could respond to a reinforcement signal. More specif-
ically, we investigate three strategies for varying the applied
electrical current so as to guide the formation of structures
into target forms. Each presented strategy succeeds at influ-
encing the growth of the structure, with the most successful
strategy involving a ‘constant-current’ feedback mechanism
combined with an externally driven oscillation. In the discus-
sion, we compare the adaptation of these structures with var-
ious biological adaptive processes, including evolution and
metabolism-based adaptive behaviour.

Introduction
The research presented below is inspired by the electro-
chemical deposition experiments undertaken by Gordon
Pask and Stafford Beer in the 1950s. By applying a cur-
rent across electrodes placed in an acidic solution of fer-
rous sulfate, these researchers induced the electrochemical
deposition of iron onto the negatively charged electrode(s)
(see Fig. 1). By varying the applied voltage, they could
choose when iron was deposited and when it dissolved back
into solution, and using this technique to reward (i. e., stabi-
lize) desired growth and punish (i. e., dissolve) less desirable
growth, they grew an iron ‘ear’ that was capable of distin-
guishing between two different frequencies of sound.

“We have made an ear and we have made a magnetic re-
ceptor. The ear can discriminate two frequencies, one

Figure 1: Photograph of electrochemical deposition ex-
periments conducted by Gordon Pask and Stafford Beer
in the 1950s. From (Pask, 1958) and (Cariani, 1993).

of the order of fifty cycles per second and the other
of the order of one hundred cycles per second. The
‘training’ procedure takes approximately half a day and
once having got the ability to recognize sound at all, the
ability to recognize and discriminate two sounds comes
more rapidly ... The ear, incidentally, looks rather like
an ear. It is a gap in the thread structure in which you
have fibrils which resonate at the excitation frequency.”
(Pask, 1959, p. 261)

From their description, Pask and Beer’s system seems to
exhibit a kind of reinforcement learning: it develops spe-
cific structures (such as fibrils with a particular resonant fre-
quency) in response to a reward signal (current), without be-
ing given precise instructions on what form the structures
should take. This is remarkable because it is a relatively sim-
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ple physical system and lacks any obvious system for assign-
ing credit or propagating the reward signal. Our goal is to
understand what makes this possible, and whether the prin-
ciples underlying it will generalise to other kinds of physical
or dynamical system.

In biological evolution, a directed process of selection bi-
ases undirected (i. e., random) genetic variation, resulting in
the formation of adaptive structures. Pask and Beer’s ex-
periments might be described in similar terms: iron accrues
rather randomly, providing a kind of stochastic growth—and
direction is given to this change via the selective variation
of the applied current. This evolution-inspired description
given above seems plausible, but growing an ‘ear’ merely
by changing a voltage applied to a solution of ferrous sul-
fate seems to almost border on magic. How did this system
work and what are the limits of this technique for growing
functional structures, using only a reward/punishment-like
feedback? If it is a kind of physical instantiation of a search
algorithm, what is the search space like—are there lots of lo-
cal minima or is it better captured as a very high-dimensional
space full of neutral networks (Huynen, 1996) that facilitate
adaptation to a wide variety of selection pressures? Does the
evolutionary metaphor completely describe or explain how
these kinds of systems might adapt to different ‘selection
pressures’ (i. e., reward schemes), or are there other dynam-
ics that don’t fit so nicely into an evolutionary metaphor.

We do not yet know the answer these questions. Unfor-
tunately, Beer and Pask failed to publish this area of their
research in sufficient detail that others might repeat it. In
the next section, we present our first steps toward recreat-
ing Beer and Pask’s results, in the form of a computational
model of electrochemical deposition. We use this model
to evaluate the possibility of using dynamically modulated
voltage so as to steer the growth of the structure in desired
forms. But before we delve into the details of our model,
we first review some related research which highlights some
reasons that we find this system interesting.

Related research
There have been a number of efforts to recreate Pask’s
work—see e. g. the projects listed in (Boden, 2010, p. 136).
In the cases that we are familiar with, there has been success
in growing dendritic structures, but nothing as remarkable
as the development of a new sensor as reported by Pask and
Beer. There have, on the other hand, been a number of inter-
esting results in the investigation of a comparable adaptive
self-organising dissipative structure (Nicolis and Prigogine,
1977) known as a ramified charge-transportation networks.

A ramified-charge-transportation-network (RCTN) con-
sists of a number of small steel spheres, placed in a petri
dish, and partially submerged in castor oil. A circular
grounded electrode runs around the periphery of the dish
and a high-voltage (≈ 20kV ) electrode sits above it. These
simple systems demonstrate remarkable self-organizing dy-

namics. Specifically, the spheres self-organize into tree-like
structures with topology that depends upon initial configu-
ration of the beads, and that can be radically different based
on minor changes in the initial setup (Jun and Hübler, 2005).
Once grown these structures display statistically robust net-
work features. For example, when the number of spheres is
kept roughly the same, the number of termini and branching
points will remain similar despite any topologically different
structures (Jun and Hübler, 2005).

Kondepudi et al. (2015) describe the dynamics of these
systems in terms of ‘energy-seeking’ and ‘self-healing’ be-
haviours. If a branch is broken, then the system will re-
store it. Further, the tree will continue moving its branches
around the available space to maximize the current con-
ducted by the structure. This can be considered a form of
self-preservation, as the flow of electricity is what allows the
system to persist in spite of its ordered, low-entropy state.
From these and other observations, Kondepudi et al. argue
that their overall behaviour can be considered as an end-
directed (i. e., purposeful) process (Kondepudi et al., 2015).

The enactive approach (Stewart et al., 2010; Thomp-
son, 2007) takes these kinds of precarious, self-maintaining
systems as a conceptual starting point for defining agents
(Barandiaran et al., 2009) and related phenomena, such as
intrinsic normativity and teleology (Barandiaran and Eg-
bert, 2013). But even if one does not subscribe to these ap-
proaches, the ability of these systems to adapt under seem-
ingly arbitrary requirements (e. g., detecting the difference
between these two frequencies of sound) makes these sys-
tems fascinating models for understanding the adaptability
of biological organisms.

It is worth emphasizing the open-endedness of the adapt-
ability of these systems. It would be difficult to argue that an
acidic solution of dissolved ferrous sulfate has the inherent
propensity to self-organize into a sound-discriminating ear,
and yet by applying an electric potential across such a solu-
tion in a particular way, Pask & Beer were able to cause it to
form into such a functional structure. This is rather remark-
able. Does it hint at a not yet fully understood mechanism
that might help us to understanding the remarkable open-
ended adaptation demonstrated in nature? Cariani (1993,
p. 20–21) suggests that by understanding the mechanism un-
derlying Pasks’ result, we may come to understand how to
create systems that can autonomous identify which features
of the environment they respond to in a way that is more
open-ended than that of conventional neural networks.

“[Conventional learning machines such as NN] im-
prove on their (initial) designs by altering their deci-
sion functions contingent upon evaluation of past per-
formance. But even with these machines, the designer
must foresee the basic categories of percepts (i.e. prim-
itive features) and actions which will be adequate to
solve the problem at hand [...] For real world tasks,
however, there is no such set of basic categories that is
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defined beforehand, so that in addition to finding appro-
priate mappings there is also the problem of deciding
what the basic categories will be. Essentially, contem-
porary trainable machines have the freedom to adapt
within a set of percept and action categories, but they
do not have the freedom to modify those categories.
[...] Pask was specifically looking for a machine that
would create its own “relevance criteria”, one which
would find the observables that it needed to perform
a given task. The device [would develop] sensors to
choose, independent of the designer, those aspects of its
external environment to which it would react. Not only
would particular input-ouput combinations be chosen
but the categories of input and of output would be se-
lected by the device itself.”(Cariani, 1993, p. 21)

Some might argue that modern neural networks are capable
of selecting their own categorisation schemes, but even if
this is granted, they do not (yet) innovate a sensor that wasn’t
there before.

To summarize, the system studied by Pask and Beer (and
the related RCTN structures) are worthy of further study as
they (i) demonstrate unusual dynamics; (ii) are comparable
to the precarious adaptation of individual biological organ-
isms; and (iii) demonstrate an apparent open-ended ability
to adapt. In the next section, we introduce a computational
model of Pask and Beer’s system. In the following section,
we describe our efforts to use a reward-like variation of the
applied voltage so as to steer the growth of the dendritic
structures.

The reward function that our model optimises is consid-
erably simpler than the task that Pask and Beer set for their
system, but our model nevertheless demonstrates a plausi-
ble mechanism by which a physical system of this kind can
respond to reinforcement signal at all. Our model builds to
some extent on ideas presented in [cite Virgo and Harvey
2008], but the mechanism is much more physically realistic.

Model
We now present a model of electrochemical deposition. Us-
ing finite difference methods, we use a rectangular 256×128
lattice to simulate a two dimensional space 2 units wide by
1 unit tall. Each position on the lattice is considered to be
either a negatively-charged highly conductive solid or an in-
sulating liquid, Mi,j ∈ {S,L}. The electric potential, φ, is
calculated across this lattice by fixing the conductive solids
(i. e., treating them as boundary conditions) and then solving
the Dirichlet problem for the Laplace equation,

∇2φ = 0 (1)

by numerically integrating (using the forward-time centered
space method —see e. g., Recktenwald, 2004) the heat equa-
tion,

∂φ

∂t
= ∇2φ (2)

Figure 2: Example final state of a simulation trial, show-
ing the grown structure (top) and its surrounding electric
potential field (bottom).

until the system has come (close) to equilibrium i. e., un-
til ∀φ : |φn − φn−1| < 10−3, where the subscript n is the
current iteration index. When approximating the initial equi-
librium for any given run of the simulation, we increase ac-
curacy by reducing the tolerance by an order of magnitude,
i. e., ∀φ : |φn − φn−1| < 10−4.

The boundary conditions for the Dirichlet problem vary
between experiments. We describe this variation in detail
below, but in every case, there is a negatively charged con-
ducting solid with a fixed relative potential of 0. We call this
‘the structure’ and it grows and decays via simulated elec-
trochemical deposition and dissolution as described below.
In addition, each experiment also always includes a positive
boundary condition, that corresponds to an electrode with a
fixed relative positive charge.

Each iteration of our simulation begins by approximating
the electric-potential field equilibrium as described above.
We then determine how the conducting structure will grow
or decay. To do so, we identify I , a set of ‘interface cells’:
liquid locations with one or more solid locations in their von
Neumann neighbourhood.

I = {(i, j) : Mi,j = L ∧ ∃S ∈ {Mi−1,j ,Mi+1,j ,

Mi,j−1,Mi,j+1}}.
(3)

For each interface cell, we calculate the probability that it
will become part of the conducting structure. The probabil-
ity of these ‘constructive’ changes are proportional to φ of
the interface cell (as φ is the potential relative to the struc-
ture, which is proportional to electron flow at the interface).
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To calculate this probability, use the following equation,

Pc = { 1

Z
(φi,j + ζ) : (i, j) ∈ I}, (4)

where 1
Z is a normalization factor selected such that the sum

of all of the probabilities is 1 and ζ is a parameter that scales
the relative influence of the voltage compared to entirely ran-
dom process—as ζ approaches infinity, the probabilities be-
come equal across the interface cells. The results of varying
ζ can be seen in Figure 3. Essentially, as ζ is increased,
the structure that grows loses its filamentous structure and
becomes less sensitive to φ-gradients, i. e., stops growing
toward high values of φ.

Destructive events, where one of the solid neighbours of
the interface cell becomes part of the liquid insulating ma-
terial are also possible. The probabilities of the destructive
events are a function of a(i, j), defined as the mean age (time
since creation) of the solid cells in the Moore neighbour-
hood of the interface cell. The assumption underlying this
distribution is that over time, the existing structure become
smoother and thus less likely to dissolve. This age-based
probabilities are calculated according to the following equa-
tion.

Pd = { 1

(1 + a(i, j))2
: (i, j) ∈ I}. (5)

In Pask and Beer’s experiments voltage was varied so as
to reward (i. e., stabilize / cause to grow) or punish (destabi-
lize / dissolve) the structure. In our model we similarly have
a reward parameter, r ∈ [0, 1] that biases the relative likeli-
hood of constructive vs. destructive events. The next event
thus selected from the following set:

P =

{
rp∑

Pc
: p ∈ Pc

}
∪
{

(1− r)p∑
Pd

: p ∈ Pd

}
. (6)

It is important to note that the reward function varies over
time (as a function of system state) but not over space. As we
shall see the structure tends to grow rather directly toward
regions of high φ, but it possible to counterdict this energy-
seeking behaviour by selectively rewarding certain types of
growth and punishing others by varying r.

Once the event is identified, the structure grows or de-
cays as appropriate, the electric potential equilibrium is re-
calculated, I is updated, the probabilities for the next event
are calculated etc., in a repeating iterative manner. Because
of the probabilistic selection of events, each iteration corre-
sponds to a different amount of time passage, specifically:
∆t is taken from an exponential distribution with the rate
parameter, λ, is the sum of the scaled but not normalized
probabilities, i. e.,: λ = r

∑
Pc + (r − 1)

∑
Pd.

The stochastic degradation of the structure means that it is
not uncommon for sections of the structure to become dis-
connected. When this happens, sections that are not con-
tiguous with the initial starting point of the structure (which

Figure 3: Increasing ζ results in fewer dendrites and re-
duced electrotaxis. A seed structure at (0, 0.5) responds to
a voltage gradient (φy=0 = 0, φy=1 = 1) in different ways de-
pending upon the relative influence of randomness and volt-
age as described by simulation parameter ζ.

is interpretable as the negative electrode) are assumed to fall
to a neutral potential and rapidly dissolve. This is simulated
by removing any solid structure cells that are not connected
to the initial starting position of the structure. This is not
a physically realistic aspect of our simulation, but rather a
simplification. In future work we may model disconnected
conducting elements in a more realistic manner. Finally, we
make it impossible for the first ‘seed’ cell of the structure to
dissolve.
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Experiments & Results
We now evaluate different strategies for modulating the re-
ward signal, r. Each experimental reward strategy is a func-
tion of x?, the current mean horizontal position of the top-
most part of the structure. To calculate this value, we iden-
tify the top-most row of M that contains structure i∗ ≡
max i|Mi,j = S, and calculate the mean x of those posi-
tions within this row that contain structure, x? ≡ J̄ where
J ≡

{
2j
256 − 1|Mi∗,j = S

}
.

In each case the structure is seeded at the middle of the
space, close to the bottom (x, y) = (0, 16 ). A fixed voltage
φ = 1 electrode is simulated as spanning the top edge of
the area. To impose a gradient, the bottom edge is clamped
to a value of φ = 0 and the left and right boundaries are
also clamped as a linear gradient between the top and bottom
boundary conditions. Formally: φy=1 = 1; φy=0 = 0 and
φx=−1 = φx=1 = x. In all of the following experiments,
we simulate the growth of these structures until either the
structure touches the top electrode, or 25,000 iterations have
passed. For each of the following experiments, we fix ζ = 0.

Control Conditions. We will first describe the control
strategy where reward is fixed at r = 1. An example of
the type of structure that grows in the control condition can
be seen in Figure 2. The initial seed, located at (0, 16 ) grows
rapidly and rather directly to the positive electrode. The bot-
tom frame of Figure 4 shows the average density of 25 struc-
tures grown in these conditions. In every case, the trial ends
when the structure has grown to the top of the simulation,
and the horizontal location of the top of the structure is dis-
tributed approximately evenly around the centre of the arena
(see the bottom row of Figure 6).

Strategy 1: Simple Reward. The first experimental re-
ward strategy we consider is the modulation of r according
to the following simple linear function of x∗. Our goal here
is to to encourage the structure to grow to the right.

r = mx? + b (7)

It is not self-evident which values of parametersm and bwill
maximise our influence of the structure. Figure 5 shows the
conducted a systematic survey to investigate the influence of
these parameters. Of the values tested, the parameters that
maximised the mean rightward growth of the structures were
(m, b) = 5.06, 0.5 and it is these parameters that were used
to generate the ‘Simple Reward’ portions of Figures 4 and
6.

This simple strategy succeeds at influencing the growth
of the structure. Once the structure has grown a little bit to
the right of its initial location, r increases, and provided the
structure does not grow back to the left, r will remain high
enough for the structure to continue to grow. In other words,
after an initial growth to the right, further rightward growth

Figure 4: Superposition of the final states of 25 trials for
the best found parameterization of each indicated strat-
egy. Darker areas indicate locations where structure existed
at the end of a greater number of trials.

is unnecessary for the system to grow, and so it grows, at-
tracted by the higher values of φ close to the top of the arena.
Is it possible to do better?

Strategy 2: Constant Current. Pask generally refers to
current rather than voltage when describing this experiment,
and so there has been some speculation that they used a con-
stant current device that regulates voltage so that the total
current flowing between the two electrodes is constant (or
kept below some maximum)—see e. g. the description in
(Bird and Di Paolo, 2008, p. 201) . As conductive structure
grows between the electrodes, resistance decreases. If the
applied voltage were fixed, the current flowing through the
system would thus increase as the resistance dropped. The
constant current regulator is a simple feedback control de-
vice that regulates the applied voltage so that current is con-
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Figure 5: Systematic survey of simple-reward parame-
ters. Values indicate the mean x? found for the indicated pa-
rameter values, with brighter values corresponding to greater
influence of growth.

stant. Essentially if the current is greater than a target value,
the applied voltage is decreased and vice-versa according to
negative feedback-like relationship similar to dV

dt = θ − A,
where V is the voltage, θ is the target current (selected by
Pask) and A is the current.

For our second experimental reward strategy we simu-
late a constant-current feedback mechanism so that current
is maintained at a target value (θ),

r =
1

2
+ θ −A, (8)

where A is the total current between the positive electrode
and the structure, which is calculated by summing the φ val-
ues at the interface,

A =
∑

(i,j)∈I
φi,j . (9)

The target current (θ) is then dynamically modulated ac-
cording to how far right the structure has grown (again ap-
proximated by x?), thus:

θ =
1

2
+m

(
x? − 1

2

)
. (10)

Once again it is not clear how to select a value for pa-
rameter m in this strategy. We experimented with m ∈
{10, 20, 30, 40, 50, 60}. The most effective value at max-
imising the mean x? was m = 40 maximised, and so we
used that parameter value to generate the data plotted for
this strategy in Figures 4 and 6. In these figures we can see
that the constant current strategy produces a distribution of
x? with a mean that is greater than the simple strategy, but
note that this is not a statistically significant increase (see
Table 1).

Simple Const. Curr. CC + Osc.
Control p < 0.001 p < 0.001 p < 0.001
Simple p < 0.141 p < 0.006

Const. Curr. p < 0.609

Table 1: Tukey’s test. This table indicates chance that vari-
ation between means of the data plotted in Figure 6 is due to
chance. Bold entries are considered statistically significant.

Strategy 3. Constant Current with Exploratory Oscil-
lations. While observing the simulations of the constant
current strategy, there was often a feeling of wishing that
the structure would ‘experiment’ more—i. e.,, try out differ-
ent random configurations and keep those that increase the
reward signal. To encourage this kind of exploration, we
added an externally driven oscillation to the reward signal to
produce our final strategy.

The reward function is the same as in the Constant Cur-
rent strategy, except that we update Equation 8 to include a
sinusoidal function of the current iteration of the simulation,
τ . It would be more appropriate to have this be a function of
time rather than iteration, and this will be an improvement
that we make in future work.

r =
1

2
+ θ −A+ n cos(2πτ/p), (11)

Once again, the control strategy includes free parame-
ters, and we used a systematic survey to search for those
that are more effective. Figure 7 show the results of this
survey. There is no clear trend among these parameters,
but they all perform well compared to the previous re-
ward strategies. We selected the best performing parameters
(n, p) = (0.1, 100) to generate the data plotted in Figures
4 and 6. The distribution of x? generated by this strategy
now significantly outperforms the simple reward mechanism
(p < 0.001—see Table 1).

Observations & Discussion
We have presented a new model for exploring the electro-
chemical deposition system investigated by Pask & Beer in
the 1950s. The model has helped us to understand how by
the selective rewarding of particular patterns of growth, it
is possible to influence or ‘steer’ the dissipative structures
that grow in these conditions. This is a potentially signifi-
cant result, because it suggests a novel, and simple, mech-
anism through which physical systems can respond to rein-
forcement signals, potentially producing complex, organised
structures as a consequence.

Our ability to guide the form of these structures in our
model is not absolute and it is interesting to consider the
source of any limitations and thus how they might be over-
come. One limitation may come from the energetic gra-
dients inherent in our simulation whereby the conducting
structure naturally grows up φ gradients. Each reward strat-
egy rewarded growth orthogonal to the φ gradients, but the
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Figure 6: Comparison of best parameterization for each evaluated strategy. Each row indicates the x position of the
top-most structure element for 25 trials of indicated reward strategy.

structures all also (unsurprisingly) responded primarily to
the φ gradient by growing upwards. Decreasing the influ-
ence of the φ gradient might be expected to improve the
steer-ability. One way to do this would be to increase ζ.
In the physical experiment, this would correspond with de-
creasing the relative voltage between the electrodes. But de-
creasing the voltage excessively would mean that no depo-
sition would occur. A constant current mechanism might al-
low the voltage to remain high, while decreasing the ‘attrac-
tive force’ of the positive electrode. To speculate: the con-
stant current mechanism partially neutralizes the attractive-
ness of the φ gradient, as growth toward the positive elec-
trode reduces resistance, which increases the current, which
would cause the constant current mechanism to decrease the
applied voltage. If properly tuned, such a mechanism might
mean that the growth of the structure responds only to the re-
ward function (and not also to the φ gradient as is currently
the case). In this way, a well-designed reward mechanism
would ‘flatten’ the landscape of possible structures, facilitat-
ing the growth of those structures that maximise the reward
signal.

It is also interesting to consider this ‘flattening’ of the
search space in the context of genetic evolution, where the
search space of nucleotide sequences is essentially flat (i. e.,

Figure 7: Systematic survey of simple-reward parame-
ters. Values indicate the mean x? found for the indicated pa-
rameter values, with brighter values corresponding to greater
influence of growth.

there is little inherent cost for choosing a adenine or a gua-
nine), facilitating the ability of evolution to search the space
of polypeptide sequences unabated.

Comparison to evolution. In the introduction, we com-
pared random but selected growth of the structure to the
selection of random mutations in Darwinian evolution.
Metaphors like this are useful both for identifying similar-
ities between systems, and for highlighting differences. One
such difference that we noticed in the simulation is that when
a new branch begins to grow, it tends to grow in that same
direction for some time. This inertia-like effect may be due
to the tendency of new structures to grow into areas where
they are more exposed, and thus subject to higher voltage
and thus more likely to grow further—a kind of autocatalytic
growth. It may be that increasing the reward signal during
one of these may further accelerate this tendency allowing
for a more instructive or directive kind of reward mechanism
along the lines of “do more of that” rather than the post-hoc
reward, “what you just did was good, keep it”. Darwinian
evolution has no explicit inertia mechanism such as that just
described, but it is interesting to reverse the metaphor and
to consider that there are occasions when a new mutation
opens up a set of possible environmental interaction which
encourages further mutations.

Comparison to metabolism and biological individuality.
It is also interesting to consider one of these structures as a
model of a biological individual performing a metabolism-
based behaviour. The dendritic structure is a dissipative
structure that relies upon the dissipation of energy (the flow
of electricity) to persist. It reconfigures itself to amplify
or stabilize this flow of energy, and when conditions are
right, this adaptation can respond, not just to physical energy
gradients (control case), but to more complex requirements
(shown here in simulation and in Pask and Beer’s original
experiments). A number of other dissipative structures sim-
ilarly act so as to satisfy their own needs —see e. g. RCTN
discussed in introduction and motile oil-droplets (Hanczyc,
2011). These physical systems, like some bacteria (Egbert
et al., 2010) are responding essentially to their own rates of
self-construction in what is referred to as metabolism-based
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behaviour, which can facilitate adaptation and evolution in
a number of ways (Egbert et al., 2012; Egbert and Pérez-
Mercader, 2016).

Origins of life. Pask’s electrochemical experiments seem
to demonstrate the emergence of functional components (for
example, the vibrating filaments in the ’ear’), without them
needing to be ‘designed in’ by a human engineer. One can
find examples of this in other places, such as the emergence
of new traits in evolution, or the emergence neurons that per-
form specific filtering operations when training a deep neu-
ral network, for example. But Pask’s case is remarkable be-
cause it occurs in such a simple physical system, purely as
the result of the physical processes of fluctuating growth and
decay of filaments, in response to a reward function.

Although there are some parallels with evolution, this
simple physical mechanism differs in that there is no need
for large, complex polymer molecules to be produced. If
evolution is not the only mechanism by which complex func-
tional structures can arise in the natural world, it becomes
possible that evolution as we know it is the result of a dy-
namical process, and not just its starting point. The emer-
gence of Paskian growth seems much easier than the emer-
gence of complex biomolecules, and perhaps mechanisms
resembling it played a role in steering the abiotic world on
its way to the emergence of biology.

Self-organizing steerable self-organizing systems In our
model there are a number of parameters that would influ-
ence the extent to which the self-organization is controllable
or ‘steerable’. That Pask and Beer were capable of find-
ing conditions suitable for steering the self-organization of
an ‘ear’ is remarkable. Instead of trying to identify effec-
tive parameter regimes directly, it may be more effective to
identify negative-feedback-like mechanisms that automati-
cally regulate parameter regimes so as to produce steerable
self-organization. One example of such as mechanism may
be the constant-current mechanism as described above.

Future work We have proposed a mechanism through
which a simple electrochemical system could plausibly re-
spond to a reward signal. However, the task we set our sys-
tem, of growing in a particular direction, was very simple in
comparison to the task of “growing an ear” that was achieved
by Pask and Beer. It will be important in future work to show
that this kind of system can solve more difficult tasks. It will
be equally important to build a better theoretical understand-
ing, in order to understand whether other kinds of physical
system can exhibit similar reinforcement learning behaviour.
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Abstract

Artificial Life models and algorithms are informed by natu-
ral and biological processes and phenomena. Artificial Life
finds particular use in simulating large, complex systems such
as large scale ecosystems or social networks, where the in-
teraction between system entities may give rise to emergent
behaviours. Despite the increasing popularity and ubiqui-
tous nature of complex systems, the extent of which artifi-
cial life approaches are considered in complex systems mod-
elling and their application across complex systems domains
is still unclear. To better understand the overlap between ar-
tificial life and complex systems, we conducted a systematic
literature review of last decade’s artificial life research that
had a complex system focus. We performed an automated
search of all relevant databases and identified 538 initial pa-
pers, with 194 in the candidate set, resulting in 115 primary
studies. Our results show that the three most frequent appli-
cation domains are simulation, followed by social modelling,
and biological modelling.We find a plethora of paradigms that
can be broadly classified into three main categories, namely,
biological, social, and hybrid. We identify the artificial life
paradigms that are used to generate the most common com-
plex systems properties as well as a number of research chal-
lenges that are critical for the growth of both artificial life and
complex systems modelling.

Introduction
Artificial Life is a set of models and approaches adapted and
inspired by naturally occurring phenomena and processes
(Langton et al., 1989). These paradigms can be applied to
a diverse range of problems, such as ecological modelling
(Punithan et al., 2011), evolving artificial creatures (Loula
et al., 2010), combat simulation (Yu and Zhao, 2010), and
modelling application performance in proprietary app stores
(Cocco et al., 2014). Complex systems are comprised of
autonomous entities with complex behaviours, whose inter-
actions can lead to unexpected and emergent properties (Sz-
abo et al., 2014; Mittal, 2013). Complex adaptive systems
(CAS) are a type of complex system where entities and the
environment are encouraged to adapt and interact with each
other in order to achieve desired properties (Holland, 2006)
and provide a more realistic abstraction of real-life scenar-
ios (North et al., 2013). Such systems have become ubiq-

uitous in domains such as social networks, supply chains,
health-care networks, smart-cities and smart-grids, the “In-
ternet of Things”, and the Internet itself (North et al., 2013).

Artificial life approaches and paradigms can be easily
studied and analysed with a complex systems lens, thus
allowing a focus on important properties such as self-
organisation (Holland, 2006), emergence (Szabo et al.,
2014), adaptation (Holland, 2006), modularity (Holland,
2006) and criticality among others. Self-organization occurs
when entities interact to achieve a specific goal or to move
the system in a different state (Holland, 2006; Mittal, 2013).
Emergence occurs when entities organize to behave collec-
tively, leading to the creation of an unpredictable macro state
that cannot be decomposed into its micro components (Sz-
abo et al., 2014). Some systems can exhibit emergent behav-
ior without self-organization, such as a stationary gas (Mit-
tal, 2013). Emergence has been observed in a plethora of
systems, such as communities forming in social networks,
formation of ant colonies, and rigid cellular structures (Bird-
sey et al., 2015). Autonomy is exhibited when entities within
a system selectively act upon their environment without ex-
ternal control and is fundamental to the demonstration of
emergence and self-organisation (Froese et al., 2007). Adap-
tation refers to the individual adaptive processes of system
entities and environments as well as to the adaptive ability
of the system as a whole (Holland, 2006). When modularity
is employed, entities or the environment must be comprised
of sub-entities that determine the behaviors and actions of
the parent entity (Holland, 2006). Criticality refers to the
time period before the system enters a stable, unstable, or
emergent state. In many systems, criticality is observed at
the edge of chaos or as a decision point.

Employing a complex systems perspective and consider-
ing the above properties explicitly would further the appli-
cability of artificial life paradigms to a variety of domains
and would test their use under complex, large-scale scenar-
ios, thus potentially significantly developing the field. Con-
versely, a better understanding of the artificial life paradigms
that would facilitate the appearance of specific complex sys-
tems properties will aid significantly in their design, such as,
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for example, when designing systems with a specific desired
emergent property (Mittal, 2013). While a large number of
works have looked at modelling complex systems including
artificial life paradigms, the extent of their use and appli-
cability is yet unknown. To address this gap, we perform a
systematic literature review of artificial life research that had
a complex system or complex adaptive system focus.

Related Work
Despite existing literature reviews regarding individual
models (Santé et al., 2010), complex system properties
(Froese et al., 2007), and artificial life paradigms (Emmeche,
1998), to the best of our knowledge, there has been no re-
view focused on the use of artificial life paradigms in mod-
elling complex systems. In the following we discuss several
literature reviews focused on specific artificial life modelling
paradigms or applications.

Work by Bedau (Bedau, 2003) analyses established arti-
ficial life advances and paradigms up to 2003, providing a
rough timeline of artificial life developments starting with
Langton’s initial seminal work (Langton et al., 1989) and
progressing to the then-state of the art advances in evolution-
ary robotics, swarm intelligence, and evolutionary language
modelling. Bedau identifies 13 paradigms, including two
that are strongly based on complex adaptive system prop-
erties, namely, self-replication and self-organisation, with a
discussion that considers the potential applicability of adap-
tation to future artificial life research, however the study fails
to give an in-depth analysis of how complex systems are
modelled using artificial life paradigms and approaches.

A study by Bousquet et al. (Bousquet and Le Page, 2004)
reviews the application of multi-agent simulations (MAS) to
the modelling of ecosystem management. They identify that
scientists working in ecosystem management need to exam-
ine the interactions between ecological and social dynamics,
and that MAS provides a useful model for examining the ef-
fects of the convergence of these dynamics.

A later work by Froese et al. (Froese et al., 2007) analy-
ses the use and definitions of autonomy within artificial life
applications. The study notes that there is no consensus re-
garding the definition of ‘autonomy’ and proposes the intro-
duction of a conceptual distinction between the classes of
behavioural and constitutive autonomy. The provided def-
initions assert that behavioural autonomy relates to the ca-
pacity of a system for stable and/or flexible interaction with
its environment, whereas constitutive autonomy relates to a
system’s capacity for autopoiesis, which is considered by the
authors to have the undesirable quality of restricting the con-
cept of autonomy to organisms. This classification scheme
is used to demonstrate that systems at the date of the study
publication (2007) had increased in autonomy over the sys-
tems published ten years prior. A review by Sante et al.
(Santé et al., 2010) focused on the application of cellular
automata models to the simulation of real-world urban pro-

cesses such as urban planning or modelling urban evolution
and described the strengths, flaws, and challenges of using
each model for different application domains.

Methodology
Our work aims to identify the overlap between artificial life
and complex systems, specifically to better understand how
artificial life approaches are considered in complex systems
design, modelling, or analysis and conversely whether artifi-
cial life approaches consider complex systems perspectives
or properties. In the following, we use the term complex
systems broadly, to cover both complex systems as well as
complex adaptive systems.

Identification of Research
We conducted a systematic literature review by adapting
the guidelines proposed by Kitchenham (Kitchenham, 2004)
and following a highly structured process that involved (i) an
initial trial search to determine selection and exclusion crite-
ria as well as the search string, (ii) relevant database search,
(iii) selection of studies, (iv) filtering the studies by eval-
uating their pertinence, (v) extracting data using our data
extraction form and (vi) synthesising the results.

The search terms were applied to the title, abstract, and
keyword fields of the ACM Full Text Collection, IEEE Ex-
plore, ScienceDirect, SpringerLink and Scopus databases,
identifying 68, 19, 433 and 18 papers repectively (538 total).
Following our established selection/exclusion criteria dis-
cussed below, we read through a target set of 10 papers to de-
termine their inclusion in the set and to calibrate our process.
The inter-rater reliability of this process was measured with
the Fleiss-Davies kappa (Davies and Fleiss, 1982), which
measures the agreement when a fixed set of raters classify a
number of items into a fixed set of categories. The Fleiss-
Davies kappa for individual classification was 80%, which
is considered excellent (Banerjee et al., 1999). In the next
stage, we selected the papers that formed the basis for the
review. The search results were divided among the authors,
who examined each title and abstract, and the corresponding
full paper if required, to determine its relevance.

Search String and Inclusion/Exclusion Criteria
The search string used boolean operators to refine the search
and was: (‘’Artificial Life” AND (‘’Complex Systems”
OR ‘’Complex Adaptive Systems”) AND (model OR
analysis)) and was adapted to the specific database. Only
papers published since 2008 were considered. The inclu-
sion/exclusion criteria were:

• Topic - the paper must design or use, implement, and eval-
uate at least one artificial life paradigm, and the system
under study must be a complex system. Surveys, reviews,
and position papers were excluded.

• Length >= 5 pages - short papers were excluded.

264



• Language - only English papers were included.

• Peer-reviewed - only papers that have been peer-reviewed
were included.

• Exclusions - papers that contained only wet- or hardware-
based Artificial Life models (without accompanying
software-based models) were excluded.

The above search string was formulated to find studies that
utilise both Complex Systems and Artificial Life in their de-
sign and implementation. The focus on the overlap between
complex systems and artificial life means that a range of
paradigms that may not have been utilised in conjunction
with complex systems were not reviewed.

Data Items
An overview of the data items extracted from the papers is
presented below.
Modelling approach - Captures the modelling approached
employed.
Analysis approach - Captures the type of analysis used to
evaluate the model.
ALife paradigm employed - Captures the artificial life
paradigms employed in each paper. These paradigms may
include natural or biological behaviours (such as foraging,
predation), naturally occurring phenomena (such as ecosys-
tems, evolution, or protein-folding), or social behaviours
(such as elections, economic exchange, or semiosis).
Complex Adaptive Systems Properties - Captures any
CAS properties that are identified by the paper authors.
Further Applications - Captures whether the paper authors
identified any further domains within which the paper topic
could be applied.
Scalability Considered - Captures whether the paper au-
thors considered scalability in their analysis.
Challenges & limitations - Captures the challenges or limi-
tations faced by the approach as stated by the paper authors.
Challenge type - Captures the type of challenges identified
by paper authors.

Results
We present an overview of the identified data items from
the 115 primary studies as well as discuss answers to our
research questions.

Application Domains
Our analysis identified 32 unique application domains, 19
of which occurred more than once, as shown in Table 1. 16
application domains occurred only once, such as data min-
ing (de Buitleir et al., 2012), and logistic networks design
(Otto and Bannenberg, 2010) among others. The most fre-
quently identified application domain was Simulation (rep-
resenting nearly 13% of all primary studies), where papers

Application Domain Frequency
Simulation 15
Social Modelling 13
Biological Modelling 12
Robotics 9
Linguistics 7
Optimisation 6
Complex System Analysis 5
Artificial Life Modelling 5
Music Modelling 4
Disease Modelling 4
Automated Design 4
Markets 3
Ecosystem Modelling 3
Routing 2
Video Games 2
Genetics 2
Military/Tactical Modelling 2
Life History Modelling 2
Pattern Recognition and Generation 2
Other 13

Table 1: Application Domains (N=115)

demonstrated the use of artificial life paradigms to opti-
mise and improve existing simulation and simulation-related
practices. For example, Seth’s work explored the use of
Granger Causality to detect the autonomy or emergence of
a complex system (Seth, 2010), while the work by Kirshen-
baum et al. demonstrated the use of simulation to educate
students on Swarm Intelligence (Kirshenbaum et al., 2008).
Social Modelling (11.3%) was the second most frequently
utilised application domain, where social structures, net-
works, and situations were investigated using artificial life
paradigms. The third most frequently investigated applica-
tion domain is Biological Modelling (10.4%), where biolog-
ical processes and phenomena were modelled and evaluated.
For example, researchers modelled cancer growth using cel-
lular automata (Monteagudo and Santos Reyes, 2013) and
several primary studies modelled the phenomena of protein
folding using neural networks and L-Systems (Varela and
Santos, 2018).

Modelling & Analysis Approaches
We identified 23 unique modeling approaches in the pri-
mary study set. 57.4% of the primary studies employed
Agent-based Modelling (ABM) as a modelling paradigm.
ABM models simulate the actions and interactions of au-
tonomous agents with the intent to assess the system-wide
results of these interactions. Cellular Automata was the sec-
ond most frequently used modelling approach with 45.2% of
primary studies using it. Cellular Automata are composed of
a (usually two dimensional) lattice of cells, each of which is
configured to be a particular state and can affect the states
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Model Type Frequency
Agent-based Modelling 64
Cellular Automata 21
Ant Colony Systems 5
Evolutionary Algorithm 3
Neural Network 2
Robotics 2
P-Systems 2
Analytical 2
Graphs 2
Swarm Intelligence 2
Other 10

Table 2: Modelling Approaches Frequencies (N=115)
of neighbouring cells. The third most commonly utilised
modelling approach was Ant Colony (AC), which was used
employed significantly less than either of the previous two
models at 4.3%. The AC model uses ant colony-inspired
methods to optimise problems that can be simplified to graph
representations.

The models were analysed using simulation (88.7%), an-
alytical methods or proofs (11.3%), and once through the
installation of a physical prototype (0.87%).

Artificial Life Paradigms Used

Artificial Life derives many of its paradigms from biologi-
cal and social phenomena. To better understand the spread
of paradigms across the papers in our primary study set, we
classified the 93 identified paradigms into three main cate-
gories, namely, Social, Biological, and Hybrid1. A signif-
icant number of these (60, or 64.52%) were only identified
once, and have been aggregated into the Other categorisa-
tion at the bottom of each Paradigm table.
Social - Paradigms that are based on social processes or phe-
nomena, for example Social structures, Artificial Societies,
and Communication.
Biological - Paradigms that are based on biological & phys-
iological processes or phenomena, such as Pheromones, Ge-
netics, and Metabolism.
Hybrid - Hybrid paradigms are syntheses of social and bi-
ological paradigms. This category also contains paradigms
that do not neatly fit into biological or social classifications,
such as Swarm intelligence, which has both a social and bi-
ological basis or Pathfinding which, while a natural process,
has a clear basis in neither.

Biological Paradigms The three most commonly em-
ployed biological paradigms are Evolution, Predation, and
Pheromones as shown in Table 3. Evolution was utilised as

1Space constraints prevent us from providing the full list
of papers that include a specific paradigm. We include the
full tables and reference list here: https://tinyurl.com/
alife-paradigms

Biological Paradigm Frequency
Evolution 39
Predation 11
Pheromones 9
Reproduction 8
Foraging 7
Artificial chemistry 4
Bacterial-based algorithms 2
Energy flow 2
Genetics 2
Metabolism 2
Morphogenesis 2
Protein Folding 2
Starvation 2
Other 21

Table 3: Biological Paradigm Frequencies
a catch-all class for paradigms that relate to modelling evo-
lution, or utilise evolutionary computation or evolutionary
concepts (such as evolutionary dynamics or morphological
evolution) (Joachimczak et al., 2013). Predation refers to
a predatory relationship between at least two agent classes
within a complex system; one agent, the predator, consumes
agents from the prey class (Seth, 2010). The pheromone
paradigm relates to the use of trails left by agents in the
style of biological pheromones released by ants and other
creatures.

Evolution is the most commonly employed biological
paradigm with 33.9% of the primary studies utilising it
in some form. The frequency of Evolution paradigms is
disproportionate when compared with all other paradigms,
as the next most commonly employed paradigm across all
paradigms is Swarm Intelligence, which was only employed
in 14.8% of the primary studies, and the third most com-
mon paradigm (Predation) being utilised in 9.6% of the
primary studies. The Other category captures a wide set of
infrequently used paradigms, such as Apoptosis, Biological
Growth, Exaptation and Inheritance among others. 69.57%
of the primary set papers employed a biological paradigm.

Social Paradigms Social paradigms relate to phenomena
that occur through agents directly interacting with each
other. The most commonly employed social paradigms in
the primary set are Cooperation, Semiosis, and Economic
exchange as shown in Table 4. 21.74% of the primary set
papers employed a social paradigm. Cooperation refers to
agents helping each in order to reach a mutually beneficent
outcome such as (Oswald and Schmickl, 2017). Semiosis
refers to the emergence of linguistic constructs through the
interaction between agents and their environment (Shibuya
et al., 2018). Economic exchange refers to the exchange of
resources between agents.
Hybrid Paradigms Hybrid paradigms utilise qualities from
multiple other paradigm classes. For example, while Swarm
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Social Paradigm Frequency
Cooperation 5
Semiosis 4
Ant colony 3
Economic exchange 3
Flocking 3
Competition 2
Crowd movement 2
Imitation 2
Social behaviours 2
Social networks 2
Other 19

Table 4: Social Paradigm Frequencies

Intelligence is a social phenomenon due to its mechanical re-
liance on interactions between a swarm of agents, the mod-
elling of swarm intelligence tends to utilise biological me-
chanics such as pheromones for interaction.

The most frequently utilised hybrid paradigms listed in
Table 5 are Swarm Intelligence, Learning, and Population
Dynamics. Swarm Intelligence is the collective behaviour
of a decentralised group of self-organised agents, exempli-
fied in nature by the group activities of ants and bees (von
Mammen and Jacob, 2009). Learning is a phenomena by
which an agent or creature acquires knowledge about them-
selves or their environment through experience (Azumagak-
ito et al., 2011). Population dynamics refers to the exam-
ination of populations in dynamical systems, with regards
to how particular sub-populations are affected or affect the
greater system (Bornhofen and Lattaud, 2009). 59.13% of
papers used a hybrid paradigm.

Hybrid Paradigm Frequency
Swarm Intelligence 17
Learning 11
Population Dynamics 9
Co-Evolution 5
Disease Model 3
Neural Network 2
Migration 2
Multiple Particle Interaction 2
Pathfinding 2
Stigmergy 2
Other 20

Table 5: Hybrid Paradigms Frequencies

Paradigm Frequency By Year
Figure 1 shows how often artificial life paradigms were used
to model complex systems in each year of the research win-
dow. We include only paradigms with an aggregated fre-
quency greater than four. We observe that evolution has been
frequently employed in the past decade with a peak of use

occurring in 2009. In addition, pheromones were used with
increasing frequency until 2012.

Limitations
34.78% (40 out of 115) of the primary studies reported a
form of challenge or limitation when discussing the outcome
of their research. The most frequently reported limitation
is related to modelling (18.96%), with paper authors citing
challenges in merging Artificial Life paradigms with con-
ventional techniques such as manufacturing methodologies
with biological paradigms (Leitao, 2009; Monteagudo and
Santos Reyes, 2013), challenges typical to Complex Sys-
tems such as the lack of reliability in the occurrence of emer-
gence (Lopez, 2010), and challenges in accurately and ef-
ficiently modelling simulation environments (Azumagakito
et al., 2011; Isidoro et al., 2011; Bornhofen and Lattaud,
2009). The second most frequently reported limitation is
in the area of analysis (7.76% of papers), where authors ref-
erenced difficulties in the visualisation of results or mod-
els (Punithan et al., 2011), limited analytical scale (Janecek
et al., 2013; Niazi, 2014), difficulty in developing analyti-
cal metrics (Taylor and Cody, 2015), and limited analysis
leading to ambiguities regarding how models operate (Os-
wald and Schmickl, 2017). Implementation and Validation
were equally reported to be challenging (4.34%). The chal-
lenges of implementation led to limitations in scalability
(Krol and Popiela, 2009) and parameterisation of complex
models (Yamamoto and Miorandi, 2010). The challenges
of validation led to difficulties with ensuring that ensuring
model behaviour is correct.

Scalability
Large-scale systems are becoming ubiquitous and as such
there is a need for artificial life approaches to consider scale
both in terms of the number of entities considered in the
model or system, but also in terms of the number of at-
tributes and the complexities of entity behaviours and inter-
actions. 19 papers (16.38% of the total number of papers),
evaluated the scalability of the proposed approach.

Complex Adaptive Systems Properties
22 complex adaptive systems (CAS) properties were identi-
fied in the primary study set, as shown in Table 6. Our anal-
ysis aims also to identify the artificial life paradigms that are
used to facilitate specific complex systems properties, and
Table 6 shows the most frequent paradigms per property.
Emergence was the most frequently considered property
with 57.39% of the papers analysing emergent properties or
being designed to achieve emergence. Papers reported using
90 paradigms to generate emergence, mostly from the Bi-
ological and Hybrid paradigm categories (50 (55.56%) and
28 (31.11%), respectively). The most common paradigms
for generating emergence were evolution (Otto and Ban-
nenberg, 2010; von Mammen and Jacob, 2009), predation
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Figure 1: Paradigm Frequencies (2008 - 2018) (N = 115)

Property
Name

Freq. Common Paradigms

Emergence 66 Evolution (40.9%), Predation (13.6%),
Swarm Intelligence (10.6%), Reproduction
(10.6%)

Self-
Organisation

33 Evolution (75.7%), Swarm Intelligence
(30.3%), Predation (21.21%)

Adaptation 21 Evolution (42.8%), Learning (19%), Popu-
lation Dynamics (9.5%)

Stability 4 Evolution (50%), Local Dynamics (25%),
Ecosystem Modelling (25%)

Self-
Regulating

2 Cooperation (50%), Pheromones (50%), Re-
production (50%)

Self-
Repairing

2 Artificial Endocrine system (100%)

Self-
Replicating

2 Reproduction (50%), Parsimony (50%),
Evolution (50%)

Self-
Evolving

2 Predation (50%), Foraging (50%), Evolution
(50%)

Robustness 2 Evolution (50%), Co-Construction (50%),
Metabolism (50%)

Self-
Modification

1 Reproduction

Self-
Configuring

1 Artificial Immune Systems, Foraging, Pre-
dation

Self-
Enhancing

1 Artificial Chemistry, Morphogenesis, Pat-
tern Formation

Autonomy 1 Flocking, Evolution, Predation
Coordination 1 Chemical Reactions, Coordination
Interaction 1 Evolution, Swarm Intelligence
Chaos 1 Velocity History, Limit Cycle
Information
Storage

1 Cellular Communication

Synchronisation 1 Imitation/Memetic Behaviour
Dynamic
Criticality

1 Genetics

Power-Law
Distribution

1 Genetics

Stigmergy 1 Hierarchy, Pheromones, Swarm Intelligence
Plasticity 1 Co-Construction, Metabolism

Table 6: Complex Systems Properties

(Loula et al., 2010; Lopez, 2010), and swarm intelligence
(Leitao, 2009; von Mammen and Jacob, 2009).

The second most frequently identified property was self-
organisation, with 28.7% of the set identifying a systematic
order arising from local interactions. It was generated us-
ing 40 paradigms, most often from the biological and hybrid
paradigm classes (23 (57.5%) and 13 (32.5%), respectively).
The most frequently utilised individual paradigms were evo-
lution (Leitao, 2009; Otto and Bannenberg, 2010), swarm
intelligence (von Mammen and Jacob, 2009), and choice.

The third most frequently identified CAS property was
adaptation, present in 18.26% of papers. Adaptation was
generated using 29 paradigms, mostly drawn from the bi-
ological and hybrid paradigm classes (15 (51.72%) and 10
(34.5%), respectively). The most frequently utilised indi-
vidual paradigms within these classes were evolution (Born-
hofen and Lattaud, 2009), learning (Fernando et al., 2009),
and swarm intelligence (Leitao, 2009).

Discussion
Our data extraction identified 93 distinct artificial life
paradigms, which were predominantly modelled through ei-
ther agent-based modelling (ABM)(55.65%) or cellular au-
tomata (CA) (18.26%). This facilitates the simulation of
complex ecological or biological models using relatively
simple implementation mechanics, and account for nearly
75% of the primary studies. The remaining 25% of papers
used a diverse set of modelling approaches - 18 distinct ap-
proaches in all. This demonstrates that there is still a sub-
stantial area of research that uses alternative or even mod-
elling paradigms, but that future work is necessary to ensure
that their applicability is fully understood.

While 78.26% of the primary study set identified com-
plex systems properties, 94% of this subset identified at least
one of the top three most frequently occurring properties,
namely, emergence, self-organisation, and adaptation. In
contrast, only 32.17% of papers considered a property out-
side of the top three. This narrow focus indicates a gap
in research where artificial life approaches and paradigms
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could consider a wider range of complex adaptive system
properties such as stability, autonomy, criticality, and self-
regulation among others. For example, autonomy is dis-
cussed in only one primary study where the focus is on mea-
surement and not generation (Seth, 2010). Another exam-
ple is stability, which while considered in four primary stud-
ies, is often discussed without the use of any formal metrics
(Punithan et al., 2011).

This limitation in existing work also translates into a
limitation in evaluation, where in the majority of studies
the main focus is on demonstrating that the desired emer-
gent property occurs, without considering its potential side-
effects as well as other aspects of complexity. The evalu-
ation of existing papers is also limited through the lack of
consideration for scalability, with the majority (84.35%) of
the papers in the primary set not considering scalability in
their analysis, thus potentially limiting the applicability of
the approaches to real-life scenarios.

Complex systems are ubiquitous in a variety of domains
where artificial life paradigms could be easily employed,
ranging from biological or ecological modelling (Punithan
et al., 2011), to project management or the design of logis-
tical networks (Otto and Bannenberg, 2010). Our analysis
identified 32 unique application domains and that 34.78%
of the primary study set fell into the three most frequent ap-
plication domains; simulation (13% of the primary study
set), social modelling (11.3%), and biological modelling
(10.4%). While the remaining number of application do-
mains is fairly large, few papers were published with ar-
tificial life applications within that specific domain, with
single-mention application domains representing 11.30% of
the papers. This shows that artificial life paradigms are con-
sidered in a variety of application domains but that there is
a need for more in-depth analysis of artificial life use within
each domain to identify potential pitfalls related to their use.

Our analysis identified 93 artificial life paradigms that
were employed in our primary studies, and for better dis-
cussion we grouped them into three main categories. We
find that 64.52% of identified paradigms were only utilised
once across the primary study set, and that 46.09% of papers
utilised paradigms from one category and 44.35% of papers
utilised paradigms from two categories. Similar to the dis-
cussion about complex systems properties from above, this
shows that there is a clear gap in employing and validat-
ing artificial life paradigms across a variety of scenarios and
application domains, and in their analysis for resulting com-
plex systems properties. There is also a critical need for a
comprehensive list of artificial life paradigms that captures
the applicability of the paradigm to specific application do-
mains in order to obtain desired properties, with sufficient
modelling and implementation details to allow it to be re-
produced. We consider this systematic literature review as a
first step towards achieving this goal.

Conclusion
We employ a systematic literature review methodology to
identify the overlap between artificial life and complex sys-
tems modeling. Our analysis identifies 93 artificial life
paradigms that are used to model complex systems from
a variety of application domains. Nearly 65% of the
paradigms were only identified once, showing a gap in
their use across a variety of domains that warrants further
study. 22 complex systems properties were considered ei-
ther in the design of the system, and thus facilitated by ar-
tificial life paradigms, or in the evaluation of the system,
and thus potentially caused by the use of a specific artifi-
cial life paradigm. Of the papers that discussed complex
systems properties, only around 30% considered properties
outside the most popular set comprised of emergence, self-
organisation, and adaptation, showing a need for deeper ap-
plication of complex systems theory. Lastly, a significant
gap has been identified with respect to scalability analysis,
with only 16% of the papers considering scalability (either
in terms of the number of entities or their complex behaviors
and interactions) in their evaluation or design. Overall, our
analysis identifies that while there is a broad application of
artificial life and complex systems theories across a variety
of models and domains, there is a need for more in-depth
study of artificial life paradigms and complex systems prop-
erties in order to fully exploit their benefits.
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Abstract

We consider an iterated model of agents playing a two-player
game on a graph. The agents change their strategies as the
game progresses based on anticipated payoffs. Using only the
time series of the agents’ strategies, we determine the pair-
wise mutual information between all agents in the graph, and
use these values as a predictors of the graph’s topology. From
this, we assess the influence of various model parameters on
the effectiveness of mutual information at recovering the ac-
tual causal structure. It is found that the degree to which the
functional connectivity reflects the actual causal structure of
the graph strongly depends on which game is being played
and how the agents are changing their strategies. Further,
there is evidence that the edge density of the graph may also
have some impact on the accuracy of the inferred network.
This approach allows us to better connect the dynamics of the
systems under study with the difference in their functional
and actual connectivity, and has broad implications for the
interpretation and application of information-based network
inference. The methods and analyses described can be gener-
alized and applied to other types of network models.

Introduction
There is a wealth of literature on using information-theoretic
tools to infer the network topology of collections of inter-
acting random variables, particularly in neuroscience (Ito
et al., 2011; Vicente et al., 2011; Lizier and Rubinov, 2012;
Ver Steeg and Galstyan, 2012; Banerji et al., 2013; Sun and
Bollt, 2014; Sun et al., 2015). In many of these works, the
phrase “functional connectivity” is used to underscore the
fact that the actual causal interactions are not always read-
ily inferred from the dynamics of the variables. This is of-
ten considered yet another example of the inequivalence of
correlation and causation. While it appears that functional
connectivity is a useful construct in neuroscience, that may
not be the case is other fields. However, it is interesting to
explore the conditions under which the actual and functional
connectivity may coincide.

We consider a somewhat unorthodox model system to ex-
plore whether and when information-theoretic tools recapit-
ulate the actual topology of a causal graph. Agents are sit-
uated on the vertices of a graph, and allowed to repeatedly

play a two-player, two-strategy, symmetric game. In each
round of the game, the agents may change their strategies
based on their anticipated payoff. Treating the strategies of
the agents as random variables in time, when can we confi-
dently infer the actual connectivity of the graph? This model
system was inspired by conversations with colleagues who
explored the dynamics of games when agents’ perception
of which game they’re playing is allowed to change (An-
tonioni et al., 2018). Such a system is intrinsically inter-
esting to consider, but it has value beyond that; namely in
potential applications. Biologist have modeled interacting
cells (Hummert et al., 2014), organisms (Smith John May-
nard et al., 1979; Smith, 1982; Riechert and Hammerstein,
1983; Nowak and Sigmund, 2004) and even cancer (Bach
et al., 2001; Gatenby and Vincent, 2003; Basanta et al.,
2008; Dingli et al., 2009) as game-playing agents, and game
theory has of course found innumerable applications in eco-
nomics. In both cases, the strategies of the agents may be
readily apparent, while the network itself is obscured. The
ability to infer functional or actual connectivity based solely
on the strategies could lead to more impactful methods of
intervening on these systems.

From a technical perspective, this model offers a num-
ber of useful features: the graph’s topology can be varied,
the rules the agents use to update their strategies can be
changed, and the space of graphs is nicely parameterized by
two bounded variables. Altogether, this provides a number
of ways to tweak the system and observe changes in the ef-
ficacy of network inference. Further, because this model is a
particular type of Boolean network, it seems reasonable that
the results and methods herein could be extrapolated and ap-
plied to more generic settings.

In this work, we describe the basic formalism, and present
early results from simulations1. We observe that the efficacy
of the network reconstruction is dependent on the game the
agents are playing, the rule they are using to update their
strategies, and possibly the density of edges in the graph.
We conclude with a number of possible future directions.

1All code used for these simulations is publicly available at
https://github.com/dglmoore/gomen.
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Methods
Consider a finite collection of agents {A1, . . . , An}. Each
agent Ai is situated at a vertex vi of some simple2 graph
G = (V,E) with vertices V = {1, . . . , n} and edges
E ⊂ V × V . The agents then play some, two-player, two-
strategy, symmetric game with each of their neighbors. We
restrict the games to those characterized by a payoff matrix
of the form

G =
0 1

0 1 S
1 T 0

(1)

with −1 ≤ S ≤ 1 and 0 ≤ T ≤ 2. The elements of this
matrix Gab specify the payoff received by the agent should
they play strategy a against an opponent playing strategy b.
It is assumed throughout that all players are knowingly play-
ing the same game, and that the game does not change. The
strategy played by Ai is denoted si and can be either 0 or 1,
sometimes referred to as cooperate or defect, respectively.
The collection of strategies played by all of the agents is de-
noted s = (s1, . . . , sn).

The game is played in rounds starting with each agent’s
strategy selected uniformly at random. In each round, the
agents play with their neighbors Ni = {j | (i, j) ∈ E} and
accumulate payoff

Pi(s1, . . . , sn) =
∑

j∈Ni

Gsisj (2)

We write this as Pi(s) for compactness. Since the agents
know which game they are playing, they may also consider
the counterfactual payoff they would have received had they
played their alternative strategy ŝi:

P̄i(s) = Pi(s1, . . . , ŝi, . . . , sn) =
∑

j∈Ni

Gŝisj . (3)

Based on the difference between counterfactual payoffs
∆Pi(s) = P̄i(s)− Pi(s), each agent may stochastically
change its strategy for the next round with probability

qi(β; s) =
1

1 + exp (−β∆Pi(s))
, β > 0. (4)

In words, agentAi will use strategy ŝi in the next round with
probability qi(β; s). All agents then synchronously update
their strategies, and a new round is ready to begin. This
process is iterated t times, and a time series of strategies is
generated {s0, s1, . . . , st}.

The outstanding question is to what degree this time series
can be used to infer the topology of the underlying graph. A
number of information-theoretic tools have been proposed
for assessing connectivity in similar situations. The most
popular, particularly among neuroscientists, is transfer en-
tropy or some variation thereof (Ito et al., 2011; Vicente

2Simple here means an undirected graph with no self-loops and
at most one edge between any two given vertices.

et al., 2011; Orlandi et al., 2014). However, in this initial
work we decided to consider a simpler measure. We start
with

I(s+i , sj) =
∑

s+i ,sj

p(s+i , sj) log
p(s+i , sj)

p(s+i )p(sj)
, (5)

the mutual information between agent Ai’s next strategy s+i
and agentAj’s current strategy sj . Since we know that edges
of the graph are undirected, we construct a measure that is
symmetric in the agents:

φij =
1

2
(I(s+i , sj) + I(s+j , si)). (6)

This value is computed for every pair of distinct agents,
i 6= j for i, j ∈ V , and used as a predictor for the exis-
tence of an edge in the graph. If φij ≥ θ for some threshold
0 ≤ θ ≤ 1, we predict that the edge (i, j) exists, and that
it otherwise does not. In a binary classification process such
as this, one method of characterizing the effectiveness of the
classification is in terms of the true-positive rate (TPR) and
false-positive rate (FPR)

TPR =
TP

R
and FPR =

FP

F
. (7)

Here the TPR is the ratio of the number of edges cor-
rectly predicted to exist (TP ) and the actual number of ex-
istent edges (R), while the FPR is the ratio of the number
of edges incorrectly predicted to exist (FP ) and the num-
ber of possible edges which do not exist (F ). The value
of the threshold can be varied continuously over its range
θ ∈ [0, 1], yielding a receiver operating characteristic (ROC)
curve in the TPR-FPR space (fig. 2). The area under the
curve (AUC) acts as a summary statistic for the quality of the
classification. A predictor which is no better than uniformly
random will yield a perfect diagonal with AUC = 0.5. Bet-
ter predictors will yield curves which deviate from the diag-
onal with |AUC − 0.5| � 0. We consider predictors with
AUC � 0.5 to be of high-quality because the ROC curve
reflects over the diagonal if we change the classification cri-
terion from φi,j ≥ θ to φij ≤ θ. In other words, the pre-
dictor was good, but we were using the wrong criterion. It
is important to note that this analysis does not tell us what
the threshold θ should be, though in principle it can be de-
termined. For now, it is sufficient to know only that such a
threshold exists.

Results
We were interested in the relationship between the form
of the game G, the topology of the graph G, and the
rule parameter β. To explore this, we considered 50
agents playing on graphs with one of 5 types of topol-
ogy: a.) Barabási-Albert graphs, b.) Erdős-Rényi graphs,
and the c.) cycle, d.) wheel and e.) lattice topologies. The
Barabási-Albert model (Barabási and Albert, 1999) gener-
ates random graphs using preferential attachment; as new
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Barabási-Albert
(a) m = 1 (b) m = 5 (c) Cycle

Erdős-Rényi
(d) p = 0.04 (e) p = 0.18 (f) Wheel

(g) Lattice

Figure 1: Samples of the topologies considered. The Barabási-
Albert (a-b) and Erdős-Rényi graphs (d-e) are generated non-
deterministically according to edge density parameters m and p
respectively. The cycle (c), wheel (f) and 5× 10 lattice (g) topolo-
gies have only one representative each.

nodes are iteratively added to the graph they are randomly
connected to m existent nodes with a bias toward those with
higher degree; we considered only m ∈ {1, 5} in this work.
The Erdős-Rényi model (Erdős and Rényi, 1959) starts with
the full set of nodes and adds an edge between each pair of
distinct nodes with probability p. We chose p ∈ {0.04, 0.18}
to ensure that the edge density of the Barabási-Albert and
Erdős-Rényi graphs are comparable. The cycle, wheel and
5×10 non-periodic lattice topologies, on the other hand, are
non-random topologies, and are depicted in 1.

Once the graphs were constructed, we considered all
games of the form eq. (1) with S ∈ {−1.0,−0.9, . . . , 1.0}
and T ∈ {0.0, 0.1, . . . , 2.0}. We then generated 100 graphs
according to each of the parameters above for each combina-
tion of game and topology. For the cycle, wheel and lattice
topologies, there is only one graph (up to isomorphism) for
a given number of vertices, so we reran the simulations on
the same topology 100 times. We simulated 10 rounds of
play starting from 100 initial conditions selected uniformly
at random. The initial conditions were generated indepen-
dently for each simulation, i.e. each combination of game,
graph and rule parameter. The time series of strategies in
each simulation of 10 rounds with 100 replicates was used to
generate an ROC curve. The 100 ROC curves for each game

(a) Harmony (b) Hawk-Dove

(c) Stag-Hunt (d) Prisoner’s Dilemma

Figure 2: Receiver operating characteristic curves for four canon-
ical games with (T, S) parameterizations of (a) (1/2, 1/2), (b)
(3/2, 1/2), (c) (1/2, − 1/2) and (d) (3/2, − 1/2) as played by 50
agents on Barabási-Albert graphs with m = 5. In all cases, the
agents employ a threshold function with rule parameter β = 1.0.
Each plot summarizes the results of simulations run on 100 ran-
domly generated graphs. The black curve is the point-wise mean
of the 100 resulting ROC curves, while the blue and orange curves
are those with the greatest and least AUC, respectively. The dashed
gray line represents the curve for a predictor which is no better than
chance.

and topology combination (one for each randomly generated
graph) were point-wise averaged to yield a mean ROC curve.
Finally, the AUC was computed for each mean curve, and a
scaled deviation of that value from the worst-case value of
0.5:

AUC = 2|AUC − 0.5| (8)

was plotted as a heatmap on an S-T plot (fig. 3, fig. 4 and
fig. 5). Here S and T refer to the parameters which spec-
ify a game as in eq. (1). In other words, each point in the
plot corresponds to a different game with the color roughly
characterizing the effectiveness of φij as a predictor for the
existence of the edge (i, j) in the graph.

Discussion
There are a number of notable features apparent in fig. 3.
The plots are roughly symmetric across their diagonals so
that opposite quadrants have similar characteristics. The
nice thing about these S-T parameterization is that each of
the quadrants corresponds to a common two-player, two-
strategy, symmetric game. Counter-clockwise from the
top-right quadrant, the games are Hawk-Dove, Harmony,
Stag-Hunt and Prisoner’s Dilemma. The interesting point
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(a) m = 1, β = 1 (b) m = 1, β = 10

(c) m = 5, β = 1 (d) m = 5, β = 10

Figure 3: AUC heatmaps for games played on Barabási-
Albert random graphs. Each row corresponds to a different con-
nection parameter m ∈ {1, 5}, while the columns refer to the rule
parameter used by the agents β ∈ {1, 10}. Each point in the plot
corresponds to a different game parameterized as in eq. (1) by S
and T . For each game, 100 random graphs were selected and an
average ROC curve was generated. The color represents how much
the AUC under the mean curve differs from the uniformly random
predictor as in eq. (8).

to note is that the games opposite one another have the
same number of pure-strategy Nash equilibria: Harmony
and Prisoner’s Dilemma each have one while Hawk-Dove
and Stag-Hunt have two. On its face, this may not appear
to be relevant to the problem of inferring the topology of
the graph. However, the Nash equilibria play a crucial role
given how the agents are updating their strategies: over time,
the agents tend to settle on playing an equilibrium strat-
egy. This process happens fairly quickly, typically within
the 10 rounds of play simulated in this study. In effect, the
simulations of the Harmony and Prisoner’s Dilemma reach
equilibrium and remain there, though with some amount of
noise induced by the agents’ strategy update rule. However,
the transition to equilibrium takes longer for Hawk-Dove
and Stag-Hunt because they have two equilibria. The re-
sulting time series then provides more information about the
interactions between agents. One additional factor to con-
sider here is that in the two-equilibrium games, it is possible
for domains to form wherein agents in a given domain all
play the same equilibrium strategy while agents in neighbor-
ing domains play a different strategy. The stability of these
domains and the impact they have on the graph inference
problem is something to be investigated in future work.

One apparent problem with the above interpretation is
it suggests that each of the four quadrants of the heatmap
should be filled with the same AUC value, e.g. that every
harmony game should have the same AUC ∼ 0. Of course,
that is clearly not the case (fig. 3(a)). Notice though that the

(a) p = 0.04, β = 1 (b) p = 0.04, β = 10

(c) p = 0.18, β = 1 (d) p = 0.18, β = 10

Figure 4: AUC heatmaps for games played on Erdős-Rényi ran-
dom graphs. Each row corresponds to a different connection prob-
ability p ∈ {0.04, 0.18}, while the columns refer to the rule pa-
rameter used by the agents β ∈ {1, 10}.

classification improves as the game moves away from the
negatively-slopped diagonal within the Harmony and Pris-
oner’s Dilemma quadrants. This effect is due to the agents
using a stochastic update rule which is dependent on the dif-
ference in payoffs of two strategies. As the game moves
further from the negatively-slopped diagonal, the payoff dif-
ferences make differentiating between the strategies more
difficult in games where there is only one equilibrium. As
a result, the agents spend more time in transition to equi-
librium and consequently provide more information about
the topology of the graph. If this analysis is correct, we
should expect to see that increasing the rule parameter β al-
lows the agents to differentiate smaller payoff differences,
and the quadrants of these heatmaps should tend to become
more homogeneous. This is exactly what we see, particu-
larly when edge density of the graphs is low (fig. 3, fig. 4
and fig. 5).

This brings us to the final factor involved in deter-
mining the efficacy of the classification: the edge den-
sity of the graph. When we compare, for example, the
Barabási-Albert graphs with m = 1 (fig. 3(a-b)) to the
Erdős-Rényi graphs with p = 0.04 (fig. 4(a-b)), we see
almost identical structure in the AUC heatmaps. On av-
erage the Erdős-Rényi graphs have the same edge density
to their Barabási-Albert counterparts, i.e. they have about
the same number of edges. The cycle graph (fig. 5(a-
b)) has the same edge density to the Barabási-Albert graph
(m = 1), and again we see almost identical heatmaps. By
increasing the edge parameters for the Barabási-Albert and
Erdős-Rényi graphs, m and p respectively, we can see a
similar comparison for yet denser graphs (fig. 3(c-d) and
fig. 4(c-d)). Again, the Barabási-Albert (m = 5) and
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(a) Cycle, β = 1 (b) Cycle, β = 10

(c) Lattice, β = 1 (d) Lattice, β = 10

(e) Wheel, β = 1 (f) Wheel, β = 10

Figure 5: AUC heatmaps for games played on the cycle, wheel
and lattice topologies. Each row corresponds to a different topol-
ogy while the columns refer to the rule parameter used by the
agents β ∈ {1, 10}. The edge density of the topologies increases
down the column, i.e. the cycle has fewer edges than the lattice
which has fewer edges than the wheel.

Erdős-Rényi (p = 0.18) graphs have similar edge density.
What’s more, the same qualitative change is seen for a sin-
gle type of topology when the edge density changes. For
example, comparing fig. 3(a) to 3(c) or fig. 4(a) to 4(c), we
see fewer harmony and prisoner’s dilemma games admit a
faithful inference. The same phenomenon is observed in
comparing cycles, lattices and wheels (fig. 5), which fur-
ther supports the claim. The graphs have remarkably distinct
topologies even with only 50-nodes. For example, it is dif-
ficult to find any similarity between the Barabási-Albert and
cycle graphs other than edge density. However, it is entirely
plausible that some other topological similarity between the
graphs is causing these effects. Increasing the size of the
graph should lead to increasingly divergent topological fea-
tures. That would allow us to test this claim more fully.

Conclusion
From all of these results, however incomplete, we can be-
gin to draw some insight. It seems profoundly important
that in order to be confident that the reconstructed topol-
ogy – that is the inferred causal structure of the system –
is the actual topology, an outside observer must be privy to

the inner workings of the agents. What game are they play-
ing, and how are they deciding which strategy to use next?
Of course, the simple retort to this is that reconstructions
are failing for the one-equilibrium games because the time
series are not diverse enough. If the observer could assess
this in advance, it might temper or bolster their confidence.
However, it cannot be understated that the rule parameter
plays some role in the diversity of the time series. If the rule
is too stochastic, the time series will be riddled with biased
noise. One possibility is to use similar information-theoretic
tools to infer which game is being played. It’s been shown
in previous work that dynamical agents operating under dif-
ferent rules show distinct patterns of information transfer
(Valentini et al., 2018). If the observer could first apply such
a method to determine the game3, rule, and noise profile,
they may be able to yield more faithful reconstructions of
the topology.

From here there are a number of avenues for further re-
search. The mutual information is a somewhat simplistic
measure for applications like this. We chose it in part be-
cause of this simplicity. Two alternative measures, for ex-
ample, might be conditional mutual information (CMI) or
transfer entropy (TE), (Schreiber, 2000). In preliminary
work, we briefly explored both. The conditional mutual
information approach was problematic in that it required
more substantial computational overhead than we had avail-
able at the time. One method of using CMI is to compute
I(s+i , sj |sij) where sij = {sk|k 6= i, k 6= j}, that is to say
condition the pair-wise mutual information on the strategies
of all other agents. Since our graphs have 50 nodes, that
computation was infeasible using direct approaches. Alter-
native methods of computing CMI, such as the iterative ap-
proaches of (Lizier and Rubinov, 2012; Sun et al., 2015),
may make it viable for future work. Transfer entropy is a
special case of CMI; it would condition on the target agent’s
previous strategies. Both approaches are worth exploring
more rigorously.

In this work, we were interested in methods that required
only one only observe a system and not intervene on it, as in
many cases only observation is accessible to the researcher.
However, it is well understood that observation alone, par-
ticularly in the case of large systems wherein only a small
portion of the state space can be explored, is inadequate
for extracting causal relationships between components of
a system. Interventional methods, such as (Ay and Polani,
2008), are much more effective in such cases, provided you
have the ability to control aspects of the system. Subsequent
work may explore such an approach.

The dynamics of the models we considered here are simi-
lar in many respects to the classic Ising model, with β acting
much like temperature and the payoff matrix eq. (1) behav-
ing similarly to interaction strengths. It is reasonable to ex-

3It may not be necessary to know precisely which game is being
played. Perhaps knowing the number of equilibria is sufficient?
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pect that analogues of heat capacity, entropy, and other ther-
modynamic measures could be related in some way to the
effectiveness of the network inference. Comparing the AUC
with some of these thermodynamic analogues is a possibility
for a future work.

Another advance could be to look at other methods of
quantifying the efficacy of the edge classifications. As the
reader may have noticed, we never considered complete
graphs. The reason for this is that to construct the ROC
curves, you have to compute the false-positive rate. This
value is undefined if your dataset has no negative cases. In
our application, that means there must be pairs of agents that
are not connected.

Two of the most egregious assumptions we’ve made in
this work are that every agent is using the same rule to up-
date its strategy, and every pair of agents is playing the same
game. There is little reason to expect that real-world systems
behave in this manner, and either assumption can be relaxed.
For example, we could associate a different game with each
edge. We have no expectation for how this would affect the
results, but will explore it in the future.

Finally, as with virtually every simulation study, there is
room for more fine-grained parameter sweeps. Our sam-
pling of the S-T space of games was rather coarse; we lim-
ited ourselves to an unreasonably small number of initial
conditions (100 of the 250 possible) for each graph, and we
considered only a handful of graph topologies. All of this
will be greatly expanded in future work.

Ultimately, we see that the difference in functional and
actual connectivity can sometimes be tied directly to the dy-
namical structure of the system. It may be impossible to
know how similar the functional and actual connectivity of
these types of networks are without detailed knowledge of
the dynamics of the agents in the system. This may not be
a surprise to some, but it is important that researchers to ac-
knowledge it explicitly. Without that, it can be all too easy
to blindly apply these network inference methods and over
interpret the results, a sin of which at least the first author is
guilty.
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Abstract

Infiltrating a swarm of artificial or living agents using a sin-
gle monitoring robot could allow for the assessment of their
swarm rules and parameters without the need for any external
infrastructure. The inferred swarm model could then be used
to control these swarms, for example to guide them to safe
areas. In this study we introduce a scheme for autonomous
artificial agents to extract knowledge about the interactions
within a swarm of interest. By infiltrating the swarm of inter-
est with a monitoring robot and constantly measuring the dis-
tance between the infiltrator and its nearest neighbour, the re-
pulsion radius of the swarm agents can be estimated. Though
this method works for a range of tested parameters, it is still
limited to a specific model of interaction.

Introduction
Understanding the rules that give rise to an observed
emergent behaviour typically takes many iterations, either
through trial and error or using automatic tools such as ma-
chine learning (Hauert et al., 2014). Most important, such
studies typically require an external telemetry system that
can track the position of all agents in the swarm over time
(Puckett et al., 2014; Li et al., 2016). In contrast, our aim is
to send a single monitoring robot into a swarm to extract its
rules and parameters. As a first step we show in simulation
how a robot injected into a swarm moving according to a
flocking model based on Couzin et al. (2002) can extract the
repulsion radius of the swarm using only local observations.
Flocking was chosen as it is a well studied swarm algorithm
(Fine and Shell, 2013). In the future, we aim to use the in-
formation learned by the robot, to control the swarm, for
example by moving it in space.

Methodology
In order to simplify the problem, the following assumptions
are made. First, the general structure of the swarm of inter-
est’s interaction rules is known. Second, the unknown part
of the swarm of interest’s interaction rules is the actual pa-
rameter of the rules. Thus, the task of the monitoring agent
is reduced to inferring the unknown parameter’s value.

𝑅" 	≈ 	𝑅% 𝑅" 	> 	 𝑅%𝑅" 	< 	 𝑅%

Figure 1: The different areas which the monitoring agent (red) fre-
quents according to the relative size of Rs and Rm.

This study is conducted through custom-made computer
simulations. In general, a swarm of 50 identical agents are
initiated in a 2D-simulated space. Then, a monitoring agent
is deployed into the same space to interact with the swarm
and collect data. Each simulation is terminated after a fixed
time of 500 simulation seconds.

The behaviours of each agent, including the monitoring
agent, are governed by a modified version of the interaction
rules from Couzin et al. (2002); we neglect the zone of
orientation from that theory. The swarm agents are set
to react to the monitoring agent the same way they react
to their conspecifics. The repulsion radius of the swarm
agents, Rs, which is selected as the unknown parameter, is
fixed for a set of simulations, while the monitoring agent’s
repulsion radius, Rm, is varied.

Results
Observation of simulated flocks suggests found that the
monitoring agent travels in different area w.r.t. the swarm
as Rm varies (see Figure 1). When Rs < Rm, the moni-
toring agent tends to stay outside of the swarm, while, when
Rs > Rm, the monitoring agent tends to stay in the center
of the swarm. When Rs ≈ Rm, the monitoring agent’s po-
sition is more ambiguous compared with the previous two
extreme cases. Figure 2 shows the histogram of the distance
between the monitoring agent and the centroid of the swarm,
which agrees with the qualitative description above. Thus,
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Figure 3: (a) Plots comparing rmin and Rm as a function of Rm

(b) Rm − rmin as a function of Rm, which is maximised when
Rm = Rs. (Rs = 10 in both panels.)

it is possible to estimate Rs by varying Rm and monitor-
ing the area that the monitoring agent frequents. However,
this method requires a global view of the system in order
to measure the distance between the monitoring agent and
the swarm’s centroid. Therefore, we instead investigate lo-
cal measurements–the measurement which the monitoring
agent is able to perform.

One of the monitoring agent’s local measurements that is
affected by the value of Rm is the average distance from the
monitoring agent to the nearest swarm agent, rmin. Figure
3(a) shows that rmin and Rm increase at a different rate.
When Rm is lower than Rs, the increment rate of rmin is
lower than that of Rm. In contrast, when Rm is higher than
Rs, rmin is increasing at a higher rate than Rm. As a result,
the difference between rmin and Rm is maximised when
Rm is equal to Rs, see Figure 3(b). Therefore, Rs can be
estimated by varying Rm until the difference between rmin

and Rm is maximised.
This method of estimating Rs works for a range of Rs
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Figure 4: Estimated Rs as a function of true Rs

values. Figure 4 shows that the method introduced is capable
of correctly guessing Rs in the range of 7 to 15 units. When
Rs < 7, the measurements of rmin are more noisy, affecting
the accuracy of the method.

Conclusions
This study suggests that it is possible to study the interac-
tions between agents in a swarm of interest by infiltrating the
swarm with a robot instead of monitoring the swarm with an
external system. In the case of the model selected in this
work, the repulsion radius of the swarm agent can be es-
timated by varying the repulsion radius of the monitoring
agent until a specific targeted value is maximised.

However, the conditions in which this method was tested
are limited, and there are many issues to address before a
practical implementation would be possible. Firstly, it was
tested in the selected model of interaction. Also, the swarm
agents have to perceive the monitoring agent as one of their
own. In the future, we aim to expand the parameters and
rules that can be inferred by the monitoring agent, as well
as expanding to swarm behaviours behind flocking. We also
hope to study the benefits of applying the information gained
to manipulate the swarm of interest.
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Abstract

Wolfram famously developed a four-way classification of CA
behaviour, with Class IV containing CAs that generate com-
plex, localised structures. However, finding Class IV rules
is far from straightforward, and can require extensive, time-
consuming searches. This work presents a Convolutional
Neural Network (CNN) that was trained on visual examples
of CA behaviour, and learned to classify CA images with a
high degree of accuracy. I propose that a refinement of this
system could serve as a useful aid to CA research, automat-
ically identifying possible candidates for Class IV behaviour
and universality, and significantly reducing the time required
to find interesting CA rules.

Some Cellular Automata (CAs) are capable of unexpect-
edly complex behaviour despite being based on simple rules.
Wolfram’s early investigations into the behaviour of one-
dimensional Elementary CAs (ECAs) led him to propose a
four-way qualitative classification scheme for CAs accord-
ing to the behaviour they exhibit from random initial condi-
tions (1984): Class I CAs converge to a homogeneous state;
Class II CAs generate periodic or stable structures; Class III
CAs generate random or chaotic patterns; and Class IV CAs
produce complex localised structures.

The CA community has devoted a great deal of effort to-
ward understanding these classes of behaviour, refining their
definitions, and cataloguing interesting CA rules (see e.g.
Li et al., 1990). However, determining whether a CA is in
Class IV is not only difficult, it is undecidable (Culik and
Yu, 1988). Nonetheless, classifying CAs in this way, or
with related schemes, remains a useful and succinct way to
describe the behaviour observed in CAs qualitatively, and
identify CAs worthy of further exploration.

Below I demonstrate how a convolutional neural network
(CNN) can successfully classify one-dimensional CAs into
the four Wolfram classes.

Methods
CNNs were chosen for this task due to their notable suc-
cess in computer vision tasks (Krizhevsky et al., 2012). This
CNN takes greyscale images of CA behaviour as input, and
outputs the Wolfram class of the image. The first iteration,

Figure 1: Classification certainty of Network II on novel CA
examples. Network II successfully classified 99.8% of 6,145
novel images in the test set.

Network I, consisted of nine layers: a 16x59x118 convo-
lution layer; 16x59x118 ReLU layer; 16x58x116 convolu-
tion layer; 16x58x116 ReLU layer; 16x1x1 pooling layer;
16-node flattening layer; 256-node fully-connected layer; 4-
node fully-connected layer; and 4-node SoftMax layer1. The
network was built in Mathematica 12 and trained on a set of
32,768 120x60-pixel images of the evolution of all 256 ele-
mentary CA rules from different random initial conditions.
Network I was trained for two hours on four CPU cores,
at which point accuracy on the training set had exceeded
99.93%.

A second CNN with the same structure, Network II, was
trained on 3- and 4-colour totalistic CA rules as well as the
ECA data, in order to increase the network’s exposure to
Class IV behaviour. The network was built in Mathematica
12 and trained on a new set of 16,384 ECA examples, plus
an additional 8,192 samples drawn from eight known Class
IV 3- and 4-colour totalistic rules (codes 1041, 1388, 1635,
1815, 2007, 2043, 2049, and 1004600). This network was
trained for two hours using four CPU cores, at which point
accuracy on the training set exceeded 99.2%.

Network III, again using the same structure, was trained
on larger images with a resolution of 200 by 120 pixels. The
training set included an additional 8,192 images generated

1This architecture was inspired by a project by Thales Fer-
nandes on identifying ECA rules from images: https://
community.wolfram.com/groups/-/m/t/1417114
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Figure 2: The four highest-entropy inputs to Network II
from a test set of k=5, r=1 examples.

from k=5, r=1 totalistic rules to provide further examples
of Class IV behaviour2. This network was trained for three
hours on four CPU cores, at which point accuracy on the
training set exceeded 99.7%.

Results
Network I achieved an accuracy of 100% on a test set com-
posed of 4,096 additional ECA and totalistic CA examples
(see Figure 1). Testing with images from previously unseen
k=4, r=1 totalistic CAs produced poor results (18.6% accu-
racy), with Class IV inputs frequently misclassified as Class
II/III.

Network II was trained with the larger data set in an effort
to improve generalisation. This network correctly classified
99.8% of a test set of 6,145 novel images of Class IV 3-
colour totalistic rules; Figure 1 shows some examples. The
network was not able to generalise to 5-colour CAs, classi-
fying a set of 1,024 examples with 57.6% accuracy. Figure
2 shows four of the highest-entropy k=5, r=1 test set inputs
(where the class determination was the most uncertain). The
high-entropy inputs from the test set suggest the most com-
mon errors are mistaking visually complicated Class II CAs
for III or IV, and Class III CAs for Class IV.

Network III, having been trained on images derived from
5-colour CAs, was 99.9939% accurate on a 16,384-image
test set including 2, 3, 4 and 5-colour CA images; in the
entire test set only one image was misclassified (a Class III
was mistaken for Class IV). For this network, the highest-
entropy images from the test set were all Class IV examples,
but they were all correctly classified (see Figure 3).

Conclusions and Future Work
Network II’s ability to generalise to new examples of Class
IV behaviour in the space of 3-colour and 4-colour totalistic
rules suggests that CNNs can be a useful aid in the search

2These data were generated by rules found through
a random search and classified manually. Details of
the CA rules and methods used in this project can
be found at https://github.com/thorsilver/
Neural-Networks-for-CA-Classification

Figure 3: The highest-entropy images in the test set accord-
ing to Network III. All but one of the images in the 16,384-
image test set were correctly classified.

for CA complexity. A suitably-trained CNN could identify
likely Class IV candidates quickly and significantly reduce
the numbers of CA rules that need to be manually checked.
This CNN can make classification judgments using only a
single visual input, as compared to other methods that may
require time-consuming statistical tests.

Network III demonstrates that only a few examples of be-
haviour in higher-complexity rule spaces are necessary to
allow the network to identify Class IV rules in that space.
However, success in 6-colour CAs remains elusive; these
CAs are nearly universally seen as Class IV by the network
due to their increased visual complexity. Work is ongoing
with deeper networks trained on larger images, with the goal
of producing a network capable of detecting candidate Class
IV behaviour even in unexplored CA rule spaces.
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Abstract

Biochemical reactions underlie all living processes. Like
many systems, their web of interactions is difficult to fully
capture and quantify with simple mathematical objects.
Nonetheless, a huge volume of research has suggested many
real-world systems–including biochemical systems–can be
described simply as ‘scale-free’ networks, characterized by
power-law degree distributions. More recently, rigorous sta-
tistical analyses upended this view, suggesting truly scale-
free networks may be rare. We provide a first application of
these newer methods across two distinct levels of biological
organization: analyzing an ensemble of biochemical reaction
networks generated from 785 ecosystem-level metagenomes
and 1082 individual-level genomes (representing all domains
of life). Our results confirm only a few percent of biochem-
ical networks meet the criteria necessary to be more than
super-weakly scale-free. We perform distinguishability tests
across individual and ecosystem-level biochemical networks
and find there is no sharp transition in the organization of bio-
chemistry across distinct levels of the biological hierarchy–a
result that holds across network projections. This suggests the
existence of common organizing principles operating across
different levels of biology, which can best be elucidated by
analyzing all possible coarse-grained projections of biochem-
istry in tandem across scales.

Introduction
Broido and Clauset recently developed a methodology to
compare the degree distributions of network projections of
different complexities, classifying the degree to which they
are scale-free on a scale from ”Not scale-free” all the way to
”strongest” [1]. This provides a framework for statistically
analyzing many projections of a given system to determine
how well scale-free structure describes the real underlying
system when projected onto its different coarse-grained rep-
resentations.

Herein, we build from the work of Broido and Clauset
with specific application to the problem of characterizing
biochemical systems. A novelty in our approach is rec-
ognizing that in order to really understand the structure of
real-world biological systems, the relevant scale(s) for per-

forming such analysis must also be considered. In particu-
lar, many biological systems are hierarchical, with networks
describing interactions across multiple levels. For exam-
ple, one may study the biochemistry of individual species,
but ultimately the function of an individual in a natural sys-
tem depends on a complex interplay of interactions among
the many species comprising its host ecosystem. In this
way, biochemistry is hierarchically organized into individ-
uals and ecosystems. Indeed, much discussion about uni-
versal properties of life has shifted focus from individuals to
ecosystems as the relevant scale best capturing the regulari-
ties of biological organization [2, 3]. It is unclear at present
whether analysis of biochemical networks at the level of
individuals or ecosystems will best uncover their structure
and permit identifying generative mechanisms for biology,
or whether all levels must be considered simultaneously.

Results
Utilizing the framework developed by Broido and Clauset
[1], we perform statistical analysis of an ensemble of
biochemical systems generated from 785 ecosystem-level
metagenomes and 1082 individual-level genomes (repre-
senting all three domains of life). We use the full set of bio-
chemical reactions encoded in each (meta)genome to con-
struct eight distinct network representations of each respec-
tive biochemical system. This resulted in 8656 network pro-
jections for the 1082 individual-level biochemical datasets,
and 6280 network projections for the 785 ecosystem-level
biochemical datasets. We determine whether or not these
datasets are scale-free, and analyze the aspects of them, and
their diverse projections, that tend to lend themselves to be
more or less scale-free.

Our results indicate most biochemistry at the individ-
ual and ecosystem-level is characterized by networks that
are ”super-weakly” scale-free (Fig. 1). That is, while the
power-law is better than other models for fitting the shape
of their degree distributions, the power-law is not itself a
good model. When doing a goodness-of-fit test, we find
that the majority of network representations of each ge-
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Figure 1: The vast majority of individual and ecosystem
level networks are not ”scale-free”. Most datasets are su-
per weak, indicating that when compared to other models, a
power-law distribution is a better fit. However, the power-
law distribution is not a ”good” fit for most dataset network
representations. Overlaid values show the percent of net-
works of each level which fall into each category (±2SD.).

nomic/metagenomic dataset have p < 0.1, indicating there
is less than a 10% chance that our data is truly power-law
distributed. This effectively rules out the possibility that our
data is drawn from a power-law shaped degree distribution,
despite the fact that, when compared to other distributions
through log-likelihood ratios, 99% of all datasets do not fa-
vor alternative heavy tail distributions for the majority of
their network-projections

While other literature [4, 5] has advocated for unipar-
tite networks (with all compounds participating in a reac-
tion connected), we find that these networks overestimate
power-law goodness-of-fit p-values and α values compared
to reaction and bipartite networks.

Furthermore, we demonstrate that using random forest
distinguishability analyses on a combination of all the re-
sults of scale-free analyses completed in this work can pre-
dict, better than chance, whether the data comes from indi-
viduals or ecosystems.

Discussion
The fact that multiple levels and multiple projections of bio-
chemistry reveal common structure suggests universal prin-
ciples may be within reach if cast within an ensemble theory
of biochemical network organization.

Whether or not the observed structure is truly a universal
property of life’s chemical systems is more difficult to con-
clude. Achieving such a theory requires recognizing that,
unlike simple physical systems where statistics over indi-
vidual components is sufficient to describe and predict their
behavior, biological systems require additional information
about the structure of interactions among their many com-
ponents. Perhaps incorporating additional reaction data on

the particular flows of atoms between compounds would fur-
ther elucidate regularities of biological structure. But how to
project this structure onto simple mathematical objects that
can be quantifiably characterized and compared remains a
central problem of complex systems science. In physics, the
relevant coarse-graining procedure is well understood, but
we are not so far in complexity science: the first hurdle we
must traverse is to identify the proper coarse-grained net-
work representations for analysis. Existing literature cau-
tions against using unipartite network projections, as it is
argued they can lead to ”wrong” interpretations of system
properties such as degree in biochemical networks [6, 7].
We find instead that whether or not this conclusion should
be drawn is highly dependent on the particular characteris-
tics of degree or the degree distribution under consideration.

The similarities and differences in the structure of differ-
ent projections provides insight into the actual structure of
the underlying system of interest. In physics we have be-
come accustomed to one unique coarse-grained descriptor
providing insight into the structure of a system. It may be
that to really understand complex interacting systems, such
as the systems of reactions underlying all life on Earth, we
must forget the allure of simple, singular models. Instead,
to characterize the regularities associated with living pro-
cesses, we should perform statistical analyses over many
(still relatively simple) coarse-grained projections.
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Abstract

Focusing on the challenge of fostering the self-assembly of
socio-technical networks, we present the application of Mor-
phogenetic Engineering principles in this domain to a 2D
spatial case study involving a team of first responders. Our
model and simulation illustrate how members of a rescue
team could be guided via hand-held devices toward better co-
ordination and positioning at appropriate locations, based on
peer-to-peer communication and local landmarks in the en-
vironment (such as incidents or exits), without the need for
a centralised control centre. Using Raspberry Pi devices, we
illustrate this scenario in various situations that require quick
decision-making to control and manage. Our work suggests
the possibility of novel forms of bottom-up self-organisation
among groups of users and machines, in contrast to top-down
imposed hierarchies and policies.

Introduction
Crises are inevitable. They range from large-scale wildfires
to injured individuals in a crowd. The ability to respond and
manage a crisis properly is crucial to limit casualties, pre-
vent further damage, and help minimise subsequent risks.
The specificities of each emergency scenario, which often
includes misleading or incomplete information, make the
coordination of rescue services particularly difficult. Com-
pounding the problem, crisis situations can change rapidly
as new events also occur unexpectedly (secondary hazards).
Emergency responders must react and adapt to a dynami-
cally shifting situation in real time by modifying their plans
accordingly. For example, if someone breathes undetected
toxic gas during an operation and is incapacitated, other
agents must react by protecting themselves, evacuating ev-
eryone else from the new risk area, and take care of the in-
jured. Detrimental interference among agents’ actions may
also arise from simultaneous task assignments leaving each
other unfinished, or when a new urgency makes agents de-
viate from a global objective. Despite all these pitfalls, it is
crucial to be able to constantly reevaluate the dynamic situa-
tion and make appropriate decisions toward reducing impact
on human life and infrastructure.

So far, many research works focused on the amount of
data and information that can be collected and processed in

real time to improve the assessment of emergency situations
and decision-making accuracy. The recent development of
new technologies has contributed to making this endeavour
increasingly affordable. New methods range from pervasive
sensors found in everyday devices to fast communication
and sophisticated AI algorithms able to aggregate multiple
streams of data and recognise patterns. In an emergency
context, the Internet of Things (IoT) is thought to have a
positive impact (Yang et al., 2013), whether during prelim-
inary evaluation of an incident, critical to a plan-based ap-
proach (Chen et al., 2008), or during the course of an event
to track and monitor people’s actions, locations, and con-
siderable other information (Scheurer et al., 2017; O’Flynn
et al., 2018; Ciabattoni et al., 2017).

For instance, 3D mapping of a disaster inferred from data
gathered by bystanders (Sadhu et al., 2016) can help design
an appropriate strategy. Indoor activity can be reconstructed
from correlated sounds and inertial data captured with wear-
able devices, or outdoor drones. Such technologies could
detect a first responder lying on the ground, coupled with
perturbations in their vital signs, which would prompt their
peers to treat this as a new incident and/or casualty. Active
landmarks (mobile sensors) can also be placed by the agents
(Palmieri et al., 2016) at the start of an operation to obtain
a more precise picture of the unfolding incident. Informa-
tion can also be extracted from social media feeds (Conrado
et al., 2016). Smart systems have been designed to gather
data from a variety of sources (Yuan and Detlor, 2005) and
analyse the information they contain (Bartoli et al., 2015),
paving the way toward an emergency response information
system (ERIS) that can handle big data.

Information-gathering hardware and software systems
also have shortcomings. Problems include difficulty to use,
the need for special training and maintenance of key techno-
logical components, a high price tag, and lack of reliability
in critical circumstances. Moreover, the flood of informa-
tion sent to a main hub, the “Emergency Operations Centre”
(EOC), from an ERIS can become rapidly overwhelming.
This information is used centrally to design an appropriate
strategy and decide which actions or movements need to be
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undertaken to achieve an effective response. Task assign-
ments are then decided and communicated back to the corre-
sponding field agents. However, both decision-support sys-
tems and decision makers can be overburdened by the huge
number of input and output features. The complexity of in-
novative information technologies often occupies too much
of the EOC agents’ cognitive space (Weidinger et al., 2018).

In this paper, we argue that self-organisation properties
can be exploited and put to work to alleviate these diffi-
culties. Endowing field agents with more autonomy and
local power can greatly support an EOC toward achiev-
ing efficient coordination. In fact, reversing the terms, the
EOC would only assist the bottom-up emergence on the
ground, or be required when treating radically disruptive
global events. Self-organisation properties allow the system
to negotiate new environmental and organisational perturba-
tions without falling into an “error state” (Serugendo, 2009),
in which carefully crafted rules assigned to each agent have
been rendered obsolete. Disturbances can involve discon-
nection of agents from the ERIS network, misunderstand-
ings between agents, and so on. Typically, the responsibil-
ity to detect and identify such events would fall to the EOC
(Chen et al., 2008), which would have to modify agents’
instructions to adapt to the dynamically evolving situation.
The measures taken should then steer the system back into a
“rational state” in which coordination is considered efficient
again. By contrast, self-organised systems are composed
of many independent entities (here, field agents) interacting
with each other and their local environment, and creating a
collective behaviour that may also fulfil a goal such as the
emergence of a functional structure. All entities follow the
same set of instructions with possible variants. The outcome
essentially relies on the multitude of local choices made by
the agents via their interactions, instead of centrally assigned
instructions unable to take into account sudden problems or
failures.

There are only few examples of self-organised emergency
response systems. One of them features adaptive collabo-
ration without global awareness in a scenario of search and
rescue, where dynamically changing factors determine the
likelihood for help requests to be sent or accepted (Frasheri
et al., 2018). In this work, however, the situation does not
require the formation of a coherent modular network struc-
ture. Collective structure formation can be helped by mod-
els based on gradient propagation (Doursat, 2008; De Wolf
and Holvoet, 2006), i.e. the peer-to-peer exchange and mu-
tual update of positional information values. This concept
inspired by developmental biology has been invoked to pro-
pose self-organising robotic swarms (Doursat and Sánchez,
2014) and socio-technical networks (Ulieru and Doursat,
2011), in which complex and persistent structures emerge
from connectivity choices and “hop counters” propagated
among nodes. A developmental approach based on self-
assembly mechanisms controlled by the same ruleset or

“genome” in every agent combines the advantages of robust-
ness and adaptability of the growing structure.

While this article does not intend to offer an alternative
to existing centralised systems, it aims to show how they
could be complemented by a layer of decentralisation. It
also illustrates the feasibility of applying an abstract model
of network self-assembly to a more concrete spatial and dis-
tributed context via idealised emergency scenarios. Finally,
it makes a step toward more practical use cases that employ
Raspberry Pis (RPis) to represent devices carried by field
agents. The rest of the text is organised as follows. First,
we introduce the abstract model and its customisation to a
2D environment; then, we describe the experimental soft-
ware/hardware setup of our application; finally, we discuss
the results obtained so far and sketch out future work.

Model
In this section, we briefly introduce the abstract model of
programmable network self-organisation (Ulieru and Dour-
sat, 2011) on which the present work is based. Then, we
present a customisation of this model to 2D space and its
adaptation to a distributed external environment.

Abstract Model Overview
The core of the model is a feedback loop going through three
steps corresponding to the three main components of net-
work self-assembly: links, ports and gradients. All nodes of
the network possess a predefined set of input/output pairs of
ports, denoted by (X,X ′), (Y, Y ′), and so on. Each port is
in one of the following states: ‘closed’ (not accepting con-
nections), ‘open’ (accepting) or ‘busy’ (open but not accept-
ing). A link can connect two nodes i and j via open and
matching output/input ports only, e.g. X ′i ↔ Xj . Optional
“port tagging” can further restrict connections during run-
time by creating specialised port subtypes and mutual com-
patibility rules, e.g. X ′ai cannot connect to Xb

j . Nodes ex-
change integer gradient values over the links, denoted by
(x, x′) and so on, to convey positional information. These
values are hop counters that increase by 1 every time they
cross over to another node. Each node calculates the min-
imum of all received values within a given port type (and
other correction rules apply). A small program, or ruleset,
is embedded in each node, taking in input local gradient and
environmental values and opening/closing ports in output.
The ratio of both values tunes the propensity of the structure
to react to the environment. This common ruleset consti-
tutes the “genome” of the network, as it controls the patterns
of connectivity in each node based on information received
from the neighbours—hence the “shape” of the network.

In sum: (a) gradient values are exchanged and updated
(G step), possibly several times; then, (b) ports may be
opened/closed depending on these values (P step); and
(c) new nodes may be added/removed and linked/detached
where ports are available/busy (L step); then these steps are
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Figure 1: A request-sending scenario involving three nodes. Each
answer is tagged with the corresponding line number from Algo-
rithm 1. Here all nodes possess the same open ports X and X ′, and
exchange requests to find matching ports to connect to. A request
is sent to the opposite port of a recipient node, which may wait
for an answer to its own request before replying in turn. In this
case, node 1 declines a request as t3 > t1, triggering a cascade of
other accept/decline answers. Eventually, a link is created between
nodes 2 and 3, which then start exchanging gradient values.

Algorithm 1 Request Receiving
1: procedure IS VALID(timestamp, value)
2: if (timestamp > local timestamp or

not has compatible port(value) or
has waiting request) then

3: return false
4: else
5: has waiting request← true
6: state← wait main thread()
7: if has changed(state) then
8: has waiting request← false
9: return false

10: else
11: return true

repeated. Complex deterministic structures can emerge from
the change in time of all node states, guided by their com-
mon ruleset. The graph builds itself from the bottom up fol-
lowing the sequence of all alternatives that nodes face and
the actions they take based on local information only.

Distribution and Concurrency
To prevent interference and race conditions among nodes
during these steps, which would put the network into an
inconsistent state, we also distinguish between different
timescales. In this framework, gradient propagation G must
perform faster than program execution P inside each node,
itself faster than link creation L. The implication is that
several rounds of G routines can be processed before one

round of P is done; and similarly several P’s before one L.
Clearly, if it were not the case then concurrent changes in
two different parts of the network could become incompat-
ible, i.e. happen too fast for each one to take into account
the other. While this could be remedied by running the algo-
rithm on a central host based on a sequential node scheduler,
it will not be robust in a truly asynchronous scenario where
each node runs on its own device.

Once this temporal hierarchy is established, no concur-
rency issues remain within the first two steps, and further
synchronisation is not required. Gradient updates and prop-
agation G are atomic operations independent from the previ-
ous state, so that the specific order in which values are sent
and received is not critical. Port operations P only change
the nodes’ internal states locally and do not immediately af-
fect peer nodes (that is, before L is triggered). Link creation
L, however, can still harbour race conditions since several
nodes can be simultaneously sending and receiving requests
for new connections and each outcome can influence sub-
sequent behaviour. This may cause problems such as when
a node accepts an incoming request at the same time that
its outgoing request to create a link is accepted on the same
port, yet the port can only hold one link; or when two com-
peting ports receive links at the same time, whereas one
should have caused the other to be closed and vice-versa.

To create new links, nodes regularly broadcast requests
containing a list of their open ports to their peers. Recipi-
ents compare this list to their own available ports to identify
matching pairs. If at least one match is found, the node sends
back a positive response with the port identified and both
nodes acknowledge the new link. To prevent concurrent link
requests, we designed a priority mechanism (Algorithm 1)
which assigns an order to these requests. It enables nodes
to process them sequentially and individually, delaying re-
sponses for other link requests until completion of the cur-
rent one. The sequential order is determined by two criteria
(ordered by importance): 1) the origin of the requests (‘sent’
requests are ranked higher than ‘received’ requests); and 2)
the time stamp (the older the request, the higher the ranking).
Prioritising sent requests ensures that the ports advertised in
the requests are kept open until the reception of the response.
In the case where a node can accept a received request after
sending its requests to other nodes, leading to port closures,
recipients would then have to check that matching ports are
still available before creating a link, generating additional
communication. This criteria however only gives a local or-
der, which can be contradictory across different points of
view. For example, if node i sends a request to node j and
vice-versa, and both are prioritising a different request, this
will create a deadlock. The second criterion based on time
stamps prevents this problem by creating a global priority
order. Furthermore, to reduce unnecessary waiting, agents
only set aside the first compatible request received while im-
mediately declining the remaining requests.
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Embedded in Space
While the previous model was designed at an abstract level
for all kinds of graph topologies, we propose here to ap-
ply it to 2D Euclidean space. In this context, new com-
mon features are added such as the positions of nodes and
objects, and an equation to move nodes in space, derived
from distance-based interactions and forces among agents
and environmental landmarks. Nodes represent agents in
space and self-organise into complex shapes guided by their
common genetic ruleset, with possible variations depend-
ing on the environmental cues they encounter. In the ex-
amples presented here, these external influences have been
placed in such a way that the simple rules followed by the
agents (e.g. connecting to peers, accepting requests, moving
in certain directions) create “interesting” structures. In the
remainder of the text, we use the term ‘agent’ indifferently
to refer to a ‘node’ or its associated ‘field agent’.

Interactions: Interactions between agents in 2D are the
same as in the abstract method. Distances are not taken into
account during communication as nodes are actually rely-
ing on a pervasive broadcasting system with ID-tagged mes-
sages to emulate point-to-point connections. However, this
assumption could be weakened to constraint the channels of
communication to a certain region of space based on a max-
imum radius of signal reception, which would impose limits
on the possible combinations of nodes.

Agents are now also able to perceive high-level features
(such as casualties, fire exits, etc.) in their local environ-
ment via sensors. Sensors are activated whenever specifi-
cally associated features are present in the detection range,
in which case appropriate forces are applied on the agent.
Depending on the “mode” of the sensors, these forces are
either attractive, aiming to keep the agent within the prox-
imity of a feature of interest, otherwise they are repulsive.
Agents can also adjust external influences, following their
ruleset, by changing a sensor mode as needed. For exam-
ple, at first an incident can attract agents to encircle it; but
when the area becomes overcrowded, rules change the sen-
sor mode of unneeded agents and, as a result, scatter them
over a large area. This strategy increases the region covered
by perceptual agents, which improves the system’s overall
response to possible secondary hazards. An agent may also
dispose of its sensors, i.e. desensitise itself to certain types
of landmark and specialise its behaviour.

Movements: Agents move to create spatial chains and
graphs that follow the corresponding abstract topological
chains and graphs created by the G-P-L connectivity rou-
tines, and based on an optimal length for each link. For ex-
ample, if there is a chain of three agents connected through
their (X,X ′) ports, they should move in 2D space in such a
way that the middle node positions itself between the other

Figure 2: Example of local connectivity configuration. Node 1
only has one connection (on the X ′ port), while it requests the
coordinates of node 2 and the centre of mass of nodes 3 and 4 in
order to calculate its new position (see text). In this case, it ends up
being on the other side of node 2 with respect to the other nodes.

two (details below). In addition, nodes can also be attracted
toward, or pushed away from, particular landmarks that they
sense in the environment. Free agents disconnected from
their peers can move in arbitrary ways. Combined together,
neighbourhood and landmark interactions give rise to forces
that reshape the network’s spatial structure in accordance
with both internal connectivity and external environment.
However, converging to a global spatial layout that satis-
fies all these constraints can be impossible when they are
contradictory, resulting in a frustrated state. In this case, a
suboptimal equilibrium characterised by a nonzero but small
global force can still be achieved. In sum, application of
spatial rules is intertwined with the connectivity routines to
ultimately drive the graph growth.

The core of the motion algorithm is as follows: at each
internal step, an agent i asks each one of its connected peers
k to send (a) its position (denoted by

−→
U k in Eq. 1) and

(b) the average of the positions of k’s “output” peers (from
the viewpoint of i as an “input”) via the same type of link
(denoted by

−→
U
′(i)
k ). In the example of Figure 2, node 1 sends

a positional request to node 2 via the X port; then node 2
asks its linked neighbours (here 3 and 4) their positions via
the X ′ port. The total displacement vector of i is calculated
from this information, possibly combined with the coordi-
nates of certain landmarks

−→
U l detected by the sensors:

∆
−→
U i =

1

n

(
n∑

k=1

−→
V k + α

−→
W k

)
+

1

m

m∑

l=1

β
−→
W l (1)

where node
−→
U i has n neighbours andm landmarks in its de-

tection range;
−→
V k and

−→
W k, described below, represent two

types of displacements generated by “forces” among agents;−→
W l reflects the same second type of force applied to agents
by landmarks; and the α and β factors (resp. 4 and 1 here),
adjust the balance of these three constraints.

−→
V k =

{
(
−→
U k −

−→
U
′(i)
k ) + (

−→
U k −

−→
U i) if

−→
U
′(i)
k 6= −→0

−→
0 otherwise

(2)
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−→
V k drives node i toward a position symmetrically disposed
from

−→
U
′(i)
k with respect to Uk (if Ui indeed has second-

degree neighbours beyond k, otherwise
−→
V k has no effect).

−→
W k =

(
||−→U k −

−→
U i|| − d0

) −→U k −
−→
U i

||−→U k −
−→
U i||

(3)

−→
W k (resp.

−→
W l) is a vector pushing node i at an optimal dis-

tance d0 from node k (resp. landmark l). This distance de-
pends on the type of the element, whether it is a node or a
landmark, and whether the latter is attractive or repulsive.
In the case of repulsive landmarks, the distance is set to a
high value such that the node is driven out of the landmark’s
detection range and influence.

Finally, the resulting displacement vector ∆
−→
U i is con-

strained by the motion capacity of the node represented by
a maximum distance dmax, and must be renormalised if it
exceeds this distance:

∆
−→
U i ←




dmax

∆
−→
U i

||∆−→U i||
if ||∆−→U i|| > dmax

∆
−→
U i otherwise

(4)

Gradient loops: One potential problem with this model
that must be avoided is the development of loops exclu-
sively composed of one port type, as this would lead to an
infinitely increasing gradient propagation. In the abstract
model, where a single graph grows from the incremental ad-
dition of nodes, one at a time, blocking strategies can pre-
vent this problem by closing specific ports at appropriate in-
stants. For example, chains can be constrained to expand
in only one direction (e.g. either X or X ′), thus prevent-
ing both ends from connecting together and forming a loop.
In the asynchronous 2D case, however, nodes are already
all present as physical entities at the start, and several nodes
may potentially trigger concurrent graph growths simultane-
ously. Therefore, embryonic structures at equivalent stages
of development should be able to cooperate and merge into
a larger graph to avoid unnecessary duplicates (e.g. sev-
eral arcs of circular node chains forming around the same
landmark). However, since port closing does not discrimi-
nate between loop development and graph merging, another
mechanism must be implemented into the model to specif-
ically prevent single-port loops. To this goal, we augment
the gradient’s information with the identifier of its source
node. As a result, each extremity of a chain also possesses
the node ID of the other end. The link creation routine L is
also amended as follows: when a node broadcasts to its peers
connection requests containing a list of its open ports, it also
verifies for each peer that it is, precisely, not the source of
the opposite gradient, otherwise that peer must be ignored.

Experimental Setup
In this section, we present a software and hardware imple-
mentation of the model described above with a case study to

illustrate its behaviour. First, a reduced scenario including a
small number of physical agents, here eight RPis, shows the
applicability of the model to a distributed environment and
how it can lead to a real-world application. Then, a more
comprehensive setup using simulated agents demonstrates
complex self-organisation. In both scenarios, we focus here
on the main features of the interactions between agents and
for now ignore realistic details such as obstacles.

Model Implementation
Throughout the remainder of the paper, a software agent
(SA) refers to an autonomous program that can run indi-
vidually on a field agent’s device or among other SAs on
a central computer. In both cases, SAs embody the nodes of
our model, whereas environmental agents (EAs) represent
external landmarks that can affect the settings or evolution
of a simulation and its real-world deployment.

Environmental agents and EOC: In a full-fledged dis-
tributed system, each EA would only contain a partial de-
scription of the local physical environment surrounding a
landmark. For the needs of our implementation, however,
where generic RPis stand in for field devices but lack actual
sensing/actuating capabilities, we revert some of the decen-
tralisation principles and concentrate the EAs into a single
EOC running on a laptop. This EOC also contains the com-
mon ruleset specified at the start and broadcast to all SAs. As
both the list of landmarks and the agent’s rules can change
during the simulation, the latter is broadcast again while the
former is kept centrally.

After each move, an SA sends to the EOC a list of its ac-
tive sensors. The EOC responds with the new state of each
sensor, associated with the landmarks’ positions if any has
been detected. Another role of the EOC is to display a global
view of the current simulation to be observed and monitored
by the modeller. To this purpose, software agents send a no-
tification after every action (such as gradient value updates,
link creations, movements, etc.), which are then aggregated
by the EOC into a global picture.

In summary, while landmarks should not normally be pro-
vided by the EOC but detected directly by the field agents,
the ability to continually broadcast ruleset updates and pro-
vide a visualisation panel remain useful features in a con-
crete scenario. The states and positions of field agents
can be used alongside other sources of information by the
EOC to improve the situational awareness of possible central
decision-makers in real time. The broadcasting functional-
ity enables the EOC to react to critical changes by overriding
outdated rulesets.

Software agents: SAs are given a code that determines
how they interact, process the information received and
make decisions. While the architecture and program of the
model’s core G-P-L routines is immutable, the modeller can
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Algorithm 2 Agent Ruleset
1: open X , close X ′, Y, Y ′

2: open C, close C ′

3: turn on Sc, Sx . casualty and exit sensors
4: circle size← 8
5: if sc = 0 then . if no casualty detected
6: open X
7: set attractor Sc

8: if sc > 0 and x < circle size then
9: open X,X ′

10: close C,C ′ . prioritise encircling
11: if x > 0 then
12: close Y
13: if x = (circle size −1) then
14: open Y ′, C ′, X ′-tagged-by-sc
15: if x′ = (circle size −1) then
16: open Y,X-tagged-by-sc
17: if x ≥ circle size and x′ = 0 then
18: close X,X ′, Y, Y ′

19: set repellent Sc

20: if c = 0 then
21: turn off Sx

22: if c > 0 then
23: open C ′, turn on Sx

24: if (sx > 0 and c > 0) or (c = 0 and x = 0 and c′ > 0)
then

25: close C ′ . adaptive chain length

focus on the “genomic” ruleset embedded inside P, which is
specific to each use case. Unlike many agent-based mod-
elling solutions, composed of a set of agents in a shared
container and randomly activated by a scheduler, each in-
dividual SA is run in a process of its own. It also possesses
its own graphical interface to display practical information
to the field agent (more details in Results). For this experi-
ment, we used versatile RPis to host the SAs. For real-world
use by field agents, these devices could be later augmented
with sensing capabilities or replaced by other digital assis-
tants such as mobile phones. Here, sensor information re-
lated to the field agents themselves (such as GPS coordinates
or orientation in space) is simulated locally.

Use Case Scenario
In our test scenario, a crowd has gathered in some venue
to watch a community event. The venue is a static grid of
dimensions 700×500 with an exit at position (350, 10). Ini-
tially, field agents are stationed arbitrarily in space. They
have a detection range of dr = 200 and at each internal
step they can cover a maximum distance of dmax = 20.
Their goal is to detect any incident and contain it by form-
ing a circle to make space for the arrival of first aid. After
completing the isolation process, the remaining field agents

form a chain between the incident and the exit to facilitate
the evacuation of the casualties. Here an incident happens
at location (400, 450), requiring eight agents to encircle it.
Once the structure has stabilised, another incident is added
at (250, 150) that agents must address.

In this context, the ruleset (Algorithm 2) was designed so
that the agents’ connectivity behaviour ultimately solves the
above challenge (Fig. 3). To this goal, they are endowed
with three pairs of ports: (X,X ′), (Y, Y ′) and (C,C ′),
alongside two high-level sensors: Sc, activated when a casu-
alty is inside the agent’s detection range, and Sx, triggered
by an exit. Both X and C ports are opened first so that idle
agents can contribute to a circle (connected viaX) or a chain
(via C). When an agent is part of a growing circle, both X
and X ′ are open, enabling concurrent circles to merge to-
gether and new idle agents to be added in no particular or-
der. When the X-chain reaches a sufficient size, appropriate
nodes connect via Y to complete the circle (lines 13-16).
Furthermore, the (X,X ′) ports are tagged with the value of
Sc, i.e. the casualty’s ID, restricting possible connections to
peers near the same casualty. If too many agents are around
the casualty, excess agents disconnect themselves from the
structure and move away (lines 17-19). After the circle con-
tainment process is complete, and if there are other agents
remaining, the C ′ port is opened to trigger the growth of a
chain in the direction of an exit (Fig. 4).

Results
First, we implemented this scenario in eight RPis (Fig. 3a,b)
and a central laptop (Fig. 3a,c) to observe the model’s be-
haviour in a more concrete context. Since the small num-
ber of agents was just enough to encircle the first casualty,
the scenario was stopped at this point (no exit chain was
formed). Each RPi independently executed one SA, while
the computer held the EOC and list of EAs (here, one casu-
alty and one exit). Figure 3b shows screenshots of the sub-
jective views from three of the eight devices. This visualisa-
tion interface is composed of the local environment and sub-
graph perceived by the corresponding field agent (e.g. land-
marks and connected peers) along with personal informa-
tion, such as its connectivity state. The top bar also displays
the direction and distance to the next calculated position.

Through this first trial, we wanted to evaluate the collec-
tive ability of agents to consistently develop a robust shape
over multiple runs, solely based on their local actions. SAs
were not assigned predetermined locations neither in 2D nor
in the graph; instead, they were given the same program (in-
cluding Algorithm 2 at the core of the P routine) and were
driven via these rules and their interactions toward forming
a specific and stable (albeit temporary) network topology.
Moreover, although the order of link requests, sensor activa-
tions and, ultimately, graph nodes was not deterministic and
produced significant variations at each new simulation, the
final overall circle structure was reliably the same.
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(a)

(b)

. . .

(c)

Figure 3: First experiment with eight RPis. Agents (in dark blue)
discover an incident (in red) and encircle it. Links represent de-
tection via sensors (in cyan) or interactions with other agents (in
green). (a) Physical setup: eight RPi’s communicate with each
other and a laptop. (b) Three of the agents’ subjective views, show-
ing the local connectivity and landmark, as displayed on each de-
vice. Directions to reach the next calculated position are featured
in the top bar. (c) Global view on the central computer. Both types
of views also indicate the state of ports and gradient values.

In a second experiment, 15 SAs were simulated on a sin-
gle machine (Fig. 4). While this setup is clearly not equiva-
lent to the constraints of running on multiple asynchronous
devices, it nevertheless resulted in the same type of circle
and chain structures. As for the precedent evaluation, the
resulting global structures were consistent throughout the
runs. Figures 4c,e are representative of these graphs, while
intermediate steps differ according to the specific agents’ in-
teractions and locations. Based on this, we could make a few
interesting observations. First, the ability to collectively re-
act and grow appropriate graphs is triggered by the detection
of landmarks. Rules are designed to prevent matching pairs
of ports from connecting when agents are roaming freely in
the initial state (lines 1, 2). This situation is unlocked when-
ever a casualty sensor is activated (lines 8-16). Here, when

(a)

(b) (c)

(d) (e)

Figure 4: Timeline of a simulation with 15 agents on one machine.
(a) Agents are randomly scattered in 2D space (not all visible here),
then an incident happens (in red): the nearest agents detect it (green
links) and start sending requests to peers to contain it (red links).
(b) The incident is encircled, then a meandering chain (blue links)
has formed past the exit (green triangle) and breaks up (dashed
link). (c) Part of the chain straightens while other nodes detach
from it. (d) A second event requisitions the idle agents. (e) End of
the simulation: the two incidents are contained.

an incident occurs (red disc), five field agents detect it (green
links) and open their X ′ port (Fig. 4a). This port acts as a
recruiter attracting more field agents toward the point of in-
terest. Once sufficiently near, agents behave similarly and,
if enough are present, the circle is closed (Fig. 4b). Here,
two extra agents are still within detection range of the event
(longer green links) but are moving away.

Then, the relative influence of internal gradient values
with respect to external events (sensor values) is reflected in
the ruleset. Here the circle formation results purely from the
former, whereas its particular location is guided by the latter.
The additional chain structure also stems from the port logic,
whereas its exact length varies with the distance between
landmarks. After encirclement, the other agents form a long
7-node chain (Fig. 4b) until node k comes within detection
range of the exit (green arrow). This causes k to discon-
nect from its successor (dashed link) and break up the chain.
The loose end of the chain disassembles, while forces among
the remaining consecutive nodes make the chain straighten
(Fig. 4c). This causes j to draw near to the exit and con-
nect directly to it, which in turn releases k and allows it to
participate in other events (Fig. 4d,e).
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Finally, priorities among specific parts of the structure can
be hard-coded in the rules. For example, a node belonging
to a circle could close its C port (line 10) to avoid being
enrolled in a chain. On the contrary, a node belonging to
a chain keeps its X port open so that it stays available for
a circle. This type of rule asymmetry results in promoting
circles before chains to represent the fact that containment is
considered more important than evacuation in this scenario.
In fact, after forming the first chain, node i was poached and
recruited into a new circle around the second casualty, while
j remained chained to the exit and i (Fig. 4e).

Conclusion and Future Work
In this paper we showed how agents could self-organise and
form consistent structures according to their environment
without top-down directions from a central control. The
agents adapted their behaviour as a result of local or dis-
tant events, without the need to assess their own usefulness.
For instance, if a global sight of the whole circle is blocked
by smoke or because it is too big, appropriate assignments
and positions are automatically computed by the model.

We presented an example where a first responder team
deployed in a simplified representation of some venue pro-
vides protection to possible casualties and facilitates emer-
gency evacuation. A reduced scenario with a small number
of RPis was performed to verify the model’s behaviour in
a context closer to reality. We also simulated an extended
version to highlight interesting properties and the ability of
the model to accommodate a second casualty without the
need to overwrite the rules. Furthermore, as coordination is
handled by the port and gradient logic, the field agents are
better able to focus on concrete value-added actions and less
preoccupied about coordination.

For future work, several directions can be envisioned. The
model could be integrated into a crowd simulator to anal-
yse its behaviour in a more complex environment. The use
of real floor plans instead of a square lattice to represent
the environment would also help reduce the gap between
reality and simulation. Field agent roles could be diver-
sified (e.g. police, paramedic) to further regulate interac-
tions based on expertise, while different types of sensors
(e.g. toxic gas detector) could be carried only by certain
agents. Link requests could also be limited to the nearest
neighbours, instead of broadcast to all, to reduce the need
for field agents to move in order to accommodate the forces
resulting from the structure.
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Abstract

An object-oriented combinator chemistry was used to con-
struct an artificial organism with a system architecture pos-
sessing characteristics necessary for organisms to evolve into
more complex forms. This architecture supports modularity
by providing a mechanism for the construction of executable
modules called methods that can be duplicated and special-
ized to increase complexity. At the same time, its support for
concurrency provides the flexibility in execution order neces-
sary for redundancy, degeneracy and parallelism to mitigate
increased replication costs. The organism is a moving, self-
replicating, spatially distributed assembly of elemental com-
binators called a roving pile. The pile hosts an asynchronous
message passing computation implemented by parallel sub-
processes encoded by genes distributed through out the pile
like the plasmids of a bacterial cell.

Introduction
Since its beginning, the field of artificial life has been con-
cerned with the twin problems of the origin of life on Earth
and its evolution into forms of increasing complexity. Be-
cause these problems are among the most important in sci-
ence, the idea that experiments with artificial chemistries,
organisms, and ecologies hosted on computers might substi-
tute for direct observation of events from the lost history of
the early Earth remains extremely seductive. Still, progress
has been slower than many might have expected, and arti-
ficial life’s (arguably) most compelling demonstrations are
already several decades old. It follows that a new approach
is needed. In this paper we describe an artificial organ-
ism constructed using an object-oriented combinator chem-
istry. While more complex than any previously described,
it demonstrably possesses a system architecture compatible
with its evolution into still more complex forms.

Phylogenetic reconstructions indicate that all life on Earth
descends from a last universal common ancestor (LUCA)
that existed as early as 3.8 billion years ago (Glansdorff
et al., 2008). This organism was probably a chemical au-
totroph living near a geothermal vent. Notwithstanding its
likely inability to synthesize amino acids, it was already
quite complex, containing an estimated 355 genes. Signifi-
cantly, like all of its descendants, it possessed the molecular

machinery needed to transcribe DNA into RNA, and trans-
late RNA into proteins. Fossil stromatolites show that by
3.7 billion years ago, the tree of life rooted at LUCA had
branched many times, yielding a diversity of more complex
organisms occupying a range of niches in complex ecologies
(Nutman et al., 2016).

Although the mystery of its origin is paramount among
the open questions in our field, the question of how an or-
ganism of LUCA’s non-negligible complexity evolved into
a diversity of still more complex forms may be more im-
mediately amenable to investigation using the artificial life
approach. In software engineering terms, did LUCA possess
a system architecture that facilitated its further evolution? If
so, what were the essential characteristics of this architec-
ture? Could an artificial organism with an architecture pos-
sessing these same characteristics be designed? Would an
artificial organism so designed placed in an artificial world
where it was forced to compete with other organisms of the
same kind for resources evolve into a diverse ecology of still
more complex organisms, given enough time? We believe
that the answers to the first, third and fourth questions are all
‘yes’ and these beliefs motivate the present work. As for the
characteristics of LUCA’s system architecture that allowed
it to evolve into more complex forms, two of the most likely
are discussed in the section that follows.

Accumulation of Complexity
It has been proposed that a sustained increase in complexity
of the most complex entities of an evolving population is a
hallmark of open-ended evolution (Taylor et al., 2016). Al-
though this idea seems very compelling, it begs the question
of how complexity is defined. In this section, we assume a
specific definition for complexity and describe two classes
of mechanisms that together explain its accumulation in an-
cient lineages—the first are the source of its increases; the
second mitigate its cost.

The Kolmogorov complexity of a string is defined as the
length of the shortest program that prints it. Unfortunately,
Kolmogorov complexity’s value as a measure of the com-
plexity of artificial organisms is limited because random
strings require longer programs than non-random strings. A
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Figure 1: Modularity facilitates increases in complexity by
allowing duplication and specialization of modules. Pro-
cesses are executable modules that concurrency allows to
be executed in different orders. In a concurrent system, du-
plication of processes can increase redundancy, while du-
plication followed by specialization can increase degener-
acy. These mitigate the cost of increased complexity by in-
creasing robustness. Parallelism mitigates the cost of in-
creased complexity by decreasing the time an artificial or-
ganism needs to reproduce.

measure that discounts randomness is required. The logical
depth of a string is the time required to print it given its short-
est representation (Bennett, 1988). Because random strings
are incompressible, they are their own shortest representa-
tions, and have low logical depth.

Now consider a string that is a compressed representation
of a decompression program. When the program is applied
to the string, it prints itself. It follows that the program plus
string system is a quine with logical depth equal to its repli-
cation time. The implication is profound—if complexity is
equated with logical depth, then (absent parallelism) com-
plex organisms require more time than simpler organisms to
reproduce. It follows that complex organisms are at a disad-
vantage relative to simpler organisms in zero sum competi-
tions for resources.

Because this is a bold assertion, it’s worth noting that in
the natural world, complex organisms are not intrinsically
better at staying alive either. Indeed, the theory of con-
structive neutral evolution posits that only the variance in
complexity of organisms has increased over time; its modal
value has not (Carroll, 2001). There are innumerably more
simple organisms than complex organisms (no matter how
you count) and organisms as complex as ourselves merely
occupy the tail of a very broad distribution.1

Increases in complexity in individual lineages are intro-
duced by evolutionary “ratchets,” devices which increase
complexity in ways that cannot be reversed (Luke et al.,
2011). Although there are others, the most important ratch-
ets are duplication and specialization. By means of these
devices, complexity accumulates in lineages over time irre-
spective of whether or not it confers an adaptive advantage
(see Figure 1). Sometimes its does; more often it doesn’t.

According to this theory, complex organisms exist primar-

1“That which does not kill us makes us stranger.” — Trevor
Goodchild, Aeon Flux.

ily due to the fact that life on Earth is ancient. Generally
speaking, they do not survive by virtue of their complexity;
they survive despite it. For this reason, we believe that an ar-
tificial organism capable of open-ended evolution must pos-
sess a system architecture in which both complexity increas-
ing ratchets and factors mitigating the costs of complexity
increases can be formulated. The essential characteristics of
the system architecture are modularity and concurrency.

Modularity exists at many levels in the biochemical ap-
paratus of the cell. Protein structural domains, individual
proteins, protein complexes and protein interaction networks
have all been described as “modules” (Pereira-Leal et al.,
2006). Significantly, there are examples of increased bio-
logical complexity originating from the duplication and spe-
cialization of modules at each of these levels.

If modularity provides the modules that are duplicated and
specialized to increase complexity, then concurrency allows
the modules to be composed in ways that mitigate the costs
of those increases. Executable modules are processes and
concurrency is the property of a system that allows processes
to be executed in different orders without affecting the re-
sult. More precisely, concurrency allows processes to be ex-
ecuted in partial orders defined solely by data dependencies.
This flexibility increases robustness.2 While the connection
between modularity and evolvability has often been empha-
sized, the importance of concurrency to an evolvable system
architecture has not been previously noted. This is probably
because concurrent execution is the default for biochemi-
cal systems. However, this is not true of computational sys-
tems. Indeed, to our knowledge, there is no artificial organ-
ism apart from our own (see Figure 2) that replicates using
operations that can be performed in different orders.

A system is redundant if it contains multiple instances of
the same component and if working instances can substitute
for broken instances in the event of failure. Duplication cre-
ates multiple process instances and concurrency allows one
instance to execute instead of another, yielding redundancy.

A system is degenerate if it can solve the same problem
in different ways (Edelman and Gally, 2001). Concurrency
supports degeneracy because it allows a process derived by
duplication and specialization of an antecedent process to
execute instead of the antecedent. Redundancy and degen-
eracy increase robustness because they allow organisms to
survive component failure and respond in a variety of ways
to complex environments.

Parallelism is the simultaneous execution of processes on
multiple processors. Absent a global clock, parallelism is
impossible without concurrency; absent parallelism, com-
plex organisms are at a disadvantage relative to simpler or-
ganisms in the competition for resources, since they require
more time to reproduce.

2‘Robustness’ in the engineering sense, not in the sense it is
used in evolutionary biology, where it is generally understood to
mean stability of the genotype-to-phenotype mapping.
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Figure 2: The artificial protocell is a moving, self-
replicating, spatially distributed assembly of 1855 primitive
combinators called a roving pile. Its genome consists of 10
genes represented by zippers that are distributed through out
the pile like the plasmids of bacterial cells. Methods in the
cytoplasm are executed in parallel and in parallel with those
in the composome, which execute concurrently.

Autocatalytic Set

Combinators which return monadic values are the building
blocks of programs in functional programming. They dif-
fer from other notional program building blocks, e.g., byte-
codes, in that monadic combinators do not require additional
address operands to implement computations which would
require statement-level control in imperative programming,
e.g., iteration. Like polypeptides in biochemistry, programs
exhibiting complex behavior can be constructed from com-
binators simply by sequencing them.

Object-oriented combinator chemistry (OOCC) is an
artificial chemistry with composition devices borrowed
from object-oriented and functional programming languages
(Williams, 2016). Actors are embedded in space and subject
to diffusion; since they are neither created nor destroyed,
their mass is conserved. Actors can associate with one an-
other by means of groups and bonds. This allows working
sets to be constructed and the actors in these working sets to
be addressed in different ways. Actors use programs called
methods, constructed from combinators, to asynchronously
update their own states and the states of other actors in their
neighborhoods. The fact that programs and combinators are
themselves reified as actors makes it possible to build pro-
grams that build programs from combinators of a few prim-
itive types using asynchronous spatial processes that resem-
ble chemistry as much as computation.

A composite combinator can be represented as a binary
tree with primitive combinators as leaves and interior ver-
tices signifying Kleisli composition (>=>). In OOCC, the
compose primitive combinator joins two trees with (>=>)
while the decompose primitive combinator splits a non-leaf
tree into its two subtrees. Composite combinators can be
promoted to executable methods using the unquote primi-
tive combinator.

A zipper is an implementation of a data structure that al-

lows it to be traversed and updated without mutation (Huet,
1997). All zippers consist of three parts. The front repre-
sents the portion of the data structure that has already been
traversed, the back represents the portion yet to be traversed,
and the focus is a data item between the front and the back
that can be examined or replaced.

A composite combinator’s simplest assembly sequence
builds it by adding one primitive combinator at a time via
Kleisli composition, i.e., it is a right fold with (>=>). This
produces a lopsided tree that can be implemented as a list
zipper. Both the back and the front of the zipper are com-
posite combinators with the primitives comprising the front
composed in reverse order. The zipper’s focus is a single
primitive combinator.

In a reified implementation in OOCC, a next bond joins
the back and front while a hand bond joins the back to the
focus. The zipper is traversed by pushing the focus onto the
front (using compose), and popping a primitive combinator
from the back (using decompose). This primitive combina-
tor becomes the new focus.

A reversed copy of a composite combinator can be con-
structed by traversing its zipper representation. This is ac-
complished by replacing the front with a pair of fronts.
These are connected to the back with prev and next bonds.
At each step of the traversal, the focus is pushed onto the
first front and a primitive combinator from the neighbor-
hood with type matching the focus is pushed onto the second
front. This process is repeated until the back consists of a
single primitive combinator, at which point the pair of fronts
represents a reversed original and a reversed copy. These
can (in turn) be reversed (producing a non-reversed original
and non-reversed copy) by a second traversal of the zipper
in the opposite direction. This requires creation of a pair
of backs. The second back (initially a primitive combinator
from the neighborhood with matching type) is joined to the
first back by making it a member of the first back’s group.3

Note that all of this is accomplished using a very small
number of operations that push (and pop) primitive combi-
nators and make (and break) bonds. Significantly, by us-
ing zippers, we eliminate the need for pointers to characters
within arbitrarily long string representations of programs,
e.g., as in Hickinbotham et al. (2011).

The copying process is implemented by six methods; see
Figure 3 (left). Initially, the front and focus of a zipper repre-
senting a composite combinator to be copied are both prim-
itive combinators (the first two forming the composite). The
following operations are performed sequentially:

• AcsA creates the second front by finding a primitive com-
binator matching the front in the neighborhood and creat-
ing the next bond.

3A group is used instead of a hand bond so that the form of the
input to method acsE is distinguishable from the form of the input
to method acsC.
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Figure 3: Six stage process used to synthesize methods and
copy zippers showing changes to zipper conformation and
function of each method in the parallel pipeline (left). The
addition of six zippers representing the methods implement-
ing the process itself yields an autocatalytic set (right).

• AcsB traverses the zipper in the forward direction, extend-
ing the pair of fronts representing the reversed original
and reversed copy. At each step, the copy is extended us-
ing a primitive combinator of matching type found in the
neighborhood.

• AcsC adds the final pair of primitive combinators to the
pair of fronts leaving the zipper without a focus and with
a back consisting of a single primitive combinator.

• AcsD creates the second back by finding a primitive com-
binator in the neighborhood matching the first back and
joining it to the first back’s group.

• AcsE traverses the zipper in the backward direction, re-
versing the pair of fronts by popping primitive combina-
tors off both of them and pushing these primitive combi-
nators onto the pair of backs.

• AcsF finishes the reversing process and uses the first back
to construct a zipper in the initial state. AcsF then (in
effect) flips a coin. If the result is heads, acsF unquotes
the second back, promoting it to a method. If the result is
tails, acsF uses the second back to a construct a copy of
the original zipper in the initial state.

If the six copying methods acsA–acsF are placed in the
world with a zipper representing a seventh method, then half
of the time, the zipper representing the seventh method will
be copied. The other half of the time, an instance of the
seventh method will be synthesized. Once the world con-
tains multiple copies of the zipper representing the seventh
method, the six copying methods will begin to execute in
parallel, forming a production pipeline for inert (zipper) and
active (method) instances of the seventh method.

At this point, an interesting possibility suggests itself. If
the six copying methods acsA–acsF are placed in the world
with six zippers representing the copying methods them-
selves, then the twelve entities will form an autocatalytic

set (Farmer et al., 1986). Over time, the six methods will
use the six zippers to construct additional copies of both
methods and zippers. The methods and zippers are the spa-
tially distributed components of a modular, concurrent, par-
allel, self-replicating system; see Figure 3 (right). However,
despite these noteworthy attributes, the autocatalytic set is
not a bona fide artificial organism because it does not segre-
gate its components from the components of other systems,
and absent this compartmentalization, Darwinian evolution
is impossible.

Membranes
After elemental building blocks, reaction catalysts, and
molecules for storing energy and information, compartments
are probably the next most important ingredient in the recipe
for life. Given their amazing utility, it is remarkable that, in
our universe, we basically get them for free. This is due to
the existence of lipid compounds that, when placed in water,
spontaneously assemble into liposomes, vessels defined by
bilayer membranes. Yet membranes are not uncomplicated.
Consider the problem of how to make one grow. To insert a
molecule into a lipid bilayer, a set of forces must be applied
on the lipid molecules adjacent to the point of insertion to
create a gap and these forces must propagate through the
bilayer. They must be combined with the attractive forces
the lipids exert on each other and the forces exerted on the
membrane by the cytoplasm. This mass spring system re-
quires a physics far more complex than the rudimentary one
underpinning OOCC, which has no analog of force.

However, there is a still harder problem associated with
growth. In order for a cell to grow, two different actions must
be coordinated. First, the volume must increase. This can be
done by adding something to the cytoplasm. Yet if pressure
is to remain constant, the membrane must also increase in
area. Complicating matters, the cytoplasm’s volume and the
membrane’s area must increase at different rates. Assuming
a spherical cell, an increase in the volume by ∆V requires a
corresponding increase in surface area by

∆A = π(r3 + ∆V )
2
3 −πr2

which depends on the cell’s radius, r. Given the dependence
on r, it follows that there is no single local operation that
can maintain constant pressure by pairing imports to both
cytoplasm and membrane.

Fortunately, membranes are not the only way to achieve
the compartmentalization necessary for the creation of life.
In fact, in the physical universe, a thing as simple as a water
droplet in oil can function as a compartment. 4 In a com-
putational universe, a compartment is simply a data struc-
ture for representing a compact, spatially embedded set. Us-
ing a Jordan curve to represent membership in such a set

4Sokolova et al. (2013) have demonstrated transcription and
translation in E. coli lysate contained in water-in-oil droplets.
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by partitioning space into two disjoint regions, one (inside)
containing the set’s elements, the other (outside) containing
everything else, is merely one possibility.

Roving Piles
North, east, south and west are new relations in OOCC on
multisets of actors, or groups. We will call the edges of
group relations, links, to distinguish them from the edges
of actor relations, which we call bonds. As with actors and
bonds, groups can possess at most one link of each type.
East and west are inverse relations, i.e. E(x,y) = W (y,x);
the same is true of north and south. Because they corre-
spond to the four cardinal compass directions, links of these
four types are called cardinal links. Cardinal links are used
to connect base groups. Up and down are a second inverse
relation on groups that can be used to represent a stack of
additional groups above any base group. A base group is a
group without a down link; a base group without an up link
is said to be uncovered. A roving pile is a connected com-
ponent of base groups embedded in the 2D lattice together
with the groups contained in stacks above them. The set of
base groups form the pile’s footprint and base groups with
one or more empty cardinal links form its boundary.

In OOCC, methods in the same stack execute concur-
rently but not in parallel; they compete for a shared pro-
cessor resource in zero sum fashion. However, methods in
different stacks in the same pile execute in parallel. So that
piles can move and grow, and so that actors within piles can
freely mix, groups in piles are subject to the following three
operations:

1. Diffusion. A non-base group can be moved to an adjacent
stack.

2. Retreat. An uncovered base group on the boundary can be
moved to an adjacent stack if its removal from the foot-
print will not split the footprint into separate connected
components.

3. Advance. A covered base group on the boundary can be
replaced in the footprint by the group above it and used to
extend the footprint in the direction of an empty cardinal
link.

Ideally, these operations would be implemented as de-
scribed above and performed at random. Unfortunately, the
retreat and advance operations, as described, cannot be im-
plemented using only local rules.

Determining whether or not the removal of a group from
the footprint will split the footprint into separate connected
components is inconsistent with an implementation on an
ACA substrate since it is a function of non-local proper-
ties of the cardinal link relation. For example, the footprint
might consist of base groups forming a square with sides
one group wide and n groups long; see Figure 4 (left). Al-
though it is clear that any single group can be removed with-
out splitting the footprint, this can only be determined by
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Figure 4: Even though it would not split the pile’s foot-
print, an uncovered base group at P cannot join the stack to
its east because this cannot be determined by local analysis
alone (left). In contrast, an uncovered base group at Q can
do so because it would not split the subset of the footprint
within its Moore neighborhood (red). Although a covered
base group at A can advance the footprint east (and C is in
the footprint) no link to C will be created (middle). In con-
trast, because there is a path between X and Z in the subset
of the footprint contained in the Moore neighborhood of Y
(blue), a covered base group at X can advance the footprint
east and create a link to the base group at Z. Because the
evolution of roving pile shape is governed solely by local
rules, pile footprints can overlap (right). However, actors in
overlapping neighborhoods cannot interact.

traversing a path of length 4n−1 links. For this reason, the
implementation of the retreat operation in OOCC is based
on a stronger (sufficient but not necessary) property. More
specifically, an uncovered base group can be removed if and
only if it will not split the subset of the footprint contained
in its Moore neighborhood into separate components. This
stronger property can be enforced using only local rules.

Implementation of the advance operation presents a simi-
lar problem. To understand this, consider a roving pile with
a square footprint like the one described above, but with
a single group removed; see Figure 4 (middle). In princi-
ple, an advance operation could fill the gap, completing the
square. However, this would require a process able to de-
termine whether or not base groups adjacent to the advance
site are part of the same pile as itself. Again, this can only
be done by traversing a path of length 4n− 1 links. The
solution is to perform an exhaustive enumeration within the
neighborhood surrounding the advance site; see Figure 5.
This is done to avoid (as much as possible using local rules
only), the situation where spatially adjacent regions of the
footprint are not connected.

Observations of a working implementation show that rov-
ing piles remain flat (low average stack height) and con-
nected. Smaller piles (those containing less than fifty actors)
constantly evolve in shape while rapidly moving around the
lattice on random walks. Holes created by expelling ac-
tors in uncovered base groups are quickly filled. Larger
piles extend and retract pseudopod-like extensions but re-
main largely immobile in aggregate.

Four primitive combinators were added to OOCC to serve
as an interface to the roving pile data structure:

• Safe fails if the actor it is applied to cannot be removed
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Figure 5: A covered base group at X with an empty north
link can be replaced in the footprint by the group above it
in the stack. Now unlinked, this advance group can be used
to extend the footprint northward to N. This requires map-
ping the footprint in the neighborhood of N using search.
Any base groups discovered at NW (left), NN (middle) and
NE (right) become the advance group’s west, north and east
links. The group that replaced it in the footprint at X be-
comes the advance group’s south link. Corresponding ad-
vance operations are performed in the other three cardinal
directions. The four together depend only on the topology
of the footprint inside a 5×5 neighborhood centered on X.

from the pile without splitting the pile’s footprint. It is
used as a guard for actions that change actors’ positions
in the pile or expel actors from the pile.

• Expel removes an actor from the pile. The actor becomes
invisible to actors inside the pile and visible to actors out-
side the pile. This action fails if the actor cannot be ex-
pelled without splitting the pile’s footprint.

• Request creates a proxy group representing a request for
the pile to import an actor of the same type as the actor it
is applied to. It fails if it is applied to an actor which is
not a primitive combinator.

• Seed creates a new pile containing a single group.

Artificial Protocell
Recent work has described liquid droplets containing en-
zymes catalyzing growth that spontaneously fission into two
equal sized droplets upon reaching a critical size (Zwicker
et al., 2017). The authors (and others) suggest that droplets
like these could form the basis of an artificial protocell in
vitro. The possibility of designing a roving pile with anal-
ogous behavior that could form the basis of an artificial
protocell in silico leads us to ask whether an autocatalytic
set comprised of method and zipper instances of acsA–acsF
could be hosted in a roving pile. A viable protocell hosted
in a roving pile would contain both the autocatalytic set and
the primitive combinators needed to synthesize it. These
primitives would be consumed during the process of copying
methods and zippers, but be replenished by pairing compose
actions that consume primitives with request actions that
replace them while also yielding geometric growth. This
growth would culminate in binary fission. Assuming that
the components of the mother protocell are divided among

its two daughters at random, then the probability that both
daughters will be viable becomes closer and closer to one as
the mother’s size increases.

The approach sketched above seems like a simple and
elegant pathway to an artificial organism possessing mod-
ularity, concurrency and parallelism. Unfortunately, there
are several practical difficulties. First, the phenomenon of
droplet fission is based on the fact that instability increases
as droplet size increases. Because an analogous mechanism
devised for roving piles would require the computation of
the non-local property of pile size, there can be no simple
mechanism for pile fission. However, even if a mechanism
could be devised, the pile size of the mother protocell re-
quired to reasonably guarantee the viability of both daugh-
ters would still be quite large (in the tens of thousands). For
both of these reasons, a different solution was sought.

Absent splitting a mother into two equal-sized daugh-
ters, a daughter must be constructed, method-by-method and
zipper-by-zipper, in a process more like budding than fis-
sion. An efficient construction process would export, to the
daughter, one method and zipper instance of each gene, and
the primitive combinators necessary to synthesize both. To
keep track of what has already been exported, and to recog-
nize when the daughter has received the full complement of
components, the mother protocell needs to maintain a check-
list of some kind. We call the group of actors comprising and
managing this checklist, the composome, since it serves as
the protocell’s repository of compositional information.

The simplest composome would consist of the methods
implementing the export and budding processes, and a set of
composites (one per gene) to represent the checklist. The
copying process in the cytoplasm would translate zippers
into composites, and each of these would be exported to
the daughter as a composite, method or zipper; compos-
ites exported as composites would be used to construct the
daughter’s composome. Composites in the mother’s com-
posome would be marked with self-bonds during the export
process to indicate which composites, methods and zippers
have been exported and which have not. After the full com-
plement has been exported, the bond between mother and
daughter (now viable) would be severed.

Although the approach sketched above works, it has
shortcomings. First, it is clearly inefficient to use com-
posites to represent methods and zippers since each has the
same length as the method and zipper it represents. Second,
requiring two identical copies of each gene (a zipper in the
cytoplasm and a composite in the composome) would un-
dermine evolvability, since a point mutation in either copy
would render the protocell non-viable. Recognition of these
shortcomings lead to a better approach, described below.

If the composites constructed in the cytoplasm possessed
short, unique, non-executable prefixes, and these prefixes
could be used to form the checklist in the composome, then
the protocell would be far more efficient. Since there is only
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one copy of each gene (a zipper in the cytoplasm), evolv-
ability is not undermined; see Figure 6. This design, for an
artificial organism with an architecture featuring modular-
ity, concurrency and parallelism, has been implemented and
tested in OOCC. It efficiently and reliably replicates across
multiple generations and possesses only 10 genes:

• CopA–copE perform operations that are identical to
acsA–acsE except for three small differences. First,
copA–copE are all prefaced by a quit combinator that
is executed when the method is exported to the daughter
composome. This causes the method to quit the compo-
some and join the daughter cytoplasm. Second, copA–
copE are modified so that the fronts, focii, and backs of
all zippers are contained inside single groups. This avoids
the tangling that results when the separate parts of a spa-
tially extended zipper joined by bonds occupy different
branches of a pile. Third, all actions that consume primi-
tives in the pile are balanced by requests to replace them.

• CopF does the final compose operation needed to com-
plete a composite representation of a gene for export, then
restores the zipper to the conformation expected by the
copA method.

• CytX contains a short executable sequence, me >=>
quit >=> smash >=> none, followed by a much longer
non-executable sequence containing one of each of the
primitives necessary for replication (in no particular or-
der). The short executable sequence causes cytX to quit
the daughter composome and smash itself so that the
primitive combinators comprising cytX itself form the cy-
tosol of the daughter.

• ExpX exports composite representations of genes as
methods and zippers and marks prefixes in the mother
composome with self-bonds to keep track of progress.
The first two combinators of the composite are removed
and composed to form its prefix. If the prefix with match-
ing type in the mother composome has no directed self-
bond, then the composite is unquoted and added to the
daughter composome together with its prefix.5 If the pre-
fix with matching type has a directed self-bond but no
undirected self-bond, then the composite and its prefix are
used to construct the zipper representation of the gene and
this is added directly to the daughter cytoplasm. Finally, if
the prefix with matching type has both directed and undi-
rected self-bonds, the composite and its prefix are super-

5Because unquoted suffixes are methods, they will execute in
the daughter composome when placed there. Cytoplasm-based
methods, e.g., copB, are prefaced by a pair of combinators,
me >=> quit, that causes them to quit the daughter composome;
composome-based methods, e.g., expX, lack this device. Like the
cytX method used to create the cytosol, this is a simple use of pro-
grammed self-assembly by the daughter.

fluous, so they are expelled.6

• BudA checks to see if any actor in the composome has
a bond. If none do, then it expels a primitive from the
mother pile and applies the seed combinator to it, creat-
ing the daughter pile. It adds a second primitive to the
composome and creates a directed bond between it and
the first primitive. Finally, requests are made to the pile to
replace both primitives.

• BudZ checks to see if all prefixes in the composome have
directed self-bonds. If they do, it deletes all prefix self-
bonds (directed and non-directed) and also deletes the
bond connecting the mother and daughter, which are now
both viable protocells.

The artificial protocell is sequential at the top level since
it exports methods and zippers one at a time, as they become
available, but employs pipeline parallelism in their produc-
tion. There are only two steps in the pipeline that require
more than O(1) time. These are implemented by the copB
and copE methods, which require time proportional to the
number of primitive combinators comprising the method be-
ing copied, O(M). However, the rate limiting step of the
replication process is copB, which must wait for the arrival
in the neighborhood of primitive combinators imported by
the pile. It follows that the parallel time complexity of the
replication process is

O
(MN

B

)
= O

(M
B

)
∑N−1

k=0 O
( N

N−k

)

where M is the average number of primitive combinators
per gene, N is the number of genes, and B is the number
of instances of copB.7 Significantly, the time required for
self-replication decreases as additional genes encoding the
copB method are added (with diminishing return when B >
N). It follows that the protocell is a rare example of a self-
replicating system where increased complexity, because it
yields increased parallelism, pays for itself.

Conclusion
Because it discounts randomness, computational depth is
a useful measure of an artificial organism’s complexity.
Absent parallelism, organisms of increased computational
depth require more time to replicate. This means that they
are at a disadvantage relative to simpler organisms in zero
sum competitions for space. It follows that artificial organ-
isms can only evolve into more complex forms if they divide

6Although OOCC doesn’t have an if-then-else, equivalent func-
tionality can be achieved in a single method when all actions are
reverseable. For example, if z′ is the action that reverses z, then the
sequence, z >=> x >=> z′ >=> y will execute the action z when x
fails and y when x succeeds.

7A breakfast cereal company includes a plastic dinosaur (one
of N different types) in each box of cereal. It is straightforward to
show that a grandmother must buy O(N) = ∑N−1

k=0 O
( N

N−k
)

boxes
on average before her grandson has one of each type.
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Figure 6: Schematic diagram of artificial protocell showing
copying of zippers in cytoplasm and export of zippers and
methods by composome through directed bond to daughter
protocell. Six methods implement the copying process in the
cytoplasm, three methods implement the budding and export
process in the composome, and one method smashes itself to
form the cytosol. The methods in the cytoplasm execute in
parallel and in parallel with those in the composome (which
execute concurrently). The composome contains ten prefixes
(length two composites with unique types) that are marked
with self-bonds to signify the zippers and methods that have
already been exported.

the problem of self-replication among parallel subprocesses.
In the absence of a global clock, parallelism is impossible
without concurrency, which allows subprocesses to be exe-
cuted in different orders.

Artificial organisms can increase in complexity by means
of duplication and specialization of modules representing
subprocesses. In addition to enabling parallelism, concur-
rency can mitigate the cost of increased complexity by pro-
viding a variety of execution paths, some of which include
these duplicated and specialized modules. This can yield
increased robustness through redundancy and degeneracy.
We believe that modularity and concurrency were already
present in the cellular architecture of the last universal com-
mon ancestor of all life on Earth and that these characteris-
tics can be credited in part for its subsequent evolution into
forms of increased complexity.

Apart from a modular and concurrent architecture, an arti-
ficial organism needs a device for separating its genome and
replication machinery from those of other organisms. We in-
troduced a new data structure, called a roving pile, capable
of representing a set of actors inhabiting an arbitrarily large
four-connected component of sites in a 2D lattice. Roving
piles move and grow and actors within roving piles freely
mix, which is essential for message passing and for the as-
sembly of methods from combinators.

Lastly, we used an object-oriented combinator chemistry

to construct an artificial organism with an architecture fea-
turing modularity, concurrency and parallelism. This organ-
ism replicates by means of an asynchronous message pass-
ing computation implemented inside of a roving pile con-
taining 1855 primitive combinators. Its genome consists of
10 genes represented by zippers that are distributed through
out the pile like the plasmids of a bacterial cell.
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Abstract 
Fitness improving innovations occur in populations of 
organisms as genetic changes (mutations) that allow better fit 
with the environmental niche of the organisms. Similarly, 
fitness improving innovations may occur in the context of 
human communities as well in terms of socio-economic 
innovations (e.g. new ways of organizing the military, new 
products or services) that lead to more efficient use of available 
resources. Here we explore the link between such innovations 
and the harshness of the environment, where the populations 
live. Environmental harshness characterizes the availability of 
population growth supporting resources in the environment. 
Our analysis shows that if the harshness of the environment 
varies smoothly with the distance, the expected extent of fitness 
improving innovations and of the resource utilization efficiency 
of populations depends in a combined linear and harmonic 
manner on the harshness of the environment at the location of 
origin of the populations. We explore the implications of this 
result for particular cases of both biological and social 
environments (e.g. gene drives, business innovation).  

Introduction 
At any time there is usually a diverse community of organisms 
at any geographical location (Gould, 2002). These organisms 
typically belong to more then one, and often many, distinct 
populations of organisms. The same happen also in terms of 
humans belonging to culturally distinct populations and 
companies and organizations belonging to distinct sectors of 
the economy (Diamond, 1997; Arthur, 2009). Some of these 
populations are more successful than others. The successful 
populations spread widely and become dominant, in terms of 
the number of individuals, among the co-existing populations 
for a considerable period of time over some extensive 
geographical range (Andras, 2015; Diamond, 1997; Gould, 
2002; Nielsen et al, 2017; Turchin, 2006). 
 The spreading of populations generally can be described as 
a reaction-diffusion process (Volpert and Petrovskii, 2009). 
Generally, individuals belonging a particular population 
migrate to geographically neighboring areas and establish the 
presence of their population there. The meaning of neighboring 
areas depends on the context, e.g. in the case of animal or plant 
populations it is a close distance sufficiently hospitable 
location, but in the context of globally mobile companies may 
mean almost any location around the Earth with sufficient 
support services present. 
 Populations of living organisms change by accumulating 
mutations in their DNA that lead to the emergence of features 

or behaviors at cellular or organismal scale, which give a 
selective advantage to the individuals harboring these 
mutations (Maynard Smith and Szathmary, 2000). This 
process leads to the emergence of new, genetically and 
reproductively separated, populations of organisms (Yom-Tov 
and Geffen, 2011). Similar processes happen at the level of 
socio-economic organization of human communities as well, 
leading to the emergence of new, culturally distinct, 
populations and new, technologically distinct, areas of 
economic activity filled by a corresponding new population of 
human organizations (Arthur, 2009; Fukuyama, 2011; 
Turchin, 2006). The actual process of how these changes 
accumulate to generate the innovations leading to the 
emergence of new populations is not yet fully known (Maynard 
Smith and Szathmary, 2000). 
 Examples of innovations that define new populations 
include the development of foot adaptations in animals 
(Holowka and Lieberman, 2018) or the development of 
drought resistance in plants (Kooyers, 2015). In the case of 
human populations an example is the development of settled 
agriculture (Diamond and Bellwood, 2003) or in the case of 
companies the development of new products or technologies 
(Arthur, 2009) such as provision of social media services or 
the development of diesel engines. 
 A number of environmental factors influence the spreading 
of populations (Andras, 2015; Barraclough, Vogler and 
Harvey, 1998;  Fukuyama, 2011). Such factors include the 
presence of geographical barriers (e.g. mountains, sea, rivers), 
variation in the harshness of the environment (e.g. cold/warm, 
arid/wet areas, presence/absence of disease spreading vectors), 
the extent of competition among co-existing populations (e.g. 
increased number of populations in overlapping environmental 
niches may lead to more competition among populations), or 
the speed of growth of co-existing populations (e.g. plentiful 
resources may facilitate fast growth of all populations). These 
environmental factors modulate the spreading of populations 
by altering the diffusion process that drives the population 
spreading (Andras, 2015). 
 Previously it has been reported that the average extent of 
innovations emerging in populations increases with the 
harshness of the environment where the new population 
originates (Andras, 2015). In terms of interpretation it has been 
suggested that the likely reason is that in harsher environments 
fitness innovations of larger extent are needed to result in 
sufficient growth of the population to spread to other areas and 
in such environments larger innovations have amplified effect 
on the growth success of the populations. On the other hand, in 
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less harsh areas, even small innovations may provide sufficient 
advantage for a comparative growth benefit that may lead to 
the emergence of a successful population (Andras, 2015). 
However, the reported findings have also shown an 
unexplained wavy nature of the variation of the mean extent of 
innovation with the harshness of the environment 
superimposed on the above noted linear relationship.  

Here we explore and explain the nature of this wavy 
relationship between the harshness of the environment and the 
average extent of fitness innovations. We also show that the 
resource utilization efficiency of successful populations also 
follows a similar, but phase sifted, wavy relationship with the 
harshness of the location of origin, similarly superimposed on a 
linear relationship. These results have implications for a 
number of research and technological applications area that 
relate to the emergence of innovations in populations, such as 
the use of gene drive technologies, emergence of antibiotic 
resistance, and policies for support of business innovation. 

 The rest of the paper is organized as follows. First we 
review briefly the relevant background. Next we describe the 
core equations and theoretical derivations about the 
distribution of fitness improving innovations and the impact of 
environmental factors on this. This is followed by a brief 
summary of the simulation environment that we used. Then we 
describe our results and the interpretation and discussion of 
these. Finally, the paper is closed by the conclusions section. 

Background 
The spreading of populations of organisms and culturally 
different human populations is usually modeled using reaction-
diffusion equations (Volpert and Petrovskii, 2009). This has 
the following general form 
 

∂ q(x,t)/ ∂ t = ∇(D(q,x)⋅ ∇q(x,t))+F(q,x,t) (1) 
 
where q(x,t) is the size or quantity (i.e. normalized number of 
individuals) of a given population at location x and time t, 
D(q,x) is the diffusivity of the environment at location x and for 
population size q, and F(q,x,t) is the reaction terms, which 
expresses the local dynamics of the population given its size 
q(x,t) at spatial position x and time t. This last term includes 
the impact of death and birth of individuals on the population 
size and also the impact of other factors, such as the 
competition with other populations, the availability of 
resources at the location and so on. The impact of the 
harshness of the environment on populations can be 
incorporated into this term within the reaction-diffusion model 
of population spreading. The diffusivity element of the model 
characterizes the ease / difficulty of spreading from one 
location to a neighboring location. This element would include 
for example the presence of natural barriers, such as mountains 
or rivers in the environment (Andras, 2015).  
 While the reaction-diffusion model of population spreading 
is very useful for conceptual and formal analysis of the 
spreading process it has its limitations. These stem mainly 
from the limits of formal analysis for cases with non-simple 
forms of the reaction term and also for cases with complex 
structure for the diffusivity element. Building models that aim 
to capture realistic conditions and constraints often lead to 

models with such non-simple reaction terms and diffusivity 
elements (Andras, 2015; Cheng et al, 2014). In such cases 
agent based models can be used very effectively (Montenegro 
et al, 2016). In these models a discrete version of equation (1) 
is used in combination with the modeling of populations by a 
collection of agents that make a few algorithmic and possibly 
stochastic decisions (e.g. reproduction, movement, division, 
etc.). Such agent-based models of population spreading can 
also include the process of accumulation of innovations (e.g. 
simulating the impact of genetic mutations or of cultural-
technical changes). 
 The emergence of genetic changes that lead to cellular or 
organismal level fitness improving innovations has been 
researched for many years (Maynard Smith and Szathmary, 
2000). Although there are still many aspects of this process 
that are unclear, there is important progress in some respects. 
The best understood aspects of such processes relate to the 
emergence of antibacterial resistance in bacteria (Blair et al, 
2015) and the evolution of viruses (Vijaykrishna, Mukerji, and 
Smith, 2015). Recent works also show how the replication of 
mammalian genes leads to the emergence of fitness improving 
genetic innovations (Carelli et al, 2016) and the emergence and 
fitness improving usefulness of mutations in plants have been 
also analyzed using observations of natural spreading of 
relatively recently introduced invasive plant species (Exposito-
Alonso et al, 2018). In the context of emergence cultural-
technical changes that lead to fitness improving innovations 
among companies or human populations there is also 
considerable related research (Arthur, 2009; Fukuyama, 
2014). Genomic studies of human population spreading can 
indicate the origins of innovations and the directions of 
spreading, although do not convey information about how the 
innovations came about (Nielsen et al, 2017). Both biological 
evolution and simulation-based research show that 
environmental barriers, which provide relative isolative 
protection to evolution of species, increase the frequency of 
fitness improving innovations, while the lack of such barriers 
reduces this frequency (Mazancourt et al, 2008; Millien, 2006; 
Yom-Tov and Geffen, 2011; Andras, 2015). 
 Previous works on modeling the spreading of human 
populations and animal species have used agent-based models 
to analyze the location of origin and the spreading pattern of 
populations (Andras, 2015; Montenegro et al, 2016). Andras 
(2015) used agent-based simulation to show that the average 
resource utilization efficiency and average time persistence of 
successful populations reduces linearly with the harshness of 
the location of origin of these populations. Similarly the paper 
also shows that the average extent of fitness improving 
innovations of successful populations increases linearly with 
the harshness of the location of origin. However, in all these 
cases the paper shows that superimposed on the linear 
relationship there is also a periodic, wavy relationship with the 
harshness of the location of origin. This aspect of the 
relationship has not been fully explained in Andras (2015).  

Fitness Improving Innovations and 
Environmental Factors 

We assume that the populations exist in an environment 
characterized at each location by the environmental harshness, 
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h. This effectively sets the level of resources available at that 
location, higher h implying more scarcity of resources. Note 
that this definition of environmental harshness is very generic 
and it may incorporate effects of the physical environment, 
such as aridity, temperature or availability of shelter, and also 
effects of the live environment, such as predation risk. 

Populations are characterized by their resource utilization 
efficiency, r, which determines to what extent they can use the 
resources available at a given location. The population growth 
rate depends on the resource utilization efficiency of the 
population, on the available resources and also on the general 
growth support of the available resources and the competition 
between different co-existing populations for the resources. A 
relatively general assumption is that the population growth 
rate, ρ, is proportional with the general growth support, γ, the 
extent of the competitiveness of the population, η, a gradually 
saturating function of the resource utilization efficiency of the 
population (e.g. ln(1+r)) and is inversely proportional with the 
harshness of the environment, h. The growth rate should also 
take account the death rate of the population,θ, which is 
assumed to be the same for all competing populations, but is 
altered locally additively proportionally with the general 
growth support, γ, and inversely proportionally with the 
harshness of the environment, h. The corresponding equation 
is: 

 
ρ = γ ⋅ η ⋅ ln(1+r)) / h – θ +γ / h (2) 

 
A fitness innovation is defined as a change in the resource 

utilization efficiency of a part of a pre-existing population, ∆r, 
due to mutations to the genes of the organism or changes to the 
cultural-technical processes of the human population (Maynard 
Smith and Szathmary, 2000; Turchin, 2006). A fitness 
improving innovation is such a fitness innovation that improves 
the resource utilization efficiency of the population, i.e. when 
∆r > 0. For example, this may mean the emergence of 
enzymes that allow the animals to digest their food more 
efficiently, or the emergence of molecular changes that allow 
the build-up of larger and stronger muscle mass, or the 
emergence of cultural changes that allow better agricultural 
practices that make possible the feeding of a larger population 
without requiring extension of the available agricultural land 
area (Diamond and Bellwood, 2003; Fukuyama, 2014; 
Maynard Smith and Szathmary, 2000; Turchin, 2006). 

The general growth support of the environment,γ, is a 
general environmental factor that modulates the effectiveness 
of the impact of the environmental harshness on the 
populations. For example, large scale climate effects may alter 
in such way the impact of environmental harshness, or the 
general accessibility of a technology for all human populations 
may change the effectiveness of the environmental harshness. 

The competitiveness of a population depends on the relative 
resource utilization efficiency of the population in comparison 
with other co-existing populations. A conceptually simple 
approach to defining such competitiveness is to consider a 
function that saturates both for high and low values, such as 
the sigmoidal function of an expression that quantifies the 
relative strength of the resource utilization of the population. 
For example, we may define the extent of competitiveness as: 

 
η =1/(1+exp( – α⋅ r / (Σk rpop-k)) (3) 

where α is an environmental factor that characterizes the 
steepness of the competition in the given environment, and the 
summation is applied over all resource utilization values of all 
co-existing populations. We note that a similar approach is 
used in the context of calculating the competitiveness of plant 
species (Kattenborn et al, 2017; Hodgson et al, 1999). In our 
approach the sigmoidal transformation reduces the 
competitiveness differences in the top and bottom extremes. 
 Finally, the spreading of the populations will also be 
influenced by the presence of natural barriers, such as 
mountain ranges, rivers, sea, which make difficult to cross the 
barrier (Andras, 2015; Barraclough, Vogler and Harvey, 
1998). The presence of natural barriers can be incorporated 
into the diffusivity of the environment, D(x), where x is the 
location. The other environmental factors noted above, h, α, γ, 
θ, and the resource utilization efficiency, r, get incorporated 
into the reaction term, F(q,x,t), of the population diffusion 
equation (1), where q is the size of the population and t is the 
time. 
 We aim to determine the mean resource utilization 
efficiency of populations originating from locations with 
environmental harshness h and also the mean amount of fitness 
improving innovation for these populations. Given that in 
natural environments the harshness varies relatively smoothly 
with the location in the environment, we adopt this assumption. 
We also assume that the chance of generating any resource 
utilization innovation is β, where 0 < β < 1, independently of 
the location and the amount of innovation. This is a simplifying 
assumption.  
 First, let us consider the count of populations with resource 
utilization efficiency r at locations with environmental 
harshness h at time t, ge(r,h,t). At any time the difference in the 
number of populations moving in and those that move out of 
the area, all with resource utilization efficiency r, is the 
population move induced change of the number of such 
populations, in areas with harshness h. Some of these 
populations may die out and some new population with 
resource utilization efficiency r may emerge following a 
mutation in populations with different resource utilization 
efficiency. The number of newly emerging populations with 
resource utilization efficiency r, depends on the past number of 
the source populations summed up over all possible r values. 
In terms of equations we can write 
 
β ⋅ Σ∆r ge(r – ∆r,h,t – ∆t) =β ⋅ Σ∆r (ge(r – ∆r,h,t – ∆t) – 

ge(r – ∆r,h,t) ) + β ⋅ Σ∆r (ge(r – ∆r,h,t) 
(4) 

 
Turning the above equation in continuous form as ∆r and ∆t 
become very small, we get the differential equation 
formulation for the number of emerging new populations with 
resource utilization efficiency r: 
 

– β ⋅ ∫∆R ∂ ge(r – ∆r,h,t )/ ∂ t d∆r +  
β ⋅ ∫∆R ge(r – ∆r,h,t) d∆r 

(5) 

 
where ∆R is the value range of ∆r-s – we note that this 
formulation allows fractional counts of populations as well. 
Summing up the noted parts, we get the equation for the 
number of populations with resource utilization efficiency r, 
including all changes: 
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∂ ge(r,h,t )/ ∂ t = – a ⋅ ∂ 2ge(r,h,t )/ ∂ h2 –  
δ ⋅ (h / r) ⋅ ge(r,h,t ) – 

β ⋅ ∫∆R ∂ ge(r – ∆r,h,t )/ ∂ t d∆r +  
β ⋅ ∫∆R ge(r – ∆r,h,t) d∆r 

(6) 

 
where δ ⋅ (h / r) is the extinction multiplier, proportional with 
the harshness of the environment and inversely proportional 
with the resource utilization efficiency of the populations. 
Considering Ge(r,h,t) = ∫∆R ge(r – ∆r,h,t) d∆r, we can write 
 
∂ 2 Ge(r,h,t )/ ∂ t∂∆r = – a ⋅ ∂ 3Ge(r,h,t )/ ∂ h2∂∆r –  

δ ⋅ (h / r) ⋅ ∂ Ge(r,h,t )/ ∂∆r – 
β ⋅ ∂ Ge(r,h,t )/ ∂ t +  

β ⋅ Ge(r,h,t) 

(7) 

We define the following function: 
 

ur,h,t(r’,h’,t’) =β ⋅ ∂ Ge(r,h,t )/ ∂ t +  
β ⋅ Ge(r,h,t) 

(8) 

 
which is the number of populations with resource utilization 
efficiency r that newly emerged at a location with harshness h 
at time t and then spread all around. This definition implies that 
 

ur,h,t(h’,t’) = 0 (9) 
 
for all h’ ≠ h and t’ ≤ t and also for h’ = h and t’ < t. Using the 
above reasoning, we can write the equation 
 

∂ ur,h,t(h’,t’ )/ ∂ t’ = – a ⋅ ∂ 2ur,h,t(h’,t’ )/ ∂ h2 –  
δ ⋅ (h’ / r) ⋅ ur,h,t(h,t ) 

(10) 

 
given that we are not interested in this case of innovation 
induced emergence of new populations. 
 These populations persist for sufficient time, τ, if 
 

∫H ur,h,t(h’,t + τ)dh’ > 0 (11) 
 
where H is the full range of environmental harshness values. 
Considering the populations that persist for long time, some of 
these will become dominant and successful in the sense they 
will account for a considerable part of the overall population in 
the whole area. The practical meaning of sufficiently long 
persistence, sufficient size and whole area will depend on the 
context (e.g. for example this may mean a hundred years, 5% 
of the total population over an area of the size of an average 
European country, in the case of human populations). 
Considering that the populations will spread over locations 
with all h values, over a long time period, and that there will be 
always other populations with both higher and lower r values 
around, the ratio of becoming successful should not change 
with h, r or t, and this fixed ratio is denoted as κ. We note that 
if the r values can go only up to a certain limit r* then there will 
be an effect on the success ratio that depends on the value of r 
when this is close to r*. So, the proportion of successful 
populations with resource utilization efficiency r originating 
from an area with harshness h at time t is: 
 

κ ⋅ ∫T(τ) ∫H ur,h,t(h’,t + τ’)dh’dτ’ / ur,h,t(h,t) (12) 
 
where T(τ) = [τ, T* – τ] is the considered time domain, T* 
being the maximum time considered for the calculations. 

Thus the chance for a population with resource utilization 
efficiency r originating from an area with harshness h to 
become a successful population is: 
 

q(r,h) = κ ⋅ ∫T# ∫T(τ”) ∫H (ur,h,t(h’, τ” + τ’)dh’dτ’ / 
ur,h,t(h,τ”)) dτ” 

(13) 

 
where T# = (0,T*) is the full considered time domain and T(τ”) 
= [τ”,T* – τ”]. 
 Then we can calculate the chance of having a population as 
a result of a ∆r fitness innovation, while it is originating from 
an area with harshness h at time t, by summing up (integrating) 
over all r values. This is: 
 

vtime(∆r,h,t) = ∫R q(r+∆r,h) ⋅ ge(r,h,t)dr /  
∫R ge(r,h,t)dr  

(14) 

 
where R is the full range of r values. Integrating this over time, 
gives us the overall chance of having successful populations 
originating at a location with harshness h and as a result of a 
fitness innovation ∆r: 
 

v(∆r,h) = ∫T# (∫R q(r+∆r,h) ⋅ ge(r,h,τ’)dr /  
Ge(r,h,τ’))dτ’  

(15) 

 
where T# is defined as before. 
 Using these equations we can calculate the mean resource 
utilization efficiency and the mean fitness innovation for 
populations originating at locations with harshness h as 
follows: 
 

rm(h) = ∫R r ⋅ q(r,h) dr 
  

(16) 

∆rm(h) = ∫∆R ∆r ⋅ v(∆r,h) d∆r (17) 
 
where ∆R is the full range of ∆r values and R is defined as 
above. 
 Given the form of equation (7) that defines Ge(r,h,t) we 
conclude that if the ∂ 2/ ∂ h2 component of equation (7) is non-
zero then Ge(r,h,t) will have a dampened harmonic (i.e. 
dampened sinusoidal) component in it. Considering the 
dependence of q(r,h) and v(∆r,h) on Ge(r,h,t), the mean values 
of r and ∆r will contain similarly a dampened harmonic 
component in addition to a linear component. The reason 
behind this is that equations similar to equation (7) can be 
written for rm(h) and ∆rm(h) as well. This is valid as long as the 
environmental harshness, h, varies smoothly with the distance 
between the locations. If this is not the case, this result no 
longer holds. For example, if h would vary randomly, then the 
∂ 2/ ∂ h2 component of equation (7) would zero out and the 
expectation would be to have no dampened sinusoidal 
component in these mean values as a function of the 
environmental harshness. However, such random variation is 
very unlikely in natural environments. 
 The above reasoning explains the finding reported in Andras 
(2015), which found this unexpected harmonic variation in the 
mean values of r and ∆r. Below we explore experimentally 
further this nature of the dependence of r and ∆r on the 
harshness, h. 
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Simulation Environment 
To explore the variation of the mean resource utilization 
efficiency, rm(h), and the mean fitness innovation, ∆rm(h) with 
the harshness of the locations of origin, h, we used a simulated 
environment where populations spread and evolve by adopting 
fitness innovations. The simulation environment that we used 
has been described in Andras (2015), here we provide a brief 
description of the key features. 
 The world is implemented as a 2-dimensional grid of 100 × 
60 spatial locations, without gluing of the opposing edges 
together (i.e. the world is not toroidal). The world contains a 
number of natural barriers (i.e. simulated mountain ridges), 
which are located randomly and have randomly set crossing 
difficulty (i.e. height). In all simulations we used 20 natural 
barriers. The world has a number of harshness hotspots and 
the harshness of the world locations vary smoothly with the 
distance from the centre of the hotspot. In some simulations we 
used 10 harshness hotspots, while in other simulations we used 
only one harshness hotspot. We adopted two options for the 
harshness variation with distance. In the first case the 
harshness depends on the inverse of the Euclidean distance, 
while in the second case it depends on the inverse of the 
Manhattan distance: 
 

h(x) = 1 / (ε + ((x1 – x01)2 + (x2 – x02)2)1/2)  (18) 
  

h(x) = 1 / (ε + (|x1 – x01| + |x2 – x02|))  (19) 
 
where x0 is the centre of the harshness hotspot and ε > 0. 
 Initially, around 1.5% of the spatial locations host a 
population. Each population is characterized by their resource 
utilization efficiency, r, that is set by calculating the value 
associated with a population specific sequence of bits (0 or 1) 
b of length L as follows: 
 

r=Σk=1,L1Σj=1,L2 bL1⋅(k-1)+j⋅2j (20) 
 
where L1⋅L2 = L and in our case L1 = L2 = 10. Populations 
may give rise to a new population by experiencing a mutation 
in their bit string. The likelihood of such mutations is β = 
0.00008 in our simulations. The fitness innovation 
corresponding to the mutation is the difference of the r values 
after and prior to the mutation. Following such mutations a 
part of the populations adopts the new resource utilization 
efficiency coding bit string. The population is split 
proportionally with the two r values. 
 The populations at each location grow and spread. The 
spreading follows a discretized version of the reaction-
diffusion equation (1): 
 

Q(x,t+1) = (21) 
=Σ(µ,υ)∈Ψ(ϕx+(τ,υ),-µ,-υ,t⋅ Q(x+(µ,υ),t) –ϕx,µ,υ,t⋅ 

Q(x,t)) 
+ρ(x) ⋅ Q(x,t) 

 

 
where Q(x,t) is the size of the population at spatial position x at 
time t, Ψ={(-1,0),(1,0),(0,-1),(0,1)}, and ϕx,τ,υ,t are stochastic 
diffusivity parameters, and ρ(x) is the growth rate of the 
population at the spatial position x. The stochastic diffusivity 

Figure 1. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A), and mean 
fitness innovation, ∆r (B), in the case of multiple harshness 
hotspots in the environment (mean value dark line, 95% 
confidence intervals, light lines). 
 
parameters are set such that 
 

ϕx+(τ,υ),-τ,-υ,t = ω  if   
Q(x,t) is sufficiently large, given the height value at the 

neighboring location x+(µ,υ)  
otherwise ϕx+(τ,υ),-τ,-υ,t = 0 

 
 
 
(22) 

 
where ω is a randomly set value, in the case of the reported 
simulations ω∈(0,0.4). If ϕx+(τ,υ),-τ,-υ,t = 0 the populations 
encounters a barrier that cannot be crossed. The growth rate of 
the population is given by equation (2), with θ = 0.005. The 
implementation of equation is slightly modified compared to 
equation (3) by adding constant terms into it: 
 

η =0.1/(1+exp(α / 2 – α⋅ r / (Σk rpop-k)) (23) 
 
The value of α was set to 10 in some simulations and it was 
varied in the range of 6 to 12 in other simulations. The value of 
γ in equation (2) was set to 1.4 in some simulations and then it 
was varied in the range of 0.8 to 1.7 in other simulations. 
 Each simulation was run for 30,000 time turns. Typically, 
we started initially with around 90 populations. The 
populations spread and evolved. The competition for resources 
drove to extinction some of the populations. The newly 
emerged populations that innovated successfully spread and 
became dominant. In the simulations we considered a 
population dominant if it contained over 0.5% of the total 
population at any one time turn in the simulated world. We did 
not set a particular persistence limit, but naturally, for any new 
population it took some time to become dominant according to 
the above definition (typically more than 20 time turns). 

For each population we considered the harshness of the 
location of their origin and we calculated for each harshness 
value, h, the mean value of the resource utilization efficiency, 
rm(h), and of the fitness innovation, ∆r m(h), considering all 
populations originating from a location with harshness value h. 
For each condition that we considered we did 10 different 
simulations. Each simulation generated in the range of 2,500 –  
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Figure 2. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A), and mean 
fitness innovation, ∆r (B), in the case of random harshness in 
the environment (mean value dark line, 95% confidence 
intervals, light lines). 
 
3,000 successful populations that were taken into 
consideration. Only the average values, where there was at 
least 10 different populations originating from locations with a 
given harshness h, were considered in the analysis and in 
almost all cases the averages were calculated from more than 
20 instances of appropriate populations. 

The computer program implementing the simulations 
described above is available on request from the author.  

Results and Discussion 
First, we considered the default case with multiple harshness 
hotspots in the environment and Euclidean distance based 
determination of the harshness of locations. The results are 
shown in Figure 1. As expected both relationship displays the 
harmonic component added onto a linear relationship with a 
negative slope in the case of the resource utilization efficiency 
and a positive slope in the case of the fitness innovation. In 
other words, the mean resource utilization efficiency, rm, drops 
with the increase of the harshness of the location of origin and 
the mean fitness innovation, ∆rm, grows with the increase of 
the harshness of the location of origin innovation. 

Intuitively this means that successful population originating 
from low harshness environment gain their advantage from 
being highly efficient in the utilization of resources. On the 
other hand this result also means that successful populations 
originating from harsh environments stand out by making high 
fitness innovations. The harmonic element of the relationships 
is due to the smooth variation of the environmental harshness 
with distances between locations, as we explained it earlier. 
This harmonic element complicates the above outlines picture 
of the relationships with environmental harshness. This 
component implies that there will be intermediate ranges of 
environmental harshness where either the high resource  

 

Figure 3. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A), and mean 
fitness innovation, ∆r (B), in the case of slow variation of 
harshness with the Euclidean distance with one harshness 
hotspot; and the mean resource utilization efficiency, r (C), and 
mean fitness innovation, ∆r (D), in the case of fast variation of 
harshness with the Euclidean distance with one harshness 
hotspot (mean value dark line, 95% confidence intervals, light 
lines).  
 
utilization efficiency or high fitness innovation will be more 
likely than elsewhere for the locally originating new 
populations. 

 
 Next, we considered the un-natural case of random variation 
environmental harshness. The results are shown in Figure 2. 
While there is still some very small level of harmonic 
component in the relationships between h and r and ∆r, the 
relationships are mainly linear as we expected, based on our 
analysis. The case of random variation of environmental 
harshness shows the core relationship between harshness and 
resource utilization efficiency and fitness innovation. 
 We explored next the case of having a single harshness 
hotspot with different variation of the harshness with the 
distance from the centre of the hotspot. We considered 
equations (18) and (19) for the definition of harshness and we 
also added a multiplier in the front of them to make the 
harshness variation fast (high multiplier – 20) or slow (low 
multiplier – 10). The results are shown in Figures 3 and 4. In 
these scenarios again we see that the harmonic component is 
clearly present in addition to the linear variation of r and ∆r 
with h. The data in the figures also shows that the period 
length of the harmonic component extends as the speed of 
variation of h increases with the distance, in the case of both 
distance choices. 
 This means that faster variation of harshness with the 
distance comes with slower harmonic variation of rm and ∆rm 
with the variation of h. This implies that if harshness changes 
rapidly with distance, there will be only one or at most a few 
harshness ranges where high resource utilization efficiency or 
high fitness innovation may emerge. On the other side, if the 
harshness changes slowly with the distance, there will be 
multiple, possibly many, harshness ranges where high resource 
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Figure 4. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A), and mean 
fitness innovation, ∆r (B), in the case of slow variation of 
harshness with the Manhattan distance with one harshness 
hotspot; and mean resource utilization efficiency, r (C), and 
mean fitness innovation, ∆r (D), in the case of fast variation of 
harshness with the Manhattan distance with one harshness 
hotspot (mean value dark line, 95% confidence intervals, light 
lines). 
 
utilization efficiency and high fitness innovations may emerge 
in new populations. A practical prediction derived from this is 
the expectation to have one or a few ranges of height values in 
relatively steeply rising mountainous areas, where the most 
successful new species may arise, while in areas with slow 
change of height the expectation is to have many ranges of 
height where highly successful new species may emerge. 
 We also considered the impact of variation of the 
competition strength, α, and of the general population growth 
speed parameter, γ. The results are shown in Figures 5 and 6. 
In these respects, we found that stronger competition and 
faster growth of the populations reduces the period length of 
the harmonic component. The implication of this is that in 
environments, which are generally more competitive or 
support faster growth there will be multiple or many ranges of 
harshness values where the most innovative and most efficient 
new populations are likely to emerge. On the other side in 
environments that stunt the population growth or suppress 
competition between populations there will be only one or a 
few ranges of harshness values where the most innovative and 
most efficient populations may emerge.  
 We note that in all smooth harshness variation cases the 
variation of the mean resource utilization efficiency and mean 
fitness innovation with the harshness follow similar, but phase-
shifted harmonic relationships. The conceptual explanation of 
this phase shift, is the difference between equations (13) and 
(15), which define q(r,h) and v(∆r,h), which are the likelihoods 
of having a newly emerging population with resource 
utilization efficiency r or fitness innovation ∆r emerging at a 
location with harshness h (i.e. v(∆r,h) is defined using an 
integral of q(r,h)). 
 Our theoretical analysis provides the explanation for the 
observed combined harmonic and linear variation of the 
resource utilization efficiency mean value and fitness 
innovation mean value with the harshness of the environment 
at the location of the origin. The simulation experiments 
confirm the expectations based on the theoretical explanation  

Figure 5. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A, C), and mean 
fitness innovation, ∆r (B, D), in the case of low (A, B) and 
high (C, D) level competition (α) between populations, using 
the Euclidean distance and multiple harshness hotspot (mean 
value dark line, 95% confidence intervals, light lines). 
 
and also offer a heuristic estimation of the impact of the key 
environmental parameters (i.e. speed of variation of harshness 
with distance, competition strength, population growth speed) 
on the nature of the relationship between the environmental 
harshness and the and the mean resource utilization efficiency 
and mean fitness innovation (i.e. which change in the 
parameters. 
 Our result is interesting because it implies that due to the 
harmonic component of the studies relationships there will be 
areas with particular ranges of environmental harshness where 
the population with the largest fitness innovations and also 
with the most efficient resource utilization are much more 
likely to emerge than in other areas with relatively similar 
features. In other words, the likelihood of emergence of such 
new species in natural environments does not vary linearly 
with the harshness of the environment, but follows the 
combined linear and harmonic relationship. 
In a natural context, this implies that for example, genetic 
mutations that can prevent the effectiveness of a gene drive 
(Unckless, Clark and Messer, 2017) intervention against 
mosquitoes, may emerge much more likely in environment 
locations with certain levels of harshness, and are much less 
likely to emerge elsewhere. Being able to determine where 
such locations are likely to be, would help to maintain the 
effectiveness of the gene drive intervention. Similarly, this kind 
of analysis may help identify locations where antimicrobial 
resistance of bacteria (Blair et al, 2015) is more likely to 
emerge and possibly help to alter the environmental 
antimicrobial resistance of bacteria (Blair et al, 2015) is more 
likely to emerge and possibly help to alter the environmental 
features such that the antimicrobial resistance development 
happens in areas where it can be identified early and fought 
effectively. 

In a socio-economic setting, this has implications for 
example for the likelihood of emergence of firms with 
disruptive innovation and those with high efficiency. Our 
results imply that in the context of a steeply varying regulatory 
and economic environment, there will be only a few ranges of 
regulatory and economic settings that will be conducive for the 
emergence of highly innovative or efficient firms. Similarly, 
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Figure 6. The relationship between environmental harshness, 
h, and mean resource utilization efficiency, r (A, C), and mean 
fitness innovation, ∆r (B, D), in the case of low (A, B) and 
high (C, D) general growth support (γ) for populations, using 
the Euclidean distance and multiple harshness hotspot (mean 
value dark line, 95% confidence intervals, light lines). 

 
less competition and more barriers of growth will reduce the 
likely ranges of regulatory and economic settings, in which 
highly innovative or efficient firms may emerge. On the other 
side, more competition, fewer growth barriers, and more 
uniform regulatory – economic landscape favor the presence of 
multiple ranges of settings in which innovative or efficient 
firms may emerge. Our results also imply that most likely the 
preferred regulatory – economic settings will not be the same 
for the emergence of the most innovative and most highly 
efficient firms. 

Conclusions 
In this paper we present a formal analysis of the relationship 
between environmental harshness and the mean resource 
utilization efficiency and mean fitness innovation of 
populations originating from locations with a given 
environmental harshness. We show that these relationships 
contain a linear and a harmonic component if the 
environmental harshness changes smoothly with the distance 
between locations. We explore experimentally the relationships 
considering a number of simulation environments with 
different parameters. The experimental analysis confirms the 
theoretical expectations. The experimental analysis also shows 
the dependence of the nature of these relationships on the 
environmental parameters. The experimental data also 
highlights that there is a phase shift between the harmonic 
components of the two relationships. 

The experimental results show that faster variation of 
environmental harshness with distance extends the period 
length of the harmonic component of the relationships. The 
data also shows that more general growth support for the 
populations and more competition between the populations 
makes the period of the harmonic component of the 
relationships shorter. 

The results are interpreted in both biological and social 
context. Our analysis may help to identify ways of improving 
the effectiveness of fight against the emergence of 
antimicrobial resistance in bacteria or of the application of gene 
drives. The interpretation in socio-economic context points to 

the impact of the regulatory – economic landscape on the 
likelihood of emergence of firms with disruptive innovations 
and of highly efficient firms. 
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Abstract

We simulate an ant colony in which an ant’s genetics can de-
termine behavioral, morphological and physiological differ-
ences between workers and queens. We show that depending
on the benefits conferred to workers and queens different re-
productive division of labor strategies evolve. In particular,
we observe both generalist colonies and colonies with spe-
cialized worker and queen castes. Generalist colonies were
subject to selection for optimal response thresholds. Colonies
with castes evolved a discrete queen caste and either a dis-
crete or continuous worker caste. As a secondary experiment
we expose our evolved colonies to a changing environment to
test their ability to adapt cooperative foraging strategies and
we find all reproductive division of labor strategies were ef-
fective at cooperative foraging.

Introduction
Modern life has evolved through several major evolution-
ary transitions (Szathmáry and Smith, 1995; Smith and
Szathmary, 1997) that resulted in the origin of protocells,
prokaryotic cells, eukaryotic cells, plastids, multicellular-
ity, eusocial animal behavior, and human societies. These
major transitions are characterized by common features
in which lower-level evolutionary units form cooperative
groups through division of labor and specialization and then
emerge as new higher-level evolutionary units with novel in-
heritance systems (Szathmáry, 2015). The transition from a
population with no reproductive division of labor to one that
does is critical in each of these transitions.

Reproductive division of labor (RDoL hereafter) de-
scribes colonies in which one or a small number of members
in the colony are responsible for reproduction (i.e. queens).
All other members (i.e. workers) carry out non-reproductive
tasks like excavation, brood care, foraging, and defense.
RDoL occurs only in eusocial animals like ants, bees, ter-
mites, and some mole rats (Crespi and Yanega, 1995; Burda
et al., 2000; Wilson and Hölldobler, 2005; Nowak et al.,
2010; Gadau et al., 2012). RDoL is one of three criteria
usually used to identify eusocial animals. In addition euso-
cial animals have multi-generational communal cohabitation
and shared responsibility for caring for their young.

We have chosen to focus our experiment on ants. There
are over 14000 species of ants and social behavior is under-
standably varied among these species. Gadau et al. (2012)
review the genetic impact of social evolution on seven dif-
ferent ant species for which the genome has been sequenced.
These species show a variety of RDoL strategies. On one
end of the spectrum is Harpegnathos saltator a species with
very little RDoL and is considered to be the closest (of the
seven species considered) to the ancestral ant species with
no RDoL. On the other end of the spectrum you have species
like Atta cephalotes in which the colony has a single queen
that is larger than the workers and lives decades longer.

RDoL is characterized by behavioral specialization that
may also correlate with morphological or physiological spe-
cialization. When morphological and physiological differ-
ences do exist the resulting castes can be discrete or contin-
uous. A discrete caste has very little variation among the
members of the caste. The species Atta cephalotes men-
tioned above has discrete castes. A continuous caste is one
which has variation in some property within the caste and
there are no gaps in the continuum. Solenopsis invicta is
an example of an ant species in which worker size is on a
continuum.

The mechanisms underlying RDoL vary between species
and usually include factors in genetics, nutrition, hormones,
and social contact between individuals (Beshers and Fewell,
2001; Korb et al., 2009; Gadau et al., 2012). In our experi-
ment we are interested in the genetic factors that can impact
the evolution of different RDoL strategies. One model of
RDoL that takes genetic factors into considerations is the
response threshold model (Bonabeau et al., 1998). The re-
sponse threshold model assumes that for each task the ant
has a threshold for a task-specific stimuli and the ant will
select the task only when the stimuli is over the threshold.
RDoL is achieved through variation among thresholds in the
colony. Genetic factors can impact the ant’s innate response
threshold, its perception of the stimuli and its decision to
carry out a task.

In Nowak et al. (2010) the authors argue that the evolu-
tion of eusocial behavior occurs through four vital stages.
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The first stage is the formation of groups out of otherwise
solitary individuals for the purpose of mutual defense, prox-
imity to food and/or mates (i.e. multi-generational cohabita-
tion). In the second stage preadaptations favorable to group
life, like a propensity to cooperate and provisioning before
birth, are selected for (i.e. shared responsibility for young).
In the third stage the natural behavior of adult females is
suppressed in many members of the population (i.e. RDoL).
Finally, in the fourth stage emergent properties of the inter-
actions between individuals can evolve leading to behaviors
like cooperative foraging.

We have chosen to focus our experimentation on the third
stage in which RDoL emerges and the fourth stage in which
cooperative foraging strategies can evolve. We have previ-
ously studied the emergence of eusocial behavior in forag-
ing agents capable of social learning (Marriott and Chebib,
2016) and division of labor in artificial ants in the fourth
stage (Marriott and Gershenson, 2011).

We have reimplemented and extended the model of Mar-
riott and Gershenson (2011) to create a simulation of an
artificial ant colony. Ants in our model begin as cohabit-
ing individuals sharing a single mound with preadaptations
toward cooperation and provisioning. Thus, they are rep-
resentative of a semisocial colony around stage two of the
evolution of eusocial behavior and are intended to mimic an
ancestral ant species with no RDoL or a modern species like
Harpegnathos saltator. Every ant in the initial population is
a generalist and ants forage via a solitary exploration strat-
egy.

Our ants have a gene that in experimental settings deter-
mines the response thresholds for the breeding and foraging
tasks and potentially morphological and physiological dif-
ferences between queens and workers. In our control setting
the gene has no effect on response thresholds and ants se-
lect the breeding task and forage task with equal probability.
We see a variety of RDoL strategies evolve ranging from a
colony of generalists to discrete and continuous worker and
queen castes.

As a secondary experiment we have exposed our evolved
colonies to a changing environment from one in which soli-
tary exploration is adaptive into one in which cooperative
foraging is adaptive. This is similar to the seasonal environ-
ments used in (Marriott and Gershenson, 2011). Our ants
have a second gene which determines the response thresh-
old for the two foraging strategies. We test the ability of our
evolved colonies with different RDoL strategies to evolve
cooperative foraging strategies when exposed to the second
environment.

Model
Our ants live in a 2d discrete 80 × 60 toroid environment.
The ant mound is placed in the “middle” cell and food is
distributed among the cells depending on experimental set-
tings. In our primary experiment we use an environment that

Season Length d f r

1 (Sparse) 50000 3 200 0
2 25000 8 500 0
3 25000 13 1250 500
4 25000 18 1500 1500
5 (Dense) 75000 23 5000 5000

Table 1: A summary of food growth parameters by season
used in our secondary experiment.

we call sparse. Our secondary experiment transitions from
a sparse environment to a second environment we call dense
through three intermediate seasons that are a blend of the
two environments.

Our environments differ in how food is added to the en-
vironment initially and over time. Food can either spawn or
regenerate. When food spawns every 50 ticks (so long as
max food is not reached) a new food patch is created with f
units of food and placed in the environment in a cell that is
at least d cells away from any other patch. When food re-
generates every 50 ticks a food cell grows by r units of food
(so long as max food is not reached). Table 1 summarizes
the values used by the five seasons in our secondary exper-
iment. The first season’s settings are identical to our sparse
environment.

Each cell in the environment also records the level of in-
coming and outgoing pheromones. Outgoing pheromones
are left by ants on their way out of the mound and can be
followed back to the mound. Incoming pheromones are left
by ants on their way back to the mound with food and can
be followed back to the food source.

During every tick, each tile attempts to spread half of its
pheromone level to its immediate neighbors in four direc-
tions. If the neighboring tile’s pheromone levels are higher
than half of the current tile’s pheromone levels no spread
occurs. Pheromones decay linearly at a rate of one two-
hundredth of the maximum energy level.

There are two tasks that ants in the colony must perform.
Food must be gathered (forage task) and larvae must be
created (breed task). We call these two tasks foraging and
breeding and ants specializing in these tasks (or performing
these tasks) workers and queens respectively. All ants begin
as generalists capable of foraging and breeding. An idle ant
(one who has just matured or has just finished a task) will
select a new task at random according to its response thresh-
olds. These thresholds are determined by the ant’s genetics
(see below).

When an ant selects the forage task it leaves the mound
and searches for food according to a foraging strategy se-
lected at random (response thresholds determined by the
ant’s genetics). Workers are either explorers or exploiters.
Explorers leave the nest and follow a random walk in which
90% of the time they continue in the same direction and 10%
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of the time they turn left or right (never backwards).
Workers leaving the nest are allocated an energy level de-

termined by genetics. This level determines how long the
ant can forage outside the mound before returning home and
the level of pheromones dropped while foraging. Every tick
the energy level is decremented by 5 so pheromone levels
drop the longer an ant is foraging. Workers normally re-
turn home when they are at full carrying capacity with food
or if they deplete a tile of food. They follow the outgoing
pheromones home by travelling to the cell with the highest
outgoing pheromones. A worker that never finds food and
runs out of energy will return home empty handed.

On the way back to the mound the ant leaves incom-
ing pheromones (as long as it is carrying food) following
the same rules as outgoing pheromones. Exploiters leave
the mound and follow incoming pheromones back to food
sources by travelling to the cell with the highest incom-
ing pheromone level. Like explorers exploiters leave out-
going and incoming pheromones. If there are no incoming
pheromones to follow exploiters act as explorers. When a
worker returns to the nest, with food or not, it enters the idle
state and selects a new task.

When an ant selects the breeding task it is placed in a
pool of queens. As long as the current food level is greater
than twice the sum of the current ant population and current
larvae population a new larvae is created (otherwise queens
idle until food level increases or they have idled too long).
The new larvae is created by selecting a queen from the pool
at random. This queen is the parent of the new larvae. It
is not the genetic parent of the new larvae but does get fit-
ness credit for successfully producing a new larvae. When
a queen creates a larvae the queen must rest for a period de-
termined by its genetics before entering the idle state and
selecting a new task. Larvae are created until either food is
depleted or there are no active queens.

Since reproduction in our simulation is asexual if the par-
ent’s genetics are selected for the child then all children of
specialized queens would be queens too. Instead we select
a genetic parent from the colony at random using a fitness
function. This type of reproduction may seem artificial but
it was chosen to mimic ant reproduction in species where
queens and workers are genetically different (as it is in our
ants). For instance, in Pogonomyrmex barbatus workers and
queens are genetically different and workers and queens re-
sult from different matings (within lineage vs inter-lineage
respectively) (Gadau et al., 2012; Cahan et al., 2004).

Our fitness function combines the ant’s success at forag-
ing with the ant’s success at breeding. Let w be the amount
of food returned to the nest (per tick) and let q be the num-
ber of larvae created (per tick) then the fitness of an ant is
ww ·w+wq · q where ww and wq are weights to balance the
contribution of w and q. Because workers and queens have
different advantages in our experimental setup we have had
to vary the weights ww and wq in order to ensure that there

are always queens and workers among the most fit individu-
als in cases where specialization occurs (otherwise a colony
of all workers or all breeders will die out).

Instead of sorting our ants by fitness we use a more ef-
ficient procedure. We use the mean fitness to filter out all
ants less than the mean. Then of the ants above the mean we
repeat this process to isolate the top quartile of ants by fit-
ness. A genetic parent is selected from this group uniformly
at random. The two genes used in our experiments are real
valued genes in the range [0, 1] and straightforward muta-
tion mechanisms are used (increment by a random value in
the range [−0.1, 0.1]). We use a mutation rate of 5%.

When a new larvae is created it eats a meal (10 units of
food) from the food stored in the mound. A new larvae must
mature for 100 ticks before becoming an adult ant. When it
matures it eats a second meal and then selects its first task.
If there is no food when it matures it dies.

After eating a meal an ant’s hunger level is reset to 0.
Every tick the hunger level increases by 1 and if the hunger
level reaches the threshold (500) the ant becomes hungry (so
ant’s must eat after 500 ticks). If away from the mound the
ant attempts to return. In any case when the ant is next idle
it will eat a meal from the mound. If there is no food the ant
dies. Ants over the age of 100 ticks can also die with a small
chance every tick determined by the ant’s genetics.

Experimental Setup
Our ants have a real valued gene breed ∈ [0, 1] that deter-
mines the response thresholds for the breeding and forag-
ing tasks. That is, an idle ant will select the breeding task
with probability breed and the foraging task with probabil-
ity 1 − breed. The initial ant population in all experimental
runs are generalists in that their breed genes are set to 0.5.
This means an idle ant from the initial population decides to
breed or forage with 50% probability.

In addition to determining the response thresholds for task
selection the breed gene also impacts ant behavior in other
ways depending on experimental settings. The breed gene
also impacts the lifespan of the ant, the rate larvae can be
created, the amount of food that the ant can carry, and the
amount of energy an ant receives when leaving the mound.

When the breed gene impacts life span an ant will live 100
ticks and then have a 0.01 + (1− breed) ∗ 0.99% chance to
die each tick. When the breed gene impacts the rate larvae
can be created an ant selecting the breed task must wait 1 +
(1 − breed) ∗ 99 tick(s) until they can select a new task.
When the breed gene impacts the amount of food the ant
can carry an ant can carry a max of 1 + (1 − breed) ∗ 99
units of food. When the breed gene impacts the amount of
energy an ant receives any ant leaving the mound will have
5 + (1 − breed) ∗ 495 energy. When these benefits are not
activated the value is calculated with breed = 0.5.

Our primary experiment is to vary the strength and im-
pact of the breed gene. In our control run the breed gene
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Figure 1: Histogram of the breed gene in the population over
time for the control colony on a logarithmic plot.

has absolutely no effect. In its weakest state the gene merely
impacts response thresholds. We also can activate each of
the four additional morphological and physiological effects
above. This leads to 16 different experimental settings of
which we will focus on only 8. For each setting we have
an initial population of 100 and we conducted 200 runs
for 100000 ticks measuring the distribution of values in the
breed gene.

Our ants have a second real valued gene exploit ∈ [0, 1]
that determines the response thresholds for the explorer
and exploiter strategies for foragers. An idle ant that se-
lects the foraging task will select the exploiter strategy with
probability exploit and the explorer strategy with probabil-
ity 1 − exploit. The initial ant population are explorers
(exploit = 0) so that the initial ants mimic ancestral semiso-
cial ants that use an explorer strategy.

In our primary experiment the colony is placed in a sparse
environment in which explorers are adaptive. In our sec-
ondary experiment we take a population adapted to a sparse
environment and expose it to a dense environment over a se-
quence of four seasons. In the dense environment exploiters
are adaptive. We run our secondary experiment for 200,000
ticks to allow the colony first to evolve its RDoL strategy
and then adapt to the new environment. Our second exper-
iment reproduces some of the experiments in (Marriott and
Gershenson, 2011) and tests the conditions under which a
colony in stage three can move into stage four adapting from
solo foragers to cooperative foragers.

Observations and Discussion
As a control run we have evolved a colony in which the
breed gene has no effect on response thresholds at all. That
is, idle ants in the control setting select the breed or forage
task with equal probability. In this setting the breed gene is
subject to genetic drift only so we should expect no selec-

tion pressure at all. Figure 1 shows the distribution of breed
genes in the control run when subject only to genetic drift.

Our experimental colonies have evolved a number of dif-
ferent RDoL strategies. Some colonies remain generalists
but their response thresholds face selection towards forag-
ing in some cases and breeding in others. Other colonies
specialize into two discrete queen and worker castes with
very low variation among members of the castes. Finally
in some cases continuous castes evolves in which members
have more varied response thresholds.

In the first experiment the breed gene impacts response
thresholds and may impact morphological and physiologi-
cal differences that might benefit one caste or the other. We
consider four cases: where no caste benefits, where queens
benefit, where workers benefit and where both benefit. Fig-
ure 2 shows the distribution of the breed gene over time in
these four experimental runs.

We can see that when neither caste has benefits (Figure 2
top left) the colony does not specialize. Instead the colony
consists of a single continuous caste of generalists. The
breed gene is subject to genetic drift and selection towards
more reasonable response thresholds. In these settings the
response thresholds settle around an average of 0.3 with a
wide variation. This appears to be the optimal value given
these settings as the colony can reach a higher population
level than in the control settings where the response thresh-
olds are fixed at 50%. Despite genetic drift and selection the
behavior of this colony does not change much over the sim-
ulation. The single caste of generalists is similar to an ant
species like Harpegnathos saltator.

Two genetic effects impact queen morphology and phys-
iology. The first increases the lifespan of queens while de-
creasing the lifespan of workers. The second increases the
rate that larvae can be created by queens while decreasing it
for workers. When the benefits to queens are activated the
colony does not specialize (Figure 2 top right). However,
we can see that when the queens gain a benefit the response
thresholds are pulled towards the queen end of the spectrum
and settles around an average of 0.7. This means that the av-
erage ant selects the breed task more often (about 70% of the
time) but also that they live longer and recover from breed-
ing tasks quicker. Since the genetics do not impact foraging
behaviors these generalists are as efficient foraging as in the
default conditions and thus evolve to take advantage of the
queen morphology but still forage enough to maintain the
population. When queens benefit the single generalist caste
is continuous but not as wide as in the last case.

The other two genetic effects impact worker morphology
and physiology. The first increases the amount of food a
worker can carry while decreasing it for queens. The second
increases the energy level of a worker while decreasing it for
queens. When workers benefit the colony specializes into
discrete castes with little variation among its members (Fig-
ure 2 bottom left). The colony settles on about 40% queens.
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Figure 2: Histogram of the breed gene in the population over time for colonies in which the ants gain no benefit (top left),
queens benefit (top right), workers benefit (bottom left) and both benefit (bottom right) on a logarithmic plot.

These discrete castes have morphological and physiological
differences and more than one queen. This colony is similar
to ant species like Linepithema humile.

Finally when both workers and queens benefit we get
specialization but not as strong as when only workers ben-
efit (Figure 2 bottom right). Under these conditions the
queens still specialize into a discrete caste with little varia-
tion among its members. Queens make up about 20% of the
population. The workers however form a continuous caste
that is very similar to the generalist colony evolved when
ants have no benefits (but with much less variation). Thus
workers will still select the breed task from time to time, but
when they do they are less efficient at it than the dedicated
queens. This colony also displays castes but since its worker
caste is continuous this colony is closer to an ant species like
Solenopsis invicta.

In order to take a closer look at the benefits we have added
we also look at cases where only one morphological or phys-
iological benefit has been added. Figure 3 shows the distri-
bution of the breed gene over time in runs when queens live
longer, queens create larvae faster, workers can carry more

and workers travel further (but with only one benefit acti-
vated at a time).

When queens live longer no specialization occurs (Fig-
ure 3 top left). The colony evolves to a state very similar
to when queens live longer and create larvae faster. The
colony evolves to generalists with response thresholds fa-
voring the breeding task. However when queens don’t live
longer but are able to create larvae faster the colony evolves
to castes (Figure 3 top right). The highest concentration of
ants are still specialized as queens or workers but the vari-
ation among the worker castes is greater than in the most
specialized run (when workers benefit). Variation among the
worker caste is greater than the queen caste so in this case
we say that the queen caste is discrete while the worker caste
has some continuity. The colony consists of approximately
30% queens.

When workers can carry more food specialization into
castes occurs similar to when queens can create larvae
quicker (Figure 3 bottom left). Variation among workers
is greater than variation among queens so again we say the
queen caste is discrete while the worker caste is continu-
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Figure 3: Histogram of the breed gene in the population over time for colonies in which the queens live longer (top left), queens
breed faster (top right), workers carry more (bottom left) and workers travel further (bottom right) on a logarithmic plot.

ous. It is interesting that both when queens breed faster and
when workers carry more we get similar specialized castes
with a discrete queen caste and a continuous worker caste.
These benefits, though benefiting different castes, have sim-
ilar overall benefits to the colony. That is, as workers car-
rying more increases the rate of food brought home to the
colony both of these benefits allow for larvae to be created
faster. In the later case because queens have less downtime
but in the prior case because with more food entering the
mound more larvae can be created even with the same down-
time. In the prior case this also means a larger population
can be achieved (see Table 2). When workers can spend
more time out of the mound we get a strong specialization
in queens. Workers still remain in a varied continuous caste
but the variation is greater than in the last two cases.

Table 2 summarizes the RDoL strategies evolved in each
run. In addition it indicates the stable population level that
the colony could achieve for each run. We can see that the
control settings reaches a stable population of about 1100.
The environment remains the same in each run (that is,
the same amount of food is available) but the experimen-
tal colonies are subject to selection pressures that seek to

Run Strategy Pop. wq ww

Control generalist 1100 1 1
FFFF generalist workers 1300 5 2
FFTT discrete castes 1700 7 2
TTFF generalist queens 1450 5 2
TTTT continuous workers

discrete queens
1400 3 2

FFFT continuous workers
discrete queens

1500 5 2

FFTF continuous workers
discrete queens

1450 6 2

FTFF continuous workers
discrete queens

1300 5 2

TFFF generalist queens 1400 5 2

Table 2: A summary of results from our eight primary runs.
The run name corresponds to which benefits were activated
in the run. The order of benefits is queens live longer, queens
create larvae faster, workers carry more and workers travel
further. We also indicate the stable population achieved in
the run and the values of wq and ww used for the run.
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increase population size. Even with no morphological or
physiological benefits selection adjusts the response thresh-
olds so that a population of about 1300 could be maintained.

The most efficient run was when workers benefit but
queens do not. Recall in this case we have discrete queen
and worker castes and we also reach a stable population of
1700. Most other benefits allowed for a higher population to
be reached than the default settings except when queens cre-
ate larvae faster. When queens create larvae faster but there
are no other benefits there is no way to increase food into the
mound so the population cannot grow larger. When queens
live longer a higher population can be maintained because
queens remain in the population longer.

We notice that in all runs in which castes evolve the queen
caste is always discrete. We explain this due to an asynchon-
isity between queens performing the forage task and workers
performing the breed task. A worker performing the breed
task is no worse than a queen at creating a larvae (it must
only wait longer before selecting a new task and may not
live as long as queens). On the other hand a queen perform-
ing the forage task will have a very low energy level and
cannot carry much. This means most queens that select the
forage task return home empty handed or with a very small
amount of food. This is detrimental to their fitness and thus
selection is much stronger for queens to avoid foraging.

Another trend we notice in runs where specialization
occurs is that specialization occurs towards foraging first.
Workers receive immediate fitness benefit from specializa-
tion in cases where workers benefit. Carrying more and
spending more time out of the mound means less failed for-
aging attempts and more food returned per trip. On the other
hand queens gain no fitness bonus from living longer (since
our fitness function considers number of larvae created per
tick not over their lifetime). Secondly creating larvae more
rapidly does impact the fitness value but only if you are se-
lecting the breeding task reliably (i.e. a specialized queen).
However, once workers begin to specialize (and are less effi-
cient at breeding) selection for specialized queens becomes
stronger and benefits from breeding faster are amplified.

This seems most clear in the run where all benefits are
activated. In this run workers specialize only into a continu-
ous generalist forager castes similar to when no benefits are
activated. However, this is enough to amplify the selection
pressure of even a single or a few specialized queens and a
discrete caste of queens still evolves.

In our secondary experiment we took our colonies that
were adapted to the sparse environment and exposed them
to a dense environment over four additional seasons. As the
seasons transition from sparse to dense the adaptive forag-
ing strategy changes from solitary exploration to cooperative
foraging using pheromone trails. Figure 4 shows the distri-
bution of the exploit gene over time for populations exposed
to the dense environment. The dense environment arrives at
tick 125,000 of 200,000.

We can see that adaptation to exploiters occurs in all ex-
perimental conditions. However, complete specialization
only occurs in runs where no queen caste exists. The rea-
son for this is that only in these population do all members
face selection for their foraging strategy. When there is a
specialized queen class there is no selection pressure on the
exploit gene for members of the queen class. As they never
forage they’re foraging strategy is irrelevant and is subject
to genetic drift. In cases of exploiter specialization the ex-
ploiters are still continuous and in cases where exploiters
don’t fully specialize we still see some explorers. This is
because explorers are still needed even when exploitation is
adaptive. This is why exploiters act as explorers in absence
of incoming pheromones.

Conclusions
In our primary experiment we considered an ant colony in
which an ant’s genetics determines its response thresholds to
the breeding and foraging tasks. Therefore these ants have
the potential to evolve into genetically distinct behavioral
castes. In our experimental settings the ant’s genetics deter-
mine response thresholds and morphological and physiolog-
ical differences between specialist workers or queens.

When the ant’s genetics only impact response thresholds
our ant colony evolves to be a colony of generalists with a
preference for foraging. Generalists with a preference for
breeding evolve when queens live longer than workers and
workers have no benefits. If queens do not live longer than
workers but can create larvae quicker the colony evolves a
discrete queen caste and a continuous worker caste.

A discrete queen caste and a continuous worker caste also
evolve when workers can carry more. When workers travel
further and when both workers and queens benefit a discrete
queen caste with little variation evolves along side a contin-
uous caste of generalist workers. Finally, two discrete castes
with little variation evolve when workers can carry more and
can spend more time out of the mound. These are the only
settings in which two discrete castes evolve.

These varied RDoL strategies evolved under different ge-
netic circumstances. This parallels the wide range of RDoL
strategies observed among different ant species. Our exper-
iment has explored how the presence of morphological and
physiological differences among ants performing different
tasks can lead to the evolution of different RDoL strategies.

Our secondary experiment examined how colonies with
different RDoL strategies can adapt to a changing environ-
ment and evolve cooperative foraging strategies. We have
shown that all types of RDoL strategies we’ve studied can
evolve cooperative foraging strategies.
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Abstract

The design of mechanisms that encourage pro-social be-
haviours in populations of self-regarding agents is recognised
as a major theoretical challenge within several areas of so-
cial, life and engineering sciences. When interference from
external parties is considered, several heuristics have been
identified as capable of engineering a desired collective be-
haviour at a minimal cost. However, these studies neglect
the diverse nature of contexts and social structures that char-
acterise real-world populations. Here we analyse the impact
of diversity by means of scale-free interaction networks with
high and low levels of clustering, and test various interference
mechanisms using simulations of agents facing a cooperative
dilemma. Our results show that interference on scale-free net-
works is not trivial and that distinct levels of clustering react
differently to each interference mechanism. As such, we ar-
gue that no tailored response fits all scale-free networks and
present which mechanisms are more efficient at fostering co-
operation in both types of networks. Finally, we discuss the
pitfalls of considering reckless interference mechanisms.

Introduction
The problem of explaining collective behaviours among
self-interested individuals in evolving dynamical systems
has fascinated researchers from many fields, and is a well
studied research topic in evolutionary game theory (Hof-
bauer and Sigmund, 1998). It can be found in a variety
of real-world situations, ranging from ecosystems to human
organisations and technological innovations and social net-
works (Santos et al., 2006; Sigmund et al., 2001; Raghunan-
dan and Subramanian, 2012; Han et al., 2019). It has been
also investigated in various Artificial Life systems such as
swarm-based systems and biologically inspired artificial so-
cial systems (Nitschke, 2005; Bonabeau et al., 1999).

In this context, cooperation is typically assumed to
emerge from the combined actions of individuals within the
system. However, in many scenarios, such behaviours are
advocated and promoted by an external party, which is not
part of the system, calling for a new set of heuristics capa-
ble of engineering a desired collective behaviour in a self-
organised complex system Penn et al. (2010). For instance,
if one considers a near future, where hybrid societies com-
prising humans and machines shall prevail, it is important to

identify the most effective incentives to be included to lever-
aging cooperation in such hybrid collectives (Paiva et al.,
2018). In a different context, let us consider a wildlife man-
agement organisation (e.g., the WWF) that aims to main-
tain a desired level of biodiversity in a particular region. In
order to do that, the organisation, not being part of the re-
gion’s eco-system, has to decide whether to modify the cur-
rent population of some species, and if so, then when, and
in what degree to interfere in the eco-system (i.e., to modify
the composition of the population) (Levin, 2000). Since a
more impactful intervention typically implies larger costs in
terms of human resources and equipment, the organisation
has to achieve a balance between pregnant wildlife manage-
ment and a low total investment cost. Moreover, due to the
evolutionary dynamics of the eco-system (e.g., frequency
and structure dependence) (Santos et al., 2006), undesired
behaviours can reoccur over time, for example when the in-
terference was not sufficiently strong in the past. Given this,
the decision-maker also has to take into account the fact that
it will have to repeatedly interfere in the eco-system in order
to sustain the level of biodiversity over time. That is, it has
to find an efficient interference mechanism that leads to its
desired goals, while also minimising the its total cost.

This question has been studied previously in the con-
text of populations distributed on regular graphs, namely
the complete and the square lattice graphs (Han and Tran-
Thanh, 2018; Han et al., 2018). In this type of network,
every individual has the same degree of connectivity (i.e.
the number of neighbours). However, in social graphs and
real-world populations, individuals typically have a diverse
social connectivity (Albert and Barabási, 2002; Santos et al.,
2008). Hence, in this paper, we study cost-effective interfer-
ence in heterogeneous networks, namely different types of
scale-free networks, which have been shown to well capture
real-world networks (such as the World Wide Web) (New-
man, 2018). In particular, we consider populations of in-
dividuals distributed in a scale-free network, who interact
with their neighbours via the one-shot Prisoner’s Dilemma
(PD), where uncooperative behaviour is preferred over co-
operation (Sigmund et al., 2001; Santos et al., 2006). As an
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outsider decision-maker, we aim to promote cooperation by
interfering in the system, rewarding particular agents in the
population at specific moments.

The research question here is to identify when and how
much to invest (on individuals distributed in a network) at
each time step, in order to achieve our desired ratio of coop-
eration within the system such that the total cost of interfer-
ence is minimised, taking into account the fact that individ-
uals might have different levels of social connectivity. For
instance, we might wonder whether it is sufficient to focus
the investment only on highly connected cooperators since
they are more influential, thereby leading to cost-efficiency?
Do we need to take into account a neighbourhood’s cooper-
ativeness level which was shown to play an important role in
square lattice networks (Han et al., 2018)? Also, when local
information is not available and only global statistics can be
used in the decision making process, how different are the
results in heterogeneous networks, in comparison to regular
graphs?

To answer these questions, this paper will systematically
investigate different general classes or approaches of inter-
ference mechanisms, which are based i) on the global popu-
lation statistics such as its current composition, ii) a node’s
social connectivity in the network and iii) the neighbourhood
properties such as the local cooperativeness level.

Our results show that interference in a heterogeneous net-
work exhibits a significantly more complex challenge (to
be cost-effective while ensuring high levels of cooperation)
and much richer nonlinear dynamic behaviours, compared
to regular graphs. For instance, in both well-mixed and
square lattice graphs, a greater per-individual investment
cost would ensure at least the same level of cooperation
since it gives each cooperator a better fighting chance for
survival against defectors. However, this is not the case in
the context of heterogeneous networks as increasing the per-
individual investment cost could actually be detrimental for
cooperation.

The rest of the paper is structured as follows: the next
section provides a brief overview of the related work, which
is followed by a detailed description of our model, methods
and its results. The paper ends with a final discussion.

Related Work
The problem of explaining the emergence and stability of
cooperative behaviour has been studied intensively in many
fields, from Social Sciences, Economics, Physics to Multi-
agent Systems and Artificial Life (Hofbauer and Sigmund,
1998; Nowak, 2006; Han et al., 2012; Nitschke, 2005). Sev-
eral mechanisms responsible for the evolution of coopera-
tion have been identified, including direct and indirect reci-
procity (Nowak and Sigmund, 2005), kin and group se-
lections (Traulsen and Nowak, 2006), network reciprocity
(Santos and Pacheco, 2005; Santos et al., 2006), punishment
and rewarding (Sigmund et al., 2001), and cognitive mecha-

nisms (Han et al., 2011, 2012). However, these mechanisms
do not consider how cooperation can be promoted by an ex-
ternal party. Instead, they are incorporated as part of individ-
ual strategic behaviours, in order to study how they evolve
and whether their evolution promotes a better outcome for
cooperative behaviour. In contrast, our interference mech-
anisms are external, i.e. they are not incorporated into the
individual strategy.

In addition, the aim of our mechanisms is to minimise the
cost of interference while guaranteeing high levels of coop-
eration, contrary to past literature where the cost optimisa-
tion is often omitted. In this respect, our work is also dif-
ferent from the modelling works of institutional incentives
to encourage cooperation through costly reward and punish-
ment (Sigmund et al., 2010; Vasconcelos et al., 2013) as well
as through enforcing agreements (Han et al., 2017).

Similarly, our work also differs from EGT literature on
optimal control in networked populations (Riehl and Cao,
2017; Ramazi and Cao, 2015), where cost-efficiency is not
considered. Instead, these works on controllability focus on
identifying which individuals or nodes are the most impor-
tant to control (i.e. where individuals can be assigned strate-
gies as control inputs), for different population structures.

Closely related to the current work are the analyses on
well-mixed populations (i.e. having a fully connected graph
structure) (Han and Tran-Thanh, 2018) and on square-lattice
structured populations (Han et al., 2018), which study cost-
efficient interference on the aforementioned types of net-
works, respectively. Moving to the more complex scenario
of heterogeneous networks where individuals might have
different degrees of connectivity (i.e. the number of neigh-
bours), an interference mechanism might need to take this
new dimension into account to be cost-efficient. As shown
below, cost-efficient interference mechanisms that incorpo-
rate this information can outperform those who only con-
sider global population statistics and neighbourhood coop-
erative properties as in previous works.

Also related to current work is the research of cooper-
ation in social networks where changes are initiated from
inside the system (Raghunandan and Subramanian, 2012;
Franks et al., 2013, 2014). Among them, more relevant to
our paper is the recent work by Franks et al. (Franks et al.,
2014), which has explored the use of influencers on complex
networks. However, these influencers are also part of the
system and thus, similar to the cases mentioned above, this
work does not consider external interference mechanisms.
Given this, it does not address similar decision-making prob-
lems that we examine here.

Models and Methods
Prisoner’s Dilemma on Scale Free Networks
We consider a population of agents on scale-free networks of
contacts (SF NOCs)— a widely adopted heterogeneous pop-
ulation structure in population dynamics and evolutionary
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games (for a survey, see (Szabó and Fath, 2007)). We focus
our analysis on the efficiency of various interference mecha-
nisms in spatial settings, adopting an agent-based model di-
rectly comparable with the setup of recent lab experiments
on cooperation (Rand et al., 2014).

Initially each agent is designated either as a cooperator
(C) or defector (D) with equal probability. Agents’ inter-
action is modelled using the one-shot Prisoner’s Dilemma
game, where mutual cooperation (mutual defection) yields
the reward R (penalty P ) and unilateral cooperation gives
the cooperator the sucker’s payoff S and the defector the
temptation T . As a popular interaction model of structured
populations (Szabó and Fath, 2007), we adopt the following
scaled payoff matrix of the PD: T = b, R = 1, P = S = 0.
(with 1 < b ≤ 2). We adopt a weak version of the Prisoner’s
Dilemma in spite of cooperator prevalence shown in previ-
ous works on scale-free networks of contacts (Santos et al.,
2008), so as to have a direct link of comparison with studies
on the effects of rewarding mechanisms in different types of
networks (Han et al., 2018).

For SF networks with low clustering we adopt the famous
Barabási-Albert (BA) model (Albert and Barabási, 2002).
Starting from a complete graph of m0 nodes, at every time-
step one adds new node with m ≤ m0 edges linking to
existing nodes, which are chosen with a probability that is
proportional to the number of links that the existing nodes
already have. The new node always connects to m distinct
nodes, and duplicate connections at each time step are not al-
lowed. The average connectivity of the network is z = 2m.

To obtain a SF network with high clustering, we resort to
the Dorogovtsev-Mendes-Samukhin (DMS) model (Doro-
govtsev et al., 2001). Similarly to the BA model, we also
have growth, yet each new node attaches to both ends of a
randomly chosen edge. As a result, we favor the creation of
triangular relations between individuals, thereby greatly en-
hancing the clustering coefficient of the final network. As in
the BA model, the process of choosing the edge implicitly
promotes the preferential choice of highly connected nodes,
leading to the same degree distribution. The edges chosen at
each time step are distinct and multiple connections between
the same two nodes are not allowed. This network also has
an average connectivity of z = 2m. Both types of SF NOCs
are pre-generated, before the strategies of players are desig-
nated and before the first generation commences playing.

At each time step or generation, each agent plays the PD
with its immediate neighbours. The score for each agent
is the sum of the payoffs in these encounters. Before the
start of the next generation, the conditions of interference
are checked for each agent and, if they qualify, the external
decision maker increases their payoff. Multiple mechanisms
(i.e. multiple conditions) can be active at once. At the start
of the next generation, each agent’s strategy is changed to
that of its highest scored neighbour (Nowak and May, 1992;
Szabó and Fath, 2007). Our analysis will be primarily based

on this deterministic, standard evolutionary process in order
to focus on understanding the cost-efficiency of different in-
terference mechanisms.

We simulate this evolutionary process until a stationary
state or a cyclic pattern is reached. The simulations converge
quickly, with the exception of some cyclic patterns which do
eventually reach a stationary state. Because this work stud-
ies cost effective intervention, these rarely-occurring pat-
terns which inherently invite very large total costs are es-
caped early by running simulations for only 75 generations,
at which point the accumulated costs are excessive enough
for this mechanism to not be of interest. Moreover, the re-
sults are averaged for the last 25 generations of the simu-
lations for a clear and fair comparison (e.g. due to cyclic
patterns). In order to improve accuracy related to the ran-
domness of network topology in scale-free networks, each
set of parameter values is ran on 10 different graphs for both
types of SF NOCs. Furthermore, the results for each com-
bination of network and parameter values are obtained from
averaging 30 independent realisations. It is important to note
that the distribution of cooperators and defectors on the net-
work is different for every realisation.

Note that we do not consider mutations or random explo-
rations in this work. Thus, whenever the population reaches
a homogeneous state (i.e. when the population consists of
100% of agents adopting the same strategy), it will remain
in that state regardless of interference. Hence, whenever de-
tecting such a state, no further interference will be made.

Cost-Efficient Interference in Networks
As already stated, we aim to study how one can efficiently
interfere in a structured population to achieve high levels of
cooperation while minimising the cost of interference. An
investment in a cooperator consists of a cost θ > 0 (to the
external decision-maker/investor). This investment is added
to the payoff of an agent if certain conditions are met. Each
mechanism has different conditions for investment. In par-
ticular, we investigate whether global interference mecha-
nisms (where investments are triggered based on network
level information) or their local counterparts (where invest-
ments are based on local neighbourhood information) lead
to successful behaviour with better cost efficiency. To do so,
we consider three main classes of interference mechanisms
based i) on the global composition of the population, ii) the
node’s connectivity in the network and iii) the neighbour-
hood cooperation level.

1. Population composition based (POP): In this class
of mechanisms the decision to interfere (i.e. to invest on all
cooperators in the population) is based on the current com-
position of the population (we denote xC the number of co-
operators currently in the population). Namely, they invest
when the number of cooperators in the population is below a
certain threshold, pC (i.e. xC ≤ pC), for 1 ≤ pC ≤ z. They
do not invest otherwise (xC > pC). The value pC describes
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how widespread the defection strategy should be to trigger
the support of cooperators’ survival against defectors.
2. Node Influence (NI): For this mechanism, the decision
to invest in a given cooperator is dependent on how influen-
tial its node is (i.e. how many connections end in that node).
Whereas POP considered the composition of the population,
NI looks at how connected a node is in the network. That
is to say, the decision-maker invests in a cooperator node
C when the number of its immediate neighbours (|kC |) di-
vided by the maximum connectivity (max|kI |) is above a
threshold of influence cI , for 0 ≤ cI ≤ 1. Otherwise, i.e.

when 0 ≤ cI ≤
|kC |

max|ki|
, no investment is made. The value

cI describes how influential a cooperator node should be to
trigger an investment into its survival.
3. Local cooperation based (LC): In this class of mecha-
nisms, the decision to invest in a given cooperator is based
on the cooperativeness level in that cooperator’s neighbour-
hood. Namely, the decision-maker invests in a cooperator
when the number of its cooperative neighbours is below a
certain threshold, nC , for 0 ≤ nC ≤ |kC |; otherwise, no in-
vestment is made. By varying the local cooperation thresh-
old nC , we aim to provide an answer to the important ques-
tion of how much cooperation is required in a neighbour-
hood before the investor can choose to withhold the inter-
vention and save the interference cost and under which con-
ditions this can happen. For instance, one can ask whether
it is safe to withdraw action in a neighbourhood without af-
fecting the outcome, therefore eliminating unnecessary in-
terference.

Interestingly, these mechanisms require different levels of
information which may or may not be readily available in the
given network. In some cases, such as social networks, the
connectivity (i.e. the number of friends) of a node is virtu-
ally free information which requires no effort on the part of
the external decision maker to discern. On the other hand,
other mechanisms such as POP, inherently require more in-
formation about the population and the level of coopera-
tiveness in different parts of the network. POP is a broad
mechanism which only requires knowledge about overall
cooperativeness, but LC invites even more detailed obser-
vations, in order to determine the cooperativeness in each
neighbourhood. Combining NI with LC generally does not
require any more observation than LC by itself. Our study of
neighbourhood based interference does not take into account
the cost of gathering information, it is a direct comparison
between perceived gains in cooperation and the associated
per-individual cost of interference set out in the interference
mechanisms.

Results
In contrast to the study on square lattice networks (Han
et al., 2018), as detailed below for each interference mecha-
nism, we found that performing cost-effective interventions

on SF NOCs presents multiple concerns. In a square lat-
tice population, more detailed observations resulted in more
effective intervention with a better outcome. On the other
hand, more knowledge about the population in SF NOCs
simply reduces the risk of interfering to the detriment of co-
operators. In other words, interfering in SF NOCs without
adequate knowledge should be approached cautiously or it
could act to the benefit of defectors. This issue is prevalent
in the BA model and is not representative of the DMS model.

Positive interference in BA models broadly requires very
high θ values (often orders of magnitude higher than similar
mechanisms performed on square lattice populations) or a
blanketing mechanism that targets all or almost all coopera-
tors, even those which are not necessarily in danger of con-
verting to D. Converging to 100% C is very difficult unless
both of these conditions are met and this introduces multiple
concerns in the role of an exogenous interfering party. We
avoid focusing on solutions where the per-generation cost
is excessive, as it is unlikely for any institution to be able
to produce such exorbitant sums in one generation, as re-
quired by these heterogeneous networks, instead we focus
on effective intervention with manageable amounts of per-
generation cost. In the following subsections we detail the
results obtained for each interference mechanism.

Population Based
We compare population-based interference mechanisms, i.e.
POP, on the two different types of SF NOCs, the BA model
and the DMS model, namely how efficient the mechanisms
are at promoting cooperation with minimal total cost (See
Figure 1).

For SF NOCs with a large clustering coefficient, we found
that it is very easy to escape cyclic patterns and a minimal
amount of interference, enabling the population to quickly
converge to 100% cooperation. Without any interference,
the frequency of Cs is greatly dependent on the initial distri-
bution of strategies in the network and there is a large prob-
ability that Ds will quickly overtake the Cs, if the oldest (i.e.
the most connected) nodes are initially Ds. Conversely, ap-
plying even a minimal amount of interference to Cs, at any
point in the rapid decline of C population, helps Cs in con-
verging to 100% of cooperation. Because of this, investing
any more than minimal amounts of (≈ θ), as well as inter-
fering when the average cooperation is above 50%, increases
the total cost with little to no benefit to the frequency of Cs.
Note that the results are consistent for a larger cost θ. We
plot up to θ ≤ 5 just for the sake of clear presentation.

In direct contrast with our findings for the DMS model, an
external decision maker should only interfere in BA models
with great care, as investing without discrimination could
lead to a lower cooperation frequency when compared to no
interference (See Figure 1). We observe that using certain
values of θ negatively impacts average cooperation levels
across a wide range of pC values. For these undesired val-
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Figure 1: Population-based (POP) interference for BA model
(top row) vs DMS model (bottom row), for varying per-individual
cost of investment θ, as well as the threshold of population coop-
eration pC . The left column reports the frequency of cooperation
while the right one reports the total cost required. We note in partic-
ular, the significant difference in total cost between the two models.
Parameters: b = 1.8; n = 5000; z = 4 (average node connectiv-
ity).

ues of θ, cyclic patterns would form which ultimately help
Ds by maintaining C players in clusters dominated by Ds
(see Figure 2). This type of negative impact occurs when
the θ value is not high enough for Cs to be able to con-
vert a cluster to cooperation, but not low enough as to let
the Ds converge to 100% D in that cluster. Many of these
cyclic patterns eventually settle to 100% C if the simulation
is ran for a sufficient number of generations (≈ 250). We
note that the accumulated cost of interference at the end of
the long-lasting cyclic patterns is prohibitively large, which
make such values of θ undesirable for an external decision
maker with limited resources.

Positive interference in BA models can be achieved by
selecting very low or extremely high values for θ, with a
high value for pC . BA models converge to a high C fre-
quency even without interference, so it is important to select
a value for pC that will allow interference after the system
has reached a stable state (typically pC > 90). In terms of
total cost, it is more efficient to select very low values of θ,
but the overall benefit to cooperation levels is much lower
than with very high values of θ. Therefore, it is up to the ex-
ternal decision maker to decide if the increase in cooperation
is worth the higher cost in resources.

Node Influence
When an exogenous decision maker takes into account only
how connected a node is, see Figure 3, i.e. how influential it
is in the network, it becomes very unlikely for interference
to provide a meaningful improvement to levels of C in BA
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Figure 2: Evolution of cooperation: BA Model (top) vs DMS
model (bottom), for θ = 5, pC = 80. C and D frequencies are
shown in green and red, respectively. The left column shows the
network without interference, while the right one shows the same
network after population-based (POP) interference. Other parame-
ters: b = 1.8; n = 5000; z = 4 (average node connectivity).

models. Very low values of cI (≈ 0.1), coupled with small
to intermediate values of θ can cause a decrease in the av-
erage cooperation, forming previously discussed cyclic pat-
terns (See Figure 2). For all other values, cooperation seems
to be very inert. This phenomenon can be explained by the
fact that clusters have already been decided in favour of co-
operators and all that remains of defectors survives in a sta-
ble state around non-influential nodes. By targeting only
the most influential cooperators, the external decision maker
can have no impact on the less connected nodes, which en-
able the survival of defectors. Therefore, only a blanketing
mechanism at very low cI can reach the lowly connected
cooperators and produce an increase in the average coopera-
tion. This type of blanketing mechanism with low cI quickly
accumulates large amounts of total investment cost.

In SF networks with a high clustering coefficient, on the
other hand, one can ensure convergence to 100% C in a cost
effective way by selecting intermediary values of cI (typi-
cally ≈ cI = 0.6) and low values for θ. An interesting ob-
servation is that contrary to POP, interference does not mean
that the system will converge to 100% C. Anything more
than minimal amounts of cI show no increase to average
of cooperation except at extremely high θ values. In other
words, it appears that D clusters are very difficult to shift
after the initial distribution of strategies on the network and
the amounts of fitness they acquire are almost impossible to
match except for a very large individual investment into the
oldest and, implicitly, most influential, nodes. Similarly to
the effect of NI on the BA model, a blanketing mechanism
encourages the formation of C dominated neighbourhoods,
which in turn generates a greater fitness than anything but
very large values of individual investment θ. Interestingly,
increasing individual investment at anything but low values
of the influence threshold cI actually promotes defection by
enabling the temporary survival of cooperators connected to
defectors which are centers of hubs. This, in turn, allows de-
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Figure 3: Node influence based (NI) interference for BA model
(top row) vs DMS model (middle row) and detailed view of
DMS model (bottom row), for varying per-individual cost of in-
vestment θ, as well as the threshold for cooperator influence cI .
The left column reports the frequency of cooperation while the
right one reports the total cost required. The ranges for θ and
cI are scaled for clear presentation. Parameters: b = 1.8; n =
5000; z = 4 (average node connectivity).

fector hubs to convert any remaining cooperator hubs. It is
important to note that the initial distribution of players in the
hubs is ultimately what determines which way the network
will converge, so this type of interference does not produce
any decrease in cooperation, as is the case of the BA model.

Local Cooperation

By the same token as earlier observations, interference on
the BA model comes with the risk of reducing overall co-
operation. What is more, LC based interference produces
negative results for a wider range of parameters than any
other mechanism (See Figure 4). That notwithstanding, in-
vesting smartly using the LC mechanism can lead to 100%
cooperation, whereas the other mechanisms struggle. The
key to such smart investments is in choosing a value for the
threshold of local cooperation nC which approaches the up-
per limit (nC → 1), with individual investment θ values
high enough to convert defectors situated in cooperator clus-
ters. As the value of nC approaches 1, redundant investment
decreases. With higher values of θ, the network converges
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Figure 4: Local cooperation based interference for BA model
(top row) vs DMS model (bottom row), for varying per-individual
cost of investment θ, scaled for clear presentation, as well as the
threshold of neighbourhood cooperation nC . The left column re-
ports the frequency of cooperation while the right one reports the
total cost required. Parameters: b = 1.8; n = 5000; z = 4
(average node connectivity).

more rapidly and therefore overall cost is reduced. There-
fore, LC based interference can be regarded as the least risk
averse, but potentially the most impactful given realistic val-
ues of per-individual investment θ.

With the exception of a small range of values for per-
individual investment θ, the LC interference mechanism
achieves a very high average cooperation for the clustering
network. This reinforces the assumption that interference at
any point in the decline of cooperation is enough to shift the
scales and enables cooperators to overtake the defectors. On
the basis thereof, an external decision maker can reduce the
costs of interference by selecting very low values for nC
in combination with a high enough individual investment
θ. For intermediate values of the local cooperation thresh-
old nC in combination with not high enough θ values, an
interesting phenomenon is observed: the promotion of the
survival of defectors by enabling the survival of cooperator
nodes without actually giving them a chance of converting
defectors in their neighbourhood, thereby allowing the de-
fectors to exploit those cooperators.

Combining Node Influence and Local Cooperation

Due to the ease of acquiring information related to node con-
nectivity in some types of networks, we test a combination
of the two mechanisms where a cooperator node receives the
individual investment only if both thresholds, local coopera-
tion nC and node influence cI are met. Our results show that
this is a risk-averse interference mechanism for low values
of cI (See Figure 5).
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Figure 5: Combination between node influence and local co-
operation based interference for BA model (top row) vs DMS
model (bottom row), for varying per-individual cost of investment
θ and threshold of neighbourhood cooperation nC , for cI = 0.05.
The left column reports the frequency of cooperation while the
right one reports the total cost required. Parameters: b = 1.8; n =
5000; z = 4 (average node connectivity).

For the BA model, the possibility of inappropriate inter-
ference which leads to cyclic patterns is virtually eliminated
even for very low values of cI . We note that for very high
values of per-individual investment θ, there is a marked in-
crease in levels of cooperation while maintaining cost effi-
ciency, if a high enough value for nC is selected, similarly
to our results for the LC-based mechanism. In that case, in-
troducing the added parameter of node influence serves no
purpose and reduces perceived gains to cooperation.

In the case of the SF NOC with a high prevalence of
triangular motifs (DMS), the combination mechanism pro-
duces similar results to the ones observed for solely LC-
based interference, but with slightly reduced costs across the
range of parameter values and with a more predictable cor-
relation between threshold values, per-individual investment
cost and gains in cooperation. The maximum gains to levels
of cooperation are reduced slightly when compared to the
single two mechanisms, with the exception of very high θ.

Following these findings, we have shown that an inte-
grated approach to interference would work best when the
nature of the network is ambiguous. In that case, this type
of interference would promote converge to cooperation in
the case of the DMS model, without risking the decrease in
cooperation seen in the BA Model for the two interference
mechanisms applied independently.

Conclusions and Future Work
In summary, this paper aims to determine how best an ex-
ternal decision maker could incentivise a population of au-
tonomous agents facing a cooperative dilemma to fulfil a

coveted collective state. We build on a previous account
which identified the most effective mechanisms to foster co-
operative scenarios in spatially distributed systems in regular
graph structured populations of agents, but instead we con-
sider two popular models of scale-free networks of contacts.
In particular, we try to understand if the insights set out in
the context of regular graphs remain applicable to hetero-
geneous models, as well as exploring an additional avenue
of interference enabled by the variance in node connectivity.
To address these issues, we have combined an evolutionary
game theoretic model with several incentive mechanisms in
two types of pre-generated networks characterised by prefer-
ential attachment, with different clustering coefficients. We
argue that this problem cannot be solved trivially and we
show that transitivity (i.e. the global clustering coefficient)
should be the driving force behind the choice of an interfer-
ence mechanism in promoting cooperation in heterogeneous
network structures, as well as its application.

Our comparison between the two types of SF networks
provides valuable insights regarding the importance of clus-
tering in the outcome of cooperation. We found that a large
clustering coefficient allows for successful, cost-effective in-
terference, indeed even when disregarding a full compre-
hension of the population and its tendencies. These re-
sults are of particular interest, given that most SF networks
portray high clustering, such as in the case of social ties
where friends are likely to be friends of each other (New-
man, 2018). Moreover, heterogeneous scenarios inhibited
by spatial constraints (e.g. in highly urbanised areas or even
the allotment of rangelands such as pastures) also impose
some measure of clustering.

In the absence of clustering, we found that impetuously
rewarding cooperators can lead to cyclic patterns which
damage cooperation in the long run, and we show how this
can be avoided when a decision maker lacks information
about the level of clustering of the network. We observe a
large negative impact on the cost of rewarding cooperators in
the case of a low clustering coefficient, and provide insights
on how it can be reduced. Moreover, we show that ignoring
lowly connected individuals leads to unprofitable and even
futile intervention irrespective of network transitivity.

Our future work aims to provide a comprehensive ex-
ploration of external interference on multiple types of net-
works while adopting different strategy update forms, such
as stochastic learning (Szabó and Fath, 2007). We envis-
age that stochasticity will increase the overall cooperation
and reduce the occurrence of cyclic patterns due to reck-
less interference, or eliminate them altogether. Furthermore,
we plan to examine spatially-motivated interference mech-
anisms for heterogeneous networks, encouraging the for-
mation of links between nodes or on the contrary, cutting
off said links. The inherently high levels of cooperation
in heterogeneous networks motivate us to experiment with
a higher bias towards defection or mechanisms specifically
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aimed at lowly connected nodes.
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Abstract 
We present a model for the spread, transmission and competition 
of skills with an emphasis on the role of spatial mobility of 
individuals. From a methodological point of view, we seek 
mathematical and computational simplicity in the sense of a 
minimal model. This minimalism lets us use a infinite 
dimensional simplex space and not a Euclidean space as 
underlying structure. Such a simplex captures the essentials of 
spatial heterogeneity without the mathematical difficulties of 
neighborhood structures.  
In the presented model, individuals may have no skill or either 
skill A or B. Individuals are born unskilled and may acquire 
skills by learning from a skilled individual. Skill A results in a 
small reproductive advantage and is easy to transmit (teaching 
happens at high rate), whereas skill B is harder to teach but 
results in a high benefit. The model exhibits a rich behavior; after 
an initial transient, the system settles to a fix point (constant 
distribution of skills), whereby the distribution of skills depends 
on a mobility parameter m. We observe different regimes, and as 
the main result, we conclude that for some settings of the system 
parameters, the spread of the (harder to learn but more 
beneficial) skill B is only possible within a specific range of the 
mobility parameter. 
From a technical point of view, this paper presents the 
application of the PRESS–method (probability reduced 
evolution of spatially resolved species) that enables the study of 
spatial effects in a very efficient manner. We analyze the 
consequences of spatial organization and argue that we can study 
aspects of social dynamics in an infinite dimensional simplex 
space. In spite of this maybe daunting name, the dynamics on 
such a structure is comparably easy to implement.  
The model we present is far from reflecting all the details of 
human interaction. On the contrary, we deliberately tailored the 
model to be as simple as possible from a mathematical point of 
view (but still reflecting central properties of spatial 
organization). This approach is guided by physics, where 
seemingly simple models which obviously don’t reflect the true 
physical behavior of a system (such as the Ising model) are 
nevertheless suited to reveal fundamental aspects and limiting 
cases of the real world.  

 

Modeling Social Dynamics: Methodological 
Considerations 

Studying social dynamics has to combine two core elements: 
1. The interaction of individuals, once they meet.  
2. The conditions and mechanisms that they meet.   

Thereby, “to meet” implies the existence of an (implicit or 
explicit) binary function that determines whether two 
individuals are in contact. The notion of contact invokes 
aspects of space. At least, it requires a concept of “location” 
that enables to distinguish for a pair of individuals whether they 
are at the same location or not. 
There are two main approaches for modeling and simulating 
social and societal dynamics: Agent-based [1-3] and densitiy-
based [4-6] simulations, the latter relying on systems of 
ordinary differential equations (ODE).  
The agent-based simulation:  The modeling consists in the 
precise determination of the interaction of individuals and the 
way, how and when this interaction takes place. The simulation 
platform translates these descriptions of interactions into actual 
encounters between individuals happening at rates resulting 
from the way how the individuals move. 
Thereby, ”movements” have to be understood in a very general 
sense; the underlying space in which these movements take 
place can be an abstract one, for example a network. 
Agent-based modeling exhibits a number of advantages.   

a. Simulating spatial effects is easy; agents just need a 
position attribute that represents their location in 
some form of spatial structure. Social interaction can 
easily be a function of these attributes.  

b. It is comparably easy to implement a combinatorial 
variety of interactions; an agent can be equipped with 
a table of attributes and interaction between two 
individuals can be determined as a function of the 
entries in the respective two attribute tables.  

c. From a technical perspective, it is no problem to 
introduce novel types of individuals (novel 
combinations of attributes) during a running 
simulation.  

d. Agent-based simulations exhibit fluctuations; this can 
be of advantage if one wants to include fluctuations 
into the simulation. 

However, there are a number of challenges: 
a. Agent-based simulations scale quadratically (or with 

some other exponent larger than 1) with the number 
of individuals involved, e.g., if each individual gets 
the chance to interact with any other individual [7-9]. 

b. Agent-based simulations exhibit fluctuations; this can 
be a disadvantage if one is interested in average 
values. Then, large numbers of agents are required, 
resulting in an according amount of computing time. 
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An alternative are approaches based on systems of ordinary 
differential equations: in such studies, one treats social 
dynamics in a way similar to chemical reaction kinetics; to be 
precise: chemical reaction kinetics in a well-stirred pot, means 
a homogeneous reaction environment. 
Advantages of the ODE approach are:  

a. They work (at least implicitly) with continuous 
densities. No fluctuations due to discretization effects 
occur. In other words: One always works in the limit 
of infinitely many individuals.  

b. In rare cases (usually for the limits of some parameter 
values), analytical solutions can be obtained. To be 
precise, this happens very rarely for the study of 
dynamics but more often for the study of fixed points. 

Some disadvantages balance these benefits:  
a. In a well-stirred reaction environment, there is no 

notion of space. As soon as the probability for the 
contact of two individuals requires a more involved 
conceptual framework than that of a collision 
frequency in chemical kinetics, ODE approaches 
become quite often somewhat contrived.  

b. ODE approaches exhibit unfavorable scaling 
behavior if one considers bigger numbers of different 
types of individuals.  

c. It is technically very hard to change the number of 
types during a running simulation (one has to 
construct a new set of ODE). 

In what follows, we describe an approach that is based on 
systems of ordinary differential equations and nevertheless 
captures essential aspects of spatial structuring in a natural way, 
the so-called probability reduced evolution of spatially resolved 
species approach (PRESS). The method is based on an idea of 
John S. McCaskill and has been described in a series of 
publications with emphasis on evolutionary dynamics in 
molecular biology [10-12].  

The PRESS Approach 
The PRESS approach assumes a network of locations. 
Interactions happen in the locations. The locations are 
connected and migration may take place from one location to 
another one. The number of sites in a location is finite and fixed 
and the same for all locations. Also limited is the number of 
different types of individuals. In consequence, a location can 
only attain a finite number of states. The PRESS approach 
assumes the network of locations to be a simplex (each location 
has the same number of sites and is connected to all the other 
locations). This inherent symmetry implies that the probability 
for a location to be in a specific state is well-defined and the 
same for all locations. The goal of the PRESS approach is to 
compute the dynamics of these probabilities. From a 
mathematical perspective (since all the locations are 
fundamentally equal and each location is connected to all the 
other locations), migration can be expressed in terms of a mean 
field approach (as will be detailed in what follows).   
Why using a simplex? The geometrical concept “space“ carries 
a surprisingly rich variety of mathematical structure; most 
fundamentally, a notion of space means that one can distinguish 
between here and there. In addition, spaces such as our familiar 
three-dimensional Euclidean space bears structure that allows 
to quantify the “theres” (means “non-heres”) by a notion of 

distance. The “theres” can be grouped in locations that are far 
or nearer to the “here”. Furthermore, the notion of space, 
especially if one considers nontrivial spaces, always contains 
connections, that means paths from a “here” to a “there”. These 
connections are trivial in the case of Euclidean spaces, but 
become more interesting in the spaces studied in higher 
mathematics as well as in those occurring in everyday life (e.g. 
the road system that connects different cities makes it a 
nontrivial decision of how to get from Lausanne to Zurich.)  
We mentioned above that simulations based on systems of 
ordinary differential equations most often relate to models in 
which we make the assumption of a “well – stirred reaction 
environment”. This means nothing else then the complete 
absence of spatial structure. Despite its daunting name, an 
infinite-dimensional simplex is probably the smallest possible 
step from a completely homogeneous reaction environment 
towards a model that captures at least the most fundamental 
aspects of space. For our purposes, a simplex is nothing more 
than a set of n discrete locations which are all mutually 
connected in an identical manner (s. 4,5,6=n  – simplices in 
Fig. 1.) An infinite dimensional simplex is then the limiting 
case of large numbers of locations [13]. The question “Why a 
simplex?” is answered by noting that it is the simplest structure 
representing some sort of spatial heterogeneity but without all 
the computational challenges resulting from heterogeneous 
neighborhood structures (two locations may be in different 
states, but on simplex, they all have the same neighborhood, 
namely all the other locations).   
In a social context, such a simplex can be interpreted as a 
densely packed village that consists of identical, small huts. 
These huts are the places where the interaction between 
individuals take place, see Fig. 2. Since we model only unary 
and binary interactions, locations which can host up to 
maximally two reaction partners constitute a minimal reaction 
environment. The goal of the model presented is then to 
compute the probability for each possible occupation state.  
 In our model, we make the following assumptions: 

a. A hut can host up to two individuals.  
b. Individuals only interact inside huts.  
c. There may be different types of individuals; the 

interaction between two individuals is a function of 
their respective types.  

d. The individuals commute freely between huts. If an 
individual leaves a hut, it chooses a different hut to 
enter at random.  

e. The time needed for the passage between huts is 
negligible. 

 
 
 
 
 
 
 
 
 

Fig. 1: Simplices for 4,5,6=n . 
 
Besides the fact that in our model the village is highly 
symmetric, we introduce a further idealization. We model the 
village in the limit of a very large number of huts. The rational 
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for his approach is given by the fact that we are interested in 
the number of huts with a specific occupation, i.e. a specific 
combination of individuals (say, the number of huts occupied 
by only one individual of the blue type or the number of huts 
hosting a blue and a red individual). Knowing the numbers of 
huts for each possible occupation, we can easily compute the 
total number of individuals of a given type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: A simplex built up from locations, which can host up 

to two individuals. 
 
For a finite number n of huts, the number Xn of huts with a 
specific occupation X is a discrete value. Moreover, if the 
interaction between individuals and the passage between huts 
is driven by random events, Xn  will be subject to fluctuations. 

Instead of Xn , we will compute the probability Xp    for a hut 
to have an occupation X ; it simply holds 
 

                                    = X
X

np
n

                               (1) 

 In the limit of large n , Xp will become a continuous variable. 

In addition, Xp will not exhibit fluctuations (without a detailed 
proof and referring to the central limit theorem, we assume the 
fluctuations ∆ Xn of Xn to scale in a sub -  linear way with Xn . 

The fraction ∆ X

X

n
n   will then vanish for large n ).  

In what follows, we will set up the dynamics of the probabilities 
for the various possible occupations of the huts.  
This approach, which will be exemplified in the next section, 
has already been introduced in the context of chemical reaction 
kinetics [10-12]. The authors called it the PRESS – approach, 
for Probability Reduced Evolution of Spatially resolved 
Species. It mimics space in so far, as there is a distinction 
between different locations and as there is a parameter, namely 
a rate constant m  for the passage from one hut to the other. 
The mobility m can be understood as the analogue to the 
diffusion constant in Euclidean space. It is also a parameter that 
can be interpreted in terms familiar to the social sciences as a 
type of migration frequency. 

Obviously, our modeling framework represents a highly 
idealized situation. Whether the metaphor of a hut is 
appropriate may be discussed. Certainly, the restriction to a 
maximal occupation number of two is “unrealistic” in the sense 
that real huts can easily be larger. Understanding the huts as 
interaction sites enables a more abstract view. A restriction to 
size two can be justified in various ways. One way is the 
already mentioned perspective on the maximal number of 
partners in the modeled social interactions. As will be discussed 
below, this is two in our case. Another way of looking at this 
restriction is coarse graining. The interaction locations can be 
in a number of different states and we compute their respective 
probabilities based on a set of interactions. Assuming locations 
with two sites spans the minimal set of states necessary for 
representing the transitions we want to model.  Further 
idealizations refer to the various symmetries invoked in our 
model. In a real village, huts will not be identical, interactions 
between individuals will not only take place inside huts, the 
huts will belong to somebody and not be chosen randomly and 
the distance between the huts will play a role for the probability 
of a transfer from hut A to hut B.  
Furthermore, a simplex needs not necessarily to be understood 
as a village consisting of huts. One may understand the 
individual interaction sites as caricatures of villages 
themselves. The whole simplex then is a collection of 
interacting small villages. The occupation of a village may 
represent its internal state. Transport between interaction sites 
can be understood as information flows between isolated, but 
weakly interacting groups of human beings. 

Modeling the Competition of Skills 
 
Our goal is to study the question under which conditions 
(means for which parameter values) different skills are spread 
and maintained in populations. Thereby, a skill is a property of 
an individual that a) gives the individual some benefit and b) 
has to be transferred from a skilled to an unskilled individual 
by some form of teaching process. We will study a population 
in which individuals can learn one of two skills. These two 
skills differ first in the benefit they provide to dose individual 
having the particular skill and second in the effort (time) it takes 
to teach the skill to an unskilled individual U. In the model, 
there is an easy-to-learn skill A that yields only limited benefit 
and a skill B that is hard to learn but results in a higher benefit. 
The question we want to address is the following: What is the 
dependency of the average number of individuals with skill A, 
B or U (skill U means unskilled) one encounters in the 
randomly chosen hut as a function of the mobility parameter 
m ? This question arose from broader investigations about 
cultural evolution performed by one of the authors, Richard 
Walker. As it turns out, the dynamics of the model delivers a 
surprisingly faceted answer.  
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The Model 

The Possible Occupations 
We study huts that can host maximally two individuals. Larger 
huts are straightforward to implement, but we want to keep the 
mathematical formalism as simple as possible. The symbol “V” 
stands for void, “U” for unskilled, “A” for individual with skill 
A and “B” represents an individual with skill B. The occupation 
or state of a hut is described by an index consisting of three non 
- negative integers UAB , such that 2+ + ≤U A B .  The total 
number T  of individuals in a state UAB is given by 
= + +T U A B  and the according number of voids by 

2= − − −V U A B . The index set
{ }1 000,100,010,001,200,110,101,020,011,002=I  

contains all allowed indices for huts of size two. 
Sometimes, an alternative indexation is useful, referring to the 
two available vacancies in a hut. We define an index set 

{ }2 , , , , , , , , ,=I VV VU VA VB UU UA UB AA AB BB . In this 
notation, a potential problem becomes immediately apparent, 
namely the occurrence of symmetric states. In this work, we do 
not distinguish between occupations AB and BA.  
For each occupation UAB , there is a time-dependent 
probability ( )UABp t .  We formulate a Master equation 
 

000

002

( )
( ( )) ,       

( )


= = 

 
 



  



p t
dP M P t P P
dt

p t
  (2) 

in order to determine the time development of the occupations. 
Thereby, ( ( ))



M P t  is a matrix that depends on ( )


P t  (and 
therefore implicitly on time) and represents the different 
interactions transforming one state into another. In what 
follows, we will discuss these interactions and the present their 
contribution to ( ( ))



M P t .  

Interactions and Processes 
In our model, four types of processes can occur: 

a. Individuals may give birth to children. Children are 
always unskilled. 

b. An individual with skill X can teach an unskilled 
individual. 

c. Individuals can die. 
d. Individuals can leave a hut and enter another one.  

In what follows, we provide the rate equations for the 
probabilities ( )UABp t  for each of these processes. We will 
formulate template formulas. In these template formulas, we 
assume that ( ) 0≡UABp t  if the index UAB does not satisfy 
the requirement that all the integers of which the index is 
composed are bigger or equal to zero or that the sum 

+ +U A B  is bigger than two. To facilitate the notation 
further, we introduce the function ε : 
 

1, , , 0, 2
( , , )

0, otherwise                                 
ε

≥ + + ≤
= 


U A B U A B
U A B   (3) 

Birth 
The birth rate of individuals with skill X is given by β X , 

{ }, ,∈X U A B (we don’t model the details of sexual 
reproduction). Different skills may lead to different birthrates, 
which in turn constitute evolutionary advantages or 
disadvantages. 
The probability ( )UABp t  will change by births according to the 
following template formula:  

 

{ }

( 1)

( 1) ( 1)

, ,

( 1)

( 1, , )

β

β β

ε β

−

− −

∈

= −

+ +

− +∑

UAB
U U AB

birth

A U AB B U AB

X UAB
X U A B

dp U p
dt

A p B p

X U A B p

 

 (4) 

Let us analyze this formula. The term UABp  gives the 
probability for the state with U  unskilled inhabitants, A  
inhabitants with skill A and B  inhabitants with skill B. The 
first term on the right hand side, ( 1)( 1)β −− U U ABU p  models 
the birth of an unskilled individual from an unskilled parent 
with a birth rate βU . Because birth increments the number of 

unskilled individuals by one, the original state is ( 1)−U ABp . The 

factor ( 1)−U  takes into account the possibility of many 
potential parents (which is not important if one restricts the 
maximal occupation number to two, but the template can be 
applied for larger huts, too.) The second term ( 1)β −A U ABA p  
represents the birth of an unskilled inhabitant by a parent with 
skill A, and accordingly for the third term and skill B. The last 
term models the decrease of the probability UABp  caused by 
birth processes (Note that in our model, we could replace 

( 1, , )ε +U A B  by (2 )− − −U A B , but the variant we use 
is also valid, if we run the model with larger huts.)  A remark: 
the fact that the number of vacancies in a hut is restricted 
imposes an implicit resource that limits growth. 

Death 
The template formula for the death of individuals is structurally 
identical to the one of birth. It reads: 

 

{ }

( 1) ( 1)

( 1)
, ,

( 1) ( 1)

( 1)

δ δ

δ δ

+ +

+
∈

= + + +

+ + − ∑

UAB
U U AB A U A B

death

B UA B X UAB
X U A B

dp U p A p
dt

B p X p
 

 (5) 
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 The death rates, which may be different for differently skilled 
individuals, are given by δ X .  

Teaching 
We assume that if an unskilled individual resides together with 
an individual with skill X in a hut, a teaching process may 
occur. The according template formula reads: 

 

( 1)( 1)

( 1)A( 1)

( 1)( 1)

( 1)( 1)

τ

τ

τ τ

+ −

+ −

= + −

+ + −

− −

UAB
A U A B

teach

B U B

A UAB B UAB

dp U A p
dt

U B p
UA p UB p

 

 (6) 

The first line represents the transformation of an unskilled 
individual into one with skill A (the unskilled individual is 
taught by an individual with skill A). This transformation, the 
“teaching rate”, is given by τ A . Accordingly, the second line 

models the teaching of skill B with teaching rate τ B . Finally, 
the last line represents transformations out of state UAB .   
Remark: this template is a bit more complicated than it needs 
to be, at least as long as we restrict the number of vacancies in 
a hut to two. However, the formula as it stands can is applicable 
for larger huts. 

Diffusion 
Modeling diffusion is conceptually a little bit more difficult. 
First, we have to note that we assume an individual leaving a 
hut and entering immediately into another one. One can think 
of an individual choosing a target hut at random and make a 
passage to this hut as long as this hut is not already full (because 
we work on an infinite dimensional simplex, the case of leaving 
a hut and entering it again does not require specific care). The 
an individual with skill X fills a vacancy in a given hut is then 
proportional to the average number of individuals with that skill 
in all the other huts. As a consequence, the chance of an 
individual with skill X in a given hut to leave this hut is 
proportional to the average number of vacancies in all the other 
huts. 
These averages are easy to compute; the advantage of an 
infinite dimensional simplex as underlying space is that the 
occupation probabilities in all the hearts are identical. 
Therefore, we have: 
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Thereby, i is an index of the form UAB and the functions 
, ,u a b  are defined as ( )= =u i UAB U , ( )= =a i UAB A  , 
( )= =b i UAB B and ( ) 2= = − − −v i UAB U A B .  

The template formula for in – diffusion (state transitions that 
increase the number of inhabitants) reads: 
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( 1)

( 1)

( 1)
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(2 ( 1) )

(2 ( 1) )

(2 ( 1))

(2 )
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−

∈
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in diff

U A B

UA B

UAB
X U A B

dp U A B Ump
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U A B Amp

U A B Bmp

U A B Xmp

 

 (8) 

Thereby, the parameter m  models the mobility and the last line 
takes into account that the influx of an inhabitant into a state 
UAB  reduces UABp . 
Accordingly, for out-diffusion (state transitions that decrease 
the number of inhabitants), we have: 

 

{ }

( 1) ( 1)

( 1)
, ,

( 1) ( 1)

( 1)

+ +
−

+
∈

= + + +

+ + − ∑

UAB
U AB U A B

out diff

UA B UAB
X U A B

dp U Vmp A Vmp
dt

B Vmp XVmp
 

 (9) 

The complete Master equation is given by: 

 

− −

= + +

+ +

UAB UAB UAB UAB

birth death teach

UAB UAB

in diff out diff

dp dp dp dp
dt dt dt dt

dp dp
dt dt

 (10) 

Results  
We solved the Master equation Eq. (10) by standard numerical 
procedures. As it turned out, the solutions settled down to a 
fixed point after a sufficiently long time development. Of 
course, many parameter values lead to rather uninteresting 
behavior. However, some showed a rather rich behavior. In 
what follows, we analyze the system for the following set of 
parameters: 
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                              (11) 

If one takes the unit of time as one year, one sees that the 
average life span of an individual is 80 yrs. Learning a skill 
takes 5 years (skill A) or ten years (skill B). The birth rates look 
much larger as they really are; take into account that the number 
of births is limited (space is a limited resource).  
For this choice of parameters, we observe a rich variety of 
possible fix points. In Fig. 3, we distinguish seven different 
patterns of behavior with respect to the mobility parameter m . 
Shown are the values the averages of skills , ,U A B  attained 

after 610  time units. The initial conditions are set to
(0) 1, (0) 0.05, (0) (0) 0.225= = = =V U A B . The system 

turned out to be insusceptible towards the initial conditions, 
provided that there is at least some density of the skills A and 
B.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Average number of skilled individuals per location of 
interaction as a function of the migration parameter m .  
 
In Fig. 3, the y-axis reflects the expected average density of a 
given skill as a function of the mobility parameter m. U 
represents the density of unskilled individuals, A and B those 
of individuals with the respective skill. T stands for the total of 
individuals. At very low m (region I), the population can’t 
survive. For low m (region II), no skill can be maintained. For 
higher values of m, we observe either that one skill dominates 
the other or co – existence of skills. As a main result, we 
observe that a population can maintain a complex skill B only 
in a window of the mobility parameter. In order to uphold a 
complex skill, a certain mobility is necessary, but too much 
mobility favors simpler skills that are easier to transmit. 

Discussion 
The outcome of our simulations shows that maintaining skills 
in a population may depend on migration rates in a rather subtle 
manner. However, we are very reluctant giving these 
simulations (or the parameter values at which changes in 
behavior of the system occur) a lot of direct relevance. And of 
course, we are far from modeling the real processes in 
prehistoric societies. But physics teaches us that seemingly 
simple models which obviously don’t reflect the true physical 
behavior of a system (such as the Ising model) are nevertheless 
suited to reveal fundamental aspects and limiting cases of the 
real world. In that sense, we are convinced that a PRESS model 
based approach to social dynamics can help us understand and 
guide our search for interactions, which lead to interesting 
system behavior.  
An example for such a support is a question that results from 
the observations in Fig. 3. Basically, Fig. 3 states a complex 
dependence of the system behavior on the migration rate. But 
in the presented model, a migration process only takes place if 
a randomly chosen hut has at least one empty site. With other 
words: migration is limited by the number of free sites and there 
is no spread of information different from the migration of 
individuals. However, one can easily imagine a situation in 
which the flow of information is much faster than migration of 
individuals. This could e.g. lead to a migration pattern where 
potential students (unskilled individuals) know in advance 
which hut harbors empty sites. Technically, this means that 
migration stays maximal until the system is full.  
Investigations based on the PRESS model should (and will) be 
complemented by agent based simulations. In an agent-based 
simulation, it is very easy to study the effect of a fast flow of 
information.  
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The problem of promoting the evolution of cooperative
behaviour within populations of self-regarding individuals
has been intensively investigated across diverse fields of be-
havioural, social and computational sciences (Nowak, 2006;
Perc et al., 2017). In most studies, cooperation is assumed to
emerge from the combined actions of participating individ-
uals within the populations, without taking into account the
possibility of external interference and how it can be per-
formed in a cost-efficient way. However, in many scenar-
ios, cooperative behaviours are advocated and promoted by
an exogenous decision maker, who is not part of the sys-
tem (e.g. the United Nation interferes in political systems
for conflict resolution or the World Wildlife Fund organ-
isation interferes in ecosystems to maintain biodiversity).
Thus, a new set of heuristics capable of engineering a de-
sired collective behaviour in a self-organised multiagent sys-
tem is required. Here we summarize our recent works to
bridge this gap, in which we employ theoretical analysis and
computer simulations based on evolutionary game theory
(Nowak, 2006), to study cost-efficient interference strate-
gies for enhancing cooperation in the context of cooperation
dilemma games, for both well-mixed (Han and Tran-Thanh,
2018) and square-lattice structured populations (Han et al.,
2018).

We consider finite populations (of size N ) of individuals
who interact with each other through the one-shot Prisoner’s
Dilemma game (PD) (Nowak, 2006), where in each inter-
action two players simultaneously choose either to cooper-
ate (C) or defect (D). Mutual cooperation (mutual defection)
yields the reward R (penalty P ) and unilateral cooperation
gives the cooperator the sucker’s payoff S while the defec-
tor the temptation T . A PD is characterized by the ordering
T > R > P > S. In a well-mixed population, each player
interacts with all others in the population while in a square
lattice the player interacts with its four immediate neighbors.
A player’s fitness is its averaged payoff over all its inter-
actions, which is then used for strategy update. Namely, a
player A with fitness fA chooses to copy the strategy of a
randomly selected player in the population (well-mixed) or
randomly selected neighbor (structured) with a probability

given by the Fermi function, (1 + eβ(fA−fB))−1, where β
represents the intensity of selection (Traulsen et al., 2006).
When β = 0 corresponds to neutral drift while β → ∞
leads to increasingly deterministic selection. Weak or even
close to neutral selections (small β) are abundant in nature,
while the strong selection regime has been reported as pre-
dominant in social settings. As an alternative to this stochas-
tic update rule, one can also consider a deterministic update
in which agents copy, if advantageous, the most successful
player in their neighbourhood.

An interference strategy or scheme can be generally de-
fined as a sequence of decisions about which C players in
the population to invest in (i.e. reward the player an amount,
denoted by θ), in order to achieve the highest level of coop-
eration while minimising the total cost of investment. These
decisions can be made by considering different aspects of
the population such as its global statistics and/or its struc-
tural properties. In the context of a well-mixed population,
an interference scheme solely depends on its composition
(i.e. how many C and D players there are at the time of deci-
sion making). In this case, we have derived analytical condi-
tions for which a general interference scheme can guarantee
a given level of cooperation while at the same time minimis-
ing the total cost of investment (for rewarding cooperative
behaviours), and show that the results are highly sensitive to
the intensity of selection by interference. Moreover, we have
studied a specific class of interference strategies that make
investments whenever the number of C players reaches a cer-
tain threshold, denoted by t (∀t ∈ {1, . . . , N −1}), showing
that there is a wide range of t that it outperforms standard
institutional incentive strategies—which unconditionally in-
terfere into the system regardless of its composition, cor-
responding to t = N − 1 (Chen et al., 2015). Figure 1a
shows the optimal threshold of t for varying the intensity
of selection, β, where the minimal expected cost of inter-
ference is obtained while guaranteeing at least ω-frequency
(0 ≤ ω ≤ 1) of cooperation. We can observe that, when β
is sufficiently small (weak selection), an intermediate value
of t would lead to most cost-efficient interference strate-
gies, while for a sufficiently strong selection, it is best to
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Figure 1: a) In a well-mixed population (size N = 100), the optimal threshold of t where a minimal expected cost of interference is obtained
while guaranteeing at least ω-frequency of cooperation, which increases with the intensity of selection (Other parameters: T = 2; R =
1; P = 0; S = −1; θ = 5); b) In a square lattice population (size N = 1002), neighborhood-based (local) interference strategies are
more cost efficient in ensuring high cooperation (≈ 100%) than population-based (population cooperation level) ones. Other parameters:
T = 1.8; R = 1; P = 0; S = 0 (weak PD); deterministic update was used but results are robust for stochastic update (Han et al., 2018).

always interfere, meaning that standard institutional incen-
tive strategies (i.e. t = N − 1) would be most effective.

With a structured population, individuals (even of the
same strategy) might reside in different kinds of neighbor-
hood (with different cooperativeness levels), and therein lo-
cal information might be useful to enhance cost-efficiency
and cooperation. To this end, we test several interference
paradigms (Han et al., 2018) that make investment deci-
sions based on a player’s current cooperativeness level (the
number of C players in the neighborhood), and compared
their efficiency with the population-based strategies (as in
the well-mixed case). Our systematic analysis reveals a sim-
ple strategy that invests when there is at least one D player
in the neighborhood and does not invest otherwise, is highly
cost-efficient in promoting cooperation (see Figure 1b). Fur-
thermore, when additional information regarding the fitness
levels (i.e. individual income information) of players in a
neighbourhood is accessible, further improvement can be
made by more accurately influencing D neighbours for be-
havioural change (to become cooperators).

Future works include analysis of other types of popula-
tion structures such as the scale-free ones and their vari-
ants (Cimpeanu et al., 2019) and more complex interference
strategies such as those vary the cost of investment over time
or combine different forms of incentives (Chen et al., 2015;
Han, 2016).

In short, we have studied how cooperation can be pro-
moted in a cost-efficient way from an external decision
maker’s perspective. It provides new insights regarding
heuristics capable of engineering a desired collective be-
haviour in a self-organised complex system, not only in so-
cial and biological contexts, but also Artificial Life scenarios

such as swarm-based and multi-robots systems (Bonabeau
et al., 1999; Han et al., 2012).
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Abstract

Collaboration in order to perform various tasks such as herd-
ing or hunting is frequently seen in nature. Cooperative be-
haviors benefit the group by helping them achieve rewards
that would not be possible for an individual to achieve alone.
In addition to cooperative hunting, spotted hyenas also par-
ticipate in coordinated mobbing of lions, which is a complex
behavior that is still believed to be genetic. Lions are larger
and stronger than hyenas, and therefore the hyenas need to
cooperate in large numbers to overcome their fear and attack
the lions. Individualistic hyena traits and other factors that
may affect the frequency or success of lion-mobbing have
not been studied in simulation before. Furthermore, multi-
ple emotions, such as fear and affiliation towards teammates,
affect the willingness of hyenas to attack lions. The computa-
tional model of lion-hyena interaction developed in this work
can help understand the evolution of mobbing behaviors. It
may be used in the future to evolve strategies in video game
characters to overcome powerful adversaries or solve prob-
lems that involve high risk.

Introduction
Complex cooperative behaviors are hard to model in simu-
lation, whether they be hard-coded or learned. In previous
work, collaboration had to be evolved through coevolution,
or other such means (Uchibe and Asada, 2006; Yong and Mi-
ikkulainen, 2009; Rawal et al., 2010). It is, therefore, helpful
to examine how cooperative behaviors emerge in nature, and
what factors influence their successful evolution.

In nature, spotted hyenas frequently cooperate in teams in
order to hunt for prey that is difficult to kill (Kruuk, 1972;
Holekamp et al., 1997). This behavior has previously been
modeled in simulation (Rajagopalan et al., 2011).

Less frequently, hyenas also gather in large numbers to
attack lions and drive them away in order to gain possession
of a kill. This lion-mobbing behavior is very complex and
requires precise coordination to succeed. This is because li-
ons are larger and stronger than hyenas and, therefore, are
expected to emerge the winners in any lion-hyena interac-
tion.

There are some limitations to the study of lion-hyena in-
teractions in nature. The path that hyena behavior evolu-
tion took to reach its current state of sophisticated mobbing

cannot be studied in real-life hyenas. This problem can be
solved by developing a computational model that faithfully
reproduces lion-hyena interactions and mobbing behaviors
from nature. It can then be used to study the evolution of
such behaviors as well as to make predictions about them.
This paper describes how such a model was built.

Neuroevolutionary techniques were used to control a team
of hyenas that were placed in various situations along with
simulated lions in a field. The simulations showed that the
factors observed in nature as affecting the evolution and suc-
cess of mobbing behaviors also emerged in the computa-
tional model. In the future, these principles can also be used
to build teams of artificial agents with complex cooperative
behaviors.

Related Work
This section will first describe the biological background
of lion-mobbing, after which the modeling of cooperation
and the various neuroevolutionary techniques that are used
to build such models will be reviewed.

Biological Background
Since spotted hyenas (Crocuta crocuta) and lions are both
apex predators that compete for prey, resources and habi-
tat, they come into conflict very frequently. Lions are much
larger and more powerful than hyenas and are expected to
win most such interspecific competitions. Hyenas are gen-
erally reluctant to engage with lions. Nevertheless, hyenas
have sometimes been observed to exhibit a curious cooper-
ative action where they band together to attack a group of
lions in order to gain or retain access to a kill (Watts and
Holekamp, 2008). Hyenas display other cooperative behav-
iors for hunting and for defense (Holekamp et al., 2012), but
lion-mobbing is much more complex than these, and can be
considered a novel evolutionary step. Mobbing is very dan-
gerous for the hyenas (Trinkel and Kastberger, 2005; Kruuk,
1972). In fact, lions are the leading cause of death in many
hyena populations (Cooper, 1991; Hofer and East, 1995;
Trinkel and Kastberger, 2005). Consequently, hyenas can
rarely displace lions from food unless the odds ratio (i.e. the
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ratio of hyenas to lions) is at least four to one (Kruuk, 1972).
Dr. Holekamp and her colleagues have been continuously

monitoring spotted hyena clans in the Masai Mara National
Reserve and Amboseli National Park in Kenya since 1988.
They have made direct observations of seven different hyena
clans and recorded over 500 hours of videos and detailed
notes about more than 900 lion-hyena encounters (Lehmann
et al., 2016). Dr. Holekamp’s group used this data to con-
struct a table that characterizes each such encounter along
dimensions such as the number of hyenas present, the num-
ber of lions, whether mobbing occurred, and whether it was
successful. Using this dataset, they then characterized all
the lion-hyena encounters and assessed mobbing probabili-
ties in Lehmann et al. (2016). Some of the conclusions they
reached were:

1. Lions and hyenas interacted more frequently at fresh kill
sites than at sites with older carcasses. Mobbing rates
were also highest at a fresh kill.

2. Lion-hyena interaction probability increased with in-
creasing prey size.

3. The presence of adult male lions at the kill site increased
the probability of interactions but decreased the probabil-
ity of successful mobbing.

4. The interaction probability increased with number of hye-
nas present.

5. Local prey availability did not significantly impact the
probability of interaction.

6. Mobbing increased the probability that hyenas would ac-
quire food from a lion-controlled kill site. Thus, the evo-
lution of cooperation in hyenas has increased their overall
fitness.

The goal of this work was to understand the cognitive pro-
cesses that result in mobbing behavior using a computational
model to simulate lion-hyena interactions. All the conclu-
sions from the observational data listed above were tested in
simulation.

Simulations of Cooperative Behavior
A significant body of work exists on computational model-
ing of cooperation in nature. For instance, flocking behav-
iors of birds and shoaling of fish have been modeled exten-
sively using rule-based approaches (Reynolds, 1987; Seno,
1990), while cooperative behavior of micro-organisms has
been modeled with genetic algorithms (Kubota et al., 1996;
Roeva et al., 2007). Ant and bee colonies have been the sub-
ject of many studies involving evolutionary computation as
well (Dorigo et al., 1996; Waibel et al., 2006).

More complex cooperative behaviors in teams have also
been studied in computation before. Yong and Miikkulainen

(2009) used neural networks to control and evolve the be-
haviors of three predators cooperating to catch a prey. Si-
multaneous cooperative and competitive coevolution was
implemented in teams of predators and prey by Rawal et al.
(2010), while dynamically changing hunting behaviors of
hyenas were modeled in Rajagopalan et al. (2011).

Previous computational work also studied the effect of
different communication strategies in mobbing, evolving the
behaviors as a set of rules (Solomon et al., 2012; Fairey and
Soule, 2014). The results showed that having a single leader
to make all mobbing decisions for the hyena team resulted
in the most effective coordination. But this result has not
been observed in nature, and therefore, this will not be an
assumption in this work.

Neuroevolution of Behavior

Neural networks and evolutionary computation may be com-
bined into a learning algorithm that can be used to solve dif-
ficult sequential decision tasks with continuous state and ac-
tion spaces, and partially observable states. Neuroevolution
has previously been used to discover dynamic and intelli-
gent behavior in autonomous agents. For example, it has
been used in simulated robot soccer (Whiteson et al., 2005),
and Ms. Pac-Man (Burrow and Lucas, 2009; Schrum and
Miikkulainen, 2014). Neuroevolution has also been used in
previous modeling of predators and prey (Yong and Miikku-
lainen, 2009; Rawal et al., 2010) as well as in the evolution
of cooperative hunting behaviors in simulated hyenas (Ra-
jagopalan et al., 2011). Thus, neuroevolution is a natural
choice for modeling the complex cooperative behavior of
lion-mobbing.

NeuroEvolution of Augmenting Topologies, or
NEAT (Stanley and Miikkulainen, 2002), is a neuroevo-
lution technique that optimizes not only the connection
weights, but also the topology of a neural network. This
technique was shown to be more effective than traditional
neuroevolution methods that modify only the connection
weights (Stanley and Miikkulainen, 2002). Speciation is
also used to nurture new innovations in network structure
that might otherwise be lost due to their low initial fitnesses.
NEAT was used in this work when building a computational
model to study lion-hyena interactions.

Experimental Setup
The hyena agents were placed on a 100 × 100 toroidal grid
without any obstacles, where they could move east, west,
north or south. A group of non-evolving lions already in
possession of the kill were fixed at a location, and had the
deterministic behavior of killing any hyena that came within
a certain number of steps from them, i.e. the interaction
radius, with a certain kill probability. Whenever a hyena
moved closer than the interaction radius, it was said to be
interacting with the lions. Then, it could either be killed or
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Figure 1: Interaction probability when kill probability is
fixed. The x-axis has kill probability and the y-axis is the
probability that the hyena approaches the lions, averaged
over ten runs. The fixed value of the kill probability during
each run had to be discovered by the hyena through evolu-
tion. The probability of approaching lions decreased as the
kill probability increased.

be part of a successful mobbing event. The goal of the sim-
ulated hyenas was to mob the lions with enough teammates
to drive them away and obtain the kill for themselves. An
example of a successful mobbing behavior in simulation has
been uploaded at http://nn.cs.utexas.edu/?mobbingfactors.

The hyena population was evolved using the NEAT algo-
rithm (Stanley and Miikkulainen, 2002). For each simula-
tion, a hyena was picked from the population and cloned to
create the team members. Each hyena in the population was
evaluated five times, and each experiment was run ten times.
The fitness, mobbing probability and lion-hyena interaction
probability were averaged across these ten runs.

A hyena:lion ratio of 4:1 is necessary for a successful
mobbing event to take place (Kruuk, 1972). The kill prob-
ability in the simulation depended on the number of hyenas
and lions, but it came into play only when a hyena entered
the interaction circle of the lions.

In addition to mobbing reward given to successful mob-
bers, a survival reward was given to those hyenas that sur-
vived until the end of the simulation regardless of whether
they participated in a mobbing event. This represented re-
ward from hunting in real-life hyenas, and provided a fitness
gradient for the evolution of the hyena neural networks.

In the following section, several experiments were de-
signed to build and test a computational model for lion-
mobbing. Representations of various parameters from the
real world were gradually introduced and tested.

Using a Computational Model to Characterize
Lion-Hyena Interactions

In the following experiments, various parameters were care-
fully and systematically tested in order to reproduce the
hyena behaviors seen in nature.

Figure 2: Interaction probability when number of hyenas
varies dynamically. The number of hyenas is on the x-axis,
and the y-axis is the probability of the hyena approaching
the lions, averaged over ten runs. The number of lions was
kept fixed at two. The numbers of hyenas and lions were
given as input to the neural network, but the kill probability
had to be calculated. The probability of approaching lions
increased with number of hyenas.

Preliminary Experiments to Calculate Kill
Probability
Initial experiments consisted of a single time step in which
hyena agents decided whether to approach the lions, and
were immediately rewarded. The number of clones cre-
ated for each simulation run was chosen at random from [1,
10]. If the number of hyenas was more than four times the
number of lions, the kill probability decreased to 0 and they
could successfully mob the lions. Otherwise, it was equal to
the normalized ratio of number of lions to number of hyenas.

More specifically,

K =





0 if H ≤ 4L

L
H −0.25

0.75 if H > 4L

where K was the kill probability, L was the number of lions,
and H was the number of hyenas.

The numbers of lions and hyenas were not known to the
hyena. However, both these numbers (and hence, kill prob-
ability) were kept fixed during an experiment run, so the
hyena population could discover the kill probability through
evolution. If the team of hyena clones chose to approach
lions and were killed, they received a reward of −10, 000
points. If they approached lions but were not killed, they
got 1000 points. If they chose to stay away from the lions,
a survival reward of 100 points was given to them. As ex-
pected, the fraction of time they chose to approach the lions
decreased as the kill probability increased (Figure 1).

In the second experiment, the hyena neural network re-
ceived as input the numbers of hyenas and lions, and had to
calculate the current kill probability. The actual number of
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Figure 3: Interaction probability when lion-hyena distances
are given. The y-axis shows the average probability of ap-
proaching the lions. The number of lions was kept fixed at 2.
The absolute lion-hyena distances were given as input, but
the number of hyenas was not. The probability of approach-
ing lions generally increased with number of hyenas except
for a small bump when number of hyenas was 1.

lions was kept fixed at 2. The number of hyenas in each run
was chosen randomly between 1 and 10.

While the probability of approaching lions decreased with
decreasing numbers of hyenas, it never reached 0 (Figure 2).
Fewer hyenas in the environment lead to lower odds for a
successful mob, and therefore the hyenas evolved to avoid
the lions instead of getting killed. This behavior has also
been observed in real-life hyenas (Lehmann et al., 2016).

In a third exploratory experiment, the hyena neural net-
work received as inputs the distances of all other hyenas
from the lions in addition to the number of lions (L) and
its own x- and y-distances from the lions. The number of
other hyenas was not an input. The other hyenas were virtual
for now, so their distances were generated at random. Kill
probability still depended only on the number of hyenas and
lions, so the values of distances did not matter. However, the
hyena had to evolve to count the number of distance inputs
that were switched on and thus find out the number of other
hyenas.

The probability of approaching the lion increased with in-
creasing number of hyenas on the field with a small bump
when there was only one hyena (Figure 3). When there were
fewer hyenas than the mob minimum, it was unable to evolve
to avoid the lions completely.

The next experiment had H non-virtual hyena clones in-
stead of just one. Based on its inputs, each clone had to de-
cide whether to attack the lions, which could lead to death,
or avoid them, which gave smaller reward. The probability
of interaction increased with increasing number of hyenas,
just as stated in Conclusion 4 in the Biological Background
section (Figure 4). The average maximum fitness reached
for H = 1 and 2 was exactly equal to the survival reward,
because H was below the mob minimum. But when H = 3
or 4, they chose to approach lions more often.

Figure 4: Interaction probability for multiple hyenas when
lion-hyena distances are given. The number of lions was
kept fixed at 2. The absolute lion-hyena distances were given
as input to all the hyenas, but the number of hyenas was not.
Each hyena had to make a decision whether to approach the
lions. The average probability of approaching lions gener-
ally increased with number of hyenas, except for a small rise
when there is a single hyena present.

Realistic Modeling of Lion-Hyena Encounters
The previous subsection paved the way for a multi-step sim-
ulation where the hyena clones could move around. There-
fore, the number of time steps was increased to 500, and the
hyenas could move east, west, north and south, or remain
idle, represented by five output nodes. Each hyena neural
network received a continuous input of the distances of it-
self and the other hyenas from the lions. The number of li-
ons was fixed at 1. At every time step, if a hyena was within
10 steps (interaction radius) of the lion, kill probability came
into play, which depended on how many hyenas were within
the interaction circle (mob count). If a hyena was killed,
it got a fitness penalty of −10, 000 points and disappeared
from the environment. For each time step that a hyena was
within the interaction circle but did not die, it received a re-
ward of five points, which represented the hyena feeding on
the kill alongside the lions. If the mob count was greater
than the mob minimum, the simulation was terminated with
a mobbing reward of 10,000 points per hyena. At the end of
the simulation, a reward of 100 points per hyena was given
to all surviving hyenas. The inputs to the neural networks
were the same as in the previous exploratory experiments,
but now their values changed at every time step. The initial
neural networks had 15 input-output neurons, 65 links and
no hidden layer. The final evolved networks had around 130
neurons and around 400 links.

The results showed that the hyenas did not mob the lion
successfully in most cases, but even the rare mobbing suc-
cesses raised their average highest fitness above survival re-
ward. More hyenas approached the lion even if they did
not end up mobbing it. When the number of hyenas was
less than the mob minimum, the best hyena teams evolved
to avoid the lions altogether to stay alive and collect their
survival reward. In general, the interaction probability in-
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Figure 5: Interaction probability for hyenas in a 500-time-
step simulation. The x-axis has number of hyenas, and the y-
axis represents the average interaction probability, i.e. frac-
tion of time the hyenas were within the interaction circle.
The number of hyenas was not given as input, but the ab-
solute lion-hyena distances were. The average interaction
probability increased with number of hyenas.

creased with increasing number of hyenas (Figure 5). Over-
all, this probability was low because when a hyena entered
the interaction circle, it would either soon get killed, or suc-
cessful mobbing would occur, ending the simulation.

While the mobbing frequency was very low, the interac-
tion probability increased with increasing number of hyenas
in the environment, which is in line with Conclusion 4 from
the Biological Background section. Successful mobbing did
evolve and, therefore, can be productive for the hyena team
and increase its fitness as long as mobbing gives a net gain
to the hyenas. This agrees with Conclusion 6.

Increasing the Frequency of Successful Mobbing
While the hyenas in the previous subsection did evolve to
successfully mob the lions, they did so very rarely. To in-
crease the frequency of mobbing, various parameter values
were tested carefully and systematically. The reward for
remaining alive within the interaction circle needed to be
higher to encourage hyenas to approach the lions. The in-
teraction radius also needed to be increased in order to al-
low hyenas to drive away the lions from a greater distance.
But this meant that the probability of hyenas dying also in-
creased, since the kill probability came into play once a
hyena was within the interaction circle. The mobbing re-
ward per hyena was increased, while the survival reward as
well as the mobbing reward were given only to those hyenas
that survived to the end of the simulation, unlike in previ-
ous experiments. This change helped hyenas evolve to co-
ordinate their attack on the lions instead of charging them
blindly. The survival reward needed to be low so that the
hyenas did not avoid the lions altogether.

The result of these parameter changes was that the fre-
quency of mobbing increased when compared to previous
experiments (see Figure 6). In all cases where the number of

Figure 6: Successful mobbing probability for increased
mobbing frequency. The y-axis represents the average mob-
bing probability. The interaction radius, mobbing reward
and reward from feeding on the kill were all increased. A
small survival reward was given to all surviving hyenas at
the end of the simulation. The average mobbing probability
was very low, but successful mobbing occurred more often
than in previous experiments.

hyenas was five or more (the mob minimum), the mobbing
probability was non-zero. The average mobbing probabil-
ity increased with increasing number of hyenas on the field.
The fraction of time the hyenas spent within the interaction
circle, also increased (compare Figures 5 and 7). The av-
erage interaction probability also increased with increasing
number of hyenas. A surprising development, which is also
observed in nature, was that even when they did not have
the numbers to mob the lion, they still obtained some re-
ward from moving into the interaction circle and feeding on
the kill. But this meant that they did not all stay alive until
the end of the simulation, and thus the team did not get the
maximum possible survival reward.

Presence of Adult Male Lions
Dr. Holekamp’s group found that the presence of adult male
lions in the lion group led to an increase in the proba-
bility of the hyenas and lions interacting (Lehmann et al.,
2016). Male lions are more likely to initiate the interac-
tion themselves (Elliott and Cowan, 1978), but are also bet-
ter able to protect their kill, leading to lower mobbing fre-
quency (Cooper, 1991; Kissui and Packer, 2004). The com-
putational model matched Conclusion 3 from the Biological
Background section in the following experiments.

Since male lions instigate interspecific interactions with
the hyenas, the presence of male lions could be represented
by a larger interaction circle in the computational model.
The male lions also end up killing or injuring more mob-
bing hyenas due to their strength. That fact would also true
in the model when using a larger interaction circle, because
any hyenas are more likely to step into the interaction circle
if it is larger, and thus, they would be more likely to die.

In these experiments, the interaction radius was varied
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Figure 7: Interaction probability with increased mobbing
frequency. The y-axis represents the average interaction
probability, i.e. fraction of time the hyenas were within the
interaction circle. The interaction radius, mobbing reward,
and reward from feeding on the kill were all increased.
There was also a small survival reward. The average inter-
action probability was higher than in previous experiments,
and increased with number of hyenas.

randomly in the range 0 to 30 during the experiment run.
This value was then given as input to the hyena neural net-
work. The number of hyenas was fixed at 10 in all the exper-
iments so that the comparisons between results would reflect
only the changes in interaction radius.

Just like in nature, the simulated hyenas spent more of
their time interacting with lions as the interaction radius in-
creased, but they also got killed more frequently (see Fig-
ures 8 and 9). This result is in line with Conclusion 3 from
the Biological Background section, which states that pres-
ence of male lions increases the interaction probability, but
also increases the number of hyena deaths.

Prey Desirability
It makes intuitive sense that the desirability of the prey at the
kill site should dictate whether the hyenas mob the lions to
gain the kill, as concluded by Lehmann et al. (2016). Both
interaction and mobbing rates were highest at a fresh kill site
when compared to a kill site with an old carcass (Conclusion
1 from the Biological Background section). They also ob-
served that the propensity of the hyenas for interspecific in-
teractions with the lions increased with increasing prey size
(Conclusion 2). The fitness boost from a successful mob-
bing had to be large enough to overcome the cost of injury
or death while mobbing. In the experiments in this subsec-
tion, the freshness and the size of the prey were combined
into one component, prey desirability. This component was
represented by the mobbing reward in the simulations.

The simulated hyenas did not always behave in the same
way as their real-life counterparts. If the initial mobbing re-
ward was too low, the hyena team had a large overhead cost
for evolving mobbing strategies and they simply avoided the
lions altogether, preferring to collect the survival reward in-

Figure 8: Interaction probability comparisons when adult
male lions are present. The x-axis shows the interaction ra-
dius, and the y-axis represents the interaction probability, i.e.
fraction of time the hyenas were within the interaction cir-
cle, averaged over ten runs. The numbers of hyenas and li-
ons were kept fixed at 10 and 1, respectively. The interaction
radius was varied dynamically between 0 and 30 steps. The
average interaction probability increased as the interaction
radius increased. Therefore, the frequency of interaction in-
creased when there were male lions present.

stead. On the other hand, if the initial mobbing reward was
too high and the survival reward too low, they evolved suc-
cessful mobbing behaviors that they could execute with min-
imal cost even if the mobbing reward decreased later in the
experiment run.

The survival reward values for these experiments had
to be chosen very carefully to come up with a situation
where hyenas could dynamically choose to mob or avoid
lions based on the prey desirability. Different values of sur-
vival reward were tested systematically with varying suc-
cess. When the survival reward was 5 fitness points, there
was a trend of successful mobbing probability increasing
with increasing prey desirability (see Figure 10). This re-
sult is in line with Conclusions 1 and 2 from the Biological
Background section.

Discussion and Future Work
The computational model developed in this work to study
lion-hyena interactions used neural networks for the hyenas.
One challenge was that neural networks do not fear the li-
ons in the same way that real hyenas do. If they evolve a
good mobbing strategy, they always use it. If the net re-
turn from mobbing is very low, they evolve to never mob
the lions instead. In order to replicate mobbing behaviors
from nature, various parameters such as mobbing and sur-
vival rewards, and probability of injury or death had to be
fine-tuned very carefully and systematically. However, the
resulting successful settings suggested principles that make
such behaviors possible.

It can hence be concluded that mobbing can be success-
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Figure 9: Hyena death probability comparisons when adult
male lions are present. The x-axis shows the interaction ra-
dius, and the y-axis shows the probability of the hyenas dy-
ing, averaged over ten runs. The numbers of hyenas and li-
ons were kept fixed at 10 and 1, respectively. The interaction
radius was varied dynamically between 0 and 30 steps. The
average death probability increased as the number of male
lions increased, which is represented by increase in interac-
tion radius.

ful without being counterproductive. Carefully coordinated
mobbing leads to better overall fitness for hyenas because
once they drive the lions away, there is no more danger. They
also get a big fitness boost from eating the kill they wrested
from the lions. These observations from computational sim-
ulation suggest that mobbing is possible and successful in
specific circumstances, but not a very general and common
ability. This may be the reason why mobbing is indeed rare,
i.e. the spotted hyenas seem to do it, and not their closest
relatives, the striped and brown hyenas.

The role of emotions such as fear and affiliation, as well
the importance of individualistic traits in lion-mobbing has
not been studied before. It is not clear exactly what informa-
tion emotions provide to the hyenas and how they regulate
behavior. As such, it is difficult to simulate emotion inputs
to hyena neural networks. Similarly, a heterogeneous team
will behave very differently from the homogeneous team
employed in this work. The different roles of individual hye-
nas are hard to replicate in simulation when not much about
these roles has been observed in nature. Therefore, com-
putational modeling of emotions and individualistic traits in
the context of lion-hyena interactions is still future work.

Conclusion
The computational model built in this paper was used to
study lion-hyena interactions and the evolution of successful
mobbing strategies. Several factors affected the evolution of
realistic behaviors on the part of the hyenas, including inter-
action radius, mobbing reward, survival reward and reward
from feeding on the kill gradually when mobbing has not
occurred. In order to replicate frequent mobbing behaviors
as seen in nature, the values of these factors had to be very

Figure 10: Successful mobbing probability comparisons for
different prey desirability values. The x-axis shows the prey
desirability value, which is equal to the mobbing reward,
and the y-axis shows the mobbing probability, i.e. fraction
of time the hyenas successfully mobbed the lion, averaged
over ten runs. The survival reward was 5 points. The aver-
age mobbing probability showed a trend of increasing with
increasing prey desirability.

carefully and systematically varied. From the simulation ex-
periments in this work, it could be concluded that mobbing
and interaction frequencies increased with increase in inter-
action radius, mobbing reward, and reward from feeding on
kill gradually inside the interaction circle. These frequencies
also increased when survival reward was reduced, and when
mobbing and survival rewards were only given to survivors.

These parameters represented environmental factors in
the real world that affect interspecific interaction probabili-
ties and mobbing rates in hyenas. Out of the six conclusions
from observational data listed in the Biological Background
section, five were modeled successfully in simulation. The
following are the conclusions that matched perfectly:

1. The probability of lion-hyena interaction increased with
number of hyenas present. This result matches Conclu-
sion 4.

2. Successful mobbing contributed positively to the overall
fitness of the hyena team, although a fine balance of pa-
rameter values was necessary to bring about mobbing be-
haviors. This result matches Conclusion 6.

3. Interaction probability was higher when adult male lions
were present, but the probability of death and injury for
the hyenas was also greater. In simulation, the presence of
male lions was represented by a larger interaction radius.
This result matches Conclusion 3.

4. Interaction probability was higher when prey desirability
was higher. In the computational model, prey desirabil-
ity was represented by the mobbing reward. This result
matches Conclusions 1 and 2.

Since the results discovered through simulation and those
observed in nature were congruent, the computational model
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was deemed to be a faithful representation of real-life lion-
hyena encounters. The next step then is to use this model
to make predictions about hyenas in nature, which could be
tested in the field in future. The behaviors simulated here
can also be used to create complex cooperative behaviors in
artificial agents in the future.
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Abstract

There has been a revival of the notion of habit in the embod-
ied and situated cognitive sciences. A habit can be understood
as ‘a self-sustaining pattern of sensorimotor coordination that
is formed when the stability of a particular mode of senso-
rimotor engagement is dynamically coupled with the stabil-
ity of the mechanisms generating it’ (Barandiaran, 2008, p.
281). This view has inspired models of biologically-inspired
homeostatic agents capable of establishing their own habits
(Di Paolo and Iizuka, 2008). Despite recent achievements in
this field, there is little written about how social habits can
be established from this modelling perspective. We hypoth-
esize that, when the stability of internal behavioural mech-
anisms is coupled to the stability of a behaviour and other
agents are present during this behaviour, a social interdepen-
dence of behaviour takes place: a social habit is established.
We provide evidence for our hypothesis with an evolutionary
robotics simulation model of homeostatic plasticity in a pho-
totactic behaviour. Agents evolved to couple internal home-
ostasis to behavioural fitness display social interdependencies
in their behaviour. The social habit of these agents was not
interrupted when blindness to phototactic stimuli was intro-
duced as long as social perception remained active. This did
not happen when internal homeostasis was not coupled to the
fitness of the agent. The results allow us to propose a possible
conjecture about the character of social habits and to offer a
potential theoretical framework to understand how habits de-
velop from neurodynamics to the level of social interaction.

From individual to social habits: philosophy,
psychology, neural and social sciences

Habits in the history of philosophy
The concept of habit has been key for making sense of our
cognitive abilities. Philosophers, psychologists, and cogni-
tive scientists from the most diverse traditions have used this
concept to make sense of behavior and cognition from An-
cient Greece to the 20th Century (Sparrow and Hutchinson,
2013). The advent of computationalism and information
processing prompted a decline of the notion of habit in the
last Century (Barandiaran and Di Paolo, 2014), although the
notion has gained momentum recently with the rise of the
embodied and situated cognitive sciences (Di Paolo et al.,
2017; Egbert and Barandiaran, 2014; Barandiaran, 2017).

Despite its popularity, there has not been a unified notion
of habit through the ages. However, we can differentiate
two main branches: (1) The associacionist view, that defines
habits as automatic responses, and (2) the organicist view,
that defines habits as self-organizing structures linked to en-
vironmental aspects through which agents establish tenden-
cies with positive or negative balance (Di Paolo et al., 2014).
This second branch, which is the one we will focus on, was
received by pragmatism, and it was combined with the idea
of habit as mentioned in the works of Charles Darwin (James
1890: Chapter 4). On the other side, the first branch became
relevant with the scientific revolution, and developed a view
that was partially mechanistic and focused on subpersonal
processes of automatization. The associacionist conceptual-
ization of habits was inherited by the contemporary neuro-
scientific approach (Wood and Rünger, 2016).

The organicist view goes back to Aristotle, and it was
based on three main ideas: habits are dispositions or tenden-
cies (active capacities of the agent), they are agential (they
belong to the agent as a whole) and they are relational (those
tendencies of the agent are directed towards an environmen-
tal element). The term ‘habit’ comes from the Greek words
‘ethos’ and ‘hexis’ and Aristotle understood hexis as the ca-
pacitiy of the agent for being in possession of something
in an active way, as ‘a kind of activity of the haver and of
what he has something like an action or movement’ (Aris-
totle, 2007, 5.20, 1022b1214). This is, a kind of disposi-
tion towards through which someone established a tendency,
which can be positive or negative (Faucher and Roques,
2018, 2). In this sense, a habit is an active capacity possessed
by the agent, who establishes a structure that gives rise to a
particular behavior. This is tightly related to the meaning
of ‘ethos’, which means ‘custom’ or ‘habit’: that particular
behavior is established to be repeated. Habits are also rela-
tive to something external, as Aristotle himself defines them
(Aristotle, 2004, 8, 11a2032), because these behavioral pat-
terns or tendencies are always related to an object or being
of the outer world. This Aristotelian view of habits inaugu-
rates an understanding of habits as self-structured patterns
of action that depend on environmental elements, something
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that was inherited by traditions as diverse as pragmatism or
phenomenology.

The relevance of the organicist view of habits declined
with the raise of mechanicism and natural philosophy af-
ter the achievements of the scientific revolution. Natural
philosophers often described the body in mechanical terms,
and this picture has been present thorough history until
nowadays. This is the basis of the associacionist view of
habits: habits are unconscious, rigid and automatic behav-
iors that are formed thanks to the association of different
stimuli to certain behavioral outputs. The gap between stim-
uli and response is offered in subpersonal mechanistic terms.
This mechanistic view of the body governed the main de-
velopments in psychology and neuroscience, explaining the
connection between stimuli and response as a bunch of dis-
crete subpersonal steps that are mechanically linked to each
other from perception to action. This associacionist view
was at the basis of a wide variety of theories, from behavior-
ism to cognitivism (Reed, 1996) and also inspired the main
current views of neuroscience (Bennett and Hacker, 2003,
2008; Kandel et al., 2000)

In the 20th Century, pragmatism and phenomenology in-
herited the organicist view of habits. First of all, Jamesian
psychology included the idea of habit as a cognitive capacity
inspired by the work of Darwin. James claimed that there
are habits or tendencies that are innate (instincts) or edu-
cated (acts of reason) (James, 1890). In any case, these ten-
dencies belong to the agent as a whole and, given the anti-
structuralist and anti-elementarist approach of James, habits
cannot be reduced to a series of mechanical and discrete sub-
personal steps. James claimed that habits are an example of
the plasticity of the behavior of organic life that helps us
compensating the perturbations of the environment. At the
same time, habits help us to automatize our behavior, reliev-
ing us from excessive conscious attention (Blanco, 2014).
In this sense, James’ notion of habit combines the agential,
active and dispositional advantages of organicism with the
emphasis on automatization and unreflectiveness of the as-
sociacionist view.

Habits are understood in Merleau-Ponty’s phenomenol-
ogy as the bunch of ways in which our body establishes
a meaningful dialogue with our surroundings by means of
our action, allowing us to experience the world as a network
of attractions and repulsions (Moya, 2014). Merleau-Ponty
claimed that our understanding (this is, our capacity for
making sense of the environment) is not based on abstract
rationality but on our bodily and unreflective understanding
with the world (Kaufer and Chemero, 2015). In this sense,
Merleau-Ponty served as an inspiration for those cognitive
scientists that endorsed an embodied and situated approach
(Moya, 2014; Kaufer and Chemero, 2015; Gallagher, 2017;
Heras-Escribano, 2019). Taking this, the embodied and sit-
uated approach to cognitive sciences is a direct heir of the
organismic view of habits, although passed through the lens

of the pragmatist and phenomenological views offered here;
this is, habits are self-structured dispositions or tendencies
that allow us to related to the world, but in an unreflective
and embodied way. The tendencies of our body towards en-
vironmental elements allow us to navigate it and compensate
its perturbations in an skillful but totally unreflective way.

From individual to social habits
The term ‘ethos’, which is at the basis of the idea of habit in
the Aristotelian tradition, is also understood in moral terms,
such as the ethos of a person or a community (this is why
‘ethics’ and ‘morals’ derive from this word). Thus, individ-
ual habits also have a moral dimension and, more impor-
tantly, a social dimension. In fact, the work of some prag-
matist philosophers, such as Dewey, relies on the constitu-
tive aspect of the social environment for establishing both
individual and shared habits.

Dewey proposed an ontology of mind based on habits in
order to outcompete the subpersonal, mechanistic view of
the reflex arc concept in psychology (Dewey, 1896). This
reflex arc concept endorsed the idea that perception was pas-
sive and separated from action. According to the reflex arc
view, the senses received the impingements from the envi-
ronment and, thanks to a series of discrete and mechanic
steps, it was delivered a behavioral output that was auto-
matic and dis-embedded. Dewey claimed that this is not a
reliable picture of perception and action: in his view, per-
ception was continuous with action and context-dependent.
First of all, perception starts with the exploration of the envi-
ronment, so stimuli are informed by the previous activity of
the organism. Also, the response is based on the particular
situation in a given spatiotemporal context that includes the
particularities of the natural and social environment that the
organism is exploring. In this sense, stimulus and response
are two abstractions from the continuous and cyclic process
of exploration of the environment. This is why Dewey dis-
cards the mechanistic and subpersonal approach of behav-
iorism and develops an ontology of mind based, among other
things, on the organicist idea of habit.

Habits in the Deweyan view are understood as the con-
stitutive dispositional patterns that organize human behavior
(Dewey, 1958, pp. 20-6, 40-1), but the key point is that they
are socially acquired or established. This is because, accord-
ing to Dewey, our individual habits are built upon previous
collective habits in the sense that there is a priority of the
society over the individual (Dewey, 2002, p. 58). This pri-
ority is not based on metaphysical assumptions, but on the
natural origins of humans: every individual is born in a par-
ticular society, which means that individuals develop their
own action patterns in accordance with the social ones and
thanks to the feedback of the community (Dewey, 2002, p.
59). So, following Dewey, habits are always evaluated or
assessed by the individual’s social environment, and this as-
sessment comes in the form of a reinforcements and sanc-
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tions (Dewey, 2002, pp. 16-17). For this reason, Dewey
claimed that habits are ‘ways of incorporating the environ-
ment’ (Dewey, 2002, p. 15) and this includes, of course,
the social environment. The social constitution of habits is
so crucial for Dewey that he claimed that it is practically
impossible for humans to form habits that are not socially-
established, so our social environment plays a constitutive
role in the shaping and establishment of individual habits
(Dewey, 2002, p. 16).

The notion of habit has also been vindicated as founda-
tional for social sciences. One such line of development de-
parts from Norbert Elias and Marcel Mauss and finds it most
prominent exponent with Pierre Bourdieu (1977). They all
share in common the view that habits are not only social
constructions shaping individual behaviour, but the most im-
portant building block or structuring process of society (in
contrast with intellectualist views on how ideology, ratio-
nal thinking or individual goal-oriented strategic planning
shapes society).

Bourdieu defines habitus as:

systems of durable, transposable dispositions, struc-
tured structures predisposed to function as structuring
structures, that is, as principles of the generation and
structuring of practices and representations which can
be objectively ‘regulated’ and ‘regular’ without in any
way being the product of obedience to rules, objec-
tively adapted to their goals without presupposing a
conscious aiming at ends or an express mastery of the
operations necessary to attain them and, being all this,
collectively orchestrated without being the product of
the orchestrating action of a conductor. (Bourdieu,
1977, p. 72)

We aim to enrich recent contributions in which habits
have been modelled (Di Paolo and Iizuka, 2008) by in-
troducing a social dimension of habits inspired by the
main insights of social habits as defined by Dewey and
social theorists. These social habits, then, satisfy both
the organismically-inspired homeostatic model of habit-
formation (because we rely on processes of homeostasis as
a key for the establishment of social habits, offering a nat-
uralistic continuum between individual and social habits) as
well as the Deweyan demands of understanding habits as
‘ways of incorporating the [social] environment’ (Dewey,
2002, p. 15). At the same time, Bourdieu’s notion of struc-
turing structures resembles a classical theme of Artificial
Life, that of self-organizing structures, where a process pro-
duces and re-produces its conditions for self-perpetuation or
self-structuring and it affords the opportunity to model so-
cial life using artificial life modelling techniques. Artificial
Life should thus be ready to face both challenges: the social
dimension of habit and the habitual dimension of society.

In the next subsection we will explain how a recent mod-
elling version of individual habits have been proposed in the

embodied and situated cognitive sciences. This version in-
cludes homeostasis as a key aspect for offering a naturaliza-
tion of habits as understood within the organicist tradition.

Modelling habits for organismically-inspired
homeostatic agents
An organismically inspired approach to habit formation in
evolutionary robotics and artificial life is not new. Ezequiel
Di Paolo pioneered the modelling of homeostatic behav-
ior generating mechanisms to simulate re-adaptation to vi-
sual inversion(Di Paolo, 2000), a paradigmatic experimen-
tal setup aimed and discovering the deep entanglement of
sensorimotor habits and processes of re-habituation (Kohler,
1963). Variations of these homeostatic mechanisms have
been many (Aguilera et al., 2016, 2015; Iizuka and Di Paolo,
2008; Di Paolo, 2003; Williams and Noble, 2007; Iizuka and
Di Paolo, 2007), but perhaps the most relevant for our pur-
pose here is that of Barandiaran and Di Paolo (2010), where
the authors develop a model of habit development, mainte-
nance and switching for an operant conditioning task and
the spontaneous emergence of new associative habits not
present during artificial evolution. The internal mechanism
capable of supporting this behaviour was homeostatic plas-
ticity in a continuous time recurrent neural network and a
sensorimotor embodied task. A behavioural sensorimotor
pattern is linked to an emergent region of stable synaptic
plasticity. Being plasticity activity dependent, variations on
sensorimotor history are capable to generate, reshape those
regions or to switch between them. Long terms disruption
of sensorimotor correlations can also destroy the underly-
ing neurosynaptic structures supporting them. However, the
high dimensionality of the system makes it hard to analyse.
In an attempt to simplify the model Egbert and Barandiaran
(2014) chose a mesoscopic level of modelling, avoiding neu-
ral mechanisms, and proposing instead an iterant deformable
sensorimotor medium (IDSM) a mode of plastic sensorimo-
tor mapping that became structured through repetition. The
spontaneous emergence of an ecology of habits was dis-
played on that model (see Egbert, 2018, for further develop-
ments). Furthermore, other works have used minimal mod-
els to analyze the relation between agency and agency and
social interaction Di Paolo et al. (2008), although they focus
on interactive dynamics in a social context without consid-
ering the capacity of agents of developing plastic habits.

From an organismic perspective a habit can be defined as
‘a self-sustaining pattern of sensorimotor coordination that
is formed when the stability of a particular mode of senso-
rimotor engagement is dynamically coupled with the stabil-
ity of the mechanisms generating it’ (Barandiaran, 2008, p.
281). As we can see, this model offers a naturalization of
habits that satisfies the organicist view shown here, as self-
organizing structures that govern the action patterns of an
agent. In particular, it satisfies the two main requirements:
they are active and relational, because the modelled agent
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Figure 1: Types of sociality of a habit

displays a behavior based on dispositions and tendencies ac-
tively and in relation to the source of stimulation in the en-
vironment. The introduction of a social dimension to this
definition of habits has to do with the social or interactive
dependence of sensorimotor coordinations, their generation
and stability.

What is a social habit? We can establish the sociality of
a habit by degrees along three axes or dimensions of social-
ity: the behavioural or coordinative dimension (whether the
enactment itself in action demands coordination with other
agents), the structural or stabilizing dimension (whether the
stability of the action demands social interaction) and the
generative dimension (whether the habit can be acquired
without social interaction). Building upon De Jaegher et al.
(2010) we can distinguish three degrees of sociality or inter-
activity: contextual, enabling and constitutive. Contextual
sociality means that other agents’ behavior S simply affect
or produce variations on habit H. Enabling sociality means
that habit H cannot happen without S and constitutive so-
ciality means that S is inherently part of H. We want to add a
further distinction within the enabling degree, which can be
strong when S has to happen, ceteris-paribus, for H to occur,
and weak when S has to happen for H to occur only in cases
in which conditions change (e.g. an impairment has taken
place). So, for example, dressing up might be something
that is done individually, without coordination with others.
But it is certainly generatively social (wild infants have not
been seen to dress up) and is probably a structurally social
habit (meaning that out of a social context, the care and
disposition to dress up fades away). However dressing up
fashionably is constitutively social at the coordinative level.
Similarly if your partner has often a say on how you should
dress up, whether you follow the advice or directly and sys-
tematically oppose it, the habit will be contextually social at
the coordinative dimension.

We hypothesize that, when the stability of internal be-
havioural mechanisms is coupled to the stability of a be-
haviour, and other agents are present during this behaviour,
a social interdependence of behaviour takes place: a so-
cial habit is established, even if the task is not coordina-
tively social. It follows that no specific ‘social mechanism’
is required for a social habit to emerge. We provide evi-
dence for our hypothesis with an evolutionary robotics sim-

ulation model of homeostatic plasticity in a phototactic be-
haviour. Agents evolved to couple internal homeostasis to
behavioural fitness display social interdependencies in their
behaviour so that blindness to the very object of taxis does
not disrupt the habit, provided that social perception is still
active. This constitutes a mode of weak social enabling for
habit enactment (see Figure 1).

In order to explore this hypothesis we defend a phototac-
tic task is a sufficiently complex task so as to discover some
relevant sociality phenomena. Pierre Bourdieu often con-
ceives social phenomena as occurring in a social field where
agents (individuals) move trying to maximize certain values
(e.g. social status). Interestingly for Bourdieu, both the per-
ception of the field is the result of habit and, at the same
time, moving through the field creates the field itself. In this
paper we are not going to develop such a deep conception
of social habitus, but it suffices to note that moving toward
a light source can potentially mimick the structure and phe-
nomenology of more complex forms of social behaviour.

Model
In Ashby’s seminal work (Ashby, 1952), the author states
that the adaptation of organisms can be understood as the
maintenance of the internal stability through the homeostatic
regulation of some essential variables that ensure survival.
By doing so, Ashby proposes a conceptual framework for
the development of artificial agents in which, rather than as-
suming that organisms have behaviors that seek intentional
goals, they are able to generate self-induced adaptive be-
haviors exclusively through the maintenance of their inter-
nal stability. Based on Ashby’s ideas, Di Paolo (2000) ap-
plied notions of homeostatic regulation to the synaptic activ-
ity of agents involved in phototaxis, demonstrating that they
could adapt to sensory inversion despite not having been de-
veloped specifically for this task. Di Paolo explains how
that adaptation arises in this model: although agents do not
evolve to adapt to inversion of the visual field, it is suggested
that evolution has created a link between structural stability
and desired behavior. This link appears because the process
shapes a stable attractor when a certain pattern of sensori-
motor activity is present.

We use the same kind of minimal agent guided by home-
ostasis to search stable configurations where the plasticity
effects generate the behaviour and behaviour affects plastic-
ity, leading to the creation of invariants and habits in a social
scenario. This allows us to investigate how ultrastability can
lead to adaptation in a social dimension.

Model: We simulated a pair of minimal agents evolved to
exhibit phototaxis on a series of 1000 light sources. Agents
are evaluated in a two-dimensional environment with only a
single light source at a time. During each trial, agents are en-
couraged to remain close to the light sources. Light sources
are placed randomly at a distance between 10 and 25 times
the agent’s radius from the agent position, for a random pe-
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Figure 2: Agent’s controller

riod of time T, chosen from the interval [2000, 4000] time
steps and with a random intensity.

Agent: Each agent is modelled as a simple circular agent
with two light sensors and two motors. If we name Vl and
Vr as the motors’ velocities and r as the agent’s radius (for
the experiments, the body’s radius is set at 4), we calculate
the translational movement as (Vr +Vl)/2 and the rotational
movement by calculating the angular speed as (Vr−Vl)/2r.
Collisions are not considered.

Sensors: Each agent has two light sensors, separated by
120o, symmetrically placed at the front of each agent and
each sensor has a viewing cone of 80o. At each time step, the
angle from the agent to the light source is first calculated and
then adjusted by the agent’s rotation. This angle is then used
to determine if the agent’s sensors are active. Light intensity
on each sensor can be calculated as inversely proportional
to the square of the distance to the light source. In addition,
agents have two agent sensors, placed on the same positions
and with the same cone of vision that light sensors. Each
agent can be seen as a mobile source with constant intensity,
so another agent can see it as it see lights. Intensity values
on sensors are calculated in the same way as light case.

Controller: A 6-neuron fully connected Continuous
Time Recurrent Neural Network is used as the agent’s con-
troller. Each neuron is a CTRNN node described by

ẏi =
1

τi


−yi +

N∑

j=1

wjiσ (yj + θj) + Ii


 (1)

σ(x) =
1

1 + e−x
(2)

where i = 1, 2, ..., 6. Each neuron’s state is controlled by yi,
representing the cell’s potential, τi is the decay constant, bi
the bias, zj the firing rate of the jth neuron, wij the strength
of synaptic connection from node i to node j, and Ii the
input from sensors. Inputs and outputs are connected as de-
picted in Figure 2.

Plasticity: Controllers are able to regulate synaptic activ-
ity. Plastic changes in the recurrent network occur locally on
each connection governed by both the synaptic activity and

a plasticity rule encoded genetically. The plasticity rule is
given by one of these hebbian learning rules

∆wij = δinijpjzizj (3)

∆wij = δinijpj(zi − z0ij)zj (4)

∆wij = δinijpjzi(zj − z0ij) (5)

∆wij = 0 (6)

where ∆wij is the change per unit of time to a synaptic
weight wij , zi and zj are the firing rates of the presynap-
tic and postsynaptic neurons, nij is the learning rate factor,
and pj is the degree of local plasticity. δi models a damping
factor, and z0ij a weakening of a synapse.

Genetic Algorithm: Agent’s genotypes are divided into
a real component and an integer component. The real com-
ponent has 87 genes: 3 for motor and sensor gains, one per
each type; 6 bias and 6 decay constants, one per neuron; 36
weights and 36 learning rates, one per synapse. Finally, 36
integer values are used to select a hebbian rule from (3) to
(6) for each synapse. A genetic algorithm is used to test
agents against a sequence of five lights. Two agents with
the same genotype are selected at random to test their aggre-
gate phototaxis in every step. Fitness scores of each pair of
agents are assessed as the averaged individual fitness. Then,
selected agents, using crossover and mutation, form a new
offspring, which replaces the lowest scoring pairs. A muta-
tion probability of 0.5 is used for all real components and a
probability of 0.1 is used for integer components. The GA
is repeated until no perceivable fitness increase is observed.

Homeostatic fitness function: The agent’s behaviour is
assessed using a fitness function with three terms where the
first, Fd, is a measure of how near to the source an agent
is (measuring the reduction in final and initial starting posi-
tions for the agent), Fp is a measure of time spent near the
source (proportion of time over the evaluation period that the
agent is within 4 radius units of the light source ) and Fh is a
measure of the homeostatic behaviour of an agent’s neurons
(the time-averaged proportion of neurons that act homeo-
statically, without inducing plasticity in the controller). The
results of all three sub-fitness functions are ranged between
[0, 1]. FH = 0.2Fd + 0.64Fp + 0.16Fh. Each component
has got a weight to adjust the contribution of each term of
the fitness function in order to have the sum equal to 1.

Non-homeostatic fitness function: In order to evaluate
how homeostasis affects the behaviour of agents, two dif-
ferent types of fitness are used: one taking into account
the term for homeostatic stability (FH ), and the other F =
0.2Fd + 0.8Fp not taking it into account. Evolving popula-
tions of pairs of robots with these two possible fitness func-
tions, we obtain two types of agents: homeostatic and non-
homeostatic. From each population, we select the best pair
of agents with best performance for the subsequent analysis.
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Figure 3: Behaviour of two agents performing the task in
homeostatic (A) and non-homeostatic (B) conditions. Red
dots are the light sources, numbered as they appears. Agent
1 is blinded, so it can perceive the other agent but not the
light. We observe that, in the homeostatic case, both agents
are able to behave in coordination and reaching the lights,
suggesting that a collective habit is displayed.

Results
We want to explore the relation between individual capac-
ities and social interaction in the maintenance of habits.
For doing so, we artificially ‘blind’ one of the agents and
compare the case of the robots with synaptic plasticity with
agents not evolved for homeostatic stability. We only blind
light sensors. Thus, blinded agents can keep the sight of
other agents, which are the only clue to reach light sources.
We then observe how the behaviour of the agents is reconfig-
ured after synaptic plasticity stabilizes the activity of agents.

In Figure 3, we show the behaviour of the two agents in
the case when Agent 1 is blinded, for the case with homeo-
static stability (A) and without (B). In the first case, we ob-
serve that, even when Agent 1 is not able to perceive the light
anymore, the agents are able to collectively achieve the task
after homeostatic reconfiguration. In the case without home-
ostatic stability, this is no longer the case, and the behaviour
of the blind agent is disrupted. This suggests that synaptic
plasticity maintains a collective pattern of behaviour.

In order to test this change in a more systematic way, we
simulate the behaviour of a (normal or blinded) Agent 1 and
a (normal) Agent 2 reaching a series of 20 lights. We repeat
each experiment 40 times and measure the fitness F (without
considering homeostatic stabilization terms Fh). In Figure 4
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Figure 4: Fitness values of Agent 1 (gray) and Agent 2
(white) when homeostatic plasticity is (A) included (B) not
included in evolution. Fitness is compared between normal
conditions and a situation in which Agent 1 is blind to the
light. Fitness of Agent 1 only maintained to some degree in
the case of homeostatic stability.

we observe how fitness F change when Agent 1 is blinded
to the light. In the case with homeostatic stabilization, the
fitness of agents in the normal case is of 0.77, and when
Agent 1 is blinded its fitness is reduced to 0.26, while the
fitness of Agent 2 is reduced to 0.74. This means that, while
Agent 2 is practically unaffected, the fitness of Agent 1 is
reduced to one third, although it is still able to reach a num-
ber of lights thanks to its coordination to Agent 2. Thus,
even when Agent 1 has lost its individual abilities for pho-
totaxis, it is able to maintain its phototactic habit to some
extent thanks to social interaction.

In the case without homeostatic stability, the situation is
different. Now the mean fitness is reduced from around 0.76
to 0.02 for the blinded agent and 0.49 for Agent 2. In this
case, loosing its individual vision means that Agent 1 is no
longer able to maintain its phototactic habit. Furthermore,
the phototactic habit of Agent 2 is disrupted when Agent 1
can no longer reach the light, and its performance is reduced.
In further tests, we tested the effect of ‘blinding’ the agent to
social interaction instead of the light, without practically no
effect in the fitness of the agents, so results are not reported.

We tried to increase the number of agents working to-
gether on a step-wise manner. Good performances are
achieved in populations of 3 (F = 0.71) and 4 (F = 0.67)
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agents with only a blind agent per group. However, the GA
did not provide any successful case of more than four agents.
An element to consider to explain this is that agents can’t see
the position of each other agent but a sum of their contribu-
tions to an agent sensor.

Discussion, conclusions and future work
In this article, we have explored the social dimension of
habits understood under the lens of homeostatic neurody-
namic models of habit generation. These models have been
mostly focused in the emergence of individual sensorimo-
tor habits and we have shown how a richer picture should
incorporate the social dimension of habits.

But... what is the nature of social habits? Is it a merely ag-
gregation of individual habits? Or does the social dimension
play a constitutive role for generating emergent collective
habits? How can we attempt a gradual path towards social
habits? A social account of habits should clarify these as-
pects and offer a sound theoretical framework of how habits
are developed from neural and sensorimotor dynamics to the
level of social interaction and back.

We have provided a theoretical framework that classifies
the types and degrees of sociality of habits, and we have
illustrated a weak enabling sociality of the coordinative di-
mension of habits with a model of evolutionary robotics: a
minimal model of agents controlled by a dynamical neural
network incorporating mechanisms of homeostatic synaptic
plasticity evolved to solve a task in a social scenario. A pair
of agents have to perform a phototactic task. Each agent has
sensors that perceive the presence of light sources, and an-
other set of sensors that perceive the presence of the other
agent. These agents are compared with a similar population
adapted to solve the task without a pressure for stabilizing
its synaptic plasticity, therefore reducing drastically the ca-
pacity for self-regulation of emerging patterns or habits.

In order to investigate the degree of sociality of the photo-
tactic habits in our robotic model we perform an experiment
over the resulting agents in which we artificially ‘blind’ one
of the agents of the group. Thus, the capacity to express an
individual habit is removed, yet its capacity for social inter-
action remains present. In this case, we can see that agents
with homeostatic stabilization are able to maintain to some
extent the performance of the task, therefore illustrating that
the social dimension has a role in the maintenance of a pho-
totactic habit. In contrast, agents that are not selected for
homeostatic stabilization lose their capacity for phototactic
behaviour entirely when blinded, suggesting that in this case
the phototactic habit cannot be maintained by social inter-
action when direct photosensitivity is precluded. Still, per-
formance of non-blinded agents is reduced when an agent is
blinded, suggesting that the phototactic habit also has some
social component. This suggests that the relation between
habits and its individual and social components can be intri-
cate, and further studies should clarify these relations. The

modeling results presented here are tentative and just seek to
illustrate the relation between some ideas presented in this
article. Further work could explore in more depth different
possibilities to study different ways in which a habits can be
socially constituted at different levels and degrees.

As we have seen, the dependence between the mainte-
nance of habits, the presence of individual abilities and so-
cial coordination is complex. A possibility to unveil the
complexities of these relations could be to introduce differ-
ent scenarios in which noise or perturbations selectively dis-
turb the individual or the social behaviour of the agents. This
should force the agents to rely more on their individual ca-
pacities or in one another, depending on the case. This could
allow the exploration of different kinds of the habits in our
classification (Figure 1).

A natural next step on the evolution of social habits is to
apply this framework to a constitutively social coordination
task. We have focused on a simple phototactic behaviour
that can be carried out individually. On the other hand, it is
typical of collective behavior to include a necessary or con-
stitutive coordination between agents: e.g. dancing, moving
as a whole, etc. Long term studies of the structural stabil-
ity of the habits out of the social dimension would also be
interesting as future work.

Another research line that could be explored is the social
constitution of the behavioural field. For instance, habits
could be formed not (or not only) by exploiting the synaptic
plasticity of an agent’s neural controller, but by plastically
modifying its own environment. For example, the activation
of lights could be the result of the behaviour of the agents
(e.g. light intensity being reinforced or consumed by the
proximity of an agent). This will help approaching the con-
cept of social field by Bourdieu.
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Wood, W. and Rünger, D. (2016). Psychology of Habit. Annual
Review of Psychology, 67:289–314.

348



Speciation under changing environments

Kevin Godin-Dubois, Sylvain Cussat-Blanc and Yves Duthen

University of Toulouse, IRIT - CNRS UMR 5505, 2 rue du Doyen Gabriel Marty, 31042 Toulouse, France
{kevin.dubois, sylvain.cussat-blanc, yves.duthen}@irit.fr

Abstract

Progress in molecular genetics allowed taxonomists to bet-
ter understand the relationships between species without the
bias of morphological similarities. However, access to data
from times past is limited to the fossil archives which, be-
ing far from complete, can only provide limited information.
To address this problem through the field of Artificial Life,
we devised a polyvalent sexual reproduction scheme and an
automated phylogenetic tool capable of producing, from a
stream of genomes, hierarchical species trees with relatively
low memory footprint. We assert that these apparatus per-
form well under reasonable stress by embedding them into
2D simulations of unsupervised plant evolution in textbook
cases of geographical speciation. After thousands of genera-
tions and millions of plants, the extracted phylogenetic data
not only showed the expected results in terms of branching
pattern (anagenesis, cladogenesis) but also exhibited complex
interactions between species both in space and time.

Introduction
Phylogenetic trees of our world’s species display the over-
whelming amount of variations, adaptations and bifurcations
generated by unbridled evolution over the course of a few
billion years. Despite being visualization tools, designed to
classify a continuum into more easily manageable chunks,
they can provide further insight into the underlying mechan-
ics of natural selection be it in biological or artificial sys-
tems.

Before getting to point where phylogeny is relevant, one
first needs the basic block of any evolutionary process: indi-
viduals. Models of genotype-phenotype mapping abound in
the literature with a specific emphasis on the class of mor-
phologies they can generate. One of the first contributions is
the Lindenmayer Systems (Prusinkiewicz et al., 1995), heav-
ily inspired by the branching patterns exhibited by plants,
which encode, in a very compact form, recursive deriva-
tion and can reproduce life-like instances in both 2D and 3D
(Bornhofen, 2008). The directed graphs designed in (Sims,
1994) follow a similar approach by defining body segments
and the, potentially recurrent, relationships between them
and, though originally designed to model motile creatures,
were successfully applied to plant morphologies (Dubois

et al., 2017), as well. Further generalization led to the bi-
ologically inspired Genetic Regulatory Networks which, by
defining the cell as the elementary unit, emulate its inter-
nal chemistry through self-interacting ‘proteins’ controlling
its life-cycle. Using such a low-resolution building block
allowed for the generation of specific shapes (Joachimczak
and Wróbel, 2008) and organ emergence for creatures em-
bedded in a virtual environment (Disset et al., 2016).

Natural selection, however, is not a genetic algorithm and
the metaphor fails as soon as one tailors a fitness function
to drive evolution into solving an optimization problem. In-
deed, when left unchecked, even the simplest of rule set such
as (Gardner, 1970) can create such diversity that they are
still investigated almost fifty years later. Thus, it ensues that
simulations in which individuals roam free have been de-
signed: ranging from (Adami and Brown, 1994), with its
computer programs fighting one-another for memory space,
to (Metivier et al., 2002; Ventrella, 2005) where motile crea-
tures are required to actively look for mating partners.

Despite the preponderant place given to the living parts
of an ecosystem, its abiotic component is equally impor-
tant given that models of the biosphere using only water
and temperature as variables were found to account for most
of the vegetal biodiversity observed in Nature (Woodward
and Williams, 1987). The same holds true for artificial
simulations as disruptiveness, whether sudden or diffused,
promotes different strategies and leads to diversity (Born-
hofen et al., 2011). Unforeseeable environmental dynamics
add another layer of complexity in the generated individuals
by selecting those that exhibit better adaptability (Canino-
Koning et al., 2016).

Circling back to the biotic component, we see its self-
driving force in numerous examples of co-evolution, co-
adaptation, competition, whether in the natural world or
artificial systems (Miconi, 2008): arming race is a strik-
ing case of an inter-species conflict able to quickly pro-
mote divergence of character or optimization. But the con-
cept of species is a blurred one: though one can argue that
for individuals there is no such thing as a species, only
mates and non-mates, we refer to the definition of biolog-
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ical species given in (Singh, 2012) as a “group of poten-
tially interbreeding natural population reproductively iso-
lated from other such groups”. Similarly, the process of spe-
ciation, by which species are created, has been described in
a number of ways without the emergence of global consen-
sus. (Butlin et al., 2008) argues that attempts at categoriz-
ing a continuous multi-dimensional phenomenon by discrete
topology-centered methods makes one lose sight of the ad-
jacent equally important factors.

This paper comes as a proof-of-concept of how environ-
mental conditions can be used as the sole driving force of
an evolutionary process. To this end, we hereby describe
the model for autonomously reproducing individuals and the
phylogenetic tool used to monitor species dynamics.

Self-reproducing vegetals
Here, individuals are not only expected to adapt to an un-
known, and potentially precarious, environment but also to
thrive by self-reproducing to the utmost limit. As our ob-
jective is to study evolutionary dynamics instead of individ-
ual development, we decided upon using L-Systems as our
morphological controller, as opposed to more complex plant
growth models, thanks to their intelligibility and computa-
tional lightness.

L-System

Each plant comes with a pair of L-System: the shoot and
root. These are deterministic, context-free and share the
same set of control instruction: +/− for left/right rotations,
[...] branching, A...F non-terminals and S the initial non-
terminal. The shoot manages the above-ground portion of
the plants’ structure and uses the terminals s (stem), l (leaf),
f (flower) while the below-ground compartment instead re-
lies on t (root trunk) and h (root hair).

Individual rules can mutate through duplication, replace-
ment or suppression of an existing symbol, extraction into
its own branch (e.g. slf becoming s[l]f ) and swapping ad-
jacents (e.g. slf giving sfl). In addition, rules can be added
(e.g. S → slf giving S → sAf ;A → l) or removed (e.g.
S → sAf ;A→ l reducing to S → sf ).

Some restrictions apply to these operators. There is al-
ways at least one rule, in which case it must be the one
derivating the initial non-terminal (S which can be seen as
a seed) so that the plant can germinate. As these L-Systems
are deterministic the maximal number of rules is the size of
the non-terminals set. Rules cannot be longer than M = 4
non-control (/∈ {+,−, [, ]}) characters long so that deriva-
tions must occur when aiming for complex morphologies.
Finally, the number of replacements a plant can perform for
a given compartment is limited to a small valueD ≤ 5, itself
subject to mutations, which bounds the number of symbols
in the derived phenotype to MD.

Constants

k assimilation rate
J saturation rate
f resource cost
l life cost

mTr, sTr temperature range regulation

Genetic fields

gs Growth speed
mT , sT Plant’s temperature parameters

RE Resistor for transportation of element E

Environmental conditions

P plant’s position
T temperature at P

XL Biomass for layer L
RL

E Reserve in layer L of element E
CL

E Concentration in layer L of element E
T− 1 if T < mT , 0 otherwise
T+ 1 if T > mT , 0 otherwise
wh Water around root hair h
sh Surface of root hair h
ll Length of leaf l exposed to the sun

Table 1: Metabolic variables

Metabolism
Similar to (Bornhofen et al., 2011), plants in this model have
three ‘reservoirs’ per compartment: one for water, which is
extracted by root hairs h below the surface, one for glucose,
produced by photosynthesis from leaves l, and dry biomass
generated by converting these nutrients.

In addition, the effects of external temperature are taken
into account at multiple stages of the metabolic dynamics
whose control parameters are detailed in table 1. Given the
bell curve function of mean m and standard deviation s

gauss(x,m, s) = exp−
(x−m)

2s2 (1)

a plant’s heat efficiency at temperature T is defined as

heff (T ) = gauss(T,mT , sT ) gauss(sT ,mTr, sTr) (2)

The left-hand part of the equation impedes the
metabolism as T goes further from the plant’s optimal tem-
perature mT while the right-hand part regulates the toler-
ance range sT so that it cannot grow unchecked. Indeed,
the individuals must strike a balance between resilience to
greatly varying temperatures (at the cost of average effi-
ciency) and optimization for specific environmental con-
ditions (at the risk of extinction should these change too
much). This impacts water uptake as, the lower the temper-
ature is below mT , the less a plant can absorb water through
its root hairs:

UW (T ) =
T−(heff (T )− 1) + 1

1 + Crt
w J

∑

h,root hair

kwhsh (3)

Nonetheless, the root compartment shares a portion of its
water reserve to the shoot, according to the relative concen-

350



trations and transport resistors:

TW =
Crt

W − Csh
W

RW

Xrt + RW

Xsh

(4)

Leaves in the upper layer with direct access to sunlight
then produce glucose and similarly to (4) transports part of
it to the lower layer.

UG =
1

1 + Csh
G J

∑

l,leaf

kll (5)

TG =
Csh

G − Crt
G

RG

Xrt + RG

Xsh

(6)

When placed under too hot environmental conditions,
plants will additionally experience water loss through tran-
spiration.

Rsh
W (T ) = (1− T+heff (T ))Rsh

W (7)

Extreme temperatures can lead to a complete drain of their
shoot water reserves in a day. Plant tissue turnover is mod-
eled by continuously transforming part of the biomass in to
wastes:

WL(T ) = l(2− heff (T ))XL (8)

External conditions influence this as well by inflicting
upon plants under uncomfortable temperatures up to 200%
the rate of cellular decaying experienced by siblings under
a more favorable climate. Finally, both glucose and water
reserves are consumed to generate new biomass which is al-
located to the various sinks (flowers, fruits, stems and root
trunks) in the plant.

ẊL(T ) = gsX
LCL

WCL
G −WL(T ) (9)

One should note, however, that, whenever wastes produc-
tion exceeds dry biomass renewal, ẊL(T ) will be negative.
That is, sinks will lose biomass causing them to shrink. This
leads to their death as soon as their individual biomass is
completely depleted, removing them and their subtrees from
the plant. Starvation is, thus, one of the possible cause of
death for an individual: when all of its sinks are destroyed
the plant itself is considered dead. Senescence is the other
one, as determined by an evolved genetic field, thus pre-
venting immortal phenotypes from monopolizing the envi-
ronment.

Self-reproduction
One of the most powerful tools available to Life is its ability
to adapt through the process of natural selection. Over the
course of history, numerous propagation schemes have been
developed. We chose to focus, in this work, on sexual re-
production because of its greater degree of interactions and
inter-species diversity.

The subset of a plant’s genotype devoted to reproduc-
tion includes its gender, compatibility metrics CM =
{µ, σi, σo} and sexual organs. These interact with one an-
other according to the algorithm defined in previous work
(Godin-Dubois et al., 2019).

The genotypic distance is defined recursively: given A,B
two genomes, e an elementary field with range [emin, emax]
(e.g. the growth speed gs) and r a compound field composed
of subfields f1 . . . fn with weights w1 . . . wn

dist(eA, eB) =
|eA − eB |
emax − emin

(10a)

dist(rA, rB) =

n∑

i=1

widist(f iA, f
i
B) (10b)

This metric is objective in the sense that it provides infor-
mation on the amount of genetic divergence between a pair
of individuals but makes no hypothesis as to their capabil-
ity to mate. The compatibility value, on the other hand, is
subjective and asymmetric as different sets of the reproduc-
tion parameters CM may give very different results for an
identical genetic distance d.

This crossover operator differs from those commonly
found in the literature (Sims, 1994; Bornhofen, 2008; Dis-
set et al., 2016) on three points: 1) it can fail early on, 2)
is biased by the female genome and 3) has low resistance
to large structural differences. The rationale behind point 3
is that, instead of devising a robust operator that can pro-
duce a somewhat viable offspring from two completely un-
related individuals, a minimalist alignment procedure is bet-
ter suited to sexual reproduction of same species creatures in
which the population is mostly homogeneous. Indeed, point
1 guarantees that the more both genomes are different the
less likely it is that crossing will be attempted at all.

Embedding the compatibility function into the genome
allows for the emergence of species-specific segregation
schemes which is of utmost importance as our interest lies in
obtaining speciation as a by-product of reproduction at the
individual level. Furthermore having both in-/out-breeding
coefficients makes specification of the search spaces possi-
ble, with adaptive plants accepting a broader range of in-
coming genetic material while more conservative ones could
instead focus on controlled inbreeding to solidify their alle-
les.

Automated phylogeny tool (APOGeT)
Studying long term evolutionary dynamics generates a mas-
sive amount of data which precludes observation at an indi-
vidual level. To this end, we devised a tool for automated
phylogeny which only relies on genomes possessing both a
distance metric and a compatibility function (e.g. as defined
above).

In APOGeT, species are modeled by a fixed-size collec-
tion of “representative” points that form an envelope in the
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genetic space. This allows for a compact, yet diverse, de-
scription of a species without resorting to centroids which,
when applicable, would shrink individual differences.

The procedure for inserting a genome g in the tree is two-
fold: first, determine the correct species for g and update the
envelope if need. Given S, the species of g’s parents and
env(S) the collection of representatives, we test whether
match(g, S) ≥ T , given that:

xcompat(g, e) = min(g.compat(d), e.compat(d)) (11)
with d = dist(g, e)

match(g, S) =
1

|env(S)|
∑

e∈env(S)

xcompat(g, e) (12)

If the result is positive we can assign g to S. Otherwise,
the procedure is performed for each direct subspecies of S
until either a match is found or a new species is created with
g as its sole representative.

Then the envelope E of the modified species’ is checked
for update. If it is not yet full (less than K are recorded) then
the genome is simply appended. Otherwise, g’s contribution
is confronted against that of the ei ∈ E according to:

C(E, g) = max
ei∈E

(− min
ej 6=ei

dist(ei, ej)

+ min
ej 6=ei

dist(g, ej))
(13)

If C(E, g) > 0, then g is more different than a current en-
velope point and will be inserted in its place. In this manner,
the envelope for a given species is a set of those individu-
als, while still capable of inter-crossing, that are the most
different.

Hybridization
Earlier work on this tool faced us with the problem of hy-
bridization between species, whether occasional or delib-
erate. Indeed the algorithm presented above makes the
assumption that both parents belong to the same species
which, under unrestricted genome flow conditions, is not
necessarily the case. This implies that for a given species I
individuals may come from a, potentially large, set of candi-
date parent speciesH1 . . . Hn thus changing this tool from a
tree to a graph and losing much intelligibility in the process.

To solve this issue we introduced the concept of major
contributor as follow: Given g with parents pm, pf belong-
ing to different species Sf ,Sm, the algorithm presented ear-
lier makes the assumption that Sf = Sm. The sufficient ex-
tension managing multiple parent species is to check against
both and resume the rest of the procedure for:

S = arg max
Sf ,Sm

match(g, Si) (14)

In order to keep track of these hybridizations, each species
S maintains a list of contributions CS = {{Si, ci} . . . }

which records for any species Si how many times ci it
provided genetic material. This allowed us to the redefine
the notion of parent species as the major contributor i.e.
Si ∈ CS/Si 6= S, ∀jci > cj . It also implies that whole
subtrees can be reparented to reflect the change in genetic
material source.

The environment
So that individuals can be subjected to a large range of dy-
namical abiotic conditions, the environment can produce
changes along three dimensions:

Topological y, with seeds being much harder to dissemi-
nate onto higher ground

Hygrometric w, water availability has a direct impact on
the plants’ ability to thrive

Temperature t, equations (2-8) show how deleterious this
can be on the metabolism

The system is designed as a closed one, so that one
can easily plug any kind of controller between the input
D,Y, x, y, w, t and output ẏ, ẇ, ṫ variables where D is the
relative time in the current year (∈ [0 : 1]) and Y the rel-
ative time in the planned simulation duration (same range)
and x the position in the environment. All other values have
range [−1 : 1]. For this article, we resorted to a simple ex-
pression parser to easily define straightforward experimental
validations.

A pair of constraints C0, C1 (controlled by the genomic
coefficients c0, c1) is used to post-process the outputs of
the environmental controller so as to provide more plausi-
ble correlations between physical dynamics.

C0 : t̂ = −c01R≥0
y + (1− c0)ṫ (15)

C1 : ŵ = −c11R≤0
t+ (1− c1)ẇ (16)

That is temperature decreases linearly with an increase in
altitude and water evaporates more (and thus also decreases)
as temperature raises.

Additionally, a bare-bone physics engine is embedded in
the system to prevent plant-plant collisions, manage light
availability and perform mates detection. All of our simula-
tions generate the initial population from a single primordial
genome, which is cloned 100 times and disseminated regu-
larly around the center of the environment. These are then
left to their own devices for a number of years where days
and years have durations of 10 ticks and 100 days, respec-
tively.

Experiments
In order to validate both our autonomous reproduction
scheme and phylogeny extraction tool we devised simple
scenarios to test our system on. Namely, we explore al-
lopatric, parapatric and a form of peripatric speciations.
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Figure 1: Speciation results for the three experiments

Parameters not subjected to variation are the environ-
ments’ width (100m) and height (50m), simulation time of
100 years and identical primordial plant genome.

In all of these experiments, we are interested in whether or
not strong speciation occurred, that is we are more focused
on the apparition of reproductively isolated species than of
varieties. To this end, we defined the following metrics:

The absolute compatibility between species A and B at a
given timestep with PA = {PA

1 . . . PA
n }, the female plants

of species A, and PB = {PB
1 . . . PB

m}), the male plants of
species B, is:

ca(A,B) =
1

|PA||PB |
∑

f∈PA

∑

m∈PB

f.compat(m) (17)

That is the average compatibility between possible mat-
ing pairs of each considered species. We then derived from
ca(A,B) the relative compatibility as follow:

cr(A,B) =
ca(A,B)

ca(A,A)
(18)

which provides a normalized metric whose comparison
between different reproductive trends or even simulations is
more straightforward. Results across all three experiments
are summarized in figure 1 with an uneven number of re-
peats: 13, 12 and 11 for the allopatric, parapatric and peri-
patric, respectively. This corresponds to the subset, from 20
runs per protocol, that neither immediately go extinct nor
failed to reach the 100th years, in the allotted 10 hours time-
frame. Note that, given the definition of cr(A,B), the mini-
mal worse and maximal best relative compatibility is 100%.
Indeed, the worst case scenario would be having all values
clustered at, or very close to, 100% which would show a
striking lack of speciation. Given that this is not the case,
we can safely conclude that some did occur, which will be
explored in the following sections.

Allopatric speciation

c0 = c1 = 1

ṫ = .75sin(.5Y π) gauss(x, .5, .05)

ẏ = ẇ = 0

25K

50K

75K

100K

(a) Complete

25K

50K

75K

100K

(b) Simplified

Figure 2: Phylogenic tree for the lowest cr at the 100th year

Our first test case is focused on the most simple mode
of speciation: complete geographical isolation. To this end,
our environment, otherwise uniform, slowly grows a moun-
tain in its center according to the parameters described previ-
ously. This gradual process produces, at the end of the sim-
ulation, a topological barrier 37.5 meters high and 20 meters
large. As seeds have difficulty reaching higher places this
effectively prevents cross-reproduction between individuals
from either side.

As seen in 1, speciation did occur in this experiment, how-
ever aggregated data can only show a coarse picture. To
this end, we extracted the phylogenetic tree produced during
the most successful run (minimal cr = 18.8%, maximal =
100%) which can be seen in figure 2a.

For a given species the number of available information is
limited to the minimum of what can be easily processed at
a glance: an arced path connects it to its parent species with
the distance to center providing the date of the first appear-
ance of this species. The timeline pointing outward stops
as soon as no more individuals can be found in the simula-
tion. Additionally, paths in red denotes species on a ‘sur-
vivor path’ i.e. those that left living descendants at the end
of the simulation.

One can clearly distinguish the two species clusters stem-
ming from the geographical separation with the lower part
of the leftmost one failing to provide viable species past the
75th year. Unfortunately, however complete this graph may
be, it is too densely packed with extinct species to provide

(a) Most complex (b) Divergent

Figure 3: Morphologies show limited complexity
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Figure 4: Phylogenic trees for the parapatric runs with the
most extreme speciations at y=100.

much insight on when speciation did occur.
To this end we use, instead, the simplified version in figure

2b which only shows the species on the survivor paths. Then
we can easily see that very early in the simulation, around
the 10th year, two species branched off from the main branch
and, due to the harsh topological barrier, went on to further
speciate in their own isolated plot of earth.

In order to better understand the type of genomic differ-
ence between individuals from different species we exam-
ined the morphologies produced during these simulations.
However, as can be seen in figure 3a, even the most com-
plex one is a far cry from what we could expect from an L-
System. Indeed, always the minimalist one, natural selection
only produced that which is essential and plainly ignored the
structural organs (stem s and root trunk t), instead focusing
its efforts on extracting nutrients from the environment (root
hairs h, in gray, and leaf l, in green) in order to grow the
maximal amount of flowers (f in red) so as to maximize its
reproductive potential.

Still, some degree of morphological divergence were ob-
served from individuals in the same simulation with sample
plants from figure 3b being representatives of the most pop-
ulated species on the left and right side of the mountain for
a run with a good speciation score (minimal cr = 29.6%).
Obviously, given the depth of structural complexity, these
differences are not as striking as one could wish for.

Thus, the non-uniform locusts are to be found in other
parts in the genome (metabolic values, compatibility func-
tions, . . . ) were direct observation is much less straightfor-
ward and is left to future work.

Parapatric speciation

c1 = 1

ṫ = .4sin(.5Y π).5(tanh(8(.5− x)) + 1)

c0 = ẏ = ẇ = 0

A slightly more complex scenario involves the gradual ap-
parition of a niche with no geological separation from the
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Figure 5: Colonization ranges for the 16 most populated
species in a ‘negative’ run

rest of the environment. This implies that a contact zone
exists between the two parts and thus that gene flow is not
restricted by the abiotic component: speciation is left in the
hands of the individuals themselves.

The left-hand side of the plot undergoes a gradual warm-
ing effect which, given the activation of constraint C1, also
reduces the amount of available water.

Once more we refer to the relative compatibilities shown
in figure 1 to assert that this experiment also produces diver-
gences and clustering though more limited in range due to
cross-breeding being expected but not enforced. One should
also note that some simulations fail to colonize the harsher
portion of the environment, thus degenerating into an evolu-
tion in uniform abiotic conditions.

The survivor-only version of our phylogenetic tree is dis-
played in figure 4b for the best scoring simulation (cr ∈
[35.7%, 108%]) and it shows that the branching event that
produced the two main strands occurred much later than in
the previous experiment (slightly after the 50th year). Fur-
thermore, the species density of these two branches is quite
dissimilar with only the upper left portion accounting for
those found off the desertic side. We could thus conclude
that, to a weaker extent, the parapatric experiment success-
fully induced speciation.

However, the case of the worst scoring simulation (cr ∈
[89.1%, 143%]) is much more interesting when looked at in
more details. Indeed these cr values show that not only re-
productive isolation did not emerge in any significant pro-
portion (even the term varieties might be too strong a word)
but, on the contrary, there are cases of intense outbreeding:
the 143% maximal relative compatibility indicates that for
at least one species it is 1.5 more likely to reproduce with
member of a foreign species than with more closely related
mates.

We surmised that these results should come from a deser-
tic species trying to gain ground into the temperature region
by assimilating existing species and thus decided to look at
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the dynamics of colonization. Summarized in figure 5 are
the dynamics of the 16 more populated species generated by
this ‘worse’ simulation. The height of a region depicts the
range over which a given species has individuals alive at the
end of the corresponding year which is why ranges can and
do overlap.

Even broad analysis shows that, contrary to our hypoth-
esis, the simulation has not degenerated into a champion-
dominated situation. In fact, as time goes by and tempera-
ture diverges in the desert (lower part of the graph) and tem-
perate regions (upper part) various dynamics emerge. Dur-
ing the first 18th year population count is too low to appear
in the graph until species A emerges from a small region of
the desert (x ∈ [−26,−14]). From there it quickly grows in
range during the next years, colonizing the whole region and
sending onward ‘scouts’ in the more temperate zone. This
leads to migration, over the next decade, into the environ-
ment’s temperate portion where it is quickly overtaken by
species B, an indirect descendant (see fig 4a).

Then starts a period of relative prosperity, where B has
no real competition in its core range, so much that it regu-
larly sends more ‘scouts’ back into the desert, though with-
out much success. This era ends past the middle of the sim-
ulation (50th year) where it must, once again, share space
with multiple, newly born challengers. This chaotic period
lasts until about the 80th year with only three dominating
species left: D in the temperate region, E in the desert and
C their ancestral species. In time, D spawns a final species,
F, which in about a year colonizes and dominates the whole
right-side part of the environment. It takes little more than
a decade for its influence to grow over the rest of the simu-
lation into the desertic portion. Thus from the 98th year on-
ward F is firmly anchored as a polyvalent species capable of
thriving in a range of heat/water combinations, though one
can see the start of a downward trend in its original biome.

These dynamics are not without similarities with those
produced by natural selection in the real world which goes
to show that, despite the simplicity of both the environment
and the morphological adaptations displayed by its inhab-
itants much complexity still emerged. They also throw a
measure of doubt on the metric used to broadly classify the
results: despite being anchored in the pragmatic definition
that a species is a “group of inter-breeding individuals re-
productively isolated” we can see that it produced at least
one (and probably many more) false negative.

Peripatric speciation

c0 = 1

ẏ = .4sin(.5Y π)(.5(tanh(8(x− .5)) + 1)

+ .5gauss(x, .5, .05))

c1 = ṫ = ẇ = 0

For the sake of completeness we briefly go into the de-

tails the last experiment performed: partial geological sepa-
ration with niche subdivision which used the environmental
parameters above.

The right side of the environment rises slowly from sea
level up to a 20m high plateau which, due to the activa-
tion of constraint c0, is notably cooler than the adjacent
lowlands. A small elevation in the center further separates
both halves of the plot. This provides a more complex sce-
nario which combines both of the previous approaches: on
the one hand, the temperature differences stimulate gener-
ation of new shapes and exploration of genetic parameters
while, on the other hand, the topological separation limits
gene flow making it easier to keep true to the current evo-
lutionary trend. In this case, however, the barrier is asym-
metrical: as in the allopatric experiment, individuals at sea
level have very limited chances to send seeds at such a re-
mote altitude but plants on the plateau only have to cross the
center elevation to disseminate their genetic material onto
the lower half.

Given the intermediate nature of the setup, the fact that
observed results, in terms of minimal/maximal relative com-
patibilities, are also intermediate does not come as a sur-
prise. The topological asymmetry induces a slightly more
dispersed distribution of relative compatibilities than in the
parapatric case, as seen in figure 1. Conversely, these trends
are inverted when compared with the purely continuous sim-
ulations.

There is, however, a point on which we can differentiate
this experimental setting from the others as depicted in fig-
ure 6: the number of species.

Indeed the first produces an average of 2905 per run
(1.1×106 plants, 849 generations), which is only marginally
lower than the second one (3228/1.09 × 106/887) and stays
comparable with the third one (4813/1.2 × 106/898). Even
though these mean figures do not exhibit statistically signif-
icant differences, the distribution of values differ in a much
more pronounced manner. While most runs for the allopatric
speciation are clustered around the median and inter quan-
tiles, runs in the peripatric experiment are more diffused,
some reaching up almost to the next order of magnitude.

There is a similar trend with the number of generations but
not the number of plants hinting that the lack of a strong ge-
ological separation promotes apparition of new species with
roughly the same number of individuals by providing more
noisy conditions.

Conclusion
In this work we set out to validate both our autonomous re-
production scheme and tool for automated phylogeny. To
this end, we devised simple environmental settings that
would mimic the natural conditions for known real-life cases
of speciation.

Amidst the mass of data generated by our simulations,
APOGeT managed to extract species trees which, when ren-
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Figure 6: Number of generated species per experiment

dered into either their full or simplified forms, were instru-
mental in determining whether speciation emerged from the
underlying plant-controlled reproductions. Though this pro-
cess of natural selection did not feel the need to complexify
the morphologies to any great extent, the dynamics exhibited
on the species level were much more diverse and intricate,
reminiscent of real-world ecosystem dynamics.

This paves the way for a very broad number of future
works divided into two categories: investigation and com-
plexification. Indeed despite the minimalist approach used
to generate the test environments, the complete range of dy-
namics, competitions and inter-dependancies could not be
fully investigated in this paper. Whether or not the situation
described in the results of the parapatric experiment is a typ-
ical, favorable or below average case is left as an open ques-
tion, pending further examination of the whole data set. Fur-
thermore, the impact of individual genetic fields was only
briefly examined, mostly regarding morphologies.

Additionally, using hand-crafted equations for generat-
ing environmental dynamics is not the most generic way
to tackle the problem of environment-driven speciation. To
this end, we plan to extend the presented model by using
an evolvable substrate (CGP, GRN, ANN) as the basis for
the environmental controller. This would allow for the auto-
mated generation of ecosystems displaying wider ranges of
demeanors whether related to well-known examples of real-
life equivalents or diverging into unfamiliar directions.

Source code
The C++ code for this project is available at https:
//github.com/kgd-al under the repositories Tools,
APOGeT and ReusWorld
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Abstract 

To evolve or not to evolve? That is the question: whether ‘tis 
nobler in the mind to suffer the slings and arrows of grey goo, 
or to deny evolution to a sea of self-replicators and by 
prevention control them? We have been developing a physical 
self-replicating machine concept for deployment on the Moon 
built from local resources on the Moon. Here, we are concerned 
with architectural issues - we specifically address the problem 
of uncontrolled replication. We propose a multitiered approach 
to prevent this: (i) denial of self-replication through the 
implementation of centralised mass manufacturing of 
replicators; (ii) denial of scarce sodium and chlorine from Earth 
acts as an Earth-controlled kill switch in preventing further 
replication; (iii) denial of centralised supplies of asteroidal 
metals (tungsten-nickel-cobalt-selenium) at the lunar south pole 
acts as a Moon-controlled kill switch; (iv) denial of online 
learning capacity through fixed neural weights; (v) denial of 
extended computing resources through the elimination of 
transmit communications between self-replicators; (vi) denial 
of evolutionary capacity by implementing error detection and 
correction (EDAC) coding. Two kill switches and EDAC 
provide the backbone to our approach that maintain self-
replication capability.  

Introduction 

We have been developing a physical instantiation of a self-
replicating machine concept for service on the Moon to 
robotically construct a lunar infrastructure at low cost using 
local resources (Ellery, 2015a, 2016, 2017). To date, most 
effort has been devoted to 3D printing certain crucial 
components: (i) electric motors which has progressed to near 
completion; (ii) active computational components (vacuum 
tube) which has yet to be achieved but efforts are ongoing. 
We are also concerned with an important architectural issue – 
that of the prevention of uncontrolled replication. In 
approaching this problem, we are mindful of the Royal 
Navy’s hard-learned lessons during the Falklands conflict 
regarding layered air defence for individual ships and flotillas, 
of which there are four – air combat patrol (Sea Harrier/F35 
Lightning), area air defence (Sea Viper), point air defence 
(Sea Wolf) and close-in weapons (Phalanx/Goalkeeper). We 
explore a similar multi-tiered approach as our defence strategy 
against uncontrolled replication: (i) denial of self-replication 
through the implementation of centralised mass 
manufacturing of replicators; (ii) salt contingency – denial of 

scarce sodium and chlorine from Earth acts as an Earth-
controlled kill switch in preventing further replication; (iii) 
tunicose contingency – denial of centralised supplies of 
asteroidal metals (tungsten-nickel-cobalt-selenium) at the 
lunar south pole acts as a Moon-controlled kill switch 
preventing further replication; (iv) denial of online learning 
capacity through fixed neural weights controls the machine’s 
intelligence; (v) denial of extended computing resources 
through the elimination of transmit communications between 
self-replicators (receive only); (vi) denial of evolutionary 
capacity by implementing error detection and correction 
(EDAC) coding controls the machine’s adaptability. We pay 
special attention to (i), (ii), (iii), (iv) and (vi).  

3D Printer-Based Turing Machine – Denial of 

Online Learning 

To address the problem of 3D printing computing machines, 
we revert to the original model of a computer. The Turing 
machine is a finite-state machine comprising a read/write head 
mounted onto an infinitely long tape divided into discrete 
squares. The Church-Turing thesis asserts that the mechanistic 
computations of a Turing machine define an algorithmic 
process. The Turing machine sequentially reads an infinitely 
long digital tape of cells. Symbols from a finite alphabet are 
inscribed on the tape which are read in sequence by the 
read/write head. The initial tape encodes a set of input data. 
The read/write head incorporates a finite memory of internal 
state transitions constituting the computer program of the 
Turing machine. The motion of the read/write head – the 
behaviour of the Turing machine - is determined by the 
symbol inscribed on each cell of the tape and the internal state 
of the machine. The symbol is overwritten by a replacement 
symbol and/or the read/write head moves one cell left or right 
according to the Turing machine’s state transition function. 
The resulting tape encodes a set of output data. Different 
Turing machines are specified by different state transition 
functions. This simple machine implements a mathematical 
function that converts its input into an output – the Turing 
machine’s mechanical procedure encapsulates the algorithm 
concept as a finite sequence of simple operations. Any 
specific Turing machine may be encoded as an input tape so a 
universal Turing machine can emulate any specific Turing 
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machine, i.e. a universal Turing machine can compute any 
computable function given the appropriate algorithm. 
 Our implementation of a Turing machine comprises an 
input tape represented by magnetic core memory, an output 
tape represented by an analogue neural net circuit, and a 
read/write head represented by a 3D printer. The 3D printer 
thus becomes a central component of a universal computation 
capability – it prints out hardware circuitry according to the 
program stored in magnetic core memory. Magnetic core 
memory uses ferrite magnetic cores (toroids) through which 
wires are passed to convey read and write signals. Each core 
stores one bit of information non-volatilely as zero or one 
depending on the direction of the core’s magnetisation. The 
invention of the coincident current system enabled a small 
number of wires to control a large number of cores in 3D 
stacks.  A large number of small ferrite toroidal cores are held 
on layers of XY grids of wires through the toroidal centres. 
Only where the combined magnetic field from X and Y lines 
cross exceeds a threshold will the magnetic polarity reverse. 
Magnetic core memory offers high reliability and was used for 
the Apollo Guidance Computer and Space Shuttle Flight 
Computers. 

We must now consider the 3D printed output circuitry. We 
have adopted the vacuum tube as the basis of our active 
electronics. Vacuum tube devices are based on the generation 
of relativistic electron beams and their interaction with 
electromagnetic waves. A vacuum tube is simple in 
construction - a tungsten cathode that emits electrons attracted 
to a nickel anode controlled by a third nickel grid electrode 
encased in an evacuated glass or ceramic tube and linked by 
silicone or ceramic-insulated kovar wiring. Only a small 
number of materials are required which are readily extracted 
from lunar resources. However, vacuum tubes are bulky and 
present challenges for building complex computational 
circuits. The von Neumann architecture computer is based on 
the central processing unit (CPU). The core of the CPU is one 
or more arithmetic logic units (ALU). The ALU is a 
combinatorial logic circuit for performing arithmetic 
operations (addition, subtraction, increment/decrement and 
sign) and bitwise logical operations (AND, OR, EX-OR and 
NOT) on 4-bit, 8-bit, 16-bit, 32-bit or 64-bit data widths. For 
example, the modest embedded 8051 CPU comprises 2,200 
logic gates. Modern computers comprise ~500 million logic 
gates. Data is stored in a variety of different memory locations 
which must be fetched as input data to the CPU and the 
results of which must be pushed back into memory. The basic 
operation of the von Neumann architecture is the fetch-
decode-execute cycle which is wasteful in hardware footprint. 
Using vacuum tube-based circuitry based on the von 
Neumann architecture would require very large computers.  

To prevent runaway growth in the computer footprint 
imposed by the vacuum tube, the output of our Turing 
machine is an analogue neural network that encodes a specific 
algorithm in hardware form. The complexity of a neural 
network increases only with the logarithm of the task 
complexity unlike the exponential increase in circuit 
complexity of digital architectures (Parberry, 1994). Neural 
networks are under development for general purpose 
intelligence - the SpiNNaker (spiking neural network 
architecture) project is based on combining a large number of 
digital ARM processors within a grid of switches to emulate a 

vast neural network representing a small brain of ~106 
neurons. A simple electronic ring circuit of neurons has been 
proposed that emulates the neural processing function of the 
neocortex (Hahnloser et al, 2000). There is the prospect of 
implementing robust albeit simple behaviours neurally - one 
of the simplest biological neural networks in a non-aquatic 
free-living animal is that of the nematode worm C elegans:  it 
comprises 959 cells in total as a hermaphrodite (of which 302 
are neurons) or 1031 cells in total as a male (of which 381 are 
neurons) with approximately 5000 synapses. This potentially 
gives us a minimum neural network size though an engineered 
version might be subdivided into subnetworks of more modest 
dimension. On a much smaller scale, analogue neural circuits 
offer rapid computation with some biological fidelity in 
reducing specific energy consumption (energy/neuron) but at 
the cost of a fixed neural architecture.  

We have adopted a modified version of the Yamashita-
Nakamura neuron (Yamashita & Nakaruma, 2007) which 
comprises an input summing amplifier, an inverting amplifier 
(for a step function) and a comparator. The weights of each 
neuron are pre-trained offline to implement its desired 
behaviour. We have demonstrated a pre-trained two-neuron 
hardware circuit implementing a Braitenburg control 
architecture of BV2/BV3 class (Braitenburg, 1984) 
performing automatic obstacle avoidance on a simple desktop 
mobile robot. We have begun exploring the potential for 
augmenting hardware neurons with online learning circuitry 
(Larson & Ellery, 2015). There are several intriguing 
possibilities for learning circuitry (Winter & Widrow, 1988; 
Martinelli & Perfetti, 1991) but we assume that we do not 
implement such capabilities to prevent uncontrolled learning – 
nevertheless, we have the quandary of requiring weight 
adjustment to permit fine-tuning of analogue neural circuits to 
variations in physical manufacture against the denial of online 
learning to ensure that behavior is both known and controlled. 

Centralised Manufacturing – Denial of Self-

Replication Capacity and Kill Switches 

The most aggressive approach to prevent runway replication is 
denial of self-replication of productive capacity. For this 
approach, we consider two options (centralized versus 
distributed production) across two dimensions (variability 
versus no variability), yielding four different cases (Table 1): 
 

 Centralised 
Production 

Distributed 
Production 

Identical 
Copies  

Conventional 
factory (e.g. six-
sigma) 

Self-replicators 
without 
evolutionary 
variation 

Mutated 
Copies 

EvoSphere Self-replicators 
with 
evolutionary 
variation 

 
Table 1. Replicator population options 
 
The conventional factory employs mass production and has 
been employed since the Industrial Revolution for the 
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worldwide production of goods. In traditional factories, goods 
are produced in which variations are minimized. Before 
distribution, the quality of the goods are checked, and indeed, 
one of the hallmarks of quality is the so-called six-sigma 
quality control protocol.  

Regarding terminology, self-reproduction may be regarded 
as an inaccurate form of self-replication that permits variation 
in offspring (Adams & Lipson, 2009) but we use the over-
arching term self-replication here with or without evolution. 
The EvoSphere concept envisions an entire ecosystem of 
physically and behaviourally evolving robots in the physical 
environment (Eiben, 2015a). It comprises a birthing clinic, a 
nursery and a living arena. In the birth clinic, robotic 
machines are constructed from raw materials; in the nursery, 
they undergo an online learning phase for fine-tuning their 
behaviours to their bodies; and in the living arena, only 
successfully graduated robots that perform their desired 
function are selected and are permitted to replicate exactly. 
The EvoSphere imposes two apparently contradictory 
objectives: (a) reproduction with variation and selection is 
permitted to implement robot evolution in the real world; (b) a 
kill switch is implemented to prevent procreation of undesired 
variants by human operators. Robot reproduction is divided 
into two phases that differentiate between the robot genotype 
and the robot phenotype: (a) recombination of robotic 
genotypes is permitted without constraint; (b) production of 
the genotype-encoded robot phenotype is constrained. This 
constraint is imposed by permitting only a single centralised 
production centre for the physical construction of robots. The 
kill switch is implemented at the centralised production 
centre. If invoked, it shuts down all reproductive processes 
and, as a consequence, halts evolution. All prior variations of 
robot generations however are permitted to continue 
operation.  

Versions of the kill switch through centralized production 
facilities have been proposed in approaches (ii) and (iii) to 
deny specific resources for self-replicators. In Fig 1, we 
present a lunar industrial ecosystem with recycling loops 
representing the required chemical processing to yield 
material feedstock for 3D printing of the self-replicator from 
lunar raw material. Self-replication requires precisely green 
chemistry (Anastas & Warner, 1998) in order to achieve the 
material closure implicit in an industrial ecology. A corollary 
of this is that an evolving and diverging population would be 
wasteful in physical resources unless the littered carcasses of 
failed evolutionary experiments were scavenged efficiently. 
For our lunar ecosystem, the loss of iron-nickel-cobalt alloy 
from asteroidal resources – which must be mined from special 
ore locations on the Moon – and the loss of NaCl imported 
from Earth due to its scarcity of the Moon effectively 
decimates the entire ecosystem. The loss of tunicose materials 
prevent the manufacture of ferrite magnets (and so motors, 
etc), tool steel, permalloy, kovar, thermionic cathodes and 
photosensitive elements (tunicose contingency). Loss of NaCl 
prevents the manufacture of AlNiCo magnets (and so motors, 
etc), photosensitive elements, silica for transparent glass, 
piezoelectric sensors, regolith binder, drilling mud, silicone 
plastics and oils, Metalysis FFC process anode and electrolyte 
regeneration (salt contingency). These two sets of kill 
switches – one on the Moon and the other on Earth – provide 
the last lines of defence to uncontrolled replication. An 
important proviso is that as the number of replicating units 
grows, central supply hubs become traffic bottlenecks. 
Although these contingencies are specific to the self-
replicating machine proposed for the Moon (for instance, the 
salt contingency would not be possible on Mars), they 
illustrate the effectiveness of multiple resource-denial kill 
switches.   

 
Lunar Ilmenite 

Fe0 + H2O or silicone oil in colloidal suspension → ferrofluidic sealing 

                  1000oC 

FeTiO3 + H2 → TiO2 + H2O + Fe (Fe separated by liquation) 

ilmenite                       2H2O→2H2+O2 (H2 recycling)                                                

                                                  2Fe + 1.5O2 → Fe2O3/Fe2O3.CoO - ferrite magnets 

Nickel-iron meteorites 

Mond process:                                                                      Alloy                          Ni      Co      Si      C      W                                               

Fe(CO)5 ↔ 5CO + Fe (175oC/100 bar)               →             Tool steel                                              <2%   9-18% 

Ni(CO)4 ↔ 4CO + Ni (55oC/1 bar)                      →             Electrical steel                                3% 

Co2(CO)8 ↔ 8CO + 2Co (150oC/35 bar)             →             Permalloy                 80% 

                                                                                               Kovar                       29%  17%  0.2%  0.01%      . 

W(CO)6 ↔ 6CO + W                                            →           Thermionic cathodic material 

          S catalyst 

4FeS + 7O2 → 2Fe2O3 + 4SO2 

(Troilite)                            SO2 + H2S → 3S + H2O 

FeSe + Na2CO3 + 1.5O2 → FeO + Na2SeO3 + CO2 

                              KNO3 catalyst                Na2SeO3 + H2SO4 → Na2O + H2SO4 + Se → photosensitive Se  

                                                                                             ↑____________| 

                                                                                                       Na2O + H2O → 2NaOH (recycle) 

Lunar Orthoclase 

3KAlSi3O8 + 2HCl + 12H2O → KAl3Si3O10(OH)2 + 6H4SiO4 + 2KCl 

orthoclase                                    illite               silicic acid (soluble silica) 

                                                  2KAl3Si3O10(OH)2 + 2HCl + 3H2O → 3Al2Si2O5(OH)4 + 2KCl 

                                                                                                                 kaolinite (clay)                 → porcelain 

                                                   H4SiO4 → SiO2 + 2H2O 
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                                                                                                                KCl + NaNO3 → NaCl + KNO3 (recycle) 

                                                                                                                                                      saltpetre 

Olivine 

Mg2SiO4 + 2CH4 → 2CO + H2 + 2MgO + Si at 2000oC                     → 3D Shaping binder 

  forsterite                                     MgO + HCl → MgCl2 + H2O        → 3D Shaping binder 

                                                     2Mg + Si → Mg2Si                         → thermoelectric conversion 

Lunar Anorthite 

CaAl2SiO8 + 4C → CO + CaO + Al2O3 + 2Si at 1650oC                       → CaO cathode coatings 

                                                                                                                → Portland cement 

                                          CaO + H2O → Ca(OH)2  

                                                                   Ca(OH)2 + CO2 → CaCO3 + H2O                                                                                              

CaAl2SiO8 + 5HCl + H2O → CaCl2 + 2AlCl3.6H2O + SiO2         → fused silica glass 

                                                                                                       → Metalysis FFC electrolyte 

                                                              AlCl3.6H2O → Al(OH)3 + 3HCl + H2O at 100oC 

                           ↑________________________________________|                                                           

Al(OH)3 → Al2O3 + 3H2O at 400oC → 2Al + Fe2O3                     → 2Fe + Al2O3 (thermite) 

                                                                                                       → Al wiring 

                                                                                                       → AlNiCo hard magnets 

                                                                                                       → reflective surfaces, e.g. Al solar sail    

Lunar Pyroxene 

CaFeSi2O6 + HCl + H2O → Ca0.33(Al)2(Si4O10)(OH)2.nH2O + H4SiO4 + CaCl2 + Fe(OH)3   

  pyroxene                           calcium montmorillonite       soluble silica                                 

                                                                                                 → bentonite drilling mud/sand casting binder                                             

                                                                                                 → Metalysis FFC electrolyte 

Lunar Volatiles 

              850oC           250oC 

CH4 + H2 → CO + 3H2 → CH3OH                     350oC 

           Ni catalyst      Al2O3          CH3OH + HCl → CH3Cl + H2O    370oC            +nH2O 

                                                                            Al2O3     CH3Cl + Si → (CH3)2SiCl2 → ((CH3)2SiO)n + 2nHCl   

                                                                         ↑_______________________________________________| 

                                                                                                                                     → silicone plastics/oils  

3NO + H2O → 2HNO3 + NO 

    ↑__________________| 

2SO2 + O2 ↔ 2SO3 (low temp) 

                          SO3 + H2O → H2SO4 

Metalysis FFC Process (CaCl2 electrolyte) 

MOx + xCa → M + xCaO → M + xCa + ½xO2 where M=Fe, Ti, Al, Mg, Si, etc, (O2 consumes graphite anode) 

CO + 0.5 O2 → CO2 

                          CO2 + 4H2 → CH4 + 2H2O at 300oC (Sabatier reaction) → CH4 → C + 2H2 at 1400oC  

                                        Ni catalyst                                                          → graphite anode regeneration                                       

Salt of the Earth 

NaCl + CaCO3 → Na2CO3 + CaCl2                                   → Metalysis FFC electrolyte 

                                                   350oC/150 bar 

                              Na2CO3 + SiO2(i) ↔ Na2SiO3 + CO2   → piezoelectric quartz  

NaCl + HNO3 → HCl + NaNO3 

Fig 1. In-situ resource utilisation schematic with highlighted kill switches indicating loss of function 
 

 

The full centralised replicator production facility approach 

denies the prospect of exponential growth of productive 

capacity (though the kill switches retain their applicability and 

effectiveness). A self-replicating machine offers 

unprecedented productive capacity by virtue of its exponential 

population P growth: 
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where r=number of offspring per generation, i=generation 
number, m=number of generations. In a self-replicating 
machine, the number of offspring per generation, r≥1, e.g. our 
lunar application proposed r=2 and m=13 yielding P~2 x 106, 
i.e. the power of self-replication yields exponential growth in 
production. This is both its attraction and its prospect for 
jeopardy. Without restraint, robots can reproduce including 
their own reproductive capacity – this is equivalent to cell 
division in single cell populations, larvae in arthropods, egg 
laying in fish, reptiles and birds, and pregnancy in mammals. 
This introduces the potential for runaway replication with two 
specific dangers: (a) uncontrolled population growth (a 
macroscopic version of the grey goo scenario); (b) 

360



uncontrolled and unwanted alterations in form and function of 
individuals. The dangers that this represents cannot be 
permitted (Eiben et al, 2012).  

Error Detection & Correction Coding – 

Denial of Evolutionary Capacity 

Despite the inadequacies of an operational definition of life to 

be a self-sustained chemical system capable of Darwinian 

evolution (Cleland & Chyba, 2002), we adopt it here with the 

corollary that any kind of self-replicator that copies genetic 

information is subject to Darwinian evolution due the genetic 

mutation (Ellery, 2018). Biological evolution has been 

broadly characterised by a growth in genetic complexity in 

that complex biological phenotypes require increased amounts 

of genetic information encoded from the environment in 

which they have evolved (Adami et al, 2000). Algorithmic 

complexity in a Kolmogorov sense may be regarded as the 

shortest bit sequence that can yield a given output. Although 

there are exceptions due to the C-value paradox (there is a 

fraction of non-coding genes that varies across species), 

genomic complexity reflects phenotypic complexity. At gene 

site i, there are four possible nucleotides with probabilities 

(pC(i),pG(i),pA(i),pT(i)) yielding an entropy per site: 

 

  

 

Hence, the maximum entropy per site is two bits due to base 

pair complementarity of A-T and C-G. This permits 

computation of the physical complexity of the organism as a 

whole by: 

 

 where L=genome length (bp).  

 
We expect this trend to continue in the self-replicating 
machine – evolutionary variation through generations implies 
a degree of uncontrollability. Our goal is to prevent 
evolutionary processes in the self-replicating machine to 
retain controllability. One proposal suggests that runaway 
self-replication of machines on Earth will yield at least 4oC 
temperature rise assuming thermal pollution within 2 years 
which would be readily detectable (Freitas, 2001). We aim to 
prevent uncontrolled replication in the first place so any self-
replication scheme requires an error detection and correction 
(EDAC) coding strategy which we briefly review here 
(Griffith et al, 2005).  

Biological self-replication employs template molecules to 
make copies of itself using building blocks in its environment. 
The invariant strands of alternating pentose and phosphate 
groups mount the four bases as rungs which form specific 
pairs A-T and G-C between purines (A and G) and 
pyramidines (C and T). DNA bases A, T, G and C form a 
digital code with three-quad codons such as GCC which 
encodes the amino acid alanine. This provides 64 codons for 
only 20 amino acids providing redundancy in the genetic 
code, e.g. UC* codes for serine so the third position of the 
codon is a wildcard. There are others however that are 
uniquely coded, e.g. UGG is the unique code to tryptophan.  

In its normal packaging state, DNA is coiled up in 
chromatin proteins which unrolls the sticky DNA strings 
rapidly for copying and re-rolls it after copying. DNA helicase 
separates DNA into two strands in preparation for replication. 
DNA polymerase then creates two double stranded DNA 
strings from the two separated single strands. The average 
copying error rate in human DNA is ~10-8 but this varies with 
the sensitivity of the gene to allelic variation – histone genes 
which code for DNA packing proteins appear almost invariant 
to mutation across biological domains. The most significant 
treatment of information theory to genetics is the visionary 
monograph by Hubert Yockey that deserves wider recognition 
(Yockey, 1992).  

The evolutionary pressure for genetic parsimony favours 
the short overlapping genes of low complexity eukaryotic 
viruses and DNA phages but favours non-overlapping 
modular genes in higher organisms (Ofria & Adami, 2002). 
Overlapping genes with multiple expression require slower 
evolutionary change. Neutral mutations occur in the third 
nucleotide of a codon afforded by coding redundancy but 
overlapping genes have offset reading frames making neutral 
mutations impossible. Larger genomes cannot exploit 
overlapping genes. The conundrum of replication copying 
fidelity requiring high genomic complexity (length) during 
early life before such high copying fidelity could evolve is 
referred to as the “error catastrophe” (Joyce, 2002). At higher 
mutation rates, genotypes of higher mutational robustness 
with lower replication rates are favoured irrespective of 
replication fidelity per genome F=e-RL where R=error rate per 
base pair, L=genome length (base pairs) (Wilke et al 2001). 
The vast majority of eukaryotic DNA is non-coding – in 
humans, only 3% of the genome is active, the other 97% 
being pseudogenes, etc. In eukaryotes, there is “junk” DNA 
(introns) that is excised from mRNA before being translated 
into proteins. Introns are marked for excision by a start 
sequence GT and a stop sequence AG after being looped to 
bring the active flanking genes into proximity and then cut 
out. Noncoding regions of the eukaryotic genome exhibit long 
range correlations (Buldyrev et al, 1995). There are epigenetic 
mechanisms for switching out genes - methylation of DNA 
either attaches methyl groups directly to DNA or modifies 
histones which dictate the activation status of genes.  

In biology, the error correcting process during DNA 
replication involves proofreading (known as 3’-5’ end 
exonuclease) (Battail, 2004). In DNA, error detection and 
correction is accomplished with polymerases which check the 
complementary fit between base pairs. In bacteria, the three 
DNA polymerases I, II and III progress along the growing 
dual DNA strand from the 5’ end to the 3’ end, recognise 
incorrect bases, reverse direction from the 3’ end to the 5’ 
end, excise the incorrectly matched base and re-insert the 
correct base. There are other repair mechanisms for base 
excision repair, mismatch repair, strand break repair, cell 
cycle checkpoints and cell apoptosis. There are many 
environmental disruptions that can occur in cells: UV 
radiation can cause cytosine and thymine to fuse distorting the 
DNA shape which effectively marks the region to be excised; 
deamination converts the GC base pair to an AT base pair 
which can be corrected by DNA glycosylases; oxidised 
guanine emulates thymine and must be replaced. These are 
point mutations. Deletions and insertions of single base pairs 
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generate frameshift mutations which cause entire reading 
frames to become shifted. Similar frameshifts occur when 
entire sections are deleted, copied or inverted. Transposons 
are sections of DNA that cut-and-paste themselves out of and 
into different locations. In each case, it is the complementary 
base that provides the reference datum, detectable helix 
distortion, diploid genome copies and predictable corruptions 
that permit repair. The repair mechanisms however are not 
perfect but species such as Deinococcus radiodurans can 
survive extreme radiation environments by using an average 
of four to ten copies of its genome (evolved to cope with 
extremely dry conditions) (Battista, 1997). This is a form of 
repetitive coding. Such a form of coding may be employed 
through multiple gene copies – triple (or higher order n-tuple) 
modular redundancy with voting logic is common in safety 
critical systems in spacecraft. An example of such a safety 
critical function would be a Hayflick limit on the number of 
generational copies that a self-replicating population can 
produce, e.g. emulating telomere shortening as a counter. 

For our self-replicating machine, it is essential that codec 

(coding/decoding) can be performed using simple circuitry 

and/or neutrally using analogue neural network circuits. We 

assume that genetic information is transmitted vertically 

through generations and hierarchically through the population 

as it increases (Battail, 2010). This constitutes a noisy and 

bursty communications channel for the transmission of 

genetic information. The maximum information transmission 

rate through a communication channel is given by Shannon’s 

coding theorem:  

 

R<Blog2(1+SNR)  

 

where B=bandwidth and SNR=signal-to-noise ratio. One way 

to transmit error-tolerant messages is to transmit the message f 

times (repetition coding) – if f=3, triple modular redundancy 

permits a simple majority voting logic. This is highly 

inefficient. A more efficient way is to add parity bits to the 

message data. Any kind of channel code adds structured 

redundant bits increase the fidelity of information 

transmission at a cost of higher bandwidth requirements 

(Berlekamp, 1980). Typically, error detection and correction 

(EDAC) codes are usually implemented in hardware using 

extra memory bus bits and encoding/decoding circuits. The 

data lines of the EDAC bus connect directly to RAM. Address 

lines to the memories are buffered by latches which 

synchronise the address to the system clock allowing 

synchronous burst of instruction and data caches. The SNR 

can be related to normalized signal-to-noise ratio per bit Eb/N0 

by: 

 

Eb/N0=(S/N)/(R/B) 

 

Above the theoretical Shannon coding limit, there is a code 

that can communicate with zero error (Costello & Forney, 

2007): 

 

Eb/N0>  = ln2 = -1.6 dB  

 

A typical bit error rate (BER) used in spacecraft 
communications is 10-6 (less stringent that the biological BER 
of 10-8) but the BER will depend on the genome size for the 
self-replicator. A BER of 10-9 is routinely achievable in space 
systems and that a BER of 10-15 is desirable – with a 
maximum population limit of 106 self-replicating units, this 
gives a standard BER of 10-9 per machine. The closest to the 
Shannon coding limit achievable are turbo codes which are 
formed by the parallel concatenation of two recursive codes 
separated by an interleaver code (Berrou et al, 1993). The 
interleaver is the crucial aspect as it implements a pseudo-
random code. Turbo-codes are complex and are unlikely 
candidates for biological implementation. The extensive 
tandem repeats and introns in the eukaryotic genome and 
especially the human genome may be implementing error 
detection and correction codes as parity bits. One of the 
simplest error detection and correction codes is the Hamming 
code such as the Hamming (7.4) code which can correct a 
single-bit error but detect one-bit and two-bit errors. It has 
been suggested that exon-intron genes are Hamming 
codewords (Faria et al, 2012). There are two main types of 
EDAC other than turbo codes – block codes and 
convolutional codes. In an (n,k) linear block code, there are k 
information bits (input block) and n-k parity bits for n 
message bits in total (output block) with a code rate of r=k/n 
(Bhargava, 1983). There are 2k possible different messages of 
length k that are mapped onto 2k codewords of length n. The 
summations require modulo-2 arithmetic without carries 
which can be implemented through the memoryless EX-OR 
circuit. The Hamming weight of a code word w(c) is the 
number of nonzero components to the code word. The code 
can correct any pattern of e or fewer random errors provided 
2e+1 d where d=Hamming distance between two codewords 
(number of different elements in the codewords). The primary 
goal of block coding is to maximise the Hamming distance 
between codewords. The commonest used block codes are the 
Bose-Chaudhuri-Hocquenhem (BCH) codes and Reed-
Solomon (RS) codes with the following parameters (Table 2): 
 

 Block length  Number of 
coding bits 

Hamming 
distance 

Hamming 
code 

n=2m-1 k=m d=3 

BCH code n=2m-1 for 
m=3,4,5,… 

k n-me d 2e+1 

RS code n=2m-1 
symbols with 
m 
bits/symbol  

(n-k)=2e 
symbols with 
m 
bits/symbol 

d=2e+1 
symbols 

 
Table 2: Properties of some common block codes  
 
The Reed-Solomon code is a type of non-binary BCH code. 
The Reed-Solomon code is of particular interest because it 
offers the maximum Hamming distance for an (n,k) code with 
Hamming distance d=n-k+1 and can correct bursts of e 
symbol (m-bit) errors per codeword (Berlekamp, 1982). This 
is because an m-bit burst is concentrated into a single symbol 
error. The BCH code is decoded by an iterative Berlekamp-
Massey decoding algorithm (Imamura & Yoshida, 1987). 
There is evidence that block codes such as BCH codes appear 
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to be implemented in evolutionarily ancient gene sequences of 
the Arabidopsis brassica flowering plant (Brandao et al, 
2015). The Golay code is a “perfect” three-error block code 
that works only for (23,12) for d=7 and (24,12) for d=8 – it is 
based on a remarkable number theoretic relation: 
 

 = =212 

 
where =binomial coefficients. It would be 
curious indeed if evolution had discovered the tri-error Golay 
code for the tri-base genetic code. 

A convolutional code of code rate 1/r is a type of trellis 
code which can be generated by a sequential k-stage shift 
register with r modulo-2 adders. Convolutional codes do not 
segment the information stream into blocks but add redundant 
bits continuously and so requires a memory of order m. Each 
branch in the decoding trellis is labelled with an n-bit output 
block, so there are 2n branch metrics. A common coding 
protocol is a constraint length of k=7 and code rate r=1/2 for 
decoding efficiency. Convolutional codes are decoded using 
the Viterbi algorithm which is a maximum likelihood decoder 
(Forney, 1973). A shift register represents every state in the 
decoding trellis. The complexity of Viterbi decoders is 
exponential with the constraint length of the code. An 
artificial neural network Viterbi decoder based on analogue 
neurons has been demonstrated (Wang & Wicker, 1996). It 
implemented discrete connections weights (+1,-1) to eliminate 
the need for network training. Neurons represented trellis 
elements and selected the maximum trellis path at each pass 
and updated the path metrics through feedback connections. It 
was a locally connected network to minimize its complexity. 
2n neurons are required for an n-bit input while 2m neurons are 
required for m encoding feedback connections (m=k-1). For 
each state, 2(2k-1) neurons are required to find the maximum 
metric of the 2k paths. Thus, the total number of neurons 
required is n=2m+k+2+2n-2. For a r=1/2, k=7 convolutional 
code, n=514 neurons offering a much smaller footprint than a 
digital ASIC. The neural Viterbi algorithm performed 
significantly faster than a digital implementation due to its 
parallel architecture. 

The CCSDS (consultative committee for space data 
systems) standard for spacecraft recommends concatenation 
of two EDAC by interleaving an inner (7,1/2) convolutional 
code (applied first) with an outer Reed-Solomon (255,223) 
block code (applied last) for high data rate telemetry 
downlinks or BCH (63,56) for low data rate command 
uplinks. This is a specific example of Battail’s nested code 
characterising aspects of the biological genetic code such as 
highly conserved HOX genes (Battail, 2008). HOX genes 
determine head-tail topological structure through 
morphological gradients and have diverged little since the 
emergence of multicellular organisms in the Cambrian 
explosion 540 My ago. The evolutionary rate can be 
controlled to significantly reduce evolutionary divergence. 
The CCSDS protocol illustrates that EDAC may be nested 
multiple times to give an arbitrary error rate, though of course 
at the cost of memory consumption. Resources devoted to 
EDAC during copying from n random components in the 
environment increases linearly as error rate decreases 
exponentially as (1-e)n (Griffith et al, 2005).  

Conclusions 

It appears that evolutionary divergence in a growing 
population of self-replicating machines are inevitable but 
prudence dictates that a multi-tiered system of safeguards 
should be adopted. The first layer of defence is the 
implementation of costly modular redundancy (say, five gene 
copies emulating the five modular redundancy of the 
integrated computers onboard the Space Shuttle) and multiple 
recursive layers of EDAC to reduce evolutionary divergence. 
The second layer of defence is the prevention of online 
learning through fixed weight neural networks – related to this 
is minimisation of social interaction through fixed 
communication protocols (which we have not addressed 
here). The third line of defence constitutes two layers of kill 
switches that are self-replicating machine specific – on the 
Moon, controlling access to centrally mined tungsten-nickel-
cobalt-selenium from asteroidal resources, and on the Earth, 
denial of the reagents sourced from NaCl that must be 
transported from Earth. The final, most aggressive proposal is 
centralisation of all mass production facilities but this 
drastically reduces the attractive aspects of self-replication so 
we do not consider this to be practical.  
     A more philosophic issue is that by implementing EDAC 
we are effectively halting the evolutionary process by 
introducing high levels of copying fidelity. If life is defined as 
a self-sustained chemical system capable of undergoing 
Darwinian evolution (Luisi, 1998), there are three plausible 
interpretations of this definition. The first is that by denying 
evolutionary processes, our self-replicator is no longer alive as 
it is no longer subject to evolutionary processes. The second is 
that we have only suppressed the evolutionary process but not 
the capacity for evolutionary development, so it is alive. The 
third is that this evolutionary suppression is not absolute but 
based on bit error rate – later rather than sooner, copying 
errors will arise if the population grows beyond any imposed 
Hayflick limit, i.e. we have slowed evolution rather than 
halted it. Of course, the first interpretation states that this is 
not possible because of the integrity of the Hayflick limit 
imposed by EDAC. We have come full circle… A similar 
situation occurs in attempts to suppress evolution in synthetic 
biological organisms (Schark, 2012).  
      Experiments in Avida indicate that self-replication does 
not guarantee evolvability (LaBar et al, 2015). Within Avida, 
a lack of evolvability can occur if all possible mutations to a 
specific genetic sequence prevent further self-replication. The 
closest biological organism in which this occurs is the mule 
which is a horse-donkey chimera that is nominally sterile; it 
might occur in engineered systems in which evolutionary 
brittleness is a consequence of the genetic encoding system – 
this has been explored in genetic algorithms to reduce 
brittleness through cellular encoding of embryonic 
development in hardware systems (Eiben & Smith, 2015b) 
such as genetic programming trees (Funes & Pollack, 1998) or 
L-systems. These represent growth processes which are 
tolerant of mutations but direct encodings are much more 
brittle rendering the possibility that engineered self-replicators 
may be designed so that they always mutate into dysfunction 
(most mutations are in fact dysfunctional – here, all mutations 
would be so).   
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      Another interesting option concerns whether learning 
capability and evolutionary capacity might be permitted but 
moderated. This introduces the notion of shaping the learning 
or evolutionary process. In neural networks, this requires 
initialization of the network weights to incorporate pre-
defined structures prior to learning (innate knowledge). 
Symbolic connectionism incorporates expert system-based 
structures into neural networks (Ellery, 2015b). Bayesian 
networks are particularly suitable as a priori neural network 
knowledge which imposes structure to any subsequent 
learning. In genetic algorithms, such shaping is imposed 
through the fitness function – usually a simple metric, there is 
no reason why it cannot become more prescriptive – indeed, 
the design of a planetary rover’s chassis (number of wheels, 
wheel radius and width, grouser size, vehicle weight, etc) was 
successfully evolved using a fitness function that 
implemented maximization of drawbar pull computed through 
a Bekker-Wong terramechanics model (Setterfield & Ellery, 
2010 unpublished data). In effect, the fitness function 
substituted for the environment. The question is how to 
implement such fitness functions into a self-replicator to 
control the direction of its evolution.  
     These issues are, as yet, unexplored but warrant further 
investigation. The chief concern must be to what extent 
learning and evolution can be shaped and controlled. We are 
skeptical – until the advent of further evidence - that full 
control can be exerted because partial control is no control – 
indeed, partial control is more dangerous than no control 
because it offers an illusion of control where there is none.     
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Abstract

In this paper, we wish to investigate the dynamics of informa-
tion transfer in evolutionary dynamics. We use information
theoretic tools to track how much information an evolving
population has obtained and managed to retain about differ-
ent environments that it is exposed to. By understanding the
dynamics of information gain and loss in a static environ-
ment, we predict how that same evolutionary system would
behave when the environment is fluctuating. Specifically, we
anticipate a cross-over between the regime in which fluctua-
tions improve the ability of the evolutionary system to capture
environmental information and the regime in which the fluc-
tuations inhibit it, governed by a cross-over in the timescales
of information gain and decay.

Intuitively, evolution is a process by which populations
learn about the world. As such, information appears to be a
natural concept for constructing an abstracted view of evo-
lutionary process — how much information does the popu-
lation have about the environment, how much information is
retained between generations, how much more information
is needed before the population can find a fitness optimum,
and how much of that per generation does selection man-
age to bring into the population? Along the lines of (Adami,
2004), these ideas can be connected to specific information
theoretic quantities and bounds. However, while such infor-
mation theoretic quantities can be measured after the fact,
we would like to see whether a formulation of evolution-
ary dynamics in terms of information is sufficiently resolved
to be predictive of the behavior of that evolving system in
different conditions. If we were to reduce the details of an
evolving system’s state to a set of information quantities,
could we find equations of motion purely in terms of those
variables which would still predict the future dynamics of
that evolutionary process to some degree?

In this paper, we target the response of evolving systems
to fluctuating environments in order to investigate this idea.
Specifically, can we predict when fluctuations would help or
hinder a population’s ability to adapt, simply by looking at
the dynamics of the information between population and en-
vironment? The literature on fluctuating environments has
examples of both cases. In terms of positive contributions,

they can accelerate adaptation and even increase the asymp-
totically achievable fitness (Kashtan et al., 2007). It has
also been proposed that the richness of open-ended evolu-
tion may depend on (or even originate from) the correspond-
ingly richer problems posed by needed to be well-adapted to
a multiplicity of environments (Neumann Jr, 1997; Bedau
et al., 2000). Environmental variations have also been con-
sidered as a driving source behind multi-level organization
and generalization properties of evolutionary systems (Med-
ernach, 2017). At the same time, it is observed that envi-
ronmental variations may induce evolving systems to make
tradeoffs between optimality and robustness (Levins, 1967;
Wilke et al., 2001), and adaptation between a succession of
sufficiently unrelated environments can interfere with adap-
tation (Steiner, 2012).

In order to try to understand these tradeoffs, we consider
a simplified case in which there are two independent envi-
ronments given by random variables E1 and E2, such that
the population of organisms ~g can have some mutual in-
formation with them I(g;E1) and I(g;E2). Here, we fur-
ther specialize to the case in which these environments have
no mutual information with each-other I(E1;E2) = 0, and
that mutation operates independently from the environmen-
tal random variables. Based on the constraint that the only
way for I(g;E) to increase is through selection, we can con-
struct a simple model in which while the population is being
exposed to E1, I(g;E2) only has decreasing terms, and vice
versa. If we then average over a cycle including bothE1 and
E2, we can consider when the gain of mutual information
during the selection phase would be balanced against the
loss of information during the neutral phase. For a rapidly
varying environment, this balance point should only depend
on the instantaneous rates of change of the mutual informa-
tion around the population’s steady state, whereas for slowly
varying environments, the overall shape of the trajectory
may lead to systematic variation in things like the rates of
increase and decrease.

We make a further assumption — that the underlying
mechanisms responsible for determining the rate of increase
and decrease of the mutual informations are intrinsic to the
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dynamics of replication, mutation, and selection and should
be the same both in slowly varying and quickly varying envi-
ronments. If this is the case, then the balance point between
information gain and loss in the rapidly fluctuating environ-
ment can be related to observations of the same evolution-
ary system made when the environments vary at a different
rate. However, if for example the fluctuations led to signif-
icantly different population structures in steady state, then
that would violate this assumption. We will ultimately re-
turn to this point, as it is likely that this does in fact occur,
and may be connected to the relationship between fluctu-
ating environments and the evolution of evolvability (Ofria
et al., 2016).

Related Work

The sense in which evolved organisms contain information
about the world has been explored in a variety of ways. One
approach centers on looking at the Shannon information,
concerned primarily with measures of the entropy of dif-
ferent parts of the genome (Schneider, 2000; Chang et al.,
2005). This naturally extends into methods which use in-
ternal mutual informations between different bases, protein
residues, and structures as a way of understanding things
such as co-evolution and structured variation (Göbel et al.,
1994; Martin et al., 2005; Gloor et al., 2005). These studies
often relate to understanding the dynamics of neutral evolu-
tion. On the other hand, there is the question of what if any-
thing a given portion of genetic entropy is ’about’ — that
is to say, not just whether it varies, but whether it has in-
formation about variations that exist within the environment
or context of the organism (Adami, 2004). While identi-
fying the random variables which characterize a given en-
vironment in nature is in general ambiguous, cases of co-
evolution between competing sets of sequences can make
this concrete by treating the sequences of one population (or
corresponding phenotypic variations) as the environment of
the other population and vice versa. For example, (Xia et al.,
2009) looks at mutual information in the co-evolutionary dy-
namics between a virus and the immune response as a way
to understand immune escape.

Evolutionary simulations

We consider a simple evolutionary simulation where each
organism consists of a binary string ~g of length L (L = 50
for all simulations presented in this paper), and each envi-
ronment consists of a pair of binary strings: the target se-
quence ~E, and the mask ~m. The elements of ~E are randomly
0 or 1 with equal probabilities, whereas the elements of ~m
are 1 with probability Γ and 0 otherwise, where Γ measures
the fraction of the organism’s capacity a given environment
can be expected to take up. The relative fitness of each or-

ganism in the population is then given by:

F = 1 +

L∑

i

~mi

(
1− |~gi − ~Ei|

)
(1)

This means that for a given environment there are a subset
of specific sites (given bymi) which have non-neutral fitness
effects, and each site has an independent preferred value of
the genome given by ~Ei. The fitness is then linear in the
number of sites which are matched. The independence be-
tween sites is chosen in order to enable a simplified sense of
the mutual information to be used, so that we can factorize
the overall joint distribution over sequences into a product
of distributions at each site. Each generation, fitnesses are
evaluated and a new population is composed by randomly
sampling from the old population with replacement in pro-
portion to fitness, so that the population size remains con-
stant (N = 200 in all simulations reported in this work).
Mutation occurs with a per-base probability µ/L.

In this system, we wish to consider the mutual informa-
tion between the population of sequences and the environ-
ment, and how it changes over time. The mutual information
between random variables x and y is defined:

I(x; y) ≡
∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy (2)

This quantity places a bound on the ability to better infer
x given an observation of y compared to not having that ob-
servation of y — that is to say, if one knows p(x) and then
observes y, the mutual information measures the change in
the entropy in the possibilities that x may take conditioned
on knowing y. The quantity is symmetric, such that the same
would be true for inferring y by predicting x. In the context
of organisms and environments, the mutual information is
not a quantity which would be defined in a single evolution-
ary trajectory but instead is a statistical property over entire
ensembles of trajectories associated with a distribution over
the different environments. We cannot ask ’what is the mu-
tual information between this one organism and its environ-
ment?’, but we can ask ’what is the mutual information be-
tween organisms and their environments in this evolutionary
context?’

Measuring the mutual information directly in practice re-
quires accumulating sufficient observations in order to con-
struct estimates of p(x, y), p(x), and p(y) via sampling. If
the sum of the dimensions of x and y is large, this becomes
prohibitively expensive to brute force as the number of sam-
ples required grows exponentially in the dimensions of the
variables involved. However, due to the relationship be-
tween the mutual information and the bound on what can
be inferred about the variables by observing each-other, any
method of approximate inference can be used to generate a
lower bound on the mutual information between variables.
For example, there are techniques to use neural networks
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to estimate mutual informations between high dimensional
random variables (Belghazi et al., 2018). These methods
could be used to extend this type of analysis to systems with
arbitrary genotype-phenotype maps including the effects of
epistasis, or even to systems where the information-carrying
degrees of freedom are not a priori known such as chemical
reaction networks.

Because our simulations consider only fitness landscapes
without epistasis, we can consider the mutual information
independently on per-base basis. That is to say, the rela-
tionship between each base in the genome and the corre-
sponding base of the environmental random variable in the
fitness function is statistically independent from all of the
other bases, and each base only interacts with the corre-
sponding base of the environmental random variable. Any
interactions between bases occur only through aggregation
into the fitness, and such interactions are independent of the
specific environment sequences — that is to say, by observ-
ing the aggregate fitness, we would receive zero informa-
tion as to the value of any particular base in the environ-
ment string. As such, the total mutual information between
genome and environment is just the sum of per-base mu-
tual informations, and we can reduce the multidimensional
mutual information estimation problem into a collection of
independent one-dimensional estimations for which direct
sampling is sufficient.

Results
We measure the per-base mutual information by sampling
over 5000 runs of the evolutionary simulation with indepen-
dent random choices for the environments in each run. In
order to sample the probabilities p(x, y), p(x), and p(y) for
a given base i, we first take the subset of runs in which that
base is not masked out in the target environment. Then, from
that set of runs, we measure the fraction of the population in
each run which contains a 1 at that site ḡi = 〈~gi〉. This
results in approximately 5000Γ scalar values for each base.
These values are quantized into a histogram with 100 bins
between [0, 1], and we then accumulate samples from the
unmasked runs to estimate p(ḡi, ~Ei), p(ḡi), and p( ~Ei). With
these discrete distributions, we can directly evaluate the mu-
tual information between population and environment as a
function of time.

A run of the simulations involves first letting the pop-
ulation adjust to a ’burn in’ environment for 200 genera-
tions where data are not taken, followed by 200 genera-
tions in environment E1 and 200 generations in environ-
ment E2 (the mask vectors also vary between these environ-
ments). We then measure the informations I(ḡ(t);E1) and
I(ḡ(t);E2) per (coding) base. In the ’varying environment’
experiments, we switch environments between E1 and E2

every generation, for the same total of 400 generations.
Code for these simulations, results, and subsequent analy-
sis are available at https://github.com/ngutten/
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Figure 1: Dynamics of mutual information between popula-
tion and environment for µ = 0.5 and Γ = 0.2. Information
measures are normalized by the maximum information per
base associated with a single environment for that value of
Γ. Dashed lines are fits to Eq. 3

evolution_infodynamics.
The first set of results involves the dynamics of the mutual

information with respect to time, and are shown in Fig. 1.
The observed dynamics of the mutual information under se-
lection are quite close to a saturating function of the form
I(t) = A(1−exp(−t/λ+)). Meanwhile, the decay behavior
when a different environment is being selected for appears
to closely follow the form I(t) = A exp(−t/λ−).

This type of saturating behavior is consistent with dynam-
ics in which there is a constant source and a linear decay:

∂tIi =

{
−Ii/λ+ +A/λ+, Selection on Ei

−Ii/λ−, Selection on Ej

(3)

The fact that λ− and λ+ are not the same suggests that
the decay is not just from mutation (which should be the
same in both cases), but rather includes an effect where se-
lection for one environment can influence the rate at which
mutual information with a second environment is lost. It
is a bit surprising that the form would be this simple, as
why would selection provide information at a constant rate
rather than one which depends on how the population is po-
sitioned relative to the fitness landscape? It may just be that
for our particular fitness function, since each move towards
the fitness optimum provides the same selective contrast re-
gardless of how close or far an organism is to the optimum,
that these effects are zero. In fact, if we switch to a fitness
landscape in which the fitness is exponential in the Ham-
ming distance from the optimum, we see kinetics of the form
A(1−exp(−t2/λ2+))+B instead (Fig. 2), so this is not uni-
versal.
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Figure 2: Comparison between the initial increase of mu-
tual information for a linear fitness function versus an expo-
nential fitness function. The blue solid line corresponds to a
linear fitness function as given by Eq. 1, and the blue dashed
line is a sigmoidal fit. The red solid line corresponds to a fit-
ness F = 1 + exp(−d/2) where d is the Hamming distance
between target and environment, and the red dashed line is
a fit to A(1 − exp(−t2/λ2+)) + B. Parameters are µ = 0.5
and Γ = 0.2.

Given that we do observe this form of kinetics over a
large range of parameters for our case, we can attempt to
use Eq. 3 to relate the kinetics of saturating adaptation in
the case of one environment to what would happen in a sys-
tem which oscillates between two environments with period
T , by balancing the information gained during the selection
phase against the information lost during the non-selected
phase:

AT/λ+ −
∫ T

0

I(t)/λ+dt−
∫ 2T

T

I(t)/λ−dt = 0 (4)

For rapidly oscillating environments (T → 0), this crite-
rion is satisfied when:

I = A
1

1 + λ+/λ−
(5)

This is in comparison to an asymptotically slowly-varying
environment, in which the information about one environ-
mental random variable I1 → A, while the other I2 → 0.
In this case, since the different environments are indepen-
dent (I(E1;E2) = 0), the total mutual information be-
tween the population and the set of environments is additive
I(g;E1, E2) = I(g;E1) + I(g;E2). We can now ask, at
least in the context of this model, when does a fluctuating en-
vironment result in the population having more information
about the set of environments in total than if it just adapted to

a single environment? In the context of the criterion given by
Eq. 5, we should expect this to happen when the timescales
of information gain and decay are equal λ+ = λ− because
at that point, each environment contributes half of its total
entropy to the total information (I1 = I2 = A/2), and so
the total information the system has about the oscillating en-
vironment pair is equal to the total information the system
would have about one single static environment.

In the example of Fig. 3, we see that there is a point at
which the sum total information between the system and
both environments exceeds the entropy of a single environ-
ment — the information content is greater than what could
be obtained if an environmental switch was not present.
Similarly, we expect there to be cases in which switching
between environments prevents the entirety of the available
entropy of a single environment to be transferred into the
system. According to our simplified model, we predict that
the cross-over between these cases should occur when the
timescales of information gain and decay are equal. As such,
we will test the simplified model by empirically measur-
ing those timescales, and then comparing the cross-over in
timescales to the point at which the excess information peak
disappears.

Measuring timescales
In order to test this relationship between the timescales of
information gain and decay, we fit the observed dynamics of
mutual informations in the slowly varying environments to
Eq. 3 and look at how the timescales λ+ and λ− vary with
µ (Fig. 3a), Γ (Fig. 3b), and population size (Fig. 3c). Un-
surprisingly, as we increase the mutation rate, information is
lost from the system more rapidly. However, increasing the
mutation rate also increases the rate at which the information
held by the system about the environment approaches it’s
asymptotic value. Increased mutation rate may ultimately
lead to less information being retained — and so in terms
of total information gain by some fixed point in time τ we
would expect there to be a local maximum with respect to
mutation rate. However, when that total information gain
is normalized out, the remaining effect of mutation on the
timescale is monotonic.

When we inrease the fraction of the non-neutral part
genome Γ, we are in effect increasing the amount of in-
formation there is to learn about a given environment, and
correspondingly this means that we are decreasing the rel-
ative information capacity with respect to the genome and
the size of an optimal solution for a given environment. As
such, the behavior of the onset and decay phases with re-
spect to increasing Γ are markedly different. As increased
Γ means there is more information to learn before conver-
gence, the slope of the fraction of the total entropy captured
is proportionally decreased and so the timescale of learning
is correspondingly slowed (so λ+ becomes larger with in-
creasing Γ). On the other hand, as the genome is closer to
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capacity, once the environment changes then a larger frac-
tion of bits are in conflict and so experience decay at the rate
imposed by selection effects, rather than the rate imposed by
mutation effects. In response, λ− monotonically decreases
with increasing Γ.

Population size has a strong impact on timescales as well.
Even if an individual organism experiences a mutation in a
particular base, there are redundant copies of that informa-
tion distributed among the population. As such, information
about the previous environment decays not just at the rate of
an individual mutating, but instead at the rate at which that
mutation would proceed towards fixation. For neutral muta-
tions, this timescale is linear in the population size (Eq. 14
of Kimura and Ohta (1969)), whereas for non-neutral muta-
tions it is (to first order) logarithmic in the population size
(Eq. 50 of Uecker and Hermisson (2011)). So it makes sense
that as we increase the population size, we generally see
an increase in the decay timescale λ−. At the same time,
a larger population means that selection has an increased
bandwidth for transferring information about the environ-
ment into the system — and so the rate of information gain
accelerates, and the onset timescale λ+ becomes shorter.

Since the characteristic time-scale of information gain un-
der a new selection pressure generally differs from the char-
acteristic time-scale of information loss about previous en-
vironments, meaning that the population can end up with
either an information excess (in that it stores more adaptive
information than would be necessary to maximize fitness in
the current environment alone) or an information deficit (in
that adaptation to the new environment causes the old one to
be forgotten more quickly than new information comes in).
Holding Γ constant, we see that there is a particular value of
the mutation rate at which this cross-over occurs, although
higher mutation rates reduce both timescales strongly. In

comparison, holding µ constant, Γ also has a cross-over
point but the effect is much stronger.

Varying environments
This now brings us to the case of varying environments. This
cross-over point indicates that, for one switching event, the
effect can either be to temporarily increase the information
content of the system about both environments or temporar-
ily decrease the information content of the system below
where it would otherwise be without the switch. If we now
have multiple switching events on a timescale comparable
to the scale of information gain and decay, we might expect
the parameters of the system relative to this cross-over point
to determine whether the effect of environmental variations
is force extra information into the system on the net, or to
force information out of the system on the net. We show the
peak total information observed in environments oscillating
with period T = 1 in Fig. 4 in comparison with the same
system at T = 200 both for varying µ and for varying Γ.
As expected, we see a cross-over between the case in which
fluctuations drive excess information into the system and the
case in which fluctuations drive information out of the sys-
tem. While the cross-over points are similar to the point at
which the time-scale of information gain and information
decay are balanced, they do disagree in detail by a factor of
around 1.4. So while the broad idea that balance between
information gain and loss informs us about how an evolu-
tionary system would respond to a fluctuating environment,
the actual relationship seems to differ in some details.

Conclusions
We have demonstrated a measurement of the dynamics of
mutual information between population and environment in
the case of a simplified binary sequence evolutionary simu-

369



0 2 4 6 8

0.8

1.0

1.2

I T
=

1
I T

=
20

0

6.3

0.0 0.5 1.0

0.42

101 102 103

N

N 40

Figure 4: This figure shows the ratio of the peak sum information between a system with changes between a pair of envi-
ronments every generation, and one in which a single change occurs at T = 200. The left panel shows the case in which the
mutation rate µ is varied with a constant Γ = 0.2; the center panel shows the case where Γ is varied with a constant µ = 0.5;
and the right panel shows variation in population size, given constant Γ = 0.2 and µ = 0.5. In the case of µ and Γ, the cross-
over points occur at larger values than the corresponding cross-over between timescales in the static environment by about a
factor of ≈ 1.4: µ = 6.3 versus µ = 4.8 for static, and Γ = 0.42 versus Γ = 0.29 for static. For the population size effect, the
cross-over occurs earlier at around N = 40, compared to N = 90 for equal timescales.

lation. The dynamics of information in this system exhibit
sigmoidal growth and decay curves, consistent with the idea
of a constant rate of information injection balanced against
proportional information loss. Where that holds, changes
in the environment result in dynamics with a characteristic
time-scale associated the gain of information about the new
environment and a different characteristic time-scale associ-
ated with loss of information about the old environment. De-
pending on mutation rate and the amount of information as-
sociated with environments relative to the genome capacity,
these time-scales vary and may undergo a cross-over at par-
ticular values of the mutation rate and capacity. We expect
from the sigmoidal model that this cross-over would corre-
spond to the point at which a rapidly fluctuating environ-
ment would asymptotically induce either a net gain or loss
of information in the population — in essence, determining
whether or not adapting to multiple environments would en-
hance or inhibit the evolutionary process. While we found
such a transition, the location of the transition differed by a
significant factor from the point which would be predicted
by looking at the time-scales alone, suggesting that there is
still some additional consideration for how fluctuations in-
teract with the evolutionary dynamics that the simplified in-
formation flow model is missing.

One potential factor is that ability of a population to gain
information from the environment depends on the popula-
tion’s structure with respect to the structure of the environ-
ment — that is to say, selection does not simply introduce
a constant transfer of information from environment to pop-
ulation, but rather causes changes in the population struc-

ture which have consequences for how much information
will be able to flow from the environment to the popula-
tion in subsequent generations. In both (Steiner, 2012) and
(Ofria et al., 2016) a connection is made between environ-
mental fluctuations and the evolution of evolvability. Sim-
ilarly, (Virgo et al., 2017) suggests that even for simple fit-
ness landscapes, lineage effects can lead to significant adap-
tation of the evolvability of the population. These factors are
not captured by the simple rate model of information flow.
However, at the same time, an investigation into how the rate
of information flow within an evolving system changes over
time could be a useful way to probe these evolvability effects
in the future.
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Abstract

In a collaborative society, sharing information is advantageous
for each individual as well as for the whole community. Max-
imizing the number of agent-to-agent interactions per time
becomes an appealing behavior due to fast information spread-
ing that maximizes the overall amount of shared information.
However, if malicious agents are part of society, then the risk
of interacting with one of them increases with an increas-
ing number of interactions. In this paper, we investigate the
roles of interaction rates and times (aka edge life) in artificial
societies of simulated robot swarms. We adapt their social
networks to form proper trust sub-networks and to contain
attackers. Instead of sophisticated algorithms to build and
administrate trust networks, we focus on simple control algo-
rithms that locally adapt interaction times by changing only
the robots’ motion patterns. We successfully validate these
algorithms in collective decision-making showing improved
time to convergence and energy-efficient motion patterns, be-
sides impeding the spread of undesired opinions.

Introduction
Human societies are built upon social networks that
form the infrastructure for sharing information, such as
ideas (Leskovec et al., 2009; Orellana-Rodriguez and Keane,
2018), product innovations (Leskovec et al., 2007; Zhong
et al., 2018), and political movements (Polletta and Jasper,
2001). The network metaphor suggests a discrete and static
property (edge/no edge), however, agent-to-agent interac-
tions have certainly different intensities and durations. Spe-
cific characteristics of these agent-to-agent interactions in-
fluence global phenomena, such as consensus formation in
collective decision-making processes or the spread of an epi-
demic (Keeling and Rohani, 2011; Heesterbeek et al., 2015).

The interactions of an individual are key to understand in-
formation spreading processes in its neighborhood. They can
significantly influence its opinions and define its information
spreading capability. Local neighborhoods are relevant, as
shown for example by Christakis and Fowler (2007) who
report that your chances of being obese are probabilistically
characterized by your social network. In turn, obesity as a
global feature of society can also be analyzed based on the
social interactions among individuals.

Furthermore, dynamic individual interactions drive the
emergence of communities (Hess et al., 2016). In general,
social systems have features that develop on different time
scales ranging from micro-seconds to years. Spreading in-
formation travels magnitudes faster than the speed of change
of the underlying network topology. Hence, in simplified
models the topology can be approximated by static net-
works (Krings et al., 2012). Models representing interaction
times may, however, prove to be more powerful to study the
spread of information.

Here, we study the dynamics of information spreading in
large societies as observed in artificial and natural collective
systems. We focus on the timescales of topology dynam-
ics (i.e., community formation) and their impact on global
features. As key parameter of our study we choose the aver-
age and distribution of agent-to-agent interaction times. As
interaction time we define the uninterrupted time spent by
two agents in mutual communication range. The distribution
of the interaction time is also known as edge life distribu-
tion (Yang et al., 2013). Our main inspiration comes from
Meier (1962) who reports the importance of decreased inter-
action times in modern cities Khaluf (2017). We study two
complementary agent behaviors that either (a) share a desir-
able piece of information or (b) trap an undesired piece of
information. In natural systems, such as collective decision-
making in ants (Pratt et al., 2002), trust is virtually taken for
granted and spreading of information maximized. However,
ants tweak their social network when they need to fight an
epidemic (Stroeymeyt et al., 2018). In artificial systems, such
as collective decision-making in swarm robots (Khaluf et al.,
2018; Hamann et al., 2014; Valentini et al., 2016; Rausch
et al., 2018), sharing of information is to be maximized and
in many studies trust is also virtually taken for granted. Only
few works on decentralized error detection focus on identify-
ing and excluding damaged robots (Lau et al., 2011; Tarapore
et al., 2015). In our study, we assume that not all information
is useful but possibly harmful. We extend the current state
of the art in collective decision-making of artificial societies
by considering how to deal with undesired information. The
focus is on how to modulate agent-to-agent interaction times
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to either boost or impede spread of information.
We investigate our hypothesis using an artificial collective

system, a simulated robot swarm (Hamann, 2018b), that has a
dynamic topology. By using a collective robot system we re-
strict ourselves to local links of directly interacting neighbors.
This spatial restriction allows us to draw relations to models
of human networks for different spatial densities (e.g., urban
vs. rural). Furthermore, simulated robot swarms serve here
as systems that are easy to track and to engineer. We tune the
interaction dynamics of the swarm (e.g., interaction times) to
achieve desired collective behaviors, such as a decision con-
sensus in collective decision-making. We examine the role
of interaction times in a symmetry-breaking problem, that
is, agents need to select between two options of equal qual-
ity. Two parameters are important to optimize: (1) degree of
coherence, the percentage of robots that finally agree on the
same option, in the best case consensus (100% agreement)
and (2) time to convergence, the time to achieve a stable
degree of coherence. The time to converge is particularly
important in the symmetry-breaking type of decision-making,
because both options are of the same quality, hence, further
gathering of information is wasted time and cannot increase
the accuracy of the decision. As commonly assumed in col-
lective decision-making scenarios, we have an instantaneous
exchange of information (opinions) between neighboring
agents. We analyze the role of the interaction time under
two modes (1) offline tuning of interaction times by adapting
the population density externally (Khaluf et al., 2017), and
(2) active tuning of interaction times by a set of proposed
algorithms that exploit robot motion patterns to modulate
the distribution of the agent-to-agent interaction times. The
physical interaction time was highlighted as a key parameter
in the emergence of collective motion behaviors by Stark
et al. (2008).

Approach to modulate interaction times
We use a homogeneous swarm of N simulated robots. 1.
Robots wander randomly in their arena and while moving
they interact with their local neighborhood that is defined
based on their communication range. All robots within com-
munication range are neighbors and interactions are mutual.
Therefore, the robot control algorithm influences the distribu-
tion of agent-to-agent interaction times but also the spatial
distribution of robot density. (number of robots per area).

We consider a symmetry-breaking problem (Hamann et al.,
2012). A binary collective decision-making problem with
options A and B of the same quality. The robot swarm is
asked to achieve a consensus on either one of them. This is
a well-studied problem known from different fields, such as
physics, biology, opinion dynamics, and others.

Study setups
Our study consists of the following experiment setups:

1Footbot, http://www.swarmanoid.org/swarmanoid_hardware.php

A - interaction time as a function of population density:
In preliminary experiments, we measure and analyze the
dependency of agent-to-agent interaction time changes on
swarm density. We explore possibilities of tweaking interac-
tion times offline by choosing proper swarm densities.

B - boosting spread of desired information in a decision-
making system with majority rule: We apply the major-
ity rule in a symmetry-braking scenario, the spreading infor-
mation is the robots’ opinions, that are in this case desired to
spread widely. We define two sets of experiments here. First,
we use offline tuning of interaction times (i.e., swarm den-
sity). Second, we validate our control algorithm to actively
tune interaction times in order to achieve a system with an
enhanced well-mixed property (i.e., closer to the ideal of a
well-mixed system where the chance of any agent to interact
with any other agent is equal). We modify the robot motion
to improve the diffusion of robots. The result are decreased
agent-to-agent interaction times and an increased chance of
encountering more neighbors, that increase a robot’s opinion
sample. Well-mixed populations are advantageous in collec-
tive decision-making. However, once consensus is reached
the robots may not need to continue their costly motion pat-
tern. We propose an energy-aware algorithm that creates
a global self-awareness of the degree of coherence in the
swarm. Each robot samples opinions of its neighborhood
and measure the degree of coherence. In the case of high
coherence over a long-enough period, robots slow down until
they stop and preserve their current neighborhood as it is not
necessary for the decision-making process to move further.

C - impeding spread of undesired information in a
decision-making system with majority rule: We con-
sider a heterogeneous swarm with two sub-populations. One
sub-population uses the majority rule as above. The other
sub-population is assumed to be malicious. They contradict
the majority in their neighborhood and adopt the opposite
opinion. In the literature they are called contrarians (Gam-
baro and Crokidakis, 2017; Khalil and Toral, 2019; Hamann,
2018a). First, we show that contrarians reduce coherence.
Second, we show how our proposed control algorithm can
tune interaction times with contrarians and contain them.
Their influence is then limited and the degree of coherence
is increased. We highlight that extending agent-to-agent in-
teraction times can be of a significant benefit in this setup.
This is in contrast to standard setups in collective decision-
making where short interaction times are preferred because
they improve the mixing and spread of opinions.

Motion control algorithms
In the following we describe the different robot control algo-
rithms that we use to modify the motion behaviors of robots
that, in turn, changes their interaction times.
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Algorithm 1: Standard robot control algorithm for col-
lective decision-making using the majority rule.

1 select initial opinion (uniform (A,B));
2 while not(end of experiment) do
3 broadcast own opinion;
4 if Prd < Prε then
5 switch opinion spontaneously;
6 else
7 collect neighbors’ opinions;
8 if # neighbors is even then
9 keep opinion;

10 else
11 adapt majority opinion;

12 diffuse with obstacle avoidance;

Robots move in a gas-like diffusion as they move away
from areas of high robot density to spaces of low density. This
motion mechanism serves as both, obstacle avoidance and
exploration. In each simulation step, a robot collects vectors
from its proximity sensors2 consisting of relative distance
and relative angle. A summed vector is used as indicator
towards areas of low density (potential field method). If no
other robots are detected, robots move in a straight line.

Following the standard control algorithm (Alg. 1), collec-
tive decision-making is implemented by the majority rule. We
keep this decision algorithm unchanged for all experiments—
since we focus exclusively on motion patterns and their in-
teraction times. A robot collects the opinions of its neigh-
borhood and switches to (or keeps) the opinion of the major-
ity. We add a probabilistic element by spontaneous opinion
switching with probability Prε = 0.1 (otherwise majority
rule with probability 1−Prε = 0.9). Spontaneous switching
helps to preserve the system’s possibility to explore even
when consensus is achieved. The decision-making process
is continuous as it is active while the robots move around
randomly, see Alg. 1.

We propose an algorithm to provoke a more mixed sys-
tem by modifying the robot motion behavior. The idea is
to increase the average number of neighbors and to reduce
interaction times. Note that any opinion exchange requires a
minimal time to transmit information. We assume this mini-
mal time to be one discrete time step in our experiments (i.e.,
instantaneous opinion exchange). We call this variant the
‘well-mixed algorithm,’ see Alg. 2. A robot attempts to move
away from its neighbors, once there can be no relevant infor-
mation exchange anymore (i.e., homogeneous neighborhood).
A robot computes a repulsive velocity vector using relative
distances and angles to its neighbors. A robot is attracted
by neighbors with opposing opinion. Hence, all robots try

2the simulated Footbot uses 24 proximity sensors

Algorithm 2: Well-mixed robot control algorithm for
faster opinion sampling in collective decision-making.

1 select initial opinion (uniform (A,B)) ;
2 while not(end of experiment) do
3 broadcast own opinion;
4 if Prd < Prε then
5 switch opinion spontaneously;
6 else
7 collect neighbors’ opinions;
8 if # neighbors is even then
9 keep opinion;

10 else
11 adapt majority opinion;

12 if Ndiff > 1 then
13 for i=1, i ≤ Ndiff do
14 x = sensor(i).value * cos(sensor(i).angle);
15 y = sensor(i).value * sin(sensor(i).angle);
16 v.x = v.x + x;
17 v.y = v.y + y;

18 αattract = atan2(v.y, v.x);
19 compute linear speed from αattract;
20 else if all neighbors with same opinion then
21 for i=1, i ≤ Nall do
22 x = sensor(i).value * cos(sensor(i).angle);
23 y = sensor(i).value * sin(sensor(i).angle);
24 v.x = v.x + x;
25 v.y = v.y + y;

26 αrepulse = atan2(v.y, v.x);
27 compute linear speed from αrepulse;
28 else
29 diffuse with obstacle avoidance;

to maximize interaction between robots of different opin-
ion. On the one hand, robots maximize their dissemination
effect by approaching and convincing minorities of robots
with opposing opinion. On the other hand, robots maximize
chances to be convinced of the opposite by their exposure
to robots of opposing opinion. The algorithm pushes robots
from one neighborhood to another avoiding to waste time in
homogeneous sub-populations. As mentioned above, once
consensus is reached robots don’t need to maintain a certain
motion pattern for opinion mixture. In fact, that is a waste of
energy. We propose Alg. 3 as the ‘energy-aware’ algorithm.
Robots exchange opinions in their local neighborhood over
time and use their collected sample to decide when they can
stop their specific motion pattern.

Finally, we propose a robot control algorithm, that tries to
contain contrarians in collective decision-making (see Alg. 4)
called ‘impeding algorithm’. We have two sub-populations:
(1) the standard individuals executing the majority rule (as
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Algorithm 3: Robot control algorithm for adaptive inter-
action time based on individual awareness of coherence
degree in collective decision-making.

1 while not(end of experiment) do
2 Apply decision making using Alg. 1;
3 for i=1, i ≤ Nneighbors do
4 if opinion(i)=A then
5 #Neighbors A=#Neighbors A+1;
6 else if opinion(i)=B then
7 #Neighbors B=#Neighbors B+1;

8 Neighbors Composition=|#Neighbors A-
#Neighbors B|/size local neighborhood;

9 if simulation timer % δ t then
10 compute mean µneighborhood of

Neighbors Composition;
11 if µneighborhood = 1 then
12 start slowing down by δ s at each time step;

13 reset Neighbors Composition;

14 diffuse with obstacle avoidance at the updated speed;

described in Alg. 1), (2) the contrarians that always adopt the
minority opinion of the neighborhood. Our goal is to limit
the effect of contrarians by containing them. Following the
impeding algorithm, we modify the motion of standard robots
who are neighbors of contrarians. Neighbors of a contrarian
(who may already be affected by its opinion) try to increase
their interaction time with it to prevent contact with other
robots. When standard robots find a contrarian, they encircle
it in rough analogy to immune systems (see footnote 3).

Results
We validate our algorithms by running physics-based simu-
lations using the ARGoS simulator (Pinciroli et al., 2012).
We set an arena of 6 × 8 m2 and test swarm sizes N ∈
{50, 100, 200, 300, 400, 500} in a symmetry-breaking col-
lective decision task. Each experiment run is repeated 30
times independently with 2000 time steps each. Tab. 1 gives
the parameter values of both the robot and control algorithms.

A - interaction times as function of swarm density
We study the relation between agent-to-agent interaction
times and swarm densities (robots per area). Knowledge
of this relation can be used to modulate interaction times
offline by setting appropriate swarm densities. Due to lim-
ited space, increased swarm densities may cause cascades
of collision avoidance actions, where robots take longer to
leave their neighborhoods. In Fig. 1a, we show the average
interaction times over swarm size. We keep the area constant,

Algorithm 4: Impeding robot control algorithm to con-
tain contrarians in collective decision-making.

1 while not(end of experiment) do
2 broadcast own opinion;
3 if Prd < Prε then
4 switch opinion spontaneously;
5 else
6 collect neighbors’ opinions;
7 if # neighbors is even then
8 keep opinion;
9 else if (#neighbors odd) & (not contrarian)

then
10 adapt majority opinion;
11 else if (#neighbors odd) & (contrarian) then
12 adapt minority opinion;

13 if #contrarian neighbors > 0 then
14 for i=1, i ≤ Ncontrarian do
15 x = sensor(i).value * cos(sensor(i).angle);
16 y = sensor(i).value * sin(sensor(i).angle);
17 v.x = v.x + x;
18 v.y = v.y + y;

19 αattract to contrarian = atan2(v.y, v.x);
20 compute linear speed from αattract to contrarian;
21 else
22 diffuse with obstacle avoidance;

Table 1: Parameters used in the simulation.

Parameter Value
Robot parameters

Type Footbot
Proximity sensor range rprox 0.1 m
Range-and-bearing sensor range rrab 1.0 m
Maximum moving speed 5 m

s

Algorithms parameters
Alg. 1
Prε 0.1
Alg. 3
δ t 30 s
δ s 0.01 m

s

hence, increased swarm size means increased swarm density.
Average interaction times and their standard deviation in-
crease super-linearly with increasing swarm size. In Fig. 1b,
we show average interaction times as a function of average
distance between robots. The values are averaged over all
robots and 30 independent runs each. In full correspondence
to Fig. 1a, we observe a decrease of interaction times with
increased robot-to-robot distance.
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Figure 1: The average interaction times as a function of (a) the
population size/density. (b) The average distance between robots
for different densities. Error bars give the standard deviation over
independent 30 runs.
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Figure 2: Comparison well-mixed to standard algorithm. The aver-
age of (a) interaction times and (b) neighborhood size is computed
as a function of the swarm size/density. Error bars give the standard
deviation over 30 runs.

B - boosting spread of desired information
In this set of experiments, robots use the majority rule as
decision mechanism (Alg. 1) with a probability of Prε = 0.1
for spontaneous option switching. This implements an explo-
ration behavior to keep the swarm adaptive. First, we exploit
only the robots’ (gas-like) diffusion mechanism that we used
above to generate the interaction time (Fig. 1). Second, we
validate our well-mixed algorithm.

In Fig. 2a we compare the interaction times for a swarm
controlled by the well-mixed algorithm to a swarm controlled
by the standard algorithm. Especially for large swarms (e.g.,
N = 400 and N = 500), we notice a significant reduction of
interaction times using the well-mixed algorithm. In Fig. 2b
we compare the resulting average neighborhood sizes. There
is a trend to reduced neighborhood sizes using the well-mixed
algorithm, specifically for medium swarm sizes (e.g., N =
200 and N = 300). For large neighborhood sizes (e.g.,
N = 400 and N = 500) both algorithms approach saturated
neighborhood sizes of ≈ 48 robots. This is the limit due to
densely packed clusters of robots.

In Fig. 3a, we compare the well-mixed to the standard
algorithm in terms of time to convergence. We define time
to convergence using a threshold as the first passage time to
(absorbing) states of more than 90% majority. In our compar-
ison, we notice that with increasing swarm size, robots spend
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Figure 3: (a) The time the swarm takes to converge to an equilibrium,
(b) the degree of coherence reached by the swarm. Both computed
over the different population densities, and under both algorithms
(i) standard, and (ii) well-mixed.

more time to avoid obstacles and they cover less distance.
Due to the high density, swarm-wide connectivity is highly
probable resulting in large connected components. The time
to propagate opinions is reduced compared to sparse densities
when robots need to move around in ‘empty space’ to con-
nect to new neighborhoods. The result is a decreasing time
to convergence with increasing swarm size. Our proposed
well-mixed algorithm reduces the time to convergence signifi-
cantly compared to the standard algorithm. The improvement
(reduction of time to converge) reaches a maximum of 78%
in the case of medium density (N = 200 robots), and a mini-
mum of 43% in the case of dense swarms (N = 500 robots).
Best improvements are achieved for medium swarm sizes
(100 ≤ N ≤ 300). With increasing density (e.g., N = 500)
robots cannot move anymore and hence no further improve-
ment is possible.

We use the degree of coherence as a second method to
measure performance. In Fig. 3b, we compare the degree of
coherence for both algorithms (i.e., the standard and the well-
mixed). For high densities (N ≥ 400) coherence doesn’t dif-
fer between the two algorithms because the swarms are fully
connected. Similarly for sparse swarms (N = 50), robots
mix well following the standard algorithm due to sparsely
populated space. For low density (N = 50) the well-mixed
algorithm is even detrimental to coherence but it converges

376



50
0

10
00

15
00

20
00

Time

0

500

1000

1500

A
v
g
. 
p
e
ri
o
d
 o

f 
p
re

s
e
rv

in
g
 

 t
h
e
 n

e
ig

h
b
o
rh

o
o
d 50 robot

100 robot

200 robot

300 robot

400 robot

(a)

0 500 1000 1500 2000

Time

0

0.2

0.4

0.6

0.8

1

C
o

m
m

it
m

e
n

ts

50 robot

100 robot

200 robot

300 robot

400 robot

(b)

Figure 4: Results for the energy-efficient Alg. 3 for different swarm
sizes, (a) average lifetime of a neighborhood (sub-population of the
swarm), (b) commitment to the two opinions over time.

faster. This is because, in sparse swarms the well-mixed
algorithm maximizes robot diffusion, that decreases robot
interactions compared to the standard algorithm. The well-
mixed algorithm enables the degree of coherence in medium
densities (100 ≤ N ≤ 300) to reach one asymptotically—
i.e., full consensus. The improvement is between 9% and
18% compared to the standard approach.

Next, we study situations towards the end of runs when
high coherence is achieved and it gets irrelevant to maintain
a good mixture of opinions. When robots get aware of a
high coherence by local measurements, they reduce their
motion and hence increase their interaction time with their
local neighborhood. We use Alg. 3 that implements this
energy-efficient mechanism for collective decision-making.
In Fig. 4a, we show the average time of how long a certain
neighborhood configuration (a sub-population of the swarm)
is preserved during the simulation. At the beginning of each
simulation the neighborhood changes often (i.e., short life-
times of neighborhood configurations and short interaction
times). These times increase gradually over time as the sys-
tem achieves higher degrees of coherence. Robots slow down
their nominal velocity by δs = 0.01 at each time step when
observing full consensus in their neighborhood for a time
window of 300 time steps. As a result neighborhood configu-
rations are preserved for longer times until a large majority
of the swarm stops moving and builds stable neighborhoods,
see Fig. 4a. The degree of coherence reached using Alg. 3
is high for all swarm sizes as seen in Fig. 4b. We also notice
that neighborhoods freeze across almost all sizes of popula-
tions after the swarm has reached a high degree of coherence,
except for swarm size N = 50. For this sparse swarm we
would require larger time windows (i.e., > 300 time steps) to
sample enough neighbors and have a more accurate decision
about the degree of coherence reached at the system level.

C - impeding spread of undesired information
Next, we study collective decision-making with sub-
populations of contrarian robots. As mentioned above, con-
trarians observe the current majority in their neighborhood
and then switch to the opinion of the minority. In general,

in collective systems we assume that sharing information is
necessary and useful or at least not harmful. This implies
that maximizing the number of encountered peers is a key
objective. Minimizing the agent-to-agent interaction time or
limiting it to the duration needed to exchange the information
becomes the desired design feature. Nevertheless, in this
setup we consider contrarians, whose influence may harm the
system by preventing it from achieving a consensus. For such
setup, spreading the contrarians’ opinions need to be limited.
In a first set of experiments, we study symmetry-breaking
when a sub-population of contrarians with percentages of 5%,
10%, and 30% is introduced.3 All robots use the gas-like dif-
fusion motion to wander in the arena. The majority of robots
(95%, 90%, and 70%) runs Algo. 1 based on the majority
rule while contrarians follow their ‘minority rule.’ Fig. 5a-e
shows, respectively, how the swarm loses its capability of
making a decision caused by the contrarian sub-population
for percentages of 10% and 30%.

In a second set of experiments, we tune the interaction
times of the contrarians’ neighbors in order to contain those
and hence limit their influence to the system, see Alg. 4. We
ignore aspects of how to detect and identify contrarians as
this is out of scope of our study. Methods of fault detection
could be applied (Lau et al., 2011; Tarapore et al., 2015).
Here, we assume that robots detect contrarians immediately.
Following our impeding algorithm, when a robot encounters
a contrarian, it slows down to increase its interaction time
with that contrarian. For a neighborhood with more than
one contrarian, the robot computes a summed vector as an
indicator towards containing all contrarians in the neighbor-
hood. As soon as enough neighbours are available, they build
up a cluster around that contrarian and isolate it from the
rest of the swarm. This behavior triggered in the neighbor-
hood of the contrarian restricts its influence by keeping it
in the same neighborhood for long. In Fig. 5a, we show a
swarm with a small sub-population of contrarians (5%) that
have no considerable impact on the capability of the collec-
tive decision-making system to break the symmetry. This
ability is lost when increasing the size of the contrarians
sub-population to 10% and 30% as seen in Figs. 5b and d.
Figs. 5c and e show the system’s improved capability to make
decisions when applying the containing algorithm. Clearly
the swarm performs better for a contrarian population of 10%.
The improvement is minimal, however, for a contrarian popu-
lation of 30%. This is because a large portion of the swarm is
busy forming clusters around contrarians and too few robots
are left for the actual decision-making task.

Fig. 6 shows the distributions of interaction times for the
standard and impeding algorithm. For high density (N =
400), the interaction times are similar but for all smaller tested
swarm sizes (N < 400) the impeding algorithm increases
interaction times significantly. We notice a wide interval of

3video online: https://youtu.be/zjklEseERAk
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Figure 5: Commitment to the two options over time in the collec-
tive decision-making system using majority-rule (a, b, d) with the
standard algorithm, (c, e) with the impeding algorithm.

interaction times using the impeding algorithm. This is a
clear indicator of the emergence of sub-communities with
long interaction times due to the impeding behavior.

Additionally, we compare the standard with the impeding
algorithm using the histograms of interaction times in Fig. 7,
for different swarm sizes. The histograms clearly indicate a
bimodal distribution for the impeding algorithm (red) corre-
sponding to the two sub-populations of contrarian containers
and freely moving standard robots. For lower swarm den-
sities (N ≤ 200), the left peak of the bimodal distribution,
that represents the median of the interaction times among the
standard robots, overlaps with the peak of the standard algo-
rithm (blue). The right peak is generated by containing and
contrarian robots and indicates higher interaction times. Inter-
estingly, for increasing swarm density, the left peak moves to
the left relative to the blue peak indicating shorter interaction
times than for the standard algorithm (while the median of
the complete bimodal distribution of 595.75 is similar to the
median of the standard algorithm, 581.97). This is the im-
peding algorithm’s effect of increasing free space for motion
of standard robots. Containing robots densely cluster with
contrarians consuming only a small area. This allows the
standard robots (left peak) to move quickly and to experience
shorter interaction times.
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Figure 6: Robot interaction times over swarm size for the standard
and the impeding algorithm. Notice the widely spread interaction
times for the impeding algorithm.

Conclusions
With focus on interaction times, we have shown for the exam-
ple of collective decision-making that time to convergence
can be improved by carefully designing the motion patterns
of robots. The mixture of robots with different opinions can
be increased by minimizing interaction times. Following
the city metaphor, we create a hyperactive metropolis. In
the case of malicious robots (here contrarians), we do not
require sophisticated methods of forming and administrating
trust networks. Instead, we have shown that significantly
increased interaction times with these robots—by exploiting
a simple containing strategy designed based on robot motion
patterns—can isolate them and reduce their undesired influ-
ence. Following the city metaphor, we force contrarians into
unhurried spots (e.g., villages) reducing their ability to spread
information. With the proposed energy-aware approach, we
then regulate interaction times online depending on the level
of coherence achieved by the society. Following the city
metaphor, this may correspond to a weekly rest day when
city life is reduced to a minimum, with the only difference
that here the robots reach global awareness of when to sched-
ule that. In future work we plan to test these algorithms on
real robots.
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Abstract

Any part of a genome, considered separately from the rest of
the genome, evolves against a “virtual fitness landscape” that
results when the rest of the genome is held constant. We show
how analyzing a genome in this way can explain one form of
progressively increasing evolvability.

When one part of a genome is a vector of numbers (“knobs”)
and the rest is a graph that determines the mapping from
knobs to phenotype, the graph will respond to selective pres-
sure to “acclivate” the virtual fitness function faced by the
knobs—that is, to make it more hill-shaped. For as long as
the knobs’ virtual fitness function provides opportunity for
distorting it to make knob-turning mutations improve fitness,
the graph experiences pressure to evolve those distortions as
a side-effect of responding to its own virtual fitness function.

As the knobs’ virtual fitness function grows more hill-shaped,
the knobs track upward paths more easily and hence so does
the genotype as a whole. A synergy develops between in-
cremental exploration of phenotypes by knob-mutations and
discontinuous exploration by graph-mutations. A favorable
condition for this is a global fitness function that frequently
varies, changing constants but leaving structural invariants
unchanged. The graph then accumulates a memory of the
invariants as revealed across many previous epochs, held in
the form of bias limiting and directing future evolution.

Introduction
In previous work (Kovitz, 2015), we found that cascad-
ing designs—organisms consisting of graphs that direct cas-
cades of interactions among many parts—are well suited to
evolve increasing evolvability, because a single mutation is
likely to produce a coordinated change throughout the phe-
notype, preserving relationships among the parts of the phe-
notype that might be essential for survival while altering
constants that incrementally improve fitness. The classic
example of a cascading design is a metabolic network: a
variety of enzymes, each catalyzing reactions that create,
consume, speed, or slow other enzymes. Others include
neural networks, genetic regulatory networks, and even soft-
ware systems where cascades of activity are propagated by
function-calls or message-passing.

In the present paper, we investigate a synergy between the
“knobs” of a cascading design—elements subject to incre-
mental, quantitative mutation—and the “graph” or “topol-
ogy” of a cascading design—the structure of interactions
that is subject to discontinuous, sometimes radical muta-
tions. We find that under certain conditions, the graph faces
selective pressure to map a rugged fitness landscape to a
more hill-shaped virtual landscape for the knobs. The map
often excludes the worst regions of the landscape from its
range. The result is a mechanism by which evolvability can
evolve (Colegrave and Collins, 2008).

Virtual Fitness Functions
Any part of a genome is selected against a virtual fitness
function resulting from the interaction between the rest of
the genome and the fitness function faced by the genome as
a whole. If the whole-genome fitness function reflects the
influence of the environment on the genome, then the virtual
fitness function represents the same for a part of the genome,
whose environment includes the rest of the genome.

Let a set of genotypes G have a mapping mG : G → Φ
to a set of phenotypes Φ, and let wΦ : Φ → R be the fitness
function for the phenotypes. Then wG : G → R, the fitness
function for the whole genome, is the composition of these
functions, wG(g) = wΦ(mG(g)).

If we divide the genome into two parts G1 and G2, then
each genotype g ∈ G consists of a g1 ∈ G1 and a g2 ∈
G2, in which each g2 defines a partial-genotype–phenotype
mapping mg2 : G1 → Φ. That is, if we hold part of the
genome constant, say by fixing g2, this defines a mapping
from all possible values of the rest of the genome, g1, to
corresponding phenotypes. If we reverse g1 and g2, then
of course we get the opposite partial-genotype–phenotype
mapping, mg1 : G2 → Φ.

These mappings, in turn, define virtual fitness functions
vg2(g1) = wΦ(mg2(g1)) and vg1(g2) = wΦ(mg1(g2)). As
mutations and crossovers can alter either or both of g1 and
g2, the partial genomes G1 and G2 coevolve cooperatively,
each selected by the fitness functions vg1

and vg2
, which

vary among all the individuals and vary each generation.
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Let evolvability be defined in some reasonable way (there
are many), so that greater evolvability implies some advan-
tage in navigating a fitness landscape upward faster or fur-
ther over succeeding generations. Let ga, gb ∈ G be two
individuals in the same population and the same generation,
ga having parts ga1 and ga2, and gb having parts gb1 and gb2.
Assuming no other advantages favoring either ga1 or gb1, if
ga1 presents its mate ga2 with a virtual fitness function vga1

that ga2 finds more evolvable than vgb1
is for gb2, then the

descendants of ga will evolve faster or further than the de-
scendants of gb (according to how evolvability is defined).

Therefore each partial genome responds to any available
selective pressure to create a virtual fitness landscape for the
other partial genome that gives the latter greater evolvabil-
ity. To illustrate with an unrealistically simple example, if
the eye and the arm are governed by separate sets of genes,
and some arm shapes make it easier for the eye to evolve—
say, by providing cues that the eye can track to for hand-eye
coordination—then there is selective pressure favoring al-
leles for those arm shapes. All other factors being equal,
evolution favors arms that make eyes easier to evolve. This
selective pressure happens indirectly; in any single genera-
tion, greater fitness wins. But over successive generations,
descendants of organisms with greater evolvability will tend
to have greater fitness than organisms with lesser evolvabil-
ity.

The above considerations make no difference for homo-
geneous genomes, where every part of each genotype un-
dergoes mutation and crossover the same as every other part
and exerts the same effect on the phenotype or on the to-
tal fitness as every other part. However, if G1 and G2 vary
according to different operators and/or affect the phenotype
or total fitness differently, there is potential for each part to
seek values that make the other part more evolvable, result-
ing in a period of progressively increasing evolvability for
the organism as a whole.

In the rest of this paper, we examine a simple and natural
way for this synergy to occur: when g1 consists of a vector
of real numbers (“knobs”) and g2 consists of a network that
provides connections through which the numbers from g1

interact.

Acclivation
As is well known, a genome consisting of a vector of num-
bers, where mutations alter the numbers by small amounts,
evolves most easily against a hill-shaped fitness function. In
a hill-shaped fitness function, local increases in fitness cor-
relate with movement toward the peak of the whole fitness
landscape (Kauffman and Levin, 1987). The more “rugged”
the landscape, the weaker is this correlation, so that follow-
ing the local gradient can lead organisms to become stuck at
local maxima from which they cannot escape by local muta-
tions (though they might escape by crossover).

Therefore, if a vector of numbers faces a rugged fitness

landscape, with difficult features such as low local peaks
and impassable moats, we can improve its evolvability for a
vector of numbers by making its fitness function more hill-
shaped. Let us call the process of making a fitness landscape
more hill-shaped acclivation.1

So, in a genome where G1 is a vector of numbers that
mutate by small amounts, and G2 is a directed graph that
feeds the numbers in G1 through nodes that perform some
function on the numbers from their input edges, eventually
leading to a phenotype whose fitness determines the fate of
the whole organism, we should expect selective pressure for
genotypes g2 ∈ G2 to produce mappings that induce accli-
vation on the virtual fitness functions vg2

. Evolution should
favor graphs that put knobs in a position where they can hill-
climb successfully.

Genome for Experimentation
To test the preceding hypothesis in a form in which accliva-
tion will be visually apparent on plots printed on paper, we
limit ourselves to genomes where g1 and the phenotype are
2-dimensional vectors and g2 is a graph connecting them.
The whole genome is a directed graph where:

1. Two nodes, called the knobs, k1 and k2, are designated
to each hold a number in [−1.0,+1.0], called an initial
activation.

2. Two other nodes, p1 and p2, are designated to hold the
phenotype.

3. Zero or more additional nodes n1, n2, . . ..

4. Each edge has a weight of either +1.0 or −1.0.

Genotype–Phenotype Mapping
The phenotype is determined by a process of spreading acti-
vation, run for 10 timesteps. At each timestep, each node can
have either an activation in [−1.0,+1.0] or no activation.
At timestep 0, only the knobs have activations: the numbers
stored in the genotype. Each successive timestep, activations
spreads from from nodes (the ones with activations) to their
neighbors. If none of a node’s incoming neighbors has an
activation, its own activation (or lack of one) is unchanged.
Otherwise, the activation of a node aj at timestep t + 1 is
calculated according to the following function:

aj(t + 1) = T (aj(t) +
∑

i

Wijai(t))

where Wij is the weight of the incoming edge, if any, from
node i to node j, and T is the following transfer function:

T (x) =
2

1 + exp(−Sx)
− 1

1From Latin clivus, meaning a slope or a hill, combined with the
prefix ad- indicating in this context an upward slope or becoming
more sloped.
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Figure 1: The transfer function T is a sigmoid function with
attractors at ±0.5 and a repellor at 0.

where S = 2.1972274554893376. This constant gives T ,
when iterated, attractors at ±0.5 and a repellor at 0.

If a node does not have an activation at time t, then it
does not figure into the above sum for calculating any other
node’s activation. At time t = 0, only the knobs have acti-
vations.

The phenotype is the vector (ap1(10), ap2(10)), i.e. the
activations of the phenotype nodes after 10 timesteps. If p1

or p2 has not received an activation after 10 timesteps, then
the genotype has no phenotype and is given a fitness of 0.0.
This can happen if no edges provide a path from a knob to
p1 or p2.

Example The following table shows step-by-step how the
spreading-activation algorithm calculates the phenotype for
the simple genotype in Figure 2.

t k1 k2 n1 p1 p2

0 −0.659 1.000
1 −0.659 0.358 −0.619 −0.619 0.800
2 −0.044 −0.319 −0.970 −0.886 0.854
3 0.769 −0.379 −0.975 −0.771 0.529
4 0.958 0.404 −0.861 −0.002 0.164
5 0.964 0.905 −0.686 0.782 0.554
6 0.948 0.968 −0.420 0.958 0.922
7 0.906 0.971 −0.118 0.970 0.970
8 0.699 0.968 0.850 0.968 0.972
9 −0.164 0.950 0.990 0.950 0.971

10 −0.853 0.698 0.964 0.700 0.971

At t=0, the genotype provides the initial activations of the
knob nodes.

At t=1, n1 and p1 each receive an input of −0.659 from
k1; each gets an activation of T (−0.659) = −0.619. Sim-
ilarly, p2 receives an input of 1.000 from k2, giving p2 an
activation of T (1.000) = 0.800. Since the only input to k1

comes from n1, and n1 had no activation on timestep 0, k1’s
activation is unchanged.

At t=2, n1 receives inputs along two edges: −0.659 from
k1 and −0.619 from itself. These add to n1’s preceding acti-
vation, so n1’s new activation becomes T (−0.619−0.619−
0.659) = −0.970. k1 now receives the −0.619 from n1

k1 -0.659 k2 1.000
1

p1

1

n1

1

p2

1-1

1

Figure 2: A simple genotype. The knob nodes are at the
top, the phenotype nodes are at the bottom, and there is one
additional node.

but the edge has weight −1, so k1’s activation becomes
T (−0.659+0.619) = 0.044. k2 receives an input of −0.659
from k1, so k2’s activation becomes T (0.358 − 0.659) =
0.319. p1’s activation becomes T (−0.619 − 0.659) =
−0.886 and p2’s becomes T (0.800 + 0.358) = 0.854.

Now that all the nodes have activations, the cycle contin-
ues: k1 and n1 interact and p1 and p2 essentially accumulate
output from k1 and k2, scaled back each timestep by the T
function.

Finally, after 10 timesteps, p1’s activation is 0.700 and
p2’s activation is 0.971, so this genotype’s phenotype is
(0.700, 0.971).

Variation Operator

In generation 0 of the first epoch in each experiment, the
population consists of genotypes containing only the two
knob nodes and the two phenotype nodes, with up to four
randomly placed edges with weights randomly chosen from
{−1,+1}, and the knobs’ initial activations chosen uni-
formly from [−1.0, 1.0].

Each organism of each successive generation is generated
by selecting one or two parents from the previous genera-
tion by tournament selection and making a child by a single
mutation or by crossover. Crossover has a low probability,
usually 0.02 or 0.05.

The possible mutations are: add a node, remove a node
(but not a knob or phenotype node), add an edge, remove
an edge, move an edge, or turn a knob. Knob-turning has
a probability roughly equal to the sum of all the graph-edit
mutations. Depending on the experiment, turning a knob
chooses a knob delta from {−0.02,+0.02} or from a normal
distribution with mean 0 and σ = 0.0.

Population sizes range from 60 to 800 depending on the
experiment. We omit some details of the variation operator
here for lack of importance. The source code is publicly
available at https://github.com/bkovitz/acclivation.
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Experiments
In each experiment, we run the genome defined above
against a different family of fitness functions and see what
virtual fitness functions emerge. We only plot vg2 , the vir-
tual fitness function seen by the knobs, since we know of no
way to plot fitness functions seen by a graph.

We found no reliably meaningful measure of acclivation.
We tried running a hill-climbing algorithm on the virtual fit-
ness functions but this yielded ambiguous results. For ex-
ample, a higher fitness reached by the hill-climbing algo-
rithm in many cases resulted not from acclivation but from
extreme canalization: the graph forced the phenotype to a
predetermined point regardless of the knobs. So, we plot no
temporal dynamics of populations. Instead, we show only
some representative individuals to illustrate the kinds of vir-
tual fitness functions found.

Each experiment tries a “family” of fitness functions, be-
cause each experiment’s fitness function has a constant that
changes randomly once per epoch: every 20 generations.
This constant moves the peak of the fitness function to dif-
ferent places in phenotype space.

Experiment 1: Razorback
In this experiment, we ran the experimental genome against
this fitness function, plotted in Figure 3(a):

wΦ(ϕ) = 10.0 · d̂(ϕ, P ) · v(|p2 − p1|;R) + waves(ϕ; 30)

where:

P is a point (the peak) chosen randomly along the y = x
line each epoch;

d̂(ϕ, P ) is a measure of the proximity of ϕ to P equal to
0.0 for the maximum possible distance and 1.0 for zero
distance:

d̂(ϕ, P ) =
max−d(ϕ, P )

max

vis the “inverted-v” function: like an inverted-U function
but peaking sharply at x = 0 and returning zero outside
the radius R, set to 0.1 or 0.2 on different runs of the
experiment:

v(x;R) =

{
0 if |x| > R

1 − ( x
R )2 if |x| ≤ R

and “waves” is a function that adds regular undulations,
giving the overall fitness function an “egg carton” look,
shown in Figure 3(a):

waves(ϕ; ν) = cos(νp1) · sin(ν(p2 +
ν

2
))

So, this function rewards the phenotype up to 10 points
for proximity to P , but only if the phenotype lies along a

narrow ridge running diagonally across phenotype space,
complicated by the addition of a regular pattern of undu-
lations. The undulations add local minima throughout the
fitness landscape to trap searches that merely follow the lo-
cal gradient.

Figure 3 shows an organism that evolved in this exper-
iment. The virtual fitness function illustrates acclivation:
there is a steep slope leading to a “butte” containing the
global fitness peak, and the narrow ridge of the phenotype
function is widened and distorted, making it climbable from
different directions.

This organism also illustrates another fundamental way,
aside from acclivation, of gaining evolvability: by restrict-
ing the range of mg2 to exclude bad parts of the phenotype
space. The genotype–phenotype mapping does not allow ac-
cess to any points in phenotype space other than those along
the center of the ridge.

Experiment 2: Circle
In this experiment, we ran the experimental genome against
this fitness function:

wΦ(ϕ) = 10.0 · d̂(ϕ, P ) · v((p2
1 + p2

2) − r2;R)

where r is the radius of a circle, R is the ridge radius as in
the first experiment, and P is a point (the peak) chosen ran-
domly along the circle at the start of each epoch. In words,
the phenotype is rewarded up to 10.0 points for proximity
to the peak, but only if the phenotype lies within R of the
perimeter of the circle—a circular ridge. We set r = 0.5 and
R = 0.15.

Figure 4 shows one organism that evolved in this exper-
iment. It has evolved canalization for phenotypes near the
circular ridge and decanalization for phenotypes in the cen-
ter of the circle (knob-turnings quickly move the phenotype
away from the center). All phenotypes outside the circle are
inaccessible in this organism’s genotype–phenotype map-
ping.

Experiment 3: Moats
In this experiment, we run a modified version of the ra-
zorback fitness function: wherever waves(ϕ) ≤ 0.5, fit-
ness is zero rather than slightly reduced; organisms with fit-
ness zero are not allowed to reproduce; the “islands” where
waves(ϕ) > 0.5 have flat, neutral plateaus, so there is no
smooth gradient to climb within any one island; and the is-
lands are spaced further apart than in the razorback exper-
iment. So, organisms can only cross from one island to a
higher island by a single mutation. Ending the lineage of
an organism that falls into the “moat” between islands simu-
lates the tendency in nature for fitness landscapes be to “ho-
ley” (Gavrilets, 1997), requiring leaps over regions of non-
viable genotypes in order to improve fitness.

Figure 5 shows an organism that successfully climbs the
chain of islands. It has evolved a genotype–phenotype map-
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(a) Phenotype fitness (b) Genotype

(c) Phenotype range (d) Virtual fitness

Figure 3: One organism from experiment 1, “Razorback”. The phenotype’s fitness function, a landscape filled with local
maxima and one wavy narrow ridge (a), has become distorted into the roughly hill-climbable virtual fitness function (d) seen
by the “knobs” of the genotype (b). In (c), the phenotype range, x, y values indicate points in phenotype space that have a
preimage in knob space when the knobs are mapped through mg2 . The z values are the fitnesses of those phenotypes (the same
as are plotted in (a)). In (b), the knob nodes are at the top, the phenotype nodes are at the bottom, numbers preceded by “i=”
are initial activation levels, and the other numbers are activation levels after 10 timesteps.

ping that squeezes the islands closer together in the virtual
fitness function so that single knob-turns can leap the moats
between them, as well as limiting the range of the virtual
fitness function to the line along the centers of the islands.

Observations and Conclusions
The main result is that against these fitness functions, filled
with traps that flummox direct evolution, a genome with
continuously varying “knobs” mapped to its phenotype by a
discontinuously varying topology or “graph” tends to evolve

increasing evolvability by (a) presenting the knobs with a
more hill-shaped virtual fitness function and (b) restricting
the range of the knob–phenotype mapping to exclude “bad”
parts of the phenotype space. Close observation of geno-
types and lineages revealed a number of subtleties regarding
how and when this process happens, explained below.

Limitations on Generality
Modelable Fitness Functions and Genetic Memory
Over many generations, the graph accumulates a “memory”
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(a) Phenotype fitness (b) Genotype

(c) Phenotype range (d) Virtual fitness

Figure 4: One organism from experiment 2, “Circle”.

of the family of whole-genome fitness functions, encoded in
the form of bias in the way its lineage searches the pheno-
type space. This bias reflects invariants in the fitness family,
such as where ridges occur and how they’re oriented, moat
size, and where zero-fitness “deserts” consistently lie.

In effect, the graphs tended to evolve into models of the
invariants in the family of fitness functions. This means that
difficulties in modeling the invariants with a graph will shut
down acclivation. For example, a graph can easily model
the Razorback family because it lies along y = x, by dis-
connecting one knob and linking the other knob to both phe-
notype nodes. But a shifted Razorback family, say along
y = 2x − .4, is much harder for the graph to model.

Knobs themselves cannot accumulate useful bias beyond
being positioned where they will be mapped to high-quality

phenotypes. This bias can be effective, though: we often
observed several lineages in a single population with knobs
positioned far apart, each ready to capitalize if the whole-
genome fitness function or the genotype–phenotype map-
ping changes to favor them again.

Non-Stationary Fitness Function We frequently wit-
nessed the decay of a population’s genetic memory. Many
times, a population that was responding quickly to shifts of
the fitness peak, moving rapidly toward it one knob-turn per
generation, lost its ability to do this when a few epochs went
by with little or no movement in the fitness peak. When
the peak stayed constant too long, selective pressure favored
canalization: genotype–phenotype mappings that held the
phenotype at the peak in the face of most mutations. In
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(a) Phenotype fitness (b) Genotype

(c) Phenotype range (d) Virtual fitness

Figure 5: One organism from experiment 3, “Moats”.

that circumstance, if knob-turning alters the phenotype at
all, it lowers fitness, so selective pressure favors rendering
it inert—that is, making a genotype–phenotype mapping in
which all points in knob-space map to the same point in phe-
notype space.

Genetic memory also frequently decayed when a knob
had a value of −1.0 or +1.0. A knob-turning mutation
that goes beyond the limits has no effect. At these times,
knob-turning often lost its sensitivity to the virtual fitness
gradient—and so improvements in fitness had to come by
graph-edits alone, which can spoil previous acclivation.

Thus a non-stationary fitness function is most favorable
for acclivation: one that changes frequently, shifting the
peak, while retaining invariants that the graph can model
in a stable way. See Reisinger et al. (2005) for discussion

of evolvability in connection with this kind of nonstationary
fitness function, including a measure, acquired evolvability,
of a genome’s ability to “represent” its invariants.

Mutation Rate When instead of limiting each offspring
to a single mutation from its parent, we allowed a number of
mutations proportional to the size of the parent (the number
of nodes), genotypes tended to “bloat”, acquiring hundreds
of disconnected nodes and edges. The problem is that when
larger genotypes can make more mutations per generation,
they have no incentive to optimize the way they respond to
graph mutations. When each organism can only vary from
its parent by a single mutation, those who do not optimize
their mutation exposure are at a disadvantage in the race to
the new peak at the start of each epoch. A lineage with an

386



unnecessarily large number of ways to make neutral muta-
tions will tend to lose those races to lineages with the mini-
mal amount of “padding”.

The Transfer Function We expected that nearly any
transfer function typically used in simulated activation net-
works would induce acclivation of virtual functions (given
appropriate fitness functions, etc.), but this was decidedly
not the case. When we tried a simple y = x function
clamped within [−1.0, 1.0], step functions, rectifier func-
tions, and letting the constant in the T function stray far from
S all produced much less acclivation as well as phenotypes
of much lower fitness. The graphs could not “lock on” to the
ridge, making knob-turning nearly useless for navigating up
the fitness functions.

The T function has a peculiar characteristic that makes
it suitable for these experiments, where the only constants
in the genotype that are allowed to vary in small incre-
ments are those in the knobs. T is expansive in the range
−.28 < x < .28 and contractive everywhere else. When a
constant input, as from a knob, is fed into T repeatedly ten
times, this yields a function T (x + T (x + T (. . .))), which
is expansive in −.14 < x < .14 and contractive everywhere
else. This makes T well suited to forming a wide variety of
functions that simultaneously dilate and compress different
ranges of the phenotype space, by composition with itself
alone—without constants. Activations from incoming edges
ai beyond the first edge make a node calculate the function
T (a +

∑
i ai), giving compositions of T the ability to shift

their output right or left.
Compositions of linear transfer functions can shift pheno-

type space but they can’t dilate or compress it. This makes
it harder, perhaps impossible, to evolve an acclivated virtual
fitness function. When the constant S is varied too far from
that in T , the resulting function’s range of expansion quickly
shrinks to a tiny region around x = 0 or grows to nearly the
whole interval [−1.0, 1.0].

Virtual Knobs
We ran variations on the above experiments where nodes
other than the knobs were allowed to inherit constants. For
example, we tried allowing non-knob nodes to inherit an ini-
tial activation. Under this condition, successful organisms
tended to accumulate a collection of nodes with different
constants, none of which were connected to the knobs and
only one of which was connected to a phenotype node. They
exploited the “move edge” mutation to make these collec-
tions of nodes function as a virtual knob. Both knob nodes
were often disconnected from the rest of the graph.

The organisms seemed to prefer their virtual knobs. Vir-
tual knobs are subject to evolutionary pressure determining
how fast they turn, i.e. the probability distribution of knob-
turning deltas. The hard-coded knobs are limited to deltas in
the range of about ±0.02. The evolved virtual knobs tended

to turn much faster than our hard-coded knobs.
When we removed nodes with constants, we tried allow-

ing more than one edge between nodes. The organisms
evolved to exploit the “add edge” and “remove edge” mu-
tations as knobs. The number of edges between two nodes
effectively served as an adjustable multiplier.

To get the organisms to make use of our hard-coded
knobs, necessary to examine virtual fitness functions whose
domain is the knob settings, we had to purge the graph of all
other constants capable of varying in small increments. This
severely reduces evolvability.
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Abstract

We evolve floating point Sextic polynomial populations of
genetic programming binary trees for up to a million gen-
erations. Programs with almost 400 000 000 instructions are
created by crossover. To support unbounded Long-Term Evo-
lution Experiment LTEE GP we use both SIMD parallel AVX
512 bit instructions and 48 threads to yield performance of up
to 149 billion GP operations per second, 149 giga GPops, on
a single Intel Xeon Gold 6126 2.60 GHz server.

Introduction
Nature has had billions of years for evolution to work its way
to the organisms we see today. Not only was a long time
available to achieve results, but many generations passed
before the present. In evolutionary biology, there is discus-
sion about the long-term innovative capabilities of evolution.
Some say, evolution happens on a short time-scale, and even
a few hundred generations are enough to produce completely
different species (Palumbo, 2001; Owen et al., 1990). Oth-
ers maintain that natural evolution is an open-ended process
that will continue to produce novelty, even if many millions
of generations pass (Evans et al., 2012).

Thus different aspects are considered when studying long-
term evolution. One aspect is continuity: If one wants to
study evolution in the laboratory, one should strive to set up
experiments similar to Nature’s evolutionary ”experiment”
that go on for a long time, and are not disrupted. The other
aspect is duration: To attempt to evolve for many genera-
tions, trusting in the turn-over of information during the evo-
lutionary process. How does evolution proceed after 100,
1,000, 10,000 etc. generations of continued evolution? Does
it stagnate? Does it continue to produce surprises?

Richard Lenski and his collaborators have used the evo-
lution of E.coli bacterial strains in the laboratory to examine
these questions. Since 1988, the evolution of these bacte-
rial strains continues, with the experimental conditions be-
ing recorded and bacterial generations being frozen every so
often to conserve a time-slice of evolution of these strains
(Lenski, 1988). This natural system is studied with both as-
pects of long-term evolution in mind: The experiment has
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Figure 1: Evolution of mean absolute error in ten runs of
Sextic polynomial (Koza, 1992) with population of 4000.
(Runs aborted after first crossover to hit 15 million node
limit.) End of run label gives number of generations when
fitness got better (five shown at top right to avoid crowding).

run uninterrupted since 1988, and the fast reproductive cycle
of bacteria allows to study evolution over many generations
(Lenski et al., 2015). In 2019, 70,000 generations have been
reached, with no end to evolution in sight.

We focus on one aspect of these long-term evolutionary
experiments: The number of generations. The medium in
which we consider this question, however, is computational.
We started to investigate what happens if we allow artifi-
cial evolution, specifically genetic programming (GP) with
only crossover (Koza, 1992; Banzhaf et al., 1998; Poli et al.,
2008), to evolve for tens of thousands, even hundreds of
thousands of generations.

With the continuous progress in technology, new hard-
ware has become available, so we built a new GP engine
based on Andy Singleton’s GPQUICK (see next section).
This allowed us to switch from the Boolean to the contin-
uous domain and run experiments of up to a million gen-
erations. Excluding some special applications or Boolean
benchmarks based on graphics hardware (GPUs), at up to
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149 billion GP operations per second (149 giga-GPops, see
Table 3), this appears to be the fastest single-computer GP
system (Langdon, 2013, Tab. 3).

In the Boolean domain we found usually the population
quickly found the best possible answer and then retained
it exactly for thousands of generations (Langdon, 2017).
Nonetheless under subtree crossover we reported interest-
ing population change with trees continuing to evolve. In-
deed we were able to report the first signs of an eventual
end of bloat due to fitness convergence of the whole popu-
lation. We can now report in the continuous domain we do
see continual innovation and improvement in fitness like in
the bacteria experiments. Figure 1 shows that although the
rate of innovation falls (as in Lenski’s E. Coli1 populations),
typically better solutions are found even towards the end of
the runs. In these runs, there are several hundred or even a
few thousand generations where sub-tree crossover between
evolved parents gave a better child.

We are going to run GP far longer than is normally done.
Firstly in search of continual evolution but also noting that
it is sometimes not safe to extrapolate from the first hundred
or so generations. E.g., McPhee (McPhee and Poli, 2001,
sect. 1.2) found that his earlier studies which had reported
only the first 100 generations could not safely be extrapo-
lated to 3,000 generations.

It must be admitted that without size control we expect
bloat2, and so we need a GP system not only able to run
for a million generations3 but also able to process trees with
well in excess of a 100 million nodes4. The new system
we use is based on Singleton’s GPQuick (Singleton, 1994;
Keith and Martin, 1994; Langdon, 1998), but enhanced to
take advantage of both multi-core computing using pthreads
and Intel’s SIMD AVX parallel floating point operations.
Keith and Martin (1994) say GPQuick’s linearisation of the

1The E. Coli genome contains 4.6 million DNA base pairs.
2 GP’s tendency to evolve nonparsimonious solutions has been

known since the beginning of genetic programming. E.g. it is men-
tioned in Jaws (Koza, 1992, page 7). Walter Tackett (Tackett, 1994,
page 45) credits Andrew Singleton with the theory that GP bloat is
due to the cumulative increase in non-functional code, known as in-
trons. The theory says these protect other parts of the same tree by
deflecting genetic operations from the functional code by simply
offering more locations for genetic operations. The bigger the in-
trons, the more chance they will be hit by crossover and so the less
chance crossover will disrupt the useful part of the tree. Hence big-
ger trees tend to have children with higher fitness than smaller trees.
See also Altenberg (1994); Angeline (1994). In Langdon (2017) we
showed prolonged evolution can produce converged populations of
functionally identical but genetically different trees comprised of
the same central core of functional code next to the root node plus
a large amount of variable ineffective sacrificial code.

3 The median run shown in Figure 2 took 39 hours (mean
62 hours). Under ideal growing conditions, a million generations
for E.Coli corresponds to about 38 years.

4 Again referring to the extended runs in Figure 2, crossover
creates highly evolved trees containing almost four hundred million
nodes. These are by far the largest programs yet evolved.

GP tree will be hard to parallelise. Nevertheless, GPQUICK
was rewritten to use 16 fold Intel AVX-512 instructions to
do all operations on each node in the GP tree immediately.
Leading to a single eval pass and better cache locality but
at the expense of keeping a T = 48 wide stack of partial
results per thread.

Although the populations never lose genetic diversity
(Koza’s variety)5, with strong tournament selection (see Ta-
ble 1) even the larger populations tend to converge to have
identical fitness values. However 100% fitness convergence
is only seen in long runs with smaller populations (500 or 48
trees). In contrast, in the Boolean domain (Langdon, 2017),
even in the bigger populations (500) of that study, there are
many generations where the whole population has identical
fitness (but again variety is 100%).

The next section describes how GPQUICK was adapted
to take advantage of Intel SIMD instructions able to process
16 floating point numbers in parallel and to use Posix threads
to perform crossover and fitness evaluation on 48 cores si-
multaneously. The Experiments section describes the float-
ing point benchmark (Table 1). Whilst the Results section
describes the evolution of fitness and size and depth in pop-
ulations of 4000, 500 and 48 trees. It finds the earlier pre-
dictions of sub-quadratic bloat (Langdon, 1999) and Flajolet
limit (depth ≈

√
2π|size| (Langdon, 2000b)) to essentially

hold. More analysis can be found in the technical report
(Langdon and Banzhaf, 2019). We finish with a short dis-
cussion about the continuous evolution permitted by floating
point benchmarks and our conclusion that even something as
simple as digital evolution in the Sextic polynomial genetic
programming benchmark permits continuous innovation.

GPQUICK
First we describe how GPQUICK is used to do sym-
bolic regression on a simple sixth order polynomial
(y=x2(x−1)2(x+1)2 known as the Sextic polynomial)
and then how GPQUICK has been modified to run in par-
allel.

Sextic and GPQuick
Andy Singleton’s GPQUICK (Singleton, 1994) is a well es-
tablished fast and memory efficient C++ GP framework. In
steady state mode (Syswerda, 1990) it stores GP trees in just
one byte per tree node. Using separate parent and child pop-
ulations doubles this (although Koza (1992) shows doubling
is not necessary). The 8 bit opcode per tree node allows
GPQUICK to support a number of different functions and
inputs. Typically (as in these experiments) the remaining
opcodes are used to support about 250 fixed ephemeral ran-
dom constants (Poli et al., 2008). In the Sextic polynomial
we have the traditional four binary floating point operations

5Koza defines variety as the percentage of the population that
has no genetically identical copy (Koza, 1992, p.93)
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Figure 2: 11 extended runs pop=48. Numbers on right in-
dicate size of largest tree before the run stopped in millions
of nodes. One run (*) converged so that more than 90% of
the trees contain just five nodes. Three of the other four runs
that reached 1 million generations (red) took between half a
day and five days. In all but one run (*) we see repeated sub-
stantial bloat (> 64 million nodes) and subsequent tree size
collapse. Seven runs, in black, terminated due to running out
of memory (on server with 46GB).

(+, −, × and protected division), an input (x) and 250 con-
stants. The constants are chosen uniformly at random from
the 2001 floating point numbers from -1.000 to +1.000. By
chance neither end point nor 0.000 were chosen (see Ta-
ble 1).

The continuous test cases (x) are selected at random from
the interval -1 to +1. At the same time the target value y is
calculated (Table 1). Since both x and y are stored in a text
file, there may be slight floating point rounding errors due to
the standard float⇔string conversions.

Whereas the Sextic polynomial is usually solved with 50
test cases (Langdon et al., 1999), since the AVX hardware
naturally supports multiples of 16, in our experiments we
change this to 48 (i.e. 3 × 16) (Table 1). The multi-core
servers we use each support 48 threads and in the longest
extended runs, we reduce the population to 48 (whereas
in Langdon (2017) the smallest population considered con-
tained 50 trees).

AVX GPQuick
GPQUICK stores the GP population by flattening each tree
into a linear buffer, with the root node at the start. To avoid
heap fragmentation the buffers are all of the same size. The
buffer is interpreted once per test case by multiple recursive
calls to EVAL and the tree’s output is the return value of the
outermost EVAL. Each nested EVAL moves the instruction
pointer one position forward in the tree’s buffer, decodes the
opcode there and calls the corresponding function. In the
case of inputs x and constants a value is returned via EVAL
immediately, whereas ADD, SUB, MUL and DIV will each
call EVAL twice to obtain their arguments before operating
on them and returning the result. For speed GPQUICK’s

FASTEVAL does an initial pass through the buffer and re-
places all the opcodes by the address of the corresponding
function that EVAL would have called. This expands the
buffer 16-fold, but the expanded buffer is only used during
evaluation and can be reused by every member of the pop-
ulation. Thus, originally, EVAL processed the tree T + 1
times (for T=48 test cases).

The Intel AVX instructions process up to 16 floating point
data simultaneously. The AVX version of EVAL was rewrit-
ten to take advantage of this. Indeed as we expect trees
that are far bigger than the CPU cache (≈16 million bytes,
depending on model), EVAL was rewritten to process each
tree’s buffer only once. This is achieved by EVAL process-
ing all of the test cases for each opcode, instead of process-
ing the whole of the tree on one test case before moving on
to the next test case. Whereas before each recursive call to
EVAL returned a single floating point value, now it has to
return 48 floating point values. This was side stepped by
requiring EVAL to maintain an external stack where each
stack level contains 48 floating point values. The AVX in-
structions operate directly on the top of this stack and EVAL
keeps track of which instruction is being interpreted, where
the top of the stack is, and (with PTHREADS) which thread
is running it. Small additional arrays are used to allow fast
translation from opcode to address of eval function, and con-
stant values. AVX instructions are used to speed loading
each constant into the top stack frame. Similarly all 48 test
cases (x) are rapidly loaded on to the top of the stack. How-
ever, the true power of the implementation comes from being
able to use AVX instructions to process the top of the stack
and the adjacent stack frame (holding a total of 96 floats) in
essentially three instructions to give 48 floating point results.

The depth of the evaluation stack is simply the depth of
the GP tree. GPQUICK uses a fixed buffer length for ev-
ery individual in the GP population. This is fixed by the
user at the start of the GP run. Fixing the buffer size also
sets the maximum tree size. Although in principle this only
places a very weak limit on GP tree depth, it has been re-
peatedly observed (Langdon, 2000b) that evolved trees are
roughly shaped like random trees. The mathematics of trees
is well studied (Sedgewick and Flajolet, 1996) in particu-
lar the depth of large random binary trees tends to a limit
2
√
πdtreesize/2e + O(tree size1/4+ε) (Sedgewick and Fla-

jolet, 1996, page 256). (See Flajolet limit in Figure 4.) Thus
the user-specified tree size limit can be readily converted
into an expected maximum depth of evolved trees. The size
of the AVX eval stack is set to this plus a suitable allowance
for random fluctuations and O(tree size1/4+ε). Note, with
very large trees, even allowing for the number of test cases
and storing floats on the stack rather than byte-sized op-
codes, the evaluation stack is considerably smaller than the
genome of the tree whose fitness it is calculating. Additional
details can be found in Langdon and Banzhaf (2019).
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PTHREADS GPquick

The second major change to GPQUICK was to delay fitness
evaluation so that the whole new population can have its fit-
ness evaluated in parallel. As trees are of different sizes,
each fitness evaluation will require a different time. There-
fore which tree is evaluated by which thread is decided dy-
namically. Due to timing variations, even in an otherwise
identical run, which tree is evaluated by which thread may
be different. However great care is taken so that this cannot
affect the course of evolution. E.g., pseudo random numbers
are only generated in sequential code.

EVAL requires a few data arrays. These are all allocated
at the start of the GP run. Those that are read only can be
shared by the threads. Each thread requires its own instance
of read-write data. To avoid “false sharing”, care is taken to
align read-write data on cache line boundaries (64 bytes),
e.g. with additional padding bytes and ((aligned)).
This ensures each thread writes to its own cache lines and
therefore these cached data are not shared with other threads.

Surprisingly an almost doubling of speed was obtained by
also moving crossover operations to these parallel threads.
Since crossover involves random choices of parents and sub-
trees these were unchanged but instead of performing the
crossover immediately a small amount of additional infor-
mation was retained and to be read later by the threads. This
allows the crossover to be delayed and performed in one of
48 C++ pthreads. The results are identical but give an addi-
tional ≈two-fold speed up.

Experiments

We use the well known Sextic polynomial benchmark
(Koza, 1994, Tab. 5.1). Briefly, the task given to GP is to find
an approximation to a sixth order polynomial, x6−2x4+x2,
given only a fixed set of samples, i.e., a fixed number of test
cases. For each test input x we know the anticipated output
f(x), see Table 1. Of course the real point is to investigate
how GP works and how GP populations evolve over time.
We ask ourselves whether it is possible for GP to continue to
find improvements, even for such a simple continuous prob-
lem, as Lenski’s E. Coli experiments are showing, or, like
the Boolean case (Langdon, 2017), whether the GP popu-
lation will get stuck early on and from then on never make
further progress. Note that we here make use of crossover
exclusively, so no random mutations are allowed to intro-
duce any new genetic material during the run. All the vari-
ation the algorithm can make use of must be present in the
first generation.

We ran three sets of experiments. In the first the new GP
systems was set up like the original Sextic polynomial runs
which reported phenotypic convergence (Langdon et al.,
1999, Fig. 8.5). The first set uses a population of 4000, the
second 500 and the last 48.

Table 1: Long term evolution of Sextic polynomial sym-
bolic regression binary trees
Terminal set: X, 250 constants between -0.995 and 0.997
Function set: MUL ADD DIV SUB
Fitness cases:48 fixed input -0.97789 to 0.979541 (randomly

selected from -1.0 to +1.0 input).
Target y = xx(x−1)(x−1)(x+1)(x+1)

Selection: Tournament size 7 with
fitness = 1

48

∑48
i=1 |GP (xi)− yi|

Population: Panmictic, non-elitist, generational.
Parameters: Initial population (4000) ramped half and half

Koza (1992) depth between 2 and 6. 100% un-
biased subtree crossover. 100 000 generations
(stop run if any tree reaches limit 15 106).

DIV is protected division (y!=0)? x/y : 1.0f

Crossover
Each generation is created entirely using Koza’s two parent
subtree crossover (Koza, 1992). (GPQuick creates one off-
spring per crossover.) For simplicity and in the hope that
this would make GP populations easier to analyse, both sub-
trees, the one to be removed and the one to be inserted are
chosen uniformly at random. That is, we do not use Koza’s
bias in favour of internal nodes (functions) at the expense of
external nodes (leafs or inputs). Instead, the root node of the
subtree (to be deleted or to be copied) is chosen uniformly
at random from the whole of the parent tree. This means
there is more chance of subtree crossover simply moving
leaf nodes and so many children will differ from the root
node donating parent by just one leaf.

As mentioned above, once fitness evaluation has been
sped up by parallel processing, for very long trees produc-
ing the child is a surprisingly large part of the remaining run
time and so it, too, can be implemented in parallel. How-
ever, the choice of crossover points is done in sequential
code and remains unaffected by multithreading. This en-
sures the variability introduced by multiple parallel threads
does not change the course of evolution.

Fitness Function
The fitness of every member of every generation is cal-
culated using the same fitness function as (Koza, 1994,
Tab. 5.1). That is, barring rounding errors (previous page),
fitness is given by the mean of the absolute difference be-
tween the value returned by the GP tree on each test case
and the Sextic polynomial’s value for the same test input
(see Table 1). We use tournament selection to choose both
parents.

Like (Koza, 1994, Tab. 5.1), we also keep track of the
number of test cases where each tree is close to the target
(i.e. within 0.01, known as a “hit”). The number of hits is
used for reporting the success of a GP run. It is not used
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Table 2: 10 Sextic polynomial runs with population 4000

Gens err10−9 impr6 hits size106 xi conv ops109

6370 64487 2139 48 14.329 1.200 3981 58.2
8298 145796 2040 48 14.102 1.916 3982 57.4
2323 642006 389 47 13.441 1.387 3995 51.6
7119 507600 608 48 13.668 1.589 3997 55.0

11750 1 3583 48 13.854 1.364 3989 49.8
3412 65561 1277 48 14.348 1.625 3986 45.4
5106 71288 1615 48 14.233 1.146 3988 53.6
6112 728757 1871 48 14.500 1.254 3983 52.9
6679 28853 1741 48 14.022 1.396 3998 43.4
4454 67817 790 48 14.900 1.227 3997 54.9

6Figure 1 gives number of generations which improve on their
parents, whereas here we give strictly better than anything
previously evolved. Hence slight differences.

internally during a GP run. Also, our GP runs do not stop
when a solution is found (48 hits) but continue until either
the user-specified number of generations is reached or bloat
means the GP runs out of memory.

Where needed, floating point calculations are done in
a fixed order, to avoid parallelism creating minor changes
in calculated fitness, which could quickly cause otherwise
identical runs to diverge because of implementation differ-
ences in parallel calculations.

Results
Results Population 4000 trees
In the first set of experiments, we use the standard popu-
lation of 4000 trees. Table 2 summarises the results of 10
runs. In all cases GP found a reasonable approximation to
the target (the Sextic polynomial). Indeed in all but one
run (47 hits) the best trees score 48 out of 48 possible hits.
I.e. they are within 0.01 on all 48 test cases. Indeed in most
cases the average error was less than 10−4. Figure 1 shows
that GP tends to creep up on the best match to the training
data. Typically after several thousand generations, GP has
progressively improved by more than a thousand increas-
ingly small steps. (See Table 2 column 3 and Figure 1).

In all ten runs with a population of 4000, we see enormous
increases in size and all but one are stopped as they hit the
size limit (15 000 000) before reaching 100 000 generations.
Column 5 in Table 2 gives the size (in millions) of the largest
evolved tree in each run. The log-log plot in Figure 3 shows
a typical pattern of subquadratic (Langdon, 2000a) increase
in tree size. The straight line shows a power law fit. In
this run the best fit has an exponent of 1.2. Column 6 of
Table 2 shows that the best fit between generations ten and a
thousand for all 10 runs varies between 1.1 and 1.9.

As expected not only do programs evolve to be bigger
but also they increase in depth. As described above highly
evolved trees tend to be randomly shaped and so as expected
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Figure 3: Evolution of tree size in first Sextic run (popula-
tion 4000). (This run aborted after 6370 generations by first
crossover to hit 15 million node limit.) Straight line shows
best RMS error power law fit between generation 10 and
1000, y = 8.65x1.2001

tend to lie near the Flajolet limit, depth ≈
√

2π|size| (see
Figure 4). (This is also true in the pop=500 and pop=48
runs, see following sections.)

In all ten runs we see some phenotypic convergence. The
“conv” column in Table 2 shows the peak fitness conver-
gence. That is, out of 4000, the number of trees having
exactly the same fitness as the best in the population. Typ-
ically at the start of the run (see Figure 5), the population
contains mostly trees with poorer fitness, but later in the run
the population begins to converge and towards the end of
the run we may see hundreds of generations where more
than 90% of the population have identical fitness. Under
these circumstances, even with a tournament size as high as
7, many tournaments include potential parents with identical
fitness. These, and hence the parents of the next generation,
are decided entirely randomly. However, even in the most
converged population there are at least two individuals with
worse fitness. (In Figure 5 it is at least 19.) As we saw with
the Boolean populations (Langdon, 2017), even this small
number can be enough to drive bloat (Langdon and Poli,
1997) (albeit at a lower rate).

Results Population 500 trees

We repeated the GP runs but allowed still larger trees to
evolve by reducing the population from 4000 to 500 and
splitting the available memory between fewer trees. Table 3
summarises 6 of these runs. Notice two runs do not really
solve the problem and only hit less than half the test cases
(see “hits” column in Table 3). Nonetheless, in all cases
evolution continues to make progress and each GP run finds
several hundred or more small improvements (third column
in Table 3).
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Figure 4: Plot of size and depth of the best individual in
each generation for 10 Sextic polynomial runs with popula-
tion of 4000. Binary trees must lie between short fat trees
(lower curve “Full”) and “Tall” stringy trees. Most trees
are randomly shaped and lie near the Flajolet limit (depth
≈
√

2π|size|, solid line, note log-log scales).

Table 3: 6 Sextic polynomial runs with population 500

Gens err10−6 impr hits size106 xi conv ops109

111582 538 3545 47 399.594 1.558 500 93.8
23937 34313 757 18 202.439 1.736 500 117.3
35783 307 3484 48 227.488 1.436 500 95.8
43356 18373 929 22 267.416 2.181 500 149.2
27713 137 5852 48 327.253 1.928 500 138.9

103953 1765 664 48 230.106 1.408 500 69.6

Since we have deliberately extended the space available to
GP trees, it is no surprise that the trees grow even bigger than
before (column 5 in Table 3). Again bloat is approximately
following a power law. Although in one unsuccessful run
we see a power law exponent greater than 2, mostly growth
is at a (sub-quadratic) rate similar to the bigger population
runs (1.4–2.2 v 1.1–1.9, column 6 in Table 2 (pop 4000)).

Unlike with the large populations, all the runs with popu-
lations of 500 trees showed some cases of complete fitness
convergence (“conv” column in Table 3 is 500). For exam-
ple, in the first Sextic polynomial pop=500 run, the whole
population has identical fitness 33 143 times (30% of the
run). If we concentrate upon the last fitness improvement
in generation 108 763 (2819 before the end of the run). This
new improved Sextic polynomial performance takes over the
whole population in half a dozen generations. However it
fails to totally dominate the population in 861 (31%) of the
remaining generations. Even though the mean number of
lower fitness children is less than one (0.38) it is not zero,
and this (given nearly three thousand generations) is still
enough to double the average size of the trees.
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Figure 5: Fitness convergence in first Sextic polynomial
pop=4000 run. Perhaps because of the continual discovery
of better trees before generation 4975 and the larger popu-
lation size, although the number of tree without the best fit-
ness falls, unlike in the earlier Boolean problem (Langdon,
2017) it never reaches zero. Notice tiny fitness improvement
in generation 4961 resets the population for ten generations.
(Mean prog size (linear scale, dotted black) and best fitness
(log, blue) plotted in the background.)

Results Population 48 trees
In the final experiments the population was reduced still
further to allow even larger trees to be evolved (Figure 2).
These smallest population runs were run with a population
of 48, since this should readily map to the available Intel
multi-core servers.

With the small population, none of the runs solve the
problem. Indeed only three runs got close on 40 or more test
cases (see Table 4). Of the remaining eight, only one finds
a large number of fitness improvements. Seven runs have
only between 3 and 30 generations with fitness improve-
ments, column 3 in Table 4. In three of these, the population
gets trapped at trees with just three nodes which evaluate to
constants 0.0626506, 0.069169 and 0.0830508, although the
population eventually escapes and large trees evolve by the
end of the run. Except for these three runs, all the other runs
contain populations where every member of the population
has identical fitness. Therefore their maximum convergence
is 48 (see “conv” column in Table 4). The final column is
average speed, in giga GP operations/second.

For almost the whole of the first run with 48 trees the
best fitness in the population is fixed but once trees get big
enough further size changes are essentially random (Fig-
ure 2). The best fitness found in this run is given by ro-
bust trees which always return a midpoint value which only
passes close to four test points. Trees which closely matched
more test points were discovered in the first nineteen gener-
ation of this run. However, in terms of fitness, they scored
worse than a constant and so went extinct.
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Table 4: 11 Sextic polynomial runs with population of 48

Gens err10−6 impr hits size106 xi conv ops109

1000000 46215 11 16 63.920 1.633 48 36.5
491618 2748 745 46 396.576 2.060 48 34.9

1000000 46215 7 13 190.654 1.448 48 57.4
689414 4857 448 40 159.949 1.260 48 38.1

1000000 46215 8 14 50.365 1.701 48 26.2
143251 46215 11 14 99.541 1.672 48 54.1
212528 46650 30 14 257.766 na 42 26.7

1000000 46730 3 14 0.000 na 42 .004
958147 23259 1683 18 308.958 1.791 48 53.5
294098 47174 3 12 308.121 na 43 24.5
757830 2985 2921 44 294.821 1.320 48 50.2

Is there a Limit to Evolution?
In the Sextic Polynomial experiments with larger popula-
tions there is no hint of either evolution of fitness or bloat
totally stopping. In the smaller populations, it is both possi-
ble to run evolution for longer and to allow trees to be even
larger. Four of the eleven pop=48 runs reached a million
generations but in the remaining seven, bloat ran into mem-
ory limits and halted the run. Only in one run did we see
anti-bloat, in which the population converged in a few gen-
erations on a small high fitness tree which crossover was
able to replicate across a million generations. Interestingly
two other runs found similar solutions but after thousands of
generations crossover found bloated version of them.

In the binary 6-Mux Boolean problem (Langdon, 2017)
there are only 65 different fitness values. Therefore the num-
ber of fitness improvements is very limited. An end to bloat
was found. By which we mean it was possible for trees to
grow so large that crossover was unable to disrupt the impor-
tant part of their calculation next to the root node and many
generations were evolved where everyone had identical fit-
ness. This led to random selection and random fluctuations
in tree size, i.e. enormous trees but without a tendency for
progressive endless growth.

This did not happen here. Even in some of the smallest
Sextic polynomials runs, we are still seeing innovation in
the second half of the run, with tiny fitness improvements
being created by crossover between enormous parents. Also
we are still slightly short of total fitness convergence.

However, there is a strong relationship between the size
of the population and the success of the runs. All runs of
size 4000 were successful, half of the runs of size 500 were
successful, but none of the runs of size 48 were successful.

Even with populations containing Sextic polynomial trees
of hundreds of millions of nodes, crossover can still be dis-
ruptive and frequently even tiny populations can contain a
tree of lower fitness. This is sufficient to provide some pres-
sure (over thousands of generations) for tree size to increase
on average.

Can bloat continue forever? It is still difficult to be defini-
tive in our answer. We have seen cases where it does not and
of course there are plenty of techniques to prevent bloat (Poli
and McPhee, 2013). But we see other cases where crossover
over thousands of generations can create an innovative child
which allows bloat into a converged population of small
trees. Perhaps more interestingly, we see crossover finding
fitness improvement in bloated trees after many thousand of
generations.

Conclusions
Evolving binary Sextic polynomial trees for up to a million
generations, during which some programs grow to four hun-
dred million nodes, suggests even a simple GP floating point
benchmark allows long-term fitness improvement over thou-
sands of generations.

The availability of multi-core SIMD capable hardware
has allowed us to push GP performance on single comput-
ers with floating point problems to that previously only ap-
proached with sub-machine code GP operating in discrete
domains (Poli and Langdon, 1999; Poli and Page, 2000).
This in turn has allowed GP runs far longer than anything
previously attempted whilst evolving far bigger programs.

Without size or depth limits or biases crossover with
brutal selection pressure tends to evolve very large non-
parsimonious programs, known in the GP community as
bloat (Koza, 1992, page 617). (See also footnote 2 on sec-
ond page.) After a few initial generations, GP tree bloat typ-
ically follows a sub-quadratic power law (Langdon, 2000a).
But eventually effective selection pressure (Nordin, 1997,
sec. 14.2), (Banzhaf et al., 1998, page 187), (Stephens and
Waelbroeck, 1999; Langdon and Poli, 2002) within highly
evolved populations falls, leading to bloat at a reduced
rate. However in this continuous domain we only see the
chaotic lack of bloat found in long-running Boolean prob-
lems (Langdon, 2017) in a few unsuccessful runs with tiny
populations (red plots in Figure 2). Nevertheless in all cases
bloated binary trees evolve to be randomly shaped and lie
close to Flajolet’s square root limit.
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Abstract

This paper studies the effects of changing environments on
the evolution of bodies and brains of modular robots. Our
results indicate that environmental history has a long last-
ing impact on the evolved robot properties. We show that
if the environment gradually changes from type A to type B,
then the evolved morphological and behavioral properties are
very different from those evolving in a type B environment
directly. That is, we observe some sort of “genetic memory”.
Furthermore, we show that gradually introducing a difficult
environment helps to reach fitness levels that are higher than
those obtained under those difficult conditions directly. Fi-
nally, we also demonstrate that robots evolved in gradually
changing environments are more robust, i.e., exhibit a more
stable performance under different conditions.

Introduction
A widely acknowledged ground truth about natural evolu-
tion is that the environment largely determines the evolved
lifeforms (Darwin, 2004; Sapolsky, 2017). However, within
the field of artificial evolution, specifically robot evolution,
things can be different and as of today there is not much
evidence for this effect. As a potential explanation it can
be noted that Evolutionary Robotics has a historical em-
phasis on evolving only the robot brains (controllers) and
robot systems with evolvable forms (morphologies, bodies)
have been paid relatively little attention, cf. (Floreano et al.,
2008; Doncieux et al., 2015). Furthermore, existing stud-
ies on morphologically evolving robots focus on other as-
pects and only a few address the effect of the environment
directly, e.g., (Auerbach and Bongard, 2014). Last, but not
least, the effect might be hard to demonstrate with robots
that have less complex morphologies and shorter evolution
periods than the plants and animals observed in Nature.

Our own experience with a large number of different envi-
ronments and various system setups seems to support the lat-
ter explanation.1 Specifically, we repeatedly found that even
very different environments can lead to the same evolved
robot morphologies. After many experiments we identified

1All our previous studies and the present research is done in
simulations – just like the related work of others.

and investigated two environments that gave rise to measur-
ably different morphological features in the evolved popula-
tions of modular robots (Miras and Eiben, 2019).

In this paper, we consider these two environments (de-
scribed later on as “Plain” and “Tilted”) and define a cou-
ple of other ones that represent intermediary stages between
them. This allows us to investigate the evolutionary dynam-
ics when environment A is gradually transformed into envi-
ronment B and compare this with evolving in constant en-
vironments A and B. In other words, we can research the
effect of what can be called the environmental history. Our
initial hypothesis is that starting evolution in a simple world
(A) and smoothly transitioning into a difficult world (B) will
make adaptation easier than starting directly in B. Hence, we
expect a better adapted final population with more promi-
nent B-type features and corresponding fitness values.

To be specific, we run experiments in constant worlds (A
and B) and dynamically changing worlds (two systems that
both gradually transform from A to B, but do this at a dif-
ferent pace) and investigate three questions regarding such a
transformation from A to B:

• How does this affect the evolved morphologies?

• How does this affect the evolved behaviors?

• How does this affect the robustness of the evolved robots?

Related Work
Existing work related to morphological evolution of virtual
creatures has been addressed in (Sims, 1994), put on a more
solid footing later on (Pfeifer and Iida, 2005). The effects of
different developmental mechanisms were studied in (Krieg-
man et al., 2018b), while a method for phenotypic plastic-
ity of morphology and controller was proposed in (Krieg-
man et al., 2018a). Nevertheless, they did not experiment
with different environmental conditions. In (Daudelin et al.,
2018) reconfigurable robots were evolved to cope with ac-
tual changes in the environmental conditions as they moved
about, but no quantification of this effect on the morpholog-
ical level was provided. In (Auerbach and Bongard, 2014)
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it has been demonstrated that increasing the complexity of
the environmental conditions results in an increase in the
morphological complexity of the creatures. Nevertheless,
measuring complexity does not provide clear insights con-
cerning intelligible morphological traits, as for instance the
limbs of a robot. Moreover, in (Bongard, 2011a) it has been
demonstrated that phylogenetic and ontogenetic morpholog-
ical (and neurological) changes can not only accelerate the
discovery of successful behavior but produce robots more
robust to variations in environmental conditions. Finally,
in (Bongard, 2011b) it was found that if environmental scaf-
folding is proceeded by morphological scaffolding, signifi-
cant performance improvement can be achieved.

Robot Framework
Morphology
We are using simulated robots based on RoboGen (Auerbach
et al., 2014) whose morphologies (“bodies”) are composed
of modules shown in Fig. 1. Any module can be attached
to any other module through its attachable slots, except for
the sensors, which can not be attached to joints. Our mor-
phologies (Fig. 2) consist of a single layer, i.e., the modules
do not allow attachment on the top or bottom slots, only on
the lateral ones, but the joints can bend, so the robots can
‘stand’ in a 3D-shape. Each module type is represented by a
distinct symbol in the genotype.

Figure 1: Robot modules: Core-component with controller
board (C); Structural brick (B); Active hinges with servo
motor joints in the vertical (A1) and horizontal (A2) axes;
Touch sensor (T). C and B have attachment slots on their
four lateral faces, and A1 and A2 have slots on their two op-
posite lateral faces; T has a single slot which can be attached
to any slot of C or B. The sequence of letters (T or n) in C
and B indicate if there is a sensor on the laterals left, front,
right and back (for C only), in this order.

Figure 2: Example of robot in simulation.

Controller
The controller (“brain”) is a hybrid artificial neural network,
which we call Recurrent CPG Perceptron (Fig. 3, right). For
every joint in the morphology, there exists a corresponding
oscillator neuron in the network, whose activation function
is calculated through a Sine wave with three parameters:
Phase offset, Amplitude, and Period. The oscillators are not
interconnected, and every oscillator may or may not possess
a direct recurrent connection. Additionally, every sensor is
reflected as an input for the network, which might connect
to one or more oscillators, having the weights of its con-
nections ranging from −1 to 1. The CPG (Ijspeert, 2008)
generates a constant pattern of movement, even if the robot
is not sensing anything, so that the sensors are used either to
suppress or to reinforce movements.

Representation and operators
We use an evo-devo style generative encoding to represent
the robots. Specifically, our genomes –that encode both
morphology and controller– are based on a Lindenmayer-
System (L-system) inspired by (Hornby and Pollack, 2001).
The grammar of an L-System is defined as a tuple G =
(V,w, P ), where

• V , the alphabet, is a set of symbols containing replaceable
and non-replaceable symbols.

• w, the axiom, is a symbol from which the system starts.

• P is a set of production-rules for the replaceable symbols.

The following didactic example illustrates the process of
iterative-rewriting of an L-System. For a given number of
iterations, each replaceable symbol is simultaneously re-
placed by the symbols of its production-rule. Given w = X ,
V = {X,Y, Z} and P = {X : {X,Y }, Y : {Z}, Z :
{X,Z}}, the rewriting goes as follows.

Iteration 0: X
Iteration 1: XY

Iteration 2: XY Z
Iteration 3: XY ZXZ

In our system each genotype is a distinct grammar in the
syntax specified by the types of modules we have. The al-
phabet is formed by symbols denoting the morphological
modules and commands to attach them together, as well as
commands for defining the structure of the controller. The
construction of a phenotype (robot) from a genotype (gram-
mar) is done in two stages. In the first stage (early de-
velopment), the axiom of the grammar is rewritten into a
more complex string of symbols (intermediate phenotype),
according to the production-rules of the grammar. (Here
we set the number of iterations to 3). In the second stage
(late development), this string is decoded into a phenotype.
The second stage of this process is illustrated in Figure 3.
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The first stage was omitted because it is somewhat exten-
sive, but it follows work flow shown in the example above.
During the second stage of constructing a phenotype two
positional references are always maintained in it, one for the
morphology (pointing to the current module) and one for the
controller (pointing to the current sensor and the current os-
cillator). The application of the commands happens in the
current module in the case of the morphology, while for the
controller it happens in (or between) the current sensor and
the current oscillator. More details about the representation
can be found in (Miras et al., 2018c,b).

Figure 3: Process of late development: decoding an interme-
diate phenotype into a (final) phenotype with morphology
and controller.

The initialization of a genotype adds, to each produc-
tion rule, one random (uniformly) symbol of each the fol-
lowing categories, in this order: Controller-moving com-
mands, and Controller-Changing commands, Morphology-
mounting commands, Modules, Morphology-moving com-
mands. This can be repeated for r times, being r sampled
from a uniform random distribution ranging from 1 to e.
This means that each rule can end up with 1 or maximally
e sequential groups of five symbols (here e is set to 3). The
symbol C is reserved to be used exclusively at the beginning
of the production rule C.

The crossovers are performed by taking com-
plete production-rules randomly (uniform) from the
parents. Finally, individuals undergo mutation by
adding/deleting/swapping one random (uniform) sym-
bol from a random production-rule/position. All symbols
have the same chance of being removed or swapped. As for
the addition of symbols, all categories have equal chance
of being chosen to provide a symbol, and every symbol of
the category also has equal chance of being chosen. An
exception is always made to C to ensure that a robot has one
and only one core-component. This way, the symbol C is
added as the first symbol of the C production rule, and can
not be added to any other production rules, neither removed
or moved from the production rule of C.

Once it is possible that only the rules of one single parent
end up being expressed in the final phenotype, and also as
it is not rare that one mutation happens for non-expressed
genes, both crossover and mutation probabilities were set
high, to 80%, aiming to minimize this effect. 2

For practical reasons (simulator speed and physical con-
structability) we limit the the number of modules allowed in
a robot to a maximum of 15.

Morphological Descriptors
For quantitatively assessing morphological properties of the
robots, we utilized the following set of descriptors:

1. Size: Total number of modules in the body.

2. Number of Joints: Total number of active joints (motors)
in the body.

3. Number of Limbs: The number of extremities of a body.

4. Length of Limbs: The number of modules with exactly
two attachments.

5. Relative Number of Joints: The number of active joints
relative to a practical limit 3.

6. Relative Number of Limbs: The number of extremities
of a body relative to a practical limit.

7. Relative Length of Limbs: The length of limbs relative
to a practical limit.

8. Proportion: The length-width ratio of the rectangular en-
velope around the body.

The exact formulas for descriptors 5 to 8 can be found
in (Miras et al., 2018c,b). Additionally, a complete search
space analysis of the utilized robot framework and its de-
scriptors is available in (Miras et al., 2018c,b,a), demon-
strating the capacity of these descriptors to capture relevant
robot properties, and proving that this search space allows
high levels of diversity.

Behavioral Descriptors
Speed Describes the speed (cm/s) of the robot along the x
axis as defined by Eq. 1.

sx =
ex − bx

t
(1)

where bx is x coordinate of the robot’s head in the beginning
of the simulation, ex is x coordinate of the robot’s head at the
end of the simulation, and t is the duration of the simulation.

2This means that around 80% of the offspring will be result of
crossovers, and also that around 80% of the offspring will suffer
the above explained mutation.

3The practical limits definitions can be found in (Miras et al.,
2018c,b).
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Balance We use the rotation of the head in the x–y plane
to define the balance of the robot. In general, the rotation of
an object can be described in the dimensions roll, pitch, and
yaw. Thus, we consider the pitch and roll of the robot head,
expressed in degrees between 0 and 180 (because we do not
care if the rotation is clockwise or anti-clockwise). Perfect
Balance belongs to p = r = 0, so that the higher the Balance,
the less rotated the head is. Formally, Balance is defined by
Eq. 2.

b = 1− r + p

t ∗ 180 ∗ 2
(2)

where r =
∑t

i=1 | ri |, representing the roll rotation accu-
mulated over time, p =

∑t
i=1 | pi |, representing the pitch

rotation accumulated over time, and t is the duration of the
simulation.

Experimental Setup
Environments
All environments we use are based on a flat terrain, distin-
guished by the angle of inclination α running from 0 to 15
with increments of 5 degrees. Thus we have four environ-
ments: Plain (α = 0), Tilted 5 (α = 5), Tilted 10 (α = 10),
and Tilted 15 (α = 15). The tilted environments are more
difficult than Plain because the robots must tackle gravity
and we use a fitness function based on uphill locomotion.
These choices are based on foregoing work that showed that
Plain and Tilted 15 are really different in the sense that the
robot populations evolved in them exhibit clear differences.
Tilted 5 and Tilted 10 are introduced here as intermediary
environments to allow a gradual transition between the two
extremes, Plain and Tilted 15. Therefore, in the sequel we
refer to Tilted 15 simply as Tilted. The environments are
shown in Figure 4.

Figure 4: The Plain and Tilted 15 environments.

Environmental scenarios
We carried out four experiments using the same experimen-
tal setup, except for the environments in which the robots
were evolved.4 The four environmental scenarios are de-
picted in Figure 5 and explained below.

4The datasets generated and analyzed in this study are stored at
ssh.data.vu.nl, in the karinemiras-alife2019 directory, available on
request. The code can be found at http://tinyurl.com/yxry52ge

Figure 5: Environmental scenarios.

• Plain: robots evolve in the Plain environment.

• Tilted: robots evolve in the Tilted 15 environment.

• Equal Scaffolding: robots evolve for an equal number
of generations (25) in a sequence of environments Plain,
Tilted 5, Tilted 10, and Tilted 15.

• Incremental Scaffolding: robots evolve for increasing
numbers of generations in a sequence of environments
Plain, Tilted 5, Tilted 10, and Tilted 15. The numbers
are 10, 20, 30, and 40 respectively. The rationale behind
this scenario is giving more time to the more difficult en-
vironments.

Evolution
We are using overlapping generations with population size
µ = 100. In each generation λ = 50 offspring are pro-
duced by selecting 50 pairs of parents through binary tour-
naments (with replacement) and creating one child per pair
by crossover and mutation. From the resulting set of µ par-
ents plus λ offspring, 100 individuals are selected for the
next generation, also using binary tournaments. The evo-
lutionary process is stopped after 100 generations, thus all
together we perform 5050 fitness evaluations per run. For
each environmental scenario the experiment was repeated 10
times independently.

Fitness function
In all environments the same fitness was utilized. It only
concerns the speed of the robots along the x axis to push
for uphill movement in the tilted environments. Locomotion
along the y axis is ignored and not moving at all is penalized.
The fitness function is defined by the following equation

fx =





sx if sx > 0
sx
10 if sx < 0
−0.1 if sx = 0

where sx is the speed of the robot as defined by Eq. 1. The
duration t of the evaluation periods was set to 50 seconds in
all environments.

Results
Behavior
In this section we review the evolved behaviors by consider-
ing speed, balance, and the actual gaits the robots exhibited.
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Since fast uphill movement is our targeted quality, we start
by analyzing the development of speed sx across the gen-
erations for each environmental scenario (Fig. 6, left). The
robots achieved a much higher speed in the Plain scenario
than in Tilted, confirming the intuition that the Tilted envi-
ronment constitutes a greater challenge to the robots than
the Plain environment. The results for Equal Scaffolding are
not significantly different from Tilted, having a lot of vari-
ance among the runs. (See Table 2 for the exact p-values.)
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Figure 6: Progression of the mean of the population aver-
aged (mean) over all runs for the behavioral descriptors.

Interestingly, Incremental Scaffolding achieved signifi-
cantly higher speed than Tilted, proving helpful to succeed
in the task, in accordance with our initial hypothesis. Let
us note that four of the ten runs of Tilted stagnated in a lo-
cal optimum, where the robots are small and hardly move.
This seems like an avoiding strategy, that prefers reducing
movement to risking a fall during the climbing attempt. 5

Since this never occurred in a scaffolding scenario, we can
observe that they help avoid such suboptimal strategies dur-
ing the search.

Aiming to assess the emergent behavior beyond what is
reflected in the fitness function, we measured the balance of
the robots. Figure 6 (right) shows that while robots in the
Tilted scenario converge to a high balance, in the two scaf-
folding scenarios they converge to a low balance, which is
the same behavior emergent in the Plain scenario. The statis-
tical tests in Figure 6 are shown in Table 2 confirm that these
effects are significant. Thus, we found that in both scaffold-
ing scenarios the robots evolved behavior that is similar to
what is achieved in Plain and different from that in Tilted.
This is in contrast with our initial hypothesis outlined in the
Introduction.

As for the evolved gaits of the robots we could distin-
guish three prominent strategies, rolling, rowing, and stand-
ing still. Rolling is characterized by rotating over the roll
or pitch dimension with the whole extension of the body.
Rowing is characterized by simultaneously boosting with

5All runs of Tilted reached this local optimum; six passed it
successfully and four got stuck there.

one or more parts of the body, keeping the head somewhat
balanced. Standing still refers to robots that almost did not
move. 6 Table 1 shows the counts (out of the 10 indepen-
dent runs) for each of these gaits in each of the four environ-
mental scenarios. The distribution of these counts shows the
same effect as the balance values: most runs of the scaffold-
ing scenarios converged to the predominant gait for Plain
(rolling), while all the Tilted runs that avoided the stand still
strategy converged to another gait (rowing).

Scenario/Gait Rolling Rowing Still
Plain 9 1 0
Tilted 0 6 4

Equal Scaffolding 7 3 0
Incremental Scaffolding 8 2 0

Table 1: Number of runs in which different gaits emerged
within each environmental scenario.

Morphology
The morphological properties of the robots also present the
same effect as observed for behaviors. Figure 7 contains the
progression of the morphological descriptors for all the en-
vironmental scenarios. 7 The scenario Tilted presents signif-
icant difference for several morphological descriptors when
compared to all other scenarios. On the other hand, Plain,
Equal Scaffolding , and Incremental Scaffolding present (al-
most) no cases of difference among themselves. These dif-
ferences, i.e., induced properties on the evolved robots, be-
tween Tilted and Plain are evidence of the effects of the en-
vironmental conditions. In the case of Tilted, the selection
pressure favored robots that are smaller, more proportional,
less actuated and with more and shorter limbs in compari-
son with Plain. However, when introducing the context of a
gradual change this pressure disappeared. What we see in-
stead, is the gradualness of the changes causing the predomi-
nant robot traits of Plain to also emerge when scaffolding for
Tilted. This phenomenon could perhaps be due to the scaf-
folding scenarios, once starting the evolution in the Plain en-
vironment, being driving the search to distinct areas which
would be immediately favored when starting evolution di-
rectly in the Tilted environment. Statistical tests comparing
the curves in Figure 7 are shown in Table 2.

To better illustrate the morphological differences and sim-
ilarities in the last 10 generations we plotted the density
maps for certain pairs of descriptors in Figure 8. These maps
provide additional confirmation of the fact that the scaffold-
ing scenarios end up with rather Plain-type populations. In

6A video showing some of the emergent robots in each environ-
ment can be found in http://tinyurl.com/y5tdeuh5

7We additionally analyzed other morphological descriptors, but
as they presented no significant differences, we did not include
them in this paper.
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Figure 7: Progression of the mean of the population averaged (mean) over all runs for morphological descriptors.

P vs T P vs ES P vs IS T vs ES T vs IS ES vs IS
p < p < p < p < p < p <

Speed 0 1e-04 0 0.247 0.007 0.63
Balance 0.002 0.25 0.58 5e-04 0 0.32
Number of Joints 2e-04 0.171 0.6 0.001 4e-04 0.15
Rel. Number of Joints 2e-04 0.231 0.903 0.008 0.002 0.405
Number of Limbs 0.73 0.96 0.803 0.654 0.962 0.803
Rel. Number of Limbs 0.002 1 0.16 0.002 4e-04 0.182
Length of Limbs 2e-04 0.91 0.052 8e-04 2e-04 0.06
Rel. Length of Limbs 0.022 0.96 0.803 0.02 0.03 0.803
Proportion 3e-04 0.384 0.382 0.001 0.003 0.161
Size 4e-04 0.97 0.035 0.002 2e-04 0.056

Table 2: Wilcoxon tests (p-values) for differences in the means (averaged over all runs) in the final populations. Significant
differences (p < 0.05) are highlighted. P = Plain, T = Tilted, ES = Equal Scaffolding ; IS = Incremental Scaffolding.

the meanwhile, the last generations in the Tilted environ-
ment are clustered in more distant areas.

Finally, we display the morphologies of the five best indi-
viduals of each run of each scenario for visual inspection in
Figure 9. Looking at these forms, we can see that “snakes”
are the winning morphologies in Plain and they are also very
prominent in the scaffolding scenarios. The Tilted world is
again the outlier, where only one run ends up with “snakes”,
five runs lead to more complex shapes and four with small
robots (that do not move).

Robustness
We performed a set of tests to check the robustness of the
robots, i.e., their capacity to perform well in different en-
vironments. To this end, we looked at the speed of the fi-
nal populations of each environmental scenario in both the
Plain and in the Tilted environment. Figure 10 shows the

box-plots summarizing these results.
As expected, robots evolved in the Plain scenario were

much slower when tested in the Tilted environment. Never-
theless, when the robots evolved in the Tilted scenario were
tested in the Plain environment, their speed was not differ-
ent. Additionally, for both scaffolding scenarios, the fitness
of the evolved robots tested in the Plain environment was
better than or equal to the fitness in the Tilted environment.
In summary, for all scenarios robots tested in the Plain en-
vironment always achieved higher or at least no different
speed from the ones tested in the Tilted environment. This
is curious because although the Tilted environment proved
more difficult for the robots than the Plain environment, it
could be the case that the properties of one difficult environ-
ment might not be “compatible” with the properties of an
easy one.

As for the comparisons for the scaffolding scenarios we
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Figure 8: Density maps for pairs of morphological descriptors in the last 10 populations (all runs).

Figure 9: Best robots of the runs evolved in different environmental scenarios. Each sub-frame contains the 5 fastest robots of
a run; 10 runs/sub-frames per scenario. Images of big robots were reduced to fit the sub-frames.

can observe the following. For Incremental Scaffolding the
differences in speed are not significant between the Plain
and the Tilted environments. However, for Equal Scaffold-
ing the evolved robots are significantly slower in Tilted, even
though only the first 25 generations have been evolved in the
Plain environment and 75 generations were exposed to tilted
floors with different angles of inclination. This could be re-
lated to the fact that Equal Scaffolding , differently from In-
cremental Scaffolding, allows robots to evolve for the same
amount of generations in all stages, regardless of their diffi-
culty. Thus, once the Tilted environment is more challeng-
ing, there is not time enough for the robots to adapt to it as
well as to the Plain environment. Finally, for robots tested
in the Tilted environment, there was no difference between

having been evolved with Incremental Scaffolding or Equal
Scaffolding , and the same can be said about robots tested in
the Plain environment.

Conclusions and Future work
We studied the effects of environmental histories by evolv-
ing modular robots using different environmental scenarios,
a) flat terrain; b) inclined terrain; c) environmental scaffold-
ing from flat to inclined, using an equal number of gener-
ations per stage; d) environmental scaffolding from flat to
inclined, using increasing numbers of generations per stage.
To assess the effects of these scenarios, we utilized a set
of morphological and behavioral descriptors. Our results
showed that 1) Both scaffolding scenarios helped in the dis-
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Figure 10: Final evolved populations of each environmental
scenario tested in constant Plain and Tilted environments.

covery of better (faster) robots; 2) While the Tilted scenario
induced morphological and behavioral properties different
from the ones induced by the Plain scenario, both scaffold-
ing scenarios induced the same properties as Plain. 3) From
the perspective of robustness, the advantage of using Incre-
mental Scaffolding instead of Equal Scaffolding concerns
obtaining a population of robots that performs the task with
equivalent quality in both the involved environments. In
summary, we can draw two main lessons from this study.
First, we observe that populations have a “genetic memory”
of properties evolved in environmental conditions from early
stages. Second, we note that to evolve robots for difficult
conditions it is beneficial to gradually increasing the diffi-
culty.

For future work we propose to verify the effects of in-
verting the scaffolding to scenarios, starting with the most
challenging environment, and ending with the easiest one.
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Abstract

The social brain hypothesis posits that the evolution of big
brains (neural complexity) in groups of social organisms
is the evolutionary result of cognitive challenges associated
with various complex interactions and the need to process and
solve complex social tasks. This study aims to investigate
the environmental and evolutionary conditions under which
neural complexity evolves without sacrificing collective be-
havioral efficacy. Using an evolutionary collective robotics
system this research evaluates the impact of imposing a fit-
ness cost on evolving increased neural complexity in robot
groups that must operate (accomplish cooperative tasks) in
environments of varying complexity. Results indicate that for
all environments tested, imposing a cost on neural complex-
ity induces the evolution of smaller neural controllers that are
comparably effective to more complex controllers.

Introduction
The fitness costs of evolving neural complexity (neural
tissue) needed for socially adaptive behaviour are critically
important to brain evolution (Azevedoand and Houzel,
2012). Various neuroscience studies have demonstrated
that increased neural complexity is metabolically expen-
sive (Laughlin et al., 1998), though there are conflicting
hypotheses about how the increased fitness costs of larger
brain sizes (increased neural complexity) is compensated
for in evolution (Armstrong, 1983), (Isler and van Schaik,
2009). Also, the environmental and evolutionary conditions
driving the evolution of such complexity in the first place
remains an open question (Fisher, 1930).

In some species of organisms it is hypothesized that
evolved brain size (neural complexity) is correlated to the
size, structure and complexity of social groups formed
by such species (Dunbar and Shultz, 2007). The social
brain hypothesis posits that the evolution of such neural
complexity is a result of the cognitive challenges associated
with varied and complex interactions and the need to
process complex social information (Dunbar, 2009).

Studies of various social organisms including ant colonies
(Kamhi et al., 2016), have supported the social brain hy-

pothesis via demonstrating that socially complex behavior
such as division of labor and cooperation (collective
intelligence) are likely driving forces of brain complexity
evolution. However, there is also contradictory evidence in
such studies as related work on other ant species (Feinerman
and Traniello, 2016) elucidated the evolution of smaller
brains (lower neural complexity) in groups of workers that
were still able to collectively perform complex collective
behaviors that supported and benefited the colony. In both
cases, the exact impact of the environment and complexity
of cooperative tasks (supporting group survival), on the
evolution individual neural complexity and thus the group’s
social complexity, remains little investigated and unclear in
the context of natural and artificial life (Yaeger, 2009).

This research takes inspiration from such evolutionary
biology studies, and uses collective evolutionary robotics
(Doncieux et al., 2015) as an experimental platform to test
the impact of varying environment complexity (collective
behavior task difficulty) on the evolution of neural com-
plexity. This study tests the social brain hypothesis using
robot groups, where behaviors are specified by evolved
neural controllers and robots interact to cooperatively solve
collective gathering tasks. Thus, we evaluate the impact
of imposing fitness costs on evolving neural complexity in
robot groups that must solve increasingly difficult collective
gathering tasks, where task difficulty is the degree of
cooperation needed for task accomplishment.

In this study, the cost of evolving increased robot neural
controller complexity is tantamount to metabolic energy
costs associated with increased brain sizes in nature (Arm-
strong, 1983; Laughlin et al., 1998; Isler and van Schaik,
2009). This study’s core motivation is the general lack of
understanding (across various fields including evolutionary
biology and robotics) of how environment driven necessity
for social complexity (for example, emergent collective
behaviors and social structure in groups) impacts brain size
and structure (Farris, 2016).
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Various approaches for evolving neural complexity have
been studied in related research topics such as computa-
tional ecologies, where for example, Williams and Yaeger
(2017) demonstrated complexity evolution without explicit
fitness costs. Fitness cost impact on complexity evolution
has also been demonstrated in simulated sensor systems
(Seth and Edelman, 2004), and with neural modularity
(Clune et al., 2013; Lowell and Pollack, 2014). However,
there are few evolutionary collective robotics studies that
investigate the impact of environment complexity on evolv-
ing controllers given a complexity cost (Doncieux et al.,
2015). This is significant as evolutionary collective robotics
(Bredeche et al., 2018) allow experimenters to investigate
competing hypotheses pertinent to, but not readily testable
in natural social systems. That is, the social brain hypothesis
is more suitably evaluated in embodied cognition systems
such as evolutionary robotics given that such systems can
readily implement controlled and testable distributed and
embodied theories of cognition (Barrett et al., 2007).

This study thus aims to elucidate the advantages and
disadvantages of imposing a fitness cost on evolving con-
troller complexity (neural connectivity) in an evolutionary
collective robotics system (Doncieux et al., 2015). Neural
complexity is defined by evolved controller topology (con-
nectivity between sensory, hidden and output nodes) and
evaluation was evolved collective gathering behavior task
performance. Given this and the social brain hypothesis, we
formulated the following research objective.

To evaluate the impact of fitness costs on evolving neural
controller complexity given increasing collective behavior
task difficulty in collective robotics. We thus aim to ascer-
tain if the social brain hypothesis holds for an evolutionary
collective robotics system that must operate and accomplish
cooperative tasks in environments of varying complexity.

Methods
This study evaluated NEAT-M (Hewland and Nitschke,
2015) controller-morphology neuro-evolution versus the
NEAT-M-MODS multi-objective extension. Both methods
co-adapted robot Artificial Neural Network (ANN) con-
trollers and sensory-morphologies for given tasks. Groups
were homogenous as the same behavior-morphology adap-
tations were applied to all robots in a group. Behavior-
morphology evolution with NEAT-M-MODS included a
neural complexity cost (section: Neural Complexity), im-
posed during neuro-evolution. This was represented as the
minimization of neural complexity, in company with the
maximization of collective gathering task performance, as
part of multi-objective optimization. These objectives thus
encouraged the evolution of minimally complex and behav-
iorally effective neural controllers. NEAT-M was compara-
tively evaluated, where it only maximized collective gather-

ing task performance, in order to ascertain the impact of a
neural complexity cost during evolution.

NEAT-M-MODS: Overview
Neuro-Evolution for Augmenting Topologies (NEAT)-M-
MODS is a multi-objective extension of NEAT-M (Hewland
and Nitschke, 2015) and NEAT-MODS (Abramovich and
Moshaiov, 2016). NEAT-M evolves a direct encodings
of both robot ANN controllers and morphologies (ANN
connections to sensory input nodes constituting a robot’s
sensory configuration). NEAT-M-MODS supersedes the
core functionality of NEAT-M (Hewland and Nitschke,
2015) via including an NSGA-II based Multi-Objective
Evolutionary Algorithm (Abramovich and Moshaiov, 2016),
that uses multiple objectives to direct the evolutionary pro-
cess of NEAT (Stanley and Miikkulainen, 2002).

NEAT-M-MODS initializes a genotype (controller-
sensor) population, computes each genotype’s score vector
(multi-objective fitness), speciates the population and com-
putes a rank for each genotype based on non-dominated
sorting and crowding distance comparisons (Doncieux and
Mouret, 2014). This process, evolutionary operators and
parameters are detailed in Furman et al. (2019) and NEAT-
MODS is described in Abramovich and Moshaiov (2016).

Neural Controller-Sensor Evolution
For both neuro-evolution methods (NEAT-M, NEAT-M-
MODS), robots began with a minimal sensory configuration
of five sensors (one of each type), each sensor corre-
sponding to a controller input node. Input nodes were
fully connected to two motor output nodes (figure 1, left).
Connections were randomly initialized and without any
hidden layers and controllers subject to complexification
during neuro-evolution. Controllers used sigmoidal (Hertz
et al., 1991) hidden and output nodes and all sensory inputs
were normalized to the range: [0.0, 1.0].

Figure 1 (center-left) presents the initial robot controller-
sensory configuration used as an evolutionary starting
point for both NEAT-M and NEAT-M-MODS. This initial
controller-sensor configuration (motor outputs were fixed
during evolution) was selected so as robots performed some
useful behaviors at the start of the evolutionary process.
The possible sensor types were: (1) Ultrasonic, (2) Infrared
Proximity, (3) Color, (4) Low Resolution Camera, and (5)
Gathering Zone Detector (table 1). These sensors were
selected as they are typically available for the Khepera III
mobile robot (Lambercy and Tharin, 2013). Parameters
for all sensor types were perturbable by mutation operators
that add and remove sensors (of a given type), as well as
modify, add and remove ANN connection weight values,
add and remove weight connections to sensors, and change
sensor positions and orientations (on the robot’s periphery).
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Table 1: Experiment and Simulation Parameters

Block size
Small 0.01 x 0.01
Medium 0.015 x 0.015
Large 0.02 x 0.02

Sensor types : Range / FOV

Ultrasonic (0.0, 1.0] / (0.0, π)
Infrared Proximity (0.0, 0.4] / (π/6, 5π/6)
Color (0.0, 0.4] / (π/6, 5π/6)
Low Res Camera (0.0, 0.8] / (π/9, 8π/9)
Gathering Zone Detection Bottom facing

Sensor bearing range [−π, π] Radians
Sensor orientation range [−π/2, π/2] Radians
Robot lifetime (Time-steps per simulation task trial) 10000
Robot group size 20
Robot size (Diameter) / Gripping distance / Speed (per time step) 0.004 / 0.002 / 0.013
Initial robot / block positions Random (Outside gathering zone)
Environment width x height / Gathering zone size 1.0 x 1.0 / 0.5 x 0.2
Minimum / Maximum number of sensors 1 / 10

Task environments (Blocks: small, medium, large)
Simple 10, 5, 0
Medium 5, 5, 5
Difficult 0, 5, 10

Cooperation needed for block pushing
Small 1 Robot
Medium 2 Robots
Large 3 Robots

Figure 1: Left: Initial robot controller connecting 5 sensors to 2 actuators. Center-Left: Robots were initialized with one ultrasonic, infrared
proximity, color, gathering zone detector (bottom proximity) sensor and one low-resolution camera. Wheel motors were fixed throughout
controller evolution. Center-Right: Example robot with one sensor. Position determines sensor location on the robot’s chassis with respect to
the robot’s heading. Orientation is then sensor direction with respect to this position. By default, a robot’s heading is forward facing (parallel
to its wheels). Right: Environment with 20 robots and distributed blocks. The gathering zone containing gathered blocks (blue squares) is
highlighted at the bottom. Sensory parameters (type, position, orientation, field of view and range) are highlighted as shaded semi-circles.

Mutation operators are presented in Furman et al. (2019).
The parameter-set for each sensory input node is: Sensor
Type, Field of View (FOV), Range, Position, and Orienta-
tion. Figure 1 (center), presents an example robot with one
sensor and an illustration of sensor parameters.

Neuro-evolution was driven by genetic, that is, crossover
and mutation operators. These operators adapted ANN
connection weights and added or removed hidden or input
nodes. This adapted the number of sensors or otherwise per-
turbed sensor parameters. At each generation (of NEAT-M
and NEAT-M-MODS), either crossover or mutation oper-
ators were applied with a given degree of probability. The
crossover and mutation operators are described in previous
work (Hewland and Nitschke, 2015; Furman et al., 2019).
If a new sensor was added (add sensor operator) it was
placed at a given minimum position distance between two
randomly selected sensors already on the robot’s chassis.
If there was only one sensor currently on the robot’s body
the new sensor was placed randomly to the left or right of
this one sensor. The same procedure was followed for the

remove sensor operator, where at least one sensor had to be
positioned on a robot’s chassis.

Two wheel motors controlled a robot’s heading at con-
stant speed. Movement was calculated in terms of real val-
ued vectors (dx and dy). Wheel motors (figure 1, center-
left, center-right) were explicitly activated by the ANN and
a robot’s heading was determined by normalizing and scal-
ing output values by the maximum movement distance for
one simulation time-step (Hewland and Nitschke, 2015).

Neural Complexity Definition
Neural complexity1 is defined as the number of connections
n (n ∈ [0, 120]) in an evolved neural controller (at gen-
eration g) and thus includes all connection weights link-
ing sensory input nodes to hidden and output nodes. This
neural complexity definition was adapted from related work
(Nitschke and Didi, 2017) and selected for its simplicity
and accounting of sensory (morphology) complexity with

1Neural simplicity is synonymous in this article’s discussion.
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respect to the neural controller. Thus, the more complex a
robot’s sensory morphology, the higher its controller’s neu-
ral complexity will be. That is, this definition assumes sen-
sory input nodes are connected to hidden or output nodes.

Collective Gathering Task
Collective gathering requires robots to locate distributed
resources (blocks) in a bounded environment and trans-
port them, via cooperative pushing, to a gathering zone
(Nitschke et al., 2012). This task was selected given that
relatively sophisticated collective behaviors (enabled by
suitably complex controller-morphology couplings of inter-
acting individuals) are required to solve such cooperative
tasks (Nitschke, 2005). Also, collective gathering is an
established collective evolutionary robotics benchmark task
and is thus a suitable experimental platform for evaluating
neural controller evolution (Doncieux et al., 2015).

Cooperation was defined as the number of robots required
to push given block types and task difficulty was a func-
tion of the number of blocks, block types and cooperation
needed. Block types were small, medium, or large, to be
pushed by at least one, two and three robots, respectively
(table 1). Task difficulty was calibrated via initializing en-
vironments (simple, medium, difficult) with varying combi-
nations of block types (table 1). For example, the simple en-
vironment contains 10 small and 5 medium sized blocks, so
robots could work concurrently with minimal cooperation to
move all blocks into the gathering zone. Collective gather-
ing task performance was the total number of blocks pushed
into the gathering zone during the robots’ lifetime (table 1).

Experiments
Experiments measured the impact of a neural complexity
(fitness) cost versus no such complexity cost imposed during
controller-sensor (morphology) evolution in robot groups
tasked with solving collective gathering tasks of increasing
difficulty. NEAT-M-MODS used multi-objective controller
evolution (task performance maximization and complexity
minimization), and NEAT-M used single objective (task
performance) optimization. The experimental platform
was a collective robotics simulator (Hewland and Nitschke,
2015) implementing the collective gathering task (figure
1, right). Robots emulated the Khepera III (Lambercy
and Tharin, 2013), with co-adapting controllers and sensor
configurations2. Experiments ran simulations of 20 robots
in bounded two dimensional continuous environments with
distributions of small, medium, and large blocks (table 1).

Blocks were randomly distributed throughout an en-
vironment, excluding the gathering zone. Block type

2Simulator & NEAT-M & NEAT-M-MODS source-code is on-
line: https://github.com/costcomplex/anonymous

distributions given in table 1 correspond to increasing en-
vironment complexity (simple, medium, difficult) designed
to test the impact of environment complexity on con-
troller evolution with and without a neural complexity cost.
Robots were initially randomly placed in the gathering zone.

To test this study’s research objective we designed two
experiment sets. Experiment set 1 evaluated the impact of
a neural complexity cost on controller evolution via evalu-
ating NEAT-M-MODS evolved groups in all environments
(table 1). Comparatively, experiment set 2 evaluated con-
troller evolution without a neural complexity cost. That is,
NEAT-M evolved groups were evaluated in the same envi-
ronments. Only homogenous teams were tested, meaning
that at each NEAT-M and NEAT-M-MODS generation, se-
lected controller-sensor adaptations were copied 20 times
(representing group sizes of 20 robots).

Fitness Function
In experiment set 1, task performance was maximized
and neural complexity minimized. This second objective
encouraged lower neural complexity, thereby imposing a
fitness cost on controller complexity. In experiment set 2,
only task performance was maximized. Task performance
was the average value of blocks pushed into the gathering
zone over five robot lifetimes comprising each generation.

We defined vc as total value of resources (blocks) in the
gathering zone, vt as total value of all resources in the envi-
ronment, se as the number of simulation time-steps in the
robots’ lifetime and st as number of trial evaluations per
genotype (controller-sensor configuration). As such, task
performance T was maximised using equation 1:

T = 100× vc
vt

+ 20× (1.0− se
st

) (1)

In equation 1, 100 was the maximum number of blocks
that could be gathered during an experiment run, and 20 was
an experimentally determined weighting (boosting fitness
for efficient individual and cooperative gatherers).

Each experiment applied NEAT-M or NEAT-M-MODS to
evolve collective gathering behavior for 200 generations. A
generation comprised five robot lifetimes, where each life-
time was 10000 simulation iterations. Each lifetime was a
simulated collective gathering task scenario that tested dif-
ferent robot starting positions, orientations, and block loca-
tions in either a simple, medium or difficult environment (ta-
ble 1). Average collective gathering task performance was
calculated at each run’s end and averaged over 20 runs. All
simulation and neuro-evolution parameters (table 1) were
experimentally determined, where those not reported here
used the same settings as in previous work (Hewland and
Nitschke, 2015; Abramovich and Moshaiov, 2016).
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Figure 2: Left: Average maximum neural simplicity for Single Objective (SO): NEAT-M, Multi Objective (MO): NEAT-M-MODS (knee-
points) for simple, medium and difficult environments, respectively. Neural simplicity ∼ 1.0 indicates low evolved neural complexity. Right:
Average maximum task performance of SO: NEAT-M versus MO: NEAT-M-MODS evolved groups.

Figure 3: Left: Average Multi-Objective (MO: NEAT-M-MODS) Pareto front and Single Objective (SO: NEAT-M) scores. SO points are
maximum task performance and corresponding neural simplicity scores. MO points are the 3 best knee-points. Averages were computed over
all runs. Right: Progression of average neural simplicity for MO and SO over neuro-evolution.

Results & Discussion
Experiments evaluated the impact of a fitness cost on neural
complexity versus no cost during neural network controller
evolution in robot groups. Evolved robots were evaluated in
terms of collective gathering task performance for increas-
ing difficult environments: simple, medium and difficult. To
enable analysis of the neural versus environment complex-
ity trade-off, average neural complexity (and co-adapted
sensory-morphology complexity) of the fittest controllers
evolved in each environment was also computed. Figure 2
presents average neural complexity and task performance
results. Figure 3 presents Pareto-front and evolutionary
progression of neural complexity. Results compare these
metrics for group behavior evolved with (NEAT-M-MODS)
and without (NEAT-M) a neural complexity cost, across
increasingly difficult tasks. Averages were calculated for
each environment and over 20 runs for each method.

Figure 2 (left) presents the average neural complexity3 of

3Note that the term simplicity is used in figure 2 for clarity and
consistency with related work (Auerbach and Bongard, 2014).

the fittest controllers evolved by NEAT-M and NEAT-M-
MODS in each environment. Neural controller evolution in
NEAT-M had a Single Objective (SO) of maximizing task
performance (fitness), whereas, NEAT-M-MODS had the
Multiple Objectives (MO) of maximizing task performance
and minimizing neural complexity. A neural complexity
value of 1.0 indicates the simplest possible controller (one
sensor connected to motor outputs) and 0.0 indicates the
most complex controller (10 sensors connected to 10 hidden
nodes4 and outputs, table 1). Figure 2 (right) presents
average maximum task performance of NEAT-M (SO)
versus NEAT-M-MODS (MO) groups evolved in each
environment. Calculations for the latter used the three
knee-points with the highest-task performance and lowest
neural-simplicity on the Pareto front (figure 3, left).

Figure 3 (left) presents the best three knee-points for
each Pareto front. A knee-point was defined as that yielding
the highest value for both objectives, where such values

4Fixed topology parameter tuning experiments indicated negli-
gible fitness increases in all environments for > 10 hidden nodes.
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were closest to the utopia point for the simplest and most
effective controllers. For comparison, the best SO points
(average maximum task performance and matching neural
complexity) of NEAT-M evolved groups are also presented.
Figure 3 (right) presents the evolutionary progressions of
neural simplicity for NEAT-M-MODS and NEAT-M groups
evolved in each environment. Values close to 1.0 and 0.0
indicate low and high neural complexity, respectively.

Figure 3 (right) illustrates that groups evolved with a neu-
ral complexity cost (NEAT-M-MODS) in all environments
were consistently comparable, in terms of neural simplicity,
throughout neuro-evolution. For clarity, exemplar genera-
tions 125 to 150 in figure 3 (right) are enlarged to highlight
that the medium environment encouraged the evolution of
simpler neural controllers (though this difference was not
statistically significant). Whereas, groups evolved without a
neural complexity cost became increasingly complex over
the course of neuro-evolution, for all environments. This
is supported by statistically significant neural simplicity
differences between groups evolved (in all environments)
with and without neural complexity costs (table 2).

Statistical comparisons used Shapiro-Wilk (to confirm
data normality) and independent two-tailed t-tests (Flannery
et al., 1986) to test for significant differences (p < 0.05) in
average task performance and neural complexity (simplic-
ity). Statistical tests were run between respective results of
NEAT-M and NEAT-M-MODS evolved groups. The latter
used averages calculated from the three best knee-points on
each Pareto front (figure 3, left).

Statistical comparisons (table 2) of average neural sim-
plicity5 indicated that for all environments, groups evolved
with a neural complexity cost comprised significantly
simpler controllers compared to those evolved without a
complexity cost. Thus, neuro-evolution with a complexity
cost given increasing environment complexity consistently
resulted in low selection pressure for complex controller
evolution. Environment complexity (task difficulty) was a
function of the number of blocks and block types, where
some degree of cooperation was needed for optimal gath-
ering in all environments (section: Collective Gathering
Task). Figure 3 (right: evolving average neural simplicity)
and figure 2 (left: average maximum evolved neural
complexity) further support this result, indicating that
neural complexity costs consistently enable the evolution of
significantly simpler controllers (versus evolution with no
complexity cost). This result is also supported by related
work (Lowell and Pollack, 2014) similarly finding that
fitness costs on connection weights in NEAT evolved net-
works produced smaller networks that were just as effective

5Simplicity instead of complexity is used in this discussion.

as the best evolved networks without such a complexity cost.

Also, figures 2 and 3 indicate groups evolved without a
neural complexity cost resulted in higher neural complexity
which in turn enabled higher group task performance
(for all environments). However, these task performance
differences were negligible for the simple environment
(SO: 0.96 versus MO: 0.95 in table 2) and minimal for the
medium (SO: 0.86 versus MO: 0.78 in table 2) and difficult
(SO: 0.61 versus MO: 0.49 in table 2) environments. Thus,
in the medium and difficult environments, there was an
average task performance difference of only 10% between
groups evolved with and without a neural complexity cost.

The complexity-fitness trade-off for these minimal task
performance differences were significantly less complex
neural controllers. Groups evolved with a complexity cost
in the simple, medium and difficult environments, were
27%, 15% and 22% simpler (table 2, right), respectively.
The complexity cost also enabled the evolution of signif-
icantly simpler (independent two-tailed t-test, p < 0.05)
sensor-morphologies coupled with evolved controllers.
Sensor-morphologies of groups evolved with the complex-
ity cost were on average, 32%, 35% and 27% simpler, in the
simple, medium and difficult environments (respectively).
This was compared to the sensory-morphologies of groups
evolved without a complexity cost in the same environments.

Sensor-morphology complexity (simplicity) was a func-
tion of sensors (number and type) and sensor parameters
coupled to evolved neural controllers (Furman et al.,
2019). For consistency, values were calculated according to
sensory-system simplicity, where a value of 1.0 indicated
one sensor with minimal range and Field of View (FOV)
and 0.0 indicated a controller with 10 sensors (maximum
number) of all types with maximal range and FOV (table 1).

Also, observing the best knee-point (figure 3, left) con-
trollers evolved with multi-objective neuro-evolution (in-
corporating the complexity cost), one notes such controllers
had comparable task performances (no statistical difference)
in all environments. Thus, even though having no neural
complexity cost enabled the evolution of increasingly com-
plex neural controllers6 (and coupled sensor-morphologies),
the added neural and sensor-morphology complexity was
largely redundant and unnecessary. This was especially the
case when considering the best knee-point controllers that
evolved to be simple yet effective.

The collective behavior effectiveness of such simple
controllers is further theorized to be a result of the nature
of task (environment) complexity. Consider that optimal

6Controller topologies evolved with and without complexity
costs are online: https://github.com/costofcomplexity/ALIFE2019
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Table 2: Left: Statistical comparisons for task performance (fitness) and neural complexity of fittest controllers evolved by NEAT-M
(SO: Highest task performance) versus NEAT-M-MODS (MO: 3 Knee-points on Pareto-front, figure 3). > : Greater than with statistical
significance. Right: Average task performance and neural simplicity values for groups evolved without (SO) and with (MO) a neural
complexity cost. Neural complexity (simplicity) is defined in section: Neural Complexity Definition.

Environment Task Performance Neural Simplicity
Simple SO > MO MO > SO
Medium SO > MO MO > SO
Difficult SO > MO MO > SO

Environment Task Performance Neural Simplicity
Simple 0.96 (SO) 0.95 (MO) 0.67 (SO) 0.94 (MO)
Medium 0.86 (SO) 0.78 (MO) 0.77 (SO) 0.92 (MO)
Difficult 0.61 (SO) 0.49(MO) 0.71 (SO) 0.93 (MO)

task accomplishment required the group to gather all blocks
distributed throughout the environment into a gathering
zone, within the group’s lifetime. However, all environ-
ments required some cooperation to achieve an optimal or
near optimal task performance. For example, the simple
environment contained five medium-sized blocks requiring
two robots to cooperatively push. The medium environment
also contained five large-sized blocks requiring three
robots to cooperatively push and the difficult environment
included only medium-sized and large-sized blocks. In
all environments the efficacy of an emergent cooperative
problem-solving behavior was determined by the neural and
morphological (sensor) complexity of evolved controllers.

As demonstrated in related work (Waibel et al., 2009;
Nitschke et al., 2012; Duarte et al., 2016), we posit that the
emergence of effective collective behaviors was enabled
by evolved interactions of relatively simple individual con-
trollers. Furthermore, other evolutionary robotics studies
have demonstrated evolving increased neural complexity
often yields negligible benefits as collective behavior task
complexity increases (Nitschke and Didi, 2017).

The overall implication of this study’s results is two-
fold. First, it indicates that neuro-evolution with a neural
complexity cost facilitates efficient neural controllers
comprising minimal connectivity and simple coupled
sensor-morphologies. These controllers were consistently
effective for increasing environment complexity (addressing
the research objective). Second, results indicated neuro-
evolution without a neural complexity cost supports the
social brain hypothesis in the context of groups surviving
in environments of varying complexity. That is, for all
environments, groups evolved without a neural complexity
cost evolved both significantly larger neural controllers and
coupled sensor-morphologies, compared to those evolved
with a neural complexity cost. However, the pertinence of
the social brain hypothesis was limited in that these more
complex neural structures (and sensor-morphology cou-
plings) did not yield clear benefits across all environments.

Specifically, there was negligible group task performance
differences in the simple environment and minimal differ-

ences (∼10%) in the medium and difficult environments. As
presented in figure 3 (left), the best groups (knee-point con-
trollers on the Pareto front) evolved with a complexity cost
yielded comparable task performances to groups evolved
without a complexity cost, though did so with less neural
complexity and simpler sensor-morphologies. Hence, the
neural complexity cost was able to suitably complement the
complexification and speciation mechanisms of NEAT-M
(Hewland and Nitschke, 2015) via enabling the evolution
of simple yet effective controllers. However, without such
a complexity cost, NEAT-M complexification ensured the
evolution of increasingly complex controllers and coupled
sensor-morphologies, where the speciation mechanism was
unable to mitigate this evolution of neural complexity.

This study’s contribution was two-fold. First, using evolu-
tionary collective robotics to test the impact of a complexity
cost, the study supported related work demonstrating that
greater evolved social complexity correlates with smaller
brains coupled to less complex sensory-systems (Gronen-
berg and Riveros, 2009). In this study, social complexity was
the efficacy of evolved collective behavior across increas-
ingly difficult task environments. Second, results lent empir-
ical support to the use of distributed and embodied cognition
systems (Barrett et al., 2007), in this case for the purpose of
elucidating the impact of a complexity cost on evolving neu-
ral and morphological complexity in social systems.

Conclusion
This study investigated how imposing fitness costs on
evolving neural controller complexity impacted evolving
collective behaviors in an evolutionary collective robotics
system. Experiments evaluated the impact of evolving neu-
ral controllers, with and without a neural complexity cost,
on robot group task performance in increasingly complex
environments. In this study environment complexity was
equated with collective behavior task difficulty. Results
indicated that a neural complexity cost enabled the evolu-
tion of simpler controllers, where the best of such simple
controllers produced collective behaviors comparable to
that of more complex controllers evolved without any
complexity cost. This result held for collective behavior
evolution in task environments of increasingly complexity.
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Abstract

We present a theoretical framework that mathematically for-
mulates the evolutionary dynamics of organism-environment
couplings using graph product multilayer networks, i.e., net-
works obtained by “multiplying” factor networks using some
graph product operator. In this framework, one factor net-
work represents different options of environments and their
mutual physical reachability, and another factor network rep-
resents possible types of organisms and their mutual evo-
lutionary reachability. The organism-environment coupling
space is given by a Cartesian product of these two factor net-
works, and the nodes of the product network represent spe-
cific organism-environment combinations. We studied a sim-
ple evolutionary model using a reaction-diffusion equation on
this organism-environment coupling space. We numerically
calculated correlations between the inherent fitness of organ-
isms and the actual average fitness obtained from the graph
product-based evolutionary model, varying the spatial diffu-
sion rate while keeping the type diffusion rate small. Results
demonstrated that, when the spatial diffusion is sufficiently
slow, the correlation between inherent and actual fitnesses
drops significantly, where it is no longer valid to assume that
fitness can be attributed only to organisms.

A classical view of biological evolution typically assumes
that the fitness is an attribute of individual organisms or
genes. However, this simplistic view is known to be in-
valid in many realistic scenarios, e.g., when the habitats are
spatially non-homogeneous and organisms’ fitnesses depend
on their surrounding environments (Tilman and Kareiva,
2018). Here we present a theoretical framework that math-
ematically formulates the evolutionary dynamics of such
organism-environment couplings using graph product mul-
tilayer networks (Sayama, 2018), i.e., networks obtained by
“multiplying” factor networks using some graph product op-
erator. While graph products have already been used in
theoretical evolutionary biology (e.g., to model the quasi-
independence of characters in phenotype space (Wagner and
Stadler, 2003)), our work is unique in that it utilizes graph
products to represent interactions between organisms and
environments.

In this work, we use Cartesian products to represent cou-
plings of environmental conditions and organismal types.

G□Horg-env combinations

Horg nodes

Graph 

product

Genv nodes

Figure 1: Graph product representation of organism-
environment couplings in evolution. Graph G represents
physical reachability among different options of environ-
ments, while graph H represents evolutionary reachability
among different types of organisms. Their Cartesian product
G�H (bottom) represents their couplings in a single prod-
uct network.

Cartesian products are the most straightforward way to con-
struct graph products, by connecting nodes (= elements of
a Cartesian product of original node sets) to each other by
following the edge structure of one factor graph or the other.
We consider nG different options (geographically separated
habitats, co-located ecological niches, etc.) of environments
as env-nodes, and represent their mutual physical reachabil-
ity by a weighted graph G that connects those env-nodes
(Fig. 1, top left). We denote the average amplitude of G’s
edge weights as δ, which represents the rate of spatial dif-
fusion (e.g., migration). Similarly, we consider nH possible
types (genotypes, phenotypes, etc.) of organisms as org-
nodes, and represent their mutual evolutionary reachability
by another weighted graph H that connects those org-nodes
(Fig. 1, top right). We denote the average amplitude of H’s
edge weights as µ, which represents the rate of type diffu-
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Actual fitness ~ inherent fitness

(non-spatial; environment-independent)

Actual fitness ≠ inherent fitness

(spatial; environment-dependent)

Figure 2: Spearman’s rank correlation coefficients between
organisms’ inherent and actual fitnesses plotted against δ.
Each dot represents a result from one trial (20,000 trials in
total). The black curve shows means. nG = nH = 20,
µ = 10−5, α = 0.6.

sion (e.g., mutation).
Using these graphs, the organism-environment coupling

space is given by a Cartesian product multilayer network
G�H , whose nodes represent specific org-env combinations
(Fig. 1, bottom). In this framework, both the spatial diffu-
sion onG and the type diffusion onH can be uniformly rep-
resented as a single diffusion process on G�H . The Lapla-
cian spectrum of G�H can be analytically derived from
Laplacian spectra of G and H thanks to mathematical prop-
erties of graph product multilayer networks (Sayama, 2016).

Here we study the evolutionary dynamics on the
organism-environment coupling space using a simple
reaction-diffusion evolutionary dynamics

ds

dt
= F (s) − Ls, (1)

where s is a vector that represents activities (e.g., popula-
tions) of nG · nH org-env combinations, function F (s) rep-
resents the local population dynamics, and L is the Lapla-
cian matrix of G�H . Here we consider a simple linear case
where F is a diagonal fitness matrix

F = (1 − α)IG ⊗ FH + αFe, (2)

where IG is a nG × nG identify matrix, FH is a nH ×
nH random diagonal matrix that represents the inherent
(environment-independent) fitnesses of organisms, Fe is a
nG · nH × nG · nH random diagonal matrix that represents
the environment-dependent fitnesses of organisms, α is the
strength of organism-environment coupling, and ⊗ is the
Kronecker product operator.

α = 0.0 α = 0.1 α = 0.2

α = 0.4 α = 0.5 α = 0.6

α = 0.8 α = 0.9 α = 1.0

Figure 3: Dependence of correlations between organisms’
inherent and actual fitnesses on α. Each panel shows a plot
for a specific value of α in the same way as in Fig. 2.

We numerically calculated Spearman’s rank correlation
coefficients to detect (potentially nonlinear) correlations be-
tween the inherent fitness given in FH and the actual average
fitness obtained from the dominant eigenvector of (F − L),
varying spatial diffusion rate δ logarithmically while keep-
ing the type diffusion rate µ small. Figure 2 shows the key
illustrative results. It was observed that, when the spatial
diffusion is sufficiently slow, the correlation between inher-
ent and actual fitnesses drops significantly. More systematic
large-scale numerical experiments with varied values of α
(Fig. 3) further revealed that this transition was robustly ob-
served for a wide range of α values.

These results indicate that, when spatial mixing is not suf-
ficiently strong (i.e., low δ), attributing fitnesses to individ-
ual organisms alone is not a valid way to describe evolu-
tionary dynamics. We derived this conclusion using graph
product multilayer networks, successfully demonstrating the
usefulness of this novel theoretical framework in evolution-
ary studies.
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Abstract

We aimed to investigate the principle of emerging interactions
between swarms using the functional differentiation theory of
the brain. We propose a heterogeneous swarms model, where
two swarms having different parameters evolve to maximize
transfer entropy between them. In our simulation, we found
the emergence of heterogeneous behavior among the swarms,
and the appearance of several interaction patterns depending
on the degree of the transfer entropy. Our results imply that
the same principle of functional differentiation may underlie
both the brain and swarms, leading to a novel design of brain-
inspired swarm intelligence.

Introduction
Diverse types of interactions between swarms, e.g., prey-
predator and leader-follower, are observed in organisms’ be-
havior. In such collective behavior, swarms have varying
roles, i.e., they are functionally differentiated. This hetero-
geneity is reportedly a key in the emergence of interactions
and pattern formation (Sayama, 2009).

In mathematical neuroscience, Yamaguti and Tsuda
(2015) proposed self-organization with constraints as a prin-
ciple of functional differentiation in the brain. They showed
that maximizing the transfer entropies between neural mod-
ules allows the modules to have different dynamics and to
interact with each other.

In this paper, we hypothesize that the principle of func-
tional differentiation can also be applied to multi-swarm
interactions. We extend the conventional boids model
(Reynolds, 1987) to a heterogeneous swarms model and
maximize the transfer entropies between the swarms using a
genetic algorithm. Consequently, functional differentiation
in the swarms is expected to emerge as in the brain.

Model
We propose a heterogeneous swarms model (Fig. 1), in
which two swarms have different boid parameters. In a typ-
ical boids model, the velocity of the ith agent is updated
based on its neighbor agents:

Figure 1: Heterogeneous swarms model. In an initial gen-
eration (left), all agents have the same parameters, and the
labels of swarms, X or Y, are randomly assigned to agents.
Agents belonging to a swarm have the same parameters
which can be different from those of the other swarm. Then,
the parameters for swarms X and Y are optimized to max-
imize transfer entropies between them. Consequently, the
parameters become heterogeneous and the swarms begin to
interact, suggesting that their functions have now differenti-
ated.

∆v⃗i = ws

∑

j∈Ss

x⃗i − x⃗j

|x⃗i − x⃗j |
+ wa

(
v⃗i −

∑
j∈Sa

v⃗j

na

)

+ wc

(
x⃗i −

∑
j∈Sc

x⃗j

nc

)
+ ϵ (t)· (1)

where x⃗i and v⃗i denote the position and velocity of the ith
agent, respectively. The parameters, ws, wa, and wc denote
the weights for separation, alignment, and cohesion among
agents, respectively. Ss, Sa, and Sc denote the set of neigh-
boring agents for each rule, and va and vc indicate the num-
ber of the neighboring agents. Noise ϵ (t) is added so as to
make behavior complex.

Our model assumes two swarms, labeled as X and Y.
They have different weights while all agents have the same
weights in the typical model. For example, the weight for
separation, Ws, consists of weights for the inter-swarms,
wX→Y and wY→X , and weights for the intra-swarms,
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Figure 2: Behavior of the optimized heterogeneous swarms. (a): prey-predator like dynamics when the fitness was higher. (b):
rotating leader dynamics when the fitness was lower.

wX→X and wY→Y :

Ws =

[
wsX→X

wsX→Y

wsY →X
wsY →Y

]

·
(2)

The weights for alignment and cohesion are defined in the
same manner.

The twelve weight parameters in total are optimized using
a standard genetic algorithm. The fitness is defined as the
product of transfer entropies between the averaged series of
the velocity of the swarms: TX→Y ∗ TY→X , where TX→Y

denotes the transfer entropy from swarm X to swarm Y, and
TY→X denotes vice versa. In the initial generation, the la-
bels of swarms are randomly assigned to agents, and they
have the same weight parameters. Then, the weights are
optimized to maximize the transfer entropies through elite
selection.

Results
We constructed a 2D simulator of 100 agents, in which a
swarm consisted of 50 agents. The population in a genera-
tion was 96. The history length and delay for transfer en-
tropy were 1.

Simulation results showed that the fitness converged in
two values: approximately 0.3 and 0.04. Fig. 2 (a) and (b)
illustrate behavior of the swarms when the consequent fit-
nesses were high and low, respectively. In both cases, the
swarms had different parameters and seemed to have differ-
ent functions. In Fig. 2 (a), the blue swarm appears to be es-
caping from the red swarm, which looks like prey-predator
interaction. In Fig. 2 (b), the blue swarm appears to rotate
and the red swarm loosely follows it.

Discussion
In this study, we proposed a heterogeneous swarms model,
where two swarms with different parameters evolve to maxi-
mize transfer entropy between them. Our simulation showed

that functional differentiation and interactions between het-
erogeneous swarms were developed by maximizing the
transfer entropy. The interaction patterns of the swarms var-
ied depending on the fitness, suggesting that the same prin-
ciple may underlie function differentiation in swarms and
the brain. We suppose that the interaction between hetero-
geneous swarms is the foundation of division of labor, which
is ubiquitously observed in biological systems, especially in
social insects (Duarte et al., 2011). In addition to the con-
ventional explanation that division of labor is due to effi-
cient foraging, our model suggests that such an evolutionary
process might involve an increase in information transfer or
communication between swarms. In future, we plan to de-
velop our model further by imposing tasks on the swarms to
investigate the contribution of the functional differentiation
to task performance, adaptability, and robustness.
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Abstract 
Time varying artificial neural networks are commonly used 
for dynamic problems such as games controllers and robotics 
as they give the controller a memory of what occurred in 
previous states which is important as actions in previous states 
can influence the final success of the agent. Because of this 
temporal dependence, methods such as back-propagation can 
be difficult to use to optimise network parameters and so 
genetic algorithms (GAs) are often used instead. While 
recurrent neural networks (RNNs) are a common network 
used with GAs, long short term memory (LSTM) networks 
have had less attention. Since, LSTM networks have a wide 
range of temporal dynamics, in this paper, we evolve an 
LSTM network as a controller for a lunar lander task with two 
evolutionary algorithms: a steady state GA (SSGA) and an 
evolutionary strategy (ES). Due to the presence of a large 
local optima in the fitness space, we implemented an 
incremental fitness scheme to both evolutionary algorithms. 
We also compare the behaviour and evolutionary progress of 
the LSTM with the behaviour of an RNN evolved via NEAT 
and ES with the same fitness function. LSTMs proved 
themselves to be evolvable on such tasks, though the SSGA 
solution was outperformed by the RNN. However, despite 
using an incremental scheme, the ES developed solutions far 
better than both showing that ES can be used both for 
incremental fitness and for LSTMs and RNNs on dynamic 
tasks.  

Introduction 
While deep feed-forward neural networks have been used 
very successfully in static problems where there is no 
temporal dependence between inputs, non-Markovian 
problems such as controllers for robots or games could 
potentially benefit by temporally extended networks 
(networks with a temporal element). Long short-term memory 
(LSTM) networks – which have complex forms of memory - 
are interesting networks because of their potential to capture 
long term temporal dependencies and have been used 
successfully in a number of tasks. (Sutskever, at al. 2014). 
However, it is harder to find the optimal settings for these 
networks using things like back-propagation due to exploding 
gradient problems (Salimans, at al. 2017). Indeed, to train 
LSTMs, people typically use back-propagation through time 
or reinforcement learning (Bakker, 2001). Recently, 
evolutionary optimisation has been used as an alternative to 
reinforcement learning to develop solutions since it require 
less computational power per episode and memory (Salimans, 

at al. 2017). Here we therefore see if it is possible to evolve an 
LSTM for a lunar lander game using either a steady-state 
genetic algorithm (SSGA) or an evolutionary strategy (ES). 
While ES’s have been shown to outperform GAs on a number 
of tasks, it is not clear if it will be true for such dynamic 
networks operating in irregular, noisy, fitness landscapes.
 Many different evolutionary algorithms have been 
effective at finding solutions for robotics tasks, not least as 
they provide a very flexible approach. For example, it is 
relatively easy in such problems to encourage robustness to 
problem variations and generalisability across starting 
conditions through evaluating the agent on multiple trials. In 
the lunar lander problem, this robustness is necessary as the 
landing surface and starting conditions are randomly 
generated for each instantiation. Steady-state genetic 
algorithms are particularly good at encouraging robustness 
because solutions that perform well stay in the population and 
are evaluated many times over the course of evolution, 
meaning they experience a very wide range of starting 
conditions without incurring the computational cost of 
evaluating all solutions in the population over the same 
number of trials. As evolutionary strategies work by having 
multiple copies of a single individual, which then moves 
through fitness space, it is not clear if they will lead to a 
similar level of generalization. Another way in which the 
flexibility of evolutionary algorithms helps in dynamic 
optimisation tasks, is that the issue of local optima in the 
search space can be ameliorated by techniques such as fitness 
shaping and incremental evolution in which the designer can 
guide the solution to the types of behaviour desired. Again, 
such schemes have been used successfully with SSGAs, it is 
not clear that they will also function well with ESs. As the 
lunar lander game with the default fitness function has local 
optima issues (as the agent can gain a reasonable score by 
doing nothing) as well as requiring solutions robust to starting 
conditions, we here use it as test-bed to see if an incremental 
fitness scheme can be as effective for an ES as it is for an 
SSGA and if so, whether the solutions generated are robust to 
changes in conditions. 
 Despite the issues of a large local optima and very noisy 
fitness evaluations, we show that LSTM networks can 
successfully be evolved with both evolutionary algorithms. 
However, through comparison with an RNN evolved with 
NEAT (used as a benchmark and to derive the network 
morphology for the evolutionary algorithms) and ES, the 
SSGA, while able to produce a viable network, does not 
appear to be taking advantage of the rich dynamics provided 
by the LSTM. In contrast, despite not being population-based 
in the same way as the SSGA, the ES generates robust 
controllers demonstrating both that these algorithms can 
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function effectively with both incremental fitness functions, 
noisy evaluations and highly dynamic LSTM networks. 

Background and Methods 
In this section we briefly describe the methods that were used 
during the experiments. 

Long-Short Term Memory (LSTM) Networks  
Long Short-Term-Memory (LSTM) networks are advanced 
versions of RNN networks that can selectively forget and 
update hidden states. In a basic LSTM perceptron there are 
four different gates that determine the output and hidden states 
(Gers, at al. 2002). These gates are commonly referred as 
“forget”, “input”, “recursive memory” and “output”. 
Additionally, LSTM networks have a hidden state and a 
memory. These properties allow LSTM networks to be aware 
of past actions and experiences thus enabling long-term 
temporal dependencies in the decision making process.

 During the experiment, all of the parameters controlling 
the shape of the LSTM network were kept constant as 
evolving the LSTM shape as well would require a bigger 
study and more computational power and we were here 
interested in whether ESs would be able to work in noisy 
spaces with fitness shaping. In order to choose the 
morphology, initial experiments were conducted using NEAT 
and RNNs. Following tests, the size of the layers and depth of 
the network were chosen to be slightly bigger than the best 
NEAT derived RNN. Specifically, the LSTM comprised two 
ReLU layers of 20 and 25 units followed by a fully connected 
softmax layer.  

Genetic Algorithm 
Genetic algorithms are random heuristic search algorithms 
that are inspired by biology. Genetic algorithm are commonly 
used in multi-variable optimisation tasks (Gers, at al. 2002). 
They rely on continually evaluating different combinations of 
variables on an optimisation task and using the result as 
feedback to improve the variable choice. In order to use these 
algorithms, variables to be optimised are represented by genes 
and solutions are represented by genomes. A genome thus 
consists of all variables and their corresponding values. The 
result of the optimisation for the given genome is referred to 
as the fitness of the genome and the set of the genomes are 
referred to as the population (Whitley, 2001). Genetic 
algorithms use an analogue of an evolutionary process to 
iteratively improve the population. Many variations of genetic 
algorithms exist, but the majority work by using the fittest 
individuals in a population to generate the next population via 
selection, crossover and mutation. 
 In our experiments, the weights of the LSTM or RNN 
are used as the genotype meaning it is 7,040 variables long for 
the LSTM and 1,835 long for the RNN. As a crossover 
operator we used uniform crossover which produces two 
offspring, where the first offspring has 80 percent chance per 
gene to get genes from first parent and 20 percent chance to 
get from second parent, and second offspring has 80 percent 
chance from first parent and  20 percent chance from second 
parent. For mutation we used uniform mutation in the range of 
[-1,1] with 0.35% mutation chance per genome. We also used 
a steady state genetic algorithm, which instead of replacing all 

of the population at once, as in a generational GA, iteratively 
selects two parents and produces two offspring which replace 
two members of the current population. The original 
replacement method of the population was replacing the 
parents, as shown in Pramanik and Setua (2014). However, we 
found the method proposed by Gilbert Syswerda (1991) to 
work better in our experiments (Pramanik and Setua, 2014; 
Syswerda, 1991). Specifically, in order to choose the 
individuals for mating, proportional roulette wheel selection 
was used and in order to choose the individuals to replace, 
reverse proportional roulette wheel was used. The architecture 
of the networks were as described above and a population size 
of 30 was used. 

Evolutionary Strategy  
An Evolutionary Strategy (ES) is a nature-inspired algorithm 
(Salimans, at al. 2017) and is a variant of a GA in which new 
individuals are not generated by random variation of one or 
two parents via crossover and mutation. Instead, an ES uses 
the statistics of the current population within the fitness space 
to determine new individuals and thus the direction of 
improvement in fitness space.  An ES thus effectively uses 
mutation only and no crossover. Here we used the ES 
algorithm that is described by Salimans (Salimans, at al. 
2017). Specifically, at each evaluation there is only one ‘real’ 
individual and N-1 (where N is the population size) simulated 
individuals which surround the real individual. Each gene of 
each simulated individual is constructed by adding a small 
amount of Gaussian-distributed noise to the corresponding 
gene of the real individual. The noise of each gene of each 
individual is scaled by its fitness value. The product is added 
to the genes of the real individual resulting in a new real 
individual (Salimans, at al. 2017). N-1 simulated individuals 
are created around this one individual and the process repeats.
 The architecture of the networks was the same as the 
steady state network and a population size of 30 was used. 

Algorithm 1: Evolutionary Strategies 

for t=0,1,2,… do 
 Sample !   individuals using Gaussian noise  
 Compute fitness !  for i=1,..n 

 Set !  

end for 

Algorithm 1 displays how each generation was created. n 
represents the population size, !  represents the real 
individual’s genes, !  represents learning rate, !  represents 
variance of the Gaussian noise, !  represents the fitness value 
of i’th individual. The variance of the Gaussian distribution 
was chosen to be two and the learning rate was chosen to be 
0.5. 

NEAT (Neuroevolution of Augmenting Topologies)   
In order to get an idea of what network size might be effective 
for evolution and thus avoid complications due to over/under 
sized network structure, we first trained an RNN with NEAT, 
an approach which has proved successful previously (Stanley 
and Miikkulainen, 2002). NEAT is an advanced version of a 

ϵ1, . . . , ϵi
Fi = F (θt + σ ϵi)

θt+1 = θt + α
1

n σ

n

∑
i=1

Fiϵi

θt
α σ
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Weight Evolving Artificial Neural Network (TWEANN), a 
specialised genetic algorithm which focuses on optimisation 
of the weights of an artificial neural network (Stanley and 
Miikkulainen, 2002). The major difference between NEAT 
and TWEANN is topological evolution. In other words, the 
composition and the architecture of the network evolve over 
time together with its weights. Since the NEAT library does 
not support LSTMs, RNNs were used for these initial 
experiments, using the NEAT algorithm described by Stanley 
and Miikkulainen (2002). Due to limited computational 
power, we used a relatively small population of 30 with 
minimum species size 3 and 2 elites per deme. ReLU was 
used as the activation function. 

 Lunar Lander Game 

Figure 1: OpenAI Gym Lunar Lander Environment 

The Lunar Lander game is a simulation provided by OpenAI 
(Brockman, at al. 2016) in which controllers have to land a 
spacecraft in a designated landing area indicated by the flags 
in Figure 1. Specifically the flags are at coordinates (-0.25,0) 
and (0.25,0) where (0,1) is the starting position of the 
spacecraft. The problem is made more difficult as the surface 
of the moon is randomly generated on every evaluation. The 
simulation area is bounded and if the spacecraft exits the 
boundary, the simulation stopped. While the spacecraft always 
starts from the same coordinates, (0,1), the starting angle is 
random as is the initial velocity (both magnitude and 
direction). 
 The environment is frictionless but subject to a constant 
gravity force towards the surface of the moon. The spacecraft 
has three thrusters, bottom, left and right. The bottom truster 
increases spacecraft’s speed in the direction it is facing, while 
left and right make it rotate clockwise/counter-clockwise 
respectively.  Each thruster produces a constant thrust and the 
spacecraft is subject to basic momentum constraints. In any 
given instance, the spacecraft could only use one of its 
thrusters.  The goal was to land the spacecraft without 
crashing (landing with more than -0.6 vertical velocity or not 
upright) and using the minimum amount of fuel. The total fuel 
was unlimited however; the spacecraft was limited to 1000 
action commands. 
 The Lunar Lander game expects one command for input at 
each step. These commands are coded as “0”,”1”,”2” or “3” 
which correspond to: do nothing, use left thruster, use bottom 
thruster and use right thruster, respectively. After the game 
receives one of those commands, it returns four parameters, 
which are observation, score, done and info. The observation 

parameter, which represents the state of the environment, has 
eight variables: “x” and “y” coordinates, speed in vertical and 
horizontal axes, facing angle, angular velocity, and two 
Booleans, leg 1 and leg 2, which state whether a leg touches 
the ground in the goal zone (and which we do not use in 
network training though the default fitness function does). 
The score parameter is the value of default fitness function 
and done is a Boolean indicating the simulation’s stop 
condition. 

Fitness Shaping Through Incremental Evolution   
The default fitness function (displayed below) provided by the 
simulation discourages fuel consumption ( !  
terms) while encouraging every action that shortens the 
distance between the spacecraft and the goal position and 
penalising every action that increases the distance between the 
spacecraft and the goal location (first two terms of the 
equation). Touching the goal position rewards 10 points per 
leg of the spacecraft. Also attempting to takeoff after landing 
is discouraged and causes negative points. The formula of the 
default fitness function is given as; 

 ! ! !  

! ! !  
!  

 Because of the penalization of fuel consumption (Main/
Side Truster Power term in the equation), attempts to evolve a 
solution with the default fitness were subject to issues with 
local optima (see Results) in which the spacecraft does not 
apply any thrusters and simply falls down. We explored 
different fitness functions to get around this issue (e.g. 
applying multiple thresholds to the action commands and 
discouraging use of the  “0” action command) but were not 
successful.  

Figure 2: Incremental Fitness Function State Diagram 

Thus we designed a fitness function based on different 
behavioural states, as illustrated at Figure 2. This fitness 
function was designed to define the problem in a more 
behavioural way, eliminate the issue of fuel consumption and 
decreasing the number of variables in the fitness function. 
Instead of trying to measure the properties of the agent and to 
determine if it is good or not, this fitness function categorises 
the current state of the agent and gives bonuses to certain 
actions/behaviours. With this approach we aimed to add action 
priorities into the evolutionary process. However the key 
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feature is that the agent has to perform well at a given state, 
meaning a certain type of behaviour has been developed, 
before the next state is evaluated. These states and transitions 
are: 
State 1: Flying state. Detected if the agent was flying. The 
detection was made by thresholding. If the vertical velocity of 
the agent was between 0.0 and -0.80, the agent was rewarded 
0.5 points and state 2 was enabled. If the agent’s velocity was 
less than -0.80 but it was using its bottom thruster, it was 
rewarded 0.1 point. However, the transition to state 2 was 
disabled. 
State 2: Horizontal stabilisation state. The agent was 
rewarded 0.5 points and state 3 was enabled if the angle of the 
agent was between 0.8 !  and -0.8 ! , which translates to being 
perpendicular to the ground as 0 is the angle of the normal to 
the ground, with some offset. Also the agent was rewarded 0.1 
points if the angle was off-perpendicular but it used one of its 
side thrusters to correct. If neither of these conditions were 
met, 0.1 was subtracted. 
State 3: Flight route minimisation state. This state rewards the 
flight trajectory of the agent. Every step that took the agent 
closer to the landing location gave !  
points. If the displacement was negative (going away from the 
landing area), nothing was rewarded. 
 The rationale behind these states were that the agent 
should be in control of its speed in order to fly, to be able to 
fly to control its orientation, and to be able to guide its 
orientation to fly towards the landing pad, which is the desired 
final behaviour. 
 We initially tried implementing the behavioural fitness 
function with all states used together i.e. without gating the 
states by only evaluating if it passed the previous one, but it is 
overly complicated and does not produce good results. In 
order to reduce the complexity of the heuristics, as suggested 
by Barlow (at al. 2004), an incremental fitness function was 
implemented. In this approach the behavioural fitness function 
is gradually modified. The heuristic fitness function was thus 
divided into three stages, hover, stabilise and orient (States 1, 
2 and 3). The first stage of the incremental fitness function 
prioritises the flight time and the transition between State 1 to 
State 2 is blocked. For the second stage, the stabilisation 
phase, the fitness function was allowed to move from State 1 
to State 2, but transition to State 3 was blocked. At the third 
stage, orient, the transition to the third state was enabled. This 
approach enabled the agent to develop certain behaviours 
easily while retaining previously learned behaviour.  

Resampling and Noise Reduction  
As the simulation environment randomly changed at every 
evaluation, some environments were more suitable for landing 
while some environments were less. As Pietro (2004) states, 
noise in the environment decreases the learning rate and the 
population has a chance to forget what it has learned (Di 
Pietro, at al. 2004). However, completely eliminating 
randomly generated landscapes and performing trials on a 
single static landscape would encourage overfitting and would 
prevent generalisation of the network. Thus, each network 
performed on n different environments and the fitness scores 
were sorted in an ascending order and combined as described 
below:  

!  

  
This function decreases the effect of the best episode and 
increases the effect of the worst episode. The individuals that 
perform well at all episodes perform significantly better than 
those that are only good at certain situations. This fitness 
function contributes to the generalisation of the network. The 
result of 10 episodes will be referred as a trial.  
 Since the environment was regenerated in every trial, the 
complexity of the solution varies between each trial. There 
were three different elements that contribute to the 
characteristics of the environment which were: the landscape, 
the starting angle of the agent and the starting vector. The 
diverse set of starting angles and the starting vectors ensured 
the network could not overfit to any action command or to 
find a fixed set of actions that lead to success. Also, the 
landscape alters the vector effect of the thrusters, e.g. the 
bottom thruster may have produced velocity on the horizontal 
axis due to an obstacle in the environment. All of these factors 
increase the complexity and high variance due to noise of the 
simulation.  In order to solve the issue with the landscape, 
every generation performed “n” different episodes, where the 
k’th trial of i’th individual had the same random factors as the 
k’th trial of j’th individual. “n” randomly generated 
landscapes were selected with “n” different starting vectors 
which were picked from uniformly distributed random values. 
In order to prevent bias in the starting angles, the starting 
angles were divided into three groups, left, right and middle. 
The starting angle varied in between “- ! ” and “! ”, where “0” 
is perpendicular and “ ! ” and “- ! ” is horizontal to the ground. 
The starting angles for the left group were chosen from 
randomly distributed values between “-0.53 ! ” and “-0.2 ! ”. 
The angles for the right group were chosen from randomly 
distributed values between “0.2 ! ” and “0.53 ! ”. The angles for 
the middle group were chosen from randomly distributed 
values between “-0.2 ! ” and “0.2 ! ”. The number of left angles 
and right angles were distributed equally while the ratio of the 
middle group was one in seven trials. This method was 
implemented to give a range of starting angles of similar 
difficulty, hence as the middle angle was the easiest to solve 
the issue, the ratio of the middle angle was the lowest.  

Results and Analysis  
We started using the default fitness function but it soon 
became evident that there was a local minimum in the fitness 
space. We ran the Steady State Genetic Algorithm with LSTM 
network with the default fitness function, for 5,200 trials 
(52,000 evaluations), where each trial consists of 10 
resampled episodes however, the fitness does not improve and 
behaviour of the resulting network was the same in all runs. 

π π
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Figure 3: SS GA evolved by default fitness function. The top 
panel shows the flight trajectories, while the second panel 
shows the percentages of the actions that are being used 
during the flight. Third and fourth panels display the 
acceleration and velocity over time. 

 Figure 3 illustrates the behaviour of SS GA. The top panel 
shows the flight trajectories, while the second panel shows the 
percentages of the actions that are being used during the 
flight. The third panel displays the acceleration and velocity of 
the agent. The default fitness function has an unavoidable 
local optimum, where the agent abuses command 0 and does 
not use any other command and during the training process, 
the fitness of the population didn’t improved. The reason 
behind the behaviour was the punishment of fuel usage. In 
other words, if the agent does not do anything, it will not 
consume any fuel and since fuel consumption was 
discouraged, the agent will perform better than the ones that 
were trying to fly. 
 With the introduction of the incremental fitness function 
and fitness shaping, we were able to avoid this local 
minimum. During the training with the incremental fitness 
function the fitness was improved. Thus, we decided to run 
the algorithm longer periods in order to obtain a well 
developed model. After, running the algorithm with the 
incremental fitness function for 20,000 trials (250,000 
evaluations), the behaviour of the network had improved.

Figure 4: SS GA evolved by incremental fitness function. As in 
figure 3, The top panel shows the flight trajectories, while the 
second panel shows the percentages of the actions that are 
being used during the flight. However it additionally shows 
the amount of time the agents spends in stages 2 and 3 as well 
as the amount of steps that led to a transition to step 2 or 3 as 
step 2/3 recovery respectively, which gives insight into how 
much of the time the spends in these stages. The third panel 
shows the additional stage bonuses accrued the fourth and 
fifth panels display the acceleration and velocity over time. 
The same conventions are used for the following figures. 

 The behaviour of the steady state LSTM algorithm is 
displayed in Figure 4. The algorithm had significant 
improvements in acceleration and velocity controlling aspects 
as well as horizontal stabilisation. The agent learned to slow 
down its speed and slowly glide down. However, it failed to 
control its flight path. The points earned from each stage in 
the incremental fitness function are displayed in the middle 
panel of Figure 4. The stage 1 bonus (descending points) and 
stage 2 bonus (angle control) were high while stage 3 bonus 
(flight path) was very low. This behaviour was due to the lack 
of generalisation at stage 3.  
 To see if this behaviour was caused by a fundamental 
problem with using an LSTM network or network size, we ran 
the same experiment with an RNN network using the NEAT 
algorithm. 
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Figure 5:NEAT RNN evolved by incremental fitness function 

Figure 5 displays the behaviour of the RNN NEAT network 
evolved using the incremental fitness function over ~360,000 
trials (3,600,000 evaluations). The NEAT network managed to 
learn all stages showing that the fitness function is viable. In 
particular, when Figure 4 and Figure 5 are compared, while 
the LSTM performs similarly in stage 1, RNN with NEAT 
performs far better at stage 2 and stage 3, which leads to a 
better control over its orientation and flight path. This lead us 
to believe that using an LSTM is a viable option but that 
perhaps it is the type of evolution which is holding 
performance back. We thus repeated the same experiment with 
an ES algorithm using the LSTM and RNN network. 

Figure 6: ES LSTM evolved by incremental fitness  

  

Figure 7: ES RNN evolved by incremental fitness 

 The behaviour of the evolutionary strategy algorithm with 
LSTM and RNN network is displayed in Figure 6 and Figure 
7 respectively. The agent figured out how to change its flight 
path towards the landing point while kept its velocity and 
acceleration in control. The algorithm was run for 6,000  trials  
(60,000 evaluations) with LSTM and RNN. 
 The accumulated stage 1 bonus of the ES RNN and LSTM 
was far higher than NEAT RNN algorithm’s while stage 2 and 
stage 3 bonus were similar. However, note that while the 
behaviour is complex, the networks actually finds a loophole 
in the fitness function. This trick was never landing and 
slowly tilting up and down near the landing area, which cheats 
the fitness function to think the agent is performing a landing 
and earns points. The behaviours of ES LSTM and ES RNN 
were similar. However, ES LSTM was utilising command 0 
more than SS LSTM, NEAT RNN and ES RNN algorithms. 
Also, ES RNN algorithm’s population wise fitness was far 
higher than ES LSTM. This might indicate existence of a 
wider optimum at a lower dimension. 

Table 1: Fitness Evaluations 
  

Stage 1 

Average

Stage 2 

Average

Stage 3 

Average

Peak Fitness

SS GA LSTM 

(Population)

NEAT RNN 

(Population)

ES LSTM

(Fittest)

ES LSTM

(Population)

ES RNN

(Fittest)

ES RNN

(Population)

1674.06!

119.85

±

2.25! 0.71±

2127.93!

1255.64

±

332.55! 123.18±

481.60! 368.68±

167.06! 30.69±

262.20! 12.25±

3.33! 16.24±

-244.37 !

125.36

±

471.68! 446.78±

783.92! 78.91±

1662.15! 80.90±

65.38! 13.42±

495.85! 101.09±

251.42! 29.74±

1600.25!

1164.59

±

3.82! 1.54±

330.62! 171.42±

212.21! 28.23±

832.60! 549.33±

1509.56! 83.46±

89.29! 15.46±

127.82! 36.69±

127.51! 14.37±
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To compare the performance of the algorithms more generally, 
Table 1 display average fitnesses of ES LSTM, ES RNN, 
NEAT RNN and SS GA algorithms over 60,000 evaluations 
with five random restarts. While ES RNN, ES LSTM and 
SSGA had similar fitness values, NEAT RNN had lower 
fitness scores. NEAT algorithm alters the composition of the 
network during the process of evolution and it starts from one 
hidden layer which has one node. While this attribute enables 
the population to produce more unique individuals, it 
increases the time of convergence. However, ES was the 
fastest algorithm in both network types and reached a better 
optimum corresponding to a qualitatively better solution. 
Even though ES LSTM had lower average population fitness, 
fittest individuals of both ES RNN and ES LSTM had similar 
scores.
 However, while the ES clearly develops better more 
dynamic behaviour than the SSGA, as noted in the 
introduction, one of the benefits of the SSGA is that as good 
individuals remain in the population and are re-evaluated, 
good individuals are tested on many different configurations 
of the task which increases robustness. As the ES works in a 
different manner, it is not clear whether this robustness 
accrues in as direct a way as it does for the SSGA. To test for 
dynamic stability, we thus decreased the left thruster power to 
35% of its original power. This resulted in the following 
figures. 

Figure 8: NEAT behaviour while left thruster was crippled 

Figure 9: SS GA behaviour while left thruster was crippled 

Figure 10: ES LSTM behaviour while left thruster was 
crippled 

Figure 11: ES RNN behaviour while left thruster was crippled 
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Overall all algorithms used more Command 3 to compensate 
the loss of left thruster power (Figures 8, 9, 10,11). NEAT lost 
most of its control over the agent (Figure 8). SSGA performed 
similar behaviour as it had before the manipulation (Figure 9). 
However, when Figures 4 and 9 are compared, the velocity 
pattern of SSGA can be seen to be changed, indicating it is 
having a hard time controlling its velocity. In contrast, the ES 
LSTM and RNN were mostly unaffected (Figure 10, 11). Thus 
the ES has indeed developed robustness exhibiting 
homeostatic behaviour even to perturbations not experienced 
during evolution. 

Summary and Discussion 
In this experiment, LSTM and RNN networks were evolved 
using an incremental fitness function to solve a complex 
controller task: the Lunar Lander game. The steady state 
algorithm with LSTM was found to be less useful when the 
landscape was complex and noisy and found the local 
optimum faster than the NEAT algorithm with RNN network, 
as the faster converge rate of the population decreased the 
chance of finding other possible optima. The NEAT algorithm 
with RNN had a good balance between promoting diversity 
and was found to produce decent results. However using an 
ES with LSTM or RNN network was the fastest network and 
produced adaptive and dynamically stable behaviour even 
exploiting the fitness function to hover for a long time.

Overall the incremental fitness function was able to 
eliminate the issue of a local optimum in the fitness space 
both for a standard GA and for the ES. In addition increasing 
the complexity gradually helps the population to learn faster 
perhaps by reducing population convergence. Since the 
solution space of LSTM networks were more complicated 
(each neuron has eight weights excluding the bias weights) 
than RNNs, optimising LSTM networks is a harder task. 
However, reducing the complexity of the fitness landscape 
using incremental fitness function showed that LSTM 
networks can be evolved as fast as RNN networks.
 The question of which type of memory in the LSTM 
networks was beneficial in this task, or whether different gates 
of the LSTM network require different evolution techniques, 
is not yet answered. To understand this, we would need to 
know more about why the LSTM network’s behaviour is 
different to the RNN’s. Since LSTM network cells are 
advanced versions of RNN cells, during the optimisation 
process they could be turned into RNN’s by constraining the 
parameters correctly. In order to explore how the more 
complex memory might be valuable, the LSTM network can 
be initialised with parameters that make it act as an RNN or 
that allow different memory types only. By analysing the final 
evolved networks and seeing how much they vary from the 
standard RNN, the benefits that the different memory types of 
the LSTM bring to the table can be observed. 
 However, there are many other factors that affect the 
LSTM network’s performance, such as network size, 
activation function and population size. The effect of these 
factors are not yet explored. A more flexible evolutionary 
method which explores these variables combined with ES 
algorithms, or a NEAT type process, might boost its 
performance and produce better results as suggested by Rawal 
Miikkulainen (2016) who showed that an LSTM network can 
be evolved using NEAT.  
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Abstract

The foundation of biological structures is self-replication.
Neural networks are the prime structure used for the emer-
gent construction of complex behavior in computers. We
analyze how various network types lend themselves to self-
replication. We argue that backpropagation is the natural way
to navigate the space of network weights and show how it
allows non-trivial self-replicators to arise naturally. We then
extend the setting to construct an artificial chemistry environ-
ment of several neural networks.

Introduction
Dawkins (1976) stressed the importance of self-replication
to the origin of life. He argued that proto-RNA was able to
copy its molecule structure within a soup of randomly inter-
acting elements. This allowed it to reach a stability in con-
centration that could not be maintained by any other kind of
structure. Eventually, life evolved more or less as an elabo-
rate means to maintain the copying of structural information.

Since the early days of computing, the recreation of bio-
logical structures has been a target of research, starting from
the early formulation of an evolutionary process by Tur-
ing (1950) and including famous examples like Box (1957),
Conway (1970) or Dorigo and Di Caro (1999). Also see the
overviews given by Koza (1994) or Bäck et al. (1997). Al-
though conceived very early as well (Rosenblatt (1958) and
Minsky and Papert (1972)), neural networks have only re-
cently found broad practical application for advanced tasks
like image recognition (Krizhevsky et al. (2012)), speech
recognition (Hinton et al. (2012)) or strategic game playing
(Silver et al. (2017)). The variety of uses shows that neural
networks are a powerful tool of abstraction for various do-
mains. However, in all these cases neural networks are used
with a certain intend, i.e., equipped with a goal function.
Through backpropagation, the distance of the network’s out-
put to the goal function can be systematically minimized.

The wide variety of application domains shows the power
of neural networks as a functional abstraction. For other
functional abstractions, such as expressions in the λ-calculus
(Church (1932)) or a variety of assembler-like instruction

sets and automata (Dittrich et al. (2001)), it is known that,
when a population of random instances of said functional ab-
stractions are set up and allowed to interact, self-replicators
arise naturally (see Fontana and Buss (1996) or Dittrich and
Banzhaf (1998), respectively). For neural networks, Chang
and Lipson (2018) have shown that self-application may
lead to the formation of a self-replicating structure, albeit
a rather trivial instance of one. In this paper, we (a) repeat
these results for a broader range of neural network architec-
tures and (b) extend the interaction model by the notion of
self-training, which yields lots of non-trivial fixpoints. This
allows us to (c) construct an artificial chemistry setup using
neural networks as individuals that (under certain circum-
stances, of course) reliably produces a variety of non-trivial
self-replicators.

Foundations
We provide a brief introduction to how neural networks
function, then we proceed to discuss how to apply neural
networks to other neural networks and how to train neural
networks using other neural networks.

Basics
Neural networks are most commonly made from layers of
neurons that are connected to the next layers of neurons and
so on. As there are many kinds of neurons (fully connected,
recurrent, convolutional) there are also many kinds of layers.
Variations of this scheme go up to well established structures
within such layers, consisting not only of single functional
cells (LSTM, attention mechanism). What they have in com-
mon is the base functionality of accepting values (in form of
a matrix or vector), application of weights or bias (a matrix
of a similar shape, also known as the network’s parameters),
followed by a specific activation function (linear, sigmoid,
relu, tanh, e.g.) that transforms the outputs. Note that while
neural networks originated as a model of biological neurons,
they cannot accurately fulfill that role anymore and instead
serve as general function approximators.

The most basic form of a feed-forward network is a
single-layer perceptron, consisting of many fully connected
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cells that provide a transformation of the input on basis of
its learned parameters. Mathematically, each cell in such a
network is described by a function

y = f(


i

wixi + b)

where xi is the value produced by the i-th input cell, wi is
the weight assigned to that connection, b is a cell-specific
bias and f is the activation function.

The recurrent neural network (RNN) structure allows to
pass an additional vector h to the current calculation. This
improves the performance when processing sequential in-
puts. The result of the evaluation step t is passed to the
evaluation at step t + 1 as vector ht+1. A recurrent cell’s
activation at every time step t is ht = f(Wxt + Wht−1)
where w are the network weights (Chung et al. (2014)).

A neural network thus defines a function N : Rp → Rq

for input length p and output length q. A neural network N
is usually given by (a) its architecture, i.e., the types of neu-
rons used, their activation function, and their topology and
connections as well as (b) its parameters, i.e., the weights
assigned to the connections. Whenever the architecture of
a neural net is fixed, we can define a neural network by its
parameters N ∈ Rr. Note that |N | =def r depends on the
amount of internal connection and hidden layers, but as all
inputs and all outputs must be connected somehow to other
cells in the network it always holds that r > p and r > q.

Application
In the course of this work, we are interested in having neu-
ral networks that can be applied to other neural networks
(and can output other neural networks). It is evident that if
we want neural networks to self-replicate, we need to en-
able them to output an encoding of a neural net containing
at least as many weights as themselves. We discuss multi-
ple approaches to do so but first introduce a general notation
covering all the approaches: We write O = N ⊳M to mean
that O is the neural network that is generated as the output
of the neural network N when given the neural network M
as input. When M and O are sufficiently smaller than N ,
i.e., if |M| ≪ |N | and |O| ≪ |N |, then we can simply
define the output network O via its weights O = N (M).
However, these conditions obviously do not allow for self-
replication. Thus, we introduce several reductions that allow
to define the operator ⊳ differently and open it up for self-
replication. Note that for these definitions, we assume that
M and O have the same architecture and that the application
of N keeps the size of the input network, i.e., M : Rp → Rp

for some p and |M| = |O| = p.

Reduction 1 (Weightwise). We define N : R4 → R fixed.
Let M = 〈vi〉0≤i<|M|. We then set

O = 〈wi〉0≤i<|O|

where wi = N (vi, l(i), c(i), p(i))

and l(i) is the layer of the weight i, c(i) is the cell the
weight i leads into and p(i) is the positional number of
weight i among the weights of its cell. We use O to define
O = N ⊳ww M.

Note that l, c, p depend purely on the networks’ architec-
tures and the index of the weight i, not on the value of the
weight vi. Theoretically, we could pass on i to the network
directly but it seemed more reasonable to provide the net-
work with the most semantically rich information we have.
Also note that we normalize l, c, p : N → [0; 1] ⊂ R, i.e.,
the positional values are encoded by reals between 0 and 1
as is common for inputs to neural networks.

Intuitively, the weightwise reduction calls N on every sin-
gle weight of M and provides the weight’s value and some
information on where in the network the weight lives. N
then outputs a new value for that respective weight. After
calling N for |M| = |O| times, we have a new output net
O. This approach is most similar to the one used by Chang
and Lipson (2018).

Reduction 2 (Aggregating). Let agga : Ra → R be an
aggregator function taking in an arbitrary amount of pa-
rameters a. Let deagga : R → Ra be a de-aggregating
function returning an arbitrary amount of outputs a. Let
M = 〈vi〉0≤i<|M|. Let

M ↓aggb = 〈aggai
(vi, ..., vi+ai−1)〉0≤i<b

where ai = ⌊ |M|
b ⌋ for i < b − 1 and ai = ⌊ |M|

b ⌋ + (|M|
mod b) for i = b− 1. Let

〈wi〉0≤i<b ↑deaggb = deagga0
(w0)++ ...++deaggab−1

(wb−1)

where ai is defined as above and ++ is concatenation. We
define N : Rb → Rb for a fixed b. We then set:

O = N (M ↓aggb ) ↑deaggb

We use O to define O = N ⊳agg M given fixed functions
agg, deagg.

For our experiments, we use the average for aggregation

agga(v0, ..., va−1) =

a−1

i=0

vi
a

and use a trivial de-aggregation function as defined by:

deagga(w) = (w, ..., w)  
a times

Intuitively, the aggregating reduction simply reduces the
amount of weight parameters to a fixed amount b by aggre-
gating sub-lists of the weight list into single values. Those
single values are then passed to the network and its ouput
values are copied to all previously aggregated weights. A lot
of different aggregation and de-aggregation functions could
be thought of, however, early tests with variants introducing
more randomness or different topologies showed no differ-
ences in results. Thus, we focus on the simple instantiation
of the aggregation reduction as given above.
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Reduction 3 (RNN). We define N : R×RH → R×RH as
a recurrent neural network with a hidden state h ∈ RH for
some H ∈ N. Let M = 〈vi〉0≤i<|M|. We then set

O = 〈wi〉0≤i<|O|

where wi is given via

N (vi, hi) = (wi, hi+1)

where h0 = 0. We use O to define O = N ⊳rnn M.

Since recurrent neural networks are able to process in-
put sequences of arbitrary length, the RNN reduction tech-
nically just needs to define N as a recurrent neural net-
work and simply apply it to the weights of another network.
Even though this reduction appears most simple and natu-
ral, the explosion of gradients within larger recurrent neural
networks means that they are very prone to diverge to very
large output values if not sufficiently controlled. We reckon
that an extension to recurrent neural networks (making them
accessible to self-replication) should be possible, however,
since vanilla recurrent neural networks are not so fit for self-
replication, we refer this extension to future work.

We can use these several types of reduction to build a
mathematical model of self-replication in neural networks.

Definition 1 (Self-Application). Given a neural network N .
Let ⊳ be a suitable reduction. We call the neural network
N ′ = N ⊳N the self-application of N .

Definition 2 (Fixpoint, Self-Replication). Given a neural
network N . Let ⊳ be a suitable reduction. We call N a
fixpoint with respect to ⊳ iff N = N ⊳ N , i.e., iff N is
its own self-application. We also say that N is able to self-
replicate.

Since network weights are real-valued and are the result
of many computations, checking for the equality N = N ⊳
N is not entirely trivial. We thus relax the fixpoint property
a bit.

Definition 3 (ε-Fixpoint). Given a neural network N with
weights N = 〈vi〉0≤i<|N |. Let ⊳ be a suitable reduction.
Let ε ∈ R be the error margin of the fixpoint property. Let
N ′ = N ⊳ N be the self-application of N with weights
N ′ = 〈wi〉0≤i<|N ′|. We call N an ε-fixpoint or a fixpoint
up to ε iff for all i it holds that |wi − vi| < ε.

Training
As stated above, neural networks are commonly used in con-
junction with backpropagation to adjust their weights to a
desired configuration. We assume that we have a set of input
vectors x0, ...,xn and a corresponding set of desired output
vectors y0, ..,yn. We want our neural network N to repre-
sent the relation between these sets. The loss for a single
sample (xi,yi) is defined as |N (xi) − yi|. Minimizing the
loss of a neural network is called training. We use the SGD
optimizer to apply gradient updates or rather weight changes
to minimize the loss for given a given sample (xi,yi), which

results in an updated network N ′ = N ⇝(xi,yi). We
call ⇝the training operator. For sets of sample points
x = x0, ...,xn and y = y0, ...,yn, we also write N ⇝x,y
as shorthand for N ⇝(x0,y0) ⇝... ⇝(xn,yn).

We argue that training neural networks is another natural
way of evolving them (as is application). Thus, we also want
to train a neural network with other neural networks as input
and output data. Of course, we again need to use reduction
on said other neural networks. In short we write:
Reduction 4 (Weightwise Training). Given neural networks
M,N with M = 〈vi〉0≤i≤n for some n. We write N ′ =
N ⇝ww M iff

N = N ⇝〈(vi, l(i), c(i), p(i))〉0≤i≤n, 〈(vi)〉0≤i≤n

where l, c, p are defined as in Reduction 1.
Reduction 5 (Aggregating Training). Given neural net-
works M,N . Given a suitable aggregator function agg and
aggregated size b. We write N ′ = N ⇝agg M iff

N ′ = N ⇝(M ↓aggb ,M ↓aggb )

where the ↓ operation is defined as in Reduction 2.
Reduction 6 (Recurrent Training). Given neural networks
M,N . We write N ′ = N ⇝rnn M iff

N ′ = N ⇝(M,M)

where N is trained on a sequence M by being applied one
by one recurrently.

Intuitively, these training reductions transform the input
net M to a smaller representation (as do the application re-
ductions, cf. Reductions 1–3) and then train the network N
to accurately reproduce that representation.

Note that usually, when training a neural network, we de-
rive training samples from a large data set or generate them
automatically. However, we can use these training reduc-
tions to define the notion of self-training:
Definition 4 (Self-Training). Given a neural network N .
Let ⇝be a suitable training reduction. We call the network
N ′ = N ⇝N the result of self-training N .

We can apply self-training for many consecutive steps,
however, in contrast to usual training in neural networks, the
samples made available for training only depend on the net-
work’s own weights and introduce no randomness or addi-
tional coverage of the search space beyond their own (mostly
pre-determined) evolution via self-training.

Experiments
We define three types of experiments, which test the two dis-
tinct approaches to self-replication based on application of
neural networks to other neural networks and training using
backpropagation on self-generated limited training points,
respectively. Lastly, we show a strong connection between
both approaches.

Note that for the sake of simplicity, we fixed all network
architectures in the following experiments to only include
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Figure 1: 10 independent runs of self-application with respect to the aggregating reduction ⊳agg. 10 neural networks N :
R4 → R4 with two hidden layers with two cells each were initialized randomly and then subjected to 4 self-applications each.
The figure shows two perspectives on the same three-dimensional graph. The 20 weights in total per network were visualized
in a two-dimensional space based on the transformed bases X and Y derived via PCA. All networks converge on (X=0, Y=0),
which corresponds to the weight vector 0.

Figure 2: 50 independent runs of self-application each with
respect to all three different types of reduction. We show an
analysis of the networks (which were initialized randomly)
after 100 steps of self-application.

two hidden layers with two cells each. Although evaluations
were run with various activation functions, all plots show
linear activation since we observed no qualitative difference
between various activations. Similarly, bias was set to 0 in
all plotted instances.

Self-Application
When subjecting a randomly initialized neural network N
to repeated self-application with respect to the weightwise
reduction ⊳ww, the weight vector N tends to converge to
the all-zero vector 0 = 〈0〉|M|. This was already indicated
by Chang and Lipson (2018) for a very similar reduction

approach. This effect probably stems from a phenomenon
observed by Schoenholz et al. (2017): Randomly initialized
neural networks tend to map their inputs to output values
closer to 0. Figure 1 shows that the same effect also oc-
curs for the aggregating reduction ⊳agg. It shows the jour-
ney of several neural networks through the space of weight
vectors.1 Very few steps of self-application suffice to draw
all neural networks to the coordinates (X=0, Y=0), which in
fact correspond to the weight vector 0.

The same plot for the weightwise reduction ⊳ww looks
rather similar. Figure 2 shows the resulting networks after
several steps of self-application. Here, we discern five ob-
servations: A neural network N is (a) divergent iff at any
point in time any of its weights assumed the value ∞ or −∞.
Once this has happened, there is no returning from it. If the
network assumes (b) the ε-fixpoint given by the weight vec-
tor 0, i.e., all its weights are sufficiently close to 0, we call
the network a zero fixpoint. Note that for all experiments we
set ε = 10−5. If the network’s weights resemble (c) any
other ε-fixpoint we call it a non-zero, non-trivial or simply
other fixpoint. At this stage, we also checked for (d) second-
order fixpoints, i.e., networks N fulfilling the weaker prop-
erty N = N ⊳N ⊳N . However, we never found any such
networks. Anything else falls into the category (e) other.

1To be able to plot highly-dimensional weight vectors on paper,
we derive the two principle components of the observed weight
vectors using standard principle component analysis (PCA) and
plot the weight vector as a point in that two-dimensional space.
We use this technique for all such figures.
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Figure 3: The robustness of a known 10−5-fixpoint with re-
spect to the weightwise reduction ⊳ww. The x-axis shows
the range of noise that the known fixpoint’s weights were
subjected to. The y-axis shows for how many steps of self-
application the network was still regarded as a 10−5-fixpoint
(purple) and after how many steps of self-application the
network was regarded as diverged (orange).

Note that Figure 2 shows that no non-zero fixpoints are
found for any reduction and that recurrent neural nets are
most prone to diverge during repeated self-application.

We also checked for the chance to just randomly generate
a neural network which happens to be a fixpoint. However,
among 100, 000 randomly generated nets for each type of
reduction, we did not find a single fixpoint. Thus, we can
clearly attribute the attraction towards 0 to self-application.

For the weightwise reduction ⊳ww, it is rather easy to con-
struct a non-zero fixpoint by hand: For a network I, we set
all leftmost weights per layer to 1 and all other weights to 0,
thus implementing the identity function on the inputs of I,
which clearly fulfills the fixpoint property. This allows us to
test if the non-zero fixpoints form an attractor in the weight
space like the zero fixpoint does: We added small amounts
of noise to all weights of I and then subjected the resulting
network J to several steps of self-application, checking if
J would remain stable around I or “verge”, i.e., either con-
verge towards 0 or diverge towards infinite weights. How-
ever, even adding just at most 10−9 noise to each weight
eventually caused all networks to “verge”. Figure 3 shows
the experiment for various amounts of noise. Adding less
noise unsurprisingly causes the network to longer fulfill
the ε-fixpoint property and to “verge” later, which possibly
means that the network fulfills the fixpoint property again
when converging to 0 (but we did not count that).

Thus, while self-application on its own shows a stable in-
tent to approach the fixpoint 0, it does not seem capable of
creating any other fixpoints.

Self-Training
Subjecting randomly generated neural networks to self-
training with respect to the aggregating training reduction
⇝agg yields results as shown in Figure 4. All networks

evolve for a few steps of self-training, then their weights
remain constant. Note that each network approaches a dif-
ferent point in the weight space. Most interestingly, these
points are fixpoints, even though we only apply self-training
and fixpoints are defined using self-application. Moreover,
all of these fixpoints are non-zero.

Figure 5 shows a detailed analysis for all types of reduc-
tion: While recurrent neural networks still tend to diverge a
lot, aggregating networks converge towards weights that do
not represent a fixpoint. However, the weightwise networks
converge to non-trivial fixpoints with utmost reliability.

In order to elaborate on the opportunities of interaction
between self-application and self-training, we construct an
experiment where the two appear in alternation. The results
are shown in Figure 6: While aggregating networks reach
the zero fixpoint so fast via self-application that self-training
is not able to add anything to that, weightwise networks
need about 200–300 steps of self-training between each self-
application to converge to fixpoints as reliably.

Soups
As we have discussed several means of neural networks in-
teracting with themselves, it seems a reasonable next step to
open up these interactions and build a population of mutu-
ally interacting networks. A suitable combination of a pop-
ulation of individuals and various interactions is called soup
and works like an artificial chemistry system (cf. Dittrich
et al. (2001)). This means that a soup evolves over a fixed
amount of epochs. At every epoch, several different interac-
tion operators can be applied to networks in the population
with a certain chance, resulting in new networks and thus a
changed population.

Interaction 1 (Self-Train). Applied to every single network
N for an amount of steps A, self-training substitutes its
weights with N ′ = N ⇝N ... ⇝N  

A times

.

Interaction 2 (Attack). Applied to two random networks
M,N at a chance α, attacking substitutes the weights of
the attacked network M with the weights given via M′ =
N ⊳M.

Intuitively, attacking applies the function represented by
the network N to another network M. Self-training remains
basically unchanged from the non-soup scenario and pro-
vides a background evolution to every network in the popu-
lation, even when it is not involved in any attack.

Figure 7 shows the evolution of a soup employing self-
training and attacking. The networks start out randomly
placed in the weight space and self-train towards fixpoints in
the beginning. The big jumps in the networks’ trajectories
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Figure 4: 10 independent runs of self-training with respect to the aggregating training reduction ⇝ww. 10 neural networks
N : R4 → R with two hidden layers with two cells each were initialized randomly and then subjected to 200 steps of self-
training each. The figure shows two perspectives on the same three-dimensional graph. The 20 weights in total per network
were visualized in a two-dimensional space based on the transformed bases X and Y derived via PCA. All networks converge
to different fixpoints with non-zero weights.

Figure 5: 50 independent runs of self-training each with
respect to all three different types of reduction. We show an
analysis of the networks (which were initialized randomly)
after 1000 steps of self-training.

stem from being attacked by other networks; self-training
then leads them to new fixpoints. Note that as self-training
causes the networks to converge towards fixpoints, the im-
pact of near-fixpoint networks’ attacks becomes less and
less. Most interestingly though, almost all attacks seem to
drive the attacked networks towards the main cluster of the
soup, where most networks gather in the end. This not only
shows emergent behavior as the networks form a group as
a cluster of fixpoints somehwere in the weight space (nei-
ther at the the center of mass from the initial population nor
anywhere near 0), but it can be also interpreted as a clear in-
stance of (self-)replication within the networks of this soup.

Figure 6: Evaluation of a mixed setting of self-application
and self-training. For each type of reduction, 20 neu-
ral networks were generated at random and then subjected
to 4 steps of self-application. In between those steps,
0, 50, ..., 500 steps of self-training were executed (see x-
axis). The y-axis shows the average ratio of fixpoints (both
zero and non-zero) found out of all runs, where a value of 1
means that all runs resulted in a fixpoint.

In Figure 8, we further evaluate the impact of parameter A
in Interaction 1 for both weightwise and aggregating neural
networks. (As recurrent networks already did not show suf-
ficient compatibility with application, we omit these results.)
More self-training manages to stabilize the weightwise net-
works’ ability to find non-zero fixpoints. Still, even in a soup
setting, aggregating networks converge to 0 to a distinctive
degree.
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Figure 7: Run of one soup consisting of 20 neural networks using the weightwise reductions ⊳ww and ⇝ww. The 20 neural
networks N : R4 → R with two hidden layers with two cells each were initialized randomly and then evolved for 100 epoch.
Per epoch, every network had a chance of 0.1 to attack another network and was subjected to 30 steps of self-training. This
setup allowed for emergent behavior of the network forming a cluster at a region fo all non-zero fixpoints. The figure shows two
perspectives on the same three-dimensional graph. The 20 weights in total per network were visualized in a two-dimensional
space based on the transformed bases X and Y derived via PCA.

Related Work
There is some research in generating neural networks us-
ing other neural networks (cf. Schmidhuber (1992); Stan-
ley et al. (2009); Deutsch (2018), e.g.). However, without
any suitable reduction operations, these approaches cannot
be used to produce self-replicating structures.

Our results on self-application agree with Chang and Lip-
son (2018) on the weightwise reduction. We extended the
experiments with several means of reduction and managed
to find non-trivial, non-zero fixpoints up to a very low error
ε by introducing our weightwise reduction in combination
with our notion of self-training. We augmented the approach
by studying the combination of self-application and self-
training. However, the inclusion of auxiliary fitness func-
tions has not been considered in our work.

The idea to generate fixpoints via repeated self-
application is based on Fontana and Buss (1996), who
showed the emergence of fixpoints from having random ex-
pressions in the λ-calculus interact. They, too, construct an
artificial chemistry system based on their functional abstrac-
tion and see complex structures of fixpoints arise. Sadly,
we did not observe higher-order fixpoints as they did for λ-
expressions. Possible connections between λ-fixpoints or
larger organizational structures in general and fixpoints in
neural networks may still be explored (Larkin and Stocks
(2004)).

In general, a vast amount of research is dedicated to ar-
tificial chemistry systems, utilizing very different represen-
tations for the particles in the soup: Dittrich et al. (2001)
and Matsumaru et al. (2005) provide excellent overviews, to
which we refer for the sake of brevity.

Conclusion
We have presented various reduction operations without any
claim of completeness. Interesting reduction possibilities
like extracting the main frequencies of the weight vector
using a Fourier transformation are still to be tested to full
extent. Most importantly, all settings, architectures and pa-
rameters of the neural networks we constructed still allow
for more thorough exploration and evaluation in future work.

We have also performed some exploration of the distribu-
tion of fixpoints within the weight space by generating lots
of non-trivial fixpoints using our setup of self-training. Es-
pecially discovering some kind of measurement of how rare
fixpoints actually are and if they can occur in all regions of
the weight space would be helpful.

We think that perhaps the most interesting contributions
are the distinct behaviors observed in the soup made of neu-
ral networks (Figure 7). While we evaluated some parame-
ters, there exist many different ways to evolve such a soup
and many different interactions whose effects are yet to be
explored. Early results on an interaction called learn, which
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Figure 8: Evaluation of the impact of the number of trains
per epoch on a soup consisting of 10 neural networks using
the weightwise reduction ⊳ww or the aggregating reduction
⊳agg. Averaged over 10 runs. Per epoch, every network had
a chance of 0.1 to attack another network and was subjected
to a fixed amount of steps of self-training (see the x-axis).
The y-axis shows the amount of (zero or non-zero) fixpoints
present in the final population of the soup.

substitutes the weights of the learning network M with the
weights given via M′ = M ⇝N look most promising but
were left out for brevity.

Eventually, we think that the dynamics of a soup might
open up neural networks to a new kind of learning by not
applying a goal function (and its respective loss) directly
but by simply guiding a soup a certain way, perhaps achiev-
ing more diversity and robustness in the solutions reached
(cf. Prokopenko (2013); Gabor et al. (2018), e.g.).
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Bäck, T., Hammel, U., and Schwefel, H.-P. (1997). Evolution-

ary computation: Comments on the history and current state.
IEEE transactions on Evolutionary Computation, 1(1):3–17.

Box, G. E. (1957). Evolutionary operation: A method for increas-
ing industrial productivity. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 6(2):81–101.

Chang, O. and Lipson, H. (2018). Neural network quine. In Artifi-
cial Life Conference Proceedings. MIT Press.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empiri-
cal evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

Church, A. (1932). A set of postulates for the foundation of logic.
Annals of mathematics, pages 346–366.

Conway, J. (1970). The game of life. Scientific American, 223(4):4.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press,
USA.

Deutsch, L. (2018). Generating neural networks with neural net-
works. arXiv preprint arXiv:1801.01952.

Dittrich, P. and Banzhaf, W. (1998). Self-evolution in a construc-
tive binary string system. Artificial Life, 4(2):203–220.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial
chemistriesa review. Artificial life, 7(3):225–275.

Dorigo, M. and Di Caro, G. (1999). Ant colony optimization: a
new meta-heuristic. In Proceedings of the 1999 congress on
evolutionary computation (CEC99), volume 2. IEEE.

Fontana, W. and Buss, L. (1996). The barrier of objects: from
dynamical systems to bounded organizations.

Gabor, T., Belzner, L., Phan, T., and Schmid, K. (2018). Preparing
for the unexpected: Diversity improves planning resilience in
evolutionary algorithms. In 2018 IEEE International Confer-
ence on Autonomic Computing (ICAC). IEEE.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r., Jaitly,
N., Senior, A., Vanhoucke, V., Nguyen, P., Kingsbury, B.,
et al. (2012). Deep neural networks for acoustic modeling in
speech recognition. IEEE Signal processing magazine, 29.

Koza, J. R. (1994). Spontaneous emergence of self-replicating and
evolutionarily self-improving computer programs. Artificial
life III, 17:225–262.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems.

Larkin, J. and Stocks, P. (2004). Self-replicating expressions in
the lambda calculus. In Proceedings of the 27th Australasian
conference on Computer science-Volume 26, pages 167–173.
Australian Computer Society, Inc.

Matsumaru, N., Centler, F., di Fenizio, P. S., and Dittrich, P. (2005).
Chemical organization theory as a theoretical base for chemi-
cal computing. In Proceedings of the 2005 Workshop on Un-
conventional Computing: From Cellular Automata to Wet-
ware, pages 75–88. Luniver Press.

Minsky, M. and Papert, S. (1972). Perceptrons: An Introduction to
Computational Geometry. Mit Press.

Prokopenko, M. (2013). Guided self-organization: Inception, vol-
ume 9. Springer Science & Business Media.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for
information storage and organization in the brain. Psycho-
logical review, 65(6):386.

Schmidhuber, J. (1992). Learning to control fast-weight memo-
ries: An alternative to dynamic recurrent networks. Neural
Computation, 4(1):131–139.

Schoenholz, S. S., Pennington, J., and Sohl-Dickstein, J. (2017). A
correspondence between random neural networks and statis-
tical field theory. arXiv preprint arXiv:1710.06570.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.
(2017). Mastering the game of go without human knowledge.
Nature, 550(7676):354.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A
hypercube-based encoding for evolving large-scale neural
networks. Artificial life, 15(2):185–212.

Turing, A. (1950). Computing machinery and intelligence. Mind,
59(236):433–460.

431

https://www.mitpressjournals.org/action/showLinks?doi=10.1162%2Fisal_a_00240&system=10.1162%2F106454698568521&citationId=p_1111
https://www.mitpressjournals.org/action/showLinks?doi=10.1162%2Fisal_a_00240&system=10.1162%2Fneco.1992.4.1.131&citationId=p_1124
https://www.mitpressjournals.org/action/showLinks?doi=10.1162%2Fisal_a_00240&system=10.1162%2Fneco.1992.4.1.131&citationId=p_1124


The role of ambient noise in the evolution of robust mental representations in
cognitive systems

Douglas Kirkpatrick1,2,4, and Arend Hintze3,1,2,4
1 Department of Computer Science and Engineering

2 BEACON Center for the Study of Evolution in Action
3 Department of Integrative Biology 4 Michigan State University

hintze@msu.edu

Abstract

Natural environments are full of ambient noise; nevertheless,
natural cognitive systems deal greatly with uncertainty but
also have ways to suppress or ignore noise unrelated to the
task at hand. For most intelligent tasks, experiences and ob-
servations have to be committed to memory and these repre-
sentations of reality inform future decisions. We know that
deep learned artificial neural networks (ANNs) often struggle
with the formation of representations. This struggle may be
due to the ANN’s fully interconnected, layered architecture.
This forces information to be propagated over the entire sys-
tem, which is different from natural brains that instead have
sparsely distributed representations. Here we show how am-
bient noise causes neural substrates such as recurrent ANNs
and long short-term memory neural networks to evolve more
representations in order to function in these noisy environ-
ments, which also greatly improves their functionality. How-
ever, these systems also tend to further smear their representa-
tions over their internal states making them more vulnerable
to internal noise. We also show that Markov Brains (MBs)
are mostly unaffected by ambient noise, and their represen-
tations remain sparsely distributed (i.e. not smeared). This
suggests that ambient noise helps to increase the amount of
representations formed in neural networks, but also requires
us to find additional solutions to prevent smearing of said rep-
resentations.

Introduction
In all but the simplest of forms, artificial and natural minds
need to have experiences, remember them, and use those
memories to inform future actions. Previous work has de-
fined the term “representations” to be the information an
agent has about the environment that is not present in its
sensors (Marstaller et al., 2013). We developed a measure
to quantify these mental representations, referred to as R.
Further work expanded on this method of quantifying repre-
sentations and showed that R can even be used to augment
a genetic algorithm’s (GA’s) performance to find better so-
lutions in a shorter amount of time than an unaugmented
GA (Schossau et al., 2015). In general, the amount of repre-
sentation increases over the course of evolution and allows
neural substrates 1 to deal better with their environments –

1e.g. MBs or ANNs, broadly referred to as brains or agents

clearly, knowing something about the world they live in is
beneficial.

By measuring which components of a cognitive agent
have information about specific aspects of the world, we can
even pinpoint where representations are stored (Marstaller
et al., 2013). Specifically, the measure of R (see Figure 2) is
applied to every node and every concept separately, resulting
in a matrix (M ) of measurements. This method further al-
lows us to determine how distributed (smeared) or localized
these representations are (Hintze et al., 2018) (see Equation
2 for a quantification of the smearedness of matrix M ). We
also found that less smeared representations are more robust
against sensor noise.

All these findings support the notion that representations
are crucial for intelligence, and we can use evolutionary pro-
cesses to create cognitive agents that take advantage of them.
We also know that in deep learning of artificial neural net-
works noise is often used to increase the size or quality of the
training data set (Brown et al., 2003; Lauzon, 2012), but it
also directly can improve training when applied for example
to the gradient descent back propagation (Neelakantan et al.,
2015). Similarly, dropout is another method to improve the
deep learning process due to randomness (Srivastava et al.,
2014). However, noise within the input training set has also
been identified to limit the performance of ANNs (Zhu and
Wu, 2004) as it makes class discrimination difficult. In the
context of these conclusions, the question that we seek to
investigate is how we can improve the amount and quality
of representations that a cognitive system has about its en-
vironment and what the role of sensor (ambient) noise plays
in the evolutionary adaptive process.

In order to test these questions, we evolve different cog-
nitive systems in the presence of different levels and forms
of sensor noise, and study their performance, their ability to
form representations, and their robustness to different types
of noise. From previous experiments, we know that dif-
ferent systems behave very differently during evolutionary
adaptation. Markov Brains (Marstaller et al., 2013; Hintze
et al., 2017), for example, first have to evolve structures to
retain information before they can evolve to take advantage
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of them. Recurrent neural networks on the other hand re-
tain information due to their connectedness and need to only
evolve to use the information. At the same time, we know
that Markov Brains have distinctively discrete representa-
tions, while neural networks tend to smear these represen-
tations across their recurrent nodes. As a consequence, re-
current neural networks in the long run lose their early evo-
lutionary advantage of getting representations for free when
compared to Markov Brains that need to also evolve mech-
anisms to retain information (Hintze et al., 2018). Since
we also have not yet studied how representations form in
other cognitive systems, here we take the opportunity and in-
clude recurrent neural networks that can evolve their topol-
ogy and compare them to Markov Brains using deterministic
logic gates, recurrent neural networks that use a fixed topol-
ogy, and long-short term memory neural networks (LSTMs)
(Hochreiter and Schmidhuber, 1997).

To study these questions of robustness and representa-
tions, the different cognitive systems are tasked to discrim-
inate numbers (Nieder, 2018). Specifically, two different
numbers are presented in sequence, and the cognitive sys-
tem has to identify which of the two numbers is larger (the
first or the second). This computation, however, takes the
cognitive systems some time, and in this time the systems
are additionally fed either noisy or static inputs. These sys-
tems cannot just avoid those noisy inputs (for example by
looking away), but instead need to evolve some cognitive
mechanism to filter out the noise, since the noise is always
present in their sensors.

We will show that cognitive systems tend to increase the
amount of representations that they have as they encounter
sensor noise. They not only increase the amount of repre-
sentations, but also smear those representations across their
neural substrate. While being a proper response to sensor
noise, it also makes them more vulnerable to internal noise
of, for example, faulty components.

Material and Methods
Number Discrimination Task
For this work we adapted the Number Discrimination Task
(NDT), used in biological (Nieder, 2018; Merritt et al.,
2009) and psychological (Merritt and Brannon, 2013) ex-
periments, for use in silico. In this task, participants have
to discriminate two different amounts of items. For bees
(Nieder, 2018) there were landing sites associated with dif-
ferent numbers of squares, and the bees were rewarded when
they landed on the site associated with the correct value. For
rhesus monkeys (Merritt et al., 2009) and humans (Merritt
and Brannon, 2013), the reward is given when the person
or monkey selects the correct value from two collections of
different colored shapes presented on a screen. The basic
principle in silico remains the same in that the agent must
first look at one quantity (the number of ‘1’ signals in the
input), then look at a second quantity (a second, different

1. input:

noise

noise

noise

2. input:

noise

noise

noise

trigger:

Figure 1: Example graphic of the input states for the num-
ber discrimination task. Each agent received a sequence of
inputs, illustrated as black and white circles. The first and
second input are used to determine the numbers to discrim-
inate (here, 2 and 3, respectively), while the other intermit-
tent inputs are ambient noise. Once the trigger is shown, the
agent’s answer about which number is higher is evaluated.

number of ‘1’ signals in a second input), and finally make a
determination of which quantity was larger or smaller.

For our experiments, the agents are given an input vector
consisting of x ‘1’ signals and y ‘0’ signals, where x + y is
equal to 5, and are given 3 updates to process that number.
Then they are given a second input vector consisting of a
different amount of j 1s and k 0s, where x 6= j and j + k is
also equal to 5. After a second set of 3 updates to process the
second number, they are given a final input of 5 ‘0’s, after
which they must indicate if x was greater than j. During
the thinking period, the brains are either given a constant
string of ‘0’s as an input vector, or with probability p each
of the values in the input vector is set to a random value. The
pattern of input vectors is illustrated in Figure 1.

In natural systems subjects are only tested on a handful
of questions. Here we need to properly assess an agent’s
ability to discriminate as part of the evolutionary process,
and thus we test them on all possible input scenarios. For
each number n between 0 and 5 inclusive, all permutations
of n 1s and 5−n 0s are tested against all permutations of the
other values in [0, 5]. As an example, 01001 and 11000 are
both valid permutations for n = 2, and all such permutations
of n = 2 would be tested for all permutations of the amounts
0, 1, 3, 4, and 5. These are additionally tested with both the
larger amount presented first and the smaller number second,
and vice-versa. That is, 01011 as the first amount then 11111
as the second amount is tested as well as 11111 then 01011.

Evolutionary Algorithm The fitness for this task is de-
termined by the number of times that the agent correctly
identifies the larger amount (C) versus the number of times
that the agent does not identify the larger amount correctly
(I). The agent’s fitness is multiplied by 1.1 for every correct
identification and divided by 1.1 for every incorrect identifi-
cation. This results in a fitness function as shown in Equa-
tion 1.

W = 1.10(C−I) (1)

Once the fitness was calculated individually for the entire
population, we used roulette wheel selection, which imple-
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ments a fitness proportional Moran process (Moran, 1958),
to determine which organisms reproduced and formed the
next generation. At every reproductive event, mutations (see
the following subsection for details) are applied to the off-
spring. The agents were evolved for 40,000 generations in
populations of 100 organisms, all starting with different ran-
dom genomes.

Shared Genome
Each of the brains used in this experiment was generated
from the same type of genome. That genome type is a circu-
lar genome with an initial size of 5,000 sites, a maximum
size of 20,000 sites, and a minimum size of 2,000 sites.
A number of mutational operators were used to mutate the
genomes. These were a point mutation operator that had a
probability of 0.005 of changing each site, a copy insertion
operator that had a per site probability of 0.00002 of copy-
ing a section of the genome with a size between 128 and 512
sites and inserting it into the genome at a randomly chosen
site, and a deletion operator that had a per site probability
of 0.00002 of deleting a section of the genome between 128
and 512 sites long. Brains read these genomes sequentially
in order to determine their weights, computational elements,
or topology when required.

Markov Brains
MBs take the form of a compact network of computational
elements (called gates) that read from and write to a series
of nodes. The nodes are divided up into three classes, in-
put, output, and hidden. Input nodes take the input from
the task, output nodes are used by the task to determine the
agent’s actions, and hidden nodes are used by the brain to
store information. All of the MBs used in our experiments
had 8 hidden nodes for memory. For our experiments we
used two types of MBs, each using a single type of gate -
Deterministic Logic or ANN. For a more detailed descrip-
tion see Hintze et al. (2017).

Deterministic Gates Deterministic Logic gates, as used
in the experiments carried out here, read from between 1
and 4 inputs, perform a logic operation (e.g. boolean AND,
boolean XOR) and write the results to between 1 and 4 out-
puts. If two gates write into the same node, their outputs
experience a logical OR operation.

ANN Gates The ANN gates used here simulate a single-
layer version of a simple feed-forward ANN (Russell et al.,
2003). They read from between 1 and 4 inputs, multiply the
inputs by weights stored in a table, and take the tanh of the
sum of the products to write to between 1 and 4 outputs. In
case the outputs of these gates write into the same node, their
outputs are added together.

The construction of Markov Brains with ANN gates tech-
nically allows for arbitrary topologies in the neural network,

and as such breaks the paradigm that ANNs must be orga-
nized in layers. The Markov Brain/ANN hybrids are much
closer technically to RNNs or LSTMs but with a changing
topology.

Recurrent ANNs
While the ANNs used in the ANN Gates are simple feed-
forward mechanisms, more complex versions of ANNs are
possible (e.g. Hochreiter and Schmidhuber (1997); Lauzon
(2012)). As the presence of memory is necessary to examine
representation, we elected to use an ANN augmented with
recurrent nodes (i.e. memory) that was highlighted in pre-
vious work on representations (Hintze et al., 2018), referred
to as an RNN. The structure of the RNN is similar to a stan-
dard ANN with one key difference. Like ANNs, the RNN
is multilayer, feed-forward, and the layer to layer update is
tanh of the sum of weights times the previous layer values.
The difference between ANNs and RNNs is that in RNNs
the input and output layers have additional recurrent nodes
that are copied from the output layer to the input layer at the
end of each update. These recurrent nodes allow the RNN
brains to have memory and store information about the en-
vironment. Each of the RNNs used in our experiments had
8 recurrent nodes, to allow a direct comparison to the 8 hid-
den nodes in the Markov Brains. The number of input and
output nodes is defined by the task.

LSTM Networks
As opposed to the simple recurrence of RNNs, LSTM
networks (Hochreiter and Schmidhuber, 1997) implement
a more sophisticated memory model. LSTMs have been
shown to perform well on tasks that require memory us-
ing Deep Learning (Schmidhuber, 2015), and thus seem
ideal for studying representations. These networks have two
streams of memory, (C and h) intended to replicate long and
short term memory, as opposed to the simple recurring nodes
of RNNs. LSTMs also use a more complicated set of equa-
tions to calculate the update values of the streams and output
nodes. We modified the LSTMs to have 8 hidden nodes by
expanding the memory streams, as described in previous lit-
erature (Hintze et al., 2018). The number of input and output
nodes is again defined by the task.

Representations and R
Representations are the information stored in brain about
environment not present in the sensors. An information-
theoretic measure, R, was developed to measure represen-
tations (Marstaller et al., 2013), and is visualized in Figure
2. For this task, we defined the world states to be binary
states for each number that are true if the agent is seeing that
number as part of the current trial, and a binary state that is
true if the first value is greater than the second. This infor-
mation - which numbers the agent is seeing and the relation-
ship between the numbers - are what we deem necessary for
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the agent to solve the task.
As R is an information-theoretic measure, it is suscepti-

ble to the presence of noise (i.e. the presence of noise will
affect the measurement of R). To ensure that the values of
R would be comparable across different levels of ambient
noise, we discarded the observations of World, Sensor, and
Brain states when ambient noise was being applied to the
sensor states.

We made one modification to the calculation of R, in how
we dealt with the continuous hidden node values in MBs
with ANN gates, RNNs, and LSTMs. To perform the en-
tropy calculations, we used median discretization to first
transform the hidden node values to bit values. This median
discretization ensures that individual node states have maxi-
mum entropy to avoid accidentally introducing other sources
of information into the calculation erroneously. With all
brains having the same number and type of hidden states,
we then calculated R.

Smearedness of Representations
While the measurement of representations is important, R
measures nothing about the structure of those representa-
tions - how the representations are stored in the hidden
nodes. Recent work (Hintze et al., 2018) identified a new
measure regarding representations, the smearedness of rep-
resentations. This measure records how much the represen-
tations are distributed across the hidden nodes of the brain.
That paper had suggested two different types of smeared-
ness - the smearedness of concepts across nodes (SC) and
the smearedness of nodes across concepts (SN ). We found
a strong positive correlation between SC and SN (data not
shown), so for the purposes of this paper we will only look
at SN .

To determine the smearedness of the representations, one
must calculate atomic R - information stored about one as-
pect of the environment in one hidden state not including
the information from the sensor. With the atomic R Mji for
every environmental concept j and hidden node i, we can

R

W B

S

H(W |S,B) H(B|W,S)

I(S : B|W )

H(S|W,B)

I(W : B : S)

I(W : S|B)

Figure 2: Venn diagram of entropies and informations for
the three random variables W (world), S (sensor), and B
(brain) describing all possible states the system can be in.
The representation R = H(W :B|S) is shaded.

then use Equation 2 to calculate SN . To handle the continu-
ous hidden node values in MBs with ANN gates, RNNs, and
LSTMs, we used the same discretization process used in the
computation of R (see the above section for details).

SN =
∑

i

∑

j>k

min(Mji,Mki) (2)

The approach used here measures the representations each
node has about each concept separately. However, sets of
nodes can share (encrypt) information about concepts, and
vice-versa. One could compute all information between all
subsets, which would allow for a more precise way to iden-
tify how information is smeared across nodes, and about
which concepts such information is smeared. The complex-
ity for a system of n nodes and c concepts is unfortunately
2n+c which is technically impractical.

Robustness to Internal Noise
In order to determine if the agents are forming meaningful
representations (i.e. representations that are useful to per-
formance) we introduce a new measurement, referred to as
robustness. This measure is designed to have a higher value
when the agent is more robust to noise in its hidden states
and a lower value when the agent is less robust to noise in
its hidden states. Robustness to internal noise is designed
to be an approximate measure of how well an agent could
handle faulty memory or internal states. To calculate this ro-
bustness, we test each agent on the task while applying noise
to the internal states (e.g. the hidden states in Markov Brains
or the recurrent nodes in RNNs). The noise is quantified by
a probability p, where p is the chance that for each hidden
state that the agent has, on each update of the agent that state
will be set to a random value between −1 and 1. We test the
agents with p at a range of values P between 0 and 1, and
find the percentage of the trials that the agents get correct,
defining the fitness function. The robustness is the sum of
the percentages over all values of p (Equation 3).

Robustness =
∑

p∈P
PercentCorrectp (3)

For our experiments, P = [0.0, 0.001, 0.005, 0.01, 0.02,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.2, 0.3,
0.4, 0.5, 1.0].

Experimental Setup
For each of the 4 brain types outlined above, we evolved
populations on the Number Discrimination Task with vary-
ing levels of ambient noise. The noise levels tested (i.e. the
probability that each sensor input becomes randomized in-
stead of being kept at 0) were 0.0, 0.25, 0.50, 0.75, and 1.0.
We ran 400 independent evolutionary experiments for each
brain and noise level condition, each with a different random
starting condition. At the end of evolution, we analyzed the
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brains along the line of descent (Lenski et al., 2003), mea-
suring their performance, R, the smearedness of nodes, and
the robustness to internal noise.

Results
As we are dealing with a different environment than
previously studied in the context of representations and
R (Marstaller et al., 2013), we must first establish that the
agents can evolve to perform and develop representations
in this environment. We find that regardless of brain type
(Markov Brain logic gates, Markov Brain ANN gates, RNN,
or LSTM) and regardless of noise level (0, 0.25, 0.5, 0.75,
1.0), all brains generally evolved to perform the task (see
Figure 3 left column). By the end of evolution, around 11%
of the MB agents evolved with deterministic logic gates,
3.5% of the MB agents evolved with ANN gates, 35% of
the RNN agents, and 4% of the LSTM agents had reached
perfect performance, averaged across all noise conditions.
However, it seems as if there is a specific difference be-
tween MBs (logic or ANN gates) and the two other types
(RNN and LSTM) in the way evolutionary adaptation is af-
fected by noise. While MBs experience a drop in perfor-
mance when noise is introduced (0.25), they become better
adapted the noisier the environments are (see Figure 3 right
column). RNNs and LTSMs evolve immediately better with
low noise (0.25) and struggle to become optimal the more
noise they encounter.

The degree to which the different types of brains evolve
representations on the other hand is affected differently by
noise. The total information that MBs evolve to have about
their environment seems to be unaffected by noise, while
all other systems evolve to store more information the more
noise they encounter (see Figure 4). As previously ob-
served (Marstaller et al., 2013) MBs using deterministic
logic gates end up having the largest amount of R initially,
which might explain that additional sensor noise does not
encourage them to evolve even more R. The other types
of brains instead evolve to have more representations given
more noise. We speculate that MBs with ANN gates, RNNs,
and LSTMs need to do that in order to compensate for the
noise. Intuitively, this is supported by the idea that one needs
to remember better if one’s sensors are flooded with noise.
While this is a conjecture at this point, we will further inves-
tigate this question, but we need to first ask to what degree
the representations that these systems evolve are smeared or
distinct.

To measure the smearedness of representations, one first
identifies which component of the brain has how much infor-
mation about the concepts of the world. This is comparable
with the idea of “grandmother neurons”, where specific neu-
rons represent specific memories, here of the grandmother
(for a more critical discussion see Quiroga et al. (2013)).
Smearedness does not assume the existence of grandmother
neurons, but only quantifies the degree to which represen-
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Figure 3: Performance Over Time. For each type of brain
(MB, MB using ANN gates, RNN, and LSTM see labels) the
average performance on the line of descent for all replicate
experiments (left column). The black solid line is 0.0 noise,
the blue line is 0.25 noise, the green line is 0.5 noise, the red
line is 0.75 noise, and the black dotted line is 1.0 noise. The
right column shows the distribution of performances includ-
ing the 25% and 75% confidence intervals and their outliers
for all brains under all experimental noise conditions.

tations are either stored in individual nodes (or neurons) or
distributed over many. The less smeared R is the sparser
and more distinct representations are. We find that, except
for MBs using deterministic logic gates, all other brain types
evolve to have more smeared representations the more noise
they encounter (see Figure 5).
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Figure 4: R Over Time. For each type of brain the average
value of R on the line of descent for all replicate experiments
(left column). The black solid line is 0.0 noise, the blue line
is 0.25 noise, the green line is 0.50 noise, the red line is
0.75 noise, and the black dotted line is 1.0 noise. The right
column shows the distribution of performances including the
25% and 75% confidence intervals and their outliers for all
brains under all experimental noise conditions. There is a
line in every subgraph in the right column at the height 1.5
to allow for a comparison between brain types.

We further find, that the degree of this smearing is corre-
lated to the amount of R each agent evolved (see Figure 6).
Those agents that evolve to have a lot of information about
the environment, also smear these representations.

As mentioned before, we assume that brains evolve to
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Figure 5: Smearedness of Nodes Over Time. For each type
of brain the average value of SN on the line of descent for
all replicate experiments (left column). The black solid line
is 0.0 noise, the blue line is 0.25 noise, the green line is 0.50
noise, the red line is 0.75 noise, and the black dotted line is
1.0 noise. The right column shows the distribution of per-
formances including the 25% and 75% confidence intervals
and their outliers for all brains under all experimental noise
conditions.

have more representations as a functional response to more
noise in the environment, and that the smearing of these rep-
resentations over their hidden states is functional as well. If
this is the case, the representations that get smeared need to
contribute to performance, otherwise it could be coinciden-
tal or a measurement artifact. To test this, we determine the
robustness to internal noise and correlate this robustness to
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of the data for each condition. Each column corresponds to
a specific brain type, and each row corresponds to a given
ambient noise level

R as well as the smearedness SN . We find that in the major-
ity of cases, the more representations the brains evolve the
more they are effected by internal noise (see Figure 7). Only
RNNs are somewhat unaffected and do not show a strong
correlation between R and robustness to internal noise.

The same correlation can be found between the smeared-
ness of representations and robustness to internal noise (see
Figure 8 for the correlation of SN and robustness). This
shows that as hypothesized the increase of representations
and their smearing over internal nodes is indeed functional
and not just coincidental or a measuring artifact.

Discussion
Here we investigated the role that sensor noise has on the
ability of different cognitive systems to evolve representa-
tions. Specifically, MBs with deterministic logic gates and
ANN gates, RNNs, and LSTMs were used as examples of
cognitive systems. We already knew that the smearing of
representations, as happens in RNNs and LSTMs, makes
these systems more vulnerable to internal noise. The hope
was to improve our ability to evolve these systems by intro-
ducing sensor noise. While adding noise improves the per-
formance of RNNs and LSTMs, MBs seem to be unaffected
regardless of using logic gates or ANN gates. However,
except for RNNs, those systems that improve their perfor-

14

16

Ro
bu

st
ne

ss

MB

0.00
15.0

17.5

MB/ANN

13

14

15
RNN

12.5

15.0

17.5
LSTM

14

16

Ro
bu

st
ne

ss

0.25
15.0

17.5

13

14

15

12.5

15.0

17.5

14

16

Ro
bu

st
ne

ss

0.50
15.0

17.5

13

14

15

12.5

15.0

17.5

14

16

Ro
bu

st
ne

ss

0.75
15.0

17.5

13

14

15

12.5

15.0

17.5

0.5 1.0 1.5
R

14

16

Ro
bu

st
ne

ss

1.00

0 1
R

15.0

17.5

1 2
R

13

14

15

0.5 1.0 1.5
R

12.5

15.0

17.5
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noise, measured at the end of each evolutionary run. The
dotted line in each subplot is the line of best fit of the data for
each condition. Each column corresponds to a specific brain
type, and each row corresponds to a given ambient noise
level

mance due to noise increase the amount of information that
they have about the environment (R) and also smear these
representations over their hidden states. Furthermore, these
smeared representations are functional since they make the
networks more susceptible to internal noise. Even though
we did not test our hypotheses on more systems, we assume
that our results can generalize to other types of computa-
tional cognitive models. Similarly, we only used the num-
ber discrimination task, and it is possible that other tasks
respond differently. Both points suggest to test the effect of
sensor noise in other cognitive systems and on other cogni-
tive tasks. Here we also focused on evolutionary adaptation,
and in most other cases RNNs and LSTMs are not trained by
a genetic algorithm but instead gradient descent deep learn-
ing. This strongly suggests that we need to explore how
these systems develop representations and to what degree
the representations are smeared in the deep learning context.

Conclusion
We found our initial intuition confirmed that the evolution
of cognitive systems can be improved by using sensor noise,
more so with RNNs and LSTMs than with Markov Brains.
However, this improvement comes with a price which one
might only pay under certain conditions. Using sensor noise
to improve a neural networks ability to evolve will only help
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Figure 8: Smearedness of Nodes vs. Robustness. Each
subplot is the scatterplot distribution of the value of SN ver-
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if internal noise can be prevented.
Markov Brains using only deterministic logic gates ex-

perience a slight loss in performance due to noise, and do
not form more representations and also do not further smear
them. While this means that they do not experience a ben-
efit from sensor noise, they also naturally do not smear rep-
resentations. However, they also tend to have more repre-
sentations at the end of evolutionary adaptation anyways.
This suggests that one should use sensor noise in order to in-
crease the amount of representations cognitive systems such
as RNNs and LSTMs evolve. But at the same time, we
should find another way to prevent systems from smearing
said representations.
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Abstract

We present a new method for addressing the challenge of
continual learning wherein an agent must adapt to new tasks
while maintaining high performance on previously learned
tasks. To accomplish this, an agent must identify previously
acquired information that generalizes to the new task while
also adapting its internal model to learn information that is
specific to the new task. Our approach is based on neuro-
genesis, which involves adding new neurons to a previously
trained neural network in an intelligent way. To our knowl-
edge, we are the first to leverage probabilistic programming
within the framework of evolutionary computation to opti-
mize the growth of neural networks for continual learning.
Through a series of experiments, we show that our approach
is able to consistently find better performing solutions than
genetic algorithms and it is able to do so faster.

Introduction
In this work, we consider the challenge of continual learn-
ing. Agents that act and learn in the real world must develop
the skills to handle a wide variety of different tasks. These
tasks are inevitably associated with different distributions of
observations and responses. The diversity of tasks encoun-
tered in complex environments may make the task of con-
tinual learning seem improbable at best, and impossible at
worst. However, tasks are often related to one another. For
example, some of the visual attributes that an autonomous
vehicle learns for detecting cars on the road may also be used
when learning to identify motorcycles. Thus, an agent may
be able to avoid learning a new task from scratch. The key is
for the agent to efficiently determine what information from
previous tasks is reusable for a new task and to update its in-
ternal decision making models with new, task-relevant infor-
mation while avoiding catastrophic forgetting. Succinctly,
an agent must be able to learn new tasks efficiently while
not forgetting how to perform previously learned tasks.

There are a variety of methodologies for tackling the con-
tinual learning problem [Parisi et al., 2019]. Existing ap-
proaches can be roughly divided into three categories: those
that focus on consolidating synapses in a neural network that
are critical to retain previous knowledge [Kirkpatrick et al.,

2017; Zenke et al., 2017; Aljundi et al., 2018; Kolouri et al.,
2019]; those that employ either an explicit memory buffer
or a generative model to be able to interleave the learning of
new knowledge with that based on stored or generated data
for the old tasks [McClelland et al., 1995; Ans et al., 2004;
Atkinson et al., 2018; Ketz et al., 2019]; and those that dy-
namically change the structure of the neural network to ac-
commodate new knowledge [Rusu et al., 2016; Draelos et
al., 2017; Yoon et al., 2017]. Here, we address the challenge
of continual learning by intelligently adding new neurons to
an existing neural network (neurogenesis) so that it learns to
solve a new task without forgetting how to solve previously
learned tasks. The challenge is in determining how many
neurons to add and where to add them so that a desired ac-
curacy on the new task is achieved with as few new neurons
as possible. In our approach the network is able to learn to
leverage knowledge that was acquired when learning previ-
ous tasks, but which is relevant to the new task. This infor-
mation sharing can substantially reduce the number of new
neurons that need to be added to achieve a desired level of
performance.

Our approach takes a unique angle towards neurogene-
sis by treating it as an optimization problem and using a
novel combination of probabilistic programming and evolu-
tionary computation. Specifically, we leverage the Estima-
tion of Distribution Algorithm (EDA) framework. However,
instead of representing the distribution over solutions using
a Bayesian network, which is most common, we use a prob-
abilistic program designed specifically for neurogenesis.

This paper is organized as follows. We first discuss rel-
evant background and then move on to our methodology,
which covers neurogenesis and our estimation of distribu-
tion algorithm. We then describe our probabilistic program
and learning process. Next, we describe our experimental
setup and results, and lastly provide a discussion and con-
cluding remarks.

Background
The approaches described here involve modifying the ar-
chitecture of a neural network to enable continual learning
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without catastrophic forgetting. In Rusu et al. [2016], when
a new task arrives, a new sub-network is added to the par-
ent network to facilitate learning. The sub-network receives
connections from the parent network so that it can integrate
previously learned useful information, but the weights in the
parent network remain fixed. This approach prevents catas-
trophic forgetting, but does not scale well with increasing
numbers of tasks. In contrast, our approach learns where
and how many neurons to add.

Draelos et al. [2017] proposed the neurogenesis deep
learning (NDL) model to incrementally train an autoencoder
on new MNIST digits by adding new neurons at each layer
and employing a pseudo-rehearsal process called “intrinsic
replay” for preserve the performance on the old MNIST dig-
its. Yoon et al. [2017] proposed a dynamically expanding
network (DEN) that selectively adapts network weights and
also expand network structure at each layer as needed using
group sparse regularization in an online manner to facili-
tate the sequential learning of tasks. These approaches are
computationally efficient because they only leverage local
statistical properties of neurons and/or layers. However, this
is also a disadvantage because they will often fail to identify
the best solutions. In contrast, our approach encodes an effi-
cient global search process and thus has a higher probability
of finding optimal or near-optimal solutions.

Another popular approach is to use principles of self-
organization to incrementally “grow” a neural network. Re-
cent examples include Part and Lemon [2017] and Mici et
al. [2018]. These approaches share a similar advantage in
terms of computational efficiency, but also the disadvantage
of not performing a global search like our approach.

Methodology
In this section, we describe the components of our approach.
We start with a description of our neurogenesis-based ap-
proach to the continual learning problem. Next, we de-
scribe the estimation of distribution algorithm [Larraaga
and Lozano, 2001], which is our overarching optimization
method. Then, we discuss the probabilistic program learner
(PPL) that generates new individuals and is the heart of our
approach. Lastly, we describe the learning procedure used to
adapt the parameters of the PPL so that it focuses on promis-
ing regions of the search space.

Neurogenesis for Continual Learning
In this work, we focused on adding new neurons to fully
connected, feed-forward neural networks, however, our ap-
proach is equally applicable to recurrent and convolutional
networks. Our method is initialized with a neural network
that has been previously trained on one or more tasks. The
neurogenesis process begins when a new task is presented.
Here, we do not address the need to identify the arrival of
a new task, but in practice, assuming that the input distribu-
tion for the new task is different, one can identify changes

Figure 1: Example of neurogenesis used in our approach,
illustrated here for continual learning of optical character
recognition tasks. The layers of the parent network are
shown in blue, while the newly added neurons are shown
in gray. The black connections have fixed weights, while
the green connections have trainable weights. A new head
(shown in purple) is added to act as the output layer for
the new task. This prevents the green connections, whose
weights are trained on the new task, from interfering with
the parent network’s performance on the old task.

in the statistics of the neuron activations in the penultimate
layer of the network to infer that a new task has arrived. An
example of neurogenesis is shown in Figure 1. The gray
blocks are new neurons. The weights on the black connec-
tions were learned from a previous task and are fixed, while
the green connections are new and have trainable weights.
First, a new output (classification/prediction) layer is added
to the network. Next, new neurons are added and connec-
tions are established. When new neurons are added to a layer
it effectively creates a new layer that emits new connections
(green) to the new neurons in the nearest layer above, which
may be the output layer. Additionally, if new neurons are
added to the first hidden layer, then new connections are es-
tablished from the input layer to these neurons. Restrictions
on the connectivity patterns of new connections ensure that
the performance of the network on old tasks is not altered.
This is because the activations of new neurons do not affect
the activations of old neurons.

Estimation of Distribution Algorithm
Estimation of Distribution Algorithms (EDAs) are a class of
evolutionary computation algorithms [Larraaga and Lozano,
2001]. Unlike most EC algorithms, EDAs explicitly encode
a probability distribution over the search space from which
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new individuals are generated. Rather than using mutation
and crossover operators, an EDA adapts the parameters of a
probabilistic model during the optimization process so that
new individuals are increasingly likely to be selected from
good regions of the search space. In our approach the prob-
abilistic model is a probabilistic program, which is described
in the next subsection.

Figure 2 shows a diagram of our EDA. The process begins
by generating a new population of individuals using the pro-
gram. Each individual is a neural network and is trained on a
pre-defined task, such as a classification problem. Next, the
fitness of each individual is computed. We use a fitness func-
tion that captures the trade-off between classification accu-
racy and model complexity. The fitness function is given
by

Fitness = k · accuracy − complexity, (1)

where accuracy ∈ [0, 1] and is the accuracy on the new task,
complexity is the model complexity given by the number of
new neurons divided by the number of neurons in the parent
network, and k ∈ R+. The selection process then proceeds
in two separate steps. First, one individual is selected using
tournament selection. This provides some degree of explo-
ration since the individual with the highest fitness may not
be selected. Second, we use a hall-of-fame that always and
only contains the best performing individual found over the
course of the entire optimization process. If the fitness of
the best performing individual in the current population ex-
ceeds the best fitness found thus far, then it becomes the
individual in the hall-of-fame. The last step is to update the
parameters of the probabilistic program. This is done using
the newly selected individual and the individual in the hall-
of-fame, which may be the same. Updating the parameters
tends to adjust the probability distribution represented by the
probabilistic program in such a way that it is more likely to
sample from good regions of the search space. At this stage
the EDA either generates a new population using the up-
dated program or terminates. In this work the termination
criterion is that the elapsed wall-clock time has exceeded 21
min, though other criteria are possible, such as those based
on a maximum number of iterations or fitness level.

Probabilistic Program Learner
Our approach uses a probabilistic program as a generative
model to create new individuals. It has trainable param-
eters that are adjusted through a learning process, so that
over the course of the optimization, individuals are sampled
with increasing frequency from the best regions of the search
space. We refer to this component as the Probabilistic Pro-
gram Learner (PPL). Figure 3 shows a diagrammatic repre-
sentation of the PPL. The purple boxes are random variables
that specify the characteristics of the individuals, such as
the number of new neurons to add. The light blue boxes
are latent (unobserved) random variables that control the

Figure 2: Our EDA used to execute neurogenesis. The
uniqueness of our approach lies in the probabilistic program
that learns to generate good performing individuals.

shapes of the probability distributions governing the afore-
mentioned characteristics. These boxes each contain a de-
scriptive name, the data type of the random variable, and the
form of the probability distribution from which it is drawn.
The dark blue boxes represent learnable parameters, hence
the word “learnable” in the acronym PPL. They show the
names of the parameters, their data types, and initial values.
The program input (gray box) specifies a list of the max-
imum numbers of new neurons that may be added to any
layer and the number of layers in the parent network, both
of which are fixed throughout the optimization process.

We now describe the stochastic process of sampling from
the PPL to generate a new individual. The sub-process
shown at the top of Figure 3 begins by sampling a parameter
ps ∼ Dirichlet(c), where c is a learnable parameter. Next,
an index is drawn from Indmax ∼ Multinomial(1, ps).
This index is used later in the program to access the array
MaxSizes. The next sub-process begins by sampling a list
of parameters pn ∼ Beta(alphas, betas), where alphas
and betas are learnable parameters. The parameters pn
are the individual probabilities of selecting each of the lay-
ers in the parent network to receive new neurons. Next,
the layers that will receive new neurons are selected ac-
cording to L ∼ Bernoulli(pn), where L is a Boolean ar-
ray. The last sub-process selects how many new neurons to
add to each layer m ∈ N . The control logic allows new
nodes to be added only to those layers selected in the sec-
ond sub-process (i.e., L[m] == True). The probability
of adding a single new neuron to layer m is drawn from
pa ∼ Beta(alpham, betam), where alpham and betam are
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Figure 3: Illustration of the probabilistic program learner used in our approach.

learnable parameters. The total number of new neurons to
add to the mth layer is sampled from a binomial distribution
according to Nm ∼ Binomial(MaxSizes[Indmax], pa),
where MaxSizes[Indmax] is the maximum number of new
nodes that can be added to any layer. Once the loop is com-
pleted, the program output specifies where and how many
new neurons to add, which is sufficient to build a new indi-
vidual.

Learning
In each generation of the optimization process, after selec-
tion has occurred, the learnable parameters of the proba-
bilistic program are updated based on the attributes of the
selected individuals. We refer to these attributes as observ-
able variables and denote them by x. For each individual,
the observables are the maximum number of new neurons
per layer (Indmax), the layers that are permitted to receive
new neurons (L), and the number of new neurons in the
mth layer (Nm). The random variables that are not observ-
able are referred to as latent variables and are denoted by z.
The latent variables in our model are ps, pn, and pa, which
are described in the previous section. For each individual,
the learning algorithm updates the parameters (c, alphas,
betas, alpham, and betam) so that the probabilistic program
is more likely to generate similar individuals in subsequent
generations. We used stochastic variational inference as the

learning algorithm [Hoffman et al., 2013].

Experimental Setup
We applied our approach to a variant of the MNIST optical
character recognition problem [LeCun et al., 1998]. Our
setup is shown in Figure 4. First, a “parent” neural network
was trained to classify gray-scale images of handwritten dig-
its from 0 to 9 (old task). The training dataset consisted of
1000 randomly selected images with approximately 100 im-
ages per class. The parent networks used in our experiments
achieved an average testing accuracy of 87.4%. The images
were flattened into a 748-dimensional vector. The parent
network consisted of 3 hidden layers with hyperbolic tan-
gent (tanh) activation functions. There were 50, 30, and 20
neurons in the first, second, and third hidden layers, respec-
tively.

A new task was created by randomly generating a per-
mutation mask and applying it to each of the images in
the dataset. The training dataset for the new task consisted
of 1000 randomly selected, permuted images with approxi-
mately 100 images per class. The permutation mask was cre-
ated by randomly selecting two non-intersecting sets of pixel
indices, and then swapping the corresponding pixels in each
image. In our experiments, 50% of the pixels in each image
were modified. The resulting new task was similar enough to
the old task that some information from the parent network
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was still valid, but different enough that adding new neu-
rons significantly improved performance on the new task. If
no new neurons were added, the parent network would ex-
perience catastrophic forgetting (loss of performance on the
old task) due to the change in the input distribution. We set
the maximum number of new neurons that could be added
to any layer at 50. This leads to a total of 503 = 125, 000
unique individuals.

We set the parameter k in Equation 1 to 10.0. We found
that smaller values of k resulted in the complexity term
dominating the fitness, which resulted in a fairly simple fit-
ness landscape with the global optimum being achieved by
adding only 1 to 3 neurons at any layer. In contrast, set-
ting k = 10.0 provided better balance between accuracy
and complexity, and consequently, a more challenging op-
timization problem with many good, but suboptimal, local
minima. For this setting, the global optimum is achieved
by adding 16 new neurons to the first hidden layer and no
new neurons to the second and third hidden layers. How-
ever, good, but sub-optimal, local minima can be achieved
by adding new neurons to only the second or third hidden
layers.

We used a genetic algorithm (GA) as basis for compari-
son with our approach. Genetic algorithms [Whitley, 1994]
are a good fit to this problem due to the discrete nature of
the search space. For the GA, an individual was encoded
as a vector of length 3, where the values of the components
indicated the number of new neurons to add in each of the
three hidden layers. The maximum number of new neurons
that could be added to any layer was 50. We used a popula-
tion size of 30 and tournament selection with a tournament
size of 3. Among the selected population, an individual was
chosen for crossover with another randomly chosen individ-
ual with probability 0.5 and was chosen for mutation with
probability 0.2. Once selected for mutation, each entry in
the individual was mutated uniformly at random with prob-
ability 0.3 to a value in the interval [0, 50]. The relatively
high mutation rate was found to prevent pre-mature conver-
gence to poor solutions. We used two-point crossover with
the crossover points being selected uniformly at random.

Results
We compared the performance of our approach to those of
the GA using the experimental setup described in the pre-
vious section. We ran a total of 150 trials for the two ap-
proaches combined. Each trial started with a newly ini-
tialized population, and parameters in the case of the PPL,
and then the optimization process was run for 21 minutes
of wall-clock time. Wall-clock time was used because both
the GA and our approach are randomized search algorithms
and on average one generation of our approach takes longer
than the GA due to the probabilistic inference. The aver-
age accuracy attained on the new task by the solutions from
our approach was 87.7% and for the GA it was 87.6%. The

relationship between accuracy and fitness is shown in Eq.
1. The fact that the accuracy is close to that of the parent
network on the old task (87.4%) illustrates the effectiveness
of neurogenesis for continual learning. The typical solution
found by PPN was 12-17 new neurons added only to the first
layer. The typical solution found by the GA had greater vari-
ability and was either 11-20 new neurons added only to the
first layer or 13-20 new neurons added only to the second
layer. Based on a large number of experimental trials, we
observe that the global optimal solution is approximately 16
new neurons added only to the first layer.

The results of the first analysis are shown in Figures 5
and 6. Each figure shows the average best fitness achieved
by the PPN (blue) and GA (red) as a function of elapsed run
time in minutes. Figure 5 is from 2 to 5 minutes and the
Figure 6 is from 5 to 21 minutes. Based on the curves in
Figure 5, it can be seen that on average PPN reaches near
optimal solutions (a fitness of about 60.0) within the first 2
minutes of simulation time, whereas it takes the GA about
5 minutes to reach a comparable level of fitness. Figure 6
shows that in the long run our approach continues to improve
and outperform the GA.

The next analysis examined the consistency with which
the PPN and GA were able to find solutions that achieved
particular fitness levels. Figure 7 shows the fraction of trial
runs on which the best fitness found exceeded various lower
bounds. The results for the PPN are in blue and those of the
GA are in red. We can see that for each fitness lower bound
on the x-axis, our approach exceeds the success frequency of
the GA, and for the higher (more difficult to achieve) fitness
levels (> 61) the success rate of our approach is at least
double that of the GA. These results demonstrate that our
approach consistently finds better solutions than the GA.

Discussion
We have demonstrated the effectiveness of our approach by
showing that it is able to consistently find better perform-
ing solutions than the GA and it is able to do so faster. We
believe that one of the primary reasons for this is that the
probabilistic program represents a distribution over distribu-
tions, which promotes exploration and thus the discovery of
better solutions more quickly. As can be seen in Figure 3,
the parameters (ps, pn, pa) of the distributions governing
the observable random variables (Indmax, L, Nm), which
control the structural attributes of an individual, are them-
selves (latent) random variables. When running the program
in the forward direction to generate a new individual, we
must sample the latent random variables first and then use
them to determine the distribution over the observables.

Another reason for the effectiveness of our approach is
that it is easy to incorporate prior knowledge about a domain
directly into the search process. Our probabilistic program,
rather than using crossover and mutation operators to implic-
itly define the search distribution, enables the designer/user
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Figure 4: Illustration of our experimental setup. On the left, a parent network is trained to classify images of handwritten
digits (0-9). A new task is created by randomly generating a permutation mask that randomly and uniformly selects 50% of the
pixels to be swapped. The mask is then applied to each image. This way the new task is different, but still related to the old
task. Neurogenesis is shown on the right. Our approach identifies where new neurons should be placed to minimize network
complexity while achieving good classification performance on the new task (corrupted digits). The new (green) connections
have trainable weights, while the weights on the old (black) connections remain fixed to prevent catastrophic forgetting.
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Figure 5: Comparison of the average best fitness found over
the first 5 minutes of optimization time. The fitness val-
ues used for plotting have been shifted by -8.0 and scaled
by 100.0. This was done solely for the purpose of im-
proving visual interpretability of the results. Our approach
(blue) quickly finds near optimal solutions, while the GA
(red) is slower to find good solutions. Our approach starts
much higher due to the informative prior in the probabilis-
tic program. As a point of reference, when a parent net-
work makes predictions on the new task prior to neurogen-
esis (complexity = 0 in Eq. 1) the expected fitness is -400
(accuracy = 0.4). The error bars are 90% confidence inter-
vals.

Figure 6: Comparison of the average best fitness found over
the next 5 to 21 minutes of optimization time. The fitness
values used for plotting have been shifted by -8.0 and scaled
by 100.0 to improve readability. Our approach (blue) con-
tinues to improve, while the GA (red) stagnates. The error
bars are 90% confidence intervals.

Figure 7: Comparison of how often our approach (blue)
finds solutions with fitness values exceeding various lower
bounds. The fitness values used for plotting have been
shifted by -8.0 and scaled by 100.0 to improve readability.
For each fitness lower bound, our approach exceeds the GA.
The error bars are 90% confidence intervals.

to build in semantics that are believed to be important. We
were able to take advantage of this with the portion of the
program that selects the layers that are permitted to receive
new neurons. Our original formulation of the PPL did not
have this logic, but we quickly realized based on empirical
observations that it is important to efficiently explore regions
of the search space where one or more layers do not receive
any new neurons. Subsequently, a simple modification to
our program enabled this enhancement.

Conclusions
We have demonstrated a new approach to neurogenesis
based on probabilistic program learning. Our method helps
to address the continual learning problem wherein learning
occurs sequentially on different tasks. In this setting, when
learning a new task, it is of utmost importance to avoid catas-
trophic forgetting of previously learned tasks. However, pre-
viously learned information that generalizes to the new task
should be leveraged to limit growth in the complexity of the
learning model.

Past work on neurogenesis has largely focused on em-
ploying ad hoc rules or leveraging local statistical proper-
ties of neurons and/or layers [Draelos et al., 2017; Yoon
et al., 2017] to decide the number and location of the new
neurons. In contrast, our approach employs an efficient
global search process using a probabilistic program, which
has a higher probability of finding optimal or near-optimal
solutions. Moreover, the probabilistic program process al-
lows for easy integration of new features and rules to bet-
ter regulate the addition of new neurons. In the future we
will also validate our framework for continual learning us-
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ing reinforcement learning tasks (e.g., those from the Ope-
nAI Gym) and more challenging datasets such as ImageNet
[Krizhevsky et al., 2012], and make comparisons with ad-
ditional methods such as evolution strategies. Another av-
enue we plan to pursue is extending our approach to convo-
lutional neural networks (CNNs). In this application, instead
of adding new neurons, PPL would add new feature maps to
the convolutional layers.
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Abstract

It has recently been demonstrated that a Hopfield neural net-
work that learns its own attractor configurations, for instance
by repeatedly resetting the network to an arbitrary state and
applying Hebbian learning after convergence, is able to form
an associative memory of its attractors and thereby facili-
tate future convergences on better attractors. This process of
structural self-optimization has so far only been demonstrated
on relatively small artificial neural networks with random or
highly regular and constrained topologies, and it remains an
open question to what extent it can be generalized to more bi-
ologically realistic topologies. In this work, we therefore test
this process by running it on the connectome of the widely
studied nematode worm, C. elegans, the only living being
whose neural system has been mapped in its entirety. Our re-
sults demonstrate, for the first time, that the self-optimization
process can be generalized to bigger and biologically plau-
sible networks. We conclude by speculating that the reset-
convergence mechanism could find a biological equivalent in
the sleep-wake cycle in C. elegans.

Introduction
Caenorhabditis elegans is a one-millimeter-long soil worm
of the nematode family. It consists of only 959 cells, of
which 302 belong to the nervous system. C. elegans is a
case study model for biology (Girard et al., 2006), thanks
to its small cell count, short lifespan and rapid reproduc-
tion. The full understanding of cellular development and
the function of neural system mechanisms in human biol-
ogy remains an open question, which makes C. elegans a
good alternative. C. elegans is the first multicellular organ-
ism whose genome has been sequenced in its entirety (Wa-
terston and Sulston, 1998), as well as the first animal from
which the complete mapping of synaptic connections, called
the connectome, has been completed (White et al., 1986).
Knowledge of the connectivity of a complete neural system
can help to better understand genetic and molecular mecha-
nisms in neuroscience.

Network science provides further information concerning
the structure of the C. elegans connectome, such as the sta-
tistical and topological properties of the network (Watts and
Strogatz, 1998; Varshney et al., 2011). In terms of worm’s

network dynamics, simulation models have begun to play a
bigger role in the experiment-theory cycle in an attempt to
better understand the neural underpinnings of worm behav-
ior (Izquierdo, 2018). C. elegans has been studied also in
the artificial life research community (Kitano et al., 1998;
Winkler et al., 2009; Hattori et al., 2012; Izquierdo and
Beer, 2015; Beer and Izquierdo, 2016; Aguilera et al., 2017).
However, so far these simulation models have only worked
with smaller circuits, and not with the whole connectome,
and so the properties of the connectome’s state space remain
underexplored.

In this paper we therefore go the other way: we abstract
away from the worm’s situated behavior, and focus on the
dynamics of its whole connectome. In particular, we are
interested in determining if the connectome is able to self-
optimize its connectivity, namely by forming an associative
memory of its attractors such that the convergence of neural
states is biased toward better attractors.

The self-optimization process
The self-optimization process used in this paper is based on
the work of Watson et al. (2011), using the original network
model proposed by Hopfield (1982). We have two discrete
values for the states in the network si = ±1. Such values
represent the activity of a neuron. Model dynamics include
asynchronous neuron state updates, calculating with the fol-
lowing equation:

si(t+ 1) = θ

[
N∑

j

wijsj(t)

]
(1)

where wij is the connection weight between neuron i and j,
and θ is the Heaviside threshold function (taking values −1
and +1 as negative and positive arguments, respectively).

In order to be able to test the connectome’s convergent
states with respect to its original connectivity, we differen-
tiate two parts of wij , wO

ij represents the original configu-
ration of the edges at the beginning of the process, and wL

ij

store the Hebbian learning changes. Both make up the cur-

448



rent weights of the network:

wij = wO
ij + wL

ij (2)

In the Hopfield network model, a node i satisfy a constraint
posed by its interaction with node j if sisjwij > 0. While
actual interaction with neighbors determines the state up-
date si, system energy represents the degree to which inter-
nal constraints with the original weight configuration, wO,
remain unsatisfied. It is calculated as follows:

E = −
N∑

ij

wO
ij(t)si(t)sj(t) (3)

Hebbian learning should be applied to all system connec-
tions (i.e. the change in weight, ∆wij = δsisj , δ > 0) to
increase the attractor variation and reinforce learning.

wL
ij(t+ 1) = wL

ij(t) + δsi(t)sj(t) (4)

The algorithm repeatedly goes through the following se-
quence of steps: (a) arbitrary assignment of states for the
neurons (reset), (b) convergence of the network for a certain
time period, most frequently resulting in an attractor, and (c)
application of Hebbian learning.

Methods
The connectome. We ran the self-optimization algorithm
on the most recent version of the C. elegans connectome
produced by Jarrell et al. (2012). The database contains
hermaphrodite neural system information (males arise infre-
quently, at 0.1%), such as synaptic direction, type of synap-
tic connection (synapse or gap junction), and the number of
synapses between A and B neurons. We translated the con-
nectome into a directed multigraph, with neurons as nodes
and synapses as edges. This representation allows multiple
synapses and gap junctions between the same two neurons,
which naturally occur in the worm neural system.

Only 282 neurons belonging to a large somatic nervous
system are taken into account. We did not consider pha-
ryngeal neurons because they belong to another indepen-
dent neural system (Albertson and Thomson, 1976; White
et al., 1986). Neurons were arbitrarily assigned binary ac-
tivation states (−1, 1). In the neural network under study,
chemical synapses are modeled as single-directed links be-
tween neurons (for example, A → B indicates that neu-
ron A is presynaptic to neuron B, and B is postsynaptic
to A). Gap junctions are represented in the connectome as
double-linked neurons (if two neurons, C and D, have a gap
junction between them, there are two links: C → D and
D → C). There are 5,611 connections in total. 62.5% of
the total connections are chemical synapses, while 37.5%
are gap junctions.

We assigned the number of synapses between neurons as
the weight of each edge normalized in the interval (0, 1).

Figure 1: Illustrative examples of network state conver-
gence without self-optimization. We show network energy
after successive state updates for 10 independent conver-
gences. A Scenario without inhibitory connections (nega-
tive weights). B Scenario with 30% inhibitory connections
(negative weights). The addition of inhibitory connections
increases the difficulty of coordinating neural activity across
the connectome. Note the different y-scales when compar-
ing panels A and B.

Jarrell et al. (2012) estimate the functional strength of synap-
tic interactions with the resulting number. Both links in gap
junctions are assigned the same weight, and values vary be-
tween 1 and 81 (5.07 is the average weight per link). We
clip to 1 the 15 high-weight values, which we determined
with an arbitrary cut-off of weights greater than 44, before
normalization. Edges with higher weight values are scarce
(only 34 connections has a higher value than 44). Reduction
of this outliers broadens the space-state exploration during
the self-optimization; in other words, the range value of lo-
cal attractors is wider.

Since the connectome does not contain information con-
cerning inhibitory or excitatory connections, we tested two
separate scenarios. First, a scenario in which all synapses
are excitatory, and second, a scenario in which a percentage
of synapses is inhibitory. For the second scenario we
arbitrarily selected 30% of the edges and assigned negative
weights to them, based on the fact that 30% is a percentage
of inhibitory synapses that has been proven optimal in the
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Figure 2: Illustrative examples of self-optimization in two different scenarios. A without inhibitory connections (negative
weights) at the beginning of the process, and B with 30% inhibitory neurons (negative weights). Each panel shows the energy
of the neuron states after 1,000 reset-convergence cycles during three distinct phases: before learning (1-1,000), during the
self-optimization process (1,001-2,000), and after learning (2,001-3,000). Examples of state convergences of the phase before
learning can be seen in Figure 1. Self-optimization can be observed in both scenarios. However, the processes can be distin-
guished in that better attractors tend to be found without inhibitory synapses, but inhibitory synapses preserve a greater diversity
of attractors.

simulation of multi-task learning processes, at least for
mammals (Capano et al., 2015).

The neural network. Once the connectome was mapped
to a neural network, extra zero-weighted edges were added
to make a complete directed graph so that Hebbian learning
could add extra connections by changing their weights from
zero to non-zero values. In other words, we added previ-
ously non-existing connections between neurons in two di-
rections, and those extra edges represent potential connec-
tions, which may be needed for the removal of constraints
regarding interactions during the process (constraints posed
in terms of the satisfaction equation, sisjwij > 0) . There is
an initial total of 5,611 connections in the network (from the
connectome), which after adding extra edges rises to 80,213.
These extra edges do not have anatomical equivalents in the
connectome, but they could be conceived of in terms of func-
tional rather than structural connectivity. We measured and
reported the energy in terms of the original weight configu-

ration (5611 connections from the connectome). When the
learning phase ends, the constraint satisfaction percentage is
also based in this 5611 connections.

In a multigraph schema we must consider an identifier (k)
for each multiple edge that shares the same direction. In
light of this, the weight sum of all edges with the same direc-
tion was added to the state update equation (Eq. 1), rewritten
as follows:

si(t+ 1) = θ

[
N∑

j

(∑

k

wijk

)
sj(t)

]
(5)

A multigraph schema is also reflected in the way we cal-
culate system energy and Hebbian learning (Eq. 3 and 4,
respectively), because we iterate above all edges including
the multiple ones that share the same direction:

E = −
N∑

ijk

wO
ijk(t)si(t)sj(t) (6)
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Figure 3: Visualization of the C. elegans connectome, consisting in 282 neurons with 5,611 excitatory connections, in a circle
layout with a topological bundling procedure. Black connections represent edges that satisfy the constraints that were specified
by the networks original weight configuration. Red ones represent edges that do not satisfy these constraints. We present
two illustrative examples. The figure on the left shows the connectome with arbitrary states at the beginning of the self-
optimization procedure, and the figure on the right shows the connectome with converged states after learning. Complete
constraint satisfaction can be observed on the right side.

wL
ijk(t+ 1) = wL

ijk(t) + δsi(t)sj(t) (7)

In summary, the network resulting from the connectome
data differs from a traditional Hopfield neural network in the
following ways:

• Asymmetrical connections are permitted.

• Self-connections are permitted.

• Since there are synapses and gap junctions between the
same neurons within the connectome, multiple directed
connections are permitted.

The first two connectivity restrictions were already lifted
by previous models of self-optimization (Zarco and Froese,
2018a; Froese and Manzanilla, 2018), but this is the first
time that the process is tested with a multigraph.

The self-optimization algorithm repeatedly goes through
the following sequence of steps: (a) arbitrary assignment of
states for the neurons (reset), (b) convergence of the network
for a certain time period, most frequently resulting in an at-
tractor, and (c) application of Hebbian learning.

The number of steps for (b) has been adjusted to 18, 000.
We observe this to be an adequate quantity to ensure either
stability or convergence in each cycle. We fixed the learning
rate δ (δ = 0.00001) for all experiments.

Results
Overall, the results demonstrate the feasibility of self-
optimization on the connectome. We report the results of
both the scenario that starts with all positive weights, and
the scenario with 30% negative weights.

We first explored the attractor dynamics of the network
without self-optimization. Figure 1 A,B shows the network
energy after successive neuron state updates. The network
always reaches an attractor before the next state reset in the
scenario with all excitatory synapses (Panel A). Unsatisfied
network constraints also tend to decrease in the scenario
with inhibitory synapses, but the network does not always
reach an attractor (Panel B). This shows that the addition of
inhibitory synapses increases the difficulty of neural coordi-
nation.

We then explored the network’s self-optimization capac-
ity. The experiment shown in Figure 2 A,B consisted in three
stages. First, we set an initial weight configuration taken
from the connectome and normalized (only positive values
in A and 30% negative values in B) and performed 1000
reset convergence cycles without Hebbian learning. Then,
we applied the self-optimization process using 1000 reset-
convergence cycles. Finally, we apply the network 1000 cy-
cles without Hebbian learning using the configuration ob-
tained by the self-optimization process. This graph illus-
trates a tendency to decrease global energy in both A and B,
although a global attractor is not reached in B.

451



Non-negative
weights

Negative weights
0

20

40

60

80

100

Co
ns

tra
in
t s

at
isf

ac
tio

n
pe

rc
en

ta
ge

Before learning
After learning

Figure 4: Percentage of constraint satisfaction before and
after self-optimization (Hebbian learning), measured at the
end of a reset-convergence cycle. For each case we con-
sider the average of 1,000 cycles. A t-test was used for
each data set (without negative weights and 30% negative
weights) to see if the difference between before and after
learning is significant. We obtain a p-value <<< 0.05 both
for non-negative weights and 30% negative weights, indicat-
ing a highly significant improvement.

To illustrate the size and complexity of the connectome,
we present in Figure 3 a diagram which shows the connec-
tome structure with a circular neuron layout where the edges
of different colors represent the satisfied and unsatisfied con-
nections.

Figure 4 shows the percentage of constraint satisfaction
before and after the self-optimization process. We applied a
t-test to each data set to compare before and after learning.

Discussion
In the present work, we have tested the dynamics of the
connectome of C. elegans with a Hopfield network and ap-
plied the self-optimization procedure in a multigraph struc-
ture. The results demonstrate that self-optimization can be
generalized to this bigger and biologically more plausible
topology. However, it is an open question to what extent this
success has implications for understanding the operation of
the nervous system of the worm. We respond to this open
question by considering three issues.

First, is the connectivity required for the self-optimization
process biologically plausible? We showed that under the
right conditions the connectome network presents a ten-
dency to optimize its own connectivity. It does so through
Hebbian learning-based removal of constraints during re-
peated exploration of its state space. In the original Hop-
field neural network model, this was achieved by restricting
connections in such a way that the network state would nec-

essarily always converge on point attractors, namely by en-
suring that connections are symmetric and that there are no
self-recurrent connections. The restriction to point attrac-
tors and symmetric, non-recurrent connectivity is biologi-
cally implausible. An important step is therefore to show
that self-optimization can still be achieved on an asymmet-
ric, multiedged, recurrent network, which can give rise to
a richer set of dynamics. We achieved this step with the
present work.

Second, is the reset-convergence cycle required for the
self-optimization process biologically plausible? In partic-
ular, what could be the mechanism that periodically relaxes
the constraints of normal functioning, which permits the net-
work to explore its state space? Following speculations by
Woodward et al. (2015), in our model the neuron state re-
sets could be interpreted biologically as a sleep-like state of
C. elegans, especially when the worm is quiescent. C. ele-
gans presents a quiescent behavior during lethargus, a sleep-
like stage that occurs during larval development (Nelson and
Raizen, 2013). Moreover, this sleep-like state also occurs
during satiety and after exhaustion. Nevertheless, the way to
define a wake-sleep cycle in the worm remains controversial.
Our model suggests that it would be worthwhile to look for
it, and to test its relationship to network self-optimization,
perhaps akin to sleep-dependent learning.

Third, is the percentage and distribution of inhibitory con-
nections biologically plausible? Again, we are limited by
the lack of more detailed biological information. We intro-
duced negative weights in the second scenario of the self-
optimization process in an exploratory manner. The results
suggest that their presence restricts the coordination between
neurons. Such a restriction of neural coordination across the
whole connectome could be biologically desirable, for in-
stance by helping to avoid problems arising from excessive
neural synchrony, such as in disorders like epilepsy. Another
advantage is that there is an increased diversity of better at-
tractors found at the end of self-optimization with inhibitory
connections. In this way we overcome worries raised by
Zarco and Froese (2018b) that convergence on single attrac-
tors could be limiting for applying the self-optimization pro-
cess in cognitive robotics, which typically require the possi-
bility to switch between multiple attractor configurations.

Future work
Further improvements to our current model can be made,
especially because the real neurons of the worm tend to ac-
tivate in a continuous rather than binary manner. In future
work, we will therefore test the self-optimization connec-
tome model with the dynamics of a continuous time recur-
rent neural network (CRTNN), which should in principle be
possible (Zarco and Froese, 2018b). It would also be inter-
esting to see what happens if we do not provide extra virtual
or functional connections to the worm’s connectome, and
restrict Hebbian changes to the original anatomical connec-
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tome only. Another possibility is to analyze neural coordi-
nation in terms of local clusters of neurons that are anatomi-
cally related (Nonet, 1999), rather than measuring success in
terms of neural coordination across the entire connectome.
Finally, further mathematical analysis of our model can be
made, for instance by taking inspiration from the techniques
employed by other Hopfield neural network models of sleep
(Fachechi et al., 2019).

References
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Abstract

Is cognition a collection of loosely connected functions tuned
to different tasks, or is it more like a general learning algo-
rithm? If such an hypothetical general algorithm did exist,
tuned to our world, could it adapt seamlessly to a world with
different laws of nature? We consider the theory that predic-
tive coding is such a general rule, and falsify it for one specific
neural architecture known for high-performance predictions
on natural videos and replication of human visual illusions:
PredNet. Our results show that PredNet’s high performance
generalizes without retraining on a completely different nat-
ural video dataset. Yet PredNet cannot be trained to reach
even mediocre accuracy on an artificial video dataset created
with the rules of the Game of Life (GoL). We also find that
a submodule of PredNet, a Convolutional Neural Network
trained alone, has excellent accuracy on the GoL while having
mediocre accuracy on natural videos, showing that PredNet’s
architecture itself might be responsible for both the high per-
formance on natural videos and the loss of performance on
the GoL. Just as humans cannot predict the dynamics of the
GoL, our results suggest that there could be a trade-off be-
tween high performance on sensory inputs with different sets
of rules.

Introduction
In a world where many tasks have been automated to quasi-
perfection, the next big goal for Artificial Intelligence (AI)
is Artificial General Intelligence (AGI) (Wang and Goertzel
(2007)). Beyond domain-specific automation, AGI is often
defined as AI with human-level performance, able to gener-
alize its knowledge across different domains (Adams et al.
(2012); Wang and Goertzel (2007)). Candidate algorithms
to realize AGI vary with the evolution of the field (Goertzel
(2010, 2014)), and recent theories include a combination
of Deep Learning Networks to emulate human cortical net-
works (Yamakawa et al. (2017)), neural computation at the
edge of chaos (Smith (2016); Cocchi et al. (2017); Garson
(1996)), and of course different implementations of predic-
tive coding (Hawkins and Blakeslee (2007); Friston (2010);
Van De Ven and Schouten (2010)).

Here we are interested in predictive coding: the idea that
brains generate models of the world by learning to predict
their own sensory inputs. Although the specific mechanism

is up to debate (Friston (2009); Garalevicius (2007)), pre-
dictive coding has been found to take place in the human
nervous system (Baldeweg (2006); Hosoya et al. (2005);
Rao and Ballard (1999)), especially for visual and auditory
processing. In many experiments, specific sensory illusions
such as the auditory oddball effect are interpreted as hall-
marks of predictive coding (Schindel et al. (2011)).

A recently proposed Deep Neural Network architecture,
PredNet (Lotter et al. (2016)), has not only demonstrated
high performance on natural video prediction, but has been
shown to be susceptible to some of the same visual illusions
as human beings (Watanabe et al. (2018)) as a side effect
of its predictive abilities, despite contemporary explanations
of these illusions not relying on predictive coding mecha-
nisms. No one claims that PredNet accurately recreates the
brain processes leading to predictive coding, but PredNed
is currently the state of the art architecture replicating both
the main consequences and side effects of predictive coding
in human vision. Can PredNet be used as a general predic-
tion machine, even in visual worlds that humans cannot pre-
dict, or is the algorithm’s implementation so attuned to hu-
man visual processing that it fails in the same circumstances
as humans do? In short, does high performance on natural
datasets cause a loss in generality for this specific architec-
ture?

To test this hypothesis, we choose a visual task where
simple local spatial rules lead to dynamics that are hard
to predict for human beings: the Game of Life automaton
(GoL) (Gardener (1970), summarized by Izhikevich et al.
(2015)). At each time step, the GoL updates each cell de-
pending only on the state of its direct neighbors at the previ-
ous timestep. It is simple enough to be predicted with ac-
curacy by a simple Convolutional Neural Network (Rapp
(2015)). Most dynamics are discrete but some have the
feeling of continuous dynamics, for example the “glider”:
a bird-like pattern that moves in a constant direction. The
produced patterns can be hard to predict; even knowing the
underlying rules, humans make mistakes in prediction. We
can reasonably extrapolate that prediction without knowing
these rules would be even harder for humans. The main dif-
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ferences between a natural video such as those in the KITTI
dataset (Geiger et al. (2013)) and a GoL-generated video are
as follows:

• Theoretically, the GoL requires only 1 time step of mem-
ory for perfect prediction. Natural videos can show ob-
jects with speed or acceleration, which require several
time steps to deduce.

• Natural videos have spatio-temporal continuity: objects
maintain their shapes and there is no drastic change from
one frame to the other. In the GoL, there is no continuity
from one frame to the other and each cell is separate from
the others. The GoL is a discrete world.

• Rules are extremely local in the GoL: a cell’s next state
only depends on its immediate neighbors.

If PredNet had succeeded at this task, it would suggest
that the implementation of PredNet captures something fun-
damental beyond natural rules, and the idea of predictive
coding as a general cross-domain learning rule would be
strengthened. But our results show that PredNet is attuned
to human performance even in its failure modes, as its sensi-
tivity to visual illusions suggested. It comforts this architec-
ture in its place as a replicator of human visual performance,
but it also means that the improved performance on natural
tasks comes to the cost of performance on tasks that can be
solved by simpler networks. These results stack two dif-
ferent learning architectures (the human brain and PredNet)
against predictive coding as a general cross-domain learning
rule.

Methods
The source code used in this paper is available at https:
//github.com/LanaSina/prednet_gol. The
datasets are available at https://figshare.com/
projects/PredNet_Game_of_Life/60971.

PredNet
PredNet is a Deep Learning Neural Network with an archi-
tecture based on the principles of predictive coding (Fig. 1).
The network is made of hierarchical layers. Each layer con-
tains several modules, respectively for input, representation,
prediction, and error calculation. The input to the first layer
is the original image frame at time t; the error between the
prediction at t and the frame at t + 1 is passed as input to
the next layer, which must therefore learn to predict the error
signal from the layer below it. The representations from the
upper layer are sent as feedback to the lower layer.

For our experiments, we use the code provided by Lot-
ter et al. (2016) at this address: https://github.com/
coxlab/prednet. The network has 3 layers, its convo-
lutional modules have filters of size 3 × 3 pixels. We tested
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Figure 1: The architecture of PredNet. Figure modified
from Lotter et al. (2016). The network is divided in modules
(solid lines) that are stacked into layers (dashed lines). The
input to the first layer is the original image frame at t; the er-
ror between the prediction at t and the frame at t+1 is passed
as input to the next layer. There are 3 layers in total (only 2
represented here.)

generalization between datastets by evaluating the KITTI-
trained model on other datasets. These experiments are re-
ferred to as experiments without retraining in the remain-
der of this paper. For the experiments with retraining, we
train and evaluate PredNet on one given dataset (as is typical
in Deep Learning experiments, training and testing data are
separate but extracted from one same dataset).

Simple CNN
We use an Auto-Encoder Convolutional Neural Network, a
minimum model that can learn the GoL rules (referred to as
simple CNN in the remainder of this paper). The model is
similar to the CNNs in several modules used in the Pred-
Net architecture (notably the Prediction module) and uses
the same filter size. We don’t use a Long Short Term Mem-
ory (LSTM) since it is unnecessary to predict GoL images.
The architecture is as follows: the encoder consists of one
convolutional layer and maps pixels to a latent representa-
tion. The filter size is 3 × 3 and the stride is set at 1. Zero
padding is done to deal with boundary conditions of the im-
age. The decoder uses the transposed architecture. The acti-
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vation function is ReLU. We implemented this model using
Chainer (Tokui et al. (2015)) and trained it with the negative
log-likelihood function of the Bernoulli distribution. In this
model, the data at the episode boundaries is excluded from
the training and evaluation data. The number of epochs ×
the size of training data is slightly less than one fifth of that
of Prednet’s KITTI learning.

Datasets
We use two existing datasets composed of videos from the
real world (called “natural datasets” in this paper) and one
dataset of videos generated from the GoL (called “artificial
dataset”).

- Karlsruhe Institute of Technology and Toyota Tech-
nological Institute (KITTI) Dataset The KITTI dataset
is composed of videos filmed from a car driving on a
road (Geiger et al. (2013)). The videos show traffic and
pedestrians from the point of view of the driving car. We
use the simple raw video part of the dataset (20 fps). As in
the original PredNet paper, frames of the videos are down-
sampled to 128 × 160 pixels. We used the processing script
for outputting frames from videos made available by (Lotter
et al. (2016)). The script is also available in the repository
published for this paper.

- First Person Social Interaction (FPSI) Dataset The
FPSI dataset (Fathi et al. (2012)) is composed of videos
filmed from a first-person point of view. The videos
were shot by fixing cameras to the head of several
people who spent a day at a theme park. The
original dataset’s url http://cpl.cc.gatech.edu/
projects/FPSI/ had become unresponsive at the time
of the writing of this paper, so we used the video made avail-
able by Watanabe et al. (2018) at https://figshare.
com/articles/Training_data/5483668/1. We
also used their script for extracting and resizing images to
128x160 pixels, but found that the original video was en-
coded with the wrong FPS parameter. The corrected script
is available at our published repository (output: 15 fps).

- Game of Life (GoL) Dataset We use Conway’s Game
of Life (GoL) (Gardener (1970); Izhikevich et al. (2015)) as
artificial dataset to test PredNet. The GoL is a 2D 0-player
game where an initial state, decided by the programmer,
automatically changes every timestep according to a set of
rules. The GoL is played on a grid where each cell is in one
of two possible states: alive (white cells in our implementa-
tion) or dead (black cells). The flow of time is discrete, and
the state transitions are deterministic and memoryless: each
cell has 8 neighbors (4 cells adjacent orthogonally and 4 di-
agonally); the state the cell depends on how many neighbors
are alive. If there are exactly 2 alive cells in the neighbor-
hood, the state of the central cell does not change. If there
are exactly 3 alive cells in the neighborhood, the cell is alive

in the next frame. For any other number of living cells in in
the neighborhood, the next state of the cell is dead. These
are the only rules. The interest of the GoL is that simple
rules lead to complex patterns. We will briefly introduce the
”glider” as an example used in experiments described later.
The glider is a moving pattern composed of 5 cells. The
movement of the glider has four stages; after 4 time steps,
the glider has shifted one cell in the diagonal direction. In
the GoL, there are patterns that move while keeping their
shape like the glider, patterns that periodically repeat states,
and so on.

We generate the video dataset as below. When generating
an initial state, 10% of the cells are randomly set to alive;
the other cells are dead. Each pixel represents a cell in the
128 × 160 images. There are no boundary conditions. The
state often becomes fixed as time passes, so we generate a
new initial state every 10 steps. We generate 10,000 images
as training data.

Results

PredNet performance on KITTI, FPSI and GoL
without retraining

We investigate how well the performance of PredNet trained
exclusively on the KITTI dataset transfers to other datasets
without retraining. We evaluate this model on the original
KITTI dataset, on the natural video dataset FPSI, on random
GoL patterns, and finally, on a GoL glider. In this experi-
ment, the output of PredNet for the GoL was totally black
frames, suggesting that the patterns were treated as noise.
We therefore re-generated the GoL frames as 16×20 images
and scaled them up to 8 times the original size.

As shown on Fig. 2-a), b), and Table 1, the performance
transfers well between natural datasets. PredNet trained on
the KITTI dataset still has better performance on the FPSI
dataset than a simple “copy the last frame” model. This re-
sult is a testament to the robustness of the PredNet archi-
tecture. On the other hand, as shown on Fig. 2-c) and d),
the performance does not transfer to datasets with artificial
rules. As expected, the pretrained PredNet cannot predict
the GoL, or even gliders. Even if gliders have a partly trans-
lational motion, the dynamics of the GoL are too far from
the simple translations and rotations that might be respon-
sible for the majority of variations in natural videos. In ad-
dition, we see an interesting error on frame 3 at Fig. 2-b):
the translational motion of the cap that appeared at frame 2
is extrapolated, leading to the prediction of a floating cap at
frame 3. This model cannot know that the cap should be on a
human head, even if the person wearing the cap can be seen
a few frames earlier. This would require either excellent use
of short term memory, existence of an internal world model,
or high level inference.
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Figure 2: Predictions generated by a PredNet trained on
the KITTI dataset. See Table 1 for measured performance.
(a) Predictions for KITTI, the original training dataset. The
performance is high. (b) Predictions for the FPSI dataset.
The performance is also high. (c) Predictions for a random
initial value of the GoL. The performance is poor, as ex-
pected. (d) Predictions for a GoL glider. The performance
is also poor.

Retrained PredNet performance on the GoL

Since the performance of PredNet on natural images does
not automatically transfer to the artificial dataset, in the first
part of this experiment we re-train PredNet from scratch on
the GoL dataset. Figures. 3 show zoomed-in results (clipped
upper left images to make it easy to see). The network is un-
able to learn and performs poorly. This result is unexpected
considering that this task is solved by a CNN as shown in the
next section, and PredNet has several CNNs with the appro-
priate filter size of 3 × 3 in its architecture. Training on up-
scaled images gave the same result. This suggests that high
performance on natural videos comes to the cost of general-
ity for videos exhibiting different types of dynamics (even if
these dynamics are totally deterministic and predictable).

and 4,

Finally, we train and evaluate PredNet on a single se-
quence showing a glider moving from the upper left to the
lower right of the frame. In this setting we use the same data
for learning and evaluation (it is therefore a pure memoriza-
tion task). As shown on Fig. 4, even with these extremely
gentle conditions, PredNet is unable to make any predic-
tions. Training on upscaled images forced the network to
have.
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Figure 3: Predictions generated by a PredNet trained and
evaluated on random GoL patterns. PredNet no longer
outputs anything as predictions. The rules of the GoL seem
not simply impossible to predict using PredNet, but impos-
sible to learn.
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Figure 4: Predictions generated by a PredNet trained
only on the exact sequence shown here. In this case, train-
ing data and test data are equal. Even for this simple task,
PredNet no longer outputs anything as predictions.

Simple CNN performance on the GoL
We train the CNN on GoL videos generated from initial ran-
dom patterns. We then test the CNN on two sequences:
(a) a random pattern and (2) a glider pattern where a glider
moves from the top left of the scene to the bottom right. As
shown on Fig. 5, the CNN trained on the random patterns
performs almost perfectly on both datasets, as previously re-
ported in Rapp (2015). This result is not surprising con-
sidering that we fixed the surface of the convolution filters
(receptive field of hidden neurons) to 3x3 cells: all the infor-
mation necessary to predict the next step is contained into
every individual filter. In addition, the rules are the same for
the whole image, so that rules learned locally can be suc-
cessfully applied anywhere in the image.

Simple CNN performance on KITTI
We train the simple CNN on the KITTI dataset. We do not
expect good performance, as PredNet was implemented with
the sole goal of achieving state of the art performance and
simple CNNs are notoriously poor at natural video predic-
tion. The results Fig. 6 show that indeed, the perfomance
is poor. We stopped learning when the number of epochs
was 10 because the value of loss did not fall any more. The
output of the CNN resembles a fuzzy copy of the last pre-
sented frame. As recorded in Table 1, the simple CNN’s
error is an order of magnitude bigger than PredNet’s error,
and slightly lower than last frame copy. This result again
shows a trade off, but opposite of PredNet: we have high
performance on the artificial dataset and poor performance
on the natural dataset.

457



Pr
ed

ic
te

d 
   

A
ct

ua
l

b)

a)

Pr
ed

ic
te

d 
   

A
ct

ua
l

Figure 5: Predictions generated by the CNN after train-
ing on random GoL patterns. (a) Predictions from a ran-
dom initial state. (b) Predictions for a initial state composed
of one glider. The performance is close to perfect, an ex-
pected result considering that the convolutional filters are
the same size as the local neighborhood of the GoL cells.
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Figure 6: Predictions generated by the CNN after train-
ing on the KITTI dataset. The performance is poor, espe-
cially compared to PredNet (an expected result for natural
videos).

Prednet-as-CNN: performance on the GoL
The goal of this experiment is to see if PredNet’s unexpected
inability to predict discrete data might be due to implementa-
tion details (parameters or bugs), or if the architecture itself
might be responsible for the inhibition of the ability of the
inner modules to predict discrete data. We fix all the weights
to their initial random values (i.e., we prevent learning on
these weights by setting the learning rate to 0) except for
one of the CNN modules. The resulting model, “Prednet-as-
CNN”, is therefore structurally equivalent to a simple CNN:
if it fails to learn GoL predictions, it will indicate that im-
plementation details are to blame. If Prednet-as-CNN learns
the GoL, it indicates that the failure of the original PredNet
model is due to its architecture. The training data is the same
as for the simple CNN experiment: random GoL patterns.

The results, shown on Fig. 7, show two noteworthy ele-
ments. First, the predicted cells are pink instead of white.
This most likely suggests either an issue with the code, or
less likely, an issue with the architecture introducing a ran-
dom bias towards low loss on the red channel of the rgb
input. Second, the network does output some predictions,
not simply black frames. The performance indicates that
the predictions are better than simple copies of the previ-
ous frame (Table 1), but to the naked eye they do mostly
look like copies of the previous step. The results are the

Table 1: Mean squared error (MSE) of next frame predic-
tions. As mentioned in the Dataset’s subsection, all datasets
are set to the same pixel size, so it is meaningful to compare
values side by side.

Dataset Method MSE
KITTI Previous Frame 0.0256

PredNet 0.0073
Simple CNN 0.0164

FPSI Previous Frame 0.0110
PredNet (pretrained) 0.0059

GoL (random) Previous Frame 0.0332
PredNet (pretrained) 0.0330
PredNet (re-trained) 0.0348
PredNet-as-CNN 0.0265
Simple CNN 0.0002

same for 150 (original parameter), 250, and 500 epochs, sug-
gesting that no learning takes place beyond the pink-copy
phase. This result is difficult to interpret, and additional
experiments are needed; but this half failure (compared to
the simple CNN), half success (compared to the unmodified
PredNet and its blank predictions) suggests that at least part
of the blame goes to the architecture itself.
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Figure 7: Random GoL pattern prediction by the
Prednet-as-CNN model. The predicted cells are pink in-
stead of white, suggesting an issue with the code, or an is-
sue with the architecture introducing a random bias towards
low loss on the red channel of the rgb input. Contrarily to
PredNet, the network does output predictions and not simply
black frames.

Discussion
We showed that PredNet can generalize without retraining
on a completely different natural video dataset. Yet we also
found that unmodifed, PredNet cannot learn to predict the
dynamics of the GoL. Worse yet, it cannot memorize a short
10-frame sequence of the GoL: a task that should be solv-
able rote memorization of the mapping between input and
output. This result is surprising since a simple CNN with
only one conv-deconv layer did learn the GoL rules, and
PredNet was not able to learn despite internally containing
modules that are themselves simple CNNs. When making
PredNet structurally equivalent to a simple CNN (“Prednet-
as-CNN”), the model improved its GoL predictions, albeit

458



still showing poor performance. This suggests that the ar-
chitecture of PredNet, which makes it so good with continu-
ous input, is also a cause of the inhibition of its submodules
ability to predict discrete input.

This paper shows that there is at least one unsuitable task
for the PredNet architecture as it is. In this models, past ob-
servations are abstracted and stored internally, and it seems
that input images are shifted by an appropriate amount using
estimated velocity and rotation information. This is espe-
cially striking in the prediction error on frame 3 in Fig. 2-b):
the translational motion of the cap that appeared at frame
2 is extrapolated, leading to the prediction of a floating cap
at frame 3. This explains why these models are good for
continuous dynamics such as movement of objects in the
real world. On the other hand, in the GoL world, every cell
changes in a discrete manner according to the GoL rules.
This can be captured by CNNs, but this ability seems to be
somehow inhibited by the very architecture that makes Pred-
Net good at shifting and rotating. To find out the cause of
the difference in performance, we still need to test hybrid
datasets that are missing some characteristics of real world
video.

Note that we just assumed that PredNet, as current state
of the art in video prediction, was a kind of ”master algo-
rithm” for natural videos; in reality its failure does not mean
that all high-performance predictive algorithms would fail
at predicting discrete datasets. Yet we have to wonder if a
single architecture would be able to perform on both natural
and artificial datasets, or if the trade-off in performance can-
not be avoided. Supporting this latter hypothesis, the GoL
is extremely difficult to predict for human brains; even its
own creator, knowing the rules, had to use a physical board
with go stones to compute states and still made errors. If
there really is a divergence between optimizing predictions
for natural and synthetic datasets, then when thinking about
an hypothetical general artificial intelligence, we should also
consider how to compensate for the counter-intuitive weak-
nesses that such superior models create for themselves com-
pared to lower-performance models. More generally, it sug-
gests that “prediction” does not have the same meaning in
natural and artificial worlds.

References
Adams, S., Arel, I., Bach, J., Coop, R., Furlan, R., Goertzel, B.,

Hall, J. S., Samsonovich, A., Scheutz, M., Schlesinger, M.,
et al. (2012). Mapping the landscape of human-level artificial
general intelligence. AI magazine, 33(1):25–42.

Baldeweg, T. (2006). Repetition effects to sounds: evidence for
predictive coding in the auditory system. Trends in cognitive
sciences.

Cocchi, L., Gollo, L. L., Zalesky, A., and Breakspear, M. (2017).
Criticality in the brain: A synthesis of neurobiology, models
and cognition. Progress in neurobiology, 158:132–152.

Fathi, A., Hodgins, J. K., and Rehg, J. M. (2012). Social interac-
tions: A first-person perspective. In 2012 IEEE Conference
on Computer Vision and Pattern Recognition, pages 1226–
1233. IEEE.

Friston, K. (2009). The free-energy principle: a rough guide to the
brain? Trends in cognitive sciences, 13(7):293–301.

Friston, K. (2010). The free-energy principle: a unified brain the-
ory? Nature reviews neuroscience, 11(2):127.

Garalevicius, S. J. (2007). Memory-prediction framework for pat-
tern recognition: Performance and suitability of the bayesian
model of visual cortex. In FLAIRS Conference, pages 92–97.

Gardener, M. (1970). Mathematical games: The fantastic combi-
nations of john conway’s new solitaire game” life,”. Scientific
American, 223:120–123.

Garson, J. W. (1996). Cognition poised at the edge of chaos: A
complex alternative to a symbolic mind. Philosophical Psy-
chology, 9(3):301–322.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision
meets robotics: The kitti dataset. International Journal of
Robotics Research (IJRR).

Goertzel, B. (2010). Toward a formal characterization of real-world
general intelligence. In 3d Conference on Artificial General
Intelligence (AGI-2010). Atlantis Press.

Goertzel, B. (2014). Artificial general intelligence: concept, state
of the art, and future prospects. Journal of Artificial General
Intelligence, 5(1):1–48.

Hawkins, J. and Blakeslee, S. (2007). On intelligence: How a new
understanding of the brain will lead to the creation of truly
intelligent machines. Macmillan.

Hosoya, T., Baccus, S. A., and Meister, M. (2005). Dynamic pre-
dictive coding by the retina. Nature, 436(7047):71.

Izhikevich, E. M., Conway, J. H., and Seth, A. (2015). Game of
Life. Scholarpedia, 10(6):1816. revision #150735.

Lotter, W., Kreiman, G., and Cox, D. (2016). Deep Predictive Cod-
ing Networks for Video Prediction and Unsupervised Learn-
ing.

Rao, R. P. and Ballard, D. H. (1999). Predictive coding in the vi-
sual cortex: a functional interpretation of some extra-classical
receptive-field effects. Nature neuroscience, 2(1):79.

Rapp, D. (2015). Learning game of life with a convolutional
neural network. https://danielrapp.github.io/
cnn-gol/. Accessed: 2019-02-28.

Schindel, R., Rowlands, J., and Arnold, D. H. (2011). The oddball
effect: Perceived duration and predictive coding. Journal of
Vision, 11(2):17–17.

Smith, L. S. (2016). Deep neural networks: the only show in town?
a position paper for the workshop on can deep neural net-
works (dnns) provide the basis for artificial general intelli-
gence (agi) at agi 2016, july 2016.

Tokui, S., Oono, K., and Hido, S. (2015). Chainer: a next-
generation open source framework for deep learning.

459



Van De Ven, A. and Schouten, B. A. (2010). A minimum rela-
tive entropy principle for agi. In 3d Conference on Artificial
General Intelligence (AGI-2010). Atlantis Press.

Wang, P. and Goertzel, B. (2007). Introduction: Aspects of arti-
ficial general intelligence. In Proceedings of the 2007 con-
ference on Advances in Artificial General Intelligence: Con-
cepts, Architectures and Algorithms: Proceedings of the AGI
Workshop 2006, pages 1–16. IOS Press.

Watanabe, E., Kitaoka, A., Sakamoto, K., Yasugi, M., and Tanaka,
K. (2018). Illusory motion reproduced by deep neural net-
works trained for prediction. Frontiers in psychology, 9:345.

Yamakawa, H., Arakawa, N., and Takahashi, K. (2017). Reinter-
preting the cortical circuit. In Architectures for Generality &
Autonomy Workshop at IJCAI, volume 17.

Additional Details
Retrained PredNet performance on the upscaled
glider
As in the Section “Retrained PredNet performance on the GoL”,
we also upscaled the glider images and trained PredNet to mem-
orize them. Fig. 8 shows that PredNet cannot predict perfectly
even with these extremely gentle conditions. What it seems to have
learned is a set of periodic translations of period 5 for simple pat-
terns.

Simple CNN with smaller filters
When using 2 × 2 convolutional filters instead of 3 × 3 filters, the
performance of the simple CNN model sharply declined as shown
in Fig. 9. These filters are too small to represent the GoL rules:
in the GoL, the next state of a cell is completely determined by the
state of eight neighboring cells. Necessary information is contained
in a 3 × 3 neighborhood.

Reversed video prediction
Although physical laws are time reversible, it is famously difficult
for humans to predict videos where the flow of time is reversed.
We tested whether a PredNet trained on regular-time videos from
the KITTI dataset would be able to predict reverse-time videos.
The model turned out to be just as good for regular- and reverse-
time videos, with a MSE of 0.006 in both cases. Fig 10 shows the
generated predictions.
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Figure 8: Predictions generated by a PredNet trained
only on the exact (upscaled glider) sequence shown here.
In this case, training data and test data are equal. Even for
this simple task, PredNet seems to only be able to imper-
fectly predict the pattern, with a constant one-cell mistake.
In reality, it seems that what was learned was a simple trans-
lation of elementary patterns of period 5.
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Figure 9: Predictions with smaller convolutional filters.
The settings are the same as for Fig. 5, but the filter size is
2 × 2 instead of 3 × 3. (a) Predictions from a random
initial state. (b) Predictions for a initial state composed of
one glider. (c) The difference between actual and predicted
images. The performance is poor. The filters are too small
to capture neighborhood information.
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Figure 10: Predictions generated on the FPSI dataset. (a)
Predictions on the regular-time video. (b) Predictions on the
reverse-time video. The predictions are not exactly the same
but the performance is similar in both cases.
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Introduction
Humans know whether, or how well, certain knowledge ex-
ists in their own memory. This subjective monitoring and
control of one’s memory, metamemory, has been studied
widely as a type of metacognition in cognitive psychology.
This study, as a constructive approach, aims to evolve ar-
tificial neural networks that have a metamemory function.
For this purpose, we use evolved plastic artificial neural net-
works (EPANNs) (Soltoggio et al., 2018). Specifically, we
use neuromodulation (Fig. 1), that has been recognized as an
essential element in cognitive and behavioral processes play-
ing an important role in, for example, facilitating the evo-
lution of learning, adapting to dynamic environments, and
acquisition of mental representation. Using EPANNs, we
showed in one of the evolutionary experiments that evolved
neural networks clearly had capacity for metamemory (Sudo
et al., 2014), in the sense that they satisfy a measure based
on a type of delayed matching-to-sample tasks (DMTSs)
(Hampton, 2001) that were developed to ask whether mon-
keys can have metamemory or not.

However, metamemory is not something so simple (Call,
2010), because it is extremely difficult to conclude that a
monkey subject can monitor her memory just by observing
her behavior. That difficulty depends also on the difficulty
in defining metamemory in the first place. In principle, we
could analyze and understand all mechanisms and processes
involved in artificial neural networks evolved in simulation,
unlike the cases of using living subjects. We take the previ-
ous evolutionary experiments (Sudo et al., 2014) as a start-
ing point, and critically analyze the evolved networks and
then refine the measure to exclude the evolution of networks
whose mechanism or process seems different from that of
metamemory. Our study scheme is based on the repetition
of, evolutionary experiments, analysis of the evolved net-
works, and refinement of the measure.

Methodology
Fig. 2 shows an overview of the task (Sudo et al., 2014),
composed of 4 phases. In the study phase, an agent receives
a target pattern composed of 5 binary digits. The delay phase

Figure 1: Metamemory.

Figure 2: The delayed match-
to-sample task.

follows, in which the agent receives 00000 as a distractor
pattern on several occasions. Then, with a probability of
2/3, the choice phase starts during which the agent receives
a signal meaning that it is in that phase. One output from
the agent will be interpreted as the intention to decline the
trial. We set the agent receives a small reward (0.3), and
the trial ends. On the other hand, with a probability of 1/3,
the choice phase is skipped as a compulsory condition. In
the test phase, the agent receives all patterns one by one in
random order. An output is interpreted as a response for each
pattern. If it matches the target pattern it memorized in the
study phase, the agent is rewarded with a large reward (1.0).
Otherwise, it is rewarded with nothing.

The neural network of an agent has 7 inputs and 2 out-
puts. The topology of the networks evolves while keeping
the number of the neurons (including standard and modu-
latory neurons but excluding input neurons) not more than
16. Modulatory neurons are different from standard neu-
rons, which affect the connection of standard neurons by
changing their learning rate. We used an evolution strategy
(ES) (Bäck et al., 1997) for evolution of topology and con-
nection weights of neural networks, which is basically the
same as the one used in Soltoggio et al. (2008).

We defined the following three measures of metamemory
one by one responding to the repetition in the study scheme,
the one used in the escape response paradigm, the one which
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(a) Neural networks which meet BM (left), NM1 (center) and NM2 (right) (blue node: standard neuron, red node: modulatory neuron).

(b) Mechanisms of evolved neural networks satisfying BM (left), NM1 (center) and NM2 (right).

Figure 3: Evolved agents and mechanisms.

describes the minimum requirement for the neural network
responding to the distractor pattern and the more strict mea-
sure of metamemory.

• Behavioral measure (BM): There is a difference in accu-
racy between chosen and forced trials in the escape re-
sponse paradigm.

• Neural measure 1 (NM1): Behavioral measure is met, but
not by changing the behavior according only to particular
stimuli configurations.

• Neural measure 2 (NM2): Neural measure 1 is met, which
is based on the self-reference on the memory.

Result
We obtained 17 successful trials among 20 in the sense that
average fitness clearly increased through evolution. We ana-
lyzed the behavior of the evolved agents in the successful tri-
als, and found agents that met BM and NM1 (Fig. 3(a)(left)
and Fig. 3(a)(center)). However, we found that the evolved
network (Fig. 2(b)) does not meet NM2 as it selects the es-
cape option as a result of a spurious relationship shown in
Fig. 3(b)(center). We further performed an extended evolu-
tionary experiment targeted at NM2, and modified manually
the best evolved network to successfully obtain a network
which meets NM2 (Fig. 3(a, b)(right)). We investigated its
network dynamics in detail and found that neuromodulation
plays a crucial role in the evolved metamemory ability.

Conclusion
This paper reports on our attempt to evolve artificial neu-
ral networks with neuromodulation, that have a metamem-

ory function, based on the repetition of evolutionary exper-
iments, analysis of the evolved networks and refinement of
the measure. A straightforward direction is to further refine
NM2 by using other measures based not on DMTs but other
paradigms. Also, examining the generality of proposed mea-
sures would be interesting by applying them to cutting-edge
cognitive models related to metamemory. We believe that
our methodology contributes to the understanding of human
metamemory and realization of artificial consciousness.
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Abstract

Echolocating bats can avoid obstacles in complete darkness
relying on their sonar system. Under experimental condi-
tions, these animals can infer the 3D position of obstacles.
However, in cluttered and complex environments their ability
to locate obstacles is likely to be largely reduced, and they
might need to rely on more robust cues that do not degrade
as the complexity of the environment increases. Here, we
present a robotic model of two hypothesized obstacle avoid-
ance strategies in bats, both of which model observed behav-
ior in bats: a Gaze Scanning Strategy and a Fixed Head Strat-
egy. Critically, these strategies only employ interaural level
differences and do not require locating obstacles. We found
that both strategies were successful at avoiding obstacles in
cluttered environments. However, the Fixed Head Strategy
performed better. This indicates that acoustic gaze scanning,
observed in hunting bats, might reduce obstacle avoidance
performance. We conclude that strategies based on gaze scan-
ning should be avoided when little or no spatial information is
available to the bat, which corresponds to recent observations
in bats.

Introduction
Echolocating bats rely on their biosonar systems to avoid
obstacles in complex environments (Griffin and Galambos,
1941). Several studies have documented that a bat’s acous-
tic gaze often deviates from its flight direction. In partic-
ular, Ghose and Moss (2006) and Falk et al. (2014) found
that, while hunting for prey, the bat’s flight direction is deter-
mined by its gaze direction through a Delayed Linear Adap-
tive Law (DLAL): the bat’s flight direction follows its gaze
direction with a delay.

Recently, we have used simulations to propose a sensori-
motor model of the prey capture by echolocating bats (Van-
derelst and Peremans, 2018). The simulations in that paper
incorporated the DLAL. The simulated bat was assumed to
steer its gaze as to keep the prey in the center of its field of
view. As in the experiments reported by Ghose and Moss
(2006) and Falk et al. (2014), the flight direction followed
the gaze direction. To assess the contribution of the DLAL
to prey capture, we also ran simulations in which the head
and body were rigidly coupled. Based on these results, we

concluded that a loose coupling between the flight direction
and gaze direction allows bats to keep erratically moving
prey in their field of view, and thereby, increases the proba-
bility of successful prey capture. This previous work hinted
at a clear functional advantage of a loose coupling between
flight and gaze direction through a DLAL during hunting.
Here, we test whether a combination of acoustic gaze scan-
ning and the DLAL is also beneficial to obstacle avoidance,
using robotic experiments. We refer to the obstacle avoid-
ance strategy as the Gaze Scanning Strategy.

In addition, to the Gaze Scanning Strategy we also eval-
uated a second strategy: the Fixed Head Strategy. Under
the Fixed Head Strategy, the acoustic gaze and the flight
direction are always aligned. This behavior has also been
observed in bats (Knowles et al., 2015).

Methods
We instrumented a differential drive robot (fig. 1a,b) with a
bat-like sonar system consisting of a narrowband ultrasonic
emitter and two microphones, acting as ears. The sonar sys-
tem was mounted on a pan-tilt system, allowing it to rotate
with respect to the drive direction of the robot (fig. 1a). The
microphones were embedded in 3D printed artificial pinnae
to give the sonar system a realistic bat-like directionality.
The robot emitted ultrasonic calls at a rate mimicking the
pulse interval of bats. In addition, the model mimicked the
speed and aerodynamic constraints of bats. The speed, head
rotation, and body rotation corresponded with the flight dy-
namics of the Eptecicus fuscus. Echoes were processed us-
ing a model of the bat’s cochlea (Wiegrebe, 2008). We used
the output of the cochlear model to implement two obstacle
avoidance strategies in bats, the Gaze Scanning Strategy and
the Fixed Head Strategy:

1. Gaze Scanning Strategy: Under this strategy, the interau-
ral level difference was used to steer the gaze direction of
the robot. The robot turned its sonar system towards the
side from which the weakest echoes returned. The body
followed the direction of the gaze aim, with a delay, as
given by the DLAL. This strategy mimics the steering-
by-hearing strategy observed by Ghose and Moss (2006)
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Figure 1: The robot (a) in one of the environments (b).
(c) Obstacle avoidance results for the Fixed Head Strategy,
Gaze Scanning Strategy and a Random Walk (as control).

and Falk et al. (2014).

2. Fixed Head Strategy: Under this strategy, the interaural
level difference was used to steer the body rotation of the
robot directly. The robot turned away from the direction
from which it received the loudest echo(es). The gaze
direction was always aligned with the driving direction of
the robot. This strategy models a bat not using acoustic
gaze steering (as observed by, e.g., Knowles et al., 2015)

The robot’s ability to avoid obstacles was tested in a 3
× 4 m rectangular arena bounded by 50 cm high corru-
gated cardboard panels (fig. 1b). The obstacles consisted of
cardboard tubes with a diameter of 4 cm. The tubes were
wrapped in artificial ivy causing them to return multiple
overlapping echoes. Our testing arena mimicked experimen-
tal conditions under which bat echolocation behavior has
been studied before (for example, Falk et al., 2014; Knowles
et al., 2015). Moreover, This environment can be assumed
to model demanding obstacle avoidance conditions for bats
(Falk et al., 2014; Knowles et al., 2015) under which local-
ization of obstacles is not feasible (Warnecke et al., 2018;
Knowles et al., 2015).

Results and Conclusion
Gaze scanning in bats has been likened to saccadic eye
movements in mammals (Surlykke et al., 2009). Planning
saccades requires the availability of spatial (angular) infor-
mation. In the visual system, angular information is di-
rectly available. In contrast, angular information needs to
be inferred computationally in hearing systems. In fact, bats
might be assumed to often operate under cluttered condi-
tions where computing angular information is impossible
(Vanderelst et al., 2015). Under these conditions, only mini-
mal spatial information, such as interaural level differences,
might be available to bats to guide gaze scanning. The robust
strategies implemented here are compatible with this kind of
coarse spatial information.

In spite of their simplicity and the demanding environ-
ment, both strategies – observed in bats – successfully
steered the robot away from obstacles (as compared with
a Random Walk). However, we found that the Fixed Head

Strategy outperformed the Gaze Scanning Strategy (fig. 1c).
We conclude that in spite of the benefit of this strategy dur-
ing hunting (Ghose and Moss, 2006; Vanderelst and Pere-
mans, 2018), (1) the delay introduced by the Gaze Scanning
Strategy and (2) the fact that this strategy often looks away
from the direction of driving makes it less suitable to navi-
gate complex environments dense with obstacles.

We conclude that the Gaze Scanning Strategy can support
obstacle avoidance using low-level, coarse spatial informa-
tion to direct the gaze. However, the advantage of the Fixed
Head Strategy leads us to conclude that gaze movements
might reduce obstacle avoidance performance in highly clut-
tered environments. Our results would predict that the Gaze
Scanning Strategy is traded for a Fixed Head Strategy under
cluttered conditions. Indeed, Knowles et al. (2015) did not
observe gaze scanning behavior in their experiments when
flying bats through a matrix of chains.
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Abstract

Recent successes in Artificial Intelligence (AI) use machine
learning to produce AI agents with both hand-engineered and
procedurally generated elements learned from large amounts
of data. As the balance shifts toward procedural generation,
how can we predict interactions between such agents and
humans? We propose to use Artificial Life to study emer-
gence of group behaviours between procedurally generated
AI agents and humans. We simulate Darwinian evolution to
procedurally generate agents in a simple environment where
the agents interact with human-controlled avatars. To reduce
human involvement time, we machine-learn another set of AI
agents that mimic human avatar behaviours and run the evolu-
tion with such human proxies instead of actual humans. This
paper is an update on the on-going project.

1 Introduction
Artificial Intelligence (AI) is increasingly present in our
lives in the form of smartphone assistants, smart appliances,
self-driving cars, non-player characters in video games, etc.
Consequently, emergent interactions between AI agents and
humans can significantly affect our lives and help us ad-
dress various societal challenges. Artificial life (A-life) is
a powerful setting in which we can study behaviours emerg-
ing from interactions among AI agents. By adding human-
controlled avatars to an A-life environment we can addition-
ally study interactions between A-life and humans to gain
insight into the continual impact of AI on society.

Most recent advances in AI use machine learning wherein
the AI agents become progressively smarter by learning
from existing data and their own experiences at various
temporal scales. Evolutionary algorithms can learn across
generations while reinforcement learning can learn from
the agent’s experience within its lifetime. Seminal work
by Ackley and Littman (1991) combined two techniques into
Evolutionary Reinforcement Learning.

Models of the evolution of AI agents in society must be in-
formed by human involvement. As evolution can take many
generations and human time is limited, we proposed in our
earlier paper (Bulitko et al., 2018) to derive AI-controlled
proxy agents to mimic human-controlled avatars in an A-
life environment. Such proxies would be machine learned

from traces of actual human behaviour. These proxies could
substitute for humans within the evolution for a set num-
ber of generations, with human-controlled avatars periodi-
cally re-introduced into the A-life environment where their
behaviours are recorded to train the next set of proxies.

In this paper we present an update on this on-going
project, including early proxy-creation results and the use
of our approach in an interactive art installation.

2 Problem Formulation
The specific problem we focus on in this paper is to accel-
erate human-informed evolution of AI agents in an A-life
setting. Our goal is to maximize the resulting reduction in
evolution time while minimizing the loss of accuracy of the
resulting AI behaviours relative to the baseline (i.e., using
actual humans throughout the evolution).

To illustrate, consider evolving non-playable characters
(NPCs) for a video game such as Darwin’s Demons (Soule
et al., 2017) or No Man’s Sky Next (Hello Games, 2018).
Suppose doing so with actual humans controlling avatars
takes 100 hours for the NPCs to evolve to respond to the
player in a desired fashion. Alternatively, we can substi-
tute proxy agents for actual humans, reducing the evolution
time down to, say, 10 hours (a 10x speed-up). However,
since these NPCs were evolved against human proxies (i.e.,
approximations of humans), their evolved behaviour may
be different from desired behaviour achieved in the former
case. Our goal is thus to increase the speed-up while keeping
both evolved response behaviours close.

3 Related Work
Surrogate models replace the actual, expensive fitness func-
tion with a more tractable approximation. Such models can
be machine-learned (Kim et al., 2014; Rawal and Miikku-
lainen, 2018). Then evolution can be run with the surrogate
model instead of the actual fitness function. This approach
does not directly apply to our problem since the type of evo-
lution we conduct in an A-life environment is asynchronous
and does not have discrete generations on which a fitness
function is used to sort the population towards forming the
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next generation. Instead, A-life agents reproduce at will and
the fitness of an agent is implicit in the environment (Ackley
and Littman, 1991; Bulitko et al., 2017).

4 Learning Human Proxies
We are implementing the approach proposed by Bulitko
et al. (2018) in a simple Netlogo environment (Wilensky,
1999). The environment is a modification of our previous
work (Bulitko et al., 2017; Soares et al., 2018) and involves
predator and prey AI agents on a two-dimensional 48 × 48
rectangular grid (Figure 1, left).

Figure 1: Our A-life environments: in Netlogo and in Unity.

Herbivores vary in shape and colour. They consume grass,
shown as green cells. Predator agents consume herbivores
and are visualized as short black line segments. A single hu-
man avatar is controlled by a player via keyboard. On each
tick, the avatar movement along with a description of the
3×3-cell neighbourhood centred on the avatar are recorded.
Specifically, we record 99 numbers which represent the pres-
ence of obstacles, amounts of grass, and the numbers of each
type of AI-controlled agents in each of the 9 cells (11 num-
bers for each cell). We then record the avatar’s action (i.e.,
moving to one of the 8 neighbours or staying put).

A run of N time ticks yields two matrices: the avatar’s
inputs (N × 99) and the avatar’s actions (N × 1), which
constitute the training data from which we learn a proxy to
mimic the avatar’s actions on a previously unseen run of M
ticks. Such a run yields test data with M × 99 inputs and
M × 1 actions. We then calculate proxy accuracy as the
percentage of rows in the test input matrix for which the
proxy gives the actual action taken by the human avatar.

As a proxy, we use a memory-free linear model that com-
putes a scalar utility of each of the 9 cells as a dot product of
the 11 numbers describing the cell and 11 proxy parameters
(i.e., a multichannel convolution with a 11 × 1 × 1 kernel).
The proxy agent then moves to the cell with the highest util-
ity. The 11 proxy parameters are found via a simple genetic
search with the fitness computed on the training data. Pre-
liminary results suggest a proxy test accuracy of 78 to 91%
after training on matrices containing 600 to 4000 rows.

5 Future Work & Conclusions
We are concurrently implementing a similar A-life environ-
ment using Unity game engine (Unity Technologies, 2018)

for an interactive art installation Dyscorpia: Human in
the Loop to run in Edmonton, Alberta, Canada in April
2019: https://www.dyscorpia.com. Here, instead
of a single keyboard-controlled avatar, multiple people are
tracked with a camera as they walk around the installation.
Their movements are painted into the A-life environment as
grass. The right panel in Figure 1 shows a profile of a single
human pointing to the left with his arm. We plan to record
human movement data in the day time, use it to construct
human proxies in the evening, run evolution of AI agents
with the proxies overnight, and release the evolved agents in
the installation next morning.

In conclusion, this paper presents an update on our on-
going project (Bulitko et al., 2018). Preliminary results with
even rudimentary proxy learning are promising.
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Abstract

It is well documented that cooperation may not be achieved
in societies where self-interested agents are engaging in Pris-
oner’s Dilemma scenarios. In this paper we demonstrate, in
contrast, that agent societies that use human-inspired emo-
tions within their decision making, can reach stability in co-
operation. Our work makes use of the Ortony, Clore, and
Collins (OCC) model of emotions and we analyse the evolu-
tionary stability of two different implementations that make
use of key emotions from this model. Firstly, we consider
an agent society that solely make use of this model of emo-
tions for the agents’ decision making. Secondly we look at
a model that extends the emotional agents with a model for
representing mood. We set out a proof that shows that our
emotional agents are an evolutionarily stable strategy when
playing against a worst-case scenario strategy. The proof
demonstrates that our established model of emotional agents
enables evolutionary stability to be achieved, without modifi-
cation to this model. In contrast, the model of moody agents
was shown not to be an evolutionarily stable strategy. Our
analysis sheds light on the nature of cooperation within agent
societies and the useful role that simulated emotions can play
in the agents’ decision making and the society as a whole.

Introduction
Models of emotion, particularly those based on the Ortony,
Clore, and Collins (OCC) account of emotions, have been
used as part of agents’ decision making processes to ex-
plore their effects on cooperation within social dilemmas
(Ortony et al., 1990; Lloyd-Kelly et al., 2014; Collenette
et al., 2017). These studies include exploration of the model
against a number of different agents within multiple envi-
ronments. Knowing how these agents, using the OCC model
of emotions, react in a simulated environment is an impor-
tant study in understanding how they will behave against
a specific subset of characteristic agents and environments.
This paper expands our knowledge of agents using the OCC
model of emotions in broader terms, by exploring the evo-
lutionary stability of these agents in a Prisoner’s Dilemma
setting. The knowledge of whether these strategies can be
considered an evolutionarily stable strategy (ESS) allows us
to state that these human-inspired agents are able to flourish
as a society against invading strategies.

We analyse two different interpretations of OCC agents.
Firstly, Emotional agents that decide their action using only
the model of emotions, based on a subset of the OCC model.
To analyse the evolutionary stability of these agents we use
the Prisoner’s Dilemma game as this allows us to effectively
look at the cooperation these societies achieve and whether
the cooperation is sustainable against invading strategies.

We contrast the results with the second interpretation of
an OCC agent, the Moody agent (Collenette et al., 2017),
which uses the OCC model of emotions for decision making
in addition to a psychology-grounded model of mood. Our
analysis highlights the different strategies that are needed to
achieve success as a society in terms of both stability and
cooperation, in the iterated Prisoner’s Dilemma.

We find that Emotional agents can be considered an ESS
in the Prisoner’s Dilemma when given time to converge
against the opponent. This is in contrast to Moody agents,
which are not an ESS. The Emotional agents take a more
defensive strategy that allows cooperation to remain stable
over time when playing against other Emotional agents. Op-
ponents are able to take advantage of the Moody agents as
they try to create cooperation. Actively trying to create co-
operation with opposing strategies makes the Moody strat-
egy more unstable when compared to the Emotional agents.

Analysing two different human-inspired agent strategies,
has allowed us to show the inherent risk that cooperation
brings in the Prisoner’s Dilemma. The work has also showed
how different strategies are better deployed in different sce-
narios. Emotional agents are better suited to a mixed group
of agents with differing strategies than the Moody agents,
while Moody agents are better suited than Emotional agents
when only one strategy exists.

Background
The Prisoner’s Dilemma is a social dilemma, popularised
through the influential Axelrod’s tournament (Axelrod and
Hamilton, 1981), where two players pick between cooperat-
ing with the other player, or trying to take advantage. This
choice is made simultaneously, independent of one another,
and with no prior communications. If both players choose
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C,C D,D D,C C,D

R,R P, P T, S S, T
3, 3 1, 1 5, 0 0, 5

Table 1: Prisoner’s Dilemma payoff matrix with example
payoffs. Cooperate, Defect.

to cooperate this is the best joint payoff. If one player de-
fects then the defector receives the best individual payoff,
and the cooperator receives the worst individual payoff. If
both agents choose to defect they both receive the joint worst
payoff. The payoffs for the iterated Prisoner’s Dilemma (Ta-
ble 1) must have the following restrictions hold (Rapoport
et al., 1965) to be valid:

• (T )emptation > (R)eward > (P )unishment > (S)ucker

• R > (S + T )/2

A strategy can be described as an ESS when the majority
of the agents in a society are using this strategy, and it cannot
be invaded by any other strategy that is initially rare (Smith
and Price, 1973); the definition is given below.

Definition 1. Let V (A,B) be the expected payoff strategy
A receives when playing against strategyB. A strategyM is
considered an ESS whereM is the dominant strategy and the
following holds for all invasion strategies I where M 6= I .

V (M,M) > V (I,M) OR

(V (M,M) = V (I,M) AND V (M, I) > V (I, I))
(1)

Evolutionary stability in the Prisoner’s Dilemma has been
extensively analysed (Thomas, 1985; Bloembergen et al.,
2015), with no pure strategy being an ESS in the iterated
version of the Prisoner’s Dilemma (Boyd and Lorberbaum,
1987). Furthermore no TIT-FOR-n-TATS is an ESS (Far-
rell and Ware, 1989), nor are any reactive strategies (Lorber-
baum, 1994). The predictability of these kinds of strategies
allows invasion strategies to be successful. This shows that
evolutionary stability is an extremely demanding criterion to
place on a strategy in the iterated Prisoner’s Dilemma. Our
Emotional and Moody agents differ from previous analyses
of strategies in this problem set, as they are able to iden-
tify individual opponents and change their actions based on
the individual, and also the memory space of these strategies
extends beyond a single interaction.

Emotional agents
We analyse theoretically the evolutionary stability of Emo-
tional agents described by Lloyd-Kelly (2014), whereas
Lloyd-Kelly (2014); Collenette et al. (2017) focus primarily
on experimental studies only. These emotional agents sim-
ulate a subset of the OCC model of emotions (Ortony et al.,
1990) from the psychology literature.

The authors of the OCC model show how emotions influ-
ence a change in behaviour, with peoples’ actions being a
result of their current emotional makeup. A person’s current
emotional makeup is then influenced by interactions with
other people in the environment. The OCC model defines
22 emotions, which are organised into a hierarchical struc-
ture with definitions on how each emotion responds to dif-
ferent actions (Ortony et al., 1990). The OCC model does
not define how emotions are processed internally, but gives
the outward effects of these emotions. Various agent design-
ers have used this model successfully as part of their agents’
decision making process (André et al., 2000; Popescu et al.,
2014; Lloyd-Kelly et al., 2014; Collenette et al., 2017).

Our focus is on two key emotions from the OCC model,
Gratitude and Anger, within agents that interact in the Pris-
oner’s Dilemmas. The use of these two emotions affects the
decision making process of the agents and changes whether
an agent is currently cooperating or defecting. Work has also
been conducted where additional emotions have been imple-
mented, with the focus being on other areas of agent inter-
actions such as agent replication (Lloyd-Kelly et al., 2014;
Lloyd-Kelly, 2014). We are focusing on the decision making
strategy of the agents, and whether this can be considered an
ESS. This leads us to include only the emotions that affect
the outcome of a decision, namely Gratitude and Anger, this
is the same as in Lloyd-Kelly et al. (2014); Collenette et al.
(2017).

For clarity we repeat how the two emotions, Gratitude
and Anger, are implemented by Lloyd-Kelly (2014). Each
emotion has a value and a threshold, both are represented
by an integer. An interaction can increase an emotion’s
value, up to the emotional threshold. When the threshold
is reached, the agent’s action will change to reflect the emo-
tional trigger, then the value of the emotion is reset. An
agent’s threshold is determined by its “personality”. If an
Emotional agent receives a cooperative move, the Gratitude
value will increase. When the Gratitude threshold is reached
the agent will then cooperate with that opponent. Similarly
with Anger, if an opponent defects against the Emotional
agent, the Anger value will increase. Once the Anger thresh-
old is reached the Emotional agent will now defect against
the opponent.

The possible personalities that the previous work has anal-
ysed are shown in Table 2. While the thresholds can be
defined as much larger, we restrict them to this small set
as this best reflects how emotions are short-term biological
processes (Keltner and Gross, 1999).

Moody Agents
The Moody agents use simulated model of mood, in ad-
dition to the same subset of simulated emotions the Emo-
tional agents use. This mood model informs decision mak-
ing and is grounded in psychology (Collenette et al., 2016).
The mood model uses mood as a real number, lower val-
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Anger Threshold Gratitude Threshold Character

1 1 Responsive
1 2 Active
1 3 Distrustful
2 1 Accepting
2 2 Impartial
2 3 Non-Accepting
3 1 Trustful
3 2 Passive
3 3 Stubborn

Table 2: Personalities for agents using the OCC model of
emotions, with their Anger and Gratitude thresholds

ues represent more depressed moods and higher values rep-
resent more positive moods, reflecting how psychologists
have represented human mood (Diener et al., 1985; Hepburn
and Eysenck, 1989; Hertel, 1999; Bilderbeck et al., 2016).
Agents using the mood model use a real number between
0 and 100 to represent mood (Collenette et al., 2016), as
this gives an intuitive understanding of whether the current
mood is positive or negative. This value can be integrated
more accessibly with the other parts of the model.

The model uses the Homo Egualis concept of fairness
(Gintis, 2000) to control how the mood is affected after
any given interaction with other agents. Fairness is an im-
portant concept when considering whether a given outcome
can be considered positive or negative, as fairness has been
shown to affect decision making in human societies (Fehr
and Schmidt, 1999). Mood has an effect on what is consid-
ered fair by affecting perception and judgement (Mayer and
Hanson, 1995; Forgas and Bower, 1987). When modelling
multi-agent systems, we can capture a notion of human fair-
ness (de Jong et al., 2008) and using this human-inspired
model can be beneficial, as de Jong and Tuyls (2011) de-
scribes.

Definition 2 shows how the mood value is calculated
after an interaction with another agent (Collenette et al.,
2016). The value of the mood is affected by the payoff
the agent has received and how “fair” the Moody agent be-
lieves this payoff to be in the context of both agents’ previ-
ous payoffs. Evaluating fairness is achieved using the Homo
Egualis equation (Fehr and Schmidt, 1999). In Equation 2
the first line retrieves the value of α that will be used in
the Homo Egualis equation. By definition this needs to be
a value greater than 0 and less than 1, where lower values
put less emphasis on the difference between the two agents.
α = β represents an idealistic scenario where agents care
equally about inequity between the opponents and them-
selves. Higher mood values should give a lower α, as being
in a low mood represents that the agent “thinks” it is doing
badly in the environment and as such will care more about
inequity by design of the mood model (Collenette et al.,
2016). This reflects how people also care more about in-

equity when doing poorly (Fehr and Schmidt, 1999). The
value of the mood will lie between 0 and 100 and we “flip”
the number and divide by 100, for example a mood of 75
will give an α of 0.25.

Definition 2 (Mood Calculation(Collenette et al., 2016)).
Let AG be the set of all agents, with i and j ∈ AG. Let
pi return the payoff of agent i. Let mi return the mood of
agent i, in the range 0 < m < 100. Let µi denote the aver-
age payoff for agent i. Let j be the opponent of agent i. Let
α = β.

αi =(100−mi)/100

Ωi(j) =µi − αi ·max (µj − µi, 0)−
βi ·max (µi − µj , 0)

mi ←mi + (pi − µi) + Ωi(j)

(2)

The second line is the Homo Egualis equation. While tra-
ditionally the average between the agent and all opponents
is taken into account, the model uses only the current oppo-
nent so that the agent’s mood is not affected by opponents
it never interacts with. The result of Ω is the average pay-
off the agent has received with a weighted adjustment made
based on the difference between the agent’s average payoff
and the opponent’s average payoff.

The third and final line shows how the mood will go up or
down based on the difference between the payoff the agent
received and the agent’s current average payoff, adjusted by
the value of the Homo Egualis equation. The value is then
restricted to lie between 0 and 100. This value places the
mood into one of five mood levels (Very High, High, Neu-
tral, Low, Very Low).

The mood value will then affect the action selection of
the agent, reflecting the psychology literature regarding low
moods (Haley and Strickland, 1986; Hertel et al., 2000). For
generally low moods, the agent will defect against any new
agents. When the mood is high the agent cooperates with
new agents, and when the mood is very high, the agent will
always cooperate. When the mood is very low, the agent will
always defect. The full description of the model along with
the psychology grounding is given in Collenette et al. (Col-
lenette et al., 2016, 2017). Table 3 also outlines the changes
that Mood causes.

Evolutionary Stability Analysis
To analyse whether Emotional and Moody agents can be
considered an ESS, we need to design an opponent strat-
egy that will take the largest advantage of these agents and
minimise their payoff. By designing such a strategy we can
show that if Emotional and Moody agents are able to remain
the dominant strategy, then no other strategy can invade the
Emotional or Moody agents.

We will use a strategy termed the Oracle. The effective-
ness of the strategy is achieved by breaking an assumption of
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Mood Level Moody Agent
Cooperating

Moody Agent
Defecting

Very High (m > 90) No change Cooperate

High (70 > m ≥ 90) No change Cooperate against
new opponent

Neutral (30 ≥ m ≤ 70) No change No change

Low (10 ≤ m < 30) Defect against
new opponent No change

Very Low (m < 10) Defect No change

Table 3: How simulated mood changes the action selection
in Moody agents

the Prisoner’s Dilemma, namely that players have no knowl-
edge of the opponent’s move, as reflected by the name. Intu-
itively the Oracle strategy will always cooperate with itself,
and when faced with another strategy will choose the worst
outcome for the opponent, effectively making it the worst
case scenario for the opponent. The Oracle strategy targets
the conditions needed to be an ESS, allowing effective anal-
ysis of evolutionary stability.

For example, if an opponent chooses to cooperate, the Or-
acle strategy is guaranteed to defect, giving the Oracle strat-
egy the T payoff and the opponent the S payoff. For a soci-
ety of agents to successfully survive an Oracle invasion, that
society must have perfect cooperation among themselves,
and protect themselves from the Oracle by always defecting
against the opposing strategy.

We can now state that the expected value V after one
round, for the Oracle strategy o against strategy b, where
Ac(b, o) returns the action b would use against o, can be cal-
culated as:

V (o, b) =





R IF b ≡ o
T IF b 6≡ o AND Ac(b, o) = C

P IF b 6≡ o AND Ac(b, o) = D

The Oracle is the most effective strategy at minimising
the payoff of the Emotional agents, which we show in The-
orem 4. To prove this theorem we need to use the fact that
Emotional agents will not change their action if their oppo-
nent uses the same action (Lemma 3).

Lemma 3. An Emotional agent will not change its subse-
quent action against an opponent if its opponent’s action
mirrors the Emotional agent’s action.

Intuitively this means that if an Emotional agent is coop-
erating and its opponent is also cooperating then the Emo-
tional agent will not switch to defection and visa-versa.

Theorem 4. The expected payoff of Emotional agents using
the defined personalities, in the Prisoner’s Dilemma with the
payoffs defined in Table 1, is minimised by the Oracle strat-
egy, with no other strategy being able to lower the expected
payoff further.

Proof. If the Emotional agent is initially defecting then the
payoff achieved by the Emotional agent is V (e, o) = Pn
where n is the number of rounds. Neither the Oracle nor
the Emotional agent will ever change their action, as per
Lemma 3.

When the Emotional agent is initially cooperating then
the payoff the Emotional agent receives is S as the Oracle
defects. By the definition of the Emotional agent we know
that the Emotional agent will change to defection when the
Anger level of that agent reaches the Anger threshold. The
Emotional agent will change its action to defecting against
the Oracle agent. Once the Emotional agent has changed its
action the Oracle will continue to defect, now both agents
are defecting. As both agents are defecting they will con-
tinue in mutual defection indefinitely as per Lemma 3, and
the Emotional agent will receive the P payoff. We can now
state that the expected value of an initially cooperative Emo-
tional agent against the Oracle is V (e, o) = Sm+P (n−m)
where m is the Anger threshold and n is the number of
rounds.

Assume there is a strategy x where the payoff achieved
by the Emotional agent is V (e, x) < Sm+P (n−m) when
initially cooperating and V (e, x) < Pn when the Emotional
agent is initially defecting.

If the strategy x only defects then the payoff of an initially
defecting Emotional agent is V (e, x) = Pn, and for an ini-
tially cooperative agent V (e, x) = Sm + P (n −m). This
contradicts the assumption as V (e, x) < Sm + P (n −m),
therefore only defecting is not the strategy x.

If the strategy x only cooperates then the expected payoff
of an initially defecting agent is V (e, x) = Tg + R(n −
g) where g is the Gratitude threshold. The payoff for the
initially cooperative agent is V (e, x) = Rn. This leads to
a contradiction as T and R are both larger than S and P in
the Prisoner’s Dilemma. Strategy x therefore cannot only
cooperate.

Strategy x must therefore be a mixed strategy. By
Lemma 3 we know that repeating the Emotional agent ac-
tion leads to an indefinite repetition. Therefore we consider
the strategy of doing the opposite of the Emotional agent.
When the Emotional agent is cooperating the strategy x will
defect and when the Emotional agent is defecting the strat-
egy x will cooperate. Therefore the expected value of the
Emotional agent is V (e, x) = (Tg + Sm) n

g+m .
This is the minimal strategy since if the strategy x

switches a cooperative move for a defect, then the Emotional
agent will receive a P payoff, but will not switch to coop-
eration, effectively removing the S payoffs it would have
received. By definition of the Prisoner’s Dilemma P > S
so the Emotional agent’s expected value will increase. If
the strategy x switches a defection for a cooperative move,
then the Emotional agent will receive a R rather than a S
payoff, and will not switch to defection leading to further
R payoffs. By definition R > S so the Emotional agent’s
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expected value will increase.
As strategy x must be the mixed strategy of doing the op-

posite action of the Emotional agent, therefore the following
must hold:

V (e, x) < V (e, o)

We evaluate this equation where V (e, x) = (Tg +
Sm) n

g+m and V (e, o) = Sm+ P (n−m) with an initially
cooperating Emotional agent. We choose the initially coop-
erating agent as Sm+ P (n−m) < Pn.

Given that we are looking at the possible personalities in
Table 2 and using the values for the Prisoner’s Dilemma in
Table 1, we use the personalities that will play the maxi-
mum number of cooperative moves and the lowest amount
of defection moves to minimize the number of T payoffs and
maximize the number of S payoffs. This is the personality
Trustful. Plugging in the values in the above equation results
in the following:

(5 · 1 + 0 · 3)
n

4
< 0 · 3 + 1(n− 3)

5

4
n < n− 3

1

4
n < −3

n < −12

For the equation to hold, strategy x must yield a lower ex-
pected payoff to the emotional agent than the Oracle, for any
number of round n. We have reached a contradiction as n
must be positive by definition.

Therefore strategy x is not the mixed strategy. We have
also shown that only cooperating and only defecting are not
strategy x.

∴ The expected payoff of Emotional agents using the de-
fined personalities, in the Prisoner’s Dilemma with the pay-
offs defined in Table 1 is minimised by the Oracle strategy,
with no other strategy being able to lower the expected pay-
off further.

The Oracle agent is the most effective agent at minimis-
ing the expected payoff of the Emotional agents, for the
given personalities and the given values for the Prisoner’s
Dilemma. By restricting the analysis to the given agent per-
sonalities and values, we are able to analyse the Emotional
agents more effectively as we only need to look at one op-
posing strategy rather than both an Oracle strategy and the
most effective mixed strategy.

Emotional Agents
We now move on to show that the Emotional agents are not
an ESS when there are no restrictions on reproduction and
interaction speed. We will show this both for the initially co-
operative Emotional agent and the initially defecting Emo-
tional agent. The values the strategies will receive for both

the initially cooperative Emotional agent, initially defecting
Emotional agent, and the Oracle agent are given in Table 1,
for an initial interaction.

Theorem 5. Emotional agents are not an ESS in the initial
phase.

Proof. Assume that Emotional agents are an ESS. Given a
majority of Emotional agents, with an invasion force of Or-
acle agents, by definition of an ESS, Equation 1 must hold
for the Emotional agent strategy M and the invading Oracle
strategy I . For the initially cooperative Emotional agent we
have,

R > T OR (R = T AND S > R)

and for the initially defecting Emotional agent

P > P OR (P = P AND P > R).

A contradiction has been reached for each line in both
the initially cooperative Emotional agent and the initially de-
fecting Emotional agent. P > P is a contradiction, T > R
and R > P (from Table 1) contradict the equations.

∴ Emotional agents are not an ESS in the initial phase.

Emotional agents are not an ESS, due to how the agents
respond initially to the Oracle strategy. Emotional agents
are able to respond to the opponent on an individual agent
level, that is, the action the Emotional agent gives depends
on who the opponent is. Collenette et al. (2016) has shown
that all initially cooperative Emotional agents will cooperate
with each other indefinitely.

Lemma 6. All Emotional agents will converge to defection
with all Oracle agents given a sufficiently high number of
interactions and sufficiently high randomness in pairing.

Emotional agents will eventually choose to defect indef-
initely against the Oracle strategy given enough time to ad-
just. As other agents can not affect the action choice of ei-
ther the Emotional agent or the Oracle, the Oracle will only
defect which only increases the agent’s Anger value. The
Emotional agent will not switch back to cooperation.

Theorem 7. Initially cooperative Emotional agents that
have fast interactions and slow reproduction are an ESS

Proof. Assume a fraction ε of the population is replaced by
the invading Oracle strategy. We also assume that inter-
actions between all agents are fast and reproduction of the
population is slow. Given the fast interactions, and slow re-
production with respect to time, all Emotional agents will be
defecting against any other Oracle agents that may be resid-
ual in the populous, as per Lemma 6. This gives both the
Oracle strategy and the Emotional agents the P payoff. No
Emotional agent has adjusted to the newly invading ε-Oracle
agents, and as such are able to receive the S payoff.

471



Thus the expected payoff of the Emotional agents against
the Oracle agents is V (e, o) = Sε + P (1 − ε), and the ex-
pected payoff for the Oracle agents against the Emotional
agents will therefore be V (o, e) = Tε+ P (1− ε).

Using these values in Equation 1 gives us the following:

R > Tε+ P (1− ε) OR
(R = Tε+ P (1− ε) AND Sε+ P (1− ε) > R)

The equation will therefore hold, given that ε is suffi-
ciently small as per the definition of an ESS strategy (Eshel,
1983). The expected value that the Oracle agent gets from
the Emotional agents will be sufficiently close to P such
that the first line will always hold. The Emotional agents are
protecting themselves from defection of the Oracle agents.
The ε number of new Oracle agents are unable to take a
large enough advantage of the Emotional agents that they
can break the stability.

∴ Initially cooperative Emotional agents are an ESS,
when interactions are fast and reproduction is slow.

In summary, initially cooperative Emotional agents are an
ESS, as no strategy is able to minimise the payoff of the
Emotional agents more than the Oracle agent. The assump-
tions of fast interactions and slow reproduction, are to allow
the Emotional agents to adapt to all the Oracle agents before
the next reproduction. A sufficiently small epsilon in this
case is less than half, if using Table 1 as the payoff matrix,
given the assumption that the Emotional agents are the ma-
jority as per the definition of an ESS (Eshel, 1983). The as-
sumptions of fast interaction and slow reproduction are part
of an efficient evolution and learning process (Hinton and
Nowlan, 1987), with fast interactions allowing the agent to
learn which in turn guides the reproduction process.

When we consider the initially defecting Emotional agent,
they have already adapted to the invading Oracle agents.
However the initially defecting Emotional agent being able
to protect its payoff is not enough for it to be considered an
ESS. The initial defection will prevent the Emotional agents
from cooperating as a group, and with no avenue of breaking
the defection, this allows the Oracle agents which do work
together, to be a fitter strategy.

Moody Agents
We will now be comparing the Emotional agents to Moody
agents, again using the Oracle strategy. The Moody agents
we are analysing are similar to Emotional agents as they both
use OCC-inspired emotions as part of their decision-making
process. However the addition of the Mood model on top
of the emotions changes how the Moody agents react in cer-
tain circumstances. The Moody agents have been shown to
perform better in self-play than the Emotional agents (Col-
lenette et al., 2017). Analysing the evolutionary stability of
these agents shows us the effects the Mood model has, when
compared to Emotional agents.

To analyse the Moody agents, we need to take into ac-
count that different mood levels affect how the Moody
agents respond to the Oracle. Therefore we need to anal-
yse each mood level individually to be able to gain insights
into the Mood model as a whole. Table 3 shows each Mood
level and when the Mood value will override the action se-
lection of the agent. As we know that Emotional agents need
to be initially cooperative to be considered an ESS, we will
assume that the Moody agents are also initially cooperative.
We will start the proofs from very high levels of mood down
to very low moods. For simplicity in the analysis we also
assume that the mood levels do not change.

Theorem 8. Moody agents that are in an initially very high
mood are not an ESS

Proof. Assume Moody agents in a very high mood are an
ESS. Given that a fraction ε of the population is replaced
by the invading Oracle strategy, the expected payoff of two
Moody agents in a very high mood is R since by definition
all Moody agents are cooperating. Thus the expected payoff
of an Oracle agent against the Moody agent will be T and the
Moody agent will receive S. Equation 1 holds by definition
of an ESS. Therefore the following equation is true:

R > T OR (R = T AND S > R)

This is a contradiction, both sides of the OR are false. By
definition of the Prisoner’s Dilemma, T > R which contra-
dicts both sides of the equation.

∴ Moody agents in an initially very high mood are not an
ESS.

Moody agents in very high moods are not an ESS. This
is due to these particular agents being functionally equiva-
lent to a fully cooperative strategy, which is known to not be
an ESS (Boyd and Lorberbaum, 1987; Lorberbaum, 1994).
Moving onto high moods, we will show that initially coop-
erative agents are equivalent to Moody agents in a neutral
mood. This allows us to avoid repeating proofs.

Lemma 9. Moody agents that are in an initially high mood
are functionally equivalent to Moody agents in a neutral
mood.

In high moods we know that the only effect on decision
making is that the Moody agent will always cooperate with
a unknown opponent. By our assumption above, Moody
agents are initially cooperative, and therefore Moody agents
in a high mood are functionally identical to Moody agents
in a neutral mood.

We will show that neutral moods are functionally equiva-
lent to Emotional agents. This gives us that Theorem 7 holds
for Emotional agents and Moody agents that are in either a
neutral mood or a high mood.

Lemma 10. Moody agents that are in an initially neutral
mood are functionally equivalent to Emotional agents.
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The mood value has no effect on action selection; by defi-
nition of Moody agents, they will respond using the emotion
model as defined for the Emotional agent. We now go on to
show that initially very low, and low, mood levels are not an
ESS. We do this as both types of Moody agents are function-
ally equivalent against an Oracle agent.

Lemma 11. Moody agents that are in an initially low mood
are functionally equivalent to Moody agents against an Or-
acle agent.

The Moody agents will defect with all other Moody
agents as the initial cooperation is broken. The low moods
change the first action to defection, the Moody agents will
continue to defect indefinitely as per Lemma 3. The Moody
agents in a very low mood will defect by definition. When
playing against an Oracle both the Oracle and the Moody
agent in a low mood will play defection. The Oracle will
also defect against a Moody agent in a very low mood. Re-
gardless of whether the Moody agent is in a low mood or a
very low mood, they will defect indefinitely with both other
Moody agents and Oracle agents.

Theorem 12. Moody agents that are in an initially low
mood or are in an initially very low mood are not an ESS

Proof. Assume Moody agents in low mood or a very low
mood are an ESS. Given that a fraction ε of the population is
replaced by the invading Oracle strategy, the expected payoff
of two Moody agents is P . This is valid for both very low
and low moods as per Lemma 11.

The expected payoff of an Oracle agent against a defect-
ing Moody agent is P , and they will be in mutual defec-
tion indefinitely. Equation 1 holds by definition of an ESS.
Therefore the following equation is true:

P > P OR (P = P AND P > R)

We have reached two contradictions, P > P and P > R
since by definition of the Prisoner’s Dilemma R > P .

∴ Moody agents that are in an initially low mood or are in
an initially very low mood are not an ESS

To conclude that Moody agents overall are not an ESS,
we need to now show that the Moody agents’ mood level
will always lead to the evolutionarily unstable mood levels.
As only neutral and high moods are possibly an ESS, we
only consider these two mood levels.

Theorem 13. Moody agents in an initially neutral or ini-
tially high mood will move to the very high mood level, when
there is a sufficiently small ε invasion of Oracle agents.

Proof. The expected payoff of a Moody agent(k) in either a
neutral or high mood will be V (k, o) = Sε+P (1−ε) against
an Oracle agent and V (k, k) = R, as Theorem 7 applies as
per Lemma 10, since Moody agents are functionally equiv-
alent to Emotional agents. When a Moody agent receives
a payoff its mood level updates. We state that Ωi(j) ≈ µi

when two Moody agents interact. The majority of interac-
tions are between two Moody agents, therefore making their
averages (µi and µj) approximately equal, which means Ω
is not changing the perception of the reward in Equation 2.

The final calculation updates the mood mi ← mi + (pi−
µi) + Ωi(j). With the majority of the interactions being be-
tween two Moody agents we can state that pi − µi ≈ 0. We
know that Ω > 0, therefore the mi will increase in the ma-
jority of cases indefinitely as the invasion of Oracle agents
is ε small.

∴ Moody agents in an initially neutral or initially high
mood will move to the very high mood level, given a suffi-
ciently small ε invasion of Oracle agents.

In conclusion Moody agents are not an ESS. While
Moody agents may be an ESS in neutral and high moods,
with the same conditions as the Emotional agents, the
Moody agents will move into the other mood levels that are
not an ESS. If the mood level of Moody agents was to stay
stable over time, this would go against the design principles
of the model (Collenette et al., 2016). The psychological
grounding of the moody model requires that mood levels
change over time as per the psychology literature (Mayer
and Hanson, 1995; Diener et al., 1985).

Conclusion
We have shown that Emotional agents that use a model of
emotions as part of their decision-making can be considered
an ESS when they initially cooperate with new partners and
are able to adapt to an invading strategy before reproduc-
ing. We showed that Moody agents using a simulated model
of mood alongside the model of emotions as their decision-
making process, are not part of an ESS. This is because some
mood levels break the assumption that Moody agents coop-
erate together and will always protect themselves from in-
vading strategies. We tested these human-inspired agents
against an Oracle strategy, which we showed was the most
effective at minimising the expected payoff of the Emotional
agents and can successfully invade the Moody agents.

Collenette et al. (2017) showed that Emotional agents
had stable levels of cooperation, which is reflected by these
agents being an ESS. Collenette et al. (2017) also showed
that Moody agents increased their cooperation over time,
with a higher average payoff than the Emotional agents.
The ability to increase their cooperation is what causes the
mood model strategy not to be an ESS. This shows us how
more protective strategies are able to succeed against inva-
sive strategies, whilst when playing against more recipro-
cating strategies, a more responsive and risky strategy suc-
ceeds. In turn, this reflects the inherent risks and rewards in
the Prisoner’s Dilemma.

Our work poses further questions, namely whether we can
reduce the assumptions needed for the Emotional agents.
We will be aiming to find out whether the mood model can
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be adapted to become an ESS, by changing the secondary
decision making process, which is currently the OCC-based
model and is not an inherent part to the mood model. Further
alterations to the fairness metric, such as changes to the α
and β variables may affect the evolutionary stability, which
provides a further avenue of investigation.

This body of work is part of the wider literature that con-
siders simulated emotions, mood, and personalities in agent
systems, in terms of how they model these human-inspired
concepts and the effects these aspects have on wider agent
societies. The majority of the literature concerning these
kinds of agents focuses on simulations and observing the
effects. We have taken a broader view of human-inspired
agents by analysing evolutionary stability in an account that
implements both Emotional and Moody agents.
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Abstract

As water dwelling vertebrates began to progressively evolve
features that enabled them to survive on land, they also devel-
oped larger eyes, which would have considerably increased
their range of vision above water. This increase in visual
range may have facilitated their exploitation of new food
sources on land and promoted increased cognitive capacity in
the form of planning (MacIver et al., 2017). In this study, we
use a multi-level agent-based model to attempt to replicate
the dynamics of the hypothetical evolutionary scenario de-
scribed above. To do so, we use a novel method called agent-
centric Monte Carlo cognition (ACMCC) (Head and Wilen-
sky, 2018), which allows us to represent the agents’ cognition
in a quantifiable manner by performing micro-simulations in
a separate agent-based model. In our simulations, we observe
that as a population that is adapted to live on land emerges,
their mean eye size and cognitive capacity increase.

Introduction
When vertebrates first began to move onto land, they expe-
rienced morphological changes, progressively trading their
fins for limbs, and their gills for lungs. This better adapted
them to their new terrestrial environment (Long and Gordon,
2004). As they emerged from the water, it is likely that they
gained much more visual information about their environ-
ments. This information gain may have driven the emer-
gence of more advanced cognition and complex planning
abilities (Kohashi and Oda, 2008; MacIver, 2009; MacIver
et al., 2017; Mugan and MacIver, 2018).

In this study, inspired by MacIver et al. (2017), we hy-
pothesized that terrestrial tetrapods would develop higher
planning capacities than their aquatic counterparts due to an
increase in their visual perception space.

Methods
We use a multi-level agent-based modeling (ABM) approach
in this study. ABMs have been a powerful tool for simulat-
ing complex systems (Wilensky and Rand, 2015). We use
a novel method called agent-centric Monte Carlo cognition
(ACMCC) (Head and Wilensky, 2018) in order to model an-
imal cognition. Each agent has a mental representation of

its environment which is modeled using a separate cogni-
tive ABM. Agents use this cognitive ABM to run “micro-
simulations” in order to predict the outcome of different ac-
tions they may choose. The product of the number of actions
they simulate and the length of these simulations give us an
estimation of their cognitive capabilities. We used NetLogo
(Wilensky, 1999) along with the recent LevelSpace exten-
sion (Hjorth et al., 2015) to implement our model.

Overview
In our model, half the world is underwater (low visibility),
and the other half is on land (high visibility). The tetrapods
in our model are initially adapted to water. In time, these
aquatic tetrapods evolve and some of them transition to life
on land. “Food” in our model represents invertebrates avail-
able as prey on both water and land. The tetrapods in our
model have the following evolvable parameters:

Eye size: the radius of the agents’ fields of vision.1 For
the sake of simplicity, we assume that agents have a field of
vision of 360 degrees. The effect of eye size on visual range
on land is much great than that of underwater in accordance
with previous studies (MacIver et al., 2017).

Mobility: how well adapted the tetrapod is to life un-
derwater or on land. This characteristic aims to capture the
morphology of the tetrapod as it undergoes the fin-to-limb
transformation and how this relates to its locomotion (Long
and Gordon, 2004).

Energy: the level of nutrition (energy) of the tetrapod.
Tetrapods gain energy from consuming food and lose energy
as they move, plan actions, or reproduce.

Simulation Number: how many micro simulations the
agent performs at each time step. It models the ability to
consider a number of different scenarios before deciding on
the best course of action.

Simulation Length: the number of steps in each micro
simulation that the agent performs at each time step. It mod-
els the ability to think multiple steps ahead before deciding
on the best action.

1We note that this is a proxy for how far a tetrapod can see and
includes factors such as eye size, eye complexity and development.
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Planning
To modeling animals’ planning and decision-making skills
we allowed the modeled tetrapods to run “micro simula-
tions” in which they could simulate the consequences of a
variety of actions and select the action (direction of move-
ment) that resulted in the greatest expected energy gain.
A micro simulation is a simplified version of the macro
model.2 Each tetrapod loses an amount of energy propor-
tional to the product of its simulation number and simula-
tion length parameters, representing the cost of cognition.
Furthermore, the size of the world in a micro simulation
is limited to the initiating agent’s visual range. We can
think of this as a Partially Observable Markov Decision Pro-
cess, which has previously been used to model animal de-
cisions (Head and Wilensky, 2018; Mugan and MacIver,
2018; Miller et al., 2017).

Actions
At each time step, each tetrapod moves, consuming energy.
The food remains stationary. The speed of an agent’s move-
ment depends upon its mobility value and whether it is on
land or underwater. The amount of energy consumed de-
pends on an agent’s mobility value, its eye size, and whether
it is underwater or on land. If a tetrapod reaches food, it kills
the food and gains energy. If the energy value of a tetrapod
goes below zero, it dies. A tetrapod may reproduce, divid-
ing its energy between it and its offspring. The offspring
inherits its parent’s parameters but undergoes mutation at a
predetermined rate. At each time step, there is an adjustable
probability that a new piece of food will appear.

Discussion
The initially abundant food sources on land become scarce
following tetrapods transition to land. Then, as can be seen
in Figure 1, the terrestrial tetrapods develop larger eyes and
an increased cognitive capacity (simulation length x simula-
tion number), likely due to the selective pressure to remain
competitive in consuming the now-scarce food. 3 Even
though we chose to model a scenario in which only the
predators are able to plan, we expect our results to general-
ize to a broader context in which prey also gain an advantage
from planning by being able to better avoid predators.

Conclusion
The results of our model support the idea that increased
visual perception allowed the early tetrapods to look fur-

2We note that we chose a model of cognition in which we could
explicitly define and measure intelligence. Our specific model of
cognition relies on an explicit central representation of the environ-
ment that can be manipulated, however we expect that our results
could still be observed with different models of cognition.

3Changes in the environment and further specialization and
adaptation of species could explain the variation in eye sizes of
contemporary intelligent species without undermining our assump-
tions.
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Figure 1: Mean eye size (left) and mean cognition capacity
(right) of the terrestrial (mobility > 0) and aquatic (mobility
≤ 0) populations as a function of time.

ther into time as well as space, thus aiding the selection of
abilities such as planning, strategic thinking, and complex
decision-making. This might be an important factor in ex-
plaining the emergence of intelligent life.
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Abstract

An agent’s actions can be influenced by external factors
through the inputs it receives from the environment, as well
as internal factors, such as memories or intrinsic preferences.
The extent to which an agent’s actions are “caused from
within”, as opposed to being externally driven, should de-
pend on its sensor capacity as well as environmental demands
for memory and context-dependent behavior. Here, we test
this hypothesis using simulated agents (“animats”), equipped
with small adaptive Markov Brains (MB) that evolve to solve
a perceptual-categorization task under conditions varied with
regards to the agents’ sensor capacity and task difficulty. Us-
ing a novel formalism developed to identify and quantify the
actual causes of occurrences (“what caused what?”) in com-
plex networks, we evaluate the direct causes of the animats’
actions. In addition, we extend this framework to trace the
causal chain (“causes of causes”) leading to an animat’s ac-
tions back in time, and compare the obtained spatio-temporal
causal history across task conditions. We found that measures
quantifying the extent to which an animat’s actions are caused
by internal factors (as opposed to being driven by the environ-
ment through its sensors) varied consistently with defining
aspects of the task conditions they evolved to thrive in.

Introduction
By definition, agents are open systems that can dynamically
and informationally interact with their environments through
sensors and actuators. However, identifying which particu-
lar set of events within or outside the agent caused it to act in
a certain way is not straightforward, even if its internal struc-
ture and dynamics can be assessed in detail. This is demon-
strated particularly well by the problem of accountability we
currently face with respect to artificial intelligence (Doshi-
Velez et al., 2017). While we can, in principle, record all
network parameters of a (deep) neural network, such as Al-
phaGo (Silver et al., 2016), we still lack a principled set of
tools to understand why the network performed a particular
action (Metz, 2016).

Here, we address this issue using artificial agents (“ani-
mats”) controlled by Markov Brains (MBs) (Hintze et al.,

2017) as a model system of evolved agents, to which we ap-
ply a novel formalism for analyzing actual causation (AC)
(“what caused what”) in complex networks of interacting el-
ements (Albantakis et al., 2019). Although there is no single
widely accepted account of (actual) causation (Illari et al.,
2011; Halpern, 2016), the AC framework presented by Al-
bantakis et al. (2019) was specifically developed to identify
and quantify the strength of the direct causes of any occur-
rence (subset of network nodes in a particular state at a par-
ticular time) within such systems. Notably, this formalism
not only considers causes of single-variable occurrences, but
also evaluates multivariate causal dependencies.

Given an appropriate model system of behaving agents,
the AC framework may serve as a tool for assessing the ac-
tual causes of an agent’s actions, by characterizing the ac-
tual causes of its motor actuators. For this purpose, animats
controlled by MBs are particularly suited: MBs are a class
of evolvable neural networks that receive sensor inputs and
control motor outputs, and can be made small enough to al-
low for a complete causal and informational analysis, while
remaining capable of evolving relatively complex behaviors
(Edlund et al., 2011; Albantakis et al., 2014). As MBs may
exhibit sparse, recurrent connectivity between their nodes
(“neurons”), they resemble biological neural networks more
closely than conventional machine-learning systems.

In this study, we demonstrate how the AC analysis can
be utilized to evaluate the extent to which an animat’s ac-
tions are “intrinsic” (caused by internal occurrences) rather
than “extrinsic” (caused by sensor inputs, which are driven
by the environment). To that end, we evolved animats to
solve a perceptual-categorization task (Beer, 2003; Alban-
takis et al., 2014) under three task conditions with varying
demands for memory and context-dependent behavior. As
shown by Albantakis et al. (2014), animats evolved in more
complex environments relative to their sensor capacity de-
velop MBs with more densely connected nodes, more inter-
nal mechanisms, and higher integrated information, indicat-
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Figure 1: Overview of the task environment, the animat, and analyses used in this study. (A) An animat’s Markov Brain
with connections between sensors (red), motors (blue), and hidden nodes (green). Thick borders around nodes C and D indicate
self connections. (B) Visualization of the simulated world with the animat at the bottom. (C) Time series of the animat’s brain
state during the trial. Black indicates that a node is ‘on’ (‘1’), white means ‘off’ (‘0’). The red frames highlight the two brain
states (t = 15 and t = 32) whose direct causes and causal chains are shown in (D, E). (D) Direct causes of motor states in
two example transitions. Dark color shades indicate that a node is ‘on’ (‘1’), lighter shades mean ‘off’ (‘0’). Listed below each
transition are the direct actual causes (with corresponding causal strengths α) for the states of M1, M2, and (M1,M2), together
with the characteristic quantities used in the statistical analysis. (E) The causal chains obtained by tracing the actual causes of
the motor state (M1,M2) = 01 (“move right”) back in time for 15 time steps, starting at time t = 15 (left) and t = 32 (right).
Each row in the pattern shows the summed causal strength (α, indicated by color) that each node contributes to the direct causes
of the previous time step. Listed below are the summary measures used to characterize the causal chains.

ing higher intrinsic causal complexity (Oizumi et al., 2014).
Here, we exhaustively quantify the direct actual causes of
the animats’ actions, and expand the AC framework in order
to trace back the causal chain (“causes of causes”) leading
up to a given action. In line with Albantakis et al. (2014), we
hypothesize that the causal contribution of internal nodes to
an animat’s actions and its preceeding causal chain will be
higher in animats evolved in more complex task conditions.
Moreover, we expect that the causal chain will reflect task-
specific demands for memory.

Methods

To test our hypotheses, we utilize and extend a formal frame-
work of actual causation to assess and trace back the causes
of an agent’s actions and apply it to artificial organisms (“an-
imats”) evolved in silico under several task conditions.

The artificial evolution experiments were conducted using
the open source software package MABE (Modular Agent
Based Evolver) (Bohm et al., 2017; Hintze et al., 2017).
Software to identify and quantify direct actual causes is
available as part of the PyPhi integrated information toolbox
(Mayner et al., 2018). Finally, newly developed scripts that
iteratively evaluate the actual causes of previously identified
causes are available on GitHub (Comolatti and Juel, 2019).

Data generation: Animat evolution and simulation
Evolution simulations were initialized using MABE’s stan-
dard parameter settings with further agent and environment
specifications described below. The agent types and task en-
vironments investigated in this study were adopted from Al-
bantakis et al. (2014).

Task environment. Animats were evolved in the ‘Com-
plexiPhi’ world, a 35x16 unit grid with periodic boundary
conditions, in which the animat has to move left or right to
catch or avoid falling blocks of specific sizes (Figure 1A).
Across trials, an animat (3 units wide) is placed at all posi-
tions along the bottom of the world, while blocks (one per
trial) are positioned in the top left corner, falling to the left
or right. The block is ‘caught’ if it overlaps with the animat
when it reaches the bottom, otherwise it is ‘avoided’.

Markov Brains (MBs). Animats are equipped with MBs.
Each MB consists of up to 8 binary nodes: up to 2 sen-
sors (S1 and S2), 2 motors (M1 and M2), and 4 hidden
nodes (A, B, C, and D), whose function and connectivity
is specified by hidden markov gates encoded in the animat’s
genome, as described in (Hintze et al., 2017). The global
update function of the resulting neural network can be de-
scribed by a state transition probability matrix (TPM). The
TPM specifies the probability of an animat’s MB transition-
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ing between any two states, thus completely describing its
dynamics. Here, we specifically evolved animats with deter-
ministic TPMs. Nevertheless, the causal analysis described
below can be applied to probabilistic systems as long as they
fulfill the causal Markov condition (Janzing et al., 2013; Al-
bantakis et al., 2019).

During a trial, an animat’s sensor is activated if a block
is positioned directly above it at any height, and otherwise
remains ‘off’ (‘0’). The two sensors are positioned on each
side of the animat, leaving a gap of 1 unit between them.
The state of the remaining nodes updates according to the
animat’s TPM. However, motors are reset (set to ‘off’ (‘0’))
before each update, effectively excluding any feedback from
the motors to the hidden nodes or sensors. The motor state
determines the animat’s action at each time step (‘10’: move
left, ‘01’: move right, ‘00’ or ‘11’: stand still). This process
repeats until the block reaches the bottom of the world, at
which point the success of the animat is recorded before the
next trial begins.

Genetic algorithm and task fitness. Each evolution sim-
ulation is initiated with a population of 100 animats with
random circular genomes. At each new generation, this pool
of genomes is subject to fitness-based selection and muta-
tion, which allows the animats to adapt to higher fitness
across generations. An animat’s fitness, F , is determined
by its percentage of successful trials (correctly caught or
avoided blocks). After each generation the genetic algorithm
draws a new sample of 100 animats (with replacement)
based on an exponential measure of F (roulette wheel se-
lection). Before the next generation, the genome of each se-
lected animat mutates using point mutations, deletions, and
duplications (Albantakis et al., 2014; Hintze et al., 2017).
For each task condition, 50 populations of animats were ini-
tialized, and evolved independently for 30,000 generations.

Task conditions. Animats evolve under three conditions
varying in difficulty relative to their sensor capacity:

• Baseline (BL) condition: catch blocks of size 1, avoid
blocks of size 3, using 2 sensors;

• One sensor (1S) condition: catch blocks of size 1, avoid
blocks of size 3, using only 1 (the left) sensor;

• Hard task (HT) condition: catch blocks of size 1 and 4,
avoid blocks of size 2 and 3, using 2 sensors.

Thus, animats in the BL and 1S conditions perform the same
task, while animats in BL and HT conditions use the same
number of sensors. Compared to BL, in conditions 1S and
HT additional computations across multiple time steps are
necessary to distinguish which blocks have to be caught or
avoided. Nevertheless, some internal memory is necessary
in all conditions to identify whether the block is moving to
the left or right.

Data processing: Causal analysis

The Actual Causation (AC) framework. Here, we
briefly describe the relevant concepts of the AC framework
by Albantakis et al. (2019). For details and formal defini-
tions of the terminology, we refer to the original publication.

Given a transition st−1 ≺ st between two subsequent
states of a discrete dynamical system of interacting elements
S, the AC formalism allows identifying the actual causes of
occurrences at time t from the set of occurrences at time
t − 1 based on a quantitative counterfactual analysis. Here,
“occurrence” simply denotes a subset of network nodes in a
particular state (for example a motor in state ‘off’: M1 = 0).
In the AC framework, an occurrence xt−1 ⊆ st−1 may only
be a cause of another occurrence yt ⊆ st, if yt makes it
more likely that xt−1 has actually occurred. A “higher-
order” occurrence (the joint state of a set of multiple nodes)
may specify its own cause xt−1, if it raises the probability
of xt−1 more than parts of the occurrence do when sepa-
rated by a partition Ψ (Oizumi et al., 2014; Albantakis et al.,
2019). This difference in probabilities indicates the causal
strength (α) with which yt determines xt−1. In simplified
terms, α = minΨ

(
log2

p(xt−1|yt)
Ψ(p(xt−1|yt))

)
, where Ψ partitions

p(xt−1 | yt) into p(x1,t−1 | y1,t) × p(x2,t−1 | y2,t)). α
can be viewed as the irreducible information that an occur-
rence specifies about its cause. The actual cause of an occur-
rence yt is then defined as the subset x∗t−1 ⊆ st−1, for which
α(x∗t−1, yt) = αmax(yt). The set of nodes that constitutes
the actual cause (x∗t−1 ⊆ st−1) is termed the cause purview
of the occurrence in question, and the number of nodes in
the purview is a measure of how distributed the cause is.

Direct actual causes of motor states. To identify the ac-
tual causes of an animat’s action (M1 and M2 being in a
particular state), and to quantify their causal strength, we
consider transitions from all inputs to the motors (i.e., the
sensors and hidden nodes) at time t − 1 to the motors
at time t: (S1,S2,A,B,C,D)t−1 ≺ (M1,M2)t. For a
given state of the motors (M1,M2)t, there can be a max-
imum of three distinct actual causes among all subsets of
(S1,S2,A,B,C,D)t−1: one for the state of M1, one for the
state of M2, and one for the “higher-order” state (M1,M2)t
(if (M1,M2)t is irreducible to its partition into M1 and M2).

As an example, consider the animat transition shown in
Figure 1D from t = 14 to t = 15. Here, (S2,D)14 = (1, 1)
is the actual cause of M115 = 0 with α = 1.415 bit.
(S2,B,C)14 = (1, 0, 0) is the actual cause of M215 = 1 with
causal strength α = 0.415 bit. In addition, (M1,M2)15 =
(0, 1) also has its own actual cause (S2,B,C)14 = (1, 0, 0)
with α = 0.415 bit. This means that (M1,M2)15 = (0, 1)
specifies an additional 0.415 bit of information about the
state of (S2,B,C) at t = 14 compared to M115 = 0 and
M215 = 1 taken individually. Also, note that the cause
purviews of the three occurrences contain different sets of
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Figure 2: Fitness, structural, and functional properties of animats. (A1) Fitness of animats (with final fitness distributions in
(A2)), quantified as the ratio of successful trials. (B) #connected nodes measures the number of hidden nodes with incoming and
outgoing connections (maximally 4, A-D). (C) #Unique transitions across all trials within a generation estimates the dynamical
complexity of the animats. (D)-(G) Density of connections between different node types quantified as the number of connections
between the nodes divided by the total possible number of such connections. The lines show the bootstrap resampled means
for the population (the shaded area indicates the 95% CI of the mean). Statistically significant difference between conditions
are indicated by the colored bars (and stars). The legend in (A) indicates the coloring for all panels.

nodes. For example, hidden node B is part of the actual
cause of M2 in this transition, but is not in the cause purview
of M115 = 0. Moreover, there is no need for a node to be
‘on’ (‘1’) to be part of the cause of an occurrence. Finally,
S1, for example, is not part of any actual cause even though
it has a direct connection to both M1 and M2. In other
words, S114 = 0 does not contribute to “bringing about”
the state of the motors at t = 15 in this particular transition.
However, in the transition from t = 31 to t = 32, S131 = 0
does contribute to the causes of (M1,M2)32.

Thus, for every animat, we find the direct actual causes
of the motor state in every unique transition and calculate
several measures to quantify the degree to which the motor
state was caused from within (see legend of Figure 3).

Quantifying the causal chain: the backtracking analysis.
We also perform a ‘backtracking analysis’ of the causes of
the motor states, for all transitions in a trial past t = 15
(Figure 1E). This analysis amounts to identifying and char-
acterizing the chain of causes leading up to an action.

Having quantified the direct actual causes of a transition
xt−1 ≺ yt (where xt−1 is the state of the sensors and hidden
nodes at time t − 1 and yt is the state of the motors at time
t), we define a joint purview zt−1 ⊆ xt−1 as the union of
all identified cause purviews. In other words, zt−1 is the
state at time t − 1 of all elements contributing to the actual
causes of the motor occurrences, M1t, M2t, and (M1,M2)t.
In the example shown in Figure 1D (top), this corresponds

to z14 = {(S2,B,C,D)14 = (0, 1, 0, 1)}.
Iteratively, we then proceeded to identify and quantify the

actual causes for the transitions xt−2 ≺ zt−1, xt−3 ≺ zt−2,
etc., thus tracing back the causal chain of the observed mo-
tor state at time t. This process is repeated until all cause
purviews in the causal account contain only sensors (indicat-
ing that the cause is completely “extrinsic”) or upon reach-
ing t− 15 (to make results comparable across time steps).

For every animat, we find the causal chain leading to each
motor state (after t = 15) and calculate several measures
aimed to quantify the “intrinsicality” of the backtracking
pattern (see legend of Figure 4).

Statistics
Throughout this work, we use bootstrap resampling to esti-
mate means and to calculate 95% confidence intervals be-
tween the 2.5th and the 97.5th percentile of the resampled
distribution (CI95% = [P2.5%, P97.5%]). Although data
samples generating overlapping confidence intervals may
still differ significantly, we take non-overlapping confidence
intervals as an indicator of a statistically significant differ-
ence between conditions.

Results
Our simulated evolution experiments under three task con-
ditions reproduce earlier findings reported in (Albantakis
et al., 2014). Average fitness is higher in the baseline (BL)
condition, than in both the one-sensor (1S) and the hard-task
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Figure 3: Analysis of direct causes for actions as a function of generation in different task conditions. (A) Total causal
strength: summed α across the identified direct causes of M1, M2, and (M1,M2). (B) Sensor causal strength: summed α
of the sensor portion in the cause purviews. (C) Hidden causal strength: summed α of the hidden node portion in the cause
purviews. (D) Hidden ratio: the ratio of hidden and total causal strength per purview. (B-D) To compute the sensor and hidden
portion of the causal strength, we simply multiplied the fraction of sensor and hidden nodes in each actual cause purview by its
α value. We did not recompute α values for sensor or hidden node subsets, as these subsets do not correspond to actual causes
themselves. (E) Total number of nodes in the cause purviews. All measures are averaged across the unique transitions across
times and trials for each animat. Mean, 95% CI, and statistical significance are as in Figure 2.

(HT) conditions (Figure 2A). In addition, the fitness among
animats in the HT condition is significantly higher than in
the 1S condition, indicating a hierarchy of overall difficulty
among the three conditions: BL<HT< 1S. Since fewer an-
imats achieved a final fitness of at least 80% by generation
30,000 for the 1S than the BL and HT conditions (11/50 for
1S vs 49/50 and 48/50 for BL and HT), we use the subset
with fitness> 80% as the default population in condition 1S
(representing successful evolution), unless otherwise stated.

Structural and dynamic analysis of animats
Generally, measures of the structural and dynamical com-
plexity of the animats increase with fitness throughout evo-
lution (Figure 2; the only exception is a decrease in connec-
tions from sensors to motors for 1S and BL in panel F).

In terms of the dynamical complexity exhibited by the an-
imats, those evolved in the HT condition show the largest
repertoire of unique state transitions (Figure 2C). Although
the number of potential state transitions is smaller in condi-
tion 1S due to the reduced number of available nodes (7 vs.
8), the fittest 1S animats still compare to the BL condition.

Structurally, differences from the BL condition are most
pronounced in the number of connected nodes (Figure 2B)
and the density of connections to the hidden nodes (Fig-
ure 2D,E). In particular, the density of connections between
hidden nodes reflects the hierarchy of task difficulty. On
the other hand, differences in connections to the motors are
smaller (Figure 2D,G).

Actual Causation analysis: direct causes of actions
To characterize the causes of the animats’ actions across the
three task conditions, we first analyzed the direct causes of
their motor states for all unique transitions per animat. Here,

only nodes directly connected to the motors may appear in
the actual cause purviews of a motor occurrence (see Fig-
ure 2D,G). However, whether any particular input node con-
tributes to the cause purviews may vary depending on the
transition (see Figure 1D). Nevertheless, as shown in Figure
3, the differences in direct motor causes between conditions
do not simply follow the pattern observed for the structural
and dynamical analysis (Figure 2).

Animats in the HT condition show a lower total and hid-
den causal strength (Figure 3A and C), but a higher num-
ber of nodes in the cause purviews (Figure 3E) than animats
from the BL condition. The 1S condition exhibits lower sen-
sor causal strength, but higher hidden causal strength than
conditions BL and HT, and correspondingly, also a signifi-
cantly higher hidden ratio (Figure 3C-E). Furthermore, the
number of purview nodes is significantly lower in the 1S
condition than in BL and HT (Figure 3E).

Thus, although there are no clear differences in the den-
sity of connections to motors between the conditions, the
direct cause analysis seems to distinguish the more difficult
conditions from the BL condition by the number of nodes
in the purview and the way the causal strength is distributed
among different types of nodes, albeit in opposite directions.

Actual Causation analysis: Backtracking analysis.

Next, we investigated whether considering the causal chain
(“causes of causes”) leading to an animat’s action yields ad-
ditional information about the causal structure of the animat
and the causes of its actions. Here, every node with a di-
rected path towards a motor may contribute to the causal
chain given sufficient backsteps.

In contrast to the direct cause analysis, in the backtracking
analysis both the 1S and HT conditions differ significantly
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Figure 4: Results of backtracking analysis from animats in the last generation. (A) Total causal strength: summed α across
the backtracking pattern. (B) Sensor causal strength: summed α of the sensor portion in the backtracking pattern. (C) Hidden
causal strength: summed α of the hidden node portion in the backtracking pattern. (D) Hidden ratio: the ratio of hidden and
total causal strength. (E) Complexity of the causal chain: number of unique rows in a backtracking pattern. (F) ‘Duration’
measures the average length of the causal chain by calculating the area of the backtracking pattern and normalizing by the
max number of sensor and hidden nodes in the animat (6 for the BL and HT conditions and 5 for the 1S condition). Each dot
corresponds to the value for one animat (averaged over times and trials) in the last generation of the evolution. Colors are as in
previous figures, with the dark blue dots marking animats from the 1S condition with fitness above 0.8. Shaded patches indicate
95% confidence intervals. Statistically significant differences between populations are indicated by the colored bars (and stars).

from BL in a consistent manner on several measures. First
of all, the total, sensor, and hidden causal strengths (Figure
4A-C) of the backtracking patterns are all higher (for the
fittest animats) in 1S and HT than in BL. However, only the
1S condition has a higher hidden ratio than BL (Figure 4D),
as in the direct cause analysis (Figure 3D). Thus, animats
in the HT condition seem to require more involvement from
both sensors and hidden nodes than the BL condition to suc-
cessfully complete their task. On the other hand, animats in
the 1S condition seem to compensate their missing sensor
by relying more on hidden nodes, resulting in a higher hid-
den ratio compared to the BL condition. In addition, both
the complexity (Figure 4E) and duration (Figure 4F) of the
backtracking patterns were higher in the 1S and HT condi-
tions than in the BL condition, reflecting the higher memory
requirements in these two conditions.

Finally, the systematic effect of including only the fittest
animats from the 1S condition was apparent across all eval-
uated characteristics of the backtracking patterns, and the
hierarchy of task difficulty across the three conditions (BL
< HT < 1S) observed in the structural analysis (Figure 2)
reemerged for the backtracking analysis.

Discussion
In this paper we applied measures of structural and dynam-
ical complexity, as well as a novel actual causation (AC)
framework (Albantakis et al., 2019), to characterize the ac-
tions of simulated agents that evolved to solve perceptual-
categorization tasks. With the structural and dynamical anal-
ysis, we confirmed findings from previous studies indicating
that more demanding task conditions lead to the evolution
of animats with more interconnected ‘brains’ with a higher

capacity for computations and memory (Albantakis et al.,
2014). Using the AC framework, we identified and quanti-
fied the direct causes of the animat’s actions as well as their
preceeding causal chains. To assess the degree to which an
animat’s actions were “caused from within” (as opposed to
being externally driven through its sensors), we moreover
quantified the relative contribution of its hidden and sensor
nodes to the cause purviews and backtracking pattern of its
motor states.

As discussed in more detail below, we found that the
different types of analyses revealed different aspects about
the animats’ causal structure and the task conditions under
which they evolved. While some measures reflected the hi-
erarchy of task difficulty across the three conditions (BL <
HT < 1S), the direct actual causes in particular highlighted
differences between 1S and HT.

As hypothesized, the causal chains leading to actions in
animats evolved in difficult conditions (hard tasks relative
to sensor capacities) with higher demands for internal mem-
ory were characterized by higher total causal strength, and
reverberated longer within the animat itself than in animats
evolved in the simpler baseline condition.

In all, our results suggested that the “intrinsicality” of the
direct causes and the causal chain preceding an agent’s ac-
tions may serve as a useful indicator of its intrinsic com-
plexity and degree of causal autonomy (see also Marshall
et al. (2017); Bertschinger et al. (2008)), while the num-
ber of nodes constituting the cause purviews, as well as the
complexity and duration of the causal chains may reflect its
context-sensitivity.
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Differences between conditions
Both the 1S and HT conditions require more internal mem-
ory to distinguish which blocks have to be caught or avoided
compared to the BL condition. This task property is re-
flected in the higher number of connected nodes (Figure 2B)
and the measures assessed in the backtracking analysis (Fig-
ure 4), and also underlies the observed hierarchy in task dif-
ficulty (Figure 2A).

However, in the HT condition, more blocks need to be
classified than in BL and 1S. Nevertheless, the animats can
only make use of the same repertoire of possible actions.
Which action is chosen is thus more context-dependent in
condition HT than in the other two conditions. The higher
context-dependency of condition HT may explain the op-
posing results between HT and 1S in the direct causes of
the animats’ actions (Figure 3): the direct cause purviews
in the HT condition are larger and more distributed across
sensors and hidden nodes, leading to a similar hidden ratio
as BL. In contrast, animats in the 1S condition have a higher
hidden ratio due to increased memory requirements, but less
distributed computation. In sum, our results suggest that the
backtracking analysis measures are mostly affected by as-
pects related to memory requirements, while the direct cause
analysis capture context-sensitivity and distributed compu-
tation.

Causal analysis
Given that the results of the causal analysis, at least in part,
reflect differences in the structural and dynamical properties
of the animats, the advantages of a computationally demand-
ing causal analysis may not be immediately clear. For exam-
ple, one could argue that observed differences between con-
ditions in the causal analysis might be explained by struc-
tural properties of the animat populations (such as the longer
causal chains with higher hidden causal strength being ex-
plained by more, and more densely interconnected, nodes).
However, there are at least two reasons for applying the AC
analysis in addition to more standard approaches.

First, the AC analysis specifically takes an animat’s mech-
anistic, counterfactual structure into account (see also Shal-
izi et al. (2005)). Therefore, it may describe aspects of the
system that cannot be captured by purely structural, or dy-
namical, informational, or correlational measures based on
observed data only (Marshall et al., 2017). For example, we
hardly found significant differences between task conditions
regarding the inputs to the motor nodes (Figure 2F,G). Yet,
the sensor and hidden causal strength varied significantly
across conditions (Figure 3B,C and Figure 4B,C).

Secondly, the AC analysis is applied to each individual
transition independently and can identify the causes and in-
trinsicality of each specific action (motor state), giving a
state-dependent description of the animat behavior (see also
Lizier et al. (2014) and Beer and Williams (2014)). As can
be seen from the example in Figure 1, the same action be-

ing performed by the same animat at two different times
may have distinct causes depending on the past states of the
rest of the animat. Correlations between an agent’s struc-
tural/dynamical properties and the results of the causal anal-
ysis may thus only become apparent when averaging across
many transitions as done here. In future work, it could be
investigated how the actual causes of an animat’s actions
change on a trial-by-trial basis, for specific block sizes, the
direction of motion, or whether a block should be caught or
avoided. State-independent measures that characterize the
animat as a whole cannot assess such questions, but may
still serve as useful indicators for a system’s capacity for in-
ternally caused motor states.

Of course, alternative formalisms for measuring actual
causes and causal chains exist (e.g. Datta et al. (2016);
Weslake (2015)), which might also be applicable to artifi-
cial agents. Nevertheless, the AC framework used here was
specifically developed for discrete dynamical systems of in-
teracting elements, such as Markov Brains, which makes
it particularly suited for the present study. An interesting
question is under which circumstances causal measures ef-
fectively exceed dynamical or information-theoretical ap-
proaches in elucidating an agent’s behavior (e.g., Beer and
Williams (2014); Lizier et al. (2014)).

Finally, we did not directly consider issues regarding
causal transitivity in this work. The question of whether (and
when) the “causes of causes” of an occurrence are them-
selves causes, is still highly debated. To answer such ques-
tions, our proposed approached must be further refined and
adjusted accordingly.

Towards a principled definition of agency
On a more philosophical note, the definition of terms used
here (such as agent and agency) should be revisited and clar-
ified in future work. For example, throughout this paper we
have been using the term agent to refer to the predefined set
of nodes that comprise the animats under investigation. And
if we define an agent loosely as some system that can sense
and interact with its environment, this may not seem prob-
lematic. However, if we aim to understand agency more fun-
damentally, we would also need a way to determine which
subset of nodes within a larger set of elements actually con-
stitutes the agent. For this we require a more stringent def-
inition of an agent, as we cannot assume that the borders of
the agent itself can always be drawn a priori.

One example of such a more stringent definition could
be that an agent is (1) an open physical system with stable,
self-defined and self-maintained causal borders, with (2) the
capacity to perform actions that causally originate within the
system itself (Albantakis, 2018) (see also Polani et al. (2016)
for an information-based alternative). In this context, it has
been shown that the same causal principles on which the ac-
tual causation framework is based (Oizumi et al., 2014) can
also be used to identify the causal borders of highly inte-
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grated subsets of nodes within larger networks, indicating
that this type of causal analysis may be used to find au-
tonomous systems that fulfill the first criterion for agency
listed above (Marshall et al., 2017) (alternatively, see Fris-
ton (2013), Beer (2015), or Kolchinsky and Wolpert (2018)).
In summary, we may draw upon and adhere to the theoretical
structure and mathematical formalism used in the integrated
information theory (IIT) of consciousness (Oizumi et al.,
2014) to evaluate both parts of the proposed two-fold defini-
tion of agency. Thus, it seems possible that the IIT and AC
formalism, taken together, may be used to relate concepts
of agency, autonomy, causality, and consciousness within a
self-consistent and principled theoretical framework.
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Abstract

Although determining the similarity of genotypes is often em-
ployed in artificial life experiments to measure or control di-
versity, in practical applications we may often be more in-
terested in similarities of phenotypes. The latter may pro-
vide information about the effective diversity in a population,
and thus it may be more suitable for diversity estimations and
diversity-based search algorithms. A phenotype of a simu-
lated creature can be understood as creature’s physiology or
its behavior – e.g., body kinematics, movement patterns, or
gaits. In this paper, we introduce a set of efficient measures
which allow for describing the movement of simulated 3D
stick creatures. We use these measures to analyze the results
of evolutionary optimization of virtual creatures towards four
unique behavioral goals. We show that most solutions ob-
tained for each goal occupy distinct areas of the phenotype
space. This suggests that measures defined in this paper cre-
ate a useful behavioral space for movement-related fitness
functions. Finally, we use the introduced measures to visu-
alize how the properties of movement change in populations
during the course of evolution.

Introduction
When it comes to the analysis of movement of biological
creatures, there exists a large body of research on the im-
portance of locomotion in nature and on the details of its
functioning. For humans, human body is obviously the most
important, especially in the context of medicine and physical
activities (Thorstensson et al., 1984; Sparrow and Newell,
1994; van Ingen Schenau et al., 1994; Courtine and Schiep-
pati, 2004; Thelen and Anderson, 2006; Segers et al., 2007).
In other animals, various aspects of locomotion are stud-
ied including energetic efficiency, mechanics and control,
and these often concern specific orders or species – e.g.,
cockroaches (Kram et al., 1997), frogs (Ahn et al., 2004),
lizards (McElroy et al., 2008), salamanders (Reilly et al.,
2006), or cats (Trank et al., 1996; Pearson, 2008).

More general studies concern tetrapod (Biewener, 2006)
and hexapod (Full et al., 1991) gaits, and such bodies are
often an inspiration for the development of robot body
plans (Koditschek et al., 2004). Biological inspirations
are also popular in modeling locomotion (Lacquaniti et al.,

2002; Biknevicius and Reilly, 2006; Lee and Harris, 2018)
and in experimental and evolutionary robotics (Bongard and
Paul, 2000; Krasny and Orin, 2004; Sellers et al., 2004;
Ijspeert et al., 2005; Kukillaya and Holmes, 2007; Aydin
et al., 2019).

Research works mentioned above are however tailored
to specific body plans of existing animals or, in case of
biologically-inspired robots, to their artificial counterparts.
In this work we introduce and verify more general mea-
sures of specific aspects of movement that will work for
arbitrary moving 3D stick models. We therefore cannot
assume any specific body plan, or even any template that
would constrain considered bodies and the movement of
their individual parts. Instead, we assume that a body
consists of a number of elastic rods and constitutes a
three-dimensional graph (Komosinski and Ulatowski, 2009,
2004). We perform simulated evolutionary experiments with
different goals, record movements of simulated creatures
and then calculate high-level measures in order to investigate
how the recorded data differs among different evolutionary
goals and individual evolutionary processes.

This research aims to support researchers in automated
analysis of movement of both artificial and biological crea-
tures by introducing simple quantitative and objective mea-
sures that evaluate individual aspects of body movements.
Based on these measures, a number of data analysis tech-
niques can be used, such as clustering, to produce high-level
descriptions of large populations of evolved agents without
the need for manual human investigation. Various modifi-
cations of evolutionary algorithms such as diversity-based
search or speciation mechanisms can also be facilitated. Ac-
companied with statistical and machine learning methods
and human expertise, values of the proposed measures of
movement may be correlated with existing notions of var-
ious movement and gait patterns. They may also be used
to quantify how humans perceive moving bodies and bio-
logical motion (Castellia et al., 2000; Grill-Spector, 2003;
Peelen and Downing, 2007; Pyles and Grossman, 2009).
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Measurable properties of movement
In this section we describe what data are acquired when sim-
ulated stick creatures move during their lifespan, and then
how this data is processed to yield higher level properties of
movement. Technical details and extended analyses of these
properties are reported in (Gorgolewski et al., 2019).

Low-level raw data
During simulation, each creature provided three series of
values C, Dxy and Dz defined as follows:

• C – the center of gravity: a series of triplets c = (x, y, z).

• Dxy – the dispersion in the xy plane: a series of values
dxy .

• Dz – the dispersion in the z dimension: a series of values
dz .

Each location of the center of gravity is described by three
coordinates corresponding to the three dimensions. Cal-
culating dispersions required elementary data processing.
Since creatures are made of distinguishable parts or vertices
(which are connected by joints or edges), we calculate “dis-
persion” of a creature in a given plane as the weighed stan-
dard deviation (Bland and Kerry, 1998) of its body parts.
Let us consider c to be the center of gravity and P to be the
set containing all body parts. The dispersion in the xy plane
will be evaluated as follows (dispersion in the z dimension
is calculated analogously):

dxy =

√∑
p∈P w(p) · ((px − cx)2 + (py − cy)2)∑

p∈P w(p)
(1)

where w(p) is the importance of part p; in the experiments
reported here it was the mass of p.

High-level description of movement
These three raw data series form the basis for higher-level
descriptors of movement. In this paper we employ eight
measures describing different qualities of locomotion:

1. Average error of linear regression of position in the xy
plane (err line xy). A low value indicates movement sim-
ilar to a straight line.

2. Horizontal oscillation factor (var dis xy) – coefficient of
variation of dispersion in the xy plane.

3. Vertical oscillation factor (var dis z) – coefficient of vari-
ation of dispersion in the z dimension.

4. Vertical-to-horizontal oscillation ratio (sd dis z xy) –
mean ratio of dispersion in z to dispersion in xy.

5. Mean instantaneous speed in xyz (inst speed).

6. Spectral flatness measure (sfm) defined as a geometrical
mean of frequency domain of the xyz instantaneous speed
divided by its arithmetical mean.

7. The frequency of the highest amplitude of the xyz speed
(f max).

8. The maximal correlation of the xyz speed signal with its
offset (autocorr max).

Let us now describe in more detail how these eight proper-
ties are calculated. First we define two helpful quantities,
∆C and F . Let E(p1, p2) denote the Euclidean distance be-
tween points p1 and p2. Then,

∆C = {c′i : c′i = E(ci, ci+1); ci ∈ C, i = 1..|C| − 1} (2)

is a vector of instantaneous speed of a creature, and

F = DFT(∆C) (3)

is the discrete Fourier transform of ∆C.

1. The average error of two-dimensional Euclidean regres-
sion in the xy plane tells us how well can the path of
movement of creature’s center of mass in the horizontal
plane be approximated with a straight line. For creatures
whose movement cannot be approximated by a straight
line, the value of err line xy will depend on both the
length of the recorded series and the average instanta-
neous speed of the creature.

To calculate this measure it is necessary to find the Eu-
clidean regression line y = ax + b (Stein, 1983). This is
the line for which the sum of the squares of distances from
the points of the trajectory is minimal. The average error
err line xy is calculated as the mean over all εi, where

εi =

∣∣∣∣
yi − (axi + b)√

a2 + 1

∣∣∣∣ . (4)

2. The horizontal oscillation factor evaluates the variability
of the body dispersion in the xy plane. A creature that
has a high horizontal oscillation factor tends to put a lot of
effort in the horizontal limb moves like walking, crawling
and snake-style swimming.

var dis xy =
σ(Dxy)

dxy
(5)

3. The vertical oscillation factor evaluates the variability of
the body dispersion in the z dimension. Intuitively, a high
vertical oscillation factor may indicate a jumping type of
movement, while lower values may characterize crawling
creatures.

var dis z =
σ(Dz)

dz
(6)
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4. The vertical-to-horizontal oscillation ratio compares the
range of movement in vertical dimension to the range of
movement in the horizontal plane.

sd dis z xy =
σ(Dz)

σ(Dxy)
. (7)

5. The mean instantaneous speed in xyz is calculated as

inst speed = ∆C. (8)

6. Spectral flatness measure (sfm) describes the uniformity
of the Fourier transform of creature’s speed. Creatures
whose speed in time resembles a sinusoid are assigned a
low sfm value, while creatures exhibiting irregular speed
will be assigned a higher sfm value. The value of sfm
depends on the length of the recorded series of values. For
creatures that do not move at all, sfm becomes 0. Spectral
flatness measure is calculated as

sfm =
eln(F )

F
. (9)

7. The most significant frequency is calculated as the high-
est non-zero frequency in the spectrum of the creature’s
speed:

f max = arg max(F ) (10)

8. The maximal correlation of the xyz speed signal with its
offset (autocorr max) may be calculated according to the
following algorithm:

1: Speed← vector(|C| − 1)
2: for i = 0..|C| − 3 do
3: Speed[i] = E(C[i], C[i+ 1])
4: end for
5: AutoCorr ← vector(|C|/2− 1)
6: acLen← |AutoCorr|
7: AutoCorr[0]← 1
8: for i = 1..acLen− 1 do
9: AutoCorr[i]←

corrcoef(Speed[0 : acLen], Speed[i : acLen+i])
10: end for
11: lowerBound← 0
12: for i = 1..acLen− 1 do
13: if AutoCorr[i] > AutoCorr[i− 1] then
14: lowerBound← i
15: break
16: end if
17: end for
18: autocorr max←

max(AutoCorr[lowerBound : acLen])

The corrcoef function used in line 9 calculates the cor-
relation coefficient between the original and the delayed

Figure 1: An example of a Framsticks creature encoded with
a “f1” genotype. A section of the genotype is highlighted
(blue background), and the corresponding neurons are also
highlighted (white background under four neurons).

signal (which, for our purpose, is the vector of instan-
taneous speed). The for loop in lines 11-17 determines
lowerBound – the index of the first local minimum in the
AutoCorr vector. The offsets lower than this index are
then excluded from the search for the highest correlation
(line 18).

The eight high-level properties defined above are used in
the following experiments as eight descriptors of movement.
The movement of each creature during its entire lifespan is
described by these eight scalar values.

Simulation experiments
This section describes three analyses of results from two
large-scale experiments. In simulations, the Framsticks en-
vironment was used with the “f1” genetic encoding (Ko-
mosinski and Ulatowski, 2009, 2004, 2019). This direct
encoding represents a creature as a string of symbols, and
each symbol corresponds to some element of body or brain
or to their properties. For example, “X” means a stick (i.e.,
two connected parts – or, in graph theory, an edge that con-
nects two vertices). Parentheses denote branching, and let-
ters can modify individual properties of sticks (for exam-
ple, “l” makes a stick shorter, while “L” makes it longer).
Neurons are encoded in square brackets as lists of input in-
dexes and their weights, and arbitrary topologies of neural
networks can be evolved. An example of a genotype and
the corresponding phenotype is shown in Fig. 1. Muta-
tions modify individual aspects of a genotype, and two-point
crossing over is used. Mechanical simulation uses a simple
finite element method.

In both experiments, there was 64% of mutations, 16% of
crossing overs, and 20% of clones. Cloning was used so that
fitness could be averaged due to introduced random noise in
simulation to make evaluation more robust and avoid over-
fitting.
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Movement evolved for four fitness functions
In this experiment, the movement of 400 creatures was eval-
uated. These 400 creatures were evolved in independent
evolutionary experiments with four fitness functions (100 in-
dependent evolutionary processes per one fitness function).
The fitness functions were: maximizing velocity on land,
maximizing velocity in water, maximizing vertical position
of the center of mass without neural network enabled (“pas-
sive”), and maximizing vertical position of the center of
mass with neural network enabled (“active”). In all these
evolutionary experiments, gene pool size was 1000, and
tournament selection was used with 3 genotypes in the tour-
nament. Evolution consisted of two phases: low-pressure
phase where the negative selection was random, and high-
pressure phase where the negative selection was removing
the worst genotype from the gene pool. Each phase ended
when 106 of non-improving individuals were created via
mutation or crossing over and evaluated.

The set of 400 individuals obtained this way was ear-
lier analyzed using phenotypic (body morphology) sim-
ilarity (Komosinski, 2017) and the behaviors of these
creatures are demonstrated at https://www.youtube.
com/watch?v=lo4vL7gOuYk. Here we will analyze
the movement of these creatures; note that the algorithm that
evaluates movement is unaware of the fitness functions used
to evolve the creatures. Different colors and symbols visible
in plots are only used for easier interpretation of results.

Fig. 2 demonstrates values of properties calculated for
each creature, divided into four populations, based on the
evolutionary goal towards which they were evolved. Values
of all properties were normalized to lie within the range of
[0; 1]. The properties allow for the distinction between dif-
ferent evolutionary goals, for example inst speed facilitates
the distinction between velocity-based evolutionary goals
and the two types of vertical position goals. The distinc-
tion between the goal of high velocity on land and in water
is facilitated by the var dis z and sfm properties of creatures.

Multidimensional scaling (MDS) allowed us to gain more
insight into the behaviors exhibited by the examined pop-
ulations. Although in this experiment equal weights have
been assigned to all properties, in general different values
of weights can be employed to differentiate the importance
of each property. Figs. 3 and 4 show the result of applying,
respectively, three- and two-dimensional MDS to the origi-
nal eight-dimensional space of properties. These two figures
confirm that, although the populations are not always per-
fectly separated, based on the eight properties of movement
it is possible to separate in the space of behaviors creatures
evolved towards different evolutionary goals. One interest-
ing insight provided by the MDS analysis is the division of
the “vertposA” (vertical position, active) population into two
distinct subpopulations – two “species”. The first species
of “verposA” resides in a close vicinity of the “vertposP”
(vertical position, passive) population, which implies that it

contains structures focused on obtaining high vertical po-
sition mostly through the evolution of their static structure.
The second species can be noticed much closer to “velLand”
(velocity on land) population, which suggests that the sec-
ond species obtains its high vertical position mostly through
a jumping movement. Similarly, two distinct species can be
observed for the “velWater” population.

Variability of the properties of movement over
evolutionary time
In this experiment, 100 independent evolutionary runs were
performed to maximize velocity on land. Population size
was 50, positive selection was tournament with the tourna-
ment size of 3, and evolution consisted of one stage that
lasted for 100,000 evaluations of new genotypes.

Fig. 5 presents the course of three selected evolutionary
runs; each column shows how the best creature in the popu-
lation changes its values of a given property over time; time
passes downwards in all plots. We distinguish five main pat-
terns of change over time:

Stagnation – occurs when the population converges to a lo-
cal optimum, or the selective pressure (or genetic drift)
guides the population over a part of the landscape where
a given property does not change, or its change would lead
to the decrease in fitness.

Gradual change – occurs when the fitness landscape facil-
itates continuous improvement through small changes.

Sudden change – occurs when some new, fit and signif-
icantly unique creature appears in the population. This
pattern of change is an important feature of the theory of
punctuated equilibrium.

Outliers – localized, unusual values of a property may cor-
respond to unusual, nonterminal variations of the most fit
creature in the population. These variations die out be-
cause of their sub-par fitness or as an effect of a genetic
drift.

Noise – may occur when the population traverses the frag-
ment of the fitness landscape where the value of a given
property is unstable.

Each property tends to exhibit some patterns more promi-
nently than others. While var dis xy and inst speed often
change gradually, var dis z tends to stagnate and change
only in sudden bursts. This correspond to the fitness land-
scape resulting from the evolutionary goal of vertical move-
ment – while instantaneous speed and horizontal range of
movement are directly linked to this specific task, the range
of vertical movement is not, and so evolution does not ex-
plore this dimension of behavior.

Interestingly, two of the proposed properties, err line xy
and autocorr max, tend to demonstrate noisy behavior. This
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Figure 2: Variability of individual movement properties for populations evolved towards four different goals. A small amount
of random vertical jitter is added to reveal individuals that share the same values of movement properties. The vertical axis is
only introduced to separate the four populations in order to improve the readability of the plot.

may be a result of a chaotic movement of the simulated crea-
ture, as both of these properties are strongly dependent not
only on the general characteristics of creature’s movement,
but also on the specifics of a given simulation run, such as
slightly different initial conditions or random noise.

In Fig. 5, f max appears to alternate between a few distinct
values; this is probably because there are a few high peaks
of a similar amplitude in the frequency spectrum. In such a
case, the choice of the value of f max will be highly random.

Fig. 6 depicts 100 overlaid evolutionary runs, similar to
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Figure 3: Movement of 400 creatures after multidimensional
scaling from the 8D space to 3D. 56.82% of the original
variance is preserved.
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Figure 4: Movement of 400 creatures after multidimensional
scaling from the 8D space to 2D. 50.38% of the original
variance is preserved.

the ones shown in Fig. 5 (where only a single run was shown
in each plot). This allows one to analyze the distribution of
values of the introduced movement properties over evolu-
tionary time. The probability distributions of the values of
properties reveal the existence of bands of more (or less)
probable values. Such bands correspond to specific attrac-
tors in the behavioral space for the fitness function used here,
i.e., maximizing velocity on land. Further analysis of the
distributions of behaviors, especially the one that takes into
consideration interdependencies between the values of mul-
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Figure 5: Eight properties of movement for three selected evolutionary runs. Evolutionary time passes from top to bottom of
the plots. Each dot represents a value of a given movement property of a creature that appeared during evolution.
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Figure 6: Values of eight movement properties changing in evolutionary time (from top to bottom) for 100 independent evolu-
tionary runs.

tiple properties (e.g., multidimensional scaling) could reveal
the presence of sub-species within any specific species, and
subsequently allow for the automatic classification thereof.

Summary
In this paper we have introduced a set of eight quantita-
tive properties which describe the movement of simulated
three-dimensional creatures. The measures were employed
to evaluate the behavior of evolved 3D stick creatures, but
they can be easily generalized to other shapes of creatures,
including solids.

We have calculated movement properties for four pop-
ulations, each consisting of 100 creatures evolved using a
unique fitness function, and we have shown that these popu-
lations are separable in the space of the proposed movement
properties. This suggests that the space of behaviors defined
by these eight measures can facilitate automatic classifica-
tion of “species” (i.e., goals towards which the creatures
were evolved) or even “subspecies” (specific strategies of
achieving these goals). The proposed set of properties can
be used not only for automatic classification of evolved or
designed behaviors, but also as a space which can be ex-
ploited by diversity-based search algorithms (Mouret and
Doncieux, 2009), such as the novelty search (Lehman and
Stanley, 2011), or for speciation in simulated evolutionary
processes.

We have also analyzed how the movement properties
of simulated creatures change during their evolution and
demonstrated that attractors exist in the space of behaviors,

which make some values of the proposed properties more
likely to occur than others.

Some of the properties introduced in this paper could be
potentially improved by increasing their stability or identi-
fying and decreasing the amount of dependencies between
their values. These issues will be our further work, and
we will look for other reliable and informative properties
of movement that can be efficiently computed for arbitrary
3D stick agents.
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Abstract 
Our paper presents an art installation exhibited internationally 
throughout 2018 at La Gaîté Lyrique gallery in Paris, KIKK 
Festival in Namur, and Cinekid Festival in Amsterdam. The 
collaborative project between artists and physicists examined 
the aesthetic possibilities of cellular automata (CA) driven 
kinetic objects to make theories of emergent life tangible to 
audiences of children and adults alike. Here we present our 
approach encompassing: narrative, material, hardware and 
computation strategies. The “Edge of Chaos” installation, 
inspired by Christopher Langton’s theory, is an artistic 
realization of emergent systems at the scale of inhabitable 
architectural space. The use of on artificial life approaches to 
behaviour offers distinctly different audience experiences to 
those in responsive environments that follow master-slave 
interaction paradigms typically found in Human Computer 
Interaction fields. Through the use of narrative these emergent 
behavioural systems and their implications for conceptions of 
life are articulated in way that is engaging and playful. Through 
the use of recent metamaterial research the project also 
provokes discussion on the potential of these material systems 
to lead to new forms of artificial life.  

Introduction 
This paper describes an interactive installation that was 
touring three venues in Europe in 2018, France, Belgium and 
the Netherlands offering an inhabitable interactive 
environment based on Christopher Langton’s theory of the 
“Edge of Chaos”. The Edge of Chaos project is the winning 
proposal to an international competition calling artists and 
architects to offer their “perspectives on the technological, 
dematerialized, complex environments and ubiquitous 
machines that have become natural elements in our lives” 
(Competition Brief, 2017). The project is situated at the 
crossroad between art, design and physics, and this paper’s 
primary focus is on the interaction and artistic aspects of the 
work that reflect the use of reconfigurable metamaterials, 
distributed control, and bottom-up strategies for designing 
responsive environments. The resulting built installation 
reflects on our Interactive Architecture Lab’s critical position 
on so called “Smart Architecture” and corporate led “Internet 
of Things” which while espousing notions of ecology, remain 
dominantly driven by top-down strategies to controlling the 
behaviour of the places we live, work and play.  

We have been examining ways of creating intelligent 
environments not through classical Artificial Intelligence 
techniques but rather through Artificial Life, embracing the 
aesthetic emergent possibilities that can spontaneously arise 
from this approach. The competition brief provoked a 
response by our team to the statement, “We are entering an 
era of hybrid ecology: AI as landscape, networks as biotopes, 
data as organisms and media as humus. Where do we go 
from here?”. We were drawn to the theory of the Edge of 
Chaos that examines the balancing point where “the 
components of a system never quite lock into place, and yet 
never quite dissolve into turbulence either... the edge of chaos 
is where life has enough stability to sustain itself and enough 
creativity to deserve the name of life” (Waldrop 1993). Our 
art installation is built upon a custom CA algorithm that 
embodied this notion and creates a space for contemplation 
about the boundary relationships between chaos and order. In 
the context of the competition we found a means to make 
these ideas of emergent life more tangible in four integrated 
parts, namely, narrative, material, hardware and computation.  
 

 
Figure 1. Edge of Chaos, La Gaîté Lyrique gallery Paris 

Methods 
Narratively, there are three features within the installation 
(Figure 1). At its centre, a kinetic tree (animated by servo 
motors and RGB LEDs) that represents “Life” (the peak of 
the Edge of Chaos). It is surrounded by an inert “Cloud” 
representing the vast unorganised matter of an entropic 
universe (Chaos), and between them an interactive surface 
that represents the boundary of the “Edge of Chaos”. The 
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movement and proximity of inhabitants of the installation 
measured by proximity sensors activates the “Edge of Chaos” 
triggering the surface to light up and physically transform. 
Local interactions by inhabitants stimulate our custom CA 
triggering chain reactions throughout the surface, that 
depending on the level of interaction and current state of the 
surface will produce more ordered patterns, or more chaotic 
sequences. When the “Edge of Chaos” surface becomes 
highly activated the tree “comes to life” blossoming into full 
colour and performing its most dramatic kinetic movements.  
 
Meta-materials are materials which get their properties from 
their structure, rather than their chemistry (Overvelde et al. 
2017). Translating this into spatial design we are able to 
apply this geometric strategy into designing flexible and 
transformable spaces with tuneable functionality.  
 

 
Figure 2. Metamaterial Structures of “Tree”  
 
The initial choice of cellular automata algorithm was 
Conway’s classic “Game of Life” (1970) but the patterns 
were not as desirable as hoped. The manner in which kinetic 
elements would remain on or fall into oscillating rhythms 
actually detracted from the pleasure audiences got 
stimulating the wall from an inactive state. This improved 
legibility of human agency in the space. To create stable 
patterns, we implemented an additional state leading to a total 
of three states for each cell: listening (0), active (1), and 
sleeping (2) (Hoekstra et al. 2010). Different behaviour was 
achieved by implementing a stochastic response in the 
behaviour of the CA (Hoekstra et al 2010). During each time 
step, each listening cell checks the states of the neighbours. If 
the total sum of the neighbours being active is equal or higher 
than n, the cell becomes active only with some probability p. 
Once active, the cell remains active for s_a steps, after which 
it goes to sleep. Finally, after sleeping for s_s steps, the cell 
starts listening again. Given a network of cells with 
connections to their neighbours, changing these four 
parameters tunes the behaviour of the total system.   
 
As the installation was intended to run for months at a time, 
interactive motion and lighting needed to be limited to 
periods where there is stimulation in the environment by 
visitors to the gallery space. When there are no inhabitants, 
the installation must in effect “die out”. The results of this 
enquiry demonstrate alternative strategies for maximising 
aesthetic use of CA rules while minimising the live time of 
kinetic elements. This approach also suggests modes of 

environmental activation and deactivation that are robust as 
well as playful and suggests approaches to intelligent 
architecture based on Alife principles. 

Conclusion 
The Edge of Chaos installation, demonstrates simple but 
compelling appeal that responsive kinetic objects elicit. 
Observing the emerging patterns of our installation we can 
recognise Langton’s mathematic and theoretical principles of 
“Phase Transition” where structures are able to grow, split 
and recombine, in spontaneous and surprising ways. This 
area represents neither Order nor Chaos but lives in between 
thus never becoming predicable nor too unpredictable to lose 
the interest of observers.  
 
The open ended and semi-unpredictable behaviour of the 
Edge of Chaos installation encourages continued play as 
inhabitants search for understanding in a field of interactions. 
While controlled by simple rules it displays complexity by 
virtue of emergent properties and complex and changing 
environmental stimuli. Our implementation of custom CA 
code is effective on aesthetic grounds but also in minimising 
wear and tear of multiple long running exhibitions which 
contributes to possible applications in longer term 
architectural applications. Our narrative and spatial approach 
proves a novel and tangible approach to communicating 
abstract mathematical theories of complexity. It is also a 
celebration of the creative possibilities of collaborating 
across science and architecture.  
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Abstract 

Today’s mobile and smart technologies have a key role to play 
in the transformative potential of educational practice. However, 
technology-enhanced learning processes are embedded within an 
inherent and unpredictable complexity, not only in the design 
and development of educational experiences, but also within the 
socio-cultural and technological contexts where users and 
learners reside. This represents a limitation with current 
mainstream digital educational practice, as digital experiences 
tend to be designed and developed as ‘one solution fits all’ 
products, and/or as ‘one-off’ events, failing to address ongoing 
socio-technological complexity, therefore tending to decay in 
meaningfulness and effectiveness over time. One ambitious 
solution is to confer the processes associated with the design and 
development of digital learning experiences with similar 
autopoietic properties found within living systems, in particular 
adaptability and self-organisation. The underpinning rationale is 
that, by conferring such properties to digital learning 
experiences, intelligent digital interventions responding to 
unpredictable and ever-changing socio-cultural conditions can be 
created, promoting meaningful learning over-time. Such an 
epistemological view of digital learning aims to ultimately 
promote a more efficient type of design and development of 
digital learning experiences in education. 
 

Introduction: Autopoiesis in digital learning 

Digital technology has proven to enhance learning outcomes 
across educational sectors and contexts, providing great 
potential for achieving societal transformation (Cook & 
Santos, 2016; Pachler, Benchair & Cook, 2010). Current 
smart mobile technology allows learning to occur practically 
anywhere in collaboration with anyone (Cochrane, 2011); 
promote innovative (Parsons, 2013), inclusive (Traxler, 2010) 
and transformative (Lindsay, 2015) types of learning, thereby 
challenging traditional pedagogical approaches (Merchant, 
2012). Mobile learning can fit individual characteristics and 
needs (Aguayo, 2016) through self-driven learning (Hase and 
Kenyon, 2013) while addressing local societal challenges 
(Aguayo and Eames, 2017). Yet critical challenges remain, 
notably: minimising the decay of digital interventions over 
time; and achieving widespread learning outcomes in diverse 
and multicultural audiences (Dunn and Marinetti, 2008; 
Hennessy, 2019). 
 
One ambitious solution may lie in the theoretical concept of 
autopoiesis coming from systems biology. Autopoiesis, 
literally meaning self-making, defines living organisms as 

self-organising units, capable of adapting to unpredictable 
changes in their environments while maintaining internal 
coherence over time (Maturana and Varela, 1980). The focus 
here is on organisational processes rather than structural 
components. Since its introduction more than four decades 
ago, the fundamental ideas of autopoiesis have been 
transferred and explored across disciplines, including 
psychology, creative arts, economy, and sociology (Hallowell, 
2009; Razeto-Barry, 2014), yet they still remain to be fully 
explored and applied in the field of technology-enhanced 
learning.  
 
The Santiago School of Cognition, founded on the concept of 
autopoiesis, considers the adaptive capacity of living systems 
towards their environment as an intelligent cognitive process 
(Maturana and Varela, 1980). But most importantly, it 
establishes that human experience and cognition are unique to 
every individual and context (Thompson, 2007). This can 
have profound epistemological consequences when designing 
digital technology in education, as the dominant ‘one solution 
fits all’ paradigm becomes invalid. On the contrary, digital 
technology and their associated educational processes on 
learners ought to provide as many intelligent solutions as 
individuals and contexts there are over-time, via adaptability 
and self-organisation (Aguayo, 2018). How can this be 
achieved? The solution may lie in replicating autopoietical 
principles and processes during the design and development 
of digital learning experiences (Aguayo, Veloz and Razeto-
Barry, 2019). Yet the focus here is on the paradigm shift 
when it comes to designing digital learning experiences for a 
complex audience residing in an ever-changing complex 
environment. 

Theoretical implications in education 

From the perspective of the Santiago school, embedding 
digital learning systems with properties found in living 
systems could, in theory, create ‘intelligent’ educational 
interventions capable of promoting and facilitating the 
emergence of learning while responding to ongoing socio-
cultural changes. This could reduce the amount of time and 
resources required to maintain digital learning interventions 
over time, as the current trend is to develop one-off events, 
many times without long-term considerations or planning. In 
theory, developing digital learning experiences containing 
autopoietic properties would contribute to the efficient design 
and use of digital technology resources and products in 
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education, which in turn can contribute to overcoming current 
societal challenges.  
 
Another theoretical premise derived from the Santiago school 
is that all types of experiences are unique and belonging to 
the individual and to the moment and context. Therefore, as 
users interact with intelligent and adaptable digital learning 
systems (through their ‘user interface’ UI), the coming 
together of such interaction between two learning actors 
(Sumara and Davis, 1997), or ‘structural coupling’ (Jorg, 
2000; Maturana and Varela, 1980), produces the emergence 
of a unique ‘user experience’ (UX as known in digital design) 
bodily lived and experienced by the user; and from where the 
digital system could cognate to re-adapt and self-organise its 
structure and functioning to ongoingly facilitate such 
interaction over-time. The key point to make here is that, in 
consequence, such a view of UX in digital learning design 
implies that only user interfaces can be designed and created, 
with user experiences occurring as an unpredictable 
emergence of the interaction between users and UI. Yet the 
current dominating practice in digital learning design is that 
both UI/UX can be targeted and designed for, with the ‘one 
solution fits all’ paradigm still dominating. Such paradigm is 
invalid from the perspective of the Santiago school of 
cognition, as user experiences are unpredictable, and unique 
to the individual, the learning situation, and the shared 
coming together between the digital UI and the user, and 
therefore cannot be designed for, but facilitated and nurtured. 
This has profound implications to the current practice of 
digital learning design in education. 
 
The underlying theoretical and conceptual rationale for the 
inclusion of autopoietic principles in digital learning design, 
development and implementation can ultimately contribute to 
current societal challenges through promoting and facilitating 
meaningful educational outcomes and experiences over-time. 
But more importantly, this epistemological view of 
technology-facilitated user experience invites us to reconsider 
and reconceptualise the role of digital learning systems and 
tools in educational practice. 
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Abstract

When Artificial Life approaches are used with school pupils,
it is generally to help them learn about the dynamics of liv-
ing systems and/or their evolution. Here, we propose to use
it to teach the scientific and experimental method, rather than
biology. We experimented this alternative pedagogical usage
during the 5 days internship of a young schoolboy – Quentin
– with astonishing results. Indeed, not only Quentin easily
grasped the principles of science and experiments but mean-
while he also collected very interesting results that shed a new
light on the evolution of genome size and, more precisely, on
genome streamlining. This article summarizes this success
story and analyzes its results on both educational and scien-
tific perspectives.

Introduction
In France, the school program for teenagers aged 14 or 15
includes a 5-day internship in a professional environment.
The goals of this internship are (i.) to discover the economic
and professional world, (ii.) to have the pupils face the con-
crete realities of employment and (iii.) to help them build
their professional project. Pupils are often welcomed in a
relative’s company. Children of researchers are no excep-
tion and they are often welcomed in a laboratory of their
parents’ university. During these internships in laboratories,
it is generally considered that the actual scientific work is
out of reach for the pupils, either because they don’t have
the necessary background or because the internship is not
long enough. Hence the pupils generally visit various teams,
discuss with the researchers and with the technical and ad-
ministrative staff without discovering the reality of research.

In November 2018, one of us was contacted by the father
of a young pupil, Quentin, who wished to discover the job
of researcher while his family had no background and no
contact in this domain. We agreed to welcome Quentin in
the team and proposed that it would be a real professional
internship, i.e., that Quentin would conduct his own, real,
research project during his stay. We proposed to Quentin to
discover the reality of the research work, from the statement
of a scientific questioning to the analysis of experimental re-
sults. On our side, the idea was that artificial life could make

it possible to carry out a research project, even in a the very
limited time-frame of five days, with little prior knowledge
and no previous experimental practice.

Quentin finally completed his internship in the Bea-
gle team from Monday, January 28th to Friday, Febru-
ary 1st, 2019 under the direct supervision of GB. This article
presents the results of this internship with a double objective.
First, it shows how artificial life can be used to train young
students with method and scientific rigor. Second, it presents
Quentin’s results, which are very real and worth sharing with
the community. The article is structured chronologically,
each section corresponding to a day of internship and to a
stage of the research project. These five chronological sec-
tions are followed by two separate discussions. The first one
deals with teaching the scientific process by means of artifi-
cial life; the second discusses the scientific results obtained
on the causes of genome streamlining as it is observed in
several species of bacteria. Finally, a Material and Meth-
ods section presents the tools used during the internship. All
along this article we will make an extensive use of footnotes,
to discuss technical points that either have not been taught
to Quentin (because we considered they were too difficult)
but that are important for the reader, or experimental results
that have been recomputed after the internship to improve
confidence1.

Monday: Science always starts with a question
The scientific method is known to start with a question,
generally raised by a striking observation. Hence, ex-
periencing the scientific method requires an observation,
simple enough to be understandable by a naive person but
also open enough to raise an interesting question. In the
context of Quentin’s internship, we chose to address the
question of genome streamlining and to begin with the diver-

1All the simulations and statistical analyses were conducted
anew by GB, MF, JRC and CK after the internship. In particular,
we used a new Wild-Type – see methods – because the one used by
Quentin was evolved in two steps (107 generations in a population
of 1024 individuals followed by 106 generations in a population
of 100 individuals), possibly biasing the results. We wanted to ex-
clude this possibility before publication of the results.
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sity of genome sizes and structures in the bacterial kingdom.

Question: Difference in genome size across bacterial
species. More than ten years ago, Giovannoni et al. (2005)
published a graph comparing the sizes and structures of a
large variety of bacterial genomes. Figure 1 shows a similar
graph, as we explained it to Quentin.

Figure 1: Genome size vs. number of protein coding
genes for free living bacteria (blue), host-associated bacteria
(black), obligate symbionts (red) and marine cyanobacteria
living in very large populations (green). Data from NCBI.

The red dots on Figure 1 represent obligate symbionts.
These bacteria have experienced a severe genome streamlin-
ing following their obligate association with a host (Werne-
green, 2002), raising the question of the causes of this
streamlining. The genomes of free-living marine cyanobac-
teria show a similar pattern (Figure 1, green dots). Taking
into consideration the profound difference in lifestyle, this
similarity is quite striking.

A very popular theory to explain the large variety of
genome sizes and structures has been proposed by Lynch
and Conery (2003). It states that one of the main determi-
nants of genome size is the effective population size Ne. As
it is well known in population genetics, Ne drives selection
efficiency. Hence, in very large populations, genomes are
under a strong selective pressure, preventing them from ac-
cumulating slightly deleterious sequences. On the opposite,
small populations cannot avoid the proliferation of such ele-
ments, hence their large genome size. One of the strengths of
this theory is its very elegant statement: by linking genome
architecture to a single parameters (Ne) it predicts a con-
tinuum of genome size and content very similar to what is
observed on Figure 1. However, obligate symbionts do not
fit easily with this theory. Indeed, because of their obligate
status, they necessarily live in small subpopulations (each
within a specific host individual). Starting from the obser-
vation that genome streamlining has occurred both in small
and large population sizes (Batut et al., 2014), we proposed

that Quentin could address the following question during his
internship:

Starting from a wild-type genome, can different processes
lead to genome streamlining and if so, is it possible to dis-
tinguish between them by observing the resulting genomes?

Hypothesis: Both large population size and high mu-
tation rates can streamline genomes Once the question
has been identified, science proceeds through experiments.
However, experiments cannot be directly inferred from the
question; we first have to propose hypotheses and then de-
sign the experiments to test these hypotheses. Many differ-
ent hypotheses have been proposed to explain the striking
genome streamlining in bacteria (reviewed in (Batut et al.,
2014)). Here we will focus on two mechanisms that have
been suggested to lead to genome streamlining: population
size and mutation rate. Indeed, both have been indepen-
dently suggested to impact genome size (Lynch and Conery,
2003; Lynch, 2006; Knibbe et al., 2007) but their respective
effects have never been assessed experimentally. Moreover,
both mechanisms have been proposed to impact the genetic
structure differently: while population size has been pro-
posed to act on non-coding sequences (because non-coding
sequences are supposed to have slightly deleterious effects
(Lynch and Conery, 2003)), mutation rates have been pro-
posed to act on the whole genome, including coding and
non-coding sequences (Knibbe et al., 2007). We thus pro-
posed that Quentin test the following hypothesis:

Genome streamlining can be caused by changes in popu-
lation sizes and/or by changes in mutation rates. These two
mechanisms are likely to have different effects on coding and
non-coding sequences.

Experimental design Being for experimental reasons or
due to the limited time of the internship, it was not possible
to perform in vivo experiments to test the aforementioned
hypothesis. Now, provided that the experiments are well de-
signed, it is possible to turn to artificial life and propose de-
signs that enable (i.) to really perform scientific experiments
(though in silico) (ii.) to get sound results after only a few
hours of computation. We hence used the Aevol simula-
tion platform (Knibbe et al., 2007; Batut et al., 2013; Liard
et al., 2018) which has been specifically designed to study
the evolution of genome architecture and complexity (see
Methods).

Since artificial life enables to strictly follow the scientific
method while minimizing the experimental and technical is-
sues (e.g. here, how to modify the mutation rate of an or-
ganism?), we were able to teach Quentin the basis of the
experimental method:

• Modify only one factor at a time,
• Make replicates to get statistical accuracy,
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• Compare the results with a control condition in which no
factor has been changed,

• Record everything in your lab notebook2.

Importantly, we also discussed the issue of experimental
costs which, while often neglected in teaching, strongly con-
strains the experiments in practice. Here, the experimen-
tal costs were exemplified by the available computational
power Quentin had at his disposal during his internship. The
experimental design phase was thus the occasion to present
and discuss the actual scientific process and the importance
of its different phases. In particular, we insisted on the fact
that the experimental results must be gathered early enough
such that enough time will remain to analyze them.

With all these elements in mind, Quentin designed two
experiments, one to test the effect of mutation rate and one
to test the effect of population size. Following the “in sil-
ico experimental evolution” strategy proposed by Batut et al.
(2013), evolutionary runs started from a pre-evolved clone
(the “Wild-Type”). Here, the same Wild-Type genome was
used to seed all evolutionary runs. To test the effect of muta-
tion rate, three series of evolutionary runs were performed: a
series of Control runs were performed with the same pa-
rameters as those used to produce the Wild-Type, a series of
Mu+ runs were the mutation rate was increased, and a series
of Mu- runs were the mutation rate was increased. For the
population size experiment, the same control runs were used
as for the mutation rate experiment, and a series of N+ (resp.
N-) runs were performed with increased (resp. decreased)
population size. All simulations lasted 100,000 generations.
Table 1 summarizes the five tested conditions. While de-
signing the experiments, we discussed resource allocation.
Here the problem was to estimate computation time to es-
tablish the number of repeats we were able to compute in a
reasonable time. We initially chose to compute five repeats
for each condition3. Finally, since in Aevol the computation
time mainly depends on the population size, it was decided
to allow more computational resources to the N+ condition.

Tuesday: Preliminary results
The second day of the internship was almost entirely devoted
to technical issues regarding Aevol output files, their loca-
tion on the disk, how to collect them and the different tools
available to analyze them; including the reconstruction of
lineages (aevol misc lineage), the computation of lin-
eages statistics (aevol misc ancestors stats) and
the visualization tools (aevol misc view). For plot-
ting and data analysis, we decided to use gnuplot and
LibreOffice/Calc as they are user-friendly.

2This was actually the first point we explained to Quentin at the
beginning of the internship: we gave him a “notebook” and urged
him to write down everything during his internship, including ob-
servations, hypotheses, experiments, results or simply ideas.

3All data presented in this paper have been computed with 10
repeats.

Exp. Mutation Rearrangement Pop. Nb
name rates rates size cores

Control 1 × 10−7 1 × 10−6 100 1
N+ 1 × 10−7 1 × 10−6 400 4
N- 1 × 10−7 1 × 10−6 25 1
Mu+ 4 × 10−7 4 × 10−6 100 1
Mu- 2.5 × 10−8 2.5 × 10−7 100 1

Table 1: Experimental design. Mutation and rearrangement
rates are given in events.bp−1.generation−1. Column “Nb
Cores” corresponds to the degree of parallelism used to com-
pute each condition.

From the current state of the simulations, we were able to
estimate the total computation time of the experiments and
to reevaluate the number of repeats we could do during the
internship. We hence decided to add two more repeats in
order to increase the statistical accuracy of the results4

Wednesday: Analyzing experimental results
At the beginning of the third day of the internship, all com-
putations were finished. We thus entered into a new phase
of the scientific method: results analysis. Since Quentin was
then autonomous enough with the experiments, we asked
him to collect the characteristics of the best organism of each
population at generation 100,000 for the five experimental
conditions and to compute their mean values. Table 2 shows
the corresponding results.

Exp
name

Fitness
(mean)

Genome
length
(mean)

Coding
length
(mean)

Non-coding
length
(mean)

Wild-Type 0.00632 44,419 bp 12,235 bp 32,184 bp

Control 0.00643 44,044.4 bp 12,229.2 bp 31,815.2 bp
N+ 0.00766 37,116.9 bp 12,216.4 bp 24,900.5 bp
N- 0.00292 46,067.6 bp 11,885.3 bp 34,182.3 bp
Mu+ 0.00468 33,693.8 bp 12,003.8 bp 21,690.0 bp
Mu- 0.00641 45,226.7 bp 12,166.4 bp 33,060.3 bp

Table 2: Mean characteristics of the best individuals in the
populations at generation 100,000 for the five experimental
conditions. These values are to be compared with those of
the Wild-Type at generation 0 (first row).

Having computed the mean values for these characteris-
tics, we entered a decisive step by asking Quentin the fol-
lowing question: Can the mean values, as shown in Table 2,
be used to draw conclusions about the respective effects of
population sizes and mutation rates? In Table 2, all mean
values are different – actually means are always different –
but part of the difference is due to randomness and sampling

4This decision was not based on the p-values obtained so far
since we did not compute them at this stage. Had we decided to add
more runs until the p-values became significant, it would have been
a form of p-hacking (Head et al., 2015). Note that the experiments
presented here are replications of Quentin’s ones and have been
performed with a predefined experimental design (with ten repeats
per condition).
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fluctuations. To clarify this point, we plotted the evolution
of genome size along the line of descent of the best final or-
ganism for the 100,000 generations of the experiment. We
used this temporal data to explain to Quentin that, especially
when dealing with stochastic processes, mean values must
be used with care as they don’t account for an important el-
ement: dispersion. Now, when looking at these graphs, one
could have the impression that i) an increased population
size leads to genome streamlining (Figure 2) while a reduced
population size tends to cause a slight increase in genome
size (Figure 3), and that ii) an increased mutation rate leads
to genome streamlining while a reduced mutation rate has
no effect (figures not shown). Now the decisive question is
“is this true?”, opening a discussion about what does being
true mean in experimental sciences?

Figure 2: Variation of genome size in the lineage of the
clones evolving within an increased population size (N+
clones). Colors indicates the repeats.

Figure 3: Variation of genome size in the lineage of the
clones facing a reduced population size (N- clones).

Thursday: Statistical analysis
Having conducted our experiments, it remained to be tested
whether the data statistically supported our initial hypothe-
ses, namely that both an increase in population size and an
increase in mutation rates are likely to cause a genome re-
duction.

Given that we had sampled a few evolutionary runs
among the infinite number of possible runs, we had only
estimates of the mean evolved genome size in each condi-
tion. We explained to Quentin that if we were to replicate
the experiment, we would sample different runs and hence
obtain different mean estimates for each condition. Perhaps
this time the observed mean genome size in the N+ condition
would not be smaller than the one in the Control condi-
tion. In other words, perhaps the smaller genomes we ob-
tained in the N+ condition was only due to sampling chance!
But we observed a change of mean of more than 15%, is
sampling chance alone able to produce that? Actually, yes
it is, and not necessarily with a low probability. Thus, we
need to quantify the change in mean estimate that is expected
by sampling chance only. Regarding the question of scien-
tific truth, there is no such thing as experimental truth, only
chances of being wrong when drawing conclusions from an
experiment...

Given Quentin’s age, it was not possible to enter a de-
tailed discussion about random variables, normal distri-
butions, statistical inference, parametric or non-parametric
tests, etc. We instead decided to go for a semi-statistical,
semi-graphical approach, in three steps:

Step 1: the Central-Limit Theorem We first explained to
Quentin the basis of the Central Limit Theorem (CLT5).
The CLT tells us that if we replicate many times the pro-
cedure of sampling n runs and computing the observed
average genome size across the n runs of the sample, and
if we draw the histogram of the observed sample means,
then we will get a bell shape6. The width of the bell tells
us how much the sample mean is likely to change by sam-
pling chance alone, from sample to sample.

Step 2: Confidence Intervals Statistical theory gives us a
formula to estimate the width of the bell and to com-
pute a so-called Confidence Interval (CI) for the mean.
This formula depends both on the observed sample dis-
persion and on the sample size. In our case, with n = 10
(i.e. 9 degrees of freedom), the 95% confidence in-
terval is CI95% = [x̄ ± 2.262

√
(s2/n)], with s2 =

1
n−1

∑
(xi − x̄) and 2.262 coming from Student’s t ta-

ble for 9 degrees of freedom. A 95% CI captures the true
mean for 95% of the samples. We helped Quentin build a
spreadsheet to compute s2 and the CI95% for each of the
conditions.

5It would have been highly valuable to test it experimentally by
e.g. computing more repeats in the Control condition. However,
this was impossible in the limited duration of the internship.

6Actually, the random variable X̄−µ
σ/
√
n

has a standard normal dis-
tribution (i.e. normal with expected value 0 and variance 1), and
the random variable X̄−µ

s/
√
n

, where s is the Bessel-corrected sam-
ple variance, has a Student’s t-distribution with n − 1 degrees of
freedom.
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Step 3: Do confidence intervals overlap? From confi-
dence intervals, we asked Quentin to find a way to
identify interesting effects, i.e. those that are most likely
not due to sampling chance alone. He decided to check
whether confidence intervals overlap or not7. Based on
this criterion, he concluded that “significant” effects were
the following:

1. The genome of Mu+ and N+ are smaller than the
genome of the Control (Figure 4).

2. The genomes of the Mu+ and N- contain less coding
sequences than the genome of the Control and the
genome of the N+ (Figure 5, top panel).

3. The non-coding length of Mu+ and N+ are lower than
the non-coding length of the Control (Figure 5, bot-
tom panel).

Figure 4: Genome size at generation 100,000 for the 5 con-
ditions.

Friday: Put the results into perspective
One might think that the previous results, obtained after four
days, close the scientific process. We chose to show Quentin
that this is not the case, on the contrary! Friday was entirely
devoted to discussion between Quentin, his supervisor and
the rest of the team. He also presented his results to members
of the team who had not followed his work. Our goal was
to show Quentin that a scientific result must be put in per-
spective and confronted with the current state of knowledge.
We also wanted to show him that communicating results and
conclusions is an important part of a scientific work: a sci-
entist must be able to present his results to the community,
discuss them and possibly argue against opponents.

Last but not least for a youngster attracted by a scien-
tific career, we discussed the qualities that are necessary to
become a researcher, from the obvious (curiosity, rigor, in-
tellectual honesty...) to qualities less often put forward but

7Quentin came up with a criterion that is actually used quite
often by e.g. biologists, although this approach is not equivalent to
performing a statistical test (Krzywinski and Altman, 2013). Here,
we performed Kruskall-Wallis tests followed by post-hoc Dunnett
tests to compare each condition to the control. We then applied a
Bonferroni correction. The p-values of the tests are presented in
appendix.

Figure 5: Size of the two main genomic compartments at
generation 100,000 for the 5 conditions. Top: coding com-
partment. Bottom: non-coding compartment.

just as important: passion, pertinacity, scientific (and non-
scientific) culture, or – fundamental for a young French boy
– the level of English!

Discussion
During this internship – and in this article – we showed two
things. First, that ALife could serve as a powerful pedagog-
ical tool to teach the scientific method, including to young
and untrained students. Second, that life-traits can strongly
influence the length and structure of genomes. Below we
separately discuss these two points.

Using ALife to teach the scientific method
Quentin’s internship in the Beagle team illustrated the
strength of ALife as a teaching tool. However, contrary to
what is generally proposed, here ALife has not been used to
teach biology or evolution but rather to teach the scientific
method, its main tools and its main issues. We argue that
this pedagogical usage of ALife is actually more straight-
forward than the former usage. Indeed, using simulation to
teach biology requires that the student have preliminary un-
derstanding of difficult, abstract and actually fuzzy concepts
linked to modelling of biological systems (models being, by
essence, different from the system they model). This is even
more so for artificial life that intends to model life “as it
could be” (i.e. in its whole generality) rather than as it is.
It also implicitly implies to change the destination of the
models (from mere research to teaching) and its user. Now,
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following e.g. Minsky (1965) definition of a model (“To an
observer B, an object A∗ is a model of an object A to the
extent that B can use A∗ to answer questions that interest
him about A”), it is clear that both the observer B and the
destination (i.e. the “questions that interest him”) of a model
are central in the complex relationship that links the model
object A∗ to the original object A. In a word, changing the
destination and the user of the model results in such a deep
alteration of the A/A∗ relationship that it generally implies
changing... the model! This is indeed the process the Avida
team engaged through the development of Avida-ED (Speth
et al., 2009).

These difficulties vanish when ALife is used to teach the
basis of the scientific method, be it during an internship or
a labwork. Indeed, in this case, the student is engaged in a
scientific process: he/she must answer a question about the
model behaviour, exactly as the original user of the model
would. Hence there is no change in the model destination
and the user change is only minor since the student actu-
ally plays the role of a scientist. As a matter of fact, during
Quentin’s internship, we did not encounter any conceptual
issues regarding the differences between the model and the
“real” system. This is simply due to the studied object be-
ing Aevol and not what it models. The relationship between
the model and the real world was indeed discussed during
the internship but that was at the very end (on Friday) and
it did not need to be accepted a priori. When Quentin was
asked to summarize what he had learned during his intern-
ship, his answer was: “During my five day work experience
with Inria, I have been able to observe and to learn the re-
ality of research and what are the different tasks of this job:
to put forward hypotheses, to experiment, to analyze and to
publish results. I have learned what are the main qualities
of a researcher and what are the studies leading to this job.
In only five days, thanks to simulation, I obtained results, I
was able to analyze them and then to present them. I noticed
that, in teamwork, its very important to have good relations
between team members”. Of course, he has also learned a lot
about evolution, genomics and genetics. But this appears to
be less important that the insights into the scientific process
itself...

Of course, we – Quentin and us – encountered difficul-
ties during the internship. But most of them were technical,
not directly related to the use of Artificial Life. Importantly,
none of them proved to be crucial and none compromised
the learning process. In fact, the main difficulty encountered
was the visualization of the raw data and the visualization of
the results of the statistical analyzes. Indeed, all the figures
presented in this article were made using R but this software
was clearly unusable in the context of such a short educa-
tional process. Even though we were able to work around
the problem, it would clearly have been desirable to have a
simple tool allowing Quentin – a naive user on that matter –
to manipulate and visualize the data autonomously.

When teaching the scientific method, ALife proved to
have valuable advantages. Here, we will focus on the two
main ones. First ALife relies on in silico experiments, which
is twice an advantage as it allows for fast experiments that
can also be easily replicated (the replication effort being sup-
ported by the computer rather than by the student). In the
case of Quentin’s internship, a single computer – though a
relatively powerful one – was used, enabling him to conduct
5 series of 7 runs, in little more than 24h. Second, using
ALife, one can propose internships or labworks focusing on
open scientific questions, for which neither the students nor
the mentors have a definitive answer. This creates a strong
initial motivation and allows to maintain it all along the pro-
cess as both the students and the mentors are likely to be
surprised – possibly negatively – by the results. In the case
of Quentin’s internship, the results shed an interesting light
on the process of genome streamlining that deserves to be
discussed on its own.

How to reduce a genome?
Genome reduction is common in Nature but its causes are
still elusive as biological data suggest that genome reduction
could be either neutral or adaptive (Wolf and Koonin, 2013).
Our results suggest that at least two distinct mechanisms can
lead to genome reduction and that they are distinguishable
by their effect on coding sequences. We also show that these
mechanisms are triggered by two different causes: increased
mutation rates or increased population size.

Interestingly, the effects we observed here fit remark-
ably well with what is observed in streamlined bacteria.
Indeed, obligate symbionts have an elevated mutation rate
(Itoh et al., 2002) while marine cyanobacteria live in very
large populations (Batut et al., 2014). Both have under-
gone genome streamlining but the reduction is more pro-
nounced in obligate symbionts (Figure 1), as in our sim-
ulations. Moreover, in these two families, the reduction
seemed to have impacted differently the different genomic
compartments. Marine cyanobacteria have mainly lost non-
coding or duplicated elements, as examplified by Pelagibac-
ter ubique, one of the smallest genome of free living bac-
teria. Its genome is characterized by a very small fraction
of non-coding DNA (less that 5%) and the quasi-absence of
redundancy in coding sequences while all metabolic path-
ways are still present (Giovannoni et al., 2005). By contrast,
the genome of Buchnera aphidicola, an aphid endosymbiont
has lost 90% of its genome (compared to E. coli, one of its
close relatives), lost several metabolic pathways but, strik-
ingly, has conserved 15% of non-coding sequences, a pro-
portion similar to what is observed in E. coli (Batut et al.,
2013).

The results presented here don’t allow to identify the
causal link between mutation rates, population size and
genomes size. However, taking advantage of the model char-
acteristics – and of our previous results with Aevol, we can
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exclude some mechanisms and put others forward. Typi-
cally, many authors suggest that genome size may be gov-
erned by mutational biases, selection for optimized physio-
logical traits (cell size, replication time, energetic costs...) or
by transposable elements activities. These are all excluded
by our simulation parameters or by Aevol itself. More-
over, in Aevol, there is no cost associated to non-coding se-
quences. Hence, the influence of population size on genome
length cannot be linked to the deleterious effect of non-
coding sequences as argued by (Lynch and Conery, 2003).

In the absence of direct selective effects or mutational
biases, we hypothesize that genome size is driven by indi-
rect selective constraints, namely by selection for robustness
(Wilke et al., 2001). Indeed, as already shown by Knibbe
et al. (2007), selection for robustness links genome size to
mutation rates, the higher the latter, the smaller the former.
We hypothesize that the same phenomenon also explains the
influence of population size: in large populations, the se-
lection strength is higher, increasing the pressure for robust-
ness, thereby favouring smaller genomes. The striking ques-
tion is then to explain why both phenomena act similarly on
non-coding sequences but differently on coding sequences
(for which only an elevated mutation rate induces a reduc-
tion). We propose that, exactly like selection for fitness,
selection for robustness may act positively (selecting more
robust clones) or negatively (eliminating clones that are not
robust enough – aka purifying selection). Now, in the case
of an increased mutation rate, the error threshold (Eigen and
Schuster, 1977) moves down and some individuals may find
themselves over this crucial threshold. In this case, selec-
tion will purify the population from these individuals, re-
taining only those that reduced their genome, whatever the
elements they have lost (including coding and non-coding
sequences). On the opposite, in case of an elevated pop-
ulation size, the error threshold does not move down and
individuals are still robust enough to maintain their fitness.
However, providing adaptive mutations are rare (which is
the case here), this results in a positive selection for robust-
ness. In this case, individuals must retain their fitness (hence
their coding sequences) and the only way to increase their
robustness is to get rid of non-coding elements. To the best
of our knowledge, these two contrasting effects of selection
for robustness had never been identified before. Not content
with illustrating the interest of using artificial life to teach
the scientific method, our results also show that interesting
scientific insights can be gathered meanwhile and open the
exciting perspectives of characterizing these two effects in
our experiments (by e.g. measuring robustness levels along
the evolutionary path), in different conditions and in differ-
ent systems.

Material and methods
Simulation platform
All simulations were run using the regular Aevol model,
version 5.0, as available on the platform website (www.
aevol.fr). Since Aevol has been extensively described
elsewhere (Knibbe et al., 2007; Batut et al., 2013) we will
not detail it here and focus only on its core principles and on
the elements that are specifically of interest for this paper.
Figure 6 shows the main components of the model. Aevol
simulates a population engaged in a generational process
(Fig. 6.A). Each individual is described by a circular double-
strand genomic sequence whose structure closely models
a bacterial genome (including non-coding sequences, tran-
scription and translation initiation sequences, open-reading
frames...) making Aevol an ideally suited platform to study
the evolution of genome length and structure. This genome
is decoded into a [0 : 1] → [0 : 1] mathematical function
which proximity with a target function gives the fitness of
the individual (Fig. 6.B). Individuals replicate locally (Fig.
6.C) and, importantly for the present study, Aevol imple-
ments a large variety of variation operators (Fig. 6.D) in-
cluding mutations (base switches, small insertions and small
deletions) and chromosomal rearrangements (duplications,
deletions, translocations and inversions). All variation op-
erators can be tuned independently, making the platform an
ideally suited tool to study indirect selection for mutational
robustness.

Figure 6: The Aevol model (figure from (Liard et al.,
2018)). (A) Population on a grid and evolutionary loop.
(B) Overview of the genotype-to-phenotype map. (C) Local
selection process with a Moore neighborhood. (D) Varia-
tion operators include chromosomal rearrangements and lo-
cal mutations.
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Evolution of the Wild-Type strain
To study genome streamlining, we had to give Quentin an
initial organism (the “Wild-Type”) that was evolved prior
to the internship. In the experiments presented here the
wild-type evolved with a population of 100 individuals, a
mutation rate of 10−7events.bp−1.generation−1 for each of
the three kinds of mutations and a rearrangement rate of
10−6events.bp−1.generation−1 for each of the four kinds of
rearrangements. We used an unusually small population size
in order to allow for fast experiments.

In order to ensure that the genome size and structure of
the wild-type have reached a steady state, we let it evolve
for 10 million (107) generations in constant conditions as
preliminary results have shown that the genome size did not
stabilize before 5.106 generations (data not shown). Note
that the evolution of genome size and genome structure in
the Control conditions (see Table 2) confirmed that the
genome was stabilized. We then extracted the genome of
the best individual at the last generation. It contains 44,419
bp, 32,184 of which are non-coding and 12,235 coding. It
encodes 146 genes transcribed on 108 coding mRNA, ap-
proximately half of which being polycistronic. Its fitness is
0.00632. Note that the proportion of non-coding sequences
is rather high in this organism, probably because of the small
population size.

Experimental design
Starting from the wild-type genome, we used the
aevol create tool to initialize a clonal population of
wild-types with specific parameters (population size, muta-
tion and rearrangement rates, see Table 1). This procedure
allowed us to avoid sampling issues when changing the pop-
ulation size.

All simulations were then performed on an Intel Xeon
CPU with 32-cores at 2 Ghz with 32 Go RAM that Quentin
had at his entire disposal for the whole duration of the intern-
ship. With this configuration, all the computations required
approximately 48h.

Appendix: results of the statistical analyses
Results of the Kruskall-Wallis (KW) and post-hoc Dunnett
tests for effects of mutation rates and population size on
genome size, coding length and non-coding length. Dun-
nett p-values under 0.017 are in bold face (accounting for
p<0.05 with a Bonferroni correction for three responses).
Genome size:
KW on mutation rate: χ2 = 16.694, df = 2, p-value = 0.0002371
Dunnett: Mu- vs. Control: 0.7205; Mu+ vs. Control: 4.4e-06
KW on Population size: χ2 = 15.36, df = 2, p-value = 0.000462
Dunnett: N- vs. Control: 0.4661; N+ vs. Control: 0.0020
Coding length:
KW on mutation rate: χ2 = 13.388, df = 2, p-value = 0.001238
Dunnet: Mu- vs. Control: 0.2833; Mu+ vs. Control: 4.9e-05
KW on population size: χ2 = 19.311, df = 2, p-value = 6.407e-05
Dunnett: N- vs. Control: 3.5e-07; N+ vs. Control: 0.9523

Non-coding length:
KW on mutation rate: χ2 = 16.498, df = 2, p-value = 0.0002615
Dunnett: Mu- vs. Control: 0.6955; Mu+ vs. Control: 6e-06
KW on population size: χ2 = 15.801, df = 2, p-value = 0.0003705
Dunnett: N- vs. Control: 0.3650; N+ vs. Control: 0.0022
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Abstract 
 

In the Gathering of the Hive project, the societal and 

ecological implications, as well as technological 

possibilities of swarm robotics are explored through 

artistic methodology applied to Artificial Life. These 

matters are examined through an algorithm inspired by 

the clustering behaviour of honeybees applied to a 

swarm of Thymio robots interacting in a physical, 

changing environment. This work is a part of the 

ongoing FELT1 project (Futures of Living 

Technologies), which explores artificial life systems 

through art and technology. 

 Introduction 

A self-organizing clustering behaviour is most 
commonly found in social bees, and occurs when weather 
conditions are sub-optimal (Crailsheim, et al. 1999). These 
clusters are formed through mutual, collaborative, interactive 
behaviour within groups of bees. A combination of factors 
play into the movement of the individual bee, but gives a 
collective result in tightly formed clusters around areas with 
ideal conditions for the group as a whole, a living behavioural 
system. 

Working through artistic practice gives a flexibility and 
open-endedness to the collaborative process, opening up to 
new ideas emerging from unexpected places. With the 
theoretical entrance point of System Aesthetics, developing 
art in regards to the way things are done (Burnham, 2015) – 
be that by human, robot or bee – artistic and technological 
strategies are used to examine this clustering and reflect 
around the implications of its technological application. Using 
this behavioural pattern towards programming a swarm of 
robots, algorithmically set to exhibit traits of this natural 
living system, we explore the artistic potential and concerns 
central to that of Artificial Life (Penny, 2017). By looking at 
not only the behaviour of bees in-amongst themselves, but 
towards and in interaction with their environment, ecological 
perspectives, also come into play. In the condition of the 
Anthropocene (Wark, 2016), where natural and human forces 
intertwine – man-made technologies increasingly possess 
properties of life and the planet is irreversibly altered by the 
actions of humans – what role can these technological systems 

drawing on natural mechanisms play? This is explored 
through a combination of artificial life, artistic production and 
research. This work is a part of the ongoing FELT1 project 
(Futures of Living Technologies), carried out at the Living 
Technology Lab (Berg, et. al. 2019; Hansen, et al. 2018) at the 
Oslo Metropolitan University (Oslo, Norway). 

 Algorithm 

The algorithm taken as an entrance point in this project 
comes from Schmickl and Hamann (Schmickl and Hamann, 
2011) studies of the collective behaviour of honeybees, where 
they developed an algorithm for clustering behaviour designed 
for implementation into a robot swarm. Essentially the 
algorithm, named BeeClust, performs the following steps: 
 

- The honeybees roam around randomly until 
encountering a wall, or another honeybee.  

- When they encounter a wall, they turn around, and 
continue roaming.  

- If they meet another honeybee, they read the sensor 
measurement and stay idle for a time proportional to 
the sensor value.  

 

 
 

Figure 1: Technological set-up of the thymio robots 

 
This will cause the honeybees to cluster around the 

focused area, where their sensor values stay high (Schmickl 
and Hamann, 2011). Being an algorithm designed with swarm 
robotics in mind – optimal result depends on the collaborative 
effort of multiple actors – the amount of robots present would 
become an important point of investigation (Navarro and 
Matía, 2013). 
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 Implementation 

The BeeClust algorithm was developed in Python, stored 
on a Raspberry Pi 3 Model B. The Raspberry Pi is connected 
to a Thymio II2 robot, and used as a controller for the robot’s 
actions, and to read the sensor values. A power bank is used to 
supply the robot and the Raspberry Pi with power. 

 
The Thymio II has sensors in the front, five sensors facing 

forwards and two facing downwards. These infrared sensors 
can detect nearby objects, and colour range ranging from 
black to white. These sensors are not precise enough to detect 
small environmental changes, thus external sensors were 
implemented, to read the light intensity of the projection. The 
GrovePi3 is a shield to Raspberry Pi that can easily be 
connected to sensors provided by the same company. The 
used sensors can measure light changes in different 
environmental conditions precisely. The GrovePi reads 
sensory values and converts the signal to analogue, providing 
Raspberry Pi the ability to read analogue signals, and enables 
us to work with intensity, rather than binary on/off values. 
The robot setup is depicted in Fig. 1. 

 

 

Figure 2: Model of rear-lit set-up (left), and model of bees clustering in 

relation to light-gradient (right) 
 

 
 

Figure 3: Thymios clustering on the projected gradient. 

 Designing the Environment 

When designing the environment for the Thymio robots 
to roam, the goal was to make a dynamic environment, where 
the source of optimal ‘heat’ would be in a changing condition, 
thus affecting the clustering performance of the bees. The way 
bees use the sun to triangulate the location of food sources in 
relation to their hive, was used as inspiration for the design 
(Evangelista, et al. 2014). Instead of a food source being the 
site of aggregation, this would be a simulated ‘Sun’ in the 
form of a pulsating white-to-black gradient projected onto a 
semi-transparent surface the robots were to move on. Aided 
by mirrors built into a box, this rear-projection would make 

possible a system for the robots to move, cluster, and re-
cluster as the ‘Sun’ goes its way across the surface. Thus 
making practical use of the behavioural pattern in the form of 
a robot artistic performance in a visually perceivable way, 
also for the spectator. A setup is shown in Fig. 2, and an 
example of the swarm robotics art performance is shown in 
Fig. 3. This follows as a continuation of previous work on the 
project called Pheromone Performance with Swarm Robotics, 
A short introductory video to this can been seen through the 
following link: http://y2u.be/hA_YsC6mLP0 

 Conclusion and Further Work 

Our work on the implementation and application of the 
BeeClust algorithm has resulted in a system capable of 
making use of, and highlight the distinctive pattern of 
honeybee clustering. Using clearly defined principles, the 
ongoing systematic process the robots conduct in this artistic 
performance carry its own possibilities and limitations. By 
using technology in unexpected ways, such as a light-led 
robot performance, artistic practice can provide new 
perspectives towards technological development. One could, 
for example, imagine similar principles used by robot swarms 
to cluster around lost people at sea through the lead of body 
temperature. 

The arts opens up to an expanded use of the strategies and 
mechanisms set forth in this project and in artificial life in 
general, giving room to imagine robots and artificial living 
systems ‘programmed’ towards other parts of society. In 
future work this will be further explored through art 
exhibitions and workshops where an audience is invited to 
learn about and explore principles and possible execution of 
artificial life – Further reflecting over its biological and 
ecological roots and technological potential, in the current 
state where these seem to become increasingly entangled. 
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Abstract

As the field of Artificial Life advances and grows, we find
ourselves in the midst of an increasingly complex ecosystem
of software systems. Each system is developed to address par-
ticular research objectives, all unified under the common goal
of understanding life. Such an ambitious endeavor begets a
variety of algorithmic challenges. Many projects have solved
some of these problems for individual systems, but these so-
lutions are rarely portable and often must be re-engineered
across systems. Here, we propose a community-driven pro-
cess of developing standards for representing commonly used
types of data across our field. These standards will improve
software re-use across research groups and allow for easier
comparisons of results generated with different artificial life
systems. We began the process of developing data standards
with two discussion-driven workshops (one at the 2018 Con-
ference for Artificial Life and the other at the 2018 Congress
for the BEACON Center for the Study of Evolution in Ac-
tion). At each of these workshops, we discussed the vision
for Artificial Life data standards, proposed and refined a stan-
dard for phylogeny (ancestry tree) data, and solicited feed-
back from attendees. In addition to proposing a general vision
and framework for Artificial Life data standards, we release
and discuss version 1.0.0 of the standards. This release in-
cludes the phylogeny data standard developed at these work-
shops and several software resources under development to
support our proposed phylogeny standards framework.

Introduction
Artificial Life (ALife) research is becoming more complex
as the field advances and as computational power increases.
Further, more recent initiatives have broadened the scope of
the field to intersect topics such as society and education, at-
tracting new and interesting perspectives to the community.
We find ourselves in the midst of an increasingly complex
ecosystem of ALife software systems (Taylor et al., 2016),
including research platforms, metrics, data visualizations,
et cetera. Each system is developed to address particular
research objectives, all unified under the common goal of

understanding life; such a monumental goal begets a num-
ber of algorithmic challenges (e.g., tracking a single gene
through a genetic lineage, measuring the open-endedness
of a system, identifying and characterizing complex inter-
actions among individuals in a population). Many projects
have solved some of these problems in individual systems,
but these solutions are rarely portable and often must be re-
engineered across systems.

Many other communities have developed and lever-
aged data standards to dramatically improve their software
ecosystems. Data standards are specifications for organiz-
ing, annotating, and recording commonly-collected infor-
mation. That is, what specific values should we keep, what
descriptors (properties) should we use to specify them, and
in what format should they be stored?

We propose a community-driven process of developing
such standards for Artificial Life in an effort to improve
software re-use and allow for easier comparisons of data
generated with different artificial life systems. Standards
allow tools to be developed that can immediately be ap-
plied to data produced by unrelated systems, eliminating
the need for these tools to be re-written by each research
group. In addition to saving time, expanding the user base
for tools increases their reliability by making it harder for
bugs to go undetected. Moreover, creating a collaborative
software ecosystem will facilitate communication and coop-
eration among research groups by making it easier to com-
pare results across different systems using the same analysis
tools. Further, standards increase the incentive to develop
tools that solve elusive community-wide challenges, as you
will be able to immediately apply them to a broad cross-
section of available systems and data; likewise, many fellow
researchers will be able to make easy use of your tools.

We began the process of developing data standards with
two discussion-driven workshops at the 2018 Conference for
Artificial Life and the 2018 Congress for the BEACON Cen-
ter for the Study of Evolution in Action. At both work-
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shops, we discussed the vision for ALife data standards,
proposed and refined a standard for phylogenies (that is, a
standard for describing parent-offspring relationships over
time), and solicited feedback from attendees (Lalejini and
Dolson, 2019); in conjunction, we developed software tools
to leverage these proposed standards. This paper is a contin-
uation of these efforts. Here, we provide examples of how
data standardization has benefited other scientific communi-
ties. We summarize our vision for artificial life data stan-
dards, and propose a framework for ALife data standards.
By way of example, we present the phylogeny standard dis-
cussed in both 2018 workshops; additionally, we identify
several existing software resources under development to
support our proposed phylogeny standards framework: de-
veloper utilities, data converters, and end-user tools. We
conclude with a discussion of future directions, including
possible concepts for future standardization.

The Benefits of Data Standardization:
Examples From Other Communities

As scientific communities extend their reach, data standards
provide a mechanism to unify software development and
provide a better user experience. Data standards afford de-
velopers a reduced barrier to entry, the ability to more easily
communicate across disciplines, and a broader impact from
their software efforts. As such, users experience a more uni-
fied software ecosystem where they can use the same anal-
ysis and visualization tools across research platforms. Our
vision for Artificial Life data standards is inspired by these
other successful efforts.

Data standards have been successfully adopted through-
out history. For example, the metric system revolution-
ized how weights and other measures are used throughout
science, and failures to keep to this standard have proved
catastrophic (Board, 1999). The ASCII standard shaped
how modern computers manage text, allowing developers
to write versatile tools to manipulate human-readable files.
In modern biology, both computational neuroscience (Glee-
son et al., 2010; Richmond et al., 2014) and systems biol-
ogy (Hucka et al., 2003) have adopted successful data stan-
dards. In both cases, these standards were driven by an
open community approach, resulting in improved model ex-
change and design as well as the development of compliant
simulators. Furthermore, digital access to global data is inte-
gral to biodiversity research. The Darwin Core project data
standards (Wieczorek et al., 2012) define relevant proper-
ties for a range of scientific entities (e.g., taxa, occurrences,
fossil specimens); this standardization has eased communi-
cation of and collaboration using biodiversity data, allowing
the community to homogenize biodiversity record structure
across multiple repositories (Parr et al., 2012). The bioin-
formatics community is moving toward widely-adopted data
standards (Zhang et al., 2011), ushering the development of
broadly used (Wren, 2016) databases and software tools.

Highly relevant to the field of Artificial Life, the Robot
Operating System (ROS) is a popular, open-source soft-
ware development framework that defines communication
and data standards. The ROS standards have facilitated
massive community software development, sharing, and
reuse (Quigley et al., 2009). By defining common stan-
dards for software, ROS unifies disparate sub-communities
(ranging from academic researchers to industrial engineers
to hobbyists), creating the opportunity for robotics collab-
orations among people who would have never even com-
municated otherwise. In 2012, the ROS community began
organizing annual ROScon events, an international confer-
ence where ROS software developers meet and present re-
cent software applications, ideas, and tools. All of this com-
munity buy-in and support for software developers eases on-
boarding for new researchers and lowers the barrier to mak-
ing meaningful software contributions for the community.

Our Vision for Artificial Life Data Standards
Data standards specify how data are described (ontolo-
gies) and recorded (formats). Because the types of data
used in Artificial Life research are many and varied (from
experiment-to-experiment and system-to-system), any use-
ful set of standards for our community will need: 1) a min-
imalist and inclusive core shared by all, 2) a flexible mech-
anism for extensions to encompass the idiosyncrasies of in-
dividual systems, and 3) enough descriptive power to allow
for tools that will be broadly useful.

Because ALife systems and experiments are diverse, we
must ensure that standards for describing different types
of data are flexible. We envision that each data standard
should minimize the number of properties required to spec-
ify the concept of interest; we should avoid incorporating
extraneous or restrictive assumptions into the standards, en-
suring the core of each standard remains inclusive. For
example, to meaningfully describe a lineage, we require,
at minimum, information about parent-offspring relation-
ships. While broadly applicable, such a data standard would
sacrifice utility if it disallowed extra information of poten-
tial interest such as organism characteristics or mutational
changes that occurred along the lineage. Thus, in addition
to a set of mandatory properties, each data type will also
standardize a set of optional (or “conventional”) properties.
Standard-compliant data are not required to report optional
information; however, if standardized optional properties
are included, they must use the specified labels and format-
ting. Each standard-compliant software tool must document
which optional properties it accepts and/or requires, and be
able to ignore those that it does not use.

The diversity of systems and experimental settings not
only requires flexibility on what data may be recorded but
also on how it should be recorded (i.e., the underlying file
formats). Depending on the data itself and on what one
wants to do with it, the choice of file format could range
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from a verbose format such as JSON or XML to a com-
pressed binary format. Our vision is for the standards to
support multiple, interchangeable file formats (e.g., XML,
JSON, CSV, binary, etc.) to ensure that data recording is
maximally flexible. Any of these formats could be used to
store data and provide input to standard-compliant software
tools; this flexibility, however, demands that we provide de-
tailed guidelines for conversions between storage formats.

Proposed Standards Framework
Our proposed standards framework specifies: 1) the termi-
nology for referring to specific concepts (ontology), 2) a
structure for describing data, 3) rules for formatting data,
and 4) the process for creating and modifying the standards.
Note that our proposed framework does not constrain meth-
ods for analyzing or working with data. However, agreeing
on standardized ways of formatting and describing data will
ease the development of analysis tools and visualizations.

Ontology
A critical component of any data standard is a set of agreed-
upon terminology for describing data, with clear rules about
how information fits together. In information science, such
a framework is called an ontology (Smith and Welty, 2001).
For consistency, we will use the same terms that are used in
other ontology development research.

Each individual standard in our framework specifies a
way of describing and storing a particular instance of a con-
cept (e.g., the “phylogeny standard” describes how to store
the concept of a phylogeny). Each instance of a concept
can be described with a single, arbitrarily large data table
where rows are entities (e.g., individual taxa in a phylogeny)
and columns specify properties (e.g., ancestor IDs or trait
values) of each entity; further, an individual data table may
contain entities of only a single type or category.

Describing Data
Each standardized data type (concept) has three categories
of properties (i.e., data fields or attributes): required proper-
ties, conventional (or optional) properties, and extra (or ad-
ditional) properties. To qualify as standard-compliant, a data
file must abide by all required properties. Required proper-
ties are what the community determines to be the minimal
set of properties needed to meaningfully specify the concept
of interest. Properties should only be given required status if
they are fundamental to the concept being represented, such
as parent-offspring relationships in a phylogeny.

In addition to required properties, each concept will stan-
dardize a set of conventional properties. Conventional prop-
erties are used to describe pieces of data that are often impor-
tant, but are not fundamental to the concept being recorded.
As such, standard-compliant systems are not required to out-
put conventional properties (and, indeed, these properties
may not even be meaningful in all systems or setups). If you

do choose to output conventional properties and label them
according to the standard, these properties may be leveraged
by standard-compliant tools. For example, mutation counts
are not required to record a phylogeny, but if they are in-
cluded, analysis tools can produce more informative visual-
izations indicating amount of change over time.

Extra properties include any data not otherwise specified;
these are system-specific or experiment-specific properties
that further describe the concept. Allowing for arbitrary ex-
tra properties ensures the standard is inclusive and easy to
use. Software tools should document any extra properties
they can make use of and their meaning. In the event that
an extra property is used by multiple software systems, it
may be appropriate to formalize it as a conventional prop-
erty. Additionally, many software tools may be able to use
arbitrary properties by name. For example, a user may be
able to choose an any property they want to color-code a
phylogeny.

Property names must be consistent across file formats. As
of version 1.0.0, all property names are in snake case: fully
lowercase (e.g., ‘id’ instead of ‘ID’ or ‘Id’) and underscore-
separated as appropriate (e.g., ‘ancestor list’). When decid-
ing on required or conventional property names, we will err
on the side of being descriptive to ensure that files remain
intuitive. We encourage extra properties to be similarly de-
scriptive to simplify data sharing, limit name collisions, and
facilitate future conversion to conventional property status.

Naming Modifiers Workshop participants suggested we
specify conventions for naming common types of properties
(e.g., lists, averages, variances, etc.). For example, the prop-
erty for identifying the set of offspring produced by a par-
ticular organism might be called ‘offspring list’ instead of
‘offspring’ to indicate that the property refers to a list. We
envision the set of these conventions (i.e., naming modifiers)
to grow as new tools are developed and as the standards grow
to encompass more concepts. Table 1 provides the set of
naming modifiers in version 1.0.0 of the standard. Naming
modifiers should be applied to the end of the property name,
connected via an underscore (e.g., ‘offspring list’). These
conventions allow tools to be more flexible when loading
and processing standardized data by inferring data types
for properties and identifying property relationships from a
common prefix. For example, if a tool sees both fitness ave
and fitness std, it may reasonably assume that these refer to
the average and standard deviation of the same distribution.

Reserved and Default Values For certain properties, it is
valuable to reserve values to have special meanings. For
example, what value should ancestor list use to indicate that
an organism in a phylogeny was created randomly and there-
fore has no ancestors? This parameter could be left empty,
but how would we be able to differentiate this organism from
one that migrated from another population or from an or-
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Table 1: Proposed conventional property name suffixes.

Suffix Description of Property
id A unique identifier, often numerical.

name A string label identifier.
count A whole number count.
total A cumulative result of counts over time.
list A list of values.
sum The summed total of a list of values.
time A numerical measure of time.

rate prob A rate or probability.
ave med Measurements of an observed or calculated
min max distribution (average, median, minimum,
var std maximum, variance, standard deviation, skew,

skew kurt and kurtosis).

ganism that was loaded from a previous experiment? The
standard can specify a set of conventional reserved values,
giving standard-compliant tools a way to recognize and dif-
ferentiate these special cases.

Just as it is useful to reserve data values, it may also be
useful for the standard to specify reasonable default values
for certain conventional (non-required) properties. Accepted
and well-documented default values allow tools to make pre-
dictable assumptions in cases where conventional properties
are missing.

Formatting Data
Our proposed standards framework supports multiple for-
mats for recording and storing data. Every standard-
compliant tool will be required to support at least one
standard-compliant file types as input; we will curate tools
capable of converting data between supported file formats.
As of version 1.0.0, the standards support JavaScript Ob-
ject Notation (JSON) and Comma Separated Values (CSV)
formats. As demand builds for additional file formats, the
community can develop rules for representing standard data
in these new formats (along with converters to and from
already-supported formats).

Process for Amending Standards
In the long run, we will model the ALife data standards
on other open source projects. As the number of standard-
compliant tools increases, so too will the number of peo-
ple who are invested in their maintenance and improvement.
Thus, it is important to establish a process for amending the
standards. Our initial set of standards are housed in a repos-
itory on GitHub (Lalejini et al., 2019). Anyone can suggest
an update to the standards by submitting a pull request or
issue. Proposed changes will be reviewed and discussed by
interested community members to ensure that 1) they are
backwards-compatible (unless there is a compelling reason
for a breaking change), 2) they do not replicate or clash with
existing standards, and 3) they are well specified, inclusive,
and flexible. Following this discussion and a positive con-
sensus, the changes will be merged in. This process fol-

lows the successful precedent set by other open source stan-
dards (Darwin Core task group, 2014). We anticipate that
additions to the standards will be driven by tool developers
adopting conventions for how to name specific types of data.

Changes to the standards will be tracked using seman-
tic versioning, a system of assigning version numbers that
conveys information about how similar successive versions
are. Versions are identified with a sequence of three numbers
(e.g., as of this paper, we are on version 1.0.0), which indi-
cate the “major version”, “minor version”, and “patch” re-
spectively. Typically, a change in the major version denotes
a break in backwards compatibility, a change in the minor
version denotes the addition of new backwards-compatible
features, and a change in the patch denotes minor bug fixes.

Proposed Phylogeny Standard
The problem of how to represent a phylogeny in a stan-
dardized way has long been important to biology, even
without the wealth of data we have access to in AL-
ife. Biologists have developed a few standard representa-
tions for phylogenetic trees (Cranston et al., 2014). Some
popular formats include Newick (Cardona et al., 2008),
Nexus (Maddison et al., 1997), NHX (Zmasek and Eddy,
2001), PhyloXML (Han and Zmasek, 2009) and RecPhy-
loXML (Duchemin et al., 2018). Newick format is a simple
nested format for representing the hierarchy of a tree (a tree
with three nodes might be represented as ((A,B),C), for ex-
ample). Nexus and NHX formats build upon Newick with
additional information (e.g., the inclusion of a genetic se-
quence alignment among the represented taxa). PhyloXML
and RecPhyloXML support the inclusion of additional sup-
plemental data, but still use a nested format.

Why not use one of these existing standards for phylo-
genies in artificial life? These biological phylogeny stan-
dards were designed to work with species phylogenies in-
ferred from extant taxa (and fossil data). As such, these
standards are not designed to represent phylogenies with
finer taxonomic scale. In artificial life, it is often reasonable
to examine the complete phylogeny of every individual that
ever existed. Attempting to do so presents two problems for
phylogeny standards used in biology: 1) representing any
phylogeny where taxa have multiple parents is impossible in
these standards, and 2) complete phylogenies can be so big
that it is necessary to split them across multiple files – nested
formats (as used in biology) do not support such splitting.

During the workshops at ALife 2018 and the 2018 BEA-
CON Congress (Lalejini and Dolson, 2019), we created a
proposed standard for representing phylogenies. After con-
tinued discussion, we believe that it is now ready to be
adopted.

Phylogenies depict parent-offspring relationships over the
course of evolution. Phylogenies can be constructed for any
taxonomic unit of organization (e.g., individuals, genotypes,
species, etc.); thus, we use the term “taxon” to refer gener-
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Figure 1: (A) A simple phylogenetic tree where each entity’s id is given inside of its ‘colored-shape’ phenotype. (B) A corresponding
standard-compliant data table. The data includes required properties (id and ancestor list), two optional properties (origin time and destruc-
tion time), and three extra properties that were used by the visualization (shape, corners, and color).

ally to an entity in a phylogeny. Each taxon in the file must
have existed at some point, and each relation from one en-
tity to another defines an ancestor-descendant relationship
between the two entities (taxa).

The phylogeny standard has two mandatory properties: id
and ancestor list. The id property provides a unique identi-
fier corresponding to that taxon. The ancestor list property
contains a list of ids corresponding to ancestors of the taxon.
These are not required to be the direct parents of the taxon,
but they will usually be treated as the closest ancestors in
the phylogeny. All ids in the ancestor list must correspond
to taxa in the file. In cases where a taxon has no ancestors
in the file, non-numeric string values can be used to specify
that taxon’s origin.

Version 1.0 of the phylogeny standard has two optional
properties: origin time and destruction time, which spec-
ify the time that the taxon came into and out of existence,
respectively. Setting these properties to strings also allows
for special values, such as a keyword for destruction time
to indicate that a taxon is still alive. Figure 1 gives an ex-
ample of a phylogeny and its associated standard-compliant
description.

Current Software Support
In addition to housing the Artificial Life data standards
specifications in a GitHub repository, we plan to main-
tain a community-curated list of standard-compliant
software tools on GitHub (https://github.com/
alife-data-standards/alife-data-tools; Bohm
et al. 2019). This list of software resources is modeled
after other efforts to use GitHub as a platform for selecting,
evaluating, and organizing public resources for preservation
and future use (Wu et al., 2017). Anyone can suggest
an update to the list of software resources by submitting
an issue or a pull request; for example, a student who
has developed a useful visualization tool and written an
explanatory blog post would be able to submit an issue to
have a link to their visualization and blog post added to the
list of software resources.

While concentrating developer effort on a single set of
tools will make those tools more reliable, it also increases

the harm that any individual bug in the software can do. To
minimize this risk, we advocate the use of software develop-
ment best practices. All repositories maintained by the Arti-
ficial Life Data Standards Organization use continuous inte-
gration to ensure that all code is automatically tested when a
change is made. Test coverage is measured to facilitate these
test suites in becoming comprehensive. Lastly, static analy-
sis is automatically performed to identify error-prone code.
Software on the resource list will be classified by reliability
based on how well it follows these best practices.

Thus far, we have developed (and are continuing to de-
velop) a variety of software resources to support our pro-
posed phylogeny standard. These resources fall under three
broad categories (that are not necessarily mutually exclu-
sive): developer utilities, data converters (to and from the
standard), and end-user tools. In addition to being useful on
their own, we intend for these resources to serve as templates
for developing new standard-compliant software tools. As
we develop more software support, we will document them
on our list of standard-compliant software tools on GitHub
(Bohm et al., 2019). The rest of this section discusses each
of the software tools already developed that work with the
ALife data standards.

Developer Utilities
Developer utilities include software packages and libraries
that can be incorporated into new tools. Thus far, we have
begun development on a Python package for working with
standardized phylogeny data. We plan to produce a simi-
lar set of tools in C++. As additional ALife standards are
released, tools to assist developers using that standard will
encourage broader adoption.

ALife Standards Development Python Package The
ALife data standards Python package includes functions
for loading a standard-formatted phylogeny file as a Net-
workX (Hagberg et al., 2008) directed graph object. Python
is a popular language for many tasks including data manip-
ulation and analysis; further, many efforts have been made
to build interfaces from Python to other languages (e.g., Al-
laire et al. 2018; Guelton et al. 2015). These benefits, in
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addition to its ease of use, make Python an ideal language
for developing this initial package of software utilities.

NetworkX is a popular Python package for creating and
manipulating graphs. By representing phylogenies as Net-
workX graph objects, we can apply existing graph al-
gorithms and visualizations to our phylogenies. Addi-
tionally, our Python package contains utilities for sav-
ing, manipulating, and analyzing phylogenies and lineages.
See https://github.com/alife-data-standards/

alife-std-dev-python for a more detailed description
of this package’s current functionality.

Data Converters
Data conversion tools translate data files between formats.
Data converters may allow one to use standard-compliant
analysis or visualization tools on data produced by non-
standard-compliant systems and vice-versa. Data converters
may also be developed to translate between different encod-
ings of ALife standard data (e.g., from JSON to CSV, each
of which having their pros and cons). We envision data con-
verters serving as the bridge between otherwise incompati-
ble software tools and systems. Thus far, we have developed
three data conversion utilities:

Avida to Standard Phylogeny In the Avida Digital Evo-
lution Platform (Ofria and Wilke, 2004), self-replicating
computer programs compete, mutate, and evolve. Avida
has been used to study a wide range of evolutionary dy-
namics (e.g., Goldsby et al. 2012; Zaman et al. 2014; Dol-
son et al. 2016). By default, Avida outputs population files
at regular intervals during an experiment. Each population
file contains information about the genotypes present in the
current population as well as the full ancestral lineages for
each extant genotype. Our Avida to standard phylogeny con-
verter takes a single Avida population file as input and con-
verts it into the standard phylogeny format (either as CSV
or JSON). This converter and more detailed usage informa-
tion can be found on GitHub at https://github.com/
alife-data-standards/converters-avida.

MABE to Standard Phylogeny The Modular Agent-
based Evolver (MABE) is a software framework devel-
oped to support research in digital evolution and artificial
life (Bohm and Hintze, 2017). MABE allows researchers
to construct experiments by combining different types mod-
ules: genomes, brains, environments, and selection meth-
ods. These modules can be drawn from an ever-growing
collection or be developed by the user as necessary.

MABE outputs ancestry information in a series of pop-
ulation snapshot files (either full snapshots or pruned
snapshots without reproductively unsuccessful individuals).
The MABE to standard phylogeny converter takes these
MABE snapshot files and optionally a list of column names
that should be included in the standard phylogeny out-
put. This converter and more detailed usage informa-

tion can be found on GitHub at https://github.com/
alife-data-standards/converters-mabe.

Standard Phylogeny to VINE The Visual Inspector for
NeuroEvolution (VINE) (Wang et al., 2018) is under ac-
tive development by UBER Labs in conjunction with their
Deep Neuroevolution project (Such et al., 2017). VINE al-
lows users to visualize how an evolving population moves
through trait space over time. The standard phylogeny to
VINE converter allows users to identify which properties of
their phylogeny data should be translated into the VINE in-
put format and creates the VINE-compliant input files (in
the appropriate directory structure). For more information
about VINE, see (Wang et al., 2018). More detailed us-
age information for our standard phylogeny to VINE con-
verter can be found on GitHub at https://github.com/
alife-data-standards/converters-vine.

End-user Tools
In support of the phylogeny standard and for our own re-
search purposes, we have developed data-processing scripts
and visualizations. These tools require users to provide
standard-compliant input files (via a command line or graph-
ical interface), processing the input as part of a data process-
ing pipeline or producing a visualization of the given data.

Phylogeny Web Visualization Visualization is a criti-
cal part of data analysis, helping us build intuitions and
communicate our results. We are actively developing a
web-based phylogeny visualization tool that takes standard-
compliant asexual phylogeny data as input and generates a
phylogenetic tree, color-coded based on a user-specified nu-
meric property (see Figure 2 for example output). Refer
to our GitHub repository for more detailed usage informa-
tion for this tool (https://github.com/emilydolson/
lineage_viz_tool).

Time to Coalescence Command Line Tool The time to
coalescence command line tool takes a standard phylogeny
as input calculates how far back in time we need to look
to find the most recent common ancestor of all extant taxa.
The tool searches the given standard phylogeny file for the
organisms with the greatest origin time. It then traces the
ancestors recursively until it finds the most recent common
ancestor (MRCA), at which point the tool returns the time to
coalescence and the id value of the MRCA. See our GitHub
repository for more detailed usage information for this
tool (https://github.com/alife-data-standards/
tools-pack-phylogeny).

Conclusions and Future Directions
In this work, we discussed the motivation and vision for a
set of ALife data standards. Additionally, we proposed a
standard for describing and storing phylogeny data and pre-
sented several software tools that have already been devel-
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Figure 2: Example output generated using the phylogeny web visualizer. Generations proceed from left to right with the extant taxa shown
on the far right. Nodes can be color-coded; here green and yellow indicate relatively high numeric values for the specified property.

oped to support the standard. We see this work as a con-
tinuation of the conversation started at the discussion-driven
workshops at the 2018 Conference for Artificial Life and
the 2018 Congress for the BEACON Center for the Study
of Evolution in Action. By reaching out to the wider ALife
community, we hope to broaden the scope of our standards,
continue developing software tools that work with standard-
ized data, and build community support for adopting and
improving data standards.

Ultimately, the success our proposed data standards will
depend on the level of community buy-in and adoption. The
utility of these standards will grow as more of the commu-
nity adopts and contributes to our ecosystem of data stan-
dards. To ensure an inclusive environment for standards de-
velopment and discussion, we have adopted a Contributor
Covenant code of conduct (Covenant, 2014).

As we only represent a subset of the ALife community,
we do not know the full set of data standards that would
be valuable to the community; for this, we turn outward:
what types of data should we develop standards for? In
workshop discussions, we identified the following targets
for future data standards: genomes, interaction networks,
fitness landscapes, and meta-data. While genomes can be
broadly defined as heritable and mutable material, develop-
ing a genome standard has proven elusive because of the
enormous variety of genetic representations used across dif-
ferent systems. Any adopted genome standard should be
flexible enough to support the varied types of both artifi-
cial and natural genomes; this would allow us to make di-
rect comparisons between digital and biological systems and
make the tools we develop useful to biologists. Interaction
networks describe the relationships between interacting en-
tities (e.g., objects, individual organisms, chemicals, etc.);

for example, a food web is a type of interaction network, de-
scribing the predator-prey relationships among species rep-
resented in the network. A fitness landscape characterizes
the mapping between the space of possible genotypes (or
a set of phenotypic traits) and fitness for a given environ-
ment. For example, given a genome and an environment,
the fitnesses of all possible one-step mutants describes the
local fitness landscape adjacent to the given genome. A fit-
ness landscape standard would allow researchers to more
effectively compare fitness landscapes across multiple en-
vironments and better study how populations move through
a fitness landscape over the course of evolution. Meta-data
provide context for other data; for example, meta-data might
identify the system or the parameters used to generate a data
set (e.g., a phylogeny). A standard for meta-data would fa-
cilitate improved data annotation and documentation, allow-
ing researchers to more easily replicate experiments from
other research groups.
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Abstract

The so-called “Baldwin Effect” has been studied for years
in the fields of Artificial Life, Cognitive Science, and Evo-
lutionary Theory across disciplines. This idea is often con-
flated with genetic assimilation, and has raised controversy
in trans-disciplinary scientific discourse due to the many in-
terpretations it has. This paper revisits the “Baldwin Effect”
in Baldwin’s original spirit from a joint historical, theoretical
and experimental approach. Social Heredity – the inheritance
of cultural knowledge via non-genetic means in Baldwin’s
term – is also taken into account. I shall argue that the Bald-
win Effect can occur via social heredity without necessity for
genetic assimilation, instead the Baldwin Effect can promote
more plasticity to facilitate future intelligence when the fi-
delity of social heredity is high. Computational experiments
are then carried out to support the hypothesis of interest. The
role of mind and intelligence in evolution and its implications
in an extended synthesis of evolution are briefly discussed.

Introduction
Studying the relationship between evolution and learning is
a very important topic in understanding adaptive behaviour
demonstrated by both natural and artificial agents. There ex-
ists an intriguing idea called the Baldwin Effect by Simp-
son (1953), named after James Mark Baldwin, as an inter-
pretation of Organic Selection proposed by Baldwin (1896).
Since Simpson, this idea has often been interpreted as how
an adaptive behaviour first acquired during lifetime can later
be replaced by fixed innate traits due to the cost of individual
learning. This interpretation has often conflated the Baldwin
Effect with genetic assimilation by Waddington (1953). The
Baldwin Effect studied in ALife and complex adaptive sys-
tems often used the interpretation of Simpson (Hinton and
Nowlan (1987), Harvey (1996), Mayley (1997)).

This interpretation, intentionally or unintentionally, has
made the Baldwin Effect more restrictive than what Baldwin
originally proposed through organic selection. Most studies
in this line of thought, including those in ALife, often ne-
glected the presence and importance of social heredity –
what Baldwin (1896) originally meant by a parallel heredity
of social knowledge via non-genetic means. Baldwin’s ideas
of social heredity and its influence on evolution bear some

sort of similarity to what we now call gene-culture coevolu-
tion or dual-inheritance theory (Peter J. Richerson (2005)).

When social heredity comes in, the story would be more
interesting as to how the Baldwin Effect occurs. Some of the
interesting questions could be asked as: if social heredity is
permitted, then if adaptive information can be gained and
transmitted easily through social transmission, what would
genetic assimilation look like? More curiously, is genetic
assimilation necessary to claim the presence of the Baldwin
Effect as studied previously? Plausibly, it seems to us that
if adaptive behavioural information is encoded into culture,
and this information can be handed down easily from gener-
ation to generation by some form of social learning, ontoge-
netic learning still plays a role in directing evolution but the
assimilation step seems not to be required. After ’the new
factor’ in Baldwin (1896), Baldwin stressed the importance
of social heredity more in his later books (Baldwin (1902),
Baldwin (1909)) that I think it is worth a further investiga-
tion to understand what he really meant by his effect.

The main aim of this paper is to re-discuss the Baldwin
Effect in Baldwin’s original spirit to clarify what the effect
would possibly be. My contribution in this paper can be di-
vided into two parts. First, I present and discuss the history
of understanding to show why and how Baldwin’s original
idea, and ideas, may differ from the rich literature study-
ing the Baldwin Effect. I will prove that Baldwin did not
restrict his new factor in evolution to the idea of genetic as-
similation, instead he believed that social heredity can pro-
vide another way to affect evolution, which may promote
plasticity to boost the intelligence of an evolving system.
Second, a simple computer simulation, combining evolu-
tion, learning, and cultural inheritance, is carried out in order
to see how this combination affects the underlying evolu-
tionary process, and whether this would-be effect requires a
strict requirement of genetic assimilation. The last section
briefly presents some future implications of the Baldwin Ef-
fect in various avenues, including the present-day interest
in extending and expanding Darwinian account of evolution
into a new synthesis (Laland et al. (2015)).
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The Baldwin Effect
For clarity, I shall use the term Baldwin-Baldwin Effect to
refer to the Baldwin’s original effect, and Baldwin-Simpson
Effect as a reference to Simpson’s re-interpretation.

I. A Brief History of Understanding
A. The Baldwin-Baldwin Effect:
At the turn of the 20th century, the idea that learning as part
of the ontogenetic adaptation can influence, and somehow
direct an evolutionary process without resorting to Lamarck-
ian inheritance, was proposed independently by at least three
independent thinkers: Baldwin (1896) (published in The
American Naturalist), Osborn (1896), and Morgan (1896)
(both published in Science Magazine). Baldwin (1896) re-
discussed and joined his two previous ideas, published in
Mental Development in the Child and the Race (Baldwin
(1895)), on Organic Selection (chap. vii) and Social Hered-
ity (chap. xii), and called this “A new factor in evolution”.

When first appeared, the idea by Baldwin (also Morgan
and Osborn) set a new movement in understanding how evo-
lution works, more specifically when it comes to explain-
ing the inheritance of acquired characteristics. Before Bald-
win and the like, the French Naturalist Lamarck proposed
that characters acquired during the lifetime of the parent
are directly passed down onto the offspring. The English
Philosopher Herbert Spencer seemed to agree with Larmar-
ckian inheritance when he said “intelligence would allow an
animal to acquire complex habits that would later solidify
into instincts. But such transformation required Lamarck-
ian inheritance” (Richards (1989)). Darwin himself believed
that Lamarckian evolution might play a small role in life,
but most Darwinians rejected Lamarckism (Huxley (1942))
based on Weismann et al. (1893).

Baldwin came to light and explained evolution without
resorting to Lamarckian style, in which acquired characters
are somehow indirectly inherited. A new factor in evolution
by Baldwin is organic selection, which includes any form of
individual adaptation during the lifetime (through Physico-
genetic, Neuro-genetic Psycho-genetic) that directs the evo-
lutionary pathway of an evolving species. He stressed the
role of psycho-genetic, by which he meant conscious intelli-
gence, that includes any form of ontogenetic learning, such
as imitation, pleasure and pain, reasoning. For Baldwin, it is
organic selection that can explain how a behaviour that has
learned might be becoming innate, or partially innate, in fu-
ture generations. If a group of animals migrates into a new
environment for which they initially lack congenital adap-
tations, those plastic enough to accommodate themselves
through conscious learning will tend to survive, blocking
the strong hand of natural selection. This will allow nat-
ural selection opportunity to accumulate chance variations
that follow the path laid down by the acquired behaviours.
Acquired characteristics are immediately heritable implied
a loss of phenotypic flexibility. Such inheritance would tend

so to bind up the childs nervous substance in fixed form that
he [or she] would have less or possibly no plastic substance
left to learn with.

Interestingly, Baldwin did insist the importance of what
he termed Social Heredity – a means of extra-organic trans-
mission from generation to generation through copying, im-
itation, teaching, or any form of social learning. Baldwin
(1896) considered it heredity because of the following rea-
sons: 1) it is a handing down of physical functions; while it
is not biological (physical) heredity; 2) it directly influences
physical heredity in the way mentioned, i.e., it keeps alive
variations, thus sets the direction of ontogenetic adaptation,
thereby influencing the direction of the available congenital
variations of the next generation. Of course, social heredity
is a form of organic selection or ontogenetic adaptation, but
it deserves a special name because of its special way of oper-
ation and its farther value. It keeps alive a series of functions
which either are not yet, or never do become, congenital
at all.

Fixity or Plasticity
Baldwin (1896) said: “The two ways of securing develop-
ment in determinate directions – the purely extra-organic
way of Social Heredity, and the way by which Organic Se-
lection in general (both by social and by other ontogenetic
adaptations) secures the fixing of phylogenetic variations, as
described above – seem to run parallel”. And more impor-
tantly he concluded that in more complex living animals like
humans, “social transmission is an important factor, and the
congenital equipment of instincts is actually broken up in or-
der to allow the plasticity which the human being’s social
learning requires him to have”.

Later in Development and Evolution Baldwin (1902) said
“organic selection opens a great sphere for the application
of the principle of natural selection among organisms, i.e.
selection on the basis of what they do rather than what they
are; of the new use they make of their functions rather than
of the mere possession of certain congenital characteristics.
A premium is set on plasticity and adaptability of function
rather than on congenital fixity of structure; and this adapt-
ability reaches its highest levels in the intelligence” (p. 117).

By looking further into his work, it can found in Darwin
and The Humanities in which Baldwin (1909) presented that
“in cases where the intelligent or other adjustive factor is on
the whole of greater utility, variations towards the disinte-
gration of the instinctive congenital part, would be selected.
The growth of intelligent action superseding instinctive” (p.
21), and that “once admit that the intelligence, even in its
simplest forms, as seen in imitation, play and the result-
ing accommodative actions, can be applied to the learning
of anything, and that variations in plasticity are selected to
allow of its development this once admitted, we have the
possibility of a continuous handing down from generation
to generation, a Social Heredity, which is no longer subject
to the limitations set upon physical heredity” (p. 28).
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Here it seems to us that for Baldwin, with social heredity,
there is no need of fixing phylogenetic variation for pre-
viously acquired behaviour if organisms can easily acquire
those behaviour through imitation, teaching, or just copying.

B. The Baldwin-Simpson Effect:
There have been quite a few reasons why the Baldwin’s idea
was not common in the literature of both psychology and bi-
ology. I do not want to go too far here, yet one of those was
the Baltimore scandal in which the head of psychology de-
partment of Johns Hopkins University (Baldwin) was caught
by the police, which then made him mostly disappear from
any scientific community (Horley (2001)).

Baldwin’s original idea of organic selection seemed to
come back to scientific discourse through Simpson (1953),
appeared in Evolution 1953, in which the idea was first
called the Baldwin Effect. Interestingly, Simpson’s interpre-
tation of the Baldwin Effect seemed to be stimulated by the
idea of genetic assimilation by Waddington (1953) in the
same issue. We shall call this the Baldwin-Simpson Effect
since it has some differences from the original version.

Through Simpson’s interpretation, the Baldwin Effect (or
the BS Effect) occurs in two phases: Phase 1, individuals
that through lifetime learning acquire an adaptive behaviour
needed for the survival in its current environment occupy
the population; and Phase 2, then the evolutionary path finds
the innate trait that can replace the learned trait because of
the cost of individual learning. Phase 2 was conflated with
the idea of genetic assimilation of acquired characters by
Waddington (1953) in his experiments to study epigenet-
ics with drosophila. Interestingly and ironically, Simpson
(1953) gave birth to the catchy name of the effect just for
the intention of deflating the interest in the Baldwin Effect.
Simpson was skeptical of the Baldwin effect as he posited
that if learned behaviors do become genetically underwrit-
ten, a population will favour long-term fixed adaptation at
the cost of short term and more plastic [learned behaviors],
thus corrupting the point of the Baldwin effect. By the
early sixties, a deeper skepticism came from a famous figure
in evolutionary theory, Mayr (1963), which was then fol-
lowed by Dobzhansky (1970). These authors all disagreed
with Phase 2 of the Baldwin Effect (or BS effect) as evolu-
tion should favour plastic phenotype, rather than collapsing
norms of reaction for fixity.

C. The Baldwin-Simpson Effect in Computation
The Baldwin Effect gradually gained more attention since
the classic and elegant computational model by Hinton and
Nowlan (1987) (henceforth H&N). H&N used the same
metaphor as Simpson and attempted to demonstrate that the
Baldwin Effect (or the BS effect) can occur. Figure 1 de-
scribes the detail of a replication of H&N’s model which
results in the same conclusion. The result from Hinton and
Nowlan (1987) did stimulate the doyen of British biologists

Figure 1: Replication of H&N’s experiment. The task is to find the all-ones target
string 111...1 (20 bits). There is only one correct solution, the target string, which
has the fitness of 20. All other configurations are wrong and have the same fitness
of 1. This forms a Needle-in-a-haystack landscape whereby an evolutionary search
alone cannot find the solution. H&N used a different encoding. A genotype now is
intialised with 3 alleles: 25% 0, 25% 1, and 50% ?. The plastic allele ? allows for
lifetime learning(or plasticity), over 300 rounds (since the H&N’s original 1000 was
often criticised as too big by many). On each round, an individual agent is allowed to
perform individual learning by changing its allele ? to either 0 or 1 as the expressed
value. After learning, the fitness of an individual is calculated as: 1 + 19(300-n)/300 (n
is the learning trials performed to find the solution). The population consists of 1000
individuals, crossover is only the genetic operator employed, and selection is based on
fitness-proportionate as in Hinton and Nowlan (1987). We run the simulation through
100 generations, and over 30 independent runs. The frequency of the allele is plotted
against the average fitness normalised in [0, 1]. There is small difference in detail
perhaps due to different programming environments, yet the overall trend is the same
with the original model. The Baldwin-like Effect is claimed as the frequency of 0
disappears, the frequency of correct allele 1 is increased (also the average fitness), and
the frequency of plastic allele decreases as an instance of genetic assimilation due to
the cost of individual learning.

Maynard Smith (1987) to feature “when learning guides
evolution” in Nature Magazine. Dennett (1991) adopted the
same idea to explain consciousness.

The model developed by Hinton and Nowlan, though sim-
ple, is interesting, as it opens up the trend followed by a
number of studies investigating the Baldwin Effect, or how
learning affects evolution, in the computer, including May-
ley (1996), Harvey (1996), Mayley (1997), Suzuki and Arita
(2007)). These studies interpret the Baldwin Effect in two
phases, and stress the importance of the assimilation phase.
Mayley (1997) and Mayley (1996) studied quite thoroughly
how the cost-benefit trade-off of individual learning that
could trigger genetic assimilation. Interestingly, the H&N’s
model has been criticised that it could not reach the state
when the whole adaptive behaviour (all-ones) is assimilated,
leaving no plasticity (Harvey (1996), Santos et al. (2015)).
The so-called effect has also been employed in artificial in-
telligence, yet the goal is to to borrow phenomena of evolu-
tion and learning (even social learning) to create more intel-
ligent agents to solve a problem of interest, rather than un-
derstanding the Baldwin Effect (Le (2019), Le et al. (2019)).
All of these studies, for or against the effect, rely on the re-
interpretation of Simpson, or the BS Effect.

D. The Recovery in Modern-day Interest
More than a century later, the ideas set out by Baldwin have
also been recovered in other fields such as Evo-Devo (West-
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Eberhard (2003)), Cognitive Science (Dennett (1991)). Es-
pecially, in an edited book by Weber and Depew (2003),
present-day discussions about the Baldwin effect from dif-
ferent points of view, including epigenetics, language evolu-
tion, niche construction theory (Odling-Smee et al. (2003))
are presented. The Baldwin’s 1986 paper was also cited in
the recent movement in Evolutionary Biology, called the Ex-
tended Evolutionary Synthesis (EES) (Laland et al. (2015),
Pigliucci (2007)), which tries to incorporate many factors,
including epigenetics and developmental processes (West-
Eberhard (2003)), in evolution that have been neglected for
years in the mainstream evolutionary biology. I shall not be
going too far at this moment yet it can be seen that the Bald-
win Effect, which emphasises the active role of intelligence
or phenotypic plasticity in evolution, can fit into, and even
somehow boost the active status of the EES framework.

However, many of them are still not so clear whether
the Baldwin effect requires the need for acquired characters
to be assimilated. West-Eberhard (2003) says that “Bald-
win conceived of it (organic selection) as a mechanism that
could, in principle, lead to the reduction of plasticity as
the trait in question comes under increasingly powerful ge-
netic influence. Yet this stands at odds with the remarkable
flexibility exhibited by observed organisms”. The whole
book dedicated for the reconsideration of the Baldwin ef-
fect by Weber and Depew (2003) also presents the contro-
versy within the selected authors in that edition on the issue
of genetic assimilation, which has led to an even stronger
skepticism of what the Baldwin Effect really is, as reviewed
by Sterelny (2004) and Shettleworth (2004). Shettleworth
even concluded her review by referring to Depew, saying
that there is really no such thing as the Baldwin Effect.

Paradoxically, what is missing from the majority of the
available bibliography is the original viewpoint from which
Baldwin actually formed his theory of organic selection and
social heredity. Most of the contemporary discussions on
the Baldwin effect seem to rely on the Simpson’s interpreta-
tion. As we have argued so far, Baldwin’s original factor in
evolution can argue that organic selection can drive greater
plasticity, escaping from genetic assimilation.

E. Concluding Remarks
Now we can feel at ease to conclude that originally Baldwin
stressed on the importance of intelligence, which includes
ontogenetic learning as a form of phenotypic plasticity, in
directing evolution. He was right to say that the future evo-
lution will follow the path laid by what adaptive behaviour
has been acquired before. Indeed, social heredity should not
be neglected when studying the “effect” on evolution.

We can offer another important point here. It was the re-
interpretation of Simpson that conflated the Baldwin Effect
with the idea of genetic assimilation that has raised a strong
skepticism of the effect. This interpretation has had a rel-
atively strong influence on the study of the Baldwin Effect

in many disciplines, including ALife. This, indeed, restricts
the original idea of the Baldwin-Baldwin Effect. Moreover,
it is the lack of social heredity in the Baldwin-Simpson Ef-
fect that made the skepticism even stronger. What has been
shown informs us that there exists a scenario, with the pres-
ence of social heredity, in which the Baldwin Effect occurs
differently from the genetic assimilation process as often be-
lieved previously, promoting more plasticity to facilitate fu-
ture intelligent acquisitions by learning.

In the next section I briefly present what Baldwin thought
of social heredity and its relationship to the contemporary
research on social learning and cultural evolution. I then de-
scribe the experiment to study the Baldwin-Baldwin Effect
through the prism of social heredity.

II. The Baldwin Effect through Social Heredity

A. Social Heredity
Baldwin proposed social heredity as an important inheri-
tance mechanism in which cultural knowledge and values
can be transmitted both within and between generations.
Baldwin (1909) said that “when we come to ask for a full
account of the propagation of mental acquisitions from gen-
eration to generation, we find it necessary to recognise an-
other form of handing down or real transmission” (p. 28).
In Mental Development, Baldwin described social hered-
ity as largely independent of physical heredity. However,
Baldwin (1896), Baldwin (1902), and Baldwin (1909) later
acknowledged that the two modes of inheritance can inter-
act and have influence on each other. Baldwin (1902) wrote
that “social heredity keeps certain variations alive, thus sets
the direction of ontogenetic accommodation thereby influ-
ences the direction of the available congenital variations of
the next generation, and so determines phylogenetic evolu-
tion” (p. 103).

Interestingly, what Baldwin once proposed more than 100
years ago bears a flavour similar to the so-called gene-
culture coevolution, or dual-inheritance theory, currently
promoted by cultural evolution researchers, such as Peter
J. Richerson (2005), Lumsden and Wilson (2005). Gene
and culture are said to co-evolve to further adaptivity of
social or cultural species. Learning, both asocial (individ-
ual) and social, are media to trigger the establishment and
transmission of cultural adaptations. More interestingly, the
cost-benefit relationship between social learning (SL) and
individual learning (IL) can produce variable evolutionary
dynamics (Laland (2018), Peter J. Richerson (2005)). A
combination of both trial-and-error and imitation learning is
often said to produce more adaptivity, especially in human
cultural evolution (Peter J. Richerson (2005)). Importantly,
culture has been said to emerge only when the fidelity of
cultural transmission is high (Laland (2018)). We shall in-
corporate fidelity of cultural transmission in our experiments
in the next section.
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B. Experiments and Results
In this section I present a simple computer simulation as an
extension of H&N’s replication, combining evolution, indi-
vidual learning, and cultural inheritance. Cultural inheri-
tance here is understood as the transmission of behaviour
from parents to their offspring, vertically via social, or im-
itation, learning. Some limitation on this computational
model should be noted. First, as previously shown in Harvey
(1996), Mayley (1996), the H&N’s landscape is extreme. In-
dividual learning is quite random. Importantly, it was mostly
criticised as it cannot lead to the absolute assimilation of the
correct behaviour (all-ones), thus it is not the Baldwin Ef-
fect (Santos et al. (2015)). However, as I have shown in the
theory part, the Baldwin’s original effect does not necessar-
ily mean the assimilation of acquired characters is required.
Indeed, we shall being seeing the reverse.

For that reason, we can feel at ease to replicate the ele-
gant H&N’s model. For now, it is the transparent simplicity
of H&Ns original work which is critical to its impact; such
simplicity is our preference while adding new mechanisms
to study the effect of interest by two experimental setups.

B1. Setup I: Evolution with Social Learning alone I
propose the social learning procedure via imitation as de-
scribed in Algorithm 1 below. The imitative process works
as follows: For each question mark position, the observer
will decide whether to copy exactly the trait or a mutated
version of that trait from the demonstrator based on the
parameter fidelity which represents the fidelity of the so-
cial transmission. By default, the fidelity is set to 1, that
means imitative process will copy exactly the values from
the demonstrator to the observer.

Algorithm 1 IMITATION

1: function IMITATION(observer, demon, fidelity = 1)
2: questions = [] comment: question mark array

3: for position i ∈ observer.pheno do
4: if i =? then
5: questions.add(i)
6: observer.learning attempt += 1
7: end if
8: end for
9: for i ∈ questions do
10: if rand() < fidelity then
11: observer.pheno(i) = demon.pheno(i)
12: else
13: observer.pheno(i) = 1− demon.pheno(i)
14: end if
15: end for
16: end function

Algorithm 2 presents the process in which evolution is
combined with only social learning in place of asocial learn-
ing as in H&N’s model (denoted by EVO+SL). The demon-
strator is set to be the better parent of an individual. This rep-
resents a vertical cultural inheritance process, as described
above. After social learning, the population operates an evo-
lutionary process as in H&N’s model described in Figure 1.

Algorithm 2 EVO + SL

1: function EVO+SL(pop, fidelity = 1) comment: Do life-time learning

2: for ind ∈ pop do
3: demon = ind.max parent() comment: extract the better parent

4: Imitation(ind, demon, fidelity) comment: do imitation

5: end for
comment: Evolve the population

6: Do selection, reproduction, replacement
7: end function

Figure 2: EVO+SL alone. Fitness is normalised in [0,1]

Look at the result in figure 2, without individual learn-
ing, social learning fails to guide evolution in the H&N’s
landscape. The Baldwin effect does not show up in this
case. Figure 2 shows that frequency of all three alleles keeps
relatively constant. No individual can find the solution, as
shown in the lowest average fitness.

It is not hard to explain this. SL is information-parasitism
– can only learn from information, or solution, produced by
others. The H&N’s landscape is quite special in this case.
Without individual learning, there is no gradient for evolu-
tion to seek for the solution. In other words, without the
presence of individual learning, no solution will be found in
the evolving population. All evolving individuals are wrong.
Social learners that copy from their wrong parents become
wrong. Simply speaking, social learning cannot learn any-
thing that has not been learned.

There is no influence of organic selection on evolution in
this case, hence no Baldwin-Baldwin Effect.

B2. Setup 2.2: Evolution + IL + SL
Based on the analysis above, we design Algorithm 3 com-
bining evolution with both social and asocial learning, or
evolution with a learning strategy. A strategy is set as at
each generation, an agent performs social learning based
on Algorithm 1 only when its demonstrator is correct, oth-
erwise the agent seeks for the solution individually. The
demonstrator of an agent is again the better individual
amongst its parents. The demonstrator is said to be correct
when its fitness value is greater than 1. This is because 1
is the lowest fitness in our landscape, and an agent has its
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Figure 3: EVO+IL+SL vs EVO+IL. sl = EVO+IL+SL, il=EVO+IL.

fitness greater than 1 only when it successfully found the so-
lution. After this lifetime learning process, the population
goes through selection and reproduction.

Algorithm 3 EVO+IL+SL

1: function EVO+SL(pop, fidelity = 1) comment: Do life-time learning

2: for ind ∈ pop do
3: demon = ind.max parent() comment: extract the better parent

4: if demon.fitness > 1 then
5: Imitation(ind, demon, fidelity)
6: else
7: ind.individual learning()
8: end if
9: end for

comment: Evolve the population
10: Do selection, reproduction, replacement
11: end function

In Figure 3, we plot our EVO+IL+SL against the H&N’s
setup (EVO+IL) to see the difference between the two “ef-
fects”. It is shown that social learning in combination with
asocial learning can also direct the underlying evolution-
ary process. More specifically, we see that the frequency
of wrong allele (0s) drops to zero quicker in EVO+IL+SL
(at around generation 20). Contrary to the effect found
in EVO+IL, EVO+IL+SL maintains a higher proportion of
plasticity than the correct allele (1s). After generation 20,
all the alleles in EVO+IL+SL relatively keep constant. This
means there is no pressure to replace the plasticity with the
fixation of 1s. Also, the average fitness of EVO+IL+SL
reaches the higher point and sooner than that of EVO+IL.

How the Baldwin Effect can be interpreted here? We ob-
serve that the behaviour of EVO+IL+SL can be divided into
two phases: In the first phase, which includes 20 first gener-
ations, through individual learning some agent can find the
solution. That successful agent should have no 0s in its ge-
netic composition at first, and will be favoured by selection,
leaving more offspring, promoting its allele configuration
(with 1s and ?s) in later generations. Moreover, the off-
spring of successful agents (without 0s) tends to have its

genotype consisting of no 0s. Since its parent now is suc-
cessful, via social heredity that offspring can copy the suc-
cessful behaviour from its parent, and becomes successful
too. Its genetic makeup will also be promoted, without 0s.
Thus the proportion of 0 will quickly diminish.

In the second phase, we observe that there is relatively
no change in frequency of 1s and ?s, and the average fitness
reaches its highest point. The explanation for the observa-
tion here is that once the frequency of 0s is zero, every in-
dividual in the population will have only 1s and ?s in its
genotype. Each individual agent now has a chance to be
successful via individual or social learning. We call it po-
tential agent from now. Moreover, once the correct solution
is found (in previous generations), the cultural inheritance
as a vertical transmission will transmit the correct behaviour
down to generations very quickly since the potential learner
can copy exactly the solution yet with little learning attempt
(the nature of our imitation algorithm). The fitness function
as depicted in Figure 1 says that a lower learning cost results
in a higher fitness for the learner. Therefore, the average fit-
ness of the population in our Evo+IL+SL is higher than that
in EVO+IL. That also indicates that having more plastic al-
leles, specifying the ability to learn socially, is more adaptive
in the future, hence the dominance of ‘?s’.

Information Fidelity
One notable factor in the explanation above is the ability
to transmit exactly the solution down to later generations.
I argue that the default fidelity = 1 makes it much eas-
ier for the child to copy the correct solution with the much
less cost. This indicates that the information fidelity could
have an influential role on the effect of social heredity on
evolution. This argument should be validated by running
EVO+IL+SL with different levels of fidelity. For example,
here we choose 0.8 and 0.5. One interesting thing is that
when fidelity = 0.5 the imitation process as shown in Al-
gorithm 1 performs pretty much the same as a random guess-
ing. This is because a plasticity ‘?’ now, on average, has 50
percent of being correct as ‘1’, or incorrect as ‘0’. Thus, it
is highly expected that the behavior of social learning when
fidelity = 0.5 is quite similar to that of individual learning
alone as in H&N’s simulation.

In Figure 4 and 5, it can be observed that the higher the
fidelity, the higher the plastic allele, the less the amount of
‘1’, the higher the average fitness, and vice versa.

Particularly, when fidelity = 0.5, there is little differ-
ence in performance between EVO+IL+SL and EVO+IL in
all criteria. The results obtained here are as expected and
also consistent with what we have argued so far.

An explanation for this can be through the cost-benefit of
social learning. When the fidelity is high, a potential agent
by imitation tends to spend less learning effort than it does
by trial-and-error. This leads to the fact that an agent having
more plastic alleles has a higher average fitness. The selec-
tion process will favor that kind of plastic allele over others.
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Figure 4: EVO+IL+SL vs EVO+IL. Fidelity = 0.8.

Figure 5: EVO+IL+SL vs EVO+IL. Fidelity = 0.5.

When the fidelity decreases, an observer has more chances
of not copying correct values from the demonstrator. This
means some plasticity ‘?’ results in higher chance of being
incorrect (having the value of 0). Now having more plas-
ticity ‘?’ means having more possibility of being incorrect.
This also means that each plastic value in this case requires
more learning effort to find the correct value of 1. Thus, hav-
ing fewer number of ‘?’ reduces the learning cost. Again,
the selection process will favor a correct individual with less
learning cost, the allele ‘?’ will be less favored when the
fidelity is lower.

From all of the observation and analyses above, we can
conclude that information fidelity plays an important role in
how social heredity directs evolution.

Conclusion and Further Discussion
In this paper, I have reconsidered the Baldwin Effect in both
theoretical and empirical (computational) points of view. By
briefly discussing the literature of interest, I have shown that
Baldwin did not restrict the effect to genetic assimilation –
which has mostly been used to understand the Baldwin Ef-

fect for many years in trans-disciplinary discourse, includ-
ing in computational studies. What is implied here is that
the Baldwin Effect should not be conflated with the idea of
genetic assimilation, instead genetic assimilation may just
be one of the ways through which the Baldwin Effect may
occur. Social heredity has also been shown to play an im-
portant role in directing evolution.

Experimental results support what has been theorised.
Through a specific landscape and parameter settings, it has
been empirically shown that without individual learning, so-
cial heredity shows no “effect” at all. This shows that the
adaptive behaviour should exist first, before social heredity
takes place. When coupled with individual learning, social
heredity via social learning can direct evolution in different
ways depending on the fidelity of the cultural transmission.
When the fidelity is high, plasticity is promoted more than
the assimilation of acquired characters; yet when fidelity
goes down, more assimilation emerges.

Here and now I would like to pose a question that why
we should be, and keep being, interested in the Baldwin Ef-
fect. It seems that this question should have been mentioned
earlier. Yet I think that only after we have presented and
explained the effect in Baldwin’s original spirit and how it
differs from what has often been understood, it is less un-
certainty to talk about what the original Baldwin Effect, or
the Baldwin Effect, would imply. One plausible reason, to
me, is that the effect, if happens, helps explain why and how
evolution can be directed by intelligent faculties which are
also the products of evolution. This stresses the role and
importance of intelligence, mind, behaviour, or any form
of ontogenetic development in evolution. This also means
there are circumstances in which the phenotype is not just
the passive product of the gene and environment, but plays
an active role in directing the evolutionary pathway of the
species. The Baldwin Effect, I think, implies a reciprocal
causation in evolution that phylogeny and ontogeny should
be considered both causes and consequences. This line of
thought can change the way we understand and explain evo-
lution in biological, cultural, and even artificial worlds.

In the modern-day discussion of evolution there has
been a call for an extension and expansion of Darwinian
account of evolution via the modern synthesis (Pigliucci
(2007)). Proponents of the extended evolutionary synthesis
also stress the constructive role of the organism, or what we
call niche construction (Odling-Smee et al. (2003)), and its
reciprocal causation in evolution. This research programme
has raised serious questions about the reductionist approach
dominant in the modern synthesis, saying that not everything
can be reduced to the gene (Laland et al. (2015)). Interest-
ingly, what I have argued so far tells us that Baldwin’s legacy
seemed to prepare a new movement for Darwinian evolution
more than 100 years ago, yet was largely neglected in evolu-
tionary discourse for a couple of reasons in the 20th century.

For another reason, I believe the Baldwin Effect could
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contribute to the explanatory repertoire of the evolution of
intelligent faculties in animals, including the human mind.
Baldwin (1909) once tried to link the explanatory repertoire
between disciplines, from evolutionary biology to psychol-
ogy to the humanities, through his ideas of organic selection
and social heredity. If the Baldwin Effect occurs through
human cultural niche construction processes, this can help
explain how the human brain evolved to be better at learning
in the changing cultural world. The role of organic selection
and social heredity in evolution is also believed to have a fur-
ther value in explaining the evolution of gregarious habits
and cooperative behaviour in social animals. Future work
will delve deeper into these avenues of research.
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Abstract 

This paper describes Vase Forms: a series of art works created 
using morphogenetic processes. A key motivation for these 
works was exploration of ways of working creatively with 
complex generative processes, such as morphogenetic systems, 
where the desire is to be able to influence the process in 
creative directions whilst achieving desired properties, such as 
fabricability using 3D printing, in a manner that retains rich 
emergence. The paper describes methods used in the creation of 
these works, including directly affecting morphogenetic 
processes using constraints and differential growth rates, 
combined with evolutionary search and machine learning 
algorithms to explore the space of possibilities afforded by the 
system. As well as describing the creation of Vase Forms, 
which have been successfully used to create sculptures, the 
paper looks at the closely related Mutant Vase Forms: an 
additional series of artworks created by accident when the 
system exploited bugs in the rules for the growth system 
resulting in unexpected but aesthetically interesting structures. 
These Mutant Vase Forms are not fabricable as physical 
sculptures with the originally intended methods, but now exist 
as virtual sculptures in stereoscopic installations. 

Introduction 

Morphogenesis and Generative Systems 

Morphogenesis is a theme that has been explored by a number 
of artists. In 1951 Richard Hamilton curated an exhibition at 
the Institute of Contemporary Art (Massey, 1996) of work by 
a number of artists inspired by D’Arcy Thompson’s ‘On 
Growth and Form’ (Thompson, 1917). In more recent years, 
growth has been a subject explored by computational artists 
including Yoichiro Kawaguchi’s ‘GROWTH Model’ 
(Kawaguchi, 1983), William Latham’s evolved forms (Todd 
and Latham, 1992) and Daniel Brown’s series of digitally 
generated flowers (Brown, 2018). Interest by artists in 
morphogenesis, and D’Arcy Thompson specifically, has been 
sufficient for the University of Dundee to receive support 
from Art Fund to create a collection of artwork dedicated to 
this subject (University of Dundee, 2011). 

One question raised by generative systems, such as those 
that use simulation of morphogenesis, is that of how are we to 
work creatively with them? In particular, how should we work 
with systems deliberately designed to encourage emergence: 
complex systems where results are intrinsically difficult to 
predict? There is a strong analogy with plant breeding, where 
we are working with a medium that is naturally rich. Through 

Figure 1: Examples of five Vase Forms 
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experimentation and experience we can develop insights into 
what is possible and how to influence plants to develop in 
ways that give desired properties. We need to discover the 
potentialities of the system we are working with, as well as 
the limits of its capabilities. Which features can be 
independently influenced, and which are co-dependent? 
Whether art, design or architecture, working in this manner 
involves changing our relationship with the computer. 
Traditional top-down design methods are no longer 
appropriate. We need to be open to a process of exploration. 
Participating in a search for rich interesting behavior: 
selecting and influencing rather than dictating results. 

Generative systems are typically based on algorithmic 
processes that are parametrically controlled. Given a set of 
parameter values the process is run to create an output. 
Classic examples include Conway’s Game of Life (Conway, 
1970) and reaction diffusion equations (Turing, 1952). 
Generative systems have been used by a number of artists, 
from pioneering early work by Algorists such as Manfred 
Mohr (Mohr and Rosen, 2014), Frieder Nake (Nake, 2005), 
Ernest Edmonds (Franco, 2017) and Paul Brown (DAM, 
2009a), to more recent work by artists such as William 
Latham (Todd and Latham, 1992), Yoichiro Kawaguchi 
(DAM, 2009b), Casey Reas (Reas, 2018), and Ryoji Ikeda 
(Ikeda, 2018). 

The most interesting systems are generally those that create 
emergent results: genuinely unexpectedly rich behavior that 
cannot be simply predicted from the constituent parts. For 
these systems the relationship between the input parameters 
and the output is often complex and non-linear, with effects 
such as sensitive dependence on initial conditions. This can 
make working with such systems particularly challenging. 

Creative Exploration of Parameter Space 

One problem is that of how to work with systems with large 
numbers of parameters. With a small number, such as two or 
three parameters, the space of results can be relatively easily 
explored by simply varying individual parameter values and 
plotting the effects of different combinations. One common 
technique is to create charts where all the parameters are 
sampled independently at regularly spaced values and results 
are plotted to show the results. What scientists would call a 
phase space plot. This method of parameter exploration can 
be effective and was used by the author for earlier work such 
as for his ‘Aggregation’ (Lomas, 2005) and ‘Flow’ (Lomas, 
2007) series (Figure 2). 

As the number of parameters increase, the number of 
samples needed to explore different sets of combinations 
using this type of method increases rapidly. This problem is 
commonly called the ‘Curse of Dimensionality’ (Bellman, 
1961) (Donoho, 2000), where the number of samples that 
need to be taken increases exponentially with the number of 
parameters. One approach is to simply limit the number of 
parameters, but this can be at the expense of overly restricting 
the range of behavior the system is capable of. If we are 
working with richly emergent systems these problems are 
often further compounded: a direct consequence of 
complexity is that parameters that drive the system often work 
in difficult to comprehend, unintuitive ways. Effects are 
typically non-linear, often with sudden tipping points as the 

system goes from one type of behavior to another. In 
particular, in many systems the most interesting emergent 
behavior occurs close to the boundary between regularity and 
chaos (Kauffman, 1996). 
  This raises the idea of working with computers not merely 
as a medium to generate artwork but as active collaborators in 
the process of exploration and discovery. The use of tools to 
help the process of exploration can materially change both the 
creative process and the complexity of systems that we can 
effectively work with. 

One analogy is that of Advanced Chess: a form of the game 
where each human player can actively use a computer to assist 
them to explore possible moves during games (Kasparov, 
2017). Computer chess programs are generally very good at 
quickly detecting whether a proposed move will have 
catastrophic results. The effect of allowing a human player to 
test potential moves with a computer assistant is to make the 
game blunder-free. By removing the stress of making easily 
punished mistakes the human in the collaboration is freed to 
approach the game in a much more actively experimental way. 

Another potentially rich analogy is with fly-by-wire 
systems in aircraft (Sutherland, 1968), that allow designs of 
aircraft to be created which are inherently unstable but can 
perform complex maneuvers beyond the performance 
envelope of conventional aircraft (Stein, 2003). These include 
designs that would be difficult, or even impossible, for a 
human pilot to directly control. Through the use of digital fly-
by-wire technology, where the pilot uses their controls to 
indicate their intent but all the data is passed through a 
computer before being fed to actuators on the control 
surfaces, such aircraft can be flown safely. 

A number of authors have proposed using evolutionary 
methods to allow artists and designers to explore systems with 
large numbers of parameters. Examples include Dawkins’ 
Biomorphs (Dawkins, 1986) and Mutator (Todd and Latham, 
1992). More recent examples, that use collaborative 

Figure 2: Phase Space plot from the Aggregation Series 
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evolutionary interfaces for creation of images and forms, 
include Picbreeder (Secretan et al, 2008) and Endless Forms 
(Clune and Lipson, 2011). A number of systems that use 
interactive evolutionary computation for art and design are 
described in (Bentley, 1999) and (Takagi, 2001). 
 As demonstrated by natural processes, evolutionary 
methods can be effective even with extremely large numbers 
of parameters. One problem, though, can be that these 
methods generally lead to exploring a small number of paths 
within the space of available possibilities. The nature of these 
types of methods are to bias the search towards the most 
successful areas of the parameter space that have already been 
highly sampled. New samples are taken by mutation or cross-
breeding of the gene codes from previous samples that are 
deemed fittest according to a specified fitness function. This 
means that previously highly sampled areas are likely to be 
even more highly sampled in the future as long as they contain 
‘fit’ individuals. This is a good strategy for exploiting the best 
results that have been previously found, but is potentially a 
bad strategy for actively finding novel solutions which may be 
in areas of the landscape that have been very sparsely 
sampled. 

In recent years there have been a number of studies into 
methods to keep diversity when working with evolutionary 
techniques, such as Novelty Search with Local Competition 
(Lehman and Stanley, 2011) and MAP-Elites (Mouret and 
Clune, 2015). These methods generally require the defining of 
a domain specific feature vector that represents the behavior 
of the system to enable a meaningful measure of the distance 
between individuals in behavior space to be calculated. The 
creation of such a function to represent behavior is often not 
easy (Lehman and Stanley, 2008). 

A number of authors have proposed using machine learning 
techniques to assist human designers. In general these are for 
domain specific applications, such as for architectural space 
frame structures (Hanna, 2007), structurally valid furniture 
(Umetani et al. 2012) or aircraft designs (Oberhauser et al. 
2015). In these systems, machine learning is typically used to 
learn about specific properties of the system. This is then used 
to provide interactive feedback for the user about whether an 
object designed by them is likely to have desired properties, 
such as being structurally feasible, without having to do 
computationally prohibitive tasks such as evaluation of 
structural strength using finite element analysis. 

One thing that needs consideration is that creative work 
with generative systems often needs different phases of 
exploration, with the intent of the artist or designer changing 
over time. Initially they may be actively experimenting: trying 
to get a feel for the capabilities of the system they are working 
with. Once they have done some initial experiments they may 
want to continue to explore broadly, but with a general focus 
on regions that seem to have promise. When some particularly 
interesting results have been found they may wish to further 
refine them into presentable artefacts, or want to switch to 
actively looking for novel results that are significantly 
different to those they have found so far. These considerations 
mean that if a computer is being used to assist them explore 
the space of possibilities they may want it to work in different 
ways depending on their current intent. 

Motivation 

The author is a practicing computational artist, whose work 
explores how complex organic forms can be created through 
digital simulation of morphogenetic processes. Inspired by 
Alan Turing’s use of simple equations to create rich self-
organizing patterns (Turing, 1952), the author’s work focuses 
on creating simplified models of growth at the level of 
individual cells and exploring the emergent forms that can be 
created for these low-level rules (Lomas, 2014) (Figure 3). To 
explore the space of possibilities the author uses a hybrid 
system that combines several techniques, including 
evolutionary design search methods and lazy machine 
learning, to discover and fine-tune parameter combinations 
that appear to create particularly interesting results (Lomas, 
2016). 

The motivation behind the work described in this paper was 
how the cellular growth system used for works such as 
Cellular Forms (Lomas, 2014) could be modified to direct it 
towards the more specific goal of creating three dimensional 
structures that could be turned into physical sculptures. In 
particular, it was desired that the forms could be physically 
realized using computationally controlled additive fabrication 
techniques such as 3D printing using fused filament 
fabrication, or at larger scales using robots that deposit 
sequential layers of molten material. It was also desired that 
the sculptures created could potentially be suitable for use as 
the supports for tables, so should have flat bases and tops and 
potentially be strong enough to be load bearing. 

One of the main restrictions with fused filament fabrication 
is that every layer to be printed needs to be supported by the 
previous layers. This means that overhang areas in the 
structures have to be within maximum size and angular limits 
or additional support structures have to be printed and 
removed after fabrication. The aim in this work was to explore 

Figure 3: Examples of Cellular Forms 
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how the structural needs for physical fabrication could be 
combined with aesthetic goals when working with a 
morphogenetic system to create forms that, though completely 
synthetic, exhibit complex detailed organic structures such as 
are typically found in natural forms. 

Methods 

Cellular Growth System 

The generative system for this work was based on the model 
of growth using cellular division that the author created for 
his Cellular Forms work (Lomas, 2014). This system uses a 
simple particle spring model (Reeves, 1983), with each cell 
represented by particles with links to a number of other 
connected cells. The topology of connection between cells 
means that they form a sheet-like structure embedded in three-
dimensional space, with the sheet free to fold into complex 
geometrical shapes. Interactions between connected cells are 
implemented using spring-like rules. The key elements of the 
system are: 

• Rules for the generation of food, with rates for the 
spontaneous generation of food by all cells, and for the 
generation of food by simulated photosynthesis by firing 
light rays at cells and generating food in each cell 
proportional to the number of rays that hits it. 
• Rules for whether cells are ‘greedy’ and directly 
accumulate the food they generate themselves or are 
‘cooperative’ and share the food they generate with the 
other cells they are connected to. 
• A threshold for how much food a cell needs to 
accumulate before it is selected for dividing into two cells. 
• Rules for the direction that a cell splits in, which can be 
influenced by factors such as the curvature of the sheet of 
cells, the local direction of most tension in the surface, or 
in a randomly selected direction. 
• Forces that try to maintain a constant rest-length 
separation between linked cells. 
• Forces that tend to make the sheet of cells bulge 
outwards if that local area of the sheet is in compression 
(cells packed together closer than the rest-length). 
• A relaxation rule that tends to move cells towards the 
average of their neighbors. 

The system aims to be sufficiently simple to enable the 
simulation of morphogenesis to be implemented using 
massively parallel processing on consumer level graphics 
processing units, with simulations that can scale to tens of 
millions of cells and tens of thousands of simulation steps 
using conventional PC hardware. The code for the simulation 
engine is implemented in C++ and CUDA. For more details of 
the algorithms and implementation see (Lomas, 2014). 

Additional Constraints and Influences 

For this work the cellular division system previously 
described was augmented with a number of additional 
constraints and influences to steer the growth system to create 
structures with desired properties. 

As previously described, the aim was to create forms that 
could be fabricated as sculptures that could also potentially be 

used as supports for tables. With this in mind, a decision was 
made to create forms with the topology of a tubular structure 
with open edges at the top and bottom. The initial 
configuration of cells was a simple cylinder (Figure 4). 

To make the top and bottom of the structure stay flat, so 
that the form should stand on the ground and to potentially 
support a table top, the cells along the open edges were 
constrained to horizontal planes so that these cells were only 
allowed to move in two dimensions within those planes. The 
constraining planes were maintained at a constant separation 
distance from each other. When cells divide, a test was run to 
check whether the resulting cells were in one of the open 
edges of the sheet. If so, they were added to the sets of 
constrained cells. 

Since the horizontal constraining planes were kept at a 
constant separation distance, as the cells in the sheet grow 
there could be a tendency to over crowd the space between the 
planes if the rest-length between cells was kept constant. To 
prevent this from happening a rule was added to the system 
which adaptively reduced the rest-length between cells by a 
constant factor each time step. The value of this factor was 
one of the parameters used to drive the system. 

Finally, a number of differential growth rates were added to 
the system which affect the rate of cell division in different 
parts of the structure. An analogy can be made with 
controlling the growth of plants by the selective application of 
nutrient in certain areas and a growth retardant in others. 
Differential growth rates were implemented by modifying the 
rate at which food is generated and accumulated in cells, 
hence controlling the rate at which they divide. Three 
different factors were allowed to affect growth rates: 

Vertical Growth Influence. This allowed the position of the 
cell along the vertical axis to affect the growth rate, 
with cells closer to the top of the structure growing 
faster than cells lower down. The aim was to 
encourage the formation of generally vase-like forms 
that are wider at the top than the bottom. 

Radial Growth Influence. To stop structures growing too 
large horizontally, the radial distance from the 
central vertical axis was also allowed to affect 
growth rates, retarding the growth of cells further 
away from this axis. 

Figure 4: Initial configuration, constraints and influences 
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Overhang Growth Influence. As previously described, one 
of the main limitations of using fused filament 
fabrication is that structures can only have limited 
overhangs if they are to be made without the 
generation of additional support structures. To try to 
naturally encourage the growth of forms within 
overhang limits the local angle between the sheet of 
the cells and the vertical axis was also allowed to 
affect the growth rate, reducing the rate of growth if 
it exceeded a threshold angle. 

This set of influences using differential growth rates was 
selected to work with the requirements of this specific system, 
but this approach should be suitable to be generalized to give 
creative influence over a number of other similarly 
morphogentically based generative systems.  

Parameter Selection 

With the addition of these constraints and influences the 
simulation system for generating Vase Forms had 29 
parameters, each of which could be set independently. As 
described in the introduction, having a system with this 
number of parameters raises challenges of how to explore the 
space of possibilities of the system in order to find parameter 
combinations that produce desired results. 

In response to these issues, the author has developed a 
program called Species Explorer (Figure 5) to assist the 
process of generating parameter values to be used with 
generative systems. The initial requirement for such a system 
came from the number of parameters that the author found he 
needed when he was developing the simulation engine for his 
Cellular Forms work (Lomas, 2014), but is designed to work 
in general with systems driven by a fixed number of 
parameters, and provides a framework for various methods to 
be used to assist in exploring the landscape of possibilities. 
 The software provides an interface for the user to specify 
the programs that need to be run to generate each individual. 
Once a set of parameter values has been chosen the system 
writes out a ‘creation script’ (Linux shell script, Windows 
batch file or Python script) that can be executed on the 
computer to run the generative system with the specified 
values. Once an individual has been generated the user can 
then use the interface to rate and categorize the results. 

The software allows the user to select from a variety of 
‘creation methods’ each of which use different techniques to 
generate sets of new parameter values to try. Examples of the 
creation methods the user can select from include: 

• Simple random selection of parameter values from 
uniform distributions within a specified range. 
• Evolutionary search methods using mutation and cross-
breeding between the parameters used for previous 
individuals. 
• A ‘fitness landscape’ method where parameter values are 
selected using lazy machine learning to estimate how the 
user would rate and categorize individuals at new 
coordinates in parameter space. The system implements 
two different options for lazy machine learning: nearest k-
neighbors and interpolation using radial basis functions. 

Using the interface, different creation methods can be used for 
each generation and fitness functions (such as for use with 
evolutionary search or lazy machine learning) can be 

customized using a simple Python based expression syntax. 
One feature of these expressions is that they can include the 
distance in parameter space to the nearest previous sample 
that has already been taken, which allows a simple 
implementation of methods to maintain diversity in the 
genotype space. 

The use of a variety of creation methods provides the 
flexibility to allow the user to explore the space of 
possibilities in different ways depending on their intent (such 
as focused refinement based on some previous samples, or an 
active exploration for potentially novel results). The software 
also provides a framework for plugins to implement new 
creation methods, so the user can specify custom ways for 
how parameters for new individuals are chosen. For more 
technical detail about Species Explorer see (Lomas, 2016). 

Results 

Mutant Vase Forms 

The initial results from the system were genuinely 
unexpected: instead of creating structures that were likely to 
be fabricable using 3D printing, the system would often create 
forms with finely detailed approximately horizontally-oriented 
branching structures (Figure 6). This was the exact opposite of 
the type of structure the author was hoping to create by 
differentially adjusting growth rates to slow down cell 
division in regions with high overhang angles. 

Analyzing the results led to the realization that these 
unexpected results were due to bugs in how the system had 

Figure 6: Mutant Vase Forms 

Figure 5: Species Explorer user interface 

527

https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-903.jpg&w=232&h=145
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-904.jpg&w=232&h=117


been implemented: 
• As previously described, during the growth simulation 
the rest-length between cells was reduced by a constant 
factor each time step. However, in the code for generating 
food by light rays hitting cells, the spheres used to 
represent the cells were being left at their initial size instead 
of using the modified rest-length to adjust their radius. The 
result was that the cells were effectively a lot larger than 
they should have been, meaning that cells that stuck out 
further than their neighbors were struck by all the light rays 
and became the places that all the food from photosynthesis 
was generated.  
• The code for differentially adjusting growth rates was 
initially implemented by affecting the size of time steps, 
which was also affecting the physics simulations governing 
how the cells move. This meant that areas of low growth 
were also areas where structures became ‘frozen’, so if a 
region developed an overhang this feature would become 
geometrically fixed position-wise in space. 

The effect of these two bugs was to accidentally create a 
recipe for generating horizontally oriented structures with 
growth focused at the tips. Though this wasn’t what was 
originally intended, the author considered the results to be 
surprisingly aesthetic, particularly when they create structures 
with multiple filigree branches. The results can also be seen as 
genuinely emergent: they are the consequence of bugs in a 
system which has sufficient complexity so that changes to the 
rules can lead to rich unexpected consequences. 

Though the resulting forms were not suitable for 3D 
printing using fused filament fabrication, the author 
considered that the results were sufficiently interesting to 
make them into a series of artworks in their own right: the 
‘Mutant Vase Forms’. These have been exhibited using 
stereoscopic installations so that they can be experienced as 
animated three-dimensional forms (Figure 7) (Lomas, 2017). 

Vase Forms 

After investigating the reasons behind the initial unexpected 
results, the simulation code was  modified to fix the bugs 
previously described. This resulted in the generation of forms 
with more expected properties: generally vase like structures, 
broader nearer the top, narrow at the base, and with flat 
regions at both the top and the base (Figure 1). Though the 
forms often have overhangs, these are typically within angular 
limits or are of a sufficiently small size to allow 3D printing 
using fused filament fabrication methods without the need for 
additional support structures. 
 The generated Vase Forms appear to exhibit an interesting 
range of morphologies, with structures reminiscent of coral 
and plant-like forms. Structures often have complex ridges 
and folds, which as well as being aesthetic have the potential 
to have useful structural performances. There are also often 
structures that have surprised the author, such as the 
spontaneous generation of canopy-like structures at certain 
height ranges, which are probably the results of the 
differential growth rates. Many forms exhibit a variety of 
different surface patterns, from regions where the surfaces are 
relatively smooth, to other sections where the sheet of cells is 
folded into complex structures. 

The author has printed a number of Vase Forms using an 
Ultimaker 2+ 3D printer, with conventional PLA filament. For 
exhibition the works have been presented as a combination of 
40cm high final sculptures (which needed to be printed in two 
parts due to the build volume restrictions of the Ultimaker 2+) 
together with series of smaller 20cm high maquettes that show 
a number of different stages of development of each form 
from its initial configuration of a small number of cells in a 
cylindrical shape to the final structure with several million 
cells (Figure 8). These ‘developmental series’ can be seen as 
echoing the models illustrating embryo development that are 
commonly seen in natural history museums. Typical final 
forms used for fabrication have between 5 million and 20 
million cells. 

As well as the sculptures 3D printed using fused filament 
fabrication, the author has been able to fabricate a larger 60cm 
high form in polyamide using selective laser sintering. This is 
a process that requires less constraints on the shapes that can 
be fabricated due to overhang limits or the need for support 
structures. 

The author has also used computer rendered image files 
from data at different timesteps during the growth simulation 
to create animations showing the process of forms growing by 
cell division (Lomas, 2018). In a number of exhibitions these 
animations have been shown together with the physical 
sculptures (Figure 9), giving another view into the story of 
how simulation of morphogenesis was used to create the 
forms. 

Figure 7: Mutant Vase Forms Stereoscopic Installation 

Figure 8: Vase Forms Developmental Series 
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Discussion 

The creation of Vase Forms, and the accidental creation of the 
closely related Mutant Vase Forms, has been an exploration in 
trying to take an unruly, but potentially interesting, system of 
generating structure using morphogenesis and steer it in 
directions with both aesthetic and functional goals. The 
combination of using constraints and specific modifications to 
the growth rules, together with the use of evolutionary and 
machine learning methods to discover parameter 
combinations that give desired results, appears well suited to 
working with morphogenetic systems. 

The work can be seen as a case study of engaging with rich 
emergent systems, emulating the way that nature works 
through evolution and natural selection but with a design 
intent. The use of influences that affect growth rates in 
different parts of the structure were designed for the specific 
needs of the Vase Forms, but should be generalizable to give a 
degree of creative influence over other similar morphogenetic 
systems. 

The discovery of parameter combinations to create the final 
exhibited forms used a hybrid set of methods including 
interactive evolutionary computing and machine learning. One 
thing that needs to be considered for creative tools is the 
different needs of artists or designers that are committed to an 
extended process of exploration, but whose intention changes 
during the course of the development of a work, and more 
casual users, such as gallery visitors or visitors to a website, 
who are probably only going to engage with a system for a 

limited amount of time and for whom a simple interface that 
offers a single mode of interaction is probably more suited. 
For an artist or designer developing their own work, issues of 
user fatigue and perceived loss of control can be important, 
but we can also assume an extended commitment over time. 
Having a range of customizable tools that allow the user to 
direct the exploration with different intents can be important. 

Conclusion 

The aim with this work was to create sculptural forms that 
could be fabricated without the need for extensive support 
structures, while avoiding overly constraining the system and 
losing the potential for rich emergence. This appears to have 
been successful, creating vase-like structures that have a 
surprisingly natural appearance even though they have been 
completely synthetically generated and fabricated. The project 
can be seen as having genuinely emergent results, particularly 
with the Mutant Vase Forms where bugs in the algorithm used 
to generate structures resulted in completely unexpected, but 
aesthetically interesting, consequences.  

The Vase Forms have been well received, including an 
invitation to feature in a special exhibit at the Victoria and 
Albert Museum for the 2018 London Design Festival (London 
Design Festival, 2018). The work has also been shown 
together their closely related siblings, the Mutant Vase Forms, 
in a number of exhibitions, including ‘bubble, bulge, bleb’ 
(LifeSpace, 2017), an exhibition celebrating the centenary of 

Figure 9: Vase forms exhibit for the London Design Festival at the V&A Museum, London 
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the publication of D’Arcy Thompson’s ‘On Growth and 
Form’. 

With the advent of new techniques, such as multi-material 
fabrication and the control of structure at microscopic levels, 
morphogenetic systems that can produce rich continually 
varying complex patterns and forms have the potential to 
contribute novel solutions beyond those that can be created by 
conventional assembly out of discrete parts. The question of 
how to appropriately steer morphogenetic systems, allowing 
humans to creatively engage with them, whilst keeping rich 
emergent behavior deserves further study. Working with such 
systems using a combination of ‘hard constraints’ and ‘soft 
influences’, such as differentially influencing growth rates, 
appears to be fruitful. 
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Introduction
The sense of self-location is necessary for individuals to per-
form adaptive behavior like navigation in the environment.
The evidence of the sense of self-location is identified as the
place cells which was firstly found in the hippocampus of
rats’ brain (O’Keefe and Dostrovsky, 1971). Recently, it was
reported that the locations of other individuals are also rep-
resented in the hippocampus of bats and rats (Danjo et al.,
2018; Omer et al., 2018). Even some hippocampus cells
represent their location without distinction between self and
other, and these cells can be considered to be related to em-
pathy mechanisms similar to the mirror neurons (Rizzolatti
and Sinigaglia, 2016). However, how such spatial represen-
tation that associates self and other’s locations is developed
is not understood as well as the mirror neurons. One of
the popular explanation of representation of the other in self
is simulation theory that individuals internally simulate the
other’s internal recognition. However, the simulation of the
other requires another module for inferring the other’s in-
ternal recognition, which is called model of others. Such
simulation module should be different from the module that
deal with self internal recognition, and the place cells shared
between self and other cannot emerge.

We considered the other’s location is represented in the
same module as self location rather than in the different
module that simulates other’s internal recognition. To re-
alize shared representation of self and other’s locations like
found by (Danjo et al., 2018; Omer et al., 2018), we propose
superposition mechanism that two different representations
are parallelly processed by the same module at the same
time. We implement the superposition mechanism by using
two same modules in our proposed neural network model as
described later. Through the prediction learning of subjec-
tive vision of simulated mobile agent where another agent
existed, our proposed network developed shared representa-
tion of self and other agent’s locations.

Network Model and Simulation
Our proposed network model is constructed to receive sub-
jective vision of self agent vself

t and self motion mself
t and

trained to correctly predict future vision vself
t+1 . The net-

work parallelly processes two different representations for
self and other through the same module, which we call the
superposition module, as follows:

hself
t = φ(ψself (vself

t ),mself
t ,hself

t−1 ), (1)

hother
t = φ(ψother(vself

t ),mother
t ,hother

t−1 ), (2)

where φ is the function of superposition module, hself
t and

hother
t are internal states of the superposition module, and

ψself and ψother are visual encoders, which are different
modules. The processes represented by Eq. (1) and (2)
are conducted at the same time, and it is considered the
two different states are superposed in the sense that the sin-
gle superposition module has these two states at the same
time. The two superposed states have an explicit difference
on the motion input; the self motion mself

t is available, on
the other hand, the other’s motion mother

t is not available
and assumed to be always zero; it means that hself

t becomes
self-related representation and hother

t becomes other-related
representation. Then, the network generates the prediction
of self vision as follows:

vself
t+1 = ψ̂(hself

t ,hother
t ), (3)

where ψ̂ is a visual predictor module. In this prediction pro-
cess, the superposed states are used as two different inputs
and integrated for visual prediction. The whole structure of
our proposed network is shown in Fig. 1 (a). The superpo-
sition module φ consists of LSTM (long short-term mem-
ory) (Hochreiter and Schmidhuber, 1997), which is an RNN
(recurrent neural network) with gate structures, and a fully
connected layer as the motion encoder. We implemented
the superposition module by using two LSTM modules with
same network weights, and we call these two LSTMs the
self and other LSTMs for later description, although they
are the same module. The visual encoders ψself and ψother

and visual predictor ψ̂ consist of CNN (convolutional neural
network).

The network was trained on the visuomotor sensory se-
quences of a mobile agent in a simulated environment shown
in Fig. 1 (b, c). There are two agents as self and other,
and four colored boxes as visual landmarks. The self agent
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Figure 1: (a) The schematic view of the proposed network
model. (b) Overview of the simulation environment. The
self agent moves with omni wheels. (c) An example of self
agent’s vision, which is omni-directional vision.
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Figure 2: The visualization of the internal states of the self
and other LSTMs (left and middle). The states are colored
according to the agents’ location where colors are assigned
for each location as shown in the color map (right).

moves around the environment, on the other hand, the other
agent does not move. By relocating the other every trial, the
network is trained in various placements of the other agent.
We previously showed that the prediction learning of subjec-
tive vision realizes self-organization of the representation of
self-location in the internal states of an RNN. In the current
study, we expected that the development of shared represen-
tation of self and other’s locations is realized by introducing
the superposition module.

Results
After the training, we visualized the internal states of two
LSTMs on two-dimensional space by using PCA (princi-
ple component analysis) when the agent was moving around
(Fig. 2). The visualized internal states are colored accord-
ing to the self and other agent’s locations for self and other
LSTM’s states, respectively. The same PC space was used
for mapping the internal states. It is shown that the inter-
nal states are arranged according to actual agents’ location
and it is considered that the network developed the repre-
sentation of self and other locations. It should be noted that
the self and other’s locations seemed to be represented on
the same region of the internal state space of self and other
LSTMs. Then, we constructed a linear regression model that
predict the location of the self agent from the self LSTM’s
internal states hself

t ; then predict the location of the other
agent from the other LSTM’s internal states hother

t using the
model constructed for predicting self agent’s location. As

a result, the error distance for self agent’s location became
0.40 and that for other agent’s location became 1.38. The
error is small considering that theoretical expected distance
between two random points sampled from a square size of
20 × 20 is about 10.4, and it is considered that the superpo-
sition module represented the self and other’s locations in a
shared representation. There are no constraints to make the
correspondence of the locations and internal states the same;
however, our results show that shared representation of the
self and other’s location can be developed in the network
where the same module represent two different states at the
same time.

Discussion
Although it is possible to develop representations shared be-
tween two different modules, i.e., not a single superposition
module, some learning mechanisms or constraints are nec-
essary to have shared representation for the different mod-
ules in addition to developing the representation of self and
other’s location. On the other hand, our proposed network
processes self and other’s representation in the same way.
In such superposition network, the other can be recognized
by applying the self model to the other without construct-
ing the other’s model. Such superposing of self and other’s
model is more efficient than separate development of self
and other’s model; consequently, the shared representations
of self and other’s location were developed without any ad-
ditional constraints. Although such superposition structure
with two separate modules with same weights in our im-
plementation has not been found in biological systems, we
considered that parallel processing of the self and other’s
representation in the same network module is necessary for
developing the shared representation of the self and other’s
locations.
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Abstract

We apply Ant Colony Optimization concepts to the prob-
lem of finding appropriate reward values after successful task
completion in serious games. Our algorithm is deployed
within the InLife platform, which leverages the power of se-
rious games augmented with real-world IOT sensors for ed-
ucational purposes. The platform is deployed on four actual
pilot sites in Spain, France and Greece with two distinct appli-
cations: teaching sustainable behavior to university students
and improving social interaction skills for autistic children.
In a decentralized, swarm intelligence fashion and based on
individually released success and failure pheromones, our
generic reward computation strategy seeks, by adjusting re-
ward amounts on the fly, to achieve maximum efficiency in
catalyzing behavior change while balancing adaptivity, par-
simony, fairness and variety. On top of the necessarily lim-
ited real-world data, large-scale numerical validation of the
algorithm is obtained with a specifically designed simulator,
whose underlying cognitive model was validated by a clin-
ical psychologist. Conducted experiments confirm the rele-
vance and adaptive nature of the obtained pheromone map:
the system automatically adjusts to changes in the environ-
ment such as the introduction of new students or pedagogi-
cal items. Experiments also validate all aforementioned de-
sired characteristics and show substantial quantitative perfor-
mance gains with respect to a static reward scheme in be-
havior change metrics, speed and success rates, of up to 40
percent with equal reward budget.

Introduction
European H2020 project InLife, conducted between 2016
and 2018, has focused on ways to augment education with
modern information technologies. To that end, it developed
a service oriented platform based on three technological pil-
lars: Serious Games, Connected Objects (IOT) and Artifi-
cial Intelligence. The developed platform intends to syner-
gize these three powerful levers in order to maximize learn-
ing speed and positive behavioral evolution in populations
of students.

Two distinct applications of the platform were conducted
through the development of two serious games: Aksion, by
Imaginary srl and Iceberg by Five Flames Mobile. The first
one, Aksion (see sample screen capture in figure 1) is de-
voted to teaching or improving social inclusion behaviors

to children with autistic spectrum disorders by simulating
interactions with their peers in familiar contexts such as
the classroom, the beach or the library. These simulated
situations come with various games, quizzes and multiple
choice questions to evaluate the child’s skills and monitor
her progress. The second serious game, Iceberg (see fig-
ure 2), aims at teaching sustainable notions and behaviors
on two levels: in the real-world and in the game. Environ-
ment friendly actions in the real-world (e.g. turning off the
lights when leaving an empty room, using recycling bins,
avoiding unnecessarily using the printer, etc.) are monitored
by IOT sensors and rewarded with bonus objects to be used
in a real-time strategy game in which players are respon-
sible for the well-being and growth of a sea ice ecosystem
inhabited by animals. The in-game rewards can take several
forms: special objects, game currency to be spent for up-
grades or skins, reputation points, or, conversely for negative
rewards (punishments), general degradation of the ecosys-
tem (animals dying, ice melting, etc.). Through carefully
crafted game mechanics and sustainability indicators, the
game teaches environmental mechanisms and their preserva-
tion by encouraging strategies that maximize sustainability,
safety and diversity.

For evaluation purposes, the platform was deployed and
the games tested in four distinct real-world pilot sites in
France, Spain and Greece. For Iceberg, these pilot sites are
public libraries or universities and for Aksion, they are spe-
cialized institutions where children interact and play the se-
rious game during sessions organized and controlled by pro-
fessional educators and psychologists. In this context, we
developed a playing data processing module called “Incen-
tive Server” to compute reward values as smartly as possible
to satisfy or maximize several possibly antagonistic criteria.
These rewards are attributed to players when they succeed,
in either the real-world or the digital world, in completing
a task or in behaving the right way. The rewards should
be valued so as to maximize overall system efficiency in
pursuing objectives specified by educators. Typically, these
objectives are linked to positive behaviors or specific skills
whose success probability should increase harmoniously for
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Figure 1: Screen capture of the Aksion serious game: chil-
dren with ASD encounter simulated social inclusion situa-
tions they must handle with adequate behaviors. Copyright
Imaginary srl.

Figure 2: Screen capture of the Iceberg serious game: the
player is responsible for the management of an ecosystem (a
portion of floating ice with animals, buildings, energy and
storage needs) in a real-time strategy fashion. Copyright
Five Flames Mobile.

all members of the population of students. The algorithm’s
responsibility is therefore to make the most efficient use of
limited reward resources according to both individual and
global characteristics of learners.

This paper is organized as follows. We start by stating the
problem and detailing the desired characteristics that guided
our algorithmic choices. Then we provide an overview of the
state of the art in Serious Games, Gamification and their sup-
port by Swarm Intelligence algorithms. The two following
sections describe the multi-agent simulator we developed for
validation and the adaptive ant-colony based reward algo-
rithm respectively. Experimental results are then given on
several validation scenarios. We conclude by outlining why
we think this contribution is an example of how Artificial
Life can help address societal challenges.

Motivations and Desired Characteristics
As we have seen, in the general context described above,
the problem to be solved is to find the appropriate value for
rewards attributed after successful task completion or cor-
rect behavior. More specifically in this first applied use-case
with Aksion and Iceberg, we seek to maximize success rates,
over the whole population of players, in undertaking specific
actions in the real-world, as detected by IOT devices (e.g.
turning the light off when leaving an empty room).

Beyond that simple functional target, the high-level re-
quirements and desired characteristics for the reward al-
gorithm are as follows. First and foremost, the algorithm
shall maximize the selected criterion to measure behav-
ioral change or learning progress. Reward attribution shall
be player specific, temporally specific and able to take the
whole population of players and social equity criteria into
account. The algorithm shall be scalable, respond in real-
time and be simple enough to be explainable in its peda-
gogical consequences so as to facilitate its adoption by non
technical end-users. Most importantly, the reward algorithm
shall be adaptive, which means able, without external hu-
man intervention, to adjust attributed rewards according to
the various changes that might occur in the game environ-
ment. Finally, the algorithm shall be generic because the
InLife platform should be able to accommodate any future
serious game.

Literature review
The recent development of numerous forms of participative
technologies in the wake of Web 2.0 and the generalized in-
terconnection of information systems indirectly led to the
emergence of a new field of research and innovation focused
on catalyzing that participative collective energy with game-
inspired mechanisms used in serious, not entertainment ori-
ented contexts such as education or knowledge management.
Known as “gamification” (Hendrikx et al., 2015), this design
strategy consists in increasing user or player engagement by
acting on their intrinsic motivation and its social ramifica-
tions with game-inspired rewards. It also allows to facil-
itate participation according to specifically chosen criteria,
for example to compensate for disequilibria in attendance or
browsing. To that end, “gamified” applications or serious
games designers resort to a number of heuristic principles
that consist in defining reward attribution rules or reputa-
tion points systems (Seaborn and Fels, 2015). These sys-
tems have two advantages: not only do they help increasing
participant motivation or success rates but they produce, as a
side-effect, a very rich information repository that will allow
for a better knowledge and understanding of both the global
population and its individual members. That repository can
be used to improve the game to make it more efficient. Such
improvements can be performed manually or automatically,
using data processing, machine learning or optimization al-
gorithms.
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These recent years, “Serious Games” have known a
steadily increasing popularity (Boyle et al., 2016) and pro-
ceed with the same strategy: using game inspired mecha-
nisms to educate and transmit knowledge and good practices
or behaviors. Learning can indeed be more efficient when it
is enhanced with mechanical motivation mechanisms such
as rewards, scoring boards or reputation points. Serious
Games also rely on the psychological mechanisms of im-
personation (role-playing games) but also on narrative im-
mersion that can be augmented by links to the real world
through IOT sensors (Kurilovas et al., 2014).

As an application example, many contributions (see for
example (Bernardini et al., 2014; Grossard et al., 2017))
tend to indicate that using Serious Games can have a pos-
itive impact on the education, particularly for social inclu-
sion skills, of children afflicted with an Autistic Spectrum
Disorder (ASD), as illustrated by the Aksion game devel-
oped during the project.

While consensual good practices start to emerge in intel-
ligently quantified and oriented gamification, there are rela-
tively few attempts at systematically resorting to mathemat-
ical models or even statistics or algorithms to automate de-
sign of gamification systems. There is therefore a widely
open field for applying optimization techniques or data pro-
cessing through machine learning. A few attempts have al-
ready been made at adaptive gamification: (Ososky, 2015;
Richter et al., 2015; Semet et al., 2003). They usually con-
sist, however, in dynamically adjusting presentation proba-
bilities for pedagogical items according to statistics on the
player population. Very few works (Cheng and Vassileva,
2005, 2006) also try to offer adaptive scores or rewards in
order to encourage participation on selected topics.

In Artificial Intelligence, the Swarm Intelligence
paradigm (Bonabeau et al., 1999) consists in trusting the
intelligence emerging out of the interactions of a plurality of
“simple-minded” entities with the completion of a possibly
complex task. As is now commonly known, this way of
decomposing problems has many interesting properties
and traits among which: parallel processing, distribution,
specialization/synergy, scalability, computational efficiency
or robustness to fault. Among the numerous algorithmic
forms of Swarm Intelligence, Ant Colony Optimization
(ACO) (Dorigo and Stützle, 2004), introduced in the
1990’s, is a popular variant of stochastic search inspired the
collective behavior of social insects, ants, that collectively
solve problems through indirect communication. Initially
very successfully applied to shortest path finding in graphs
and ensuing computational problems such as the Travelling
Salesman’s or network packet routing, they have been ap-
plied to many other domains (Bonabeau et al., 1999; Dorigo
and Stützle, 2004) and form today a body of algorithms
and heuristics for optimization and machine learning at
large. These algorithms are particularly apt at dynamic
optimization (Mavrovouniotis et al., 2017) as they have

astonishing reactive and adaptive properties.
Applying Swarm Intelligence to optimized gamification

and, more generally, to adaptive learning feels both natural
and promising. One can indeed imagine a straightforward
mapping between a population of students or learners in a
serious game and a population of simple interacting entities
that collaborate to form the pheromone map that forms the
basis of an ant-inspired algorithm. It is therefore straightfor-
ward to imagine an information collection strategy, instanti-
ated at the learner level, that procures, individual bit by in-
dividual bit, information for the emerging global picture and
algorithm. Ant Colonies, natural and otherwise, do that by
following the “stigmergy” principle, which consists in us-
ing the common environment as an information repository
for indirect communication. Through pheromones and stig-
mergic communication, ants gradually accumulate a treasure
of global information that can be used for various purposes
such as retrieving shortest paths or circuits from a well in-
formed map of the surroundings. Making efficient use of
that information however, is not trivial and shall be the re-
sponsibility of carefully designed algorithms that will steer
the search toward interesting solutions to the problem at
hand.

This analogy is promising for the application described in
this paper, namely adaptive rewards for serious games, be-
cause many of the key properties of theses algorithms corre-
spond exactly to the high-level requirements outlined in the
previous section, particularly adaptivity, reactivity and scal-
ability. We identified a number of works that attempt to ap-
ply ant colony algorithms or swarm intelligence more gen-
erally to e-learning optimization or serious games: (Semet
et al., 2003; Gutierrez et al., 2007; Huang and Liu, 2009;
Dharshini et al., 2015) but they are mainly focused on im-
proving pedagogical paths by trying to optimize presenta-
tion probabilities for the various teaching items according
to statistics on both individual students and the global pop-
ulation in a spirit akin to the abundant literature in Recom-
mender Systems and Collaborative Filtering. (Semet et al.,
2003; Gutierrez et al., 2007) are noteworthy for introducing
the notion of accumulated success and failure statistics as
an adaptive pheromone map. The natural application of this
global information cartography to intelligent and adaptive
reward allocation according to success rates, as described
in the present work, has not been reported in the available
literature to our knowledge.

Multi-Agent Validation Simulator
Hypotheses and Principles
In order to procure numerically significant validation and
compensate for the unfortunate lack of real-world data in
sufficient provision and so as to be agile in designing a trust-
worthy algorithm, we designed and implemented a multi-
agent simulator for the population of learners. Its design
started from a common-sense analysis to describe a numer-
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Figure 3: Simulation Model: plot of the essential decision
function: according to how much reward was received (x
axis), success probability (Psuccess) for rewardable actions
is computed (y axis) by a function that incorporates the var-
ious aspects of the model. Di is action difficulty, T stand for
the accumulated reward “treasure”.γ and δ are empirically
set scaling constants.

ical function reproducing the decision process and the phe-
nomenon that sees propensities to do an action increase with
respect to the amount of attributed reward. The principles
we chose to follow, as illustrated in figure 3 are the follow-
ing. Convergent Positive Reinforcement: The probability
for an individual, to undertake an action, increases with the
attribution of rewards related to that action but with decreas-
ing marginal impact (the more reward you get the less im-
pact it has).Varying Propensities: before any reward is at-
tributed, the spontaneous probability to undertake an action,
varies among individuals. Varying Difficulties: actions
or tasks are not homogeneously easy, they vary in difficulty
and the ensuing success/undertaking probability varies cor-
respondingly. Bounded Probabilities: individuals cannot
reach a perfect realization probability. Reward Evapora-
tion: rewards have immediate impact but that impact spon-
taneously fades back to zero over time.

These design principles lead to the numerical function in
figure 3: the function, an adapted sigmoid, is monotonously
increasing (positive reinforcement) and converges to a max-
imum value based on action difficulty. Individual propensi-
ties provide a head start on the x axis and rewards move the
player back and forth on that axis when they are attributed
and evaporated respectively. Action difficulty finally, sets
the basis value for the probability when the natural propen-
sity is 0 and no rewards have been attributed yet.

That simulation model is important for the validation
phase of the reward algorithm but it is important to note
that it is not intended to be a realistic model of the cognitive
learning process, it is a mathematical tool designed to ex-
amine the scaling, statistical behavior of reward algorithms

when confronted to a population of probabilistic agents that
conform to the simple but central reinforcement learning hy-
potheses we make about rewards. It has, however, to be re-
alistic enough to form a sensible basis for early stage vali-
dation. We therefore had our simulation model controlled
and validated by a professional psychologist, Dr Antonio
Ascolese. Although conducted conscientiously, this prelim-
inary form of validation is modest and shall be expanded
with further work on state-of-the-art cognitive modeling.

Algorithms and Formulae
To reproduce the temporal succession of playing sessions for
all players, we follow the simple loop given in algorithm 1
where the play procedure is implemented straightforwardly
by comparing a floating point number randomly drawn be-
tween 0 and 1 to the probability of success p(a, i, t) for the
considered player i, action a at time t, as given by equation
1 where σ is an adapted sigmoid function and Da is the dif-
ficulty level of action a. Ut is the amount of reward unspent
at time t.

Algorithm 1 Simulating learning occurrences
Randomly generate player population
for each timestep t do

for each action a do
for each player i do

R = computeReward(a,i,t)
play(a,i,t)
if success then

T (i, a) += R
else

Ut += R
end if

end for
end for
Evaporate accumulated rewards

end for

p(a, i, t) = (1−Da)× σ(Pa,i + Ta,i, (1− δ)Da) (1)

σ(x,A) = 2A× (−1

2
+

1

1 + e−ξx
) (2)

We also consider that accumulated rewards, the so called
“treasure” T , see their impact decrease over time with the
following evaporation formula:

Ta,i,t = ρ× Ta,i,t−1 (3)

Reward Attribution Algorithm
In the light of the high level requirements outlined above,
we chose to use algorithms in the family of Artificial Ant
Colonies as they offer remarkable dynamic optimization ca-
pabilities in a decentralized, scalable way and provide a
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readable, very useful adaptive information map to fuel de-
cision support. Additionally, because they work as a form
of reinforcement learning algorithm, they provide dynamic
“controllers” that can be conveniently used in real-time as
is necessary here. The reward computation module works
within a global platform architecture connecting the player,
the serious game, connected objects and the Incentive Server
hosting the ant reward algorithm.

Hypotheses and Principles

Generally speaking, we chose to follow popular wisdom: “Ìf
it ain’t broke, don’t fix it!”. In other words, we chose to di-
rect reward where it is most needed and conversely,to avoid
spending some where results are already satisfying. This
can be stated more precisely as follows: more reward should
go to poorly successful players, more reward should go to
poorly undertaken actions, unspent reward should be used
similarly and, finally, it is pointless to spend reward on al-
ready successful players or actions.

It is important to note that these particular strategic
choices are just one possibility out of many possible op-
tions, as opposed notably, to the choice that would suggest to
spend rewards on already successful actions or players so as
to make them even more successful to reach a globally bet-
ter outcome. This is a political design decision that depends
on the context, on end-users, possibly on experimental vali-
dation and, most importantly, that is entirely independent of
the underlying, generic approach we propose.

Algorithms and Formulae

We follow the classical Ant Colony Optimization metaphor
by mapping individual players to individual ants and suc-
cess or failure events to pheromone release which is memo-
rized locally at the action level as normalized success rates.
Evaporation is implemented coarsely by using a sliding time
window that prevents too old information to have impact on
present reward computation.

When browsing graphs in search of shortest routing paths
or tours, artificial ants traditionally base their decisions on
a power mean function that blends collectively accumu-
lated local information read in pheromone concentration and
heuristic clues read from the surroundings, usually outgo-
ing edge lengths. In our case, since we seek to maximize,
with parameterizable importance, both player success rates
and action success rates, two dimensions that are distinct al-
though correlated to some extent, we incorporate both in the
formula, as outlined below:

τAt,a =

∑t
k=t−W Sa,k

W
(4)

Sa,k =

∑
i∈Ωa,t

si

|Ωa,t|
(5)

γAa,t =
(1− τAt,a)α∑
a6=b(1− τAt,a)α

(6)

where τAt,a is the success rate of action a at time t over a slid-
ing time window of size W, Sa,kis the average success rate
of action a over all occurrences of a during time step t, Ωa,t
is the set of occurrences for action a (i.e. any player attempt-
ing action a) at timestep t and si is an individual, binary suc-
cess variable valued at 1 when the attempt is a success and
at 0 otherwise. γAa,t finally, represents the normalized fail-
ure rate, which we want positively correlated with reward
amounts, augmented with an exponent α to control the im-
portance of that particular criterion.

Similarly, we keep track of success rates at the player level
by calculating γPi,t in a similar way but by looping over all
players instead of looping over all actions:

γPi,t =
(1− τPt,i)β∑
i 6=j(1− τPt,i)β

(7)

Next, we define the basis for the attributed reward, the so
called “Reward Portion” RP by aggregating both success
rate based proportions described above and the daily budget
of reward available for distribution:

RPa,i,t = (DB + Ut)× γAa,t × γPi,t (8)

where DB stands for Daily Budget, the amount of re-
ward one is allowed to spend at a given timestep and Ut
is the amount of budget left unspent so far, when arriving at
timestep t.

We also introduce an important correcting factor, which
we call the “wealth factor” which biases reward attribution
so as “not to favor the already wealthy”:

WFa,i,t =
1

2
+ (1− σ(Ta,i,

1

2
)) (9)

σ(x,A) = 2A× (−1

2
+

1

1 + e−δx
) (10)

where σ is a sigmoid function and Ta,i is the player i’s “trea-
sure”, i.e. the total amount of reward she has accumulated
so far.

The final, central equation of the system is therefore as
follows:

R(a, i, t) = WFa,i,t ×RPa,i,t (11)

it gives the final amount of reward R(a, i, t) to be given
to player i, successfully attempting action a at timestep t.
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Discrete Rewards
In order to accommodate discrete choices of rewards, which
is a requirement for certain games that attribute object re-
wards (characters, bonuses or customization items) among
a finite set of options as opposed to a continuously valued
amount of game currency, we proceeded by transforming
the attributed continuous reward value into a basis probabil-
ity for iterated Bernoulli attempts at climbing the ladders of
the table of possible rewards ordered by increasing utility
value. Further details on this seemingly simple feature that
proved particularly difficult to design without loss of math-
ematical efficiency in validation scenarios or variety related
issues, shall be reported elsewhere.

Experimental Results
Real-World Deployment
During the course of the project, the InLife platform was de-
ployed and tested on four pilot sites in the spring and sum-
mer of 2018: the School of Electrical and Computer Engi-
neering, Zografou Campus in Athens, Greece (Iceberg), the
PanHellenic Association of Adapted Activities in Athens,
Greece (Aksion), the Municipal library “Adolfo Miaja de
la Muela” in Valladolid, Spain (Iceberg) and the Associa-
tion for Living the Self-Governance (A.V.A.G) in Les Ulis,
France (Iceberg).

Unfortunately, the short duration of the project did not
allow for statistically significant analysis regarding the posi-
tive influence of the reward algorithm specifically. We how-
ever reckon it worth reporting that the system was actually
deployed in the field, worked, and generated very positive
feedback on the use of game-inspired mechanisms such as
rewards in stimulating player engagement.

Simulator Based Validation
This section shall therefore focus on our in-lab experimen-
tal campaign which was based on the comparison between
the proposed adaptive reward algorithm and a naive, static,
strategy that always attributes the same reward for all actions
and all players, regardless of the specifics.

Beyond qualitative appreciation of the system’s proper-
ties, we introduce a metric as a basis for quantitative com-
parisons. This metric, called LIM for Loss Integral Metric,
is an approximation of the integral of the minimum success
probability, across all rewarded actions, as a function of time
over the experiment’s time frame. In other words, to com-
pute this metric, at each time step we identify the action
with the smallest success rate, over a considered past time
window, and add that probability to a running counter. This
results in a metric that favors situations where the worst suc-
cess rate among actions is as high as possible for as long as
possible and as soon as possible.

On that basis, we seek to validate our algorithm’s proper-
ties and comparative efficiency on many validation scenar-
ios. We report the outcome of six of the most illustrative

below with plots, for lack of space only for the three most
significant ones. Since part of the system is stochastic, val-
idation of the comparisons with statistical significance test-
ing was conducted on 100 independent runs each time with
differences in averaged metrics confirmed with a pairwise
bilateral Student’s T-test with a 5% confidence interval. Pa-
rameter values are the following: α = 1, β = 3, δ = 0.1,
ρ = 0.98, W = 10. In all experiments below, we com-
pare success probabilities between actions over timesteps,
as sampled over a running time window of size W .

Scenario 1 is the simplest possible validation. It features
three actions with different reward strategies. Action 1 has
no reward at all, action 2 has a static reward and action 3
the ACO adaptive reward. There is only one player. In the
strict absence of reward, action 1 does not improve at all,
in its success probability, while actions 2 and 3 efficiently
converge to satisfying levels. The absence of difference be-
tween 2 and 3 is explainable by the absence of disequilib-
rium, player-wise or action-wise to compensate for thanks
to adaptivity.

Scenario 2 (figure 4) and scenario 3 (not plotted, quali-
tatively similar) are sample calibration test cases and show
the difference between a static reward scheme and the ACO
adaptive reward scheme when there is a disequilibrium. In
scenario 2 indeed, there is one “hard” action A1 with diffi-
cultyD = 0.1 and low initial success rate and one “easy” ac-
tion A2 with difficultyD = 0.9 and high initial success rate.
With our adaptive algorithm, the difference in success rates
is quickly compensated and both actions converge quickly
to satisfying values while the static scheme fails at fixing
the situation. The upper plot shows success probabilities for
both actions under both reward schemes (static with dashed
lines and adaptive with continuous lines). The distribution of
the difference between A1 and A2 in both cases is shown in
the lower plot together with statistical testing outcome over
100 runs, which unambiguously confirms the superiority of
the adaptive scheme in this case after timestep 15. Scenario
3 offers a symmetrical situation with a “good” student and
a “bad” one whose success rates are compared on one same
action.

Scenario 4 is a full scale validation exercise with dimen-
sions sampled around those seen in real-world pilots. It has
100 randomly generated players and 5 actions, 2 of which
are “hard” and 3 of which are “easy”. 50 of the players
are initially good (high propensity values (Pi = 0.9)) and
50 are bad (low propensity values(Pi = 0.1)). The plot-
ted curves (top), corresponding to one sample run with the
adaptive scheme, show quick harmonization of success rates
for all actions and convergence to high values around 0.91
on average. The LIM metric is worth 94.12 for the static re-
ward scheme and 155.67 for the adaptive scheme. Over the
course of the experiment, 200 simulated days, there is a to-
tal of 22059 failures (occurrences of players failing at a task
or failing to have to correct behavior) on average over 100
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Figure 4: Scenario 2: 1 player, 1 hard action A1 and 1 easy
action A2. Static rewards (dashed lines in top plot) are much
slower than adaptive rewards to compensate this disequilib-
rium. The bottom plot shows the mean difference between
A1 and A2 with both schemes as well as the outcome of the
corresponding T-test, 1 meaning there is a significant (95%)
difference in the superiority shown by the adaptive scheme.

runs with the static scheme and of 12579 failures with the
adaptive scheme, which represents a gain of 42.97%. The
static scheme spends 89631 reward units on average and the
adaptive scheme slightly more, 92425.

Scenarios 5, not reported here for lack of space confirms
that discrete rewards as we introduced them, work just as
well as continuous ones to steer heterogeneous success rates
in the right direction in the context used for scenario 4.

Scenario 6 (figure 6) finally, sheds lights on the adaptive
feature of the ant algorithm. By suddenly changing the dif-
ficulty value of a specific action at time step 100, thus sim-
ulating a very significant change in the game environment
(such as a modification of the IOT conformation or an ed-
ucator induced change in task difficulty), one can see the
system automatically detect and adapt to this change only
by implicitly sampling success rates through pheromones
and by accordingly increasing reward amounts allocated for
the newly difficult action so as to bring the corresponding
success rate back to the level reached by the other actions,
yet without sacrificing those. For comparison, the plot also

Figure 5: Scenario 4: main validation result with full scale.
100 players, 200 simulated days, 5 actions (2 hard ones (red
and blue in top plot), 3 easy ones). Again the disequilib-
rium in success rates, both for actions (see plot) and players
(not shown) is compensated much faster by ant-based adap-
tive rewards, as can be seen in the lower plot, which shows
the minimum success probability across all actions averaged
over 100 runs for both reward schemes as well as the corre-
sponding t-test outcome (95% confidence) to confirm the su-
periority of the adaptive scheme with a similar reward bud-
get. The gain in decreased number of failed attempts is of
42.97%

shows, with dashed lines, the unsatisfying evolution of suc-
cess probabilities for actions A1 and A2 with a static reward
scheme. Results are averaged over a hundred runs and tested
for statistical significance with 95% confidence.

Conclusions
We introduced the use of Ant Colony Optimization for the
computation of adaptive rewards in serious games. Exper-
imental validation results, obtained with a specific, simple
but validated multi-agent simulator, confirm the qualitative
properties one expects from a swarm intelligence algorithm
and show significant quantitative improvements with respect
to a static reward scheme. The system was also deployed in
the real world on four distinct pilot sites in Spain, France
and Greece.
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Figure 6: Scenario 6: at time step 100, a sudden change
occurs in the game environment and the success rate of ac-
tion A2 drops significantly. The ant based algorithm is able,
without external intervention, to implicitly detect the change
and adapt its reward attribution strategy accordingly.

We argue that this work constitutes a double example of
how Artificial Life can help address modern challenges. Se-
rious games in general and Iceberg in particular, use Arti-
ficial Life both to procure immersive narration with behav-
ior assessment and to help understand, and therefore fix or
support, complex and critical social or natural phenomena
such as those implicated in sustainable development con-
cerns. Additionally, artificial life algorithms such as the Ant
Colony we used in this work, are, thanks to their fantas-
tic mathematical properties of adaptivity, resilience and dis-
tributed intelligence, invaluable tools in handling the many
complex systems that make up our world and in increas-
ing operational benefits or efficiency, exemplified here in the
area of education, while limiting environmental costs.
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Introduction 

Recently, it is recognized that human linguistic abilities and 
human language are likely to have been shaped by their co-
evolutionary processes, in other words, the interplaying 
process of the biological evolution of the language faculty and 
the cultural evolution of language (Smith, 2018).  

In a general context of co-evolution of biological and 
cultural processes, including that of language (Christiansen 
and Kirby, 2003), effects of individual and social learning 
have been regarded as important factors. Higashi et al. (2018) 
constructed a computational model of evolution on a rugged 
fitness landscape which has many local optima, assuming the 
evolution of a complex and adaptive ability composed of 
mutually interacting traits. They showed that individual 
learning and social learning could work complementarily in 
the course of adaptive evolution on the rugged fitness 
landscape. That is, individual learning can find new adaptive 
phenotypes thanks to the diversity of genetic expressions 
created by social learning. Social learning also can keep a new 
adaptive phenotype found by individual learning in the 
population. We consider the human language faculty as one of 
such abilities at least in part because it is composed of various 
sub-faculty traits of language (e.g., brain structures, vocal 
organs). There are thought to be two sorts of primary abilities 
of human language (Harman, 1975). One is a cognitive ability 
or capacity of thoughts (e.g., building language hierarchy). 
The other is a communicative ability (e.g., intention sharing). 
However, they only assumed mutual interactions among traits 
within an individual, which could be regarded as the traits 
related to the cognitive ability of language. Thus, in order to 
deal with the evolution of communication ability, the 
existence of a communication partner and inter-individual 
interactions of their traits must be assumed. 

The purpose of this study is to clarify how cognitive and 
communicative abilities of language can evolve in terms of 
the co-evolution of linguistic abilities, based on social and 
individual learning. For this purpose, we extended the model 
of Higashi et al. (2018) by incorporating inter-individual 
interactions among traits into it. 

Model 

We constructed an extended version of Higashi et al. (2018)’s 
model. We assume a population of N/2 parent and N/2 child 
individuals, each has M traits ti ∈[1, M] (i=0, 1, …, M-1) 
represented as positive integers. These traits are assumed to be 
related to sub-faculty traits of language. Each gene gi ∈[1, 
M] in a M-length chromosome represents the initial (innate) 

value of the corresponding trait ti. Each individual has another 
M-length chromosome, each of which is a boolean value and 
decides whether the corresponding trait is plastic (learnable) 
or not. These settings are same as Higashi et al. (2018). 

In each generation, N/2 pairs of individuals were randomly 
formed without duplication, and there are L steps of within-
pair interactions in parallel. We assume a basic assumption on 
the contribution of trait sets to the fitness: a fitness 
contribution x emerges if there are equal or more than x traits 
whose value is x among the trait set of the focal individual. 
This represents that the more adaptive linguistic ability is 
based on the larger number of sub-faculty traits. Then, we 
define the co-creative fitness FITNESS as the product of the 
following two types of fitness: FITNESS=COG×COM. COG 
(cognitive fitness) of an individual i is the highest fitness 
contribution calculated from her trait set {ti} using the 
assumption above. COG is the fitness function used in 
Higashi et al. (2018). COM (communicative fitness) is the 
total fitness contribution calculated from the set {ti,, tj} of the 
trait set of the focal individual {ti} and that {tj} of her partner 
j in her pair. We adopted the total fitness contribution for 
COM to represent that various communication processes 
based on different sub-faculty traits can bring about different 
types of fitness contribution. The fitness landscape becomes 
dynamic due to the introduction of COM. 

Each individual also has a social learning rate s, as a 
genetic value. At each step, each individual chooses social 
learning with the probability s or chooses individual learning 
with the probability 1-s. When choosing individual learning, 
an individual creates a slightly modified trait set from her 
innate trait set {gi} by adding a random value {-1, 0, 1} to the 
value of gi of each plastic trait. When choosing social 
learning, the focal individual tries to imitate the traits of the 
best individual in the previous step. The process makes each 
plastic trait closer to the corresponding trait of the selected 
individual, by adding −1 or +1 to gi. The focal individual 
adopts the new trait set if its FITNESS is higher than the one 

Figure 1. The average fitness during the last 1,500 generations in 

the three learning conditions. The values were the average over 

20 trials. The red arrow represents that a value on the start point 

is significantly lower than a value on the end point by Ryan’s 

method with Wilcoxon signed-rank test (α=0.05). 

541

https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-925.jpg&w=230&h=87


in the previous step, assuming that her partner has the trait set 
in the previous step, otherwise keeps the previous one for 
fitness calculation. At the end of the generation, all the parent 
individuals die and the child individuals become parent 
individuals. N/2 new child individuals are created by using a 
roulette wheel selection from the new parent individuals 
based on the average co-creative fitness (FITNESS) over time 
steps, single-point crossover, and mutation. 

Results and discussion 

We conducted experiments with the parameter settings: 
N=1000, M=10, L=50 for 15,000 generation. We focused on 
the three learning conditions: “No learning condition”, where 
the fitness of an individual is calculated with only the initial 
traits gi; “Individual learning condition”, where an individual 
performs individual learning only (s=0.0); and “Both learning 
condition”, an individual can choose either individual or 
social learning according to her own social learning 
probability s. 

Figure 1 shows the average fitness during the last 1,500 
generations in the three learning conditions. Each of the 
lifetime fitness (right) means the average fitness values of 
COG, COM and FITNESS, respectively, and the innate fitness 
(left) is the fitness value calculated using the genetically 
determined trait values {gi}. We see that each of the three 
fitness on Both learning condition was higher than the 
corresponding ones on No learning condition and Individual 
learning condition. In other words, mutual interactions 
between both individual and social learning facilitated the 
adaptive evolution of cognitive and communicative abilities 
of language. By contrast, if we focus on the innate fitness, 
there were significant differences in their evolutionary process 
between Individual learning and Both learning conditions. 
Each of the three innate fitness on Individual learning 
condition was higher than the corresponding one on No 
learning condition. In other words, individual learning 
facilitated the adaptive evolution of innate fitness. Our 
additional analysis showed that this result can be explained by 
the Baldwin effect (Baldwin, 1896) or genetic assimilation 
(Waddington, 1953) as the component of the Baldwin effect, 
which is expected to be due to the implicit cost of learning. 
However, each of the three innate fitness on Both learning 
condition was lower than the corresponding one on Individual 
condition, showing that the social learning process retarded 
the genetic acquisition of adaptive traits. 

Figure 2 shows the rough trajectory of the population on 
the 3 fitness landscapes in a trial. On the top panel, we see 
that the both fitness gradually increased but there were several 
peaks of the fitness landscape, preventing the increase in the 
fitness. In addition, the difference between the lifetime and 
innate fitness tended to be large, implying that the learning 
process was getting more important to keep the high 
adaptivity. From the comparison between the middle and the 
bottom panels, we can see that the difference in the 
communicative fitness between the lifetime and innate fitness 
tended to be large and variable while the one in the cognitive 
fitness was small and steady. This means that it is more 
difficult for genetic assimilation to occur on communicative 
fitness than on cognitive fitness. This might be because 

dynamic changes in the traits of her partner prevent an 
individual from genetically acquiring the high communicative 
ability while the innate cognitive ability tended to evolve 
stably because it is determined by her own traits. 

Conclusion 

We constructed an extended version of Higashi et al. (2018)’s 
model to clarify how cognitive and communicative abilities of 
language can evolve, based on social and individual learning. 
We found that roles of individual and social learning can 
work complementarily. It is also implied that the stable 
evolutionary process of cognitive abilities is based on 
repeated occurrences of the Baldwin effect and dynamic and 
less assimilated evolution of communicative traits can work 
together, contributing to the evolution of cognitive and 
communicative aspects of language abilities. 
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Figure 2. The rough trajectory of the population on the 3 

fitness landscapes in a trial of Both learning condition. Each 

point represents the fitness value (y-axis) of the best individual 

in terms of co-creative fitness and her average trait value (x-

axis). The innate and lifetime fitness of each individual were 

connected. The color gradation represents the generation (red-

>orange->yellow->blue->purple). 
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Abstract

Bipedal locomotion requires precise rhythm and balance.
Here we demonstrate two fitness-function enhancements ap-
plied to OpenAI’s 3D Humanoid-v1 walking task using a
replica of Salimans et al.’s evolution strategy (Salimans et al.,
2017). The first enhancement reduces control cost, following
a start-up period, and the second enhancement penalises poor
balance. Individually, each enhancement results in improved
gaits and doubles both median speed and median distance
walked. Combining the two enhancements results in little
further improvement in the absence of noise but is shown to
produce gaits that are much more robust to noise in their ac-
tions, with median speed, distance and time two to five times
those of the default and individual-enhancement gaits at an
intermediate noise level.

Introduction
Bipedal locomotion has been the focus of many studies
(Winter, 1991). Its emergence has been associated with en-
durance running and freeing the hands for other tasks such
as tool use (Hewes, 1961; Bramble and Lieberman, 2004).
The main challenges relate to balance and generating cyclic
motion across two limbs to produce a stable gait. In robotics,
bipedal walking is often achieved through zero-moment
point computation (Vukobratović and Borovac, 2004), for
example in evaluating fitness (Fukuda et al., 1997).

Initially, the notable instances of bipedal learning utilised
Central Pattern Generators. CPGs are recurrent neural net-
works that produce rhythmic activity (without requiring
rhythmic inputs) that is typically modulated by descending
or peripheral inputs (Guertin, 2013). Modelled after pat-
tern generators found in human and animal spines, they offer
a biologically inspired solution (Taga et al., 1991; Ijspeert,
2008; Van der Noot et al., 2015). Reil and Husbands used a
genetic algorithm to evolve a CPG’s weights to produce sta-
ble bipedal walking (Reil and Husbands, 2002). Measuring
fitness as distance from the point of origin, they achieved
a 10% stability success rate. This was improved to 80%
through the introduction of an oscillatory bonus in the fitness
function. Reil and Husbands also added sensors to achieve
directional walking. Directional motion was also exhibited

in (Gökçe and Akin, 2010), which used evolution strategies
(Beyer and Arnold, 2001) to optimise CPG-based walking
in simulation and then on real robots.

Following this, DeepMind used reinforcement learning to
train a 3D humanoid model (Tassa et al., 2012), using the
MuJoCo physics engine (Emanuel Todorov et al., 2012), to
produce complex bipedal locomotion (Heess et al., 2017).
A distance-based reward function and policy-based gradient
descent learning were used in incrementally complex envi-
ronments to produce behaviours. The humanoid agents were
able to demonstrate running, crouching, jumping and turn-
ing behaviours, the most notable successful model to date.

Salimans et al. (OpenAI) evolved walking gaits for the
MuJoCo 3D Humanoid-v1 environment in OpenAI Gym
(Tassa et al., 2012; Brockman et al., 2016) using an evolution
strategy (Salimans et al., 2017). The architecture described
in their paper was a multilayer perceptron with two 64-unit
hidden layers (using tanh units) mapping 376 inputs to 17
joint torques. In each iteration, many episodes were run us-
ing random parameter perturbations to test the robustness of
the current strategy. The strategy parameters for the next
iteration were then updated based on the calculated gradi-
ent estimate of the combined episode results. This produced
successful biped neurocontrollers in as little as ten minutes,
using 1440 CPU cores.

Subsequently, Petroski Such et al. (Uber AI Labs) used
a genetic algorithm on the same problem (3D Humanoid-
v1), using two 256-unit hidden layers (matching the con-
figuration file included in the source code released by Sali-
mans et al.), achieving success on this task but noting that
their GA “took 15 times longer to perform slightly worse
than ES” (Petroski Such et al., 2018). They also noted that
(while only just qualifying as a deep neural network, having
more than one hidden layer) this network contains approxi-
mately 167k parameters, orders of magnitude greater than
the previous largest neural networks evolved for robotics
tasks. They encoded these parameters using a novel method
that stores, for each genotype, an initialization seed and a
list (that grows with each mutation) of random seeds used
to generate mutations to the vector of parameters. They
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Figure 1: The Humanoid-v1 walker used in this and previous
work (Salimans et al., 2017; Petroski Such et al., 2018; Conti
et al., 2018).

also applied a weighted novelty-search version of the ES,
which was able to produce high scores in a deceptive envi-
ronment that required the humanoid to walk around a trap
(Conti et al., 2018) and demonstrated that ES is more robust
to parameter perturbation in the humanoid locomotion task,
than both their GA and Trust Region Policy Optimization
(Lehman et al., 2018).

In this paper we report on two enhancements that en-
able Salimans et al.’s evolution strategy, using two 256-unit
hidden layers, to produce populations of 3D Humanoid-v1
agents (figure 1) that walk further and faster and exhibit
novel gaits with much increased robustness to the addition of
noise to actions. We also report on the interaction between
the two enhancements and how they overcome the difficulty
of the task.

Methods
The methods featured here are applied to a replica of Sal-
imans et al.’s evolution strategy, which was already capa-
ble of producing gaits that move 3D Humanoid-v1 agents
quickly and efficiently enough to pass the humanoid walk-
ing task. The humanoid walker’s goal is to travel (in any
direction) as fast and efficiently as possible, failing when its
torso falls below (or above) a certain height. Fitness is de-
fined as the sum (over time) of four rewards/penalties that
are computed at each timestep: a reward for linear veloc-
ity, a control cost based on energy expended, a cost based
on how hard the humanoid impacts the ground, and a re-
ward for standing. Our methods aim to improve average
speed, distance travelled and episode duration (time). We
also aim to improve robustness to noise in the application of
actions. Each permutation of enhancements (and the default
base-case) was run 20 times, each for 600 iterations (gen-
erations). The standard evolution strategy was used due to

its superior performance (see above). As mentioned above,
the architecture maps 376 inputs (humanoid state variables:
position, rotations, velocities, forces and inertia values) to
17 joint torques, from which we conclude approximately
30k parameters (weights and biases). Each set of 20 runs
took around three days to evolve using 40 CPU cores. Each
episode (walker fitness evaluation) was limited to a maxi-
mum of 1000 timesteps.

Fitness Function Enhancements
Fitness is the sum (over time) of four rewards/penalties that
are computed at each timestep: a reward for linear velocity,
a control cost based on energy expended, a cost based on
how hard the humanoid impacts the ground, and a bonus for
having not failed:

r = linvel − contcost− impcost + alivebonus

Even in the default case, without any enhancement, this led
to the evolution of fast, efficient walking in line with previ-
ous results. The impact cost prevented hopping behaviours.
However, a considerable number of evolved gaits involved
a shuffling motion. These walkers slid along the floor with
small movements of their feet.

Control-cost enhancement The first enhancement em-
ployed involved reducing the control cost within the fitness
function. To encourage gaits that use more motion in novel
ways, we applied a scalar multiplier to the control cost term,
allowing for new behaviours at the cost of generating less
efficient walkers (when the multiplier is below 1). This mul-
tiplier can be applied throughout each simulation episode or
from a set timestep during each simulation episode. The
latter was thought to be potentially beneficial as the gaits
evolved typically have a “catch” phase in which walkers
align themselves from the starting position into cyclic mo-
tions, which can be disrupted by a low control cost. The aim
of this set of runs was to produce novel gaits with longer
walks by reducing the control cost in the fitness function.

Balance enhancement The second enhancement em-
ployed was a fail condition involving the balance of the
walker. In the original system, balance is described as the
walker’s torso’s center’s vertical (z-) component being out-
side the range of 1-2 simulation units. To improve walkers’
episode durations (walking times) an additional constraint
was introduced for the x- and y-dimensions, to terminate
walkers with less upright postures. If the torso’s center of
mass moved outside a circle centered at the midpoint be-
tween the walker’s two feet (each projected down to the
ground plane) then it was considered a failure. The circle’s
radius is set as a multiple of the current distance between
the midpoint and (either) foot. The radius-multiplier can be
chosen to give a more or less tight constraint. The aim of
this set of runs was to produce novel gaits with longer walks
through stricter balance enforcement.
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Combined enhancement The two enhancements were
also combined, using the most successful parameters
(control-cost multiplier and its delay, and balance-circle
radius-multiplier) for each. The aim of this was to test if
such a combination would achieve superior results.

Robustness to Action Noise
The MuJoCo 3D Humanoid-v1 environment contains a pa-
rameter for the standard deviation (ac noise std) of Gaus-
sian noise to be added to the actions taken by walkers. To
test the robustness of the evolved gaits, we evaluated evolved
walkers with noise levels (ac noise std) from 0 (no noise)
to 1, in order to observe the degradation of each major met-
ric (average speed, distance travelled and episode time) until
the walkers no longer achieved (lengths long enough to be
typical of) stable gaits. The aim of this was to test whether
or not the combined enhancement would result in more ro-
bust gaits, i.e. gaits with higher values in these metrics at
higher levels of noise.

Results
Control-cost enhancement
Figure 2 shows the results for the default (d, no-
enhancement) evolved behaviours and for walkers evolved
with a control-cost multiplier of 0.25. 0.25 was chosen due
to its promising results from initial testing of several mul-
tiplier values from 0.2 to 5. The multiplier was applied
throughout (xp25) or from timestep 150 (s150, an estimate
of the time at which the successful default gaits were reach-
ing cyclic motion) or from timestep 500 (s500, the halfway
point for a full-length episode). Median speed (averaged
over the time of each evaluation) in the s500 runs was more
than twice that in the default runs, with the former distri-
bution significantly higher than the latter (Mann-Whitney
U=112, n1=n2=20, p<0.05 one-tailed). Median distance
traveled in the s500 runs was also more than twice that in the
default runs, with the former distribution significantly higher
than the latter (Mann-Whitney U=121, n1=n2=20, p<0.05
one-tailed). For time per episode, all medians were the max-
imum value (1000) and no significant difference was found.

Figure 5 includes high-performing gaits produced by
the default and s500 runs, without action noise. The de-
fault runs’ gait (top-left) shows a shuffling behaviour based
around the knee joints. The s500 runs’ gait (top-right) also
shows a shuffling gait using the knee joints but, unlike the
gaits produced by the default, the knees cross over, putting
one leg in front of the other. This improved gait may be due
to reduced importance of keeping energy expenditure low
(at least per timestep rather than per unit distance) once a
walker has reached a cyclic motion.

Balance enhancement
Figure 3 shows the results for the default (d) evolved be-
haviours and for walkers evolved with the balance enhance-

ment, with balance-circle radius-multipliers 1.00 (rp100),
0.75 (rp75), 0.5 (rp50) and 0.25 (rp25). Median speeds in the
rp75 and rp50 runs were more than twice that in the default
runs, with the former distributions significantly higher than
the latter (rp75 Mann-Whitney U=97, n1=n2=20, p<0.05
one-tailed; rp50 Mann-Whitney U=92, n1=n2=20, p<0.05
one-tailed). Median distances traveled in the rp75 and rp50
runs were also more than twice that in the default runs, with
the former distributions significantly higher than the latter
(rp75 Mann-Whitney U=91, n1=n2=20, p<0.05 one-tailed;
rp50 Mann-Whitney U=99, n1=n2=20, p<0.05 one-tailed).
For time per episode, all medians were the maximum value
(1000) except for the rp25 runs, which failed to produce a
successful gait; the rp75 distribution was significantly higher
than the default (Mann-Whitney U=150, n1=n2=20, p<0.05
one-tailed).

Figure 5 includes (bottom-left) a high-performing gait
produced by the rp75 (0.75 radius-multiplier) runs, without
action noise. The walker drags itself forward with one leg
while pumping its arm for momentum, a behaviour previ-
ously unseen in the gaits produced by the default.

Combined enhancement

Figure 4 shows the results for the default (d) evolved be-
haviours, for walkers evolved with the most successful
control-cost and balance-enhancement parameters (s500 and
rp75) and for those evolved with the two enhancements
combined (s500 combined with rp75). Median speed and
median distance in the combined-enhancement were again
more than twice those in the default runs, with the for-
mer distributions significantly higher than the latter (speed
Mann-Whitney U=79, n1=n2=20, p<0.05 one-tailed, dis-
tance Mann-Whitney U=74, n1=n2=20, p<0.05 one-tailed).
No significant increase in median speed or median distance
was found between the s500 or rp75 runs and the combined-
enhancement runs, although all four one-tailed p-values
were below 0.15, suggesting that further runs might be use-
ful to better investigate whether or not there is a significant
difference here; however, it seems unlikely that any differ-
ence in median (between s500 and combo or between rp75
and combo) would be large even if significant. This may be
because the two enhancements work in opposite directions,
in that one is a reduction in control cost, allowing greater
movement, while the other is a restriction on movement. For
time per episode, the combined-enhancement runs matched
the rp75 runs in having all gaits reach 1000 timesteps, al-
though it is possible that increasing the 1000-timesteps limit
could reveal a difference.

In the absence of noise, the highest-performing
combined-enhancement gaits showed no noteworthy
novelties, with all featuring either wide-legged shuf-
fling with no leg crossover or single-leg dragging gaits. An
example of the former can be seen in figure 5 (bottom-right).
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Figure 2: Results for the default evolved behaviours and for walkers evolved with the 0.25 control-cost multiplier throughout,
from 150 timesteps and from 500 timesteps: speed (left), distance (middle) and time (right) for each set of 20 runs.

Figure 3: Results for the default evolved behaviours and for walkers evolved with balance-circle radius-multipliers 1.00, 0.75,
0.5 and 0.25: speed (left), distance (middle) and time (right) for each set of 20 runs.

Figure 4: Results for the default evolved behaviours and for walkers evolved with the 0.25 control-cost multiplier from 500
timesteps, with the 0.75 balance-circle radius-multiplier and with a combination of the two: speed (left), distance (middle) and
time (right) for each set of 20 runs.
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Figure 5: Gaits without noise. Frame order is from left to right and top to bottom. In a high-performing gait from the default
runs (top-left) the biped shuffles by alternating its knees in an unnatural motion. In a high-performing gait from the s500 runs
(0.25 multiplier from 500 timesteps, top-right) the biped puts one leg in front of the other in succession, with a much wider
range than the default’s shuffling behaviours. In a high-performing gait from the rp75 runs (bottom-left) the biped pulls itself
forward on one leg and pumps one arm for momentum, something previously unseen. In a high-performing gait from the combo
runs (bottom-right) the biped shuffles similarly to the default gait, but with a wider spread of the legs. (The darkness at the end
of the figures occurs as the humanoids walk out of the range of the white floor texture.) Videos of these gaits can be found at
https://github.com/KeeleBenJa/bipedal-methods.

Figure 6: Results from scaling action noise from 0 to 1 for the default, 500 delay, 0.75 radial multiplier and combination of the
two: speed (left), distance (middle) and time (right) averaged over each set of 20 runs.
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Robustness to Action Noise
Figure 6 shows the degradation of average speed, distance
travelled and time per episode with increasing levels of ac-
tion noise. The combined-enhancement runs were much
more robust to action noise than the default, particularly
around noise=0.4. The rp75 and s500 runs produced inter-
mediately robust gaits (i.e. more so than default but less so
than for the combined-enhancement) at low levels of action
noise but performed no better than default at medium to high
levels of noise.

Figure 7 provides a closer look at the noise results at the
0.4 level, at which the combined-enhancement runs exhib-
ited consistently superior results. In contrast to the without-
noise results, the combined-enhancement results now show
large, statistically significant improvements over the individ-
ual control-cost and balance enhancements. Median speed
in the combined-enhancement runs was more than twice that
in the default runs and the combined-enhancement distribu-
tion was significantly higher than the default runs (Mann-
Whitney U=79, n1=n2=20, p<0.05 one-tailed), the s500
runs (U=130, p<0.05 one-tailed) and the rp75 runs (U=99,
p<0.05 one-tailed). Median distance in the combined-
enhancement runs was more than twice that in the default,
s500 and rp75 runs, and the combined-enhancement distri-
bution was significantly higher than the default runs (Mann-
Whitney U=53, n1=n2=20, p<0.05 one-tailed), the s500
runs (U=88, p<0.05 one-tailed) and the rp75 runs (U=70,
p<0.05 one-tailed). Median episode time in the combined-
enhancement runs was also more than twice that in the de-
fault, s500 and rp75 runs, and the combined-enhancement
distribution was significantly higher than the default runs
(Mann-Whitney U=67, n1=n2=20, p<0.05 one-tailed), the
s500 runs (U=74, p<0.05 one-tailed) and the rp75 runs
(U=62, p<0.05 one-tailed).

Figure 8 shows the four previous high-performing gaits
under noise level 0.4. The default (top-left), s500 (top-
right, 0.25 control-cost multiplier from 500 timesteps) and
combined-enhancement (bottom-right) runs produced simi-
lar gaits to figure 5 but with much wider motions, flailing
limbs more. The rp75 (bottom-left, 0.75 radius-multiplier)
gait arches the walker’s back a little more but otherwise re-
mains more stable, continuing to pump its arm.

Conclusions
Two fitness-function enhancements were tested to assess
their affects on the speed, distance and duration of 3D
Humanoid-v1 walks evolved using a replica of Salimans et
al.’s evolution strategy (Salimans et al., 2017). The first
enhancement was to reduce control cost within the fitness
function. When control cost was reduced to a quarter of
the default, from the 500th timestep (the halfway point for
a full-length episode), median speed and median distance
both doubled. The most notable gait produced using this en-
hancement had a more pronounced stance and swing phase,

putting one leg in front of the other in a clearer fashion than
any gait produced using the default fitness function.

The second enhancement was a balance enhancement, ter-
minating walking when the torso’s center of mass moved
outside a circle centered at the midpoint between the
walker’s feet. When the circle’s radius was 0.75 times cur-
rent distance between the midpoint and (either) foot, me-
dian speed and median distance both doubled. In the most
notable gait produced using this enhancement, the walker
drags itself forward with one leg while pumping its arm for
momentum, a behaviour previously unseen in the gaits pro-
duced by the default fitness function.

The two enhancements were also combined, using the
most successful parameters for each (as above). Me-
dian speed and median distance were again double those
in the default runs. However, there was little difference
in these medians between the combined-enhancement and
individual-enhancement runs and, in the absence of noise,
the combined-enhancement gaits showed no noteworthy
novelties.

To test the robustness of the evolved gaits, we evaluated
evolved walkers with the addition of noise to their actions.
The combined-enhancement gaits were much more robust to
action noise than the default. The individual-enhancement
gaits were intermediately robust at low levels of action
noise but performed no better than default at medium to
high levels of noise. In contrast to the without-noise re-
sults, the combined-enhancement gaits showed large, statis-
tically significant improvements over those from the indi-
vidual control-cost and balance enhancements, with median
speed, distance and time two to five times those of the de-
fault and individual-enhancement gaits. This shows that the
two enhancements synergise well to produce gaits that are
robust to noise in their actions.

Future work will include further investigation into the rea-
son for the large improvements exhibited by the combined-
enhancement gaits in the presence of action noise, in con-
trast to the without-noise results. Removing or increas-
ing the 1000-timesteps episode time limit would help to
establish how much further the combined-enhancement
can improve results, with and without noise. This will
also help in establishing an upper bound for the op-
timal delay for the control-cost enhancement. Ope-
nAI have ported the Humanoid walking task (and other
tasks) from MuJoCo to the open-source Bullet Physics
Engine and added more challenging tasks involving run-
ning toward a flag (https://openai.com/blog/roboschool/
https://github.com/openai/roboschool). Despite the emer-
gence of improved locomotive gaits, the resulting controllers
do not yet produce gaits as lifelike as that demonstrated in
(Reil and Husbands, 2002), or achieve as complex behaviour
as that demonstrated in (Heess et al., 2017). We intend
to evaluate our individual and combined enhancements on
these more challenging tasks and to investigate the use of
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Figure 7: Results with action noise=0.4; for the default evolved behaviours and for walkers evolved with the 0.25 control-cost
multiplier from 500 timesteps, with the 0.75 balance-circle radius-multiplier and with a combination of the two: speed (left),
distance (middle) and time (right) for each set of 20 runs.

Figure 8: Gaits with noise = 0.4, from the controllers shown (without noise) in figure 5. Frame order is from left to right and
top to bottom. In the default-runs gait (top-left) the biped shuffles by alternating its knees in a more erratic way than before.
In the s500-runs gait (top-right) the biped still puts one leg in front of the other, but much more loosely. In the rp75-runs gait
(bottom-left) the biped uses one arm for momentum and is not affected too heavily by the noise, only bending its back more.
In the combo-runs gait (bottom-right) the biped shuffles on its knees with a wide stance, making more flailing motions than
previously. (The darkness at the end of the figures occurs as the humanoids walk out of the range of the white floor texture.)
Videos of these gaits can be found at https://github.com/KeeleBenJa/bipedal-methods.
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deeper networks in all of these tasks.
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Abstract

Agents exhibiting generalized control are capable of solv-
ing a theme of related tasks, rather than a specific instance.
Here, generalized control pertains to the locomotive capacity
of quadrupedal animats, evaluated when climbing over walls
of varying height to reach a target. In prior work, we showed
that Lexicase selection is more effective than other evolu-
tionary algorithms for this wall crossing task. Generalized
controllers capable of crossing the majority of wall heights
are discovered, even though Lexicase selection does not sam-
ple all possible environments per generation. In this work,
we further constrain environmental sampling during evolu-
tion, examining the resilience of Lexicase to the impover-
ished conditions. Through restricting the range of samples at
given points in time as well as fixing environmental exposure
over fractions of evolutionary time, we attempt to increase
the ‘adjacency’ of environmental samples, and report on the
response of the Lexicase algorithm to the pressure of this
reduced environmental diversity. Results indicate that Lex-
icase is robust, producing viable agents even in considerably
challenging conditions. We also see a positive correlation be-
tween the number of tiebreak events that occur and the suc-
cess of individuals in a population, except in the most limiting
conditions. We argue that the increased number of tiebreaks
is a response to local maxima, and the increased diversity re-
sulting from random selection at this point, is a key driver
of the resilience of the Lexicase algorithm. We also show
that in extreme cases, this relationship breaks down. We con-
clude that tiebreaking is an important control mechanism in
Lexicase operation, and that the breakdown in performance
observed in extreme conditions indicates an inability of the
tiebreak mechanism to function effectively where population
diversity is unable to reflect environmental diversity.

Introduction
Generalized control remains a challenge in the field of
robotics. Systems must be capable of addressing a task
broadly, rather than solve only specific environmental con-
figurations. In this paper, we use a wall crossing task, see
Figures 1 and 2, wherein an agent is presented with a navi-
gation target placed on the opposite side of a wall. It must
then locomote over the obstacle and reach the target within
a fixed amount of time. The wall height varies between
environments, with 100 different gradations challenging a
controller to learn the general task of ‘locomotion with wall
crossing’.

Figure 1: Neurocontrollers evolve to produce gaits that
guide the quadrupedal animat (left) across a wall (center)
and towards a target, represented by the box (right). Graphic
originally presented in Moore and Stanton (2018)

.
In previous work (Moore and Stanton, 2018), we demon-

strated evolved artificial neural network (ANN) controllers,
generalized across different wall heights, using the Lexicase
selection algorithm originally proposed by Spector (2012).
We primarily focused on performance of the evolved agents,
identifying a set of parameters for Lexicase that promote ef-
fective controllers. Even though there are 100 wall heights,
simulating agents across 10 unique wall heights per gener-
ation was sufficient to evolve generalized behavior. From
these results, we speculated that that the advantages of Lex-
icase (aside from the exposure of species to a heterogeneous
set of environments over evolutionary time) are due to au-
tomatic maintenance of population diversity facilitated by
tiebreak events occuring as part of the selection process.
During an individual selection event in Lexicase, a tiebreak
occurs when two or more individuals have similar perfor-
mance in all environments used in the selection event. A
random selection is then performed choosing a parent from
the set of tied individuals.

In this study, we attempt to elucidate characteristics of
Lexicase that govern its behavior in extreme situations. This
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Figure 2: Schematic of robot and wall, illustrating relative
sizes. Wall is shown at maximum height; robot leg shown at
initial position (black) and at leg–torso joint extremes (gray).

allows us to identify areas where generalized task perfor-
mance by evolved controllers begins to break down. Specifi-
cally, we use two restrictions to alter key aspects of the Lex-
icase algorithm. First, we constrain the sampling range of
environments (i.e. wall heights) used to evaluate individu-
als within a generation. This increases adjacency, that is,
the difference in wall height between environments chosen
during selection. We hypothesize that this will hinder the
generalizability of controllers as adjacency might also play
a role in the success, or failure, of individual runs. Second,
we limit how often over evolutionary time we reposition our
sampling range, forcing populations to experience a limited
subset of the 100 total wall heights for a number of consec-
utive generations.

Results show that in this task, even with fairly significant
restrictions, Lexicase selection is still a resilient evolution-
ary algorithm. Most treatments are able to evolve at least
some level of generalization with performance degrading as
stronger restrictions are placed on Lexicase selection. There
is a positive correlation in the number of tiebreaks and per-
formance of the best individual for a given replicate. Al-
though Lexicase does well to preserve mean population di-
versity, in this task, it does not appear to drive generalization
performance across treatments.

Background
Evolutionary robotics (ER) optimizes robotic systems by
employing concepts from biological evolution in a digi-
tal system (Nolfi and Floreano, 2000). ER has been em-
ployed across robotic systems to optimize both body struc-
ture alone (Auerbach and Bongard, 2010; Cheney et al.,
2013; Collins et al., 2018) or together with control (Jelisav-
cic et al., 2018; Kriegman et al., 2018). Evolved robots have
been transferred to reality (Ruud et al., 2016) although the
reality gap remains a persistent issue (Stanton, 2018; Koos
et al., 2010; Jakobi, 1998). While enhancing performance
of systems is often the primary goal, one outstanding area is
quantifying the impact that different components of a robotic
system (Powers et al., 2018), or the underlying evolutionary
algorithm (Dolson and Ofria, 2018), have on evolved sys-
tems.

Lexicase selection was originally introduced for many-
objective problems in genetic programming by Spector
(2012) where it has been effective on a variety of prob-
lems (Helmuth et al., 2014). By replacing traditional selec-
tion methods in a genetic algorithm, Lexicase uses a variable
number of objectives to perform selection between individ-
uals. One of the potential strengths for Lexicase selection
is its influence on population diversity, as proposed by Hel-
muth et al. (2016). In addition, Lexicase may also preserve
specialists in the population as originally noted by Pantridge
et al. (2018). An overview of the Lexicase selection algo-
rithm and our specific modifications for this paper are de-
scribed in the next section.

Methods
The animat, simulation environment, and wall-crossing task
are continuations of previous work originally reported with
respect to Lexicase selection in Moore and Stanton (2017).
Specific design parameters are detailed in that work and its
references. Here, we report our animat’s genome parameters
and simulation configuration for completeness.

Animat Figure 1 shows the quadrupedal animat in the
wall crossing environment, and Figure 2 shows a schematic
of the animat and obstacle to illustrate relative proportion.
The torso is a cube with four legs, each placed at a cor-
ner. Hip joints can swing both horizontally and vertically.
Knees move only on one axis allowing for flexion and ex-
tension. Table 1 shows the physical dimension, mass, and
joint ranges for the animat.

Torso Dimension 0.2 × 0.2 × 0.2

Leg Component Dimension 0.075 × 0.05 × 0.05

Torso Mass 2.0

Leg Component Mass 0.5

Hip Vertical Axis range [−π
4 ,

π
4 ]

Hip Horizontal Axis range [0, π2 ]

Knee Horizontal Axis range [0, π2 ]

Max Torque 0.125

Table 1: Physical parameters of robot. Adapted from Moore
and Stanton (2017, 2018).

Controllers are feed-forward ANNs with one output per
leg motor. Each ANN output specifies a joint angle trans-
lated to motion using a Proportional Derivative (PD) con-
troller (Reil and Husbands, 2002) which calculates a torque
to apply to a joint for the given timestep based on Equation 1,

T = ks × (θd − θ) − kdθ̇ (1)

where T is torque, ks and kd are spring and damper con-
stants, θd is the ANN output angle, θ the present joint and θ̇
the angular change from the last timestep. ks = kd = 0.5.

2
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Figure 3: Five separate sampling widths are explored. The process of selecting environments proceeds as follows: 1. Pick a
midpoint within the range of environments such that the maximum and minimum environments from the midpoints stay within
the range of 0 to 100 exclusive. 2. The midpoint establishes the minimum and maximum wall heights that can be sampled for
use in the Lexicase selection event.

Simulation The Open Dynamics Engine (ODE) (Smith,
2013) version 0.15.2 was used. ODE is a real-time rigid
body physics engine handling the interaction between com-
ponents of the animat, as well as interactions with the ground
and wall.
Wall Crossing Task The goal for an individual is to reach
a target placed on the opposite side of a single wall from
the animat’s starting position. Animats must thus evolve a
legged gait to move towards a target as well as an ability to
cross a wall. Wall height is fixed within a simulation, but can
be chosen from a range of 100 possible wall heights. The
height is determined by the specific sampling determined by
the Lexicase algorithm, described in the next section.

Controller effectiveness is characterized as one of five
possible behaviors: (1) reached target, (2) crossed wall, (3)
stuck on wall, (4) reached wall, and (5) did not reach wall.

Evolutionary Algorithm and Lexicase Selection Lexi-
case selection is applied to a subset of individuals sampled
from the overall population between generations. To com-
pare individuals, an objective is selected randomly within
the subset ranked by performance. If two or more individu-
als are tied, selection moves on to the next objective only on
the subset of tied individuals. If multiple individuals remain
after all objectives have been used, a random selection is ap-
plied to the remaining individuals and recorded as a tiebreak
event. For a full description of the Lexicase selection al-
gorithm employed in this paper refer to Moore and Stanton
(2017).

Originally proposed for GP, Lexicase selection only con-
sidered two individuals to be tied in an objective if they were
exactly equal. Moore and McKinley (2016) introduced a
fuzz factor to ease the consideration of ties to include indi-
viduals who are within a specified threshold of performance.
La Cava et al. (2016) concurrently proposed ε-Lexicase se-
lection as an improvement for real-valued objectives. For
continuity with our previous work, in this paper we use a
fuzz factor of 10%, that is two individuals are tied if one
individual is within 10% of the performance of the other.
Ongoing work by others however should use the ε-Lexicase
terminology.

Sampling Width Figure 3 shows the various widths em-
ployed for sampling in this strategy. Treatments use widths
of 0.1, 0.25, 0.5, 0.75, and 1.0. For example, 0.1 width al-
lows for environments to be sampled within a range of 10
environments whereas 0.75 width allows sampling from 75
environments. The process of selecting environments within
a given width proceeds as follows.

1. Select a midpoint within the range of 0 - 100 that will not
cause the minimum or maximum of the width to exceed
the range of environments.

2. Midpoint establishes the minimum and maximum.

3. Sample n environments uniformly from within the range
according to the number of environments specified by the
treatment. (n = 10 in this paper.)

Figure 3 shows how a range could be specified for the 0.25
width. A midpoint of 60 establishes a range of 47-72 (float-
ing point numbers are rounded down). A number of environ-
ments are then sampled from within this range establishing
the objectives for Lexicase within that generation.

Monte Carlo Simulation of Sampling Figure 4 plots the
expected sampling frequency of various widths and 10 envi-
ronments for evaluation within a generation if the midpoint
were randomly selected each generation. Each pair of width
plots consists of 5000 distinct sampling events with 10 en-
vironments selected per sample. As the sampling width in-
creases, the distance between selected wall heights increases
presenting agents with a larger variety of wall heights. We
hypothesize that this will help increase generalizability.

Measuring Diversity We quantify diversity by calculating
the mean genotype for a population every generation with
the following equation from (Moore and Stanton, 2018):

Ggene =
1

P

P∑

i=1

Igenei (2)

, where G is the mean genotype, P is the population size,
and I li is the lth gene of the ith individual). The gene-wise
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Figure 4: Simulation of 5000 sampling events per each of the sampling widths conducted in this study. Each sampling event
draws 10 environments uniformly within a given sampling range discussed previously in Figure 3. Top row shows the average
distance between wall heights (adjacency) in a sample. Bottom row shows the raw frequency that each wall height is sampled.

mean squared difference of each individual from the genera-
tions’s mean individual is calculated. This quantity is calcu-
lated for each individual, summed and averaged across the
population. The value is then compressed to a single re-
portable measure in the following:

D =
1

P

P∑

i=1

[ 1

L

L∑

l=1

(I li −Gl)2
]

(3)

where D is the diversity value and L is genotype length).

Treatments In prior work (Moore and Stanton, 2018), we
sampled between 1 and 20 environments per generation to
use in the Lexicase selection process. Results indicated that
the range of 5 to 10 environments are optimal for this task.
Therefore, all treatments conducted in this study simulate
agents in 10 environments per generation. This also cuts
down on simulation time when evolving individuals as we
only need to simulate 10 out of 100 possible environments to
evaluate individuals in a selection event. Treatments consist
of 20 replicate runs, each initialized with a random starting
seed. Each replicate is evolved for 5,000 generations with a
population size of 50 individuals.

Treatments are defined by two factors. First, there are five
separate sampling widths (0.1, 0.25, 0.5, 0.75, and 1.0) de-
scribed in the previous sections. Second, the midpoint of
a sampling width is moved according to a specified brak-
ing interval. Possible intervals are 1, 2, 5, 10, 100, 500,
2500, and 5000 generations. For example, a braking interval
of 5 generations (abbreviated as 5B) means that we select
a midpoint that establishes the sampling range for the next
5 generations. A new set of environments are sampled ev-
ery generation, however, braking effectively limits how of-
ten the midpoint moves around the wall height space. Some
limiting of moving the midpoint might encourage a popu-

lation to specialize on a specific range of environments at
the expense of not being exposed to other areas of the wall
height space. At the conclusion of a braking interval, we
then move the sampling range by selecting a new midpoint
and evolving for another 5 generations. This process repeats
until 5000 generations have elapsed. Once the evolution-
ary phase is complete, each individual in each population
is evaluated in each environment (wall height), and these re-
sults are recorded to gauge the generalizing capability of that
particular controller.

Experiments and Results
The focus of this investigation is on aspects of Lexi-
case selection that enable generalized control. In prior
work (Moore and Stanton, 2017, 2018) we have shown that
Lexicase selection is an effective evolutionary algorithm for
agents in this problem domain. Our results therefore are not
centered on the question of “whether Lexicase can evolve
effective individuals” but rather “which aspects of Lexicase
selection might affect performance”.

Generalization We first examine the generalizability of
the best individual per replicate per treatment across the 100
environments. Figure 5 plots the average performance of the
best individual per treatment grouped by sampling width.
Lower wall heights are not a challenge for any of the treat-
ments as indicated by the brighter shading associated with
wall crossing and reaching the target. Narrower widths and
higher braking intervals also appear to have more individu-
als reach the objective attaining the highest fitness possible
in these low wall heights compared to the 1.0 and 0.75 width
treatments. We hypothesize that there may be an evolution-
ary pressure in these treatments to evolve highly effective
behavior in the low wall heights to compensate for the gen-
erally poor performance in the higher walls.
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Figure 5: Average performance of the best individual per replicate by treatment during validation in each of the 100 environ-
ments. Treatments are grouped by the sampling width. Wall heights increase from left to right. Braking strategy increases from
bottom to top in each width subgroup.

There is a decline in performance for wall heights above
50 with many treatments not able to cross the wall. Although
the highest wall heights appear difficult for any treatment,
the 1.0 sampling width group has the broadest generaliza-
tion. As sampling width narrows, there is a subsequent de-
cline as higher wall heights are more challenging. Physically
these wall heights would be the most imposing for the ani-
mat, requiring gaits that lift the legs substantially to cross
the wall.

In terms of sampling widths, 0.75 is not significantly dif-
ferent using a Wilcoxon rank-sum pairwise test compared to
1.0 counting the total number of successful wall crossings
across wall heights for the best individual per replicate. As
shown in Figure 4, sampling widths of 0.75 can still be ex-
pected to sample environments between 20 and 80 fairly uni-
formly. Generalizability declines in narrower widths (0.1,
0.25, 0.5), more drastically as the braking interval increases.
The sum of the successful wall crossings for the best indi-
vidual per replicate during validation for 0.25 and 0.1 sam-

pling width are significantly different than the 1.0, 0.75, and
0.5 sampling widths across braking intervals. The two fac-
tors of narrow sampling widths and long intervals evolving
in the same range of environments prevent populations from
evolving on a wide range of wall heights, apparently hinder-
ing generalizability.

Tiebreaks Figure 6 plots the number of tiebreaks in a
replicate versus the count of wall heights with the target
being reached for the best individual per replicate grouped
by treatment. Within a specific braking regimen, treatments
show a general increase in the number of tiebreaks as sam-
pling width narrows. For the same sampling width this does
not hold, as the number of tiebreaks does not vary due to the
braking regimen. Observing the figure, it appears that there
is generally a positive correlation between the number of
tiebreaks and the total wall heights an individual solves for
smaller braking values (1B, 2B, 5B, 10B, 100B) and wide
sampling widths (1.0W, 0.75W, 0.5W). This begins to break-
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Figure 6: Number of tiebreaks in a replicate versus the number of environments where the best individual per replicate reached
the objective, across treatments. Each sub-plot shows 20 replicates.
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Figure 7: Mean population diversity across 20 replicates per
treatment for the 500 braking treatments over evolutionary
time.

down, becoming almost random, in the lower right plots as
the combination of high braking and narrow width push the
Lexicase algorithm to its limit. Here, the limited range of en-
vironments and lack of moving the sampling range restrict
the total number of environments that a population is ex-
posed to. Thus, individuals become specialized rather than
evolving toward generalized performance.

Diversity Figure 7 plots the mean population diversity
across replicates for the 500 braking interval treatments.
Trends shown in this plot are similar for the other braking
intervals. For widths 1.0, 0.75, and 0.5 there is no differ-
ence in mean population diversity. Mean population di-
versity is generally higher for widths 0.25 and 0.1. This
trend holds for all braking intervals with a clear difference
in mean diversity between (1.0, 0.75, 0.5 widths) and (0.25/,
0.1 widths) that increases as the braking interval lengthens.
We surmise that this is due to the reduction in environments
that individuals are exposed to over evolutionary time. We
note that in evolutionary algorithms, an increase in diversity
is unusual where individuals are unable to discover regions
of higher fitness and that normally the converse is true.

In terms of mean population diversity predicting general-
ization performance of the best individual per replicate we
do not observe any relationship. Instead, mean population
diversity tends to fall in the range of 6-8, with low varia-
tion in small braking intervals or wide sampling widths. As
the sampling widths narrow and braking intervals increase,
mean population diversity tends to increase as well as the
variation between replicates. However, no positive or neg-
ative correlation exists between mean population diversity
and generalizability of the best individual per replicate. This
clarifies one open question that we had raised in Moore and
Stanton (2018), where we hypothesized that diversity might
predict performance. We do note however, that for all treat-
ments, mean population diversity still falls in the range of
6-8, consistent with earlier results.

Conclusions and Future Work
In prior work, we identified ‘good’ parameter configurations
that show Lexicase selection is the preferred algorithm for
this task across a number of different algorithms investi-
gated. Here, we identify specific factors and characteristics
of the Lexicase algorithm that do, and do not, lead to gen-
eralized behavior on the wall crossing task. While there is a
degradation in generalization performance as braking inter-
vals increase and sampling widths narrow, Lexicase is still
quite resilient. Even the lowest generalization treatments
still on average are successful at crossing the wall in 60 en-
vironments.

Tiebreaks are a mechanism to add a random selection
event during evolution. Tiebreak events occur due to mul-
tiple individuals being considered equal in the wall heights
used during selection. When looking at generalization per-
formance, there is a positive correlation between the num-
ber of tiebreaks over evolutionary time and generalization
performance of the best individual per replicate until the
restrictions placed on Lexicase become too strong. The
correlation then disappears. As the sampling widths nar-
row, and braking increases, we see tiebreaks rise due to the
higher adjacency of wall heights, see top of Figure 4. In
these restricted treatments, populations are exposed to nar-
row ranges of wall heights which are likely highly related.
From our results, it appears that some number of these ran-
dom selection events are beneficial when Lexicase is rela-
tively unhindered. Whereas, mean population diversity does
not appear to be a predictor of performance.

In future work, we plan to continue pursuing questions re-
garding the underlying factors that make Lexicase selection
effective. We plan to further expand the range of tasks an
animat is evaluated in to include those that are not themat-
ically related. That is, multiple tasks versus variations on a
similar themed task.
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Abstract

Animals interact with their environment softly through inter-
action of muscles, tendons, and rigid skeleton. By incorporat-
ing flexibility, they reduce ground impact forces and improve
locomotive efficiency. Flexibility is also beneficial for robotic
systems, although it remains challenging to implement. In
this paper, we explore the addition of passive flexibility to a
quadrupedal animat; we measure the impact of flexibility on
both locomotive performance and energy efficiency of move-
ment. Results show that spine and lower limb flexibility can
significantly increase distance traveled when compared to an
animat with no flexibility. However, replacing passively flex-
ibile joints with actively controlled joints evolves more effec-
tive individuals with similar efficiency. Given these results,
the number of joints and joint configuration appear to drive
performance increases rather than just the addition of passive
flexibility.

Introduction
Animals exhibit a remarkable ability to adapt locomotion
to varying conditions. Gaits are driven by responses from
the central nervous system and the morphology of the or-
ganism itself. Often, characteristics of the musculoskeletal
system, such as elasticity of the tendons, contribute to their
movements. For example, Alexander and Vernon (1975)
found that large hind limb tendons in kangaroos and walla-
bies allow them to efficiently conserve energy during loco-
motion. Muscle-tendon systems in bipeds and quadrupeds
act as energy storage contributing to running gaits in verte-
brates (Alexander, 1984) while the spine has been shown to
conserve energy during galloping (Alexander et al., 1985).

Robotic systems typically comprise rigid-body compo-
nents, connected with single degree-of-freedom (DOF) ac-
tuators such as servo motors and linear actuators. These
systems are often bioinspired, drawing upon the morphol-
ogy and behaviors of biological organisms. Mechanical
components, however, lack the flexibility of their natural
counterparts, so compliant components are often added to
these systems. Ackerman and Seipel (2013) added elastic-
ity through springs, reducing the energetic cost of legged
locomotion in a hexapedal robot. Increasing flexibility in
the hexapod damped vertical movement of the torso as com-
pared to a fully rigid-body robot. The addition of a flexi-

ble spine increased locomotive performance in a quadruped
animat (Moore et al., 2015). It remains an open question
whether the performance gains were due to flexibility or the
increase in the DOF in the animat. Would performance in-
crease if we replaced passive components with actively ac-
tuated joints?

In our preliminary study (Moore and Clark, 2018), we
found that additional degrees of freedom improve the walk-
ing speed of our animats. In this paper, we further investi-
gate the differences between passive and active joints, and
we explore the impacts of these configurations on efficiency
as well as speed. We conduct seven treatments with differ-
ent animat configurations. We first examine performance,
based on distance traveled, of a quadruped with legs actu-
ated by hinge joints and no passive flexibility. Next, we in-
crease the flexibility of the animat by adding sliding joints
to the lower limbs (acting as shock absorbers) and a flexi-
ble spine. Finally, we replace the passive sliding joints with
actively controlled hinge joints in the lower limbs, maintain-
ing the DOF but reducing flexibility. We investigate both a
passively flexible and active spine for this new animat.

We find that the addition of passive flexibility, whether it
is in the spine or legs, significantly increases the distance
traveled over a fully rigid-body quadruped. The highest per-
forming platform with passive flexibility includes a flexible
spine and lower limb sliders. Still, replacing flexibility in the
lower sliders with actively controlled hinge joints produces
the furthest distances traveled. The most effective individu-
als across all treatments include both an actively controlled
spine and actively controlled lower hinge joints. Efficiency
does not significantly change between passively flexible and
actively controlled joints. This suggests that while flexibil-
ity can increase the performance of a robotic system, the real
factor for performance increases is likely a combination of
increasing DOF in the animat and joint configurations.

Background and Related Work
In evolutionary robotics (ER) (Nolfi and Floreano, 2000;
Doncieux et al., 2015) both control and morphology of
robotic systems are optimized using concepts derived from
biological evolution. Evolutionary approaches are well
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(a) Base Animat (b) Actuated Spine (c) Flexible Sliders (d) Lower Hinges

Figure 1: Different joint configurations explored in this study. (a) Base quadruped configuration with no sliders on the lower
limbs. (b) Spines can be active or passive with three torso segments connected by two hinge joints. Axis of rotation indicated
on rear spine, circle indicates second spine joint. (c) Flexible sliders on the lower limbs allow for a dampening of interaction
with the ground. Note the compressed slider in the right rear leg compared to the extended slider in the front right leg. Arrows
indicate axis of slider translation. (d) Actively controlled hinge joints on the lowest joint in each limb. Rear right leg indicates
axis of rotation for all lower hinge joints.

suited to problems where an algorithm for deriving the opti-
mal solution is not known a priori (Li and Miikkulainen,
2014). They have proven effective for optimizing con-
trollers in wheeled (Fischer and Hickinbotham, 2011) and
legged (Cully and Mouret, 2013; Stanton and Channon,
2013) systems. Evolutionary algorithms are especially use-
ful when exploring morphology (Funes and Pollack, 1998).
The body plays an important role in movement, performing
an innate control prior to engagement of higher-level con-
trol from the brain (Valero-Cuevas et al., 2007). Auerbach
and Bongard (2010) demonstrated that optimizing brain and
body together produces effective systems exploiting integra-
tion between aspects of morphology and control.

Passive flexibility plays an important role in biological or-
ganisms, helping to reduce the energetic cost of locomotion
by storing energy in spring-like tendons (Baudinette et al.,
1992; Ruina et al., 2005). In robotics, Rieffel et al. (2010)
demonstrated that even in the absence of a higher level con-
troller the spring systems comprising tensegrity robots can
be harnessed to realize locomotion. In traditional rigid-body
robots, compliant joints enable robotic systems to mimic the
passive flexibility of animals (Vanderborght et al., 2013).
Passive compliance in robotic systems improves climbing
ability (Seo and Sitti, 2013) and swimming (Clark et al.,
2014). While augmenting robotic systems with passive flex-
ibility can improve performance, it remains difficult to de-
termine whether it is due to the elasticity itself, or if it is
perhaps the additional DOF added to the system. Evolution-
ary methods coupled with simulation enable exploring many
configurations that would not be practical with physical sys-
tems.

Methods
Simulation Environment The Open Dynamics En-
gine (ODE) (Smith, 2013) is used to conduct simulations.
ODE is a 3D rigid-body physics simulation engine that mod-
els forces such as gravity, friction, and collisions between
objects. Actively controlled actuators include single DOF
hinges and linear motors, among others. In ODE we model

flexibility by connecting rigid-bodies with spring-like joints
that can be active or passive. The environment is a flat, high-
friction surface. Animats are evaluated for 10 seconds of
simulation time with a timestep of 0.005 seconds.

Quadruped Animat The base quadruped animat is shown
in Figure 1a. The torso is composed of three segments con-
nected by fixed joints. Each leg is three segments with hinge
joints at the hip and knee. In the base treatment, the joint
connecting the lowest component to the mid-leg is fixed, ef-
fectively creating a short upper segment and a longer lower
leg segment.

Other animats are derived from the base treatment by
adding a passive or active spine combined with a passive leg
slider or active leg hinge. Figure 1b shows a quadruped ani-
mat with spine joints that are passive or actuated depending
on treatment. Here, we replace the rigid joints in the torso
with hinge joints that actuate along the lateral planes of the
animat. Figure 1c shows the addition of flexible slider joints
between the two lower limb segments. They compress dur-
ing locomotion acting as shock absorbers. In the figure, the
slider on the right rear leg is at maximum compression. Fig-
ure 1d shows a quadruped animat with actively controlled
hinge joints on the lowest joint of each leg.

Controller The controller in this experiment is a conven-
tional sinusoid, and each joint has its own evolved sinusoid
parameters. Joint control signals are determined by the time
of the simulation, evolved control signal modifiers per joint,
and the maximum force output potential for each type of
joint. Equation 1 generates the movement command for a
single joint at each timestep in the simulation.

sin(−2πft+ (2π(φleg + φjoint))) (1)

f is the oscillation frequency common across the joints of
the animat determining how quickly the sine wave oscil-
lates represented by a real-value ranging from 0 to 2, t is
the current simulation time, φleg and φjoint are the phase
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offsets. Phase offsets are one of 16 set values ranging from
0 to 1.875, which corresponds to shifting the phase of the
oscillating signal in 1

8 increments. Each leg has its own
phase offset relative to the common signal (φleg). Each joint
type (e.g. shoulders, elbows, hips and knees) has an offset
as well (φjoint). Together, the two offsets produce common
control signals for the the rear legs and the front legs. Each
leg pair (front and rear) can have a common behavior (spec-
ified by φjoint) that is then shifted temporally by φleg. Thus
a common behavior for the front or rear legs can be out of
phase, similar to walking in animals as symmetry and coor-
dination can evolve between limbs.

We evolve forces acting on the shoulder, elbow, hip, and
knee, allowing for joints to be entirely passive or force lim-
ited. Under this configuration, the oscillating signal sent to a
joint and its maximum force output potential determine the
response of the joint to a command. For example, if a joint
evolves a low force output, it will passively flex under the
force of gravity and not actively assist in locomotion. How-
ever, should the joint evolve a high force output, it will not
deviate from its specified motion even when large external
forces are applied, such as when making contact with the
ground where such forces would typically hinder normal ac-
tuation of a joint.

Passively flexible joints are governed by spring and
damper constraints parameterized in ODE as ERP and CFM.
ERP values evolve in the range of 0.4 to 1.0. CFM values
evolve from 0.0001 to 0.15. Together, the two parameters
specify the stiffness and damping of a joint. In general,
high CFM values and low ERP values result in flexible joints
whereas the opposite lead to stiff joints.

Treatments Seven treatments are conducted in this study.
1. No Sliders (NS) - 8 DOF

Base quadruped animat with no passive flexibility.
2. Flexible Spine, No Sliders (FSpNS) - 10 DOF

Flexible spine, no sliders on lowest joint.
3. Rigid Spine, Flexible Sliders (FS) - 12 DOF

Flexible sliders on lowest joint with a rigid spine.
4. Flexible Spine, Flexible Sliders (FSpFS) - 14 DOF

Flexible spine and sliders.
5. Rigid Spine, Active Lower Hinge (HL) - 12 DOF

Actively controlled hinges on lowest joint with a rigid
spine.

6. Flexible Spine, Active Lower Hinge (HLFSp) - 14 DOF
Actively controlled hinges on lowest joint and flexible

spine.
7. Active Spine, Active Lower Hinge (HLASp) - 14 DOF

Actively controlled hinges on lowest joint and spine.

The first four treatments (NS, FSpNS, FS, FSpFS) eval-
uate varying degrees of passive flexibility in the animat.
NS is the base quadruped with 8 DOF and no flexibility.
FSpNS adds spine flexibility, increasing the DOF to 10.

FS adds flexible lower sliders to each leg while maintaining
a rigid spine. There are 12 DOF in this animat. FSpFS com-
bines both flexible spine and flexible sliders with 14 DOF; 6
DOF more than the base animat configuration.

The final three treatments (HL, HLFSp, HLASp) replace
the lower passive slider joints with actively controlled hinge
joints. HL has a rigid spine and 12 DOF similar to the
FS treatment. HLFSp has a passively flexible spine 14
DOF and the spine configuration of the FSpFS treatment.
HLASp has an actively actuated spine and 14 DOF.

Evolutionary Algorithm For each treatment, we evolve
120 individuals over 4,000 generations using the DEAP
framework (De Rainville et al., 2012) with a conventional
genetic algorithm. DEAP is an open-source framework
implementing many common evolutionary algorithms. 20
replicate runs, each seeded with a unique random number,
are conducted per treatment. Fitness is the horizontal Eu-
clidean distance from the starting point to the center of the
torso after 10 seconds of simulation time. Selection of a par-
ent is performed through a tournament of 4 randomly chosen
individuals. Crossover is performed (two parents selected)
with a rate of 50% and mutation of 4% per gene. An individ-
ual replicate took approximately 5 hours on a Blade system
parallelized across 24 cores and a clock speed of 2GHz.

Genome Table 1 lists the genes in this study. The com-
position of each genome varies depending on the treatment
and is indicated in the right columns of the table. All treat-
ments have 10 genes for generating the control signals and
5 genes for joint forces (back, shoulder, elbow, hip, knee)
described previously. Depending on the combination of
genes included, treatments range in value from 15 (NS) to
23 (FSpFS, HLFSp and HLASp) genes.

Table 1: Genes defining the quadruped animat. “l/r sym”
denotes that left/right symmetry is enforced.

Description Treatments

#
G

en
es

N
S

FS
pN

S

FS FS
pF

S

H
L

H
L

FS
p

H
L

A
Sp

Oscillation Frequency 1 • • • • • • •
Max Joint Velocity 1 • • • • • • •
Phase Offset Per Leg 4 • • • • • • •
Joint Phase Offset (l/r sym) 4 • • • • • • •
Joint Max Force (l/r sym) 5 • • • • • • •
Slider Flexibility (l/r sym) 4 • •
Spine Joint Flexibility 4 • • •
Hinge Phase Offset (l/r sym) 2 • • •
Hinge Max Force (l/r sym) 2 • • •
Active Spine Phase Offset 2 •
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Figure 2: Sample evolved gaits. (Top) Galloping gait evolved in the NS treatment. (Top-Mid) Hopping gait from
the FSpNS treatment. (Bottom-Mid) Bounding gait from the FS treatment. (Bottom) Bounding gait from the FSpFS treat-
ment.

Results
Bounding, galloping, canters, and trots evolve across treat-
ments, and samples of evolved gaits from all treatments can
be seen at https://youtu.be/UCNxJ3pmmkc. Our
analysis focuses on two main questions. First, does a quad-
ruped animat with passive flexibility significantly outper-
form a fully rigid-body animat? If so, what combination
of lower leg slider, spine, or both, leads to the most effective
individual? Second, how does replacing passive joints with
actively actuated hinges alter performance?
Passive Flexibility Figure 2 highlights a few of the gaits
that evolve across the initial treatments. Figure 3 plots
the maximum distance traveled at each generation aver-
aged across twenty replicates per treatment over evolution-
ary time. Shaded regions represent the 95% confidence in-
tervals for each treatment. For reference, the animat’s body
length is 3 units. A fully rigid body animat (NS) yields the
lowest distances traveled. The other treatments show a sig-
nificant improvement over the NS treatment with a flexible
spine (FSpNS) slightly better. Flexible sliders (FS) on the
lower limbs increase distance traveled, with the combination
of spine and slider flexibility (FSpFS) yielding the farthest
traveling individuals.

Figure 4 plots the distribution of the farthest traveling in-
dividual per replicate across the treatments. We conduct the
following statistical tests using a Wilcoxon Rank-Sum Test

Figure 3: Maximum distance traveled across twenty repli-
cates per treatment over evolutionary time for the passive
flexibility treatments. Shaded areas represent the 95% con-
fidence intervals.

performed on the distribution of farthest traveling individual
per replicate for each treatment. Pairwise results across all
treatments can be seen in Table 2. For the two treatments
without sliders, NS and FSpNS, there is no significant dif-
ference in performance (p = 0.07). Whereas both treat-
ments with sliders have significantly higher performance.
FS versus NS (p < 0.01), FS versus FSpNS (p < 0.03),
and (p < 0.01) for FSpFS versus NS and FSpNS. There is
no significant difference between FSpFS and FS (p = 0.08).
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Figure 4: Distribution of the farthest traveling individual per
replicate across the passive flexibility treatments.

It appears that the addition of spine flexibility alone is
not enough to significantly improve locomotive performance
even though two additional DOF have been added to the an-
imat. Although the distance traveled of the best individu-
als for the FS treatment is significantly higher, performance
also varies considerably. Animats with both flexible spine
and flexible sliders exhibit the highest average performance
across these treatments. However, the FSpFS treatment has
6 more DOF than the NS treatment. Differences in per-
formance might not solely be due to flexibility and instead
could be attributed to the possible additional behaviors the
increased mobility allows.

Hinge Joints By replacing the flexible sliders with ac-
tively controlled hinge joints, we address the question of
whether the increase in DOF or flexibility drives perfor-
mance increases. We chose a passive slider and active hinge
as these are the most effective actuator for their respective
control type. Figure 5 shows three variations of bounding
gaits that evolve across the three active lower hinge treat-
ments. Figure 6 shows the maximum distance traveled per
generation over evolutionary time for all seven treatments
conducted in this study. HL has similar evolutionary perfor-
mance as compared to the best of the passive flexibility treat-
ments, FSpFS. The addition of the lower hinge joints, with
spine mobility, produces the farthest traveling individuals
observed. A combination of actively controlled lower hinges
and a passive spine flexibility (HLFSp) outperforms just re-
placing the sliders with hinges while an active spine leads
to the highest average maximum distance traveled across all
twenty replicates.

Figure 7 plots the distribution of the farthest traveling
individual across replicates for all seven treatments con-
ducted in this study. Changing the lower joint from pas-

sive sliders (FS) to actively controlled hinges (HL) does
not significantly increase distance traveled (p = 0.12).
Furthermore, there is no significant difference between
the FSpFS and HL treatments. Alone, actively controlled
hinges don’t generate significant improvements in perfor-
mance compared to the flexible slider treatments. Further
modifying the active lower hinge animat by adding either a
flexible spine (HLFSp) or an active spine (HLASp) does sig-
nificantly improve performance over the flexible slider treat-
ments.

Table 2: Wilcoxon Rank-Sum Test comparing fitnesses of
the farthest traveling individuals per replicate across treat-
ments.

NS FSpNS FS FSpFS HL HLFSp HLASp
NS - = 0.07 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

FSpNS - < 0.03 < 0.01 < 0.01 < 0.01 < 0.01
FS - = 0.08 = 0.12 < 0.01 < 0.01

FSpFS - = 0.88 = 0.01 < 0.01
HL - < 0.01 < 0.02

HLFSp - = 0.10
HLASp -

Performance increases appear to be due to a combi-
nation of the number of DOF and the use of actively
controlled hinge joints versus flexible sliders. The top
two treatments, HLFSp and HLASp, have 14 DOF and
are significantly better than any other treatment. Replac-
ing flexible sliders with a hinge joint does not signifi-
cantly increase performance, but it maintains similar per-
formance to the FSpFS treatment, which has 14 DOF com-
pared to HLs 12 DOF. The two lowest performing treat-
ments, NS and FSpNS, have 8 and 10 DOF, respectively.
Increases in distance traveled for the animat configurations
in this study appear to be influenced more by the DOF, and
addition of actively controlled joints, than the addition of
passive flexibility.
Efficiency Flexibility in natural organisms can lower the
energetic cost of locomotion (Alexander, 1984). In this
study, our sole objective is to maximize distance traveled,
but efficiency might differ between animats because of in-
cluding passive flexibility. We measure efficiency as the dis-
tance traveled divided by the total power expended through
actively controlled joints in an animat. Total power is the
summation of force exerted by each actively controlled joint
at each time step as reported by the physics engine. Passive
joints replicate spring systems and therefore are not included
in the total power calculation. Figure 8 plots the distribu-
tion of efficiency for the farthest traveling individual in each
replicate across treatments. Here, there appears to be little
difference in efficiency. Table 3 lists the pairwise Wilcoxon-
Rank sum tests comparing efficiency between treatments.
While some pairs are significantly different, there is predom-
inantly no significant difference in efficiency across treat-
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Figure 5: Sample evolved bounding gaits from the active hinge joint on lowest limb segment treatments. (Top) HL treat-
ment. (Mid) HLFSp treatment. (Bottom) HLASp treatment.

Figure 6: Maximum distance traveled across twenty repli-
cates per treatment over evolutionary time for all treatments.
Shaded areas represent the 95% confidence intervals.

ments. It appears that a flexible spine, compared to simi-
lar animats that have a rigid, or actively controlled spine,
typically have lower efficiency, but this is only a significant
difference in 1 out of 3 cases (NS vs. FSpNS, p < 0.04).
When evaluating replicates on both efficiency and distance,
we found that the single lowest performing individual is in
the HLASp treatment. However, many of the highest per-
forming individuals are also in the HLASp treatment. No
clear advantage is apparent when passive flexibility is in-
cluded in an animat in terms of efficiency.

Conclusions
In this paper, we investigated the effect of adding additional
DOF to a rigid-body quadrupedal animat in terms of perfor-
mance and efficiency. Adding additional DOF in the form of

Figure 7: Distribution of the farthest traveling individual per
replicate across the treatments. Adapted from Moore and
Clark (2018).

passive flexibility or actively controlled hinge joints signif-
icantly increases performance in terms of distance traveled.
However, efficiency remains unaffected when it is not di-
rectly included as a selective pressure during evolution.

Adding flexibility to the animat in the spine and lower
sliders significantly increases distance traveled versus the
base animat configuration. Animats with both spine and
lower slider flexibility are the farthest traveling individuals
among those with passive flexibility. This result supports
those of earlier works (Seo and Sitti, 2013; Lessin et al.,
2014; Clark et al., 2012) where flexibility aids in the per-

6
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Figure 8: Efficiency of the best individual per replicate
across treatments.

Table 3: Wilcoxon Rank-Sum Test comparing efficiency of
the farthest traveling individual per replicate across treat-
ments.

NS FSpNS FS FSpFS HL HLFSp HLASp
NS - < 0.04 = 0.26 = 0.55 = 0.31 = 0.33 = 0.43

FSpNS - < 0.01 = 0.11 = 0.55 = 0.18 < 0.03
FS - = 0.19 < 0.02 < 0.05 = 0.60

FSpFS - = 0.37 = 0.28 = 0.09
HL - = 0.88 = 0.25

HLFSp - = 0.09
HLASp -

formance of robotic systems. Thus, when building robotic
systems, examining the incorporation of flexible compo-
nents, such as springs, may be worthwhile to increase per-
formance of a rigid-body robot. It also further clarifies and
expands (Moore et al., 2015), in that flexibility is likely not
the sole driver of performance increases, rather, both flexi-
bility and an increase in the DOF positively impact perfor-
mance.

Actively controlled joints lead to even higher performing
individuals across all treatments. Replacing the lower slid-
ing joints with actively controlled hinge joints results in the
three highest performing treatments, out of the seven con-
ducted. Adding spinal mobility in the form of a passively
flexible spine, or actively controlled one, further increases
distance traveled. This suggests that while passive flexibil-
ity improves performance over the base animat in this study,
the increase is likely not due directly to including passive
flexibility. Rather, the increase in DOF drives improvements
in distance traveled.

In terms of robotics systems, incorporating flexibility
could still be beneficial depending on the platform and prob-
lem constraints. Here, we find that including flexibility in-
creases performance over a fully rigid-body robot with no
flexibility. Although active control produces the highest
performing individuals, it may be that a designer does not
want further increases in control complexity nor the addi-
tional hardware (servos, wiring, batteries, etc) required to
coordinate additional actively controlled actuators. Instead,
a controller can use the dynamics of passive joints to im-
prove performance as demonstrated here, and in other work
mentioned previously. Furthermore, passive flexibility may
reduce wear on other mechanical components by dampening
locomotive forces.

Future extensions to this study will investigate how flex-
ibility and active control affect performance in other an-
imat platforms such as hexapods. We plan to introduce
more complex high-level controllers such as artificial net-
works (ANN) to see how these features are integrated in
control logic. Furthermore, we plan to expand the scope
of evolvability in terms of morphological components to
evolve, along with exploring multi-objective algorithms.

Source Code
The source code for running these experiments is pro-
vided at https://github.com/jaredmoore/Evo_
Flex_Quadruped_Code.
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Abstract

Echolocation is the process in which an animal produces a
sound and recognises characteristics of its surrounding - for
instance, the location of surfaces, objects or pray - by listen-
ing to the echoes reflected by the environment. Studies on
robot echolocation can be found in the literature. Such works
adopt active sensors for emitting sounds, and the echoes re-
flected from the environment are thus analysed to build up a
representation of the robot’s surrounding. In this work, we
address the usage of robot ego-noise for echolocation. By
ego-noise, we mean the auditory noise (sound) that the robot
itself is producing while moving due to the frictions in its
gears and actuators. Ego-noise is a result not only of the mor-
phological properties of the robot, but also of its interaction
with the environment. We adopt a developmental approach in
allowing a wheeled robot to learn how to anticipate charac-
teristics of the environment before actually perceiving them.
We programmed the robot to explore the environment in or-
der to acquire the necessary sensorimotor information to learn
the mapping between ego-noise, motor, and proximity data.
Forward models trained with these data are used to anticipate
proximity information and thus to classify whether a specific
ego-noise is resulting from the robot being close to or distant
from a wall. This experiment shows another promising ap-
plication of predictive processes, that is for echolocation in
mobile robots.

Introduction
Echolocation is the process in which an animal produces a
sound and recognises characteristics of its surrounding - for
instance, the location of surfaces, objects or pray - by listen-
ing to the echoes reflected by the environment. This capabil-
ity is typical of animals such as bats, dolphins, and whales.
Bats, for instance, emit sounds in the range of 10-150 kHz
from the larynx and vocal tract, and they perceive the envi-
ronment as acoustic images assembled from information re-
ceived in echoes at the two ears (Simmons and Stein (1980)).

Similar to animal echolocation, blind and sighted people,
after some training sessions, can become capable of echolo-
cation by making sound emissions (Griffin (1944); Kolarik
et al. (2014)). Many studies analyse the capability of blind
individuals to produce sound emissions - for instance by tap-
ping their canes, snapping their fingers or making clicking

noise with their mouths - and to use the returning echoes to
get information about objects in their surroundings. Such
a capability is known as human echolocation. Thaler et al.
(2018) clearly demonstrated that blind and sighted people
experienced in echolocation adjust their emissions - in terms
of intensity and number of clicks - to situational demands,
just like bats.

Echolocation has been studied in robotics as well. Steckel
and Peremans (2013) presented a navigation model which
solves a simultaneous localization and mapping (SLAM)
task with a biomimetic sonar mounted on a mobile robot. In
a more recent study, Eliakim et al. (2018) built a terrestrial
robot that imitates bats’ echolocation abilities. In particular,
the proposed framework allowed the robot to navigate in a
novel environment by means of a map created solely based
on sound. Using the echoes reflected from the environment,
the robot delineated the borders of the object it encountered
in a greenhouse environment and classified them using an ar-
tificial neural network. The ANN was trained to distinguish
between two object categories - plants and non-plants.

In this work, we address the usage of robot ego-noise for
echolocation. By ego-noise, we mean the auditory noise
(sound) that the robot itself is producing while moving due
to the frictions in its gears and actuators. We have shown in
previous work that such an ego-noise can be very informa-
tive in accomplishing specific tasks. In fact, robot ego-noise
can carry out useful information about the movements that
the robot is executing and about some of the characteristics
of the external environment.

For instance, in Pico et al. (2016), we adopted forward
models as computational tools for encoding the dynam-
ics of the motor system of a wheeled robot and the effect
of self-produced movements on the perceived ego-noise.
In robotics and control theory, a forward model incorpo-
rates knowledge about sensory changes produced by self-
generated actions, that is a mapping between actions and
their consequences (Schillaci et al., 2016). In Pico et al.
(2016), we showed how the auditory predictions provided
by a set of trained forward models could be used for de-
termining the velocity profile from its related auditory in-
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put. Then, we showed how the auditory predictions provided
by a forward model trained with data gathered using a self-
exploration behaviour could be used to detect changes in the
inclination of the surface on which the robot was moving.

In Pico et al. (2017), we extended the learning framework
for the same robotic platform. In particular, we addressed
the acquisition of the mapping between auditory ego-noise
and the motor commands that generated it based on two be-
havioural and computational components: a self-exploration
behaviour and an inverse model. We applied a convolutional
autoencoder for a semi-supervised feature learning and di-
mensionality reduction of the auditory signals recorded from
the robot microphones–whereas in the previous study, Mel-
Frequency Cepstral Coefficients were used as features ex-
tracted from the auditory input. In the study, we demon-
strated how the trained models could be used for imitating
robot movements from listening to the noise they produced.

In Pico et al. (2018), we further extended the framework
and demonstrated how predictive processes could be used
to communicate motor information between robotic agents,
through auditory means. In a simulated experiment, a robot
generated a specific auditory feature vector from an intended
sequence of actions and communicated it for reproduction
to another robot, which consequently decoded it into motor
commands, using the knowledge of its own motor system.

In the robot echolocation studies mentioned above, the
robots emitted sounds using active sensors. In this work,
instead, we use the ego-noise information produced by the
robot movements - as in the studies reported in Pico et al.
(2016, 2017, 2018) - in support of echolocation. In particu-
lar, we investigate the usage of forward models to anticipate
proximity information and thus classify whether a specific
ego-noise is resulting from the robot being close or distant
from a wall. This experiment demonstrates another promis-
ing application of predictive processes, that is for echoloca-
tion in mobile robots.

Differently to the studies on echolocation mentioned
above (Steckel and Peremans, 2013; Eliakim et al., 2018),
we adopt a developmental approach in allowing the robot
to learn how to anticipate characteristics of the environment
before actually perceiving them. As it will be described in
the following text, we programmed the robot to explore the
environment in order to acquire the necessary sensorimotor
information to learn the mapping between ego-noise, motor,
and proximity data.

The rest of the paper is structured as follows. Section
Methodology describes the robotic platform used in this
study, the environmental setup, the data used for training
the internal forward model and the model architecture. Sec-
tion Results presents the results of the experiment and the
quantitative analysis we carried out. Finally, we conclude
the paper in section Conclusions.

Methodology
Robotic platform
In this experiment, we used a wheeled robot built at the
Adaptive Systems Group at the Computer Science Depart-
ment of the Humboldt-Universität zu Berlin (Figure 1). The
robot is equipped with two DC gear motors placed in a dif-
ferential configuration. Each motor has attached a quadra-
ture magnetic encoder for speed measurement. We used the
number of encoder counts made in a range of 100ms as a
velocity measure. There are three distance sensors in front
of the robot (only one is used in the experiment), as well as
a microphone for audio recording. ROS (Robot Operating
System) has been used for software development.

Figure 1: The two-wheeled robot with 2 speed sensors, 3
distance sensors and a microphone.

Environmental setup
The agent was moving in an environment made of a wooden
floor and walls with dimensions of 92x56x38 cm (figure 2).
The top part of the box was kept free to allow for free move-
ment of the agent, since all power connections were supplied
through a cable. Inside this arena, the robot could move up
to 5 cm close to any wall, as is described in section (motor
babbling).

Figure 2: Top view of the arena used in the experiments.

Collected data
The following data was available for model building:
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• Auditory. The Fast Fourier Transform (FFT) of 2048 sam-
ples of audio data at 22,050 kHz (about 100 milliseconds).
The sound was recorded using the onboard microphone,
which results in a vector of 1025 elements.

• Motor speeds. The mean of both quadrature magnetic en-
coders count in a range of 100 milliseconds.

• Distance. from infrared proximity sensors. Measure-
ments equal or closer than 15 centimeters are labeled as
“1”, longer distances are labeled as “0”

• Motor commands. Motor command applied to both mo-
tors at every time step in a range from 1 to 10.

All data was collected in time steps of 150 milliseconds
interval, 100 milliseconds of data and a 50 milliseconds
pause. Audio and motor speeds were recorded at the begin-
ning of each time step. Distance measurements were taken
after 100 milliseconds each time step (synchronized with the
end of the audio and speed recordings).

Model Architecture
We adopted forward models (Wolpert et al. (2001)) as a
computational tool for encoding the dynamics of the sen-
sorimotor states of the robot. A forward model uses past
and current sensorimotor states (in this work: sound, motor
speed, and motor commands) to predict future sensory states
(here, presence of a wall).

We designed two forward models for this experiment, im-
plemented as deep neural networks: one taking the audi-
tory signal recorded from the microphone as one of its in-
puts (model 2) and one without any auditory input (model
1). Model 1 served as a reference to assess if the robot
ego-noise can have an effect in the wall detection task as
we did not expect any relationship between its inputs (mo-
tor speed and motor command) and its output (distance to
the wall). In other words, we assumed that the information
contained in the motor speeds and motor commands should
not be enough to detect the presence of a wall. On the other
hand, we expected model 2 to encode useful information due
to the presence of the generated robot ego-noise (and its in-
teraction with the environment) as a model input.

The neural models were implemented with python 3.5 and
keras 2.2.4, using tensorflow 1.11.0 as backend.

The forward model structures are defined as follows.

Model 1 Figure 3 illustrates the overall structure of this
model. Its inputs are the motor command applied to the mo-
tors and the speed sensors’ measurements (mean of both mo-
tor speeds) of the last four time steps (t− 3, t− 2, t− 1, t),
resulting in a 4x2 matrix. The output is a binary prediction
at time t+1 that indicates whether or not the robot is close to
the wall (a threshold of 15cm has been utilised, to determine
whether or not the robot is close to the wall).

Figure 3: Model 1 (no ego-noise) input-output structure

Figure 4 depicts in more detail the architecture. It consists
of a long short-term memory (LSTM) recurrent layer at the
beginning, followed by two dense layers (multi layer per-
ceptrons). Dropout and batch normalization were applied at
each layer. For the output layer we set a sigmoidal activation
in the last layer.

Figure 4: Model 1 (no ego-noise) neural network architec-
ture
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Model 2 This model, besides motor command and speeds,
adds four time steps of ego-noise as input. Every time step
consists of the Fast Fourier Transform (FFT) of a 100ms
sound window (figure 5). Each window is a vector of di-
mension 1025.

Figure 5: Model 1 (no ego-noise) input-output structure

Figure 6 shows the deep learning architecture, which con-
sists of two different inputs: one that takes the ego-noise
(4x1025 matrix) through three 1D convolutional layers and
another one that takes the motor commands (4x2 matrix) and
speeds through a dense layer. the outputs of both layers are
then concatenated and fed to a LSTM layer, and then to 2
dense layers. The output of this model is the same as that of
model 1, a binary prediction at time t+1 indicating whether
or not the robot is close to the wall. Dropout and batch nor-
malization were applied at each layer, as well as a sigmoidal
activation in the output layer.

Motor babbling
We collected the data from making the robot execute a ran-
dom motor babbling behaviour inside the wooden arena. Ten
possible motor commands were applied randomly to both
motors every 4 time steps (every time step has a 150 mil-
liseconds interval) so the robot moved in a straight line. At
distances of about 5 centimeters from the wall, the robot ac-
tivated an obstacle avoidance behaviour that made it turn and
then reactivate the random behaviour. No data were col-
lected during the obstacle avoidance behaviour.

Model training
We gathered 10,930 training samples and 2,800 validation
samples, half of them when the robot was close to the wall
and half when it was far from the wall. Both models were
trained with the same data, ten times each, and tested with
a new dataset of 4,172 samples. The models’ loss function
was binary cross entropy optimized with the Stochastic Gra-
dient descent (SDG) algorithm.

Results
For each model we built ten repetitions to be able to assess
the models’ performance in the wall detection task. Due
to the random initializations of the parameters, each of the
repetitions performed slightly differently, as shown in figure
7.

Model 1 (no ego-noise input) had a mean accuracy of
57.15% on the validation dataset, while model 2 (ego-noise

Figure 6: Model 2 (ego-noise) neural network architecture
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input) had a mean accuracy of 82.39%. As it is shown, the
model using the ego-noise as input had a better performance,
which could indicate that there was a relationship between
the generated robot ego-noise and its distance to the wall.

Figure 7: Accuracy stats of models in test set.

From these ten model candidates we selected the one with
the best accuracy to carry out a classification task using the
test dataset. Over the test dataset, model 1 had an accuracy
of 58.05% and model 2 of 81.88%.

Figures 8 and 9 show the confusion matrices of this clas-
sification task. The rows indicate the targets (actual pres-
ence/absence of a wall) and the columns are the predictions
made by the models. Therefore, a good model should have
higher values over the matrix’ main diagonal, as is the case
with model 2 (including ego-noise as input). By contrast,
model 1 was not able to make accurate predictions when the
robot was close to a wall.

From these diagrams we see that the ego-noise informa-
tion could be successfully incorporated into the models, thus
improving the detection of the walls in the arena.

The confusion matrix in Fig. 9 grants an overview of the
classification capabilities of the forward model 2, but it lacks
specificity about its accuracy for each motor command is-
sued. In order to explore this, we split the simulated outputs
by motor command and show the results in Fig. 13. The mo-
tor commands in the x axis show increasing velocities from
1 to 10. It can be seen that the model’s accuracy was very
similar for almost all moving velocities, meaning that the
agent was able to detect a wall using ego-noise information
disregarding its displacement velocity. The exception was
motor command 1, corresponding to the lowest moving ve-
locity, in which case the model’s accuracy was considerably

smaller.
The spectrogram in Fig. 11 also supports the idea that

the slowest velocity was inadequate to train the forward
model, as all other velocities show a frequency component
not present in the slowest one (motor command 1). This
can be seen for lower frequencies in figure 12 and for higher
frequencies in figure 13. Since the energy in the frequency
bins in the spectrogram was used as model input, this could
explain the worse performance of the model at the lowest ve-
locity. In other words, the ego-noise energy generated at the
lowest speed seems to be insufficient. However, it remains
unclear if another model trained only with slow velocities
would be also able to map the relationship between motor
command an expected sensory input. Further tests would be
needed to address this problem and to establish whether the
most significant information source is, in this case, only the
motor velocity.

Figure 8: Model 1 test confusion matrix.

Figure 9: Model 2 test confusion matrix.

571

https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1004.jpg&w=157&h=220
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1005.jpg&w=245&h=171
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1006.jpg&w=245&h=171


Figure 10: Accuracy stats of model 2 for each motor com-
mand in the test set.

Figure 11: Spectrogram of ego-noise generated by each mo-
tor command at frequencies from 0 to 11 kHz.

Figure 12: Spectrogram of ego-noise generated by each mo-
tor command at frequencies from 0 to 2 kHz.

Figure 13: Spectrogram of ego-noise generated by each mo-
tor command at frequencies from 5 to 8 kHz.
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Conclusions
This manuscript presented an experiment on ego-noise pre-
dictions for echolocation in a wheeled robot developed at the
Humboldt-Universität zu Berlin. Echolocation is the process
in which animals produce sounds and recognise character-
istics of their surroundings. Typically, robotic studies ad-
dressing this utilise active sensors that emit sounds, and thus
estimate the characteristics of the environment analysing the
echoes that the surroundings reflect back to the robot sen-
sors. In this study, we used the ego-noise produced by the
movements of the robot itself as auditory information for
echolocation. The experiment is preliminary, in the sense
that only basic characteristics of the environment can be de-
tected, namely whether or not the robot is close to an obsta-
cle.

Moreover, we investigated the usage of predictive for-
ward models for anticipating proximity information from
motor and auditory ego-noise information, and for classi-
fying whether a robot is near or far from walls in an exper-
imental arena. In particular, the proposed framework - once
having undergone a preliminary learning session - allows the
robot to anticipate characteristics of the environment before
actually perceiving them.

We adopted a developmental approach inspired by how
infants acquire sensorimotor coordination, by means of self-
exploration behaviours. During random motor exploration,
the wheeled robot generated sensorimotor information con-
sisting of motor information, speed detected using wheel en-
coders, proximity information and ego-noise recorded with
the robot microphones. These data have been used to train a
forward model, that encoded the mapping between the dif-
ferent modalities. The predictions of the forward models
have been used to anticipate proximity information.

This experiment represents another promising application
of predictive processes for the implementation of basic cog-
nitive skills in artificial systems.

Robots actively emitting sounds through active sensors,
as in bats echolocation, may surely outperform the proposed
system. Nonetheless, the ego-noise that is in any case pro-
duced by the embodied interaction of the robot within its
environment represents an additional source of information
which is available for free to the system. The information
carried out by the robot ego-noise may be still integrated
with that of active sensors, and thus be exploited to increase
the performance of the whole echolocation system.

The experiment presented in this work addresses only the
learning of the presence or absence of a nearby wall in the
proximity of the robot. Future work will address testing the
algorithm in more complex environments.
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Abstract

Soft robots allow for interesting morphological and behav-
ioral designs because they exhibit more degrees of free-
dom than robots composed of rigid parts. In particular,
voxel-based soft robots (VSRs)—aggregations of elastic cu-
bic building blocks—have attracted the interest of Robotics
and Artificial Life researchers. VSRs can be controlled by
changing the volume of individual blocks: simple, yet effec-
tive controllers that do not exploit the feedback of the envi-
ronment, have been automatically designed by means of Evo-
lutionary Algorithms (EAs).

In this work we explore the possibility of evolving sensing
controllers in the form of artificial neural networks: we hence
allow the robot to sense the environment in which it moves.
Although the search space for a sensing controller is larger
than its non-sensing counterpart, we show that effective sens-
ing controllers can be evolved which realize interesting lo-
comotion behaviors. We also experimentally investigate the
impact of the VSR morphology on the effectiveness of the
search and verify that the sensing controllers are indeed able
to exploit their sensing ability for better solving the locomo-
tion task.

Introduction
Traditionally, robots have been made using rigid parts con-
nected by joints. This allowed engineers to model robots
behaviour and eased the design of body and controllers for
the robots. On the other hand, creatures in nature are com-
posed also, or mainly, of soft tissues and are quite effec-
tive in solving many complex tasks which are still utterly
hard for robots (Kim et al., 2013). Inspired by nature (Lin
et al., 2011), in the recent years many researchers focused
on robots made on soft tissues, called soft robots (Rus and
Tolley, 2015). The efforts concerned methods for the as-
sisted or automated design of soft robot bodies (Cheney
et al., 2013, 2014) and controllers (Braganza et al., 2007;
Vaughan, 2018), often by means of simulation, and tech-
niques for building actual soft robots (Iida and Laschi, 2011;
Shepherd et al., 2011).

Voxel-based Soft Robots (VSRs) are a particular category
of soft robots. They are aggregations of small elastic cu-
bic building blocks called voxels (Hiller and Lipson, 2012).

VSRs have been important for the raise of the embodied
cognition paradigm according to which the complexity of
behavior of a (virtual) creature depends on both its brain
and its body (Pfeifer and Bongard, 2006). According to this
paradigm, a robot should be designed by considering brain
and body together rather than by focusing only on its brain,
i.e., on its controller. This research path has been particu-
larly significant for VSRs, within a common framework in
which the ability of the VSR to interact with the environment
derived mainly from its body (Cheney et al., 2013, 2014).

In this paper, we explore the possibility of automatically
synthesizing sensing controllers for simple VSRs, i.e., con-
trollers which can sense the environment and exploit the
gathered information for guiding the robot movements. We
consider VSRs in which the sensing is distributed across the
full body, i.e., on each voxel composing the VSR. In other
words, we consider a VSR as an aggregation of simple parts
that can be used both as actuators and as sensors.

We consider three different VSRs, i.e., with different bod-
ies, and synthesize the corresponding controllers for solv-
ing a locomotion task. For each VSR we evolved a sens-
ing controller and a more traditional, non-sensing controller.
We represent sensing controllers as artificial neural networks
(ANNs) whose topology is determined by the body of the
robot, while for non-sensing controller we use a simpler
representation which has already been already successfully
adopted (Kriegman et al., 2018). We synthesize both kinds
of controllers with the same EA where, as we will show, the
sensing controller corresponds to a larger search space than
the non-sensing one, having more parameters. We evolved
each VSR in two different environments, i.e, an even surface
and an uneven surface.

Our experimental results, obtained by simulation, show
that sensing controllers are always more effective than non-
sensing ones, regardless of the body of the VSR and of
the environment in which they evolved. Moreover, we also
find that sensing controllers exhibit behaviors that are more
heterogeneous than those of their non-sensing counterparts.
Most importantly, we also assess the behavior of controllers
in environments different from those in which they were
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evolved and found that sensing controllers are more effec-
tive even in such scenarios. This result suggests that sensing
controllers are indeed able to exploit their peculiar ability to
sense the environment in which they are immersed.

Related work
The idea of evolving the body and the controller of simulated
creatures dates back to ’90s (Sims, 1994). In the cited work,
the creatures body is modular, and the controller, in the form
of an ANN, is distributed among their body components,
capable of sensing the environment.

Other attempts to optimize ANNs controlling soft robots
have been done later. For instance, Braganza et al. (2007)
consider a tentacle-like manipulator which is controlled by
an ANN, since the design of a traditional closed-loop con-
troller for this specific robot was considered unfeasible. An-
other example is the optimization of a locomotion controller
in the form of an ANN for a quadruped simulated creature
(Vaughan, 2018).

On the other hand, control strategies different than ANNs
have led to interesting results. Bruder et al. (2019), for ex-
ample, have recently designed a linear dynamical model for
controlling soft robots, based on a data-driven model: the
authors claim that the proposed method, being more tradi-
tional and control-oriented, avoids issues of the ANNs act-
ing as the black-boxes.

We remark that the works cited above face the problem of
sensing, but are not based on VSRs. Research on VSRs fo-
cused more on how to design (often by means of evolution-
ary computation) the body of the robot: when the controller
was of a non-trivial complexity, it had no sensing ability.
Nevertheless, interesting behaviors have been found.

First attempts of morphological optimization of VSRs
were done by Hiller and Lipson (2012) and, later, by Ch-
eney et al. (2013). In the latter work, the novelty was mainly
in the representation of the morphology and in the corre-
sponding EA, both achieved with CPPN-NEAT (Neuroevo-
lution of Augmented Topologies applied to Compositional
Pattern-Producing Networks, Stanley (2007)): because of
their ability to compactly describe patterns with repetitions
and symmetries (which resemble nature), CPPN proved to
be useful for evolving effective VSR morphologies. In that
case, the task was locomotion and the controller was actu-
ally determined by the morphology, since different materials
statically corresponded to different actuations. A similar ap-
proach has been applied later by Cheney et al. (2015) for
evolving VSRs able to escape from a tight space.

A different kind of control of the VSR, but still not able
to sense the environment, has been studied by Cheney et al.
(2014). The authors proposed to define materials for the
voxels in terms of their ability to propagate and react to an
activation signal, inspired by properties of real, biological
tissues. Morphologies were then evolved with CPPN-NEAT
for the locomotion task.

Materials composing VSRs, in particular soft vs. stiff
ones, are also the focus of (Bongard et al., 2016). The au-
thors implemented a distributed growth mechanism, in place
of actuation by oscillating global signals. The development
of VSRs is allowed during their entire life span, acting at a
lower time scale than the oscillation. The task is inspired by
plants, and consists in growing towards static (possibly mul-
tiple) source of light in the environment, thus allowing the
VSRs the ability to sense to a certain extent.

VSRs have been used as a case of study also for reasoning
about the evolution in different environment (Corucci et al.,
2018). The authors of the cited work evolved morphologies
on a land environment in comparison with the ones in a wa-
ter environment. Subsequently, they investigated the effects
of an environmental transition, from land to water and the
opposite, during the evolution, and they try to explain mor-
phological results. To some degree, we too experiment with
VSRs facing different environment: we assess their ability
to move in environments which were not seen during the
evolution and we show that sensing is beneficial in this sce-
nario.

Scenario: controlling VSRs
Voxel-based soft robots (VSRs)
A voxel-based soft robot (VSR) is an assembly of one or
more voxels, i.e., cubic building blocks, each linked to up
to 6 neighbour voxels. Voxels are also elastic in the sense
that their volume may either contract or expand with respect
to the resting volume; the volume of each voxel may vary
independently of the volume of any other voxel. We con-
sider VSRs composed of a predefined number of voxels n.
The morphology of a VSR is the way in which its voxels are
linked.

We assume a discrete-time physics model in which scale
values are set at regular intervals t = k∆t, k ∈ N, where ∆t
is a parameter.

At any time, each voxel is defined by s,x,v,v′, where:
s is the scale, i.e., the ratio between the current and resting
volume of the voxel; x, v, and v′ are the position, velocity,
and acceleration of its center.

The behavior of the robot can be determined by imposing
a value for the scale of each of its voxels. By varying the
scale for each voxel over time, the corresponding positions,
velocities and accelerations will vary over time as well de-
pending on how voxels are linked together. In this work we
use the physics model presented by Kriegman et al. (2017).
The behavior of the VSR derives hence from the positions,
velocities, and acceleration of its composing voxels, which
themselves derive from the values imposed to the scale. We
call controller of the VSR the way in which scale values are
set over the time.

In general, a controller may set the values of the scale
over the time basing on external input related to the inter-
actions of the VSR with the environment; or, it may set the
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scale regardless of those interactions. We call the two ap-
proaches sensing and non-sensing controllers, respectively.
In the next sections we describe the two specific controllers
that we consider in this work.

Non-sensing controller
We consider the simple non-sensing controller proposed by
Kriegman et al. (2018) in which the scale si of the i-th voxel
varies over time according to a sinusoidal signal, which de-
termines the relative scale with respect to a resting value:

si(k) = s0
i + a sin(2πfk∆t+ φi) (1)

Frequency f and amplitude a are predefined and identical
for all the voxels. Phase φi and resting value s0

i are instead
defined separately for each voxel and constitute the param-
eters θNS = (s0

1, φ1, . . . , s
0
n, φn) of the controller. It can

be seen, hence, that the number of parameters of this non-
sensing controller, and therefore the size of the space of the
corresponding controller instances, grows linearly with the
number n of voxels in the VSR, i.e., |θNS| = 2n ∼ O(n).

Sensing controller
We consider a sensing controller in which the VSR senses
the environment in terms of the actual scale, velocity, and ac-
celeration of each of its voxels: since these figures are deter-
mined also by how the VSR interacts with the environment,
e.g., by pushing on the floor, they correspond to sensing the
environment. These inputs, along with a single sinusoidal
signal sin(2πfk∆t), are fed to a feed-forward ANN whose
output layer determines the values of the scale to be set for
each of the voxels.

More in detail, the ANN is composed of an input layer
of 3n + 1 neurons (the +1 being fed with the sinusoidal
signal), an hidden layer of h neurons, and an output layer
of n neurons. The activation function is the Rectified Linear
Unit (ReLU). The input layer is fed with the values s1(k −
1), ‖v1(k − 1)‖, ‖v′1(k − 1)‖ of each voxel. Each output
neuron emits a value oi ∈ [−1, 1] which is then mapped to
[s0−∆s, s0 + ∆s], where s0 and ∆s are pre-defined values
which are the same for all the voxels. The output of the i-
th neuron at time k∆t determines the scale si(k) of the i-th
voxel:

si(k) = s0 + ∆soi (2)
oi = fi(s1(k − 1), ‖v1(k − 1)‖, ‖v′1(k − 1)‖, . . . , (3)

sn(k − 1), ‖vn(k − 1)‖, ‖v′n(k − 1)‖; θS)

where ‖vi(k − 1)‖ is the norm of the velocity of the i-th
voxel at time (k− 1)∆t, f : R3n+1 → [0, 1]n represents the
ANN, and θS are the ANN parameters (i.e., weights).

Concerning the number of neurons in the hidden layer, we
set h = 0.65n. It can be seen that the number of parameters
of this sensing controller grows with n2, i.e., |θS| = 3(n +
1)h+ hn ∼ O(n2).

Instantiating the controller
We instantiate the two controllers, i.e., we determine the val-
ues for their parameters θNS and θS, by means of evolution-
ary computation. To this end, we use for both controllers the
Evolutionary Algorithm (EA) shown in Algorithm 1, already
used by Kriegman et al. (2018) for evolving a non-sensing
controller. This EA evolves a fixed size of npop individuals
for ngen generations, each individual being a vector θ of val-
ues (θ = θNS and θ = θS for the non-sensing and for the
sensing controller, respectively). Only a unary genetic oper-
ator (mutation) is used: the mutation consists in perturbing
each parameter in θ with probability pmut, the amount of per-
turbation being with a random value randomly sampled from
a normal distribution N(0, σmut). When evolving the non-
sensing controller, we limit the values of each s0

i ∈ θNS pa-
rameter, after the mutation, to the interval [s0−∆s, s0−∆s].

The generational model is a n + m with overlapping and
individuals are compared using Pareto dominance applied
on their fitness and age: the age of the individual is incre-
mented at each generation, whereas new individuals have
the age set to 0. In case of tie in a selection (i.e., when one
individual has to be selected from a set of individuals on
the same Pareto front), individuals with the best fitness are
preferred; in case of further tie, the individual is chosen at
random. The same criterion is used to determine the best
individual at the end of the evolution.

1 P ← ∅
2 foreach i ∈ {1, . . . , npop} do
3 P ← P ∪ (random(), 0)
4 end
5 foreach i ∈ {1, . . . , ngen} do
6 P ′ ← ∅
7 foreach (θ, a) ∈ P do
8 θ′ ← mutate(θ)
9 P ′ ← P ′ ∪ (θ, a+ 1)

10 P ′ ← P ′ ∪ (θ′, a+ 1)

11 end
12 P ′ ← P ′ ∪ (random(), 0)
13 P ← select(P ′, npop)

14 end
Algorithm 1: The EA for evolving the controller.

The fitness of an individual θ, i.e., a controller for a VSR,
measures its ability to perform a given task. In this work, we
consider the locomotion task and set the fitness to the dis-
tance that the VSR corresponding to the individual travels
along the x-axis during a simulation of a predefined amount
of nsim time steps. Despite its apparent simplicity, locomo-
tion is considered a benchmark for VSRs (Cheney et al.,
2013, 2014; Kriegman et al., 2018).

We remark that other techniques might be used for the
purpose of instantiating a controller, given a morphology
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(a) Worm (b) Biped (c) Tripod

Figure 1: The three different VSR morphologies.

and a simulator. In particular, for learning the sensing-
controller, which is based on ANN, EAs operating on ANNs
might be used, e.g., NEAT (Stanley and Miikkulainen, 2002)
or CPPN-NEAT (Stanley, 2007). Or, since the consid-
ered scenario consists in an autonomous agent that interacts
with the environment trying to maximizing a reward (here,
the traveled distance), Reinforcement Learning techniques
might be used (Duan et al., 2016). However, we leave the
exploration of these alternative options to future work, since
here we are interested in comparing the nature of the con-
troller, and the information it can exploit, rather than the
learning technique.

Experiments and results
We performed an experimental evaluation aimed at inves-
tigating the effectiveness of the sensing controller with re-
spect to the non-sensing one. In particular, we aimed at an-
swering the following research questions: (RQ1) Is a sens-
ing controller better than a non-sensing one? (RQ2) Does
the larger size of the search space for the sensing controller
affect the search effectiveness? (RQ3) Is a sensing controller
actually able to exploit its ability to sense the environment?
For answering these questions, we considered three different
VSR morphologies and two different environments.

Morphologies are shown in Figure 1: we call the corre-
sponding VSRs worm, biped, and tripod. They differ in the
number of composing voxels (n ∈ {4, 6, 8}) and hence cor-
respond to different numbers of parameters for defining the
controllers.

Concerning the environment, we simulated the movement
of the VSR on an even surface and on an uneven surface.
In all cases, we performed 30 evolutionary runs (i.e., 30
independent executions of Algorithm 1) for each combina-
tion of morphology and environment. We used the imple-
mentation made available by Kriegman et al. (2018)1, with
the parameters of the physics model, morphologies, and EA
shown in Table 1. We run the experiments using AWS
EC2 on the c4.8xlarge EC2 instances, each equipped with
36 vCPU based on 2.9 GHz Intel Xeon E5-2666 and with
60 GB RAM; we distributed the fitness evaluation across the
vCPUs and runs across instances.

In each run, the VSR was put in the environment with its
main dimension laying on the x-axis, the same axis along

1https://github.com/skriegman/
how-devo-can-guide-evo

Param. Value

∆t 0.14 ms

a 0.001 m3

f 40 Hz
s0 0.01 m3

∆s 0.001 m3

Param. Value

npop 30
ngen 200
pmut

1
|θ|

σmut 1
nsim 10 000

Table 1: Parameters of the physics model (top left), mor-
phologies (bottom left), and EA (right) used in the experi-
ments.

Table 2: Fitness (in mm, mean µ and standard deviation σ
across the 30 runs) of the best individual at the end of the
evolution in the environment with even surface. The p-value
is computed with the Mann-Whitney U-test (see text).

Non-sensing Sensing p-value

Morph. µ σ µ σ [×10−3]

Worm 146 8 3012 329 0.002
Biped 69 19 931 74 0.006
Tripod 550 26 636 76 0.024

which the traveled distance is measured for computing the
fitness.

Environment: even surface
Table 2 presents the main results obtained in the environ-
ment with even surface, with the three morphologies. The
table shows the mean µ and the standard deviation σ of the
fitness of the best individual at the last generation across the
30 runs. The table also shows the p-values obtained with the
Mann-Whitney U-test that we performed for each morphol-
ogy in order to verify if the samples have the same median.

The foremost finding is that sensing controllers clearly
outperform non-sensing ones. That is, a VSR controlled by
a sensing controller is in general better in performing the lo-
comotion task, regardless of the morphology. The difference
is always statistically significant (with a significance level of
α = 0.05) and substantial in two on three cases, the worm
and the biped.

Concerning the tripod, the sensing controller is still bet-
ter, in terms of the final best fitness, than the non-sensing
one, but the difference is lower (636 ± 76 vs. 550 ± 263)
with respect to the worm and biped (for which traveled dis-
tance difference is of an order of magnitude). We inter-
pret this finding as a consequence of the fact that the num-
ber of voxels in the tripod is larger: the complexity of the
controller is O(n) for the non-sensing case and O(n2) for
the sensing case, and the same applies for the size of the
search space. As a further evidence for this interpretation,
we show in Figure 2 how the fitness of the best individual
varies during the evolution (mean across the 30 runs) for the
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Figure 2: Fitness (in m, mean across the 30 runs) of the best
individual during the evolution.

three morphologies. Beyond highlighting the lower differ-
ence for the tripod, Figure 2 suggests that the evolution of a
sensing controller has not yet stopped at the end of the evo-
lution (200-th generation), for this case; on the other end,
this does not occur with the non-sensing controller. In other
words, the larger search space makes finding the optimum
harder. We remark, however, that other techniques exist for
evolving ANNs which are suitable for scenarios like the one
considered in this work. In particular, we argue that NEAT
(or its recent variants as, e.g., the one of Silva et al. (2015))
might be a way to address the issue of the large search space,
thanks to its ability to progressively increase the expressive-
ness of the representation—i.e., complexification.

Analysis of the behaviors In order to further investigate
the differences between the sensing and non-sensing con-
trollers, we observed the resulting behaviors during the sim-
ulations: i.e., we looked at the way best evolved controllers
moved and drawn qualitative reasoning (see Figure 3). We
found that sensing controllers resulted, in general, in a
broader set of behaviors, the difference being more appar-
ent for the worm. Interestingly, for this morphology the be-
haviors exhibited by the sensing controllers often visually
resembled those of the real biological counterpart.

In an attempt of quantifying the result of this qualitative
analysis, we devised a way of systematically capturing and
describing the behaviors of the VSR—similar procedures
have been already used for analyzing the behavior of robots
with evolved controllers, e.g., in Silva et al. (2017). We pro-
ceeded as follows. (1) For each morphology, we considered
all and only the 60 best controllers (sensing and non-sens-

ing) obtained at the last generation. (2) We considered the
discrete signals corresponding to the position xCM(k) of the
center of mass of the VSR during fitness evaluation. Figure 4
shows an example trajectory of one of the best sensing con-
trollers for the worm morphology. (3) We computed the dis-
crete Fourier transform (DFT) coefficients dx and dy , with
dx,dx ∈ Rnsim , of the x- and z-components of xCM(k); we
did not consider the y-component since VSRs do not move
significantly along that axis (see Figure 4). (4) We concate-
nated dx and dy , hence obtaining a vector d ∈ R2nsim for
each observed behavior. (5) Finally, we mapped all the be-
haviors from R2nsim to R2 using Multidimensional Scaling
(MDS) (Cox and Cox, 2000). We explored different dimen-
sionality reduction techniques, e.g., t-SNE (Maaten and Hin-
ton, 2008): the qualitative observations presented below did
not change.

Figure 5 shows the results of the analysis of the behaviors:
for each morphology, the figure includes a plot where each
behavior is a marker positioned according to the first two
MDS coordinates. Three observations can be done based
Figure 5. First, for the two simplest morphologies (worm
and biped) the behaviors obtained with sensing and non-
sensing controllers look clearly dissimilar: the red cloud is
far from the blue cloud. Second, non-sensing controllers
result in more homogeneous behaviors than sensing con-
trollers: the red cloud is in general larger than the blue cloud.
Third, the tripod case is, consistently with the previous find-
ings, different from the other two cases: the difference of be-
haviors is fuzzier and similar behaviors can be found which
are obtained with different controllers. We think that the mo-
tivation for this finding is twofold. On one hand, the larger
complexity of the morphology may result in a larger set of
interactions between the VSR and the environment, that is,
in a larger expressiveness. On the other hand, as already ob-
served above, the larger search space of this case may take
longer to converge to a good controller; i.e., from another
point of view, within the same number of generations, dif-
ferent evolutionary runs may follow different paths in the
search space which do not end in the same “point”.

Environment: uneven surface
For the purpose of answering (RQ3), we considered a sec-
ond case in which some aspect of the environment changes
over the time. Differently than in the environment with even
surface, variable environmental conditions constitute an op-
portunity for the sensing controller to exploit its peculiar
ability of sensing the environment: that ability is instead not
available for VSRs with the non-sensing controller.

For easing the experimentation, we introduced the vari-
able conditions as a varying vector for the gravity accel-
eration. In particular, we varied the direction of the grav-
ity vector during the simulation and kept constant its norm
‖g‖ = 9.8 m s−2. The condition can be expressed as a
function describing the value of the x-component gx(k) of
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Figure 3: Frames capturing the behavior of a biped with one of the evolved sensing controller in the environment with even
surface.
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Figure 4: Trajectory xCM(k) of the center of mass, shown
separately for the two salient axes (scale is×10−3 for the z-
axis), of a worm with one of the evolved sensing controller
in the environment with even surface.

the gravity vector g over the time—assuming that the y-
component is always equal to 0.

We proceeded as follows. First, we performed the
evolutionary runs imposing a sinusoidal signal for the x-
component of the gravity:

gevo
x = sin

(
2πf evo

g k∆t
)

(4)

where f evo
g = 2 1

∆tnsim
= 1.43 Hz. Then, we assessed each

evolved controller (i.e., the best individual at the last evolu-
tion) in three different validation scenarios:

gflat
x (k) = 0 (5)

gstep
x (k) =

{
0 if k ≤ nsim

2

3 otherwise
(6)

gsin
x (k) = sin

(
5πf evo

g k∆t
)

(7)

By considering validation scenarios which are different from
the one using during the evolution, we hence also assessed
the generalization ability of the EA in evolving the VSR con-
trollers. Note that varying the direction of the gravity vector
basically corresponds to considering an uneven, instead of
flat, surface on which the VSR moves.

Table 3 shows the results of the experiments in the uneven
environment.

It can be seen that, also in this environment, the sensing
controller is always more effective than the non-sensing one.

Table 3: Fitness of the best individual at the end of the
evolution and its traveled distance in the validation scenarios
(both in mm, mean µ and standard deviation σ across the 30
runs) in the uneven environment. ρ is the ratio between the
traveled distance in the validation scenario and the fitness
value.

Non-sensing Sensing

Morph. µ σ ρ µ σ ρ

Fi
tn

es
s Worm 120 8 3050 358

Biped 78 19 873 180
Tripod 556 60 620 378

Fl
at

Worm 138 5 1.15 3132 498 1.02
Biped 73 30 0.93 2228 187 2.55
Tripod 528 43 0.95 727 100 1.17

St
ep

Worm 111 56 0.92 3543 412 1.16
Biped 69 20 0.88 1010 226 1.15
Tripod 539 160 0.96 870 213 1.40

Si
n

Worm 104 7 0.86 3194 281 1.04
Biped 77 17 0.99 446 151 0.51
Tripod 505 48 0.91 512 175 0.82

VSRs moved by the former travel a longer distance in any
condition: both when computing the fitness (i.e., with gevo

x )
and in the validation scenarios (i.e., with gflat

x , gstep
x , and gsin

x ).
As for the even environment, differences are in general less
apparent for the tripod than for the other two morphologies.
All the differences are statistically significant according to
the Mann-Whitney U-test (α = 0.05): we do not show the
values in the table.

Of more interest are the findings concerning the compari-
son between the fitness of the best individual and its perfor-
mance in the validation scenario. Table 3 captures the out-
come of this comparison in the two ρ columns: for a given
morphology, controller, and validation scenario, ρ is the ra-
tio of the distance traveled in the validation scenario and the
fitness value, i.e., the one traveled with gevo

x .
The key finding is that ρ is lower than 1 in most cases

(8 on 9) for the non-sensing controller and greater than 1
in most cases for the sensing controller (7 on 9). VSRs
equipped with the sensing controllers are hence able to move
well on scenarios different than the one used for their evolu-

579

https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1011.jpg&w=462&h=57
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1011.jpg&w=462&h=57
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1011.jpg&w=462&h=57
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1011.jpg&w=462&h=57
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1011.jpg&w=462&h=57
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1011.jpg&w=462&h=57


Worm Biped Tripod

Non-sensing Sensing

Figure 5: Behaviors resulting from the 60 best controllers evolved in the environment with even surface, with the three
morphologies.

tion, whereas VSRs with non-sensing controller are not. We
explain this clear difference with the fact that the sensing
ability allows to react to an environment different from the
one the controlled evolved and to adapt the VSR behavior.

Finally, Table 3 shows that, not surprisingly, the Sin val-
idation scenario is the most difficult for all the VSRs: still,
the worm equipped with a sensing controller is able to per-
form not worse on this scenario than on the one seen during
the evolution (ρ = 1.04).

Analysis of the behaviors We performed the same anal-
ysis of the behaviors as for the environment with the even
surface. The results are shown in Figure 6.

The findings are similar to the previous case. Sensing con-
trollers exhibit, in general, more various behaviors and this
difference is less apparent for the tripod than for the worm
and the biped. However, Figure 6 also highlights that the be-
haviors resulting from sensing controllers differ among the
three validation scenarios. The difference is more apparent
for the biped. We motivate this latter finding with the fact
that this morphology is a good trade-off in complexity: it
is not too simple to prevent large variation in the behaviors
(like the worm), nor too complex to make harder the evo-
lution of controller able to exhibit a well-defined behavior
(like the tripod).

Conclusions
Voxel-based soft robots are a promising framework in which
the behavior of a robot is determined by both its brain, i.e.,
its controller, and its body. In this work we have explored
a form of holistic design in which the controller is equipped
with sensing capabilities distributed across the full body of
the robot. We have considered a sensing controller repre-
sented as a neural network and have considered the problem
of synthesizing such a controller automatically, by means of
an Evolutionary Algorithm. We have exercised such an al-
gorithm on three different bodies, each in two different en-
vironments, with the aim of solving a locomotion task. We
have compared the resulting sensing controller to a more tra-

ditional one, also synthesized automatically with the same
Evolutionary Algorithm, and we have found that the sensing
controller is more effective than its non-sensing counterpart,
also when immersed in an environment different from the
one in which it evolved.

We believe these results are very promising and suggest
that the shifting of complexity from the controller to the
body intrinsic to voxel-based soft robots, should be carefully
coupled with forms of distributed sensing. We intend to in-
vestigate the potential of sensing controllers on larger robots
and more complex tasks. In order to cope with the resulting
complexity of the search space, we plan to rely on a more ef-
ficient evolutionary framework, such as, e.g., CPPN-NEAT,
as well as a modular design in which robots are assembled
out of smaller (parts of) robots evolved separately.
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Abstract

A habit is formed through the repeated enactment of sensori-
motor regularities created and maintained by means of plastic
changes on the mechanism that brings them about. This pre-
carious, self-maintaining sensorimotor organization is known
as sensorimotor autonomy. One can imagine how some habits
would be better suited to the maintenance of a biological in-
dividual. Evolution can bias the parameters of the plastic
medium over which sensorimotor autonomy emerge so as to
be beneficial to biological autonomy. In this work, we show
that varying some parameters that bring about plastic changes
in the behavior-generating medium, different sensorimotor
individuals emerge. The simulation consists of a simple robot
coupled with a habit-based controller with a random-based
exploratory phase in a one-dimensional environment. The re-
sults show that, varying the parameters of such a phase, qual-
itative different habits emerge characterized by static, mono-
tonic and oscillatory behaviors. Quantitative variations of the
oscillatory behavior are also shown using the frequencies dis-
tribution obtained from the motor time series of the formed
habits. The results are interpreted in terms of how the sen-
sorimotor habitat could emerge from the random traversing
of the sensorimotor environment. Finally, a comparison be-
tween this model and the skin brain thesis is presented.

Introduction
The enactive concept of autonomy, defined by concepts of
precarious self-maintenance and operationally closure, can
be used in diverse contexts to identify an “individual”. This
concept of autonomy first emerged as a way to identify
and delimit biological individuals (autopoiesis) (Maturana
and Varela, 1980). It has since been applied in a variety
of other contexts, including sensorimotor dynamics, the or-
gans and organization of multicellular life, etc. By apply-
ing this method in these different contexts and at different
scales, diverse types of precarious individuality emerges.
Of particular relevance to the remainder of this paper, is
the relationship between an agent’s biological and senso-
rimotor autonomies, i.e. the relationship between its bio-
logical self-maintenance (persistence as an organism) and
self-maintaining sensorimotor world interactions. The no-
tion of autonomous sensorimotor dynamics is not one that
is widespread, nor is it self-evident, so let us spend a little

bit of time expanding upon what is meant by this concept.
It is clear that sensory input influence subsequent actions.
The converse is also true: actions influence sensory input.
You step forward and the image projected on to your retina
changes in rule-like ways, where for instance objects that
are closer to you will move more than those that are farther
away. It is possible to construct artificial “brains” i.e. me-
dia that transform sensory input into motor action, such that
(and this is the critical bit) one or more patterns of action
maintain the conditions necessary for those patterns of ac-
tion to persist. In this context, we can identify precarious
autonomous sensorimotor individuals1 — patterns of action
that stabilize or otherwise maintain the conditions that are
necessary for the mechanism that generates those patterns
of action to persist.

A number of investigations have modeled this idea of sen-
sorimotor autonomy (even if they have not always used this
word to label it). Studies include (Di Paolo, 2003; Egbert
and Barandiaran, 2014; Egbert and Canamero, 2014), and it
has been related to Ashbys notions of ultrastability (Ashby,
1952) and the apparent ultrastability of human perception,
exemplified by our ability to adapt to diverse systematic per-
turbations to our sensory apparatus (e.g. Kohler, inversion
of the visual field (Di Paolo, 2003)). The whole idea is the
central topic of the recent book by Di Paolo et al. (2017).

The relationship between sensorimotor autonomous indi-
viduals and the biological autonomous individual is not one
of simple subsumption or hierarchy (Barandiaran, 2008). A
organism’s nervous system is part of the medium in which
sensorimotor autonomous individuals emerge and persist (or
not!). Sensorimotor individuals are thus fundamentally de-
pendent upon the organisms biological body. It is also the
case that (most) biological bodies essentially depend upon
the nervous-system-mediated sensorimotor activities to per-
sist. Each depends upon the other.

It is interesting, though, that these relationships neither
require nor imply that sensorimotor individuals and the bi-
ological individual to have compatible norms or viability
limits. Nevertheless many habits are beneficial or neutral

1Other authors might refer to a “sensorimotor autonomy”
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with regard to impact upon biological viability (Egbert and
Canamero, 2014).. Why? How does this alignment of
norms and viability conditions come to exist? How do the
sensorimotor individual and the biological individual over
which they operate come to cooperate? And just as inter-
estingly: in what conditions does this cooperation fail to
emerge/develop?

The properties of the nervous system play a key role in in-
fluencing which types of sensorimotor autonomous individ-
uals will persist. One possible mechanism through which
the biological and sensorimotor norms become aligned is
via evolution. Evolution tunes the nervous system so as to
produce behaviors that are beneficial to biological viability.
This could happen in a variety of different ways. For in-
stance, we can compare among three different possibilities.
The first one is the evolution of a set of hard-wired stimulus-
response reflexes. If the organism’s behavior consisted of
nothing but hard-wired responses, then the mechanism that
produces the behavior would not depend upon the result of
the behavior. That is, the hard-wired reflexes would not par-
ticipate in maintaining the conditions necessary for such a
mechanism to generate them. Therefore, the behavior could
not be considered as a sensorimotor individual because these
reflexes (and consequently the behaviour) would not cease to
operate, unless the organism died. A hard-wired mechanism
thus would in fact still depend upon the behavior in terms of
biological viability. This behavior would then be part of the
precarious biological autonomous individual, not a sensori-
motor one.

Another possibility is one where reflexes play a less direct
role of scaffolding the formation of sensorimotor individu-
als. The idea here is that evolution could result in a few hard-
wired stimulus responses that influence which patterns of
behavior are more likely to occur. Plastic mechanisms in the
nervous system then support whichever self-sustaining sen-
sorimotor individual emerge, but the reflexes bias the system
to produce sensorimotor individuals that are conducive to bi-
ological survival.

No doubt there are hard-wired reflexes that guide some
our behavior (and our sensorimotor development). It seems
unlikely, though, that more than a few specific stimulus re-
sponses could be specified at the genetic level. The last
possibility is one where genes can modulate more coarse
features of nervous system topology, connectivity and in-
teraction, and random motor babbling enables and biases
the formation of different sensorimotor individuals. Plas-
tic changes in the nervous system then support the self-
maintaining sensorimotor individual that bring about such
changes. This is the idea that we explore using a model in
the next section. Specifically, we simulate a simple robot
embedded in a 1D world. The robots “controller” is a senso-
rimotor medium which reinforces previous patterns of sen-
sorimotor behavior. We vary the parameters of the random
motor activity that is activated by the controller when it is

in sensorimotor conditions it has not previously experienced
and show that just by modulating this basic parameter, it is
possible to bias the system to produce particular qualitative
behaviors (static, monotonic, oscillatory) and even to vary
some of the quantitative aspects of those behaviors (oscilla-
tion frequency).

The concept of habit and its models are described in the
next section. After that, the model and the experiments are
explained. Finally, the results are reported and discussed.

The Concept of Habit
The concept of habit was one of the most important the-
oretical primitives for the study of mind before being
usurped by the notion of mental representation (Baran-
diaran and Di Paolo, 2014). Currently, with the anti-
representationalism trend in cognitive science due to the dif-
ferent embodied approaches to cognition, a reappraisal of
the notion of habit has been required. Moreover, habits
could be the building blocks for modeling the organiza-
tion of behavior, and their ecology the core of Mental Life
(Barandiaran, 2007). A very brief look to the re-definition
of habit that inspired this work based is presented so as to
compare modeling frameworks below. Di Paolo (2003) ar-
gued that habits are dynamic invariants obtained from a cir-
cular process between plasticity and behaviour. Habits can
be understood as self-sustaining dynamic structures that are
challenged when the behaviour is perturbed and adaptation
is needed. After that, Barandiaran (2008) detailed the defi-
nition of habit as “a self-sustaining pattern of sensorimotor
coordination that is formed when the stability of a particular
mode of sensorimotor engagement is dynamically coupled
with the stability of the mechanism generating it” (p. 281).
Finally, Egbert and Barandiaran (2014) added the property
of reinforcement by repetition to this concept of habit in or-
der to have a working definition. A habit is then precari-
ous in the sense that, if the sensorimotor patterns of behav-
ior are not continuously re-enacted, the consequently plas-
tic change is produced differently affecting the creation and
maintenance of the sensorimotor correlations it contributes
to cause.

Simulation models has been used as tools to obtain new
insights through the exploration of new theoretical posi-
tions and, consequently, a possible conceptual reorganiza-
tion (Di Paolo et al., 2000). On the one hand, Di Paolo
(2003) explored an homeostatic neural controller using an
evolutionary robotics approach to propose that true inten-
tionality can be brought about investing a robot with a mech-
anism for acquiring a way of life: habits. In this case, a
habit is grounded on the circular interaction between sen-
sorimotor correlations and neurodynamic patterns, and the
plastic reinforcing changes on the habit formation mecha-
nism (Barandiaran, 2017). Barrett (2014) addressed impor-
tant questions raised when the ecology of habits is presented
as a dynamical system (e.g. models with recurrent neural
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networks as controllers) challenging the conventional no-
tion of habits and yielding a number of insight that must be
treated in the future. Another modelling approach was taken
by Egbert and Barandiaran (2014) who instantiated the con-
cept of habit explained above using a novel habit-based con-
troller. In this framework, a habit is formed through the plas-
tic changes resulted by the continuous reenacting of the self-
sustaining sensorimotor state trajectory emerging from the
sensorimotor coupling between the robot and the environ-
ment. One important different between the two controllers
is the scale in which they are modeled: the former is mod-
eled in the neuro-dynamic level and the latter is modeled at
the level of the sensorimotor dynamic.

Model
The robot controller proposed by Egbert and Barandiaran
(2014) is a dynamical construct called the Iterant De-
formable Sensorimotor Medium (IDSM). The IDSM cou-
pled to robot sensors and motors influences the rate of
change of the motors as a function of the current sensori-
motor state, the rate of sensorimotor state change, and the
current state of mapping as time passes (see Equation 6).
The influence can then be understood as a ”continuous trans-
fer function that can be depicted as a multidimensional vec-
tor space (the dimension been the sensory and motor vari-
ables)” (Barandiaran, 2017, p. 421). The controller was
designed such that current sensorimotor patterns of activ-
ity increases the likelihood of repeating similar sensorimo-
tor patterns in the future. Broadly, as a robot embedded
with an IDSM moves through sensorimotor state trajecto-
ries, a set of records of the sensorimotor dynamics, known
as nodes, are created and modified. Formally, each node is
a tuple of two vectors and a scalar in a normalized senso-
rimotor space, N =< Np, Nv, Nω >, where the elements
indicate the sensorimotor state associated with the node or
“position”, the rate of sensorimotor change or “velocity”,
and the “weight” of the node, respectively. The normalized
sensorimotor space is defined such that the range of all sen-
sor and motor values are linearly scaled to lie in [0, 1]. A
new node is created when the weighted density of nodes,
φ(x), near the current sensorimotor state, x, meets the con-
dition expressed by Equation 1. This density function can
be understood as a measure of how similar the current sen-
sorimotor state is to the set of nodes created previously. It
is calculated using the distance from every node to the cur-
rent sensorimotor state bounded by the sigmoidal function
in Equation 3, and whose result is scaled by the sigmoidal
function of the weights defined in Equation 2.

φ (x) =
∑

N

ω (Nw) · d
(
Np, x

)
< kt (1)

ω (Nw) =
2

1 + exp (−kwNw)
(2)

d
(
Np, x

)
=

2

1 + exp
(
kd||Np − x||2

) (3)

A weight represents the overall influence of the node in
the rate of change of the motor output. After a node is cre-
ated, its weight changes according to Equation 4. kdec is a
decay term which allows a steady decrease of the influence
of the node when sensorimotor trajectories near that node
are not re-enacted by the robot. kreinf is a reinforcing term
which allows the increase of the influence of the node when
its position is closed to the current sensorimotor state.

dNw
dt

= −kdec + kreinfd
(
Np, x

)
(4)

A node is activated tact units of time after creation, that is,
the IDSM output is not influenced by the node during such a
time, although its weight is updated. Equations 6 and 6 de-
scribes the so-called “influence” of the IDSM which in pre-
vious works has been the mapping function from the current
sensorimotor state to a rate of motor change. The influence
is composed by an “velocity” factor and a “attraction” factor.
The former is the motor components of Nv, and the latter is
a force that cause the system to visit regions of the sensori-
motor space with a higher density of nodes so that changes
in the environment and perturbations can be compensated.
Note that only the motor component of the “attraction” fac-
tor is used. The velocity factor pushes the sensorimotor dy-
namic away from the node while the attraction factor draws
the sensorimotor dynamic toward the node (see Egbert and
Barandiaran (2014) for more details). As can be seen, both
factors are scaled by the distance function and the weight
function defined by Equation 3 and 2, respectively. Once
summed and scaled, the result is also scaled by the density
of the nodes at the current sensoriomotor state defined by
Equation 1.

I = 1
φ(x)

∑
N ω (Nw) · d

(
Np, x

)
· (V el +Att)

µ (5)

V el : Nv
Att : A

(
Np − x, Nv

)

A (a, Nv) = a−
(

a • Nv
||Nv||

)
Nv
||Nv||

(6)

The controller was originally designed such that dµdt = I,
where µ represents when motor components are only used,
but the Equation 7 presents another alternative. As stated by
Egbert (2018), the motor output is determined either by the
influence function of the IDSM (I) or by a random process
(R). The sigmoidal function, s(ψ), is defined by the Equa-
tion 8 where ψ determines the local density of the nodes.
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Therefore, if the robot visits unfamiliar sensorimotor states,
the motor activity is to be random. 100 times per unit of
time, R has a p chance of being set to a random vector drawn
from a Normal Distribution with mean 0 and variance r, that
is, N (µ = 0, σ2 = r).

dµ

dt
= (1− s) I + sR (7)

s (ψ) =
1

1 + exp (ksψ − ks)
;ψ =

∑

N

d
(
Np, x

)
(8)

The IDSM can be used to train functional habits. Eg-
bert and Barandiaran (2014) presented a two-phase exper-
iment: (1) in the training phase, a robot executes a task
using a Braitenberg vehicle-inspired controller, whilst the
IDSM tracks the sensorimotor state trajectories; (2) in the
free-action phase, the motor activity is only determined by
the influence of the IDSM. If the robot is trained from differ-
ent initial conditions, the robot continues performing similar
patterns of behavior after training regardless the initial con-
ditions.

Recently, Egbert (2018) investigated agency and norm-
driven behavior using the IDSM as a framework to model
a sensorimotor individual. The experiment consisted of
a robot coupled with an IDSM with a random-based ex-
ploratory phase, that is, the motor activity was determined
by Equation 7 in order to perform a task. In this case, nei-
ther a training phase nor a random initialization of the IDSM
was needed but a good tuning of the parameters.

A remarkable difference between these approaches is that,
whilst Egbert and Barandiaran (2014) used the IDSM to “ex-
ploit” the regularities among the sensorimotor contingen-
cies, body and environment, Egbert (2018) used an aug-
mented controller to also “explore” the sensorimotor space.
Therefore, whilst only the re-enacting of sensorimotor tra-
jectories is needed in the former for habit formation, ran-
dom behavior is also needed in the latter for the emergence
of precarious but stable sensorimotor patterns of behavior.

Other efforts have been recently done to understand how
the habits formed using a simplification of the IDSM is bi-
ased by the number of nodes, nodes position and velocity
(Woolford and Egbert, 2019). In the current work, an ex-
periment is performed to show how different forms of the
random motor activity (R) employed in unfamiliar sensori-
motor states bias the formation of habits so as to take differ-
ent qualitative forms with different quantitative properties.
The details are described in the next section.

Experiment
The experiment consists of varying the parameters of the
random process, that is: p (i.e. the probability of set-
ting a new random vector R in every time unit) and r (i.e.

the variance of the normal distribution from where R is
drawn), such that p ∈ {0.0, 0.01, 0.02, ..., 0.39, 0.40} and
r ∈ {0, 1, 2, ..., 9, 10}. For each condition in r × p, the for-
mation of self-organized habits is allowed 100 times, ran-
domizing the robot initial conditions in each run. We simu-
late an IDSM with a random-based exploratory phase cou-
pled with a simple robot situated in a one-dimensional pe-
riodic environment. The robot has one motor which deter-
mines its velocity m = dx

dt , where x is the robot position,
and the sensor activity is activated according to 1

1+x2 . The
motor activity is bounded such that m ∈ [−1, 1], and the
environment dimension is 4, so that the periodic variable
x ∈ [−2, 2]. Table 1 lists the value of the controller pa-
rameters used during the experiment.

kt kω kd kdec kreinf ks tact

1 0.0025 1000 -1 10 20 1

Table 1: Values of the controller parameters.

Each run lasts 200 units of time. Habit formation is al-
lowed during all the time such that the position and veloc-
ity of each created node are recorded. Motor activity, robot
position, and sensorimotor trajectory are only recorded from
time 100 onward. The frequency and amplitude of the motor
time series is then computed using the Fast Fourier Trans-
form. Motor activity mean and standard deviation are also
calculated. The processed data is used to train a Decision
Tree Classifier with 2255 self-organized habits classified by
hand. The model is trained splitting the data into two data
sets whose elements are randomly chosen. The training data
set constituted by 90% of the data, and the testing data set
constituted by 10% of the data. The accuracy of the Decision
Tree classifier is 0.9956.

Results
The self-reinforcing sensorimotor patterns can be distin-
guished by the sensorimotor trajectories in the sensorimotor
space which produce qualitatively different behaviors in the
environment. We have chosen to classify habits into three
categories based on the similarities among their sensorimo-
tor trajectories and the patterns generated in the environ-
ment. To understand the qualitative features, some examples
are presented.

Examples
The figures of the following examples were created choos-
ing arbitrary values for p and r. Each Figure consists of the
sensotimotor space, the time series of the motor activity and
robot position. Blue circles depict node position and white
arrows show the direction of node velocity. The color inten-
sity represents the value of the node weight, i.e. the bluer
the node, the higher its weight. Gray dots are plotted when
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Figure 1: Example of a Static behavior obtained using p =
0.1 and r = 3.

weights have been degraded so that those nodes are imper-
ceptible. The numbers located beside some nodes are useful
to visualize node creation over time.

Static Behavior: This behavior is characterized by a
point-like sensorimotor trajectory and zero motor activity.
This stationary sensorimotor trajectory is usually formed af-
ter randomly driven changes in motor activity. Figure 1
shows how those changes ends up in this kind of behavior.
The initial possible sensorimotor trajectory runs from node
0 to 108. New nodes were created after the random-based
exploratory phase was applied and the current sensorimotor
state was different enough from the ones previously experi-
enced such that the condition in Equation 1 was met. For
instance, nodes 116 and 132. Over time, these nodes formed
new narrow sensorimotor trajectories. The weights of dis-
tant nodes from such new trajectories were degraded such
that the motor activity was determined by the influence of
the newest nodes. At some time, the robot reaches an equi-
librium when the velocities of the latest created nodes were
opposite as can be seen for the directions of the white ar-
rows.

Monotonic Behavior: This behavior is characterized by
a linear sensorimotor trajectory whose motor value is con-
stant, either −1 or 1, and sensor value varies along the
sensor range. Figure 2 depicts how this kind of behavior
emerged after large random changes in motor activity. Many
nodes were created over time, but the nodes located around
the sensorimotor trajectory were reinforced sufficiently to
overcome other possible trajectories (for example, the sen-
sorimotor trajectory possibly defined by the nodes around
m = 1). As can be seen, the nodes influencing the senso-
rimotor trajectory were not generated successively but they
were created and reinforced in different moments.

This type of behavior also emerged due to other reasons.
Figure 3a shows that this sensorimotor pattern can emerge
when the random vector is drawn from normal distribution
with variance 0 such that the motor-components of the terms
Velocity and Attraction in Equation 6 are always zero. Here,
we have a first examples of how the parameters of the ran-
dom motor process can bias habit formation. As we shall

Figure 2: Example of a monotonic behavior obtained using
p = 0.38 and r = 9.

Figure 3: Examples of a monotonic behavior obtained using
a) p = 0.01 and r = 0, and b) p = 0.0 and r = 1

see below this bias does not only hold for p = 0, but also for
small values of p. Therefore, the randomly-set initial con-
dition of the motor value remains constant over time. Fig-
ure 3b shows that this behavior can also emerge when the
probability of changing vector R is zero such that either the
highest or the lowest motor value is reached. Therefore, new
nodes are created and reinforced along the sensor range.

Oscillatory Behavior: This behavior is characterized by
a closed sensorimotor trajectory. This trajectory produces
an oscillatory motor activity and, therefore, an oscillatory
robot displacement as can be seen in Figures 4 and 5. Both
figures were produced with the same values of p and r but
different random seed. The nodes defining the sensorimotor
trajectory in Figure 4 were created almost successively over
time, while the latest created nodes in Figure 5 constrained
the formation of other possible trajectories due to the op-
posite directions of nodes velocities (see nodes 132− 184).
The random motor activity biased the final sensorimotor pat-
tern either defining slightly changes in motor activity (for
instance, nodes 99 − 108 in Figure 4) or driving the node
creation to specific regions of the sensorimotor space (for
instance, nodes 84− 88 in Figure 5).

The class of some trajectories could not be so clear. For
example, a sensorimotor trajectory could be formed with
most of the nodes located around either m = −1 or m = 1,
and just a few nodes around another motor value whose
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Figure 4: Example of an oscillatory behavior obtained using
p = 0.02 and r = 2.

Figure 5: Example of an oscillatory behavior obtained using
p = 0.02 and r = 2.

weights influence the motor activity. This behavior might
be wrongly classified as an oscillatory behavior if only the
sensorimotor trajectory is used as the reference. However,
the robot would be performing a monotonic behavior be-
cause the influence of the smaller set of nodes is usually
only enough to slightly increase or decrease robot speed.

The values of p of r used to generate the figures do not
entail that qualitatively similar behaviors are more likely to
emerge under these conditions. We present the results of
modulating both parameters in order to know what kind of
behaviors emerge regardless robot initial conditions.

Statistical Results
Static Behaviors: Figure 6 shows that static behaviors can
emerge neither when r = 0 and p varies nor when r varies
and p = 0.0. Note that the higher the value of p and the
lower the value of r, the more likely is the emergence of
these kinds of habits. Therefore, continuous changes of the
components of R drawn from a normal distribution with a
small standard deviation, σ, result in fast small steps in the
sensorimotor space that avoids the formation of wide senso-
rimotor trajectories.

Monotonic Behaviors: Figure 7 shows that only mono-
tonic behaviors emerge when r = 0 and p varies, and when r
varies and p = 0.0. In the first case, r = 0 implies thatR is a
vector constituted by zeros. The random-based exploratory

Figure 6: Grayscale representation of the number of static
behaviors emerged per each couple of p and r.

Figure 7: Grayscale representation of the number of mono-
tonic behaviors emerged per each couple of p and r.

phase tries to influence motor activity at the beginning of
the time because s(φ) ≈ 1 and then dµ

dt = R. The motor
activity is constant with the same value of the initial condi-
tion. At some time, s(φ) ≈ 0 and then dµ

dt = I; however,
the motor-components of Nv are zero because those com-
ponents of the created nodes are zero too. Therefore, motor
activity remains constant. New nodes could be created along
the sensor value range but the IDSM do not take over motor
activity at any time (see Figure 3a). On the other hand, in the
second case, p = 0.0 implies that R is constant over time,
although was defined randomly. Therefore, the only possi-
ble sensorimotor trajectory is formed when the motor value
reaches one limit of the motor range after a transient (see
Figure 3b). Notice that behaviors formed when r = 0 and p
keeps fixed motor state over time, whilst behaviors formed
when r varies and p = 0.0 maximize motor state during a
transient. Finally, monotonic behaviors are also consider-
ably likely when continuous changes of the components of
R drawn from a normal distribution with a high standard de-
viation result in fast large steps in the sensorimotor space
that allows the reinforcing of the nodes in the limits of the
sensorimotor space.

Oscillatory Behaviors: Figure 8 shows that this behav-
ior is highly probable to emerge for any couple of parame-
ters, except when r = 0 and p varies or when r varies and
p = 0.0. However, oscillatory behaviors are more likely
when sporadic changes (small values of p; see from 0.02
to 0.12, for instance) of the components of R drawn from
a normal distribution, whose variance can be chosen along
the set but zero, are performed. These changes result in slow
small steps in the sensorimotor space allowing the formation
of closed sensorimotor trajectories. As can be seen in Fig-
ure 9, outliers or not-formed habits, usually characterized by

587

https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1020.jpg&w=210&h=105
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1021.jpg&w=210&h=105
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1022.jpg&w=245&h=66
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1023.jpg&w=245&h=66


Figure 8: Grayscale representation of the number of oscilla-
tory behaviors emerged per each couple of p and r.

Figure 9: Frequencies distribution considering all the values
of r per each value of p.

high frequencies, are less likely for small values of p.

Discussion
We have shown how simply by changing the parameters of
the random motor activity that is engaged when the senso-
rimotor state is unfamiliar, it is possible to bias qualitative
and quantitative properties of the patterns of sensorimotor
activity that become ingrained as habits in the IDSM. For
low values of p, monotonic behaviors, where motor values
are maximized, are the most likely to emerge. When r = 0,
other monotonic behaviors are the most likely, now where a
random motor velocity is maintained. Other values of p and
r produce more subtle variations in the types of emergent
habits, with regions that are more likely to produce oscilla-
tory behaviors. These behaviors produce motor activities at
different frequencies. Outliers and not-formed habits char-
acterized commonly by high frequencies are more likely for
high values of p. The random-based exploratory phase pro-
duces changes such that the final behavior could be driven
to a specific region of the sensorimotor space, or it could
contribute directly to the shape of the such a behavior. For
instance, the behaviors depicted in Figure 4 and Figure 5,
respectively.

We can interpret this model in term of how random motor
babbling makes certain kind of sensorimotor organization
available for the agent. First, notice that sensorimotor con-
tingencies can be described as lawful regularities of sensory
stimulation, internal activity, and motor activity. However,
according to Buhrmann et al. (2013), defining formally this
concept has resulted problematic due to the range of use-
ful interpretations. They introduced the operational defini-
tion of four kinds of sensorimotor contingencies by consid-

ering how the sensorimotor flow changes in relation to the
body and environment, internal activity, functional behav-
ior, and normative dimension. The four distinct notions are
briefly summarized (Buhrmann et al., 2013): (1) Sensori-
motor environment: the set of all possible sensor states ob-
tained as function of given motor command varying freely,
i.e. without considering internal activity, for a particular em-
bodiment and external environment. (2) Sensorimotor habi-
tat: the set of all actual sensorimotor trajectories that can be
generated considering internal activity, i.e. closing the loop,
given a range of boundary conditions and parameters (3)
Sensorimotor coordination: any reliable sensorimotor pat-
tern (e.g. stable trajectories, transients) that contribute func-
tionally to the goals of an agent. (4) Sensorimotor strategies:
organization of sensorimotor coordination patterns regularly
used by the agent because it has been previously chosen as
consequence of having been normatively evaluated.

Now, consider what kind of sensorimotor contingencies
are available for the agent when the sensorimotor trajectories
are formed. In the random, exploratory phase, the available
sensorimotor contingencies can be described as the immedi-
ate sensory consequences of random motor changes (com-
parable to the sensorimotor-environment as described by
Buhrmann et al. (2013)). Thus, the agent is randomly “nav-
igating” the sensorimotor environment to generating a his-
tory of sensorimotor states that bias the formation of the pos-
sible sensorimotor trajectories due to the history-dependent
plasticity of the behavior-generating medium. In the non-
stochastic phase, the sensorimotor dynamics and thus the
experienced sensorimotor contingencies are available only
through specific patterns of agent-environment interaction
driven by the influence of the controller. Therefore, the re-
sults shown in Figure 6, 7 and 8 could be considered as the
sensorimotor habitat since they depict the actual sensorimo-
tor trajectories generated by the closed-loop system for a
range of two relevant initial parameters: p and r. Notice,
then, that the model can be seen as capturing the develop-
ment of a sensorimotor habitat from the random traversing
of the sensorimotor environment.

In this preliminary model, even though we did not in-
clude any simulation of biological autonomy—no biologi-
cal essential variables or viability limits—it is easy to imag-
ine how some of these behaviors would be better suited to
the survival of the biological individual. As example, con-
sider the skin brain thesis which states that the early ner-
vous system and sensorimotor organization of the organ-
isms emerge from the evolution of a transverse net organi-
zation extended across the body that produced coordinated
patterns of contraction and extension (Keijzer, 2015). This
thesis first considers a contractile tissue extended across the
body of the organisms. This surface is an excitable medium
across which excitatory and inhibitory activity can produce
self-organized patterns of contraction-extension. These pat-
terns are produced by means of a multicellular organization
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composed by cells with neural-like features (synaptic sig-
naling to neighboring cells and, later in evolution, to non-
neighboring cells) and external individual sensitivity with
internal local feedback. The morphology of a multicellular
body allows the organism to be sensitive to spatiotemporal
dynamics of its own body and, therefore, to spatiotempo-
ral structures of an environment. Consequently, functional
patterns of contraction-extension can emerge due to a close
organizational loop “that is sensitive to the ongoing dynami-
cal contraction changes across this body and influencing the
processes that generate and maintain these same patterns of
behavior” (Keijzer, 2015, p. 325). Notice that, even though
patterns of contraction and extension are not random as in
the IDSM, the thesis stresses the internal spontaneous activ-
ity which, firstly, allows the organism to generate patterns
of contraction-extension. These patterns enable the organi-
zation of an early nervous system which in turn generates
them. This self-induced movement generates specific pat-
terns in the sensory surface which in turn influences the early
nervous system organization and, thus, the pattern genera-
tion such that the organism can cope with external distur-
bances.

We can compare the skin brain thesis and the model de-
scribed in this work. In both cases there are many possi-
ble sensorimotor individuals that could inhabit a given sen-
sorimotor environment. In the case of a organism with
the organization described by the skin brain thesis, a sen-
sorimotor individual thus would emerge from the reenact-
ment of the sensorimotor contingencies generated first by
the self-initiated motility, and later by the nervous system
dynamic (which depends upon the sensorimotor contingen-
cies it bring about). Notice that any sensorimotor trajectory
is biased by the preliminary self-induced motility of the or-
ganism that allows the “navigation” of the sensorimotor en-
vironment. Similarly, in our experiments, a sensorimotor
individual results from the reenactament of the sensorimo-
tor contingencies generated by the random and the node-
driven motor activity (the latter depends upon the history-
dependent plasticity that the own activity brings about). The
formation of any sensorimotor trajectory is biased by the
random traversing of the sensorimotor environment. Even
though the three qualitative categories of behaviour (static,
monotonic and oscillatory) described in the results can be
considered trivial, the results shed light on how evolution
can bias the parameters of a plastic medium over which sen-
sorimotor individual emerge, so as to encourage the forma-
tion of sensorimotor individual that are conducive or bene-
ficial to biological survival. This form of evolutionary cou-
pling of biological individual and sensorimotor individual
norms underdetermines the patterns of behavior that emerge
— unlike hardwired, purely reflexive behavior, the patterns
of behavior in the sensorimotor individual remain precarious
autonomous entities.

References
Ashby, W. R. (1952). Design for a Brain: The Origin of Adaptive

Behaviour. Wiley.

Barandiaran, X. E. (2007). Mental Life: conceptual models and
synthetic methodologies for a post-cognitivist psychology,
pages 49–90. Imprint Academic.

Barandiaran, X. E. (2008). Mental Life: A Naturalized Approach
to the Autonomy of Cognitive Agents. PhD thesis, University
of the Basque Country.

Barandiaran, X. E. (2017). Autonomy and enactivism: To-
wards a theory of sensorimotor autonomous agency. Topoi,
36(3):409–430.

Barandiaran, X. E. and Di Paolo, E. A. (2014). A genealogical map
of the concept of habit. Frontiers in Human Neuroscience,
8:522.

Barrett, N. (2014). A dynamic systems view of habits. Frontiers in
Human Neuroscience, 8:682.

Buhrmann, T., Di Paolo, E., and Barandiaran, X. (2013). A dynam-
ical systems account of sensorimotor contingencies. Frontiers
in Psychology, 4:285.

Di Paolo, E. A. (2003). Organismically-Inspired Robotics: Home-
ostatic Adaptation and Teleology Beyond the Closed Senso-
rimotor Loop, pages 19–42. Advanced Knowledge Interna-
tional.

Di Paolo, E. A., Buhrmann, T., and Barandiaran, X. (2017). Senso-
rimotor Life: An enactive proposal. Oxford University Press.

Di Paolo, E. A., Noble, J., and Bullock, S. (2000). Simulation
models as opaque thought experiments. In Bedau, M. A., Mc-
Caskill, J. S., Packard, N., and Rasmussen, S., editors, Sev-
enth International Conference on Artificial Life., pages 497–
506. MIT Press, Cambridge, MA.

Egbert, M. D. (2018). Investigations of an adaptive and au-
tonomous sensorimotor individual. In The 2018 Conference
on Artificial Life: A Hybrid of the European Conference
on Artificial Life (ECAL) and the International Conference
on the Synthesis and Simulation of Living Systems (ALIFE),
pages 343–350.

Egbert, M. D. and Barandiaran, X. E. (2014). Modeling habits as
self-sustaining patterns of sensorimotor behavior. Frontiers
in Human Neuroscience, 8:590.

Egbert, M. D. and Canamero, L. (2014). Habit-based regulation
of essential variables. In Sayama, H., Rieffel, J., Risi, S.,
Doursat, R., and Lipson, H., editors, Artificial Life 14: Pro-
ceedings of the Fourteenth International Conference on the
Synthesis and Simulation of Living Systems.

Keijzer, F. (2015). Moving and sensing without input and output:
early nervous systems and the origins of the animal sensori-
motor organization. Biology & Philosophy, 30(3):311–331.

Maturana, H. R. and Varela, F. J. (1980). Autopoiesis and cog-
nition: the realization of the living. D. Reidel Publishing
Company.

Woolford, F. M. G. and Egbert, M. D. (2019). Behavioral variety
of a node-based sensorimotor-to-motor map. Adaptive Be-
havior.

589



Guiding aggregation dynamics in a swarm of agents via informed individuals: an
analytical study

Yannick Gillet1, Eliseo Ferrante 2, Ziya Firat1 and Elio Tuci1

1University of Namur, Namur, Belgium
2University of Birmingham, Birmingham, UK

elio.tuci@unamur.be

Abstract

Self-organised aggregation, the formation of large clusters
of independent agents, is an important process in swarm
robotics systems since it is the prerequisite for more com-
plex collective behaviours. Previous work on self-organised
aggregation focused on the study of the individual mecha-
nisms required to allow a swarm to form a single aggregate.
In this paper, we discuss an analytical model which looks at
the possibility to use the concept of informed individuals to
allow the swarm to distribute on different aggregation sites
according to proportions of individuals at each site arbitrarily
chosen by the designer. Informed individuals are opinionated
agents that selectively prefer an aggregation site and avoid to
rest on the non-preferred sites. We study environments with
two aggregation sites, and consider two different scenarios:
one in which the informed individuals are equally distributed
in numbers between the two sites; and one in which informed
individuals for one type of site are three times more numer-
ous than those on the other site. Our objective is to find out
whether and for what range of model parameters the swarm
distributes between the two sites according to the relative dis-
tribution of informed agents among the two sites. The analy-
sis of the model shows that the designer capability to exploit
informed individuals to control how the swarm aggregates
depends on the environmental conditions. For intermediate
values of the site carrying capacity, a small minority of in-
formed individuals is able to guide the dynamics as desired
by the designer. We also show that the larger the site carrying
capacity the larger the total proportion of informed individu-
als required to lead the swarm to the desired distribution of
individuals between the two sites.

Introduction
The field of swarm robotics aims at studying and designing
self-organising collective behaviours for large groups of rel-
atively simple individuals (Dorigo and Şahin, 2004). Swarm
robotics takes inspiration from nature, whereby groups of
social insects or other animals rely on proximate mech-
anisms (simple cognitive heuristics plus local interaction
rules) that allow them to exhibit complex collective patterns
which tend to be functional to achieve certain tasks (Ca-
mazine et al., 2001). Examples include collective migra-
tion, site selection, pattern formation, and task specializa-
tion. In biological systems, natural evolution shapes the in-

dividual rules of action underpinning the group collective re-
sponse. In artificial swarms, such as swarms of robots, artifi-
cial evolution can potentially be used to mimic natural evo-
lution in order to automate the design of individual mech-
anisms (see Harvey et al., 2005; Tuci and Rabérin, 2015;
Tuci et al., 2018). Alternatively, the designer can program
the behaviour of each individual robot, and evaluate the per-
formance of the collective behaviour at the group (macro-
scopic) level (Brambilla et al., 2013). However, given the
difficulties in predicting the individual actions that result in
the desired self-organising collective behaviour, the designer
is required to program and evaluate multiple individual con-
trollers before finding the one that underpins the desired
group level response. Thus, this approach can be time con-
suming and largely dependent on the designer’s intuitions
on what is required to move from the individual to the group
level desired behaviour.

A relatively recent idea to increase the degree of control-
lability of artificial swarms consists in introducing a small
proportion of informed individuals which can be used to bias
the collective behaviours in the direction specified by the
designer (Ferrante, 2013). Informed individuals are opin-
ionated agents that tend to bias any decision making process
toward their preferred option. The effect of informed in-
dividuals on the groups dynamics have been originally dis-
cussed in biological models of collective motion, where a
minority of individuals determined to move in a given direc-
tion induces the rest of the swarm to opt for their direction of
motion (Couzin et al., 2005; Stroeymeyt et al., 2011; Krause
and Ruxton, 2011). Informed individuals have been sub-
sequently exploited in artificial swarms mainly as a means
to control the system during collective motion (Çelikkanat
and Şahin, 2010; Ferrante et al., 2012, 2014). We study the
effects of informed individuals in a larger spectrum of self-
organised collective behaviour. In particular, in this paper
we further explore the effects of informed individuals in the
context of self-organised aggregation (Firat et al., 2018).

Generally speaking, in aggregation tasks, individuals have
to aggregate on a common location in the environment (Gar-
nier et al., 2005, 2008; Bayindir and Şahin, 2009; Correll
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and Martinoli, 2011; Gauci et al., 2014). Swarm robotics
studies have shown that robot’s controllers in which the in-
dividual probability to join and to leave an aggregation site
depends on the number of robots perceived by an individ-
ual at the site, lead to the emergence of a single aggregate at
one site among those available in the environments (Gar-
nier et al., 2009; Campo et al., 2010). In (Halloy et al.,
2007), robots controlled by similar principles influence the
aggregation dynamics of cockroaches in mixed robot-animal
groups. In particular, the robots programmed to preferen-
tially rest on the lighter (rather than on the darker) shelter,
induce cockroaches to behave similarly even if the animals
would preferentially aggregate on the darker shelter in the
absence of robots. The idea that some individuals could in-
fluence the aggregation dynamics of a group of autonomous
agents, originally discussed in (Halloy et al., 2007) in the
context of the robots-cockroaches interaction, has been re-
cently explored in (Firat et al., 2018, 2019) in the context of
swarm robotics systems. The authors in (Firat et al., 2018,
2019) have extended the analysis of the aggregation process
in a two-site scenario as illustrated in (Garnier et al., 2009;
Campo et al., 2010), to the case in which the swarm is char-
acterised by the presence of informed individuals. In (Firat
et al., 2018, 2019) the sites have distinctive features that al-
low the agents to discriminate between the two of them. In-
formed individuals are programmed to selectively avoid to
rest on one of the two sites. Non-informed individuals rest
with equal probabilities on both sites. These studies show
that with a small proportion of informed individual it is pos-
sible to selectively drive the aggregation dynamics on a de-
signer preferred aggregation site.

In this paper, we discuss the results of a mathemati-
cal model that looks at aggregation dynamics in a swarm
of agents with different proportions of informed and non-
informed individuals. Mathematical models are quite fre-
quently used in the study of collective behaviour in arti-
ficial swarms to avoid the time and computational costs
that robotics and others agent-based models undergo to ex-
plore the effects of a wide range of experimental condi-
tions (Brambilla et al., 2013). Mathematical model of self-
organised aggregation include geometric models (Bayindir
and Şahin, 2009) and Markov chains (Soysal and Şahin,
2007). To study other collective behaviours, common ap-
proaches to modelling include ordinary differential equa-
tions (Montes de Oca et al., 2011; Valentini et al.,
2015), stochastic differential equations such as rate equa-
tions (Lerman and Galstyan, 2002), chemical reaction net-
works (Valentini et al., 2015), Fokker-Planck and Langevin
equations (Hamann and Wörn, 2008), and control the-
ory (Hsieh et al., 2008), among others. Our model uses a
system of ordinary differential equations to study how in-
formed individuals can be used in the context of aggrega-
tion to distribute the agents of a swarm between two dis-
tinctive aggregation sites (one perceived by the individuals

as black and the other as white) according to two arbitrary
rules specified by the designer. There are two types of in-
formed individuals in our model: the “informed for black”
individuals which rest only on the black site, and the “in-
formed for white” individuals which rest only on the white
site. Excluding the informed individuals of any type, the
rest of the swarm is made of non-informed individuals, that
is agents that rest on both aggregation sites with equal prob-
abilities. Both informed and non-informed individuals leave
an aggregation site with a probability given by a non-linear
function of the density of individuals at the site.

Our objective is to find out whether and eventually for
which parameter range the swarm distributes between the
two sites according to the relative proportion of one type of
informed individuals with respect to the other type, by keep-
ing the total proportion of informed individuals as small as
possible. We analyse the system for different total percent-
age of informed individuals in the swarm, from 0% to 100%
informed individuals. For each percentage of informed in-
dividuals, we systematically vary the relative proportion of
informed individuals of one type with respect to the pro-
portion of individuals of the other type. In this paper, we
report the results of two representative scenarios: one in
which informed individuals are equally distributed in num-
bers between the two sites; and one in which the informed
individuals for one type of site are three times more than
the informed individuals for the other type of site. The
first scenario has been chosen to represent the designer aims
to induce the agents to aggregate in equal proportion on
both sites. The second scenario has been arbitrarily cho-
sen among those representative of the designer intention to
induce the agents to aggregate in different proportions on
each site. For each of the two scenarios illustrated in this
paper, we varies the total proportion of informed individuals
from 0% to 100% of the swarm population size. Moreover,
we analyse the systems for different values of the site car-
rying capacity, that is the total number of individuals that
can simultaneously rest on a site. We are interested in iden-
tifying the conditions whereby agents equally split on the
two aggregation sites when both types of informed individu-
als are equally represented in the swarm, and the conditions
whereby aggregation dynamics see agents aggregated 75%
on a site and 25% on the other site, when one type of in-
formed individuals is three time more represented than the
other type. The results of this study shows that there are
parameters’ values for which the distribution of individuals
between the two sites matches the relative proportion of one
type of informed individuals with respect to the other type.
In particular circumstances, the desired aggregation dynam-
ics can be observed with a small minority of informed in-
dividuals in the swarm. In other words, the analysis of the
mathematical model indicates that informed individuals are
a potentially effective means to control the aggregation dy-
namics in swarms of autonomous agents. In section Con-
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clusions, we discuss the significance of our results for the
swarm robotics community, and we explain how we intend
to use these finding in our future research works.

Methods
In this section, we describe the system of Ordinary Differ-
ential Equations (ODEs) used to investigate the effects of
different proportions of two different types of informed indi-
viduals on the aggregation dynamics in a scenario with two
sites, a black and a white site. We draw inspiration from
another ODEs system originally discussed in (Amé et al.,
2004), and subsequently extended in (Amé et al., 2006) to
model the aggregation dynamics observed in cockroaches.
The distinctive feature of both the above cited models is that
the individual probability of leaving a site is a non-linear
function of the number of individuals currently resting at
that site. Our departure point is the Amé et al. (2006)’s
model, where two aggregation sites, with same character-
istics, are symmetrical locations for aggregation for a group
of N equal type individuals. The Amé et al. (2006)’s model
is the following:

Ṅi = −Niλi + µ
(

1 − Ni
S

)
Next; (1)

with

λi =
ε

1 + γ
(
Ni

S

)2 ; Next = (N −
p∑

i=1

Ni); (2)

where Ni is the number of individual resting on site i, λi
is the individual probability to leave site i, the parameter
ε = 0.01s−1, the parameter γ = 1667, S is the maxi-
mum number of individuals that a site can host (i.e. the site
carrying capacity), µ = 0.001s−1 is the rate of entering a
site, Next is the number of individuals outside the sites, and
p = 2 is the number of sites. The analysis of this model
shows that the agents form a single aggregate only when
each aggregation site can host more that the totality of the
swarm’s individuals. The model also predicts how the agents
distribute in different environments varying for the number
of aggregation sites and the diameter of each site bearing
upon the site capacity to host individuals (see Amé et al.,
2006).

We modified the system in Eq. 1 to take into account two
novel features that distinctively characterised our study: that
is, the differences between the two sites, one of which is per-
ceived by the individuals as black, and the other as white,
and the presence of two different types of informed individ-
uals. With the introduction of colour differences between
the two sites, the total number of individuals in a group N is
given by N = Nb +Nw +Next, with Nb and Nw being the
number of individuals resting on the black and on the white
site, respectively.

Defining σ = S/N , xb = Nb/N and xw = Nw/N , with
Next = N −Nb −Nw, leads us to the following system:





ẋb= −xbλb + µ
(

1 − xb

σ

)
(1 − xb − xw)

ẋw=−xwλw + µ
(

1 − xw

σ

)
(1 − xb − xw)

(3)

with

λb =
ε

1 + γ
(
xb

σ

)2 ; λw =
ε

1 + γ
(
xw

σ

)2 ; (4)

where λb and λw refer to the probability of leaving the black
and the white site, respectively. As shown in Eq. 3, the sys-
tem is independent ofN and depends only on the fraction of
individuals on the two sites.

The distinction between informed and non-informed in-
dividuals is introduced into the system with the notation iw
(informed for white) for informed individuals that do not
rest on the black site, ib (informed for black) for informed
individuals that do not rest on the white site, and ni (non-
informed) for non-informed individuals, who can potentially
rest on both sites. With this distinction in place, ρib and ρiw
are the proportion of informed individuals of type ib and iw,
respectively. xibb refers to the fraction of individuals on the
black site that are of type ib; xiww refers to the fraction of in-
dividuals on the white site that are of type iw; xnib refers to
the fraction of individuals on the black site that are of type
ni; and xniw refers to the fraction of individuals on the white
site that are of type ni. The fraction of individual on the
black site (xb) and on the white site (xw) is then written as:

{
xb=xnib + xibb
xw=xniw + xiww

(5)

since, by definition, informed individuals of type iw never
rest on the black site, and informed individuals of type ib
never rest on the white site.

Generalising Eq. 3 to the case with informed and non-
informed individuals gives





˙xibb = −xibb λb + µ
(

1 − xb

σ

)
xibext

˙xnib = −xnib λb + µ
(

1 − xb

σ

)
xniext

˙xiww =−xiww λw + µ
(

1 − xw

σ

)
xiwext

˙xniw =−xniw λw + µ
(

1 − xw

σ

)
xniext,

(6)

where xibext, x
iw
ext, and xini

ext are the fraction of individuals
of type ib, iw, and ini that are outside the two sites. These
fractions can be expressed in the following way




xext=1 − xb − xw = 1 − xnib − xibb − xniw − xiww

xibext=ρib − xibb

xiwext=ρiw − xiww

xniext=xext − xibext − xiwext

=(1 − ρib − ρiw) − xnib − xniw .

(7)
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Finally, substituting Eq. 7 into Eq. 6 we obtain the follow-
ing system:





˙xibb =−xibb λb + µ
(
1 − xb

σ

) (
ρib − xibb

)
˙xnib =−xnib λb + µ

(
1 − xb

σ

) (
(1 − ρib − ρiw) − xnib − xniw

)
˙xiww =−xiww λw + µ

(
1 − xw

σ

) (
ρiw − xiww

)
˙xniw =−xniw λw + µ

(
1 − xw

σ

) (
(1 − ρib − ρiw) − xnib − xniw

)
.

(8)
In the particular case when all the individuals of the group

are informed (i.e. ρib + ρiw = 1), this set of equations re-
duces to

{
ẋb=−xbλb + µ

(
1 − xb

σ

)
(ρib − xb)

ẋw=−xwλw + µ
(
1 − xw

σ

)
(ρiw − xw) .

(9)

The set of equations illustrated in Eq. 8, is solved numeri-
cally to find equilibrium states (i.e., when ẋ = 0). Equilib-
rium states are studied with respect to the key parameters σ,
ρib and, ρiw. The results are discussed in next section.

Results
In this section, we show the results of our analysis, by dis-
cussing the equilibrium states of Eq. 8, for different sets of
values for the parameters σ, ρib , and ρiw . We remind the
reader that the parameter σ is the ratio between the site car-
rying capacity S and the swarm size N . When σ = 1 each
aggregation site can host as many individuals as the swarm
size; when σ < 1, each aggregation site can host fewer in-
dividuals than the swarm size; when σ > 1, each site can
host more individuals than the swarm size. ρib and ρiw re-
fer to the proportion of individuals of type ib (informed for
black) and iw (informed for white), respectively. We also
remind the reader that our objective is to find out the set of
parameters for which the individuals distribute between the
two sites according to the relative proportion of one type
of informed individuals with respect to the other type. We
are also particularly interested in finding what is the critical
value of ρi = ρib +ρiw (i.e. the proportion of informed indi-
viduals) above which this objective is realized, and how this
changes with respect to σ. For example, when ρib = 0.3 and
ρiw = 0.3 we expect 50% of the individuals on the white site
and 50% of the individuals on the black site, and we would
like to know how much we can decrease both ρib and ρiw
and still maintain this allocation.

When there are no informed individuals in the swarm
(ρib = 0 and ρiw = 0), our model reduces to the origi-
nal (Amé et al., 2006)’s model. As in (Amé et al., 2006),
we also find out that for σ < 1, the swarm equally distribute
between the two sites. However, when σ > 1 the individuals
are able to make a collective decision and to aggregate either
on the black or on the white site.

When the entire swarm is composed of informed individ-
uals (i.e. ρib + ρiw = 1, see also Eq. 9), the fraction of
individuals aggregated on the black site (i.e., xb) is shown in

1 - 0

0.75 - 0.25

0.5 - 0.5

0.25 - 0.75

0 - 1

Figure 1: Graph showing the steady state for xb when σ
varies from 0 to 8 for different values of the ratio ρib

ρiw
when

the swarm is made of only informed individuals (ρib +ρiw =
1). The numbers above each line indicate the fraction of
informed individuals of types ib and iw. Dashed line: ρib

ρiw
=

1. Continuous lines: ρib
ρiw

= 3 or 1/3. Dashed-dotted lines:
ρib = 0 or ρiw = 0.

Figure 1. This graph represents the steady state for xb when
σ varies from 0 to 8, and for different values of the ratio ρib

ρiw
.

In the low σ range, when each site is not big enough to
host all the corresponding informed individuals (the black
site for individuals of type ib, and the white site for individ-
uals of type iw), the individuals allocate themselves to both
sites until they reach the site carrying capacity. This trend
does not depend on the relative ratio between ρib

ρiw
, therefore

for low values of sigma informed agents are not able to influ-
ence the aggregation dynamics. When σ surpasses a critical
value that depends on ρib

ρiw
, each site becomes big enough

to host all the corresponding informed individuals. Steady-
state dynamic for different ρibρiw

are qualitatively different but
follow a similar trend. Up to a another critical value of σ,
again dependent on ρib

ρiw
, most individuals simply aggregate

on the site they prefer. This is the regime in which informed
agents have a maximal influence on the dynamics. However,
above this new critical σ, individuals are no longer able to
aggregate at all. This analysis reveals that, as it happened
for the original model discussed in (Amé et al., 2006), and
regardless of the ratio ρib

ρiw
, environmental parameters such

as the site carrying capacity strongly influences the aggre-
gation dynamics and that informed agents can guide self-
organisation only in a limited range of this parameter. For
example, when the aggregation site becomes too large, the
probability to aggregate on a site, which depends on the site
current density, tends to remain too low to trigger the ag-
gregation process. In other words, the density of individuals
on each site never reaches a critical value to induce the in-
dividuals to aggregate on a site. Thus, the individuals tend
to disperse rather than aggregate. For each site, the transi-
tion between the two regimes illustrated above is determined
by the number of informed individuals that are attracted by
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that particular colour: the higher the number of informed
individuals of each type, the higher the size of the site re-
quired to trigger the regime change. For each ratio ρib

ρiw
, there

exists a maximum size σmax corresponding to the point of
regime change. For example, when 75% of individuals are
of type ib and 25% are of type iw, in order to have all of
them aggregated on the corresponding preferred site, σ has
to be smaller than 1.6 (see Figure 1, continuous lines). When
1.6 < σ < 4.8, the white site becomes too large to trigger
aggregation for the individuals of type iw, while the indi-
viduals of type ib are enough to cope with the dimension of
their corresponding aggregation site. When σ > 4.8, even
the black site becomes too large to trigger aggregation.

(a)

(b)

Figure 2: (a) Fraction of individuals on the black and on the
white site, when ρib

ρiw
= 1 for (a) σ = 1 and (b) σ = 2.

Black continuous lines: stable solutions. Dashed grey lines:
unstable solutions.

The analysis carried out so far tell us that the most in-
teresting regime is the one in which σ is in a range (de-
pendent on ρib

ρiw
) that allows the individuals to aggregate in

their respective preferred sites. In this range, we ask our-
selves whether we can now have a hybrid swarm composed
of informed and non-informed individuals, and whether in-
formed individuals can still guide the dynamics in a similar
way as when the swarm was only composed of informed

individuals. We thus proceed by analysing the system for
σ = 1 and σ = 2 for different proportions of informed in-
dividuals in the swarm, and for two different values of the
ratio ρib

ρiw
. In all the figures that will follow, we will report

stable equilibria with continuous black lines, and unstable
equilibria with dashed grey lines.

Figure 2a (resp. Figure 2b) reports results with the ratio
ρib
ρiw

= 1 for σ = 1 (resp. σ = 2), that is for each proportion
of informed individuals in the swarm, 50% of them are of
type ib and 50% are of type iw. The graph shows that the
individuals aggregate on one site only (i.e. either the black
or the white site), until a critical value for the total propor-
tion of informed individuals ρi (about 24% of the swarm
for σ = 1 and about 50% of the swarm for σ = 2), above
which individuals are able to aggregate in equal numbers
on both sites. Therefore, informed agents are able to guide
self-organised aggregation only above a critical proportion
of informed individuals, which increases with increasing σ,
which therefore suggest that larger aggregation sites have
again a counter-intuitive negative effect on the controllabil-
ity of this self-organised behaviour.

(a)

(b)

Figure 3: (a) Fraction of individuals, when ρib
ρiw

= 3 and
σ = 1 for (a) the black site and (b) the white site. Black
continuous lines: stable solutions. Dashed grey lines: unsta-
ble solutions.
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In Figure 3, the ratio ρib
ρiw

is set to 3, that is for each pro-
portion of informed individuals in the swarm, 75% of them
are of type ib and 25% are of type iw, and σ = 1. The graphs
in Figure 3a and 3b can be globally understood as follows:
below a given threshold of about 10% of informed individu-
als of type ib, one of two things can happen: either informed
individuals of type ib and non-informed individuals aggre-
gate on the black site, and informed individuals of type iw
do not aggregate on any site; or informed individuals of type
iw and non-informed individuals aggregate on the white site,
and informed individuals of type ib do not aggregate on any
site. Under this condition, the behaviour of informed indi-
viduals that do not aggregate on their preferred site can be
explained by observing that the dimension of the site is too
large relative to their number to trigger any aggregation pro-
cess. Beyond 30% of informed individuals of type ib, 75%
of the swarm aggregates on the black site and 25% of the
swarm aggregate on the white site. This is the regime where
informed agents are able to guide self-organised dynamics.

Mathematically, when the total proportion of informed in-
dividuals in the swarm is low, the following approximations
hold:




xibb ≈ρib
xnib ≈1 − ρib − ρiw
xiww ≈0
xniw ≈0

OR





xibb ≈0
xnib ≈0
xiww ≈ρiw
xniw ≈1 − ρib − ρiw .

(10)
In such a case, the swarm aggregates only on one site, with
the informed individuals that prefer the other site do not join
the aggregate and they do not aggregate on their preferred
site. When the total proportion of informed individuals in
the swarm is high, the following approximations hold:





xibb ≈ρib
xnib ≈Rb − ρib
xiww ≈ρiw
xniw ≈Rw − ρiw

(11)

whereRb andRw is the ratio of informed individuals of type
ib and iw over the total number of informed individuals, re-
spectively. These results are valid only when the critical
value of σmax is not reached for the specific values of Rb
and Rw, as discussed previously.

Figure 4 reports results of an analysis similar to the one
reported in Figure 3 but with σ = 2 instead than σ = 1,
with the ratio ρib

ρiw
still set to 3. The graphs in Figure 4a

and 4b show that below a given threshold of about 20% of
informed individuals of type ib, the same behaviour is ob-
served as in Figure 3a and 3b: informed individuals of type
ib and non-informed individuals aggregate on the black site,
and informed individuals of type iw do not aggregate on any
site; or informed individuals of type iw and non-informed
individuals aggregate on the white site, and informed indi-
viduals of type ib do not aggregate on any site. Beyond 20%

(a)

(b)

Figure 4: (a) Fraction of individuals, when ρib
ρiw

= 3 and
σ = 2 for (a) the black site and (b) the white site. Black
continuous lines: stable solutions. Dashed grey lines: unsta-
ble solutions.

of informed individuals of type ib, 75% of the swarm aggre-
gates on the black site but no individuals aggregate on the
white site, since the dimension of the site is too large to trig-
ger any aggregation process. In other words, with σ = 2,
informed agents are never able to guide the aggregation dy-
namics. Indeed, when ρib

ρiw
= 3, in order to induce the indi-

viduals of type iw to aggregate on their white site we need
σ < σmax ≈ 1.6.

To complete the discussion, analysis has been performed
for values of σ < 1. As shown in Figure 5, when the fraction
of informed individuals is low, the swarm behaves as pre-
dicted by (Amé et al., 2006). That is, individuals distribute
equally among the two sites. The distribution of individu-
als then changes continuously up to the desired distribution
when all the individuals are informed. Note that when the
site carrying capacity is not large enough to contain the cor-
responding informed individuals, the amount of individuals
on the site is limited by this capacity and therefore never
reaches the desired fraction of individuals.
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(a)

(b)

Figure 5: (a) Fraction of individuals, when ρib
ρiw

= 3 and
σ = 0.9 for (a) the black site and (b) the white site. Black
continuous lines: stable solutions.

Conclusions
In this paper, we introduced a mathematical ordinary dif-
ferential equations model that is inspired by the one pro-
posed by Amé et al. (2006). We performed an analytical
study of self-organised aggregation in presence of two dis-
tinctive aggregation sites, one black and one white. We con-
sider a swarm of agents characterised by the presence of in-
formed individuals, that is agents that are able to recognise
the colour and therefore discriminate between the two sites.
Our model considers sub-populations of informed individu-
als, distinguishing between those that prefer the white and
those that prefer the black site. Each type of informed indi-
viduals never rests on the non-preferred site. From an engi-
neering perspective, when designing self-organised systems
engaged in aggregation tasks, we would like to use informed
individuals to guide the self-organised aggregation dynam-
ics. In particular, we would like to correlate the relative pro-
portion of one type of informed individuals with respect to
the other type, with the total proportion of individuals ag-
gregated in each site.

We analysed the equilibria of the model with respect to
the site carrying capacity and to the proportion of informed

individuals that prefer the white or the black site. Results
show that, as in Amé et al. (2006), dynamics are strongly
dependent on the environmental conditions. For interme-
diate values of the site carrying capacity, the informed in-
dividuals are able to guide the dynamics. And within this
range, the critical mass of informed individuals needed to
guide the dynamics is positively correlated with the site car-
rying capacity, meaning that larger sites make the collective
dynamics more difficult to be guided by informed individ-
uals. Finally, to perform a non-even allocation among the
two sites, the range of the carrying capacity parameter that
allows informed individuals to guide these dynamics is even
more narrow compared to the case of even allocation.

This paper has based its analysis on a seminal and impor-
tant model of self-organised aggregation which was derived
after experiments performed with real cockroaches (see
Amé et al., 2006). However, experimental results we per-
formed in (Firat et al., 2019) have already given us in-
sight that, by having more control on the microscopic self-
organised model of aggregation, it is possible to have in-
formed individuals guiding the dynamics in a wider range
of environmental conditions. In future work, we would like
to focus our efforts in two directions. First, we would like
to propose a macroscopic ODE model that more closely
capture the microscopic design method discussed in (Fi-
rat et al., 2019) rather than the behaviour of natural cock-
roaches. Both in (see Amé et al., 2006) and in (Firat et al.,
2019), the individual prpobability of leaving a site is a non-
linear function of the density of individuals at a site. How-
ever, we believe that the specific non-linear dependency can
be tuned in a way to make dynamics less dependent on envi-
ronmental conditions when informed individuals are intro-
duced. Secondly, the almost totality of self-organised mod-
els of aggregation in swarm of agents are engineered in or-
der to amplify the effect of positive feedback, which is the
prime mechanism responsible for aggregation. This is be-
cause the focus of all these studies is in achieving a single
aggregate. Our approach to the problem differs from previ-
ous research works since we aim to use informed individu-
als to distribute the swarm on two or more aggregation sites
(rather than concentrate it on a single site) according to the
relative proportions of different types of informed individ-
uals present in the swarm. Building upon the encouraging
results of this macroscopic model, we are currently working
at a new microscopic model that is able to regulate the ef-
fect of positive feedback in a way that is different between
informed and non-informed individuals. This work aims to
design individual controllers for swarm of robots that allow
the designer to chose between inducing the swarm to aggre-
gation on one site, and allocation of individuals to differ-
ent sites in proportion to the relative frequency of informed
robots present in the swarm.
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Abstract

In nature, flocking or swarm behavior is observed in many
species as it has beneficial properties like reducing the prob-
ability of being caught by a predator. In this paper, we pro-
pose SELFish (Swarm Emergent Learning Fish), an approach
with multiple autonomous agents which can freely move in
a continuous space with the objective to avoid being caught
by a present predator. The predator has the property that it
might get distracted by multiple possible preys in its vicinity.
We show that this property in interaction with self-interested
agents which are trained with reinforcement learning solely to
survive as long as possible leads to flocking behavior similar
to Boids, a common simulation for flocking behavior. Fur-
thermore we present interesting insights into the swarming
behavior and into the process of agents being caught in our
modeled environment.

Introduction
Flocking or swarm behavior is observed in many species in
nature. A prominent example is fish schooling, where mul-
tiple fishes do not only stay close to each other for social
reasons but coordinate their actions collectively. That means
that an individual fish aligns its direction in regard to fishes
that are close to it, while maintaining a certain cohesion of
the group and still avoiding collisions with other individuals.

However, flocking behavior does not only exist as an end
in itself. In nature, a schooling fish benefits from schooling
in multiple ways: The swarm increases its hydrodynamic
efficiency or mating chances. Also, flocking enhances for-
aging success as collaborative observation is superior to a
single individual’s. The same is true for predator detection.
Even further, the probability of being caught decreases for
an individual with regard to certain predator behaviors.

Reynolds (1987) showed that algorithmically implement-
ing the three rules of alignment, cohesion and separation
leads to flocking behavior while an individual only needs
local knowledge about its surrounding neighbors (called
Boids). In order to overcome these static flocking rules
Morihiro et al. (2008) used reinforcement learning to train
an individual to justify the rules stated above in order to
form a swarm. This was done by shaping the reward sig-

nal according to distances between the individuals and lim-
iting their actions to be attracted to another fish, be repulsed
from another fish and move parallel in the same or opposite
direction of another fish, respectively.

With SELFish we investigate the case that an individual
tries to optimize its behavior w.r.t. the objective of surviv-
ing as long as possible in the presence of a predator (which
might get distracted by multiple preys). We show that this
simple objective leads to emergent flocking behavior (simi-
lar to Boids) in a multi-agent reinforcement learning setting,
without the need to explicitly enforce it. Note that we use
reinforcement learning merely as a tool to investigate the op-
timality of behavior, not analogous to nature (where swarms
usually emerge genetically not due to individual training).

Reinforcement Learning
Reinforcement Learning denotes a machine learning
paradigm in which an agent interacts with its environment
and receives a certain reward for its action accompanied
with an observation of the new state of the environment.
Such scenarios are usually modeled as Markov Decision
Processes (MDPs), where S denotes the set of states of the
environment, A denotes the set of actions an agent can take
and r(st, at) is the intermediate reward received after action
at was taken in state st at time step t. Also, the process
moves to a new state st+1 influenced by the action at, with
the Markov property being that the new probability of tran-
sitioning into state st+1 only depends on state st and the
chosen action at: P(st+1|st, at). The goal is to find a pol-
icy π : S → A which maximizes the accumulated reward
Rt =

∑T
i=t γ

i−tr(si, ai) from time step t to the simulation
horizon T with a discounting factor γ ∈ [0, 1].

In SELFish the state is partially observable, which means
that instead of using the full state description st to determine
the action at = π(st), the agent only uses an observation
ot ∈ O (where O is the space of all possible observations)
as input to a policy function π : O → A to compute the
action at = π(ot). Furthermore the observation may be dif-
ferent for every agent. However, we focus on a deterministic
domain, so P(st+1|st, at) ∈ {0, 1}.

598



Deep Learning
In Reinforcement Learning the policy or intermediate func-
tions, which help to derive it, are usually expressed as deep
artificial neural networks. Neural networks can viewed as a
directed graph of nodes, called neurons, which are intercon-
nected by weighted edges. A neuron receives inputs over
its ingoing edges, usually computes the weighted sum of the
inputs, applies a non-linear function to this weighted sum
and forwards its output to subsequent neurons via its out-
going edges. The neurons are usually arranged in layers,
where layers between the input layer and the output layer of
the network are referred to as hidden layers. Networks with
multiple hidden layers are called deep neural networks.

Artificial neural networks serve as biologically inspired
function approximators which can be trained by example to
approximate a function f mapping an input vector x ∈ IRn

to an output vector y ∈ IRm depending on the weights of the
edges θ. The goal in training a neural network is to minimize
the error between the networks’ output y′ = f(x; θ) and the
known desired (example) output y by adjusting the weights
θ accordingly. This can be done with the Backpropagation
method combined with a gradient descent strategy.

Deep Q-Learning (DQN)
Q-Learning is a value-based approach named after the
action-value functionQπ : S×A → IR, which describes the
expected accumulated reward Qπ(st, at) after taking action
at in state st and following the policy π in all subsequent
states. The goal is to find an optimal action-value function
Q∗, which yields the highest accumulated reward. Q∗ can
be approximated through Bellman’s principle based on the
intuition that for an optimal policy, independently of the ini-
tial state and initial decision, all remaining decisions must
constitute an optimal policy with regard to the state result-
ing from the first decision (Bellman (1957)). Starting from
an initial guess for Q, it can be iteratively updated via

Q(st, at)← Q(st, at)+α[rt+γmax
a

Q(st+1, a)−Q(st, at)]

where the learning rate α ∈ (0, 1) is a parameter to be
specified. The learned action-value function Q converges
to Q∗, from which an optimal policy can be derived via
π∗(st) = arg maxaQ(st, a).

In Deep Q-Learning (DQN) (Mnih et al. (2013)) an ar-
tificial neural network is used to represent the action-value
function Q. Also, to minimize correlations between sam-
ples and to alleviate non-stationary distributions an experi-
ence replay mechanism is used (Mnih et al. (2013)) which
randomly samples previous state action transitions to train
the neural network.

Deep Deterministic Policy Gradient (DDPG)
To overcome the limitation of Q-Learning, which cannot di-
rectly be applied to continuous action spaces, efforts were

made to learn the policy µ(s|θµ) directly with a parame-
terized objective function J(θ) (Silver et al. (2014); Lilli-
crap et al. (2015)). In addition it was proposed to split the
learning process in two components to reduce the gradient
variance, called actor-critic approach. The critic learns the
action-value function Q(s, a) using the Bellman equation as
in Q-learning. The actor then updates the policy parameters
θµ in the direction suggested by the critic:

∇θµJ = Est [∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st ]

Multi-Agent Case
Many approaches have been suggested for the case that there
are multiple agents present which are either self-interested
or have to work together to achieve a cooperative goal. A
straightforward idea in the case that there are multiple agents
that act in their self-interest, which means that they only
maximize their own accumulated reward, is deploying a
standard reinforcement learning algorithm (as in the single-
agent case) in each individual agent in the multi-agent set-
ting and let all agents learn simultaneously. This straightfor-
ward approach bears the problem of non-stationarity in the
state transitions. As one agent tries to adapt its actions in
certain states, other agents, which are considered as part of
the environment for the first agent, do so as well. This makes
it difficult to learn a policy depending on the observed state,
which no longer satisfies the Markov property.

Egorov (2016) approaches a pursuit-evasion game with
reinforcement learning. There are multiple pursuers and
multiple evaders. Only one agent of each kind is trained
through Q-Learning at a time while the policies of the other
agents are fixed. After a number of iterations the policy of
the learning agent is distributed to all other agents of the
same type. Through this process the policy of one set of
agents is improved incrementally over time.

This mitigates the problem of non-stationarity. Further-
more it seems reasonable to copy the policy of one agent
throughout multiple homogenous agents as all are alike and
pursue the same self-interested goal. This observation is also
relevant for flocking or swarm behavior of multiple agents as
we will demonstrate below.

Swarm Behavior
In 1987, Craig Reynolds (Reynolds (1987)) described three
basic rules through which flocking behavior can be mod-
eled. For these rules an individual only needs local knowl-
edge about its neighbors within a certain distance. These
rules are:

• Alignment: Steer towards the average heading direction
of local flockmates

• Cohesion: Steer towards the average position (center of
mass) of local flockmates

• Separation: Steer to avoid crowding local flockmates
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If each individual (called Boids by Reynolds as he thought
of bird-like creatures) follows these rules, a swarm forma-
tion emerges. In an implementation, they can be expressed
as physical forces which act upon an individual. Supple-
mentary forces can be introduced, which repel an individual
from an enemy or from obstacles, for example.

To overcome these static rules definitions, Morihiro
et al. (2008) used Reinforcement Learning, particularly Q-
Learning, to train agents to follow these rules. In their model
the agents iteratively learn while at every time step an agent
i only considers one other agent j. Agent i receives the eu-
clidean distance to j as observation and can choose among
four actions to execute. These actions are to move towards
agent j, away from agent j or parallel to agent j either in the
same or opposite direction. The reward agent i receives for
an action depends on the previously mentioned distance to
agent j and is shaped in a way that it intuitively represents
the cohesion and separation rule. In this regard agent i re-
ceives a positive reward if it steers so to keep its distance to
j within predefined boundaries.

While the previously mentioned approaches lead to flock-
ing behavior, they neglect the beneficial properties flocking
behavior might have for the individuals. One of those ben-
efits could be the increased likehood to survive in the pres-
ence of predators, as they might get distracted by the sheer
amount of possible targets. The question arises whether
flocking behavior occurs in a scenario with such properties
where agents solely try to maximize their survival time. In
contrast to Morihiro et al. (2008), we pursue a scenario in
which agents are trained with reinforcement learning solely
on the objective to survive, without explicitly enforcing
swarm behavior. Additionally, we demonstrate that SELFish
also works for a continuous action space of the agents.

Emergent Swarm Behavior
In order to investigate whether the objective to survive in the
presence of a predator would lead to flocking behavior in a
multi-agent setting, we created a model that facilitates such a
behavior. In the following the properties of the environment
will be explained. This is followed by a description of the
action and observation space as well as the reward structure
which was used to train the agents.

Environment
The agents, which are the prey in this scenario, can freely
move in a continuous two-dimensional space, visualized as
a square with predefined edge lengths (see Figure 1). An
agent itself is represented as a circle with a surface substan-
tially smaller than the space it is moving in. There are nei-
ther obstacles nor walls in the environment. Furthermore
agents do not collide with each other. To ease free roaming
of the agents, the space has the special characteristic that it
wraps around at the edges forming a torus. That means that
if an agents leaves the square visualization to the right, it

Figure 1: Example of the space with 60 agents (green) and
one predator (orange).

will immediately enter it again from the left (same for the
other direction or around top and bottom).

Together with the agents there also exists a predator in the
environment. The predator is also represented as a circle.
The goal of the predator is to catch the agents by moving
to their position. As soon as the predator collides with an
agent, the execution of the concerning agent will end and
a new agent is spawned immediately at a random position
to keep the number of agents in the system constant. If
there are multiple agents within a certain distance around
the predator, it will choose one for a target at random (oth-
erwise it will move to the closest agent’s direction). This
means that the predator can be distracted by multiple agents
in its proximity. Thus it might be beneficial for an agent
to move towards other agents as the predator might get dis-
tracted, which is essential for flocking behavior. However, to
prevent the predator from constantly changing targets it will
follow a chosen target for a certain time before a new target
will be chosen. By default, the agents and the predator move
at the same speed. This would allow an agent to turn in the
opposite direction of the predator and move away without
the predator having a chance to catch up. That is why the
predator will accelerate occasionally for a short amount of
time, which simulates a leap forward to catch the prey it is
following. The policy of the predator is static and does not
change over time.

Objective of an Agent

The goal of the agents is not to collide with the predator.
For this they receive a reward of +1 for each step/frame
they live and -1000 for the collision with the predator which
ends their life. With this reward structure the objective of
the agents can be viewed as “surviving as long as possi-
ble”. As there are no obstacles in the environment and the
agents do not collide with each other, there are no other re-
wards/penalties.
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Action Space
The action space of the agents only comprises of the angle
they want to turn each time step. The movement speed of the
agents is constant and cannot be altered by them for now.

The action a, which represents the turning angle that can
be chosen from discrete steps or out of a continuous interval
by the agent, depends on the reinforcement learning strategy
which is used later on. In the case that DQN is used, the
actions an agent can chose from comprise five discrete de-
gree values {−90◦,−45◦, 0◦,+45◦,+90◦}. The agent can
choose any real-valued degree as turning angle in the case of
DDPG.

As a side node, the predator can only take limited real-
valued turns {x ∈ IR | − 45◦ ≤ x ≤ 45◦} at every step with
the goal to give the agents a higher maneuverability than the
predator.

Observation Space
In order to facilitate the scalability to many autonomous
agents, one agent cannot observe the full state of the environ-
ment; instead its observation is limited to itself, the predator
and the n nearest neighboring agents. This approach can
be explained biologically, where, for example, a fish in a
swarm cannot observe the whole swarm but only its local
neighbors. But it is also in line with related work, for ex-
ample Boids, where also only local neighborhoods between
agents are regarded. Furthermore it eases computation and
has the nice property that the observation vector, which is
forwarded through the reinforcement learning algorithm in
order to obtain an action, has a constant length (cf. the fol-
lowing section).

For every observable entity e, the agent receives a 3-tuple
which contains the euclidean distance between the entity and
the agent, the angle the agent would have to turn to face to-
wards the observed entity and the absolute orientation of the
entity in the environment: (diste, directione, orientatione).
As the environment is a torus, the distances are also cal-
culated around the edges of the visualized square, with the
shorter distance being taken (with the directione correspond-
ing to this). The absolute orientation of an entity is measured
in degrees [0◦, 360◦), where facing east corresponds to 0◦,
measuring the angle counter-clockwise. The angle an agent
would have to turn to face towards another entity is mea-
sured in degrees in the range of (−180◦, 180◦].

Accordingly, an agent receives the following observation
for the predator, itself and the n nearest neighboring agents,
in which the n neighbors are ordered by their distance.



distpredator directionpredator orientationpredator

0 0 orientationself

distneighbor1 directionneighbor1 orientationneighbor1
distneighbor2 directionneighbor2 orientationneighbor2

...
distneighborn directionneighborn orientationneighborn




Hyperparameter DQN DDPG
Training Steps 500,000 500,000
Hidden Layer 10 5

Neurons in Layers 16 Actor: 16
Critic: 32

Hidden Layer Activation relu relu
Last Layer Activation linear linear
γ 0.999999 0.999999
Optimizer Adam Adam
Learning Rate 0.001 0.001
Replay Buffer Size 50,000 100,000
Batch Size 64 512

Exploration ε-Greedy
Ornstein

Uhlenbeck

ε = 0.1
θ = 0.15,
µ = 0.0,
σ = 0.3

Observable neighboring agents 5 1

Table 1: Hyperparameters for Reinforcement Learning

Training

As mentioned before, a valid way for training multiple ho-
mogeneous agents through reinforcement learning is to train
only one instance and then to copy the learned policy to all
instances of the homogeneous group (Egorov (2016)). This
also resembles nature, where for example multiple schooling
fish follow the same behavioral policy.

For this purpose, the DQN and DDPG implementations
of Keras-RL (cf. Plappert (2016)) were used. Keras-RL is
originally developed for OpenAI Gym Environments (Plap-
pert (2016)), in which only single agents interact with these
environments through a step(action)-method, which is given
an action and returns an observation, a reward and a done
flag, indicating whether the current episode is finished. This
interface was also used in the proposed swarm environment
to train a single agent to avoid the present predator with
the previously mentioned rewards, action and observation
spaces. During the training of one agent, the other agents
are present as well, onto which the policy (i.e. the neural
network) of the learning agent is copied after each episode.
An episode ends if the learning agent is caught by the preda-
tor or 10, 000 steps (frames) were executed.

During training, the edge lengths of the space were 40×40
pixels, although it wraps around at the edges. Please note
that the agents and the predator could be positioned at any
real value in the interval [0, 40]. However, the values in the
3-tuples of the observation were normalized to [0, 1] anyway.
The agents and the predator were represented by circles of
radius 1, with an agent being caught if the distance of its
position and the position of the predator is below 2. Also,
during training only 10 agents were present.

In order to find a good configuration for the parameters

601



4035302520151050

Figure 2: Swarm formation in the first 40 frames of an episode of SELFishDQN. Agents (white) and predator (red) were
randomly initialized. Kernel Density Estimation Phillips et al. (2006) was used to highlight the dense regions of the multi-agent
swarm. Note that the space wraps around the edges.

of the reinforcement learning algorithms, many runs were
executed. The quality of the parameter configuration of the
training run was assessed during a test phase based on the
cumulative reward the learning agent could acquire, which
essentially equals the number of time steps it could survive.
The number of neighboring agents that could be observed
was also varied as parameter. See Table 1 for the best pa-
rameters found.

Even for the small number of agents which were
present during the training, a swarming behavior could
be observed when the learned behavior of one agent
was transferred to the others. Since the observation
of an agent is partial and thus limited to the 3-tuple
(distneighbori , directionneighbori , orientationneighbori) for the n
nearest neighbors, the number of agents as well as the size
of the space can be increased without breaking the learned
policy. With this even better swarming behavior can be ob-
served, which shall be further evaluated in the next section.

Simulations and Results
First we want to give an impression of the swarms that
are forming from reinforcement learning. See Figure 2 for
the formation of a swarm in the first 40 frames of a test
episode of SELFishDQN. With a continuous action space,
SELFishDDPG, exhibits similar behavior although the swarm
tends to be more dense. The swarm presumably forms be-
cause one agent learns that the predator might get distracted
from it if it stays close to other agents which prolongs its life
and thereby its accumulated reward.

Boids enforces the alignment, cohesion and separation of
neighboring agents. This can be expressed by vector cal-
culations together with weights which set these three rules
in context. To make the scenario more similar to the rein-
forcement learning setting, another force which pushes the
Boids away from the predator was added (altogether with a
weight for this behavior which sets it in context to the other
rules). To find a good configuration for the alignment, co-
hesion, separation and predator avoidance weight, multiple

runs with different parameter setting were executed. Again,
the quality of a setting was evaluated based on the number
of time steps a certain boid could survive.

If it is only about the survival of an agent, a simple strat-
egy one could think of is to simply turn in the opposite direc-
tion of the predator and to move away from it regardless of
the surrounding agents. This policy will be called TurnAway
in the following and will be given for comparison1.

Alignment and Cohesion

As Boids enforces the alignment and the cohesion of the
agents, we want to compare the swarms resulting from
predator avoidance through reinforcement learning to Boids
by these means. As the orientation of an agent is measured
as angle in [0◦, 360◦) (facing east corresponds to 0◦), the
alignment of the agents can be measured as deviation from a
mean angle of a group (see Figure 3). The absolute deviation
of each agent from this mean angle was summed and aver-
aged over the number of agents. To measure the cohesion
of the swarm, the average distance between the agents was
calculated. For this the distance between all agents i and j
was summed and averaged by the number of pairs of agents.

Considering that the agents flee from a predator and the
space wraps around at the edges, multiple flocks with dif-
ferent orientations, depending on their position in regard to
the predator, might form, as it is already evident from the
Figures 1 and 2. That is why it did not seem sensible to cal-
culate alignment and cohesion over all agents in the space.
To counter this, the density-based clustering method DB-
SCAN (Ester et al. (1996)) and particularly its scikit-learn
implementation (Pedregosa et al. (2011)) was used before-
hand and the average deviation from the mean angle and the
average distance between two agents was only calculated for
agents in a specific cluster (see Figure 4 for an example).
The measurements over all agents are given for comparison.

1For a short video showing all implemented policies please re-
fer to https://youtu.be/SY59CYaqWpE
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avgAngle: 111.06

diff. to avgAngle: -98.94

diff. to avgAngle: 24.06

diff. to avgAngle: 95.06

diff. to avgAngle: 13.06

diff. to avgAngle: -39.94

Figure 3: Considering the orientation of five agents in
space, a mean angle (black) and the deviation from this in
(−180◦, 180◦] can be computed (Watson (1983)).
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Figure 4: Example Clustering for SELFishDQN with 40
agents (predator as red dot).

Figure 5 shows the number of agents in a specific cluster,
when 40 agents were present in a space of 40× 40 pixels. It
is visible that the TurnAway strategy produces many noise
points on average. The clusters that are found for TurnAway
are mostly due to the agents moving in the same direction
to avoid the predator and also overlapping when wrapping
around the edges of the space. Boids and the two rein-
forcement learning approaches used in SELFish, DQN and
DDPG, produce rather similar cluster numbers and sizes on
average, with DDPG having a tendency to form one large
cluster.

By looking at the average deviation from the mean ori-
entation angle of the agents inside clusters (see Figure 6)
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Figure 5: Average number of agents in a respective cluster
(cluster ID given) with noise points being agents that could
not be assigned to a specific cluster.
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Figure 6: Average deviation from the mean orientation angle
of the agents over clusters.

one can see that Boids produces the most aligned groups
of agents which generally move in the same direction.
SELFishDQN and SELFishDDPG are deviating more, presum-
ably because agents following these policies tend to kind
of quiver. Also these agents show the behavior of creat-
ing a line at the point at which they would again move to-
wards the predator because of the torus environment. At
these lines the agents circulate until the predator moves into
their direction. For TurnAway only groups of agents mov-
ing in the same direction are detected anyway, with the aver-
age angle deviation being distorted by agents coming from
the other side of the space and moving in the opposite di-
rection. One might question whether the swarms (respec-
tively clusters) found for SELFishDQN or SELFishDDPG also
solely result from the fact that the agents learned to turn
away from the predator and thereby move in the same di-
rection. This can be countered by the observation that if the
predator is pinned down at a fixed position (it cannot be re-
moved completely as it is part of the agents’ observation),
the learning agents still form a swarm at the greatest possi-
ble distance from the predator where they circulate around
each other. Figure 7 shows the average pairwise distance
between agents either inside clusters, between noise points
or between all agents, which is homogeneous over all four
agent policies, with only SELFishDDPG tending to produce
somewhat denser agent groups. The homogeneity between
the behavioral strategies with regard to the average pairwise
distance also results from the DBSCAN clustering.
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Figure 7: Average pairwise distance between agents ei-
ther inside clusters, between noise points or over all. Edge
lengths of the space normalized to 1 for distance calculation.

603



20 40 60 80 100
Number of agents

1000

1500

2000

2500

3000

3500

4000

4500

A
vg

.
ep

is
o

d
e

le
n

g
h

t

Boids
SELFishDDPG

SELFishDQN

TurnAway

Figure 8: Average episode length for each of the behavior
strategies with varying number of agents in the environment.
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Figure 9: Number of caught agents divided by the time it
took with varying number of agents in the environment.

Agent Survival
For the reinforcement learning algorithms the reward was
defined such that the single learning agent received +1 for
every step and −1000 for being caught. The maximization
of the accumulated reward should encourage it to stay alive
as long as possible. After the end of an episode, which ended
when the learning agent was caught or 10, 000 steps passed,
the learned policy was copied to all other agents. Figure 8
shows the mean episode length for the different policies,
which essentially corresponds to the mean accumulated re-
ward of the learning agents. For the static policies, Boids
and TurnAway, it corresponds to the time it took until a cer-
tain agent was caught. Note that although the number of
agents in the environment is varied, the parameter for Boids
or the policies for SELFishDQN/DDPG are still those that were
determined in smaller settings with only 10 agents.

It turns out that when evaluating the actual survival rate of
every single agent, the best strategy to survive is to simply
turn away from the predator. This is also true considering
the whole swarm, i.e. all agents. In Figure 9, the absolute
number of caught agents in an episode was divided by the
length of the episode (reduced by a transient phase of 100
frames for swarm formation). These measurements were
then again averaged over multiple episodes and runs (with
different seeds).

This raises the question why this behavior was not found
by the reinforcement learning algorithms. The outcome of
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Figure 10: Density of an agent in accordance to the Ker-
nel Density Estimation in the last 100 time steps before it is
caught (mean for multiple agents).

the reinforcement learning could potentially be explained
considering the Prisoner’s Dilemma (Poundstone (1992)). In
this game-theoretical example, prisoners A and B are kept
in arrest without means to communicate. Simultaneously,
both are given the opportunity either to betray the other by
testifying that the other committed the crime, or to cooperate
with the other by remaining silent with the respective pay-
offs shown in Table 2. The only Nash equilibrium (Nash
(1951)) is that both prisoners defect as this yields less charge
for each of them than if one stays silent while the other pris-
oner keeps its strategy unchanged and testifies that the other
committed the crime (betrays). The dilemma is that mutual
cooperation yields a better outcome although it is not ratio-
nal from a self-interested perspective. For our reinforcement
learning setting it could be the case that the TurnAway strat-
egy was not found because the learning process got stuck
in the Nash equilibrium of staying with the swarm (analo-
gous to the mutual defection in the Prisoner’s Dilemma). If
all agents keep their policy of staying close to each other,
the one agent deviating has a higher chance of being chosen
as prey. Our learning procedure is in conformity with this
as one learning agent adjusts its policy in such a way that
it obtains the highest reward while the policies of the other
agents stay unchanged (during an episode). This assumption
is also supported by looking at the procedure how agents are
caught (see Figure 11): When the predator moves in the di-
rection of the swarm, it collaboratively moves away, with a
few agents being left behind. The community of the agents
gets smaller and smaller as some sheer off until one is sepa-
rated and picked as prey. This is also evident considering the

A
B B stays silent

(cooperates)
B betrays
(defects)

A stays silent
(cooperates) -1

-1
-3

0

A betrays
(defects) 0

-3
-2

-2

Table 2: Prisoner’s dilemma payoff matrix
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Figure 11: Separation of agents from the swarm before being caught.

density measurements of agents in the time steps before it is
being caught. Figure 10 shows the density around an agent
in accordance to the Kernel Density Estimation (cf. Figure
2 and 11) in the last 100 time steps of its life.

Conclusion and Future Work
With SELFish we showed that flocking behavior can emerge
solely from self-interested agents. They are trained by multi-
agent reinforcement learning to avoid being caught by a
predator, who is distracted by flocks. Only one agent was
trained at a time with a reward structure that encourages to
avoid being caught as long as possible. After each episode
the learning policy was copied onto all other agents. The
results for SELFishDQN and SELFishDDPG concerning the
alignment and cohesion but also with regard to the survival
chances of the agents were compared with Boids, a com-
mon approach for algorithmic flocking simulations. Our re-
sults show that the measurements for the swarm are quite
similar to Boids. In contrast to Boids, however, we never
explicitly provided the agents with any model allowing to
recognize or form a swarm. Our experiments thus show
that it is possible to program swarms in a purely emergent
way. Considering the survival of an agent, surprisingly, the
reinforcement learning algorithms did not find the policy
of simply turning away from the predator (without caring
about flocking) although it yields higher accumulated re-
wards w.r.t. our reward structure. We propose that staying
in the swarm is a Nash equilibrium (comparable to defecting
in the Prisoner’s dilemma), which would imply that swarms
can form even when they are not the globally optimal behav-
ior. Also, we would like to examine if other beneficial prop-
erties of a swarm, like increased hydrodynamic efficiency or
easier search for food, which were not modeled by us, also
lead to flocking behavior in a reinforcement scenario. This
would probably also facilitate the steering of the swarm. Co-
evolution of the behavior of the predator and its prey through
reinforcement learning could be further investigated in our
continuous environment. In our setting, agents could freely
roam in a torus-like environment without obstacles or colli-
sions. Naturally, there are enhancements to this like adding
walls, obstacles and collisions between the agents.
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Abstract

We propose a simple decentralized control scheme for swarm
robots that can perform spatially distributed tasks in paral-
lel, drawing inspiration from the non-reciprocal-interaction-
based (NRIB) model we proposed previously. Each agent has
an internal state called “workload.” Each agent first moves
randomly to find a task. When it finds a task, its workload
increases, and then it attracts its neighboring agents to ask for
their help. Simulation was used to demonstrate the validity of
the proposed control scheme.

Recently, we have proposed an extremely simple
model of collective behavior based on non-reciprocal
interactions by drawing inspiration from friendship for-
mation in human society (Kano et al. (2017a); Kano et al.
(2017b)). It was demonstrated via simulations that
various patterns emerge by changing the parameters
(http://www.riec.tohoku.ac.jp/∼tkano/ECAL Movie1.mp4).
Although this model (hereafter, we refer to Non-Reciprocal-
Interaction-Based (NRIB) model) is highly abstract and it
is difficult to conclude that it exactly mimics real social
phenomena, the NRIB model can potentially contribute to
various issues such as understanding the essence of collec-
tive behaviors of animals and active matters (Tanaka et al.
(2017)) and designing swarm robotic systems.

This study focuses on the application of the NRIB model
to the control of swarm robotic systems. Specifically, we ex-
tend the NRIB model to provide new insights into the prob-
lem of controlling swarm robots that can perform spatially
distributed tasks in parallel (e.g., swarm robots that can split
into several groups to efficiently clean a room in which dust
is spatially distributed) (Aşı k and Akı n (2017); Claes et al.
(2015); Ducatelle et al. (2009)). We show via simulations
that the robots driven by the proposed control scheme move
and perform spatially distributed tasks in a quite reasonable
manner.

We explain the proposed model hereafter. Agents ex-
ist on a two dimensional field wherein tasks are spatially
distributed. Each agent has an internal state referred to
“workload.” The position and the workload of agent i (i =
1, 2, · · ·, N ) are denoted by ri and Ci, respectively. The

amount of tasks at the position r is denoted by V (r). Each
agent can detect the position and the workload of agents that
exist in the area Si, which is defined as the area within the
circle whose radius and origin are rth and ri, respectively.

The basic concept of the proposed control scheme is as
follows. Each agent first moves at random to search for a
task. Once it finds a task, i.e., it enters an area where V (r)
is large, its motion slows down to perform the task. Con-
currently, its workload increases, which works to attract its
neighboring agents. As a consequence, the attracted agents
can perform the task cooperatively. After the task is finished,
the workload of the attracted agents decreases. Then, they
repel each other and search for another task again.

Thus, the time evolutions of the workload of agent i, Ci,
is given by the following equation:

τĊi = αV (ri)− Ci, (1)

where α and τ are positive constants. Note that Ci is reset
to 1 when it exceeds 1. Equation (1) means that Ci becomes
large when agent i remains in the area where V (r) is large.

The amount of task V (r) decrements by ϵ in each time
step at points where agents exist, because tasks are per-
formed by the agents. Note that V (r) is reset to zero when
it becomes negative. Hence, according to Eq. (1), Ci de-
creases when the task is finished, i.e., V (ri) becomes zero.

The time evolution of the position of agent i, ri, is given
by

ṙi = (1−Ci)


∑

j∈Si

{(aCj − b)r−1
ij − r−2

ij }eij + ni


 , (2)

where rij denotes the distance between agents i and j, eij
denotes the unit vector pointing from ri to rj , and a and
b are constants satisfying a > b > 0. The components
of the vector ni changes randomly at a certain time inter-
val, which enables random walk of the robot. The term
(aCj−b)r−1

ij −r−2
ij in Eq. (2) means that agent i approaches

and repels from agent j when the workload of agent j, Cj ,
is high and low, respectively. Thus, agents tend to aggregate
in areas where V (r) is large. The term (1 − Ci) denotes
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the mobility of agent i. Specifically, agent i slows down as
Ci increases and stops completely when Ci = 1. Hence,
the robot performs tasks without moving until the V (r) de-
creases to some extent.

Simulations were conducted to demonstrate the validity of
the proposed control scheme. The periodic boundary condi-
tion is employed. Areas where V (r) is large are initially
distributed, and the initial positions of the agents are set to
be random (Fig. 1(a)). The initial workload value is set to
be 0.2 for all agents. Parameter values, which were deter-
mined by trial-and-error, are as follows: N = 30, a = 2.0,
b = 0.5, α = 3.0, τ = 2.0, ϵ = 0.0005, rth = 10. The time
step is 0.002. The x and y components of the vector ni are
set to random values within the range of [−0.25, 0.25], and
are updated every 20000 time steps.

The result is shown in Fig. 1
(the movie can be downloaded from
http://www.riec.tohoku.ac.jp/∼tkano/data.mpeg). Agents
aggregate in several areas where V (r) is large, and their
workload becomes large (arrows in Fig. 1(b)). They remain
in these areas for a while, and then V (r) decreases, i.e.,
the tasks are performed (arrow in Fig. 1(c)). When V (r)
becomes almost zero, the workload becomes small and the
agents begin to distribute while moving randomly (Fig.
1(d)). Then, when one of the agents enters an area where
V (r) is large, its workload increases and its neighboring
agents aggregate in the area to perform the task (arrow
in Fig. 1(e)). This process is repeated until the tasks are
almost finished (Fig. 1(f)). In sum, agents are autonomously
divided into several groups to perform spatially distributed
tasks in parallel by using the proposed control scheme.

In conclusion, we proposed a decentralized control
scheme for swarm robots, inspired by the NRIB model. In
spite of the simplicity of the proposed control scheme, it
was demonstrated via simulation that spatially distributed
tasks were performed in parallel by the agents. Although
comparison with other methods and solving several techni-
cal issues, e.g., how to measure V (r), r−1

ij and eij in real
situations are still needed, we believe that the proposed con-
trol scheme could be used for various practical applications
in which several spatially distributed tasks need to be per-
formed efficiently. Moreover, it may be applicable when
chasing moving targets, e.g. capturing fish and chasing crim-
inals.

In future, we would like to examine the applicability of
the proposed control scheme on an unstructured environ-
ment, e.g., a field on which several obstacles exist. We
would also like to develop real robots to validate the pro-
posed control scheme in the real world.
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Figure 1: Simulation result. Areas in which V (ri) is large
are denoted by a dense color. Agents with high and low
workload are colored by red and green, respectively. Gray
circles denote the sensor range of the agents. The meanings
of the red arrows are explained in the main text.
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Abstract

This paper proposes an artificial pheromone communication
system inspired by social insects. The proposed model is an
extension of the previously developed pheromone commu-
nication system, COS-Φ. The new model increases COS-
Φ flexibility by adding two new features, namely, diffusion
and advection. The proposed system consists of an LCD
flat screen that is placed horizontally, overhead digital cam-
era to track mobile robots, which move on the screen, and
a computer, which simulates the pheromone behaviour and
visualises its spatial distribution on the LCD. To investigate
the feasibility of the proposed pheromone system, real micro-
robots, Colias, were deployed which mimicked insects’ role
in tracking the pheromone sources. The results showed that,
unlike the COS-Φ, the proposed system can simulate the im-
pact of environmental characteristics, such as temperature, at-
mospheric pressure or wind, on the spatio-temporal distribu-
tion of the pheromone. Thus, the system allows studying be-
haviours of pheromone-based robotic swarms in various real-
world conditions.

Introduction
Social insects are known for conducting complex tasks with
coordination in highly effective ways. They carry out com-
plicated tasks such as food foraging, aggregating, mat-
ing, etc. using limited perception and memory capabil-
ities (Schmickl et al., 2009; Jackson and Morgan, 1993;
Agosta, 1992; Schmickl et al., 2016; Michener and Press,
1974). Those complex tasks require effective communi-
cation mechanisms within a group of insects. As a key
to achieve the effective communication, several social in-
sects use pheromones which is a medium for the stigmergic
behaviours. Stigmergy is an indirect coordination mecha-
nism using a shared communication medium (Theraulaz and
Bonabeau, 1999). A medium created by an agent in the en-
vironment actuates the other agents to perform certain ac-
tions without any direct communication between them (Hey-
lighen, 2016; Marsh and Onof, 2008). As an example of
how stigmergy is used, an ant releases trail pheromone when
it detects food and other ants detect the trail and follow
it (Jackson and Ratnieks, 2006; Wyatt, 2003; Sumpter and
Beekman, 2003).

Figure 1: Artificial pheromone system including a horizon-
tally placed LCD screen, overhead camera for tracking sys-
tem and a computer.

This coordination mechanism has remarkable features
compared with other traditional methods such as direct com-
munication. First of all, it achieves optimisation through
positive and negative feedback (Jackson and Ratnieks, 2006;
Sumpter and Beekman, 2003; Theraulaz and Bonabeau,
1999; Heylighen, 2016). By reinforcing or suppressing the
medium at a position depending on how close it is to the
goal, the agents can carry out the tasks in an optimal man-
ner, e.g. the shortest path for food foraging is created af-
ter multiple iterations with reinforcement and suppression
on the pheromone trail. Secondly, it does not require com-
plex functionality for each agent (Heylighen, 2016). Com-
pared to the conventional methods, stigmergy demands sig-
nificantly lower capability for each agent. For instance,
an agent does not need to save information into its mem-
ory because it is saved in and read from the media. As an
another example, an agent does not have planning or an-
ticipation ability since it performs tasks only based on the
present media. The advantages of stigmergy have inspired
researchers who study swarm robotics especially adopting
pheromone (Fossum et al., 2014; Purnamadjaja and Russell,
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2007; Font Llenas et al., 2018). Researchers have devel-
oped and implemented artificial pheromone systems with
different means from chemical substances and RFID chips
to light-based means and virtualization system (Arvin et al.,
2018b; Fujisawa et al., 2014; Herianto and Kurabayashi,
2009; Arvin et al., 2015; Valentini et al., 2018; Beckers et al.,
2000). The methods using chemical means duplicate evapo-
ration, diffusion, locality and reactivity which are the char-
acteristics of pheromone in the real world (Fujisawa et al.,
2014). Besides, different kinds of chemical substances can
be used as different kinds of pheromone which have distinct
functionality (Purnamadjaja and Russell, 2007). Although
their similarities to the pheromone in the real world con-
tributes to mimic the important features of the pheromone,
it is difficult to control the properties of the chemical sub-
stances such as evaporation and diffusion rates. Hence, it
is challenging to be used as an experimental tool (Fujisawa
et al., 2014; Sugawara et al., 2004). Additionally, sensing
technology for chemical substances has to be improved to
detect reasonably small amount of chemicals (Purnamadjaja
and Russell, 2010).

The methods using RFID chips have advantages in swarm
robotics because they use low-cost data carriers and it is
free from batteries. However, the fixed size of data carri-
ers does not allow this method to be used with different res-
olutions (Herianto and Kurabayashi, 2009). Virtualization
system is a relatively new method implementing pheromone
communication which reads data from robots, sends the data
to virtual map for mapping and sharing to the robots in the
swarm. In spite of its bidirectional communication and ca-
pacity for large-scale swarm robotics application, the virtu-
alisation of sensors and actuators are restricted by the reso-
lution of the grid (Valentini et al., 2018). Light-based meth-
ods have a number of advantages which cover certain limi-
tations present in the other methods (Arvin et al., 2015; Gar-
nier et al., 2007). The characteristics of pheromone such as
evaporation and diffusion are easily controllable. Further-
more, light-based methods have significantly higher resolu-
tion than the methods using RFID chips or virtualization en-
vironment. Moreover, different types of pheromone can be
implemented since various colors of light can be used (Arvin
et al., 2018a; Jackson and Ratnieks, 2006).

One of the light-based artificial pheromone communica-
tion systems, COSΦ, (Arvin et al., 2015) has four advan-
tages as follows: (1) Precise pheromone trail can be cre-
ated by using high-resolution horizontal LCD screen as an
arena to project light-based artificial pheromones. (2) Char-
acteristics of pheromone such as evaporation and thickness
are easily and precisely modified. (3) Pheromone can be
overlapped or suppressed so that positive feedback and neg-
ative feedback can be implemented. (4) Numerous types of
pheromone can be generated using RGB colors. Although
the system has advantageous features listed above, there are
points which can be developed for more diverse functions

and applications.
The goal of this work is extending COSΦ system to

cover its limitation. Although evaporation and injection
of pheromones was clearly replicated in the system, diffu-
sion was not implemented whereas it is a necessary fea-
ture of temporal pheromone development (Herianto and
Kurabayashi, 2009; Sugawara et al., 2004; Ji et al., 2013).
Furthermore, the mathematical model of the pheromone up-
dating is expanded. Therefore, it includes advection of the
pheromone by the wind and the advection effect is applied
in the system. This expanded system is expected to offer
more options to users for bio-inspired swarm robotic stud-
ies (Figure 1). Adding the two phenomena has the meaning
described below.

• Diffusion is the movement of molecules from the area of
higher concentration to those of lower concentration. So-
cial insects follow pheromone trail, they detect diffused
pheromone rather than contacting to the trail and moving
directly along it (Wyatt, 2003). Despite its importance,
it was not modelled and implemented in the previous re-
search. Therefore, it is meaningful to apply diffusion ef-
fect.

• Advection is the transfer of substances or any quantity by
the flow of a fluid, like wind. In fact, pheromone, as a
substance, is transported by wind which is the flow of the
air. Through applying the advection effect with different
velocity and direction, we have a more reliable model and
figure out how wind influences to the pheromone commu-
nication.

This paper is arranged as follows: Section II presents ar-
tificial pheromone system, COSΦ, Section III presents the
proposed extended properties of the COSΦ, Section IV pro-
vides experimental configurations, and Section V presents
the results from experiments and discusses the outcomes.

Artificial Pheromone System, COSΦ
In the previous project (Arvin et al., 2015), COSΦ (Com-
munication System via Pheromone) was introduced. It has
a software system and a robotic platform. The software sys-
tem consists of two major parts. The first part is a visual
localization system, SwarmCon (Krajnı́k et al., 2014). It
reads the position of robots using a camera attached above
the arena and sends their information to the pheromone re-
leasing system which displays light on the LCD screen. The
second part is a pheromone releasing system. After re-
ceiving the position data from the localisation system, the
pheromone releasing system computes where and how much
the pheromone will be injected accordingly. The system also
repetitively updates the obtained pheromone data reflecting
the development of released pheromone over time in reality.
The system subsequently displays a gray-scale image based
on the pheromone data on the LCD screen.
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COSΦ has three remarkable features which make this
system more reliable and user-friendly to be used as an
experimental platform for researchers in the field of biol-
ogy, swarm robotics or other related disciplines: i) It pro-
vides highly precise location data of robots and pheromone
through SwarmCon system. Moreover, its resolution is equal
to that of the LCD screen; hence, the smallest controllable
size of the pheromone is equivalent to a pixel of the screen.
ii) It has high flexibility allowing the users to change exper-
imental conditions, settings and even initial characteristics
of the pheromone in order to fit their needs. iii) It is a low-
cost platform. COSΦ requires only a low-cost USB camera,
an LCD screen as an arena, and the low-cost micro-robots,
Colias (Arvin et al., 2014).

Pheromone Model
The gray-scale image displayed on the LCD screen com-
puted by the system based on Equation 1.

I(x, y) =

n∑

i=1

ciΦi(x, y) (1)

The brightness of a pixel at a position (x,y), I(x, y) is de-
termined by the multiplication of Φi(x, y) which represents
ith pheromone intensity and ci which denotes how strong
the ith pheromone is displayed on the screen. Since the
system can use multiple different types of pheromone, the
brightness of a pixel is the sum of the effect of n different
pheromones released at a position.

In the previous project (Arvin et al., 2015), the change in
the intensity of pheromone at a position (x,y) at a time, Φ̇i,
is defined by

Φ̇i =
ln 2

eiΦ
Φi(x, y) + κi∆Φi(x, y) + ιi(x, y) (2)

where eiΦ, κi are the evaporation constant and diffusion
constant respectively and ιi(x, y) denotes the amount of in-
jected pheromone at a time. In the previous study (Arvin
et al., 2015), only evaporation and injection terms were ap-
plied into the development in the pheromone concentration.
The two phenomena influence the pheromone in the ways
explained in the below two subsections. Diffusion model is
described in the next section.

Evaporation
Evaporation of the deposited pheromone in the real world
is a fundamental feature of pheromone as a chemical sub-
stance. The intensity of pheromone decays over time due to
evaporation. This model exhibits that the pheromone expo-
nentially decays over time without spreading to the adjacent
positions. Figure 2 shows how the pheromone evaporates
with eiΦ = 20 at t = {0, 1, 2, 3} s illustrated by the black,
red, green and blue line respectively. The pheromone is ini-
tially released from x ∈ [200, 300] with the intensity of 255.

Figure 2: Evaporation of pheromone over time t = 0s
(black), t = 1s (red), t = 2s (green) and t = 3s (blue).

Its horizontal axis denotes the x position of the pheromone
in the 2-D arena with the size of 500×500 pixels, and the
vertical axis is the intensity of the pheromone between 0 and
255.

Injection
The injection ιi(x,y) represents the amount of the newly in-
jected ith pheromone at the position (x,y). In the system,
ιi(x,y) is defined by

ιi(x, y) =

{
sΦ, if

√
(x− xr)2 + (y − yr)2 ≤ lΦ/2

0, otherwise
(3)

where, (xr, yr) is the position of the robot, lΦ is the diam-
eter of the pheromone injected at the time and sΦ is the
pheromone release rate.

Extended Pheromone System
Based on the previous model of the pheromone temporal
development and the mathematical model of moving sub-
stances through the fluid proposed in (Stam, 2005), the evo-
lution of the pheromone intensity field is developed as fol-
lows:

Φ̇i(x, y) = −u · ∇Φi(x, y)− ln 2

eiΦ
Φi(x, y)+

κi∇2Φi(x, y) + ιi(x, y),

(4)

where, u is a two-dimensional vector field which represents
the wind velocity field. This equation stems from Navier-
Stokes equation which illustrates the motion of fluids. It
is assumed that the pheromone is a non-reactive substance.
Hence, the pheromone does not vary by chemical reaction
but the factors described in Equation 4.

Diffusion
As previously mentioned, diffusion is one of the factors of
the pheromone behaviour. In the Equation 4, diffusion is
described as κi∇2Φi(x, y). For the sake of computation
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Figure 3: Diffusion of pheromone over time t = 0 s (black),
t = 1 s (red), t = 2 s (green) and t = 3 s (blue).

simplicity, diffusion is implemented with the approximate
model using the Gaussian filter. It contains analogous fea-
tures to what the actual diffusion model has. i) The to-
tal amount of the pheromone is conserved while it diffuses
ii) The pheromone at a position is distributed to the neigh-
bour positions and the pheromone from surrounding posi-
tions diffuses to the position. Moreover, the intensity of
the pheromone at a position increases if it is surrounded by
greater intensity of the pheromone. Conversely, the inten-
sity decreases if the intensity of the pheromone of its nearby
positions is lower than it.

Φk+1
i (x, y) =

(
ω ∗Φk

i

)
(x, y) =

a∑

s=−a

b∑

t=−b

ω(s, t)Φk
i (x− s, y − t),

(5)

where ω is a kernel matrix with the size of (2a+1)×(2b+1)
which is convolved with the matrix of the ith pheromone
strength Φk

i at kth iteration, and ω is defined by the equation
below:

ω(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , w ∈ R2a+1×2b+1, (6)

where the element at ((a + 1), (b + 1)) is assigned as (0,0)
of ω and σ is the standard deviation of elements of ω. The
elements of the kernel are determined based on the Gaussian
distribution. The further an element from the center of the
matrix is, the smaller value the element has. Figure 3 shows
the diffusion of pheromone at t = {0, 1, 2, 3} s illustrated by
the black, red, green and blue line respectively. The axes are
identical to Figure 2. At t = 0 s, the pheromone released on
x = 200−300 has the intensity of 255. The arena size is also
500 × 500 pixels and the kernel size is 95 × 95 pixels and
σ = 20. Every time the pheromone is updated with the dif-
fusion, the area where the pheromone is deposited expands
while the maximum intensity of the pheromone decreases.

Figure 4: Advection of pheromone over time t = 0 s (black),
t = 1 s (red), t = 2 s (green) and t = 3 s (blue).

Advection
The change in pheromone intensity at the position (x,y) by
advection is simply described as u · ∇Φi(x, y) in Equation
4. The dot multiplication of the wind velocity field u and
the gradient of the pheromone can be expressed as:

u · ∇Φi(x, y) = ux ·
∂Φi(x, y)

∂x
+ uy ·

∂Φi(x, y)

∂y
, (7)

where ux and uy are the x- and y-component of u, respec-
tively. In this project, same magnitude of ux and uy are
applied on the entire field. In other words, the wind with
a given magnitude and direction blows equally at all the
positions. Figure 4 shows the advection of the pheromone
along the x axis where ux = 50, namely, the wind speed
is 50 pixel/s. The pheromone is initially injected from
x ∈ [200, 300] with the intensity of 255. The black, red,
green and blue lines represent the intensity of the pheromone
on the x position at t = {0, 1, 2, 3} s. It is illustrated that the
wind causes the pheromone to be transferred in the almost
parallel manner without a considerable change in the shape.

Experimental Setup
There are three different experimental configurations to
study: i) effects of diffusion, ii) effects of advection, and
iii) combination of both diffusion and advection on the be-
haviour of the robots. Also, we run a set of experiments
excluding pheromone effects as the control.

A circular cue (with diameter of 25 cm) with a maximum
intensity of pheromone at the centre, source of pheromone
injection, is projected on the right hand side of the area
(screen) and the robots are randomly placed on the left hand
side of the arena. Each experiment takes 5 min and we anal-
yse the collective behaviour of the proposed system with two
metrics which are: i) number of robots at the pheromone
source and ii) average distance of the robots from the centre
of the pheromone source.

It must be mentioned that the robots do not deposit
pheromone during experiments; hence, they only change
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their direction towards the highest intensity pheromone trail.
The pheromone cue is only injected once at the initial stage
t = 0 s of each experiment.

Arena Configuration
Arena that is used in this work is analogous to the experi-
mental setup presented in (Arvin et al., 2015). It includes a
horizontally placed 42” flat LCD screen, a USB camera, and
a computer to track the robots and manage the pheromone
system. Figure 1 shows the experimental setup that was used
in this work.

Utilizing this system, we are able to determine whether or
not a robot is reached the cue. In this regard, at the beginning
of each experiment, we store the brightness of each pixel in
a matrix Ia. Then, the localisation system detects the tags of
four corners and calculates the transformation between the
arena and camera coordinate systems. Similarly, it allows
us to detect the robots and measure their positions on the
field. Then, the visual system takes the brightness of the
current image as Ic and compares its with Ia.By finding the
largest circular continuous segment in Ic and calculating its
position (xc, yc) and average brightness bc, the cue zone is
determined.

Robotic Platform
Colias micro-robot (Arvin et al., 2014) was utilised in this
study to test the feasibility of the proposed extensions (Fig-
ure 5-a). Colias is a low-cost open-source mobile robot uses
an AVR micro-controller as its main processor. It has three
short-range infrared proximity sensors at the front to detect
obstacles and other robots. Colias has two light intensity
sensors (Figure 5-b) at the bottom of the robot, sl and sr
on the left and right hand side, respectively. Motors’ rota-
tional velocities, Nl and Nr, are directly controlled using
measurements from these two sensors:

Nl =
sl − sr
α

+ β ,

Nr =
sr − sl
α

+ β ,
(8)

where, α is the velocity sensitivity coefficient and β is a bi-
asing speed. In this work, β relies on the average pheromone
intensity, because the higher intensity results in the lower ve-
locity:

β = 100− sr + sl
2

. (9)

This relation between β and the sensors measurements is
tuned empirically. The main idea is to reduce the speed of
motion near source of the pheromone to keep the robots at
the high intensity pheromone cue. Therefore, there are two
direct impacts of the pheromone on the robots behaviour
which are: i) controlling angular velocity of the robot to di-
rect robot to the centre of the pheromone and ii) reducing
speed of the robot with increasing pheromone intensity.

Figure 5: (a) Colias micro-robot and (b) bottom of the robot
including light intensity sensors.

Experiments
Three pheromone configurations were implemented. The
first configuration was diffusion speed with two settings:

1. Diffusion-A: pheromones diffuse by a rate which results
in diffusion of 25% of total pheromone till t=300 s (eiΦ =
1000, a, b = 7 and σ = 0.3)

2. Diffusion-B: pheromones diffuse by a rate which results
in diffusion of 50% of total pheromone till t=300 s (eΦ =
1000, a, b = 7 and σ = 6)

The second set of experiments were conducted with various
advection speeds:

1. Advection-A: pheromone spot moves with the wind speed
of 2.27 pixel/s to the left hand side of the arena during
t = 300 s (eiΦ = 1000, ux = 2.27 and uy = 0)

2. Advection-B: pheromone spot moves with the wind speed
of 4.53 pixel/s to the left hand side of the arena during
t = 300 s (eiΦ = 1000, ux = 4.53 and uy = 0)

The third set of experiments were conducted with combin-
ing Diffusion-B and Advection-B. Apart from the 5 distinct
configurations which are already mentioned, we applied a
simple experiment in which the effect of neither diffusion
nor advection is considered. All of these 6 experiments were
conducted with two population sizes of N ∈ {4, 6} robots.
Moreover, for each configuration, 5 independent runs are ap-
plied.

In order to assess the effect of these two phenomena on
the behaviour of the system, two different variables are de-
fined. The number of robots on pheromone, a dimensionless
variable, is the ratio of number of robots which are located
within the cue to all robots in the arena. The second vari-
able is “coherence distance”, dcoh, indicating the average
distance of all robots to the center of cue, which is defined
by the following equation:

dcoh =
1

N

N∑

i=1

‖(xi, yi), (xc, yc)‖ (10)

in which, (xi, yi) and (xc, yc) are the location of i-th robot
and cue center, respectively, and ‖.‖ is the Euclidean dis-
tance operator between two points in a 2-D space.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: The arena, robots and pheromone from the camera
perspective, illustrating the experiments of Advection-B, as
well as Diffusion-B + Advection-B . Each row is related to
a specific time t = {0, 60, 180} s, respectively.

Results & Discussion
The results of the above-mentioned experiments are pre-
sented in this section. Figure 6 shows several images from
randomly selected experiments at various times showing the
effect of diffusion and advection on the system. The images
in the left column show an experiment with the configura-
tion of Advection-B with 6 robots, and the images of the
right column have the configuration of mixed Diffusion-B
and Advection-B. In the left column, the effect of wind on
the movement of the cue is shown vividly. The cue starts to
move from the right side toward the left side of the arena due
to advection. In this case, the number of robots which were
able to find and stay at the cue is raised. The effect of diffu-
sion on the pheromone is clearly shown in the right column;
The sharp edge of the cue fades by time, resulting in lower
number of robots remained in the cue. To such an extent that
some of them lost the cue and wander in the arena. On the
other hand, it makes the robots to stay closer to the center of
cue, and as a result, the coherency of the robots increases.
Meanwhile, the advection affects the cue location.

To study the effect of diffusion on the behaviour of robots,
Figure 7 demonstrates the pheromone intensity and coher-
ence distance for three different configurations set of exper-
iments: i) No effects, ii) Diffusion-A, and iii) Diffusion-B.
As shown in Figure 7 (a), the number of robots reached the

(a) (b)

Figure 7: Effect of diffusion on the behaviour of robots. (a)
The number of robots on pheromone and (b) Coherence dis-
tance

(a) (b)

Figure 8: Effect of advection on the behaviour of robots.
(a) The number of robots on pheromone and (b) Coherence
distance

spot in Diffusion-A and B are close to that of with no effect
configuration. However, when time went and the pheromone
diffused to the neighbor areas, the cue shrunk and the robots
left the cue. As what we expected, this separation happened
for Diffusion-B much earlier than Diffusion-A. The diffu-
sion has another impact on the behaviour of robots, which
results in more coherence. Prior to separation, the robots in
the cue stayed closer to the center of cue. This can be seen
not only from Figure 6 (d), but also from the Figure 7 (b).

The effect of advection on the behaviour of robots can be
seen in Figure 8, in which 6 robots are utilized. Compared
to the ‘no effect’ configuration, the number of robots which
were able to find the cue increased when advection is con-
sidered. However, the influence of wind on the coherency is
negligible.

Finally, the result of combination of both concepts are il-
lustrated in Figure 9 besides the result of ’no effect’ case.
We can see that the number of robots on pheromone is gen-
erally more than the simple case, but, same as Figure 7, it
starts to drop after a time called separation time.

To investigate the effects of different factors on collec-
tive behaviour of the swarm, all the results were statisti-
cally analysed using 2-way Analysis of Variance (ANOVA).
Table 1 and Table 2 show the results of ANOVA test for
number of robots on pheromone and coherence distance.
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(a) (b)

Figure 9: Effect of both diffusion and advection on the be-
haviour of robots. (a) The number of robots on pheromone
and (b) Coherence distance

Table 1: Results of ANOVA test for number of robots on
pheromone

Factors p-value F-value
Exp. Configuration 0.000 132.708
Time 0.000 2.512

Based on the results, both factors, time and experiment con-
figurations, significantly affected the swarm. However, the
configuration was the most significant factor in number of
robots on pheromone (F=132.708) and coherence distance
(F =80.156).

Table 2: Results of ANOVA test for coherence distance

Factors p-value F-value
Exp. Configuration 0.000 80.156
Time 0.000 4.639

Conclusion
This paper added two new properties – diffusion and ad-
vection– to the previously developed artificial pheromone
system, COS-Φ. Three set of experimental configurations
were conducted to investigate the performance of the pro-
posed properties. Coherence distance and number of robots
on the pheromone spot were tracked during experiments.
The results were statistically analysed and the most effec-
tive factor was detected. The future work is to include sev-
eral robots with capability of injecting pheromones and to
study inter- robot interactions using the updated artificial
pheromone communication.
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Abstract 

Social network analysis and agent-based modeling are two 
approaches used to study biological and artificial multi-agent 
systems. However, so far there is little work integrating these 
two approaches. Here we present a first step toward integration. 
We developed a novel approach that allows the creation of a 
social network on the basis of measures of interactions in an 
agent-based model for purposes of social network analysis. We 
illustrate this approach by applying it to a minimalist case study 
in swarm robotics loosely inspired by ant foraging behavior. 
For simplicity, we measured a network’s inter-agent connection 
weights as the total number of interactions between mobile 
agents. This measure allowed us to construct weighted directed 
networks from the simulation results. We then applied standard 
methods from social network analysis, specifically focusing on 
node centralities, to find out which are the most influential 
nodes in the network. This revealed that task allocation 
emerges and induces two classes of agents, namely foragers and 
loafers, and that their relative frequency depends on food 
availability. This finding is consistent with the behavioral 
analysis, thereby showing the compatibility of these two 
approaches. 

Introduction 

Social network analysis (SNA) has been widely used in the 
study of biological multi-agent systems (Krause et al., 2015). 
In recent years, there has been an increasing interest in 
analyzing animal social networks (Scott and Carrington, 
2014). For example, there are studies in social networks of 
spider monkeys (Ramos-Fernández et al., 2009), crows (Rutz 
et al., 2012) and social insects (Charbonneau et al., 2013). 
Similarly, agent-based modeling (ABM) has been applied to 
the same area. Ramos-Fernández et al. (2006) studied the 
emergence of animal social structure using agent-based 
models. Guo and Wilensky (2016), researchers in Alife, have 
demonstrated the utility of agent-based models of social 
insects as powerful tools to understand complex system 
principles. Moreover, Wang et al. (2019) studied collective 
behavior of bacteria, which use signaling systems known as 
quorum-sensing (QS) to communicate and cooperate. They 
used an agent-based modeling approach to understand the 
emergence of complex QS architectures and functions. 

 On the other hand, there are few studies using these two 
approaches (SNA and ABM) in combination in artificial 
multi-agent systems (MAS), particularly, in swarm robotics. 
Swarm robotics is a recent approach in the field of artificial 
swarm intelligence to study the coordination of multi-robot 
systems (MRS) without central control inspired on swarms 
observed in nature, such as those of social insects. Collective 
behavior emerges from robot-robot and robot-environment 
interactions (Tan and Zheng, 2013). There is a strong 
potential found in mimicking social insect behavior because 
this is highly convenient for solving complex coordination 
tasks (Alers et al., 2014). For example, ant foraging behavior 
induces task allocation as an emergent property, which is 
suitable for swarm robotics (Labella et al., 2006). 
 In this study, we are interested in applying social network 
analysis to agent-based modeling. There are previous studies 
that successfully combined SNA and ABM (Fontana and 
Terna, 2015) or SNA and MAS (Ma et al., 2009; Grant, 
2009). For a better understanding, we have developed a 
taxonomy of social interaction models based on the approach 
of Powers et al. (2018), as shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A taxonomy of social interaction models. We have 
two classes of social interaction models: network-based and 
behavior-based. Social network analysis (SNA) is an instance 
of network-based model and agent-based modeling (ABM) is 
an instance of behavior-based model. We propose there 
should be a bridge (dashed blue arrow) from behavior-based 
to network-based models to have a complete perspective of 
the network dynamics in a complex system in order to get new 
insights on their emerging properties. That is, moving from 
agent-based modeling to social network analysis. 
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 Figure 1 shows our proposed taxonomy where we consider 
there should be a bridge from behavior-based (e.g. ABM) to 
network-based (e.g. SNA) models to have a complete 
perspective of the network dynamics in a complex system in 
order to get new insights on its emerging properties. Thus, our 
representation of moving from ABM to SNA.  
 We found that this approach (from ABM to SNA) has not 
been exploited in foraging and task allocation in swarm 
robotics. However, there are previous papers using either one 
of these two approaches (ABM or SNA). Iba (2013), 
developed agent-based modeling and simulations with 
swarms; Palestra et al. (2017), modeled and simulated rescue 
robots using the swarm robotics approach; Koval et al. (2009), 
introduced a social network to a swarm robotics system in 
order to improve accuracy in automatic target recognition. 
 The main goal of this study is to apply our proposed 
approach, from agent-based modeling to social network 
analysis, to a case study in swarm robotics inspired by ant 
foraging behavior to show task allocation as an emergent 
property of the complex system.  

The case of ant foraging behavior in swarm robotics 

Task allocation, in social insects, refers to the processes by 
which a task is carried out by each member of the colony. As 
examples, we have foraging and brood care. Additionally, 
these processes adapt to changing conditions (Gordon, 2016). 
In this paper, we are interested in task allocation as an 
emergent property of ant foraging behavior.  
 The main features of ant foraging behavior can be 
summarized as follows (Labella et al., 2006):  
• The ant explores the environment in random displacements 
until it finds food. There are three cases of how to take it to 
the nest: (i) the ant pulls it, if it is not too heavy, (ii) the ant 
cuts it, (iii) the ant uses long or short recruitment (as a result 
of spreading pheromone trail).  
• In individual or collective retrieval, food is directly pulled 
to the nest. 
• When a forager returns to the nest, it unloads food by 
mouth-to-mouth contact into the crops (a pouch located just 
upstream of their stomachs) of other ants (Greenwald et al., 
2018). 
• After retrieving food, the ant goes straight back to the 
location where it found food. 
 Deneubourg et al. (1987) modeled an ant of the species 
Pachycondyla apicalis as an agent. Each agent has a 
probability Pl of leaving the nest, that varies depending on 
prior successes or failures. That is, when an ant retrieves food, 
its Pl increases by a constant Δ. Conversely, when an ant 
spends a lot of time without retrieving food, its Pl decreases 
by a constant Δ. Pl is bounded in the range [Pmin, Pmax]. They 
showed, by means of numerical simulations, that this model 
can explain task allocation and adaptation to the environment 
in ants (Labella et al., 2006).  
 The Variable Delta Rule algorithm (VDR) was based on 
Deneubourg et al.’s model. The main change was to multiply 
Δ by the number of consecutive successes or failures when 
increasing or decreasing the probability of leaving the nest, Pl, 
to carry out experiments in less time (Labella, 2003; Labella 
et al., 2006). This simple algorithm might be well suited for 
use in the context of swarm robotics. 

 Foraging, in test application for multi-robot systems 
(MRS), refers to searching for objects and taking them to a 
place called “nest” (Labella, 2003). 
 A swarm of interacting robots produces emergent 
behaviors. We can analyze the local interactions that allow the 
process of self-organization in these robots using social 
network analysis. Social network analysis studies the 
structural properties of groups or individuals in a network. It 
considers the effect of the interconnections on each other 
(Srivastava et al., 2014).  
 We developed an agent-based model based on the Variable 
Delta Rule algorithm to simulate a swarm of robots inspired 
by ant foraging behavior. Furthermore, for simplicity we 
focused on one of the main traits of Pachycondyla apicalis 
ants, that is hunting alone, consequently, there is no need of 
pheromone trails (Monmarché et al., 2000). Therefore, we 
modeled the case in which each forager takes only a unit of 
food when having a successful food retrieval without using 
pheromone trails. Then, we applied social network analysis to 
show task allocation as an emergent property of this model.  

Methods 

In this section, we present the methodology and tools that we 
used to implement, simulate and analyze the agent-based 
model of swarm robotics. 

Variable Delta Rule Algorithm 

We implemented the Variable Delta Rule algorithm (Labella, 
2003; Labella et al., 2006). It consists in the following rules: 
each time the mobile agent has a success in food retrieval, the 
number of successes is increased and multiplied by Δ, then it 
is added to its Pl. Conversely, if the mobile agent has a failure 
in food retrieval, the number of failures is increased and 
multiplied by Δ, then it is subtracted from its Pl. Therefore, 
each mobile agent’s probability of leaving the nest, Pl, is 
determined by the number of consecutive successful or failed 
food retrieval events. Note that Pl is bounded in the range 
[Pmin, Pmax]. This is shown in Algorithm 1. 
 

Algorithm 1 Variable Delta Rule  

Initialization: 
     successes  0 
     failures  0 
     Pl  Initial value 
 
if food is retrieved then 
     successes  successes + 1 
     failures  0 
     Pl  Pl  + (successes * Δ) 
     if Pl > Pmax then 
          Pl  Pmax 

     end if 
else if timeout then 
     failures  failures + 1 
     successes  0 
     Pl  Pl  - (failures * Δ) 
     if Pl < Pmin then 
          Pl  Pmin 
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Agent-based model (ABM) of swarm robotics 

Environment. The simulated environment is a bounded two-
dimensional grid (when a mobile agent reaches an edge it 
rotates 180 degrees and continues moving) and has a size of 
91 x 91 units, with a unique nest located at the center (cluster 
of brown patches). A unit of the grid is represented by a patch 
of 5 x 5 pixels. A unit of food is represented by a unit of the 
grid located in a food source.  
 A fixed value in the range [0, 200] is assigned to each unit 
of the grid as follows: the distance between the focal unit of 
the grid and the center of the nest is calculated, then it is 
subtracted from 200 to obtain its “nest scent” value. This 
value is greater as the focal unit of the grid is closer to the 
nest. This approach is used by mobile agents to find their way 
back to the nest, it is known as following “nest scent” and it is 
described as follows: before each step forward when coming 
back directly to the nest, the mobile agent is going to head 
toward the greatest value of “nest scent” that is ahead of it and 
between the angles -45, 0 or 45. This is repeated until 
reaching the nest (Wilensky, 1997). 
 On the grid, food sources are clusters of units of food that 
are established in a fixed position and have a variable size 
between small (9 units of food), medium (45 units of food) or 
large (109 units of food). We have three food sources 
identified with the following colors, from the closest to the 
furthest from the nest: magenta, lime and turquoise. Figure 2 
shows the distribution and different sizes for food sources in 
the environment. The environment is dynamic. A food source 
decreases by one unit of food each time a mobile agent has a 
successful food retrieval. 
 
a)                                b)                               c) 
 
 
 
 
 
 
 
 
Figure 2: The simulated environments with different sized 
food clusters: a) Small (9 units of food for each food source),   
b) Medium (45 units of food for each food source), c) Large 
(109 units of food for each food source). The nest is in the 
center of the environment (cluster of brown patches). There 
are three available food sources, the color of each one 
indicates the distance to the nest, from the closest to the 
furthest we have: magenta, lime and turquoise. 
 

 
Mobile Agents. We consider six mobile agents with initial 
positions in the center of the nest. Each mobile agent 
represents a robot. Movements, behaviors and interactions of 
mobile agents are described as follows:  
 
Movements. Mobile agents have two classes of movements, 
these are described as follows: 
• Foraging movement: When a mobile agent is out of the 
nest, it moves around the environment by random 
displacements to right and left each time-step, while 

considering not to take an occupied unit of the grid where 
another mobile agent is, as an obstacle avoidance mechanism. 
A displacement has a maximum turning angle of ± 40 degrees 
(Wilensky, 1997).  
• Nest seeking movement: When a mobile agent is returning 
to the nest, it moves by displacements following the “nest 
scent” in each time-step. That is, it moves towards the next 
unit of the grid that has the greatest value of “nest scent” until 
reaching the nest, while considering not to take an occupied 
unit of the grid where another mobile agent is, to avoid 
obstacles. 
 
Behaviors. Each mobile agent assumes one of the following 
behaviors per time-step depending on its own parameters and 
environment conditions (Labella et al., 2006): 
• Rest: Stays in the nest. 
• Search for food: Explores the environment while checking 
if there is a unit of food in the path. If there is one, the mobile 
agent takes it and returns to the nest with food (its number of 
successes is increased). If there is not one, the mobile agent 
keeps randomly moving around until a timeout occurs and it 
returns to the nest without food (its number of failures is 
increased). 
• Return to nest: Finds the way back to the nest following 
the “nest scent” (Wilensky, 1997). It returns to the nest if a 
unit of food was successfully retrieved or a timeout occurs. 
• Feed: Transfers food to all the mobile agents in the nest, 
when arriving to it after a successful food retrieval. Its number 
of successes is increased by one, therefore its probability of 
leaving the nest is going to be higher when updating it. 
 Furthermore, the mobile agents change their color to 
identify the performed behavior, as shown in Table 1. 
 

Behavior Color 
 

Rest Blue 
 

Search for food Red 
 

Return to nest 
(with food) 

Yellow 

Return to nest 
(without food) 

Violet 

Feed 
 

Orange 

 
Table 1: Colors representing the behavior of each agent. 
 
 
Interactions. 
• Agent - Agent (among mobile agents): When a mobile 
agent arrives to the nest after retrieving a unit of food, there is 
an interaction between that mobile agent (emitter) and all the 
mobile agents in the nest (receivers), which represents food 
transfer. When a mobile agent is the emitter, its corresponding 
interaction variables (each one corresponds to an emitter-
receiver interaction) increase by one. This is prompted by the 
forager ant’s interactions with the rest of the colony to feed 
them. Figure 4 shows an example of interaction among mobile 
agents. 
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Figure 4: Interaction between mobile agents. The orange-
colored mobile agent (emitter) returned to the nest after 
retrieving a unit of food, when it arrives to the nest it interacts 
with all the blue-colored mobile agents (receivers) that are on 
the cluster of brown patches. This interaction represents food 
transfer (white arrow) from emitter to receivers and is loosely 
inspired by a forager ant feeding the rest of the colony in the 
nest. 
 
 
• Agent - Food Source (among mobile agents and food 
source clusters): When a mobile agent finds and retrieves a 
unit of food, there is an interaction between that mobile agent 
and the retrieved unit of food from a food source, this is 
inspired by the forager ant’s interactions with a food source. 
Each time a unit of food is retrieved from a food source, the 
number of units of food of that food source is decreased and 
the retrieved unit of food changes to color black to represent it 
was taken. Figure 5 shows an example of interaction among a 
mobile agent and a food source.  
 
 
 
 
 
 
 
 
 
Figure 5: Interaction between a mobile agent and a food 
source. a) When a red-colored mobile agent finds out a unit of 
food, it interacts with the food source and b) it changes its 
color to yellow. The retrieved unit of food changes to color 
black to represent it was taken. 
 

Experiments 

The simulation-based experiments consisted in introducing a 
swarm of six mobile agents and three food sources (clusters of 
magenta, lime and turquoise patches), which we varied from 
small sizes (9 units of food for each food source cluster), 
medium sizes (45 units of food for each food source cluster) 
and large sizes (109 units of food for each food source 
cluster) to show task allocation under changing conditions of 
the environment. We created 30 instances per food sources 
size, i.e. 90 simulations in total. Each simulation lasted 2400 
time-steps. The model was initialized with the following 
parameters (Labella, 2003): The search timeout was fixed to 
228 units of time, Δ was set to 0.005, Pmin to 0.0015, Pmax to 
0.05 and Pinit to 0.033. Figure 6 shows a representative 
simulation of the agent-based model of swarm robotics and its 
components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Screenshot of the agent-based model of swarm 
robotics after 2400 time-steps. a) Red-colored mobile agents 
are searching for food and b) blue-colored mobile agents are 
resting in the nest (cluster of brown patches). There are three 
food sources, from closest to furthest to the nest: c) magenta, 
d) lime and e) turquoise. 
 

Social network analysis (SNA) 

We followed the proposal by Wasserman and Faust (1994), 
who used network graphs to represent agent structures and 
network measures such as strength and centrality, to 
determine the particular role of individuals in the network’s 
structure. We propose to represent mobile agents and their 
interactions in each simulation as a weighted directed network 
and focus on outdegree and weighted outdegree centralities to 
identify the induced classes, as a result of task allocation: 
foragers and loafers. 
 We constructed ninety weighted directed networks, from 
the 90 simulations, i.e. 30 simulations per food sources size 
(small, medium and large) as described in the Methods. We 
added a directed edge between two nodes (source and target) 
to represent whenever one of the two mobile agents (emitter) 
interacted with another one in the nest (receiver) to represent 
food transfer, this is inspired by the forager ants’ interactions 
with the rest of the colony to feed them. Weights were 
assigned according to the number of interactions between the 
two mobile agents. Nodes were labeled with the six mobile 
agents’ identifiers, from 0 to 5.  
 Measures were computed for each weighted directed 
network. We focused on outdegree and weighted outdegree 
centralities. Degree centrality shows the quality of a network 
node’s interconnectedness by the number of direct contacts 
(Landherr et al., 2010). The outdegree is the number of ties 
that a node directs to others, it is interpreted as a quantity of 
information that is spread from one node to other (by 
outgoing edge). A high value is interpreted as sociability 
(Mansur et al., 2016). The centrality of nodes allows us to 
identify the most important or central nodes in a network. 

a) b) 
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Thus, outdegree centrality is a measure of the importance of a 
node, based on its number of ties. It is interpreted as the 
involvement of a node in the network. Weighted outdegree 
centrality is a measure of the importance of a node, based on 
its strength in terms of the total weight of their connections. It 
is interpreted as strength of collaborative ties (Opsahl et al., 
2010). To calculate node strength, we have the following 
equation: 
 
 
                                                                                              (1) 
 
 
where w is the weighted adjacency matrix and wij represents 
the weight of the tie, it is greater than 0 if the node i is 
connected to node j (Opsahl et al., 2010). 
 Outdegree centrality can lead us to identify the mobile 
agents who are the most interconnected to others (i.e. more 
ties), whereas weighted outdegree centrality can lead us to 
identify the mobile agents who have the greatest number of 
interactions (i.e. wider edges) with the rest. Hence, we need 
both centrality measures to identify the expected induced 
classes, as a result of task allocation: foragers and loafers. 
Foragers’ task consists in searching and retrieving food to 
feed the rest of the mobile agents; loafers’ task consists in 
staying in the nest. Thus, foragers must be the most 
interconnected to the rest (i.e. having more ties) and with the 
greatest number of interactions (i.e. having wider edges). In 
the shown networks, node size refers to the value of outdegree 
or weighted outdegree centralities. 
 According to Labella’s (2003) experimental results with 
MindS-bots (swarm of robots), he found that the distribution 
of probability of leaving the nest had two peaks and the 
boundary between the two groups was around 0.025, therefore 
there were two groups of MindS-bots: foragers (Pl  ≥ 0.025) 
and loafers (Pl  < 0.025). As described in the Experiments, our 
model was initialized under Labella’s (2003) experimental 
parameters, thus, we compared the results with the second 
parameter to identify foragers and loafers: mean probability of 
leaving the nest (mean Pl). Therefore, those mobile agents 
with mean Pl ≥ 0.025 are likely to be foragers (red-colored 
nodes) and those with mean Pl < 0.025 are likely to be loafers 
(blue-colored nodes). 

Results 

First, we show the results for three representative simulations 
(each one with a different food sources size). Then, we show 
in summary the results for the 90 simulations. 

Simulation 1 - Small food sources size  

Figure 7 shows the weighted directed network obtained with 
the results of simulation 1. The mean outdegree centrality of 
this network was 1.83, that indicates there were few nodes 
that were the most interconnected to others, in this case, only 
node 3 had ties to all the other nodes. The mean weighted 
outdegree centrality was 2.17, that indicates there were few 
interactions between mobile agents. There were two edges 
with high weight values, those were (3,2) and (3,5), which 
represented the greatest number of interactions between the 

mobile agents. Node 3 had the greatest number of ties and 
wider edges, moreover, it has a Pl  > 0.025, therefore we 
interpreted it as a forager. The mean probability of leaving the 
nest of all nodes was 0.021, which was less than 0.025, so we 
expected more loafers than foragers. Likely agents to be 
foragers by Pl were represented by red-colored nodes and 
likely agents to be loafers by Pl were represented by blue-
colored nodes. After analyzing the results, we got 1 forager 
(node 3) and 5 loafers (nodes 0, 1, 2, 4, 5). 
 
 
 
 
 
 
 
 
 
 

 
 

(a) Social network 1 with nodes sized by their outdegree 
centrality  

 
 
 
 
 
 
 
 
 
 
 

(b) Social network 1 with nodes sized by their weighted 
outdegree centrality  

 
Figure 7: Graphs of social network 1 (the size of food 
sources is small) between six mobile agents where node sizes 
are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red, 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue, therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 1 forager and 5 loafers). 
 

Simulation 2 - Medium food sources size  

Figure 8 shows the weighted directed network obtained with 
the results of simulation 2. The mean outdegree centrality of 
this network was 2.67, that indicates there was a moderate 
number of nodes that were the most interconnected to others, 
more than in Simulation 1. The mean weighted outdegree 
centrality was 4.5, that indicates there was a greater number of 
interactions between mobile agents than in Simulation 1. 
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There were seven edges with high weight values, those were 
(1,5), (1,4), (1,3), (1,2), (0,4), (0,3) and (0,2) which 
represented the greatest number of interactions between 
agents. Nodes 0 and 1 had the greatest number of ties and 
wider edges, moreover, their Pl > 0.025, therefore we 
interpreted them as foragers. The mean probability of leaving 
the nest of all nodes was 0.022, which was less than 0.025, so 
we expected more loafers than foragers. After analyzing the 
results, we got 2 foragers (nodes 0, 1) and 4 loafers (nodes 2, 
3, 4, 5).  
 
 
 
 
 
 
 
 
 
 
 

(a) Social network 2 with nodes sized by their outdegree 
centrality  

 
 
 

 
 
 
 
 
 
 

(b) Social network 2 with nodes sized by their weighted 
outdegree centrality  

 
Figure 8: Graphs of social network 2 (the size of food 
sources is medium) between six mobile agents where node 
sizes are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red; 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue; therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 2 foragers and 4 loafers). 
 

Simulation 3 - Large food sources size  

Figure 9 shows the weighted directed network obtained with 
the results of simulation 3. The mean outdegree centrality of 
this network was 3.6, that indicates there were many nodes 
that were the most interconnected to others, more than in 
Simulations 1 and 2. The mean weighted outdegree centrality 
was 6.83, that indicates there was a greater number of 
interactions between mobile agents than in Simulations 1 and 
2. There were many edges with high weight values, due to 

high food availability. Nodes 0, 3, 4 and 5 had the greatest 
number of ties and wider edges, moreover, their Pl  > 0.025, 
therefore we interpreted them as foragers. The mean 
probability of leaving the nest of all nodes was 0.029, which 
was greater than 0.025, so we expected more foragers than 
loafers. After analyzing the results, we got 4 foragers (nodes 
0, 3, 4, 5) and 2 loafers (nodes 1, 2).  
 
 
 
 
 
 
 
 
 
 
 

(a) Social network 3 with nodes sized by their outdegree 
centrality  

 
 
 
 
 
 
 
 
 
 
 

(b) Social network 3 with nodes sized by their weighted 
outdegree centrality 

 
Figure 9: Graphs of social network 3 (the size of food 
sources is large) between six mobile agents where node sizes 
are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red; 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue; therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 4 foragers and 2 loafers). 
 

Summary of results 

The results of the social network analysis applied to the 90 
weighted directed networks obtained from the simulation 
experiments are summarized in Table 2. It reports the mean 
and standard deviation of number of foragers and loafers.  
 Figure 10 shows the results of mean and standard deviation 
of probability of leaving the nest of the six mobile agents in 
the 30 experiments per food sources size (i.e. 90 experiments 
in total). 
 Contrasting the results of Table 2 and Figure 10, we can see 
that the social network analysis results confirmed the 
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expectations of number of loafers and foragers obtained by 
the mean probability of leaving the nest varying the food 
sources size. Hence, the results proved task allocation among 
mobile agents as an emergent property of this model, inducing 
two classes: foragers and loafers. The number of foragers and 
loafers was adapted to the environment conditions (in this 
case, food availability). 
 
 

Food 
Sources 

Size 

Food 
availabi-

lity 

Number of 
Foragers 

Number of 
Loafers 

Small Low 1.1 ± 0.3051  4.9 ± 0.3051 

Medium Medium 3.07 ± 0.7397 2.93 ± 0.7397 

Large High 4.77 ± 0.4302 1.23 ± 0.4302 

 
Table 2: Mean and standard deviation of number of foragers 
and loafers calculated over 30 simulations per food sources 
size (i.e. 90 simulations in total) by applying social network 
analysis to the obtained weighted directed networks. The low 
values of standard deviation indicate that the behavior of the 
model was consistent across simulations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Mean and standard deviation of probability of 
leaving the nest while varying food sources size. The low 
standard deviation indicates that the behavior of the model 
was consistent across simulation experiments. These results 
show that with a low availability of food (small sized food 
sources) the mean Pl < 0.025, therefore, we expected more 
loafers than foragers; with a medium availability of food 
(medium sized food sources) the mean Pl  is a little above 
0.025, therefore, we expected similar number of loafers and 
foragers; with a high availability of food (large sized food 
sources) the mean Pl  > 0.025, therefore, we expected more 
foragers than loafers.  
 

Emergent property - Task allocation  

In all simulations we observed that task allocation emerged 
and induced two classes: foragers and loafers. There were 

more loafers than foragers with low food availability (i.e. 
small sized food sources); there was similar number of loafers 
and foragers with medium food availability (i.e. medium sized 
food sources); and there were more foragers than loafers with 
high food availability (i.e. large sized food sources). 

Discussion  

As we have seen, moving from agent-based modeling (ABM) 
to social network analysis (SNA) lead us to a better 
understanding of the complex system by studying its emergent 
properties. In our agent-based model of swarm robotics we 
have shown that task allocation emerges and induces the 
creation of two classes: foragers and loafers. Furthermore, one 
of our main results was that the number of foragers and 
loafers changed with the conditions of the environment, as in 
real ant colonies. It means, task allocation changes as 
conditions vary (Gordon, 1999). Our model highlights that 
when more food is available, more foragers appear, and vice 
versa, as we observed in the weighted directed networks that 
we created for each simulation results. Thus, we conclude task 
allocation implies an adaptive and self-organized process 
(Labella, 2003). 
 A distinctive property revealed by the social network 
analysis was that the nodes with the greatest outdegree 
centralities were the most interconnected with the others (i.e. 
more ties) and those with the greatest weighted outdegree 
centralities had wider edges, therefore those nodes which 
were bigger in both graphs were the most interconnected 
mobile agents (i.e. having more ties) with the greatest number 
of interactions (i.e. having wider edges), hence we can call 
them, the “influentials” in the colony. These are the foragers.  

Conclusions and Future Work 

 To summarize, we presented and analyzed our agent-based 
model of swarm robotics using social network analysis to 
show that it exhibits task allocation as an emergent property 
due to the Variable Delta Rule algorithm (Labella, 2003; 
Labella et al., 2006), which was inspired by ant foraging 
behavior. In future work, we are going to explore more 
complicated scenarios, for example, considering cheaters, 
those social insects that exploit the benefits of biological 
cooperation without contributing to them (Dobata and Tsuji, 
2009). Moreover, this can be extended by using social 
network analysis to develop agent-based models, that is, 
moving from social networks to multi-agent systems in order 
to establish the measures of those networks and then design 
agent’s behaviors that will reach those measures. This could 
potentially be used in order to run game theoretic (network) 
models in an agent-based modeling framework. 

References 

Alers, S., Tuyls, K., Ranjbar-Sahraei, B., Claes, D. and Weiss, G. (2014). 
Insect-Inspired Robot Coordination: Foraging and Coverage. In 
Sayama, H., Rieffel, J., Risi, S., Doursat, R. and Lipson, H., editors, 
Proceedings of the Fourteenth International Conference on the 
Synthesis and Simulation of Living Systems (ALIFE 14), pages 761-
768. MIT Press, Cambridge, MA. 

622

https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1064.jpg&w=249&h=186
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1064.jpg&w=249&h=186
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1064.jpg&w=249&h=186
https://www.mitpressjournals.org/action/showImage?doi=10.1162/isal_a_00240&iName=master.img-1064.jpg&w=249&h=186


Charbonneau, D., Blonder, B. and Dornhaus, A. (2013). Social Insects: A 
Model System for Network Dynamics. In: Holme P. and Saramäki 
J., editors, Temporal Networks, pages 217-244. Springer, Berlin.  

 
Deneubourg, J.-L., Goss, S., Pasteels, J. M., Fresneau, D. and Lachaud,  

J.-P. (1987). Self-organization mechanisms in ant societies (II): 
Learning in foraging and division of labor. In Pasteels, J. and 
Deneubourg, J.-L., editors, From Individual to Collective Behavior 
in Social Insects, Experientia Supplementum, 54:177-196. 
Birkhäuser Verlag, Basel, Switzerland. 

 
Dobata, S. and Tsuji, K. (2009). A cheater lineage in a social insect: 

Implications for the evolution of cooperation in the wild. 
Communicative & Integrative Biology, 2(2):67–70.  

 
Fontana, M. and Terna, P. (2015). From Agent-Based Models to Network 

Analysis (and Return): The Policy-Making Perspective. Journal on 
Policy and Complex Systems, 2(1):77-92.  

 
Gordon, D. M. (1999). Interaction patterns and task allocation in ant 

colonies. In Detrain, C., Deneubourg, J.-L., Pasteels, J. M., editors, 
Information Processing in Social Insects, pages 51-67. Birkhäuser 
Verlag, Basel, Switzerland. 

 
Gordon, D. M. (2016). From division of labor to the collective behavior 

of social insects. Behavioral Ecology and Sociobiology, 
70(7):1101–1108.  

 
Grant, T. (2009). Modelling Network-Enabled C2 using Multiple Agents 

and Social Networks. In Andrighetto, G., Boella, G., Sichman, J. 
and Verhagen, H., editors, Proceedings of the Social Networks and 
Multi-Agent Systems Symposium (SNAMAS-09), pages 13-18. The 
Society for the Study of Artificial Intelligence and the Simulation of 
Behavior (SSAISB). 

 
Greenwald, E., Baltiansky, L., and Feinerman, O. (2018). Individual crop 

loads provide local control for collective food intake in ant colonies. 
eLife, 7: e31730. doi:10.7554/eLife.31730 

 
Guo, Y. and Wilensky, U. (2016). Small Bugs, Big Ideas: Teaching 

Complex Systems Principles Through Agent-Based Models of 
Social Insects. In Gershenson, C., Froese, T., Siqueiros, J. M., 
Aguilar, W., Izquierdo, E. J. and Sayama, H., editors, Proceedings 
of the Artificial Life Conference 2016, pages 664-665. MIT Press, 
Cambridge, MA. 

 
Iba, H. (2013). Agent-Based Modeling and Simulation with Swarm. 

Chapman and Hall/CRC, New York. 
 
Koval, M. C., Rubinoff, A. E. S., Maghami, M. and Georgiopoulos, M. 

(2009). Social Network Analysis for Target Recognition in Swarm 
Robotics. AMALTHEA REU program. 

 
Krause, J., James, R., Franks, D. W. and Croft, D. P. editors (2015). 

Animal Social Networks. Oxford University Press.  
 
Labella, T. H. (2003). Prey Retrieval by a Swarm of Robots. Thesis for 

the Diplôme d’Études Apronfondies (DEA), Institut de Recherches 
Interdisciplinaires et de Développements en Intelligence Artificielle 
(IRIDIA), Université Libre de Bruxelles. 

 
Labella, T. H., Dorigo, M., and Deneubourg, J.-L. (2006). Division of 

Labour in a Group of Robots Inspired by Ants' Foraging Behaviour. 
ACM Transactions on Autonomous and Adaptive Systems,    1(1):4-
25.  

 
Landherr, A., Friedl, B. and Heidemann, J. (2010). A Critical Review of 

Centrality Measures in Social Networks. Business & Information 
Systems Engineering, 2(6):371-385.  

 
Ma, J., Guo, D., Wang, K., Liu, M. and Chen, S. (2009). Colony 

Evolution in Social Networks Based on Multi-agent System. In 

Wang, H., Low, K. S., Wei, K. and Sun, J., editors, Fifth 
International Conference on Natural Computation (ICNC), Vol. 4, 
pages 594-597. IEEE Computer Society. 

 
Mansur, A. B. F., Yusof, N. and Basori, A. H. (2016). The Analysis of 

Student Collaborative Work Inside Social Learning Network 
Analysis Based on Degree and Eigenvector Centrality. 
International Journal of Electrical and Computer Engineering 
(IJECE), 6(5):2488-2498.  

 
Monmarché, N., Venturini, G. and Slimane, M. (2000). On how 

Pachycondyla apicalis ants suggest a new search algorithm. Future 
Generation Computer Systems, 16(8):937-946.  

 
Opsahl, T., Agneessens, F. and Skvoretz, J. (2010). Node centrality in 

weighted networks: Generalizing degree and shortest paths. Social 
Networks, 32(3):245-251.  

 
Palestra, G., Pazienza, A., Ferilli, S., De Carolis, B. and Esposito, F. 

(2017). RescueRobot: Simulating Complex Robots Behaviors in 
Emergency Situations. In Anzalone, S., Farinelli, A., Finzi, A. and 
Mastrogiovanni, F., editors, Proceedings of the 4th Italian 
Workshop on Artificial Intelligence and Robotics (AIRO 2017), 
pages 65-69. CEUR Workshop Proceedings. 

 
Powers, S. T., Ekárt, A. and Lewis, P. R. (2018). Co-creating Enduring 

Institutions for Socio-Technical Systems: The Complementarity of 
Content-based and Value-based Modelling Approaches. In Ikegami, 
T., Virgo, N., Witkowski, O., Oka, M. Suzuki, R. and Iizuka, H., 
editors, Proceedings of the 2018 Conference on Artificial Life 
(ALIFE 2018), pages 105-106. MIT Press, Cambridge, MA. 

 
Ramos-Fernández, G., Boyer, D. and Gómez, V. P. (2006). A complex 

social structure with fission–fusion properties can emerge from a 
simple foraging model. Behavioral Ecology and Sociobiology, 
60:536-549. doi:10.1007/s00265-006-0197-x 

 
Ramos-Fernández, G., Boyer, D., Aureli, F. and Vick, L. G., (2009). 

Association networks in spider monkeys (Ateles geoffroyi). 
Behavioral Ecology and Sociobiology, 63(7):999-1013.  

 
Rutz, C., Burns, Z. T., James, R., Ismar, S. M. H., Burt, J., Otis, B., 

Bowen, J. and St Clair, J. J. H. (2012). Automated mapping of 
social networks in wild birds. Current Biology, 22(17):R669-R671. 
doi:10.1016/j.cub.2012.06.037 

 
Scott, J. and Carrington, P. J. (2014). The SAGE Handbook of Social 

Network Analysis. SAGE Publications Ltd, London.   
 
Srivastava, A., Anuradha and Gupta, D. J. (2014). Social Network 

Analysis: Hardly Easy. In Proceedings of the 2014 International 
Conference on Reliability, Optimization and Information 
Technology (ICROIT), pages 128-135. IEEE.  

 
Tan, Y. and Zheng, Z. (2013). Research Advance in Swarm Robotics. 

Defence Technology, 9(1):18-39. 
 
Wang, Y., Rattray, J. B., Thomas, S. A., Gurney, J. and Brown, S. P. 

(2019). In silico bacteria evolve robust cooperation via complex 
quorum-sensing strategies. bioRxiv 598508. doi:10.1101/598508 

 
Wasserman, S. and Faust, K. (1994). Social network analysis: Methods 

and applications (Vol. 8). Cambridge University Press, Cambridge. 
 
Wilensky, U. (1997). NetLogo Ants model. 

http://ccl.northwestern.edu/netlogo/models/Ants. Center for 
Connected Learning and Computer-Based Modeling, Northwestern 
University, Evanston, IL. 

 
 

 

623



On information-optimal scripting of actions

Bente Riegler and Daniel Polani
Adaptive Systems Research Group, School of Computer Science, University of Hertfordshire

b.reichardt@herts.ac.uk d.polani@herts.ac.uk

Abstract

Animals and humans encounter many tasks which permit
ritualized behaviours, essentially fixed action sequences or
“scripts”, similar to options known from Reinforcement
Learning, but proceeding without intermediate decisions.
While running a script, they proceed in an open-loop fash-
ion. However even when these are already known, an agent
needs to decide whether to perform a basic action or to trigger
a script regarding the particular task. Here we study if includ-
ing such scripts (i.e. behaviour rituals) is advantageous from
the point of view of the relevant information required to take
the decision to start such a script depending on the tasks. To
achieve this, we modify the relevant information framework
including sequences of basic actions to the possible actions.

Introduction
Many tasks animals or humans encounter are composed of
multiple smaller steps. An agent has typically learned such
sequences through repeated solution of the task over time.
Such “ritualized” behaviour sequences do not require high-
level decision-making for every small step, but may per-
mit solutions where fixed action sequences (ritualized be-
haviours) are triggered. Whenever this is possible, this
leads to informationally significantly cheaper control, be-
cause fewer decisions need to be made — only ever when
a new script is triggered, while it is running, it operates as
an open loop controller. In contrast, if only basic actions
are available, a decision may be required in every time step.
This is a special, but important, case of the more sophisti-
cated option framework (Van Dijk et al., 2009). The exact
script to be triggered depends on the specific task and re-
quires information about the current state of the agent. We
ask how much relevant information (Shannon information
about state required to select an action) is required when
scripts - sequences of basic actions - can be used in addi-
tion to basic actions. Furthermore, we ask whether scripts
make some goal states informationally easier to reach than
others.

Perception-Action Loop
The perception-action loop setup for our agent is very simi-
lar to Reinforcement Learning. In each state, the agent per-

forms actions and as a result, its state changes. This is mod-
elled as a Markov Decision Process (MDP). A set of states
s ∈ S models the agent’s position in the world and in each
the agent can choose one action a ∈ A. For the current ex-
periment we assume the individual transitions p(st2 |st1 , a),
with t1 and t2 being the time before and after the action,
to be deterministic. In our work, the agent does not have to
freshly decide its next action after every single primitive, but
can select an action script instead of a primitive, modelled as
an MDP with enhanced action set.

The World
The world consists of the set of all states. Here, we con-
sider a small grid world of 5 × 5 states, one start-state,
at least one goal-state and the set of basic actions A =
{north, east, south, west}, with respect to the global direc-
tions. The agent carries no internal orientation and is always
globally oriented. Every executed basic action incurs a cost
of 1. There is no discount over time. We assume there exists
a goal which can be any subset of S. Goal states are mod-
elled as absorbing states in the MDP, i.e. all actions taken in
a goal state leave the agent where it is, and do not add fur-
ther cost. On reaching the goal, the currently executed script
is effectively interrupted. The grid is finite and has “walls”,
an action that pushes the agent into the wall leaves the agent
unchanged and still incurs the usual cost of 1. Since here
we only consider optimal policies, no agent will waste effort
walking into walls.

The Action Space Extended by Scripts
The main novelty compared to previous studies (Polani
et al., 2006) is the action space . To the set Ab of basic ac-
tions, we add a set of scripts. These scripts are a sequential
unconditional (open-loop) combination of the basic actions
available in the world. Thus, our new action-space consists
of all concatenations of at least one basic action A+

b ; in our
setting, we assume a maximum length of scripts, and thus a
finite selection of possible (basic or composite) actions. In
this work, we assume the agent has already learnt all possi-
ble actions. The cost of an action is modelled in two slightly
different ways: first, a cost of 1 per every basic action in the
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script except for actions after reaching the goal; and second,
the same, but with an added cost of 1 for taking a decision
(note, this MDP cost is not informational in the present ex-
periments). The decision cost is a cost only occurring at
decision points. The value of 1 is arbitrarily chosen.

Relevant Information
Relevant information for an MDP is defined as the minimal
information required about the current state to select an ac-
tion to achieve a given utility (or, equivalently, in our case,
minimal cost, see Polani et al., 2006):

min
π(A|S)s.t. Eπ [Q(s,a)]

!
=Q∗(s,a)

I(S;A). The relevant informa-

tion is calculated in two steps. Firstly, precalculate the per-
fect utility of an agent with respect to the given goal states
with a value iteration algorithm. Costs of all actions and
scripts are accumulated during a single run, until the goal is
reached.
Secondly, the relevant information is computed based on
this utility. For this, we use the classic Blahut-Arimoto-
algorithm from rate-distortion theory. From these results we
calculate the policy and identify which actions or scripts are
used in which state.

Experiments
In the experiments, the agent may start in any state. And
we examine different classes of goal states. We consider
the following: Northern Border: This goal is composed
of all northernmost states of the world. With only basic ac-
tions available, the relevant information is zero. In all states
the best action is to go north. Expanding the action space
with scripts of any length changes the optimal policy so that
all scripts containing just the basic action north are equally
probable in all states. Thus, the relevant information stays
zero. When a cost for choosing an action (i.e. decision cost)
is added, the longest script possible is preferred because it
requires fewer decision points. Central State: Only the
central state of the grid is a goal state. To reach the goal
requires different actions from different states. This results
in a high relevant information of 0.1 bit per decision without
decision cost and 0.4 bits with. This goal leads to a high rel-
evant information and favours all shorter actions over longer
scripts. This does not change after adding a decision cost.
Centre Line: Here a whole line running through the cen-
ter is set as goal. This setup falls in between the previous
ones. It shares the neighbouring goal-states from the first
setup with the centre-character of the second setup. Thus,
the result should be in between as well. The relevant infor-
mation turns out to be roughly 0.08 bits for the centre line
setup. Shorter actions are preferred over long ones. When
a cost for the decision is added, longer scripts are favoured.
Corner State: Here, the goal is one state in one of the cor-
ners of the world. For this setup, we expect a reduced but
nonzero amount of relevant information. Indeed, the rele-

vant information becomes about 0.01 bits. Without a de-
cision cost, this setup favours shorter movements. When a
decision cost is added, the scripts modelling diagonal move-
ment are favoured in many states, but the relevant informa-
tion increases to 0.13.

Discussion and Future Work
We find that the main value of scripts is to avoid re-deciding
on what to do while they run, since the scripts are favoured
when we assume a decision cost. Note, there is no profound
justification for the value of the decision cost for now.
The experiments show a use of scripts for the northern bor-
der and the central line goal areas, while the setups with
single goal states keep using the basic actions. Thus, scripts
are useful for wider goal areas but not when specific states
need to be reached. The wider goals represent generic tasks,
such as extending the body to reach “as high as possible” for
which the northern border goal setup is an abstract model, or
“somewhere back there” represented abstractly by both the
border and the centre line setup.
Note, that, strictly spoken, despite our present assumptions,
behavioural scripts in actual organisms may require low-
latency feedback and are not necessarily fully open-loop.
So, more strictly, one would have to associate some process-
ing cost also to run the scripts. However, our present paper
focuses only on the high-level information required to select
and activate the scripts.
In future, it will thus be important to also quantify the trade-
off between memorizing, processing the low-level script and
and saving high-level relevant information. Ultimately, this
relates to the question of how hierarchies should be found
and organized (Larsson et al., 2017) and how expensive
learning itself is.
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Abstract

Ant nest relocation is smoother and swifter than the same
process undertaken by any other animal. Within the popu-
lation of ants, the ratio that participates in nest relocation is
only 58.0% at best and 31.0% at worst. Does such a low ac-
tive ratio improve or deteriorate ant nest relocation? In this
study, we use a particle swarm optimization (PSO) algorithm
to simulate real-world ant nest relocation. Our PSO-based
algorithm duplicates the velocity and position of an inactive
particle (representing an inactive ant) with the velocity and
position of an active particle (representing an active ant). The
number of particles that the algorithm computes is dramati-
cally reduced, and the global best position can be identified
at an early stage. In a series of simulations, our algorithm
performs significantly better and faster with active ratios of
15%, 30%, 35%, 45%, 55%, 60%, and 75%–95% than with
the full 100% active ratio. We confirm the robust and sta-
ble performance of our algorithm at active ratios of 60%,
80%, and 85%. Clustering of the simulation results shows
that low active ratios improve ant nest relocation. Further-
more, three field studies carried out by biology experts em-
pirically demonstrate that we have successfully modeled and
simulated real-world ant nest relocation using our PSO-based
algorithm.

Introduction
Ants have a reputation for being hardworking animals. For
instance, worker ants can relocate an entire nest within a
short period of time (Burd et al., 2002). To the best of our
knowledge, no other animals can compete with ants in terms
of the speed and smoothness of the nest relocation process.

Real-world problems involve multiple objectives that are
often in conflict with one another, yet should be optimized
simultaneously (Ali et al., 2016a,b; Awad et al., 2013, 2016,
2017). The impressive speed and precise movement of
ant nest relocation provides an intuitive solution for multi-
objective optimization problems.

The swarm behavior of ant nest relocation has attracted
researchers in the computational intelligence community.
Various models and simulations have been proposed for real-
world ant nest relocation (Chowdhury et al., 2002; John
et al., 2008, 2009; Sasaki and Leung, 2013; Sasaki, 2017).
However, ant nest relocation has not yet been studied as a

multi-objective optimization problem in terms of the preci-
sion and speed of the swarm behavior.

Over the last decade, biologists have reported that many
workers of the Temnothorax ant species remain inactive and
do not work at all (Dornhaus et al., 2008; Charbonneau et al.,
2017). Inactive worker ants lick their own bodies, and active
worker ants feed and relocate them. During ant nest reloca-
tion, active workers shoulder these inactive workers on their
backs and move them toward the new nest (Dornhaus et al.,
2008). Among Temnothorax ant species, behavioral biolo-
gists have rigorously studied Temnothorax albipennis, also
known as the rock ant, for its “scale-free” swarm behavior
of nest relocation. Regarding the Temnothorax albipennis
ant, the active ratio within the populations of worker ants in
a colony (hereafter referred to as the active ratio) is 58.0% at
best and 31.0% at worst. Variations in the active ratio do not
depend on the size of the population of worker ants in the
colony (Dornhaus et al., 2008). Inactive workers act as a re-
serve labor force for replacing active workers, however, ac-
tive workers do not replace inactive workers that have been
removed from the nest Charbonneau et al. (2017).

An open problem on the scale-free swarm behavior of
the Temnothorax albipennis ant is whether such a low ac-
tive ratio improves or deteriorates ant nest relocation com-
pared with the full 100% active ratio performance (Sasaki,
2018a,b, 2019). Although researchers have proposed mod-
els and simulations that accurately describe ant nest reloca-
tion, they have not solved this problem. A positive answer
to this problem would provide technological inspiration for
promising swarm-based algorithms in the context of compu-
tational intelligence and in specific aspects of swarm intel-
ligence regarding the active ratio within the populations of
computational agents.

In previous work, we have shown that the frequency of
mutual contact among worker ants determines the active ra-
tio in ant nest relocation (Sasaki and Leung, 2013; Sasaki,
2017). The frequency of mutual contact rises from 1 to 40
times per minute, and the active ratio gradually rises to the
maximum. In this study, we use a particle swarm optimiza-
tion (PSO) algorithm to model and simulate real-world ant
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nest relocation. In particular, we investigate the relation be-
tween the active ratio and the performance of worker ants in
nest relocation. The simulation results show that our PSO-
based algorithm performs significantly better and faster at
active ratios that are lower than the full 100% active ratio.
We confirm the robust and stable performance of our algo-
rithm at certain low active ratios. The simulation results are
supported by three field studies that were carried out by ex-
pert ant biologists.

Model
To model ant nest relocation while focusing on the active
ratio, we employ a population-based optimization method,
namely the original or canonical PSO algorithm developed
by Kennedy and Eberhart (1995), and refer to several pop-
ular PSO variants (Clerc and Kennedy, 2002; Cleghorn and
Engelbrecht, 2018).

The swarm behavior of ant nest relocation can be de-
scribed using the velocity and position of an ant (John et al.,
2008, 2009). Worker ants find the shortest path toward a new
nest. The shortest path is found when ants move from an old
nest to a new nest and when the distance of nest relocation
is minimized. The PSO algorithm describes the velocity and
position of particles. There are various optimization meth-
ods, and the PSO algorithm and its variants are some of the
best techniques for modeling the swarm behavior of ant nest
relocation, as they can easily focus on the velocity and posi-
tion of an ant.

We model the swarm behavior of ant nest relocation us-
ing the velocity and position of a particle with two types
of “best” positions. Our PSO-based algorithm is initialized
with a group of random particles and searches for optima
by updating the velocity and position of a particle in each
iteration of the algorithm. At every iteration, the velocity
and position of a particle are updated in comparison with
the two types of best positions, which are evaluated with a
fitness function called a “cost function”. One best position is
the “personal best position” of a particle, and the other is the
“global best position” within the swarm of particles. After
finding the two best positions, the velocity and position of a
particle are updated at every iteration (Pereira, 2010).

First, our PSO-based algorithm minimizes the output of
the cost function with the velocity and position of an “ac-
tive” particle. The output of the cost function is equivalent
to the distance that an “active” worker ant moves from an
old nest to a new nest. An active particle that represents an
active worker ant is defined and updated in the same way
as in the original PSO algorithm developed by Kennedy and
Eberhart (1995). The velocity v ∈ R and position x ∈ R of
active particle i ∈ N in a population of size S at a discrete
time step t ∈ N, which is the t-th number of the iteration
process, are defined and updated, respectively, as follows:

vi(t + 1) = ωvi(t) + c1r1(t){pi(t)− xi(t)}

+ c2r2(t){g(t)− xi(t)}, (1)

xi(t + 1) = xi(t) + vi(t + 1), (2)

where the random components r1,k(t) and r2,k(t)∼ U(0, 1),
k is the vector component of vi and xi, and the coefficients
c1, c2, and ω are the personal (cognitive), social, and iner-
tia weights, respectively. The position p represents the per-
sonal “best” position that particle i has visited, where “best”
means the location where the particle had obtained the low-
est cost function evaluation. The position g represents the
global “best” position that the particles in the neighborhood
of the i-th particle have visited.

The vector component k of the velocity v and position x
of particle i represents the direction of movement of the par-
ticle. A particle represents a worker ant that moves on the
ground. The direction of movement of a particle is defined in
a discrete form that consists of eight two-dimensional direc-
tions, i.e., K = 8, as shown in Fig. 1. An ant not only moves
forward and backward, but also shifts in the transverse di-
rection and moves and shifts at the same time. Therefore,
we define the direction of movement of a particle that rep-
resents a worker ant in a discrete form that consists of eight
two-dimensional directions.

The personal best position p of active particle i and the
global best position g at time t (or the t-th iteration) are de-
fined and updated with the cost function f as follows:

pi(t + 1) =

{
xi(t + 1) if f (xi(t + 1)) < f (pi(t))
pi(t) else, (3)

g(t + 1) = arg min
pi(t) ∈ P(t)

f (pi(t + 1)), (4)

where the cost function f takes the form

f(xk
i (t)) =

∑

i∈S

∑

k∈K

||xk
i (t)||2, (5)

where || · || denotes the Euclidean norm.
In the modeling process, we choose the sphere function

for the cost function f. This simple function provides a
straightforward model that allows us to assess the bene-
fits and limitations of our PSO-based algorithm in simu-
lating ant nest relocation. An ant moves around the two-
dimensional ground. There are many functions that could

Figure 1: Particle representing a worker ant has eight two-
dimensional directions of movement on the ground.
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calculate such two-dimensional distances over which the
particles move. Almost all field studies carried out by ex-
perts in ant biology simply use the Euclidean distance that
the ants relocated a nest (Burd et al., 2002; Pratt, 2005b;
Franks et al., 2006; Dornhaus et al., 2008, 2009; Charbon-
neau et al., 2017). Researchers in the computational in-
telligence community tend to have followed the biological
practice of field researchers (Chowdhury et al., 2002; John
et al., 2008, 2009; Sasaki and Leung, 2013; Sasaki, 2017,
2018a,b, 2019). We use the sphere function given by (5)
through the index i and vector component k for the cost
function f, though our PSO-based algorithm could easily use
other functions (as will be considered in future work). The
cost function f represents the distance between the position
x of particle i (representing a worker ant) and the global best
position g that leads to the shortest path toward point zero
(representing a new nest as the target for movement). The
distance that a particle moves can take a positive value or a
negative value from point zero, so the square of the differ-
ence is computed. The accumulated square of the difference
at the position of a particle should be minimized through
vector component k.

Next, we define the swarm behavior of “inactive” worker
ants in modeling ant nest relocation. An inactive worker ant
does not relocate the nest by itself. Instead, active worker
ants carry the inactive ants toward the new nest. In our PSO-
based algorithm, the velocity v and position x of “inactive”
particle i (representing an inactive worker ant) at time t (or
the t-th iteration) are defined and updated, respectively, as
follows:

vi(t + 1) = vi−1(t + 1), (6)

xi(t + 1) = xi−1(t + 1) = xi−1(t) + vi(t + 1). (7)

The personal best position p of inactive particle i and the
global best position g at time t (or the t-th iteration) are de-
fined and updated with the cost function f given by (5), re-
spectively, as follows:

pi(t + 1) = pi−1(t + 1), (8)

g(t + 1) = pi(t + 1). (9)

Fig. 2 shows that our PSO-based algorithm duplicates the
velocity and position of inactive particle i with the velocity
and position of active particle i-1 that is closest to inactive
particle i. This duplication of the velocity and position of
inactive particles reduces the number of particles that the
algorithm computes, allowing the global best position to be
identified at an early stage of the iteration.

Simulation
Setting
Our PSO-based algorithm comprises the coefficients c1, c2,
and ω that are the personal, social, and inertia weights. The

parameter configurations follow the earlier work of Clerc
and Kennedy (2002) and refer to the Yarpiz Project (2015).
Cleghorn and Engelbrecht (2018, 2016) have developed a
sophisticated theory for determining parameter configura-
tions and enhanced the stability criteria of particles. How-
ever, we use the conservative approach of the original PSO
algorithm in our simulations. The memory of the Temnotho-
rax albipennis ant lasts for only 1–2 min (Pratt, 2005a). It is
reasonable to assume that the parameter configurations for
nest relocation are genetically coded in the brains of the ants
in a static, rather than dynamic, form. The sophisticated pa-
rameter configurations developed by Cleghorn and Engel-
brecht (2018, 2016) might lead to overfitting in modeling the
swarm behavior of ant nest relocation. Therefore, we follow
the parameter configurations of the original PSO algorithm
given by:

c1 = χϕ1, c2 = χϕ2,

ω = χ = 2κ/|2− ϕ−
√

(ϕ2 − 4ϕ)| , (10)

where κ = 1, ϕ = ϕ1 + ϕ2, and ϕ1 = ϕ2 = 2.05.
A lower limit vmin and an upper limit vmax of the velocity

v are assigned through index i by:

vmin = −vmax and vmax = 0.2(xmax − xmin) . (11)

Similarly, a lower bound xmin and an upper bound xmax of
the position x are assigned through index i by:

[xmin, xmax] = [−10, 10] . (12)

The lower and upper bounds are applied to the personal best
position p through index i and to the global best position g.

The damping ratio ωdamp of the inertia weight is set to 1.
Active and inactive particles are assigned according to ac-

tive ratios of 5%, 10%, . . . , 95%, and 100%, as listed in Ta-
ble 1. During ant nest relocation, the worker ants gather and
form a basic unit of a swarm. Behavioral biologists report
that the minimal size of this basic unit consists of 20 individ-
uals, and so this is the smallest population size of a swarm of

0 (Optima)

x11 (t = 0)

v11 (t = 1)

x11, x12, … , x20

(t = 1)

x12, x13, … , x20 (t = 0)

201312 14 15 16 17 18

11

11

19

position x1

(time t = 0)

velocity v1

(time t = 1)
x1, x2, … , x10

(t = 1)

x2, x3, … , x10 (t = 0)

1032 4 5 6 7 8

1

1

9

Figure 2: Inactive particles i = 2, ..., 10/12, ..., 20 duplicate the
velocities vi = 1/11(t = 1) and positions xi = 1/11(t = 0) of active
particles i = 1/11 that are closest to the inactive particles at the
active ratio 10%.
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Active Active Particle “ n©” &
Ratio Inactive Particle “©”

5% 1©©©©©©©©©©
©©©©©©©©©©

10% 1©©©©©©©©©©
11©©©©©©©©©©

15% 1©©©©©©© 8©©©
©©©© 15©©©©©©

20% 1©©©©© 6©©©©©
11©©©©© 16©©©©©

25% 1©©©© 5©©©© 9©©
©© 13©©©© 17©©©©

30% 1©©©© 5©©© 8©©©
11©©©© 15©©© 18©©©

35% 1©©© 4©©© 7©©© 10©
©© 13©©© 16©©© 19©©

40% 1©©© 4©© 6©©© 9©©
11©©© 14©© 16©©© 19©©

45% 1©©© 4©©© 7©© 9©©
11©© 13©© 15©© 17©© 19©©

50% 1©© 3©© 5©© 7©© 9©©
11©© 13©© 15©© 17©© 19©©

55% 1© 2©© 4© 5©© 7©© 9©©
11©© 13©© 15©© 17©© 19©©

60% 1©© 3©© 5© 6©© 8©© 10©
11©© 13©© 15© 16©© 18©© 20©

65% 1© 2©© 4© 5©© 7© 8©© 10©
11©© 13© 14©© 16© 17©© 19©©

70% 1© 2© 3©© 5© 6©© 8© 9©©
11© 12© 13©© 15© 16©© 18© 19©©

75% 1© 2© 3©© 5© 6© 7©© 9© 10©
11©© 13© 14© 15©© 17© 18© 19©©

80% 1© 2© 3© 4©© 6© 7© 8© 9©©
11© 12© 13© 14©© 16© 17© 18© 19©©

85% 1© 2© 3© 4© 5© 6©© 8© 9© 10©
11© 12© 13©© 15© 16© 17© 18© 19©©

90% 1© 2© 3© 4© 5© 6© 7© 8© 9©©
11© 12© 13© 14© 15© 16© 17© 18© 19©©

95% 1© 2© 3© 4© 5© 6© 7© 8© 9© 10©
11© 12© 13© 14© 15© 16© 17© 18© 19©©

100% 1© 2© 3© 4© 5© 6© 7© 8© 9© 10©
11© 12© 13© 14© 15© 16© 17© 18© 19© 20©

Table 1: Active and inactive particles at the respective active ratios.

worker ants (Geraghty et al., 2007). Following this finding,
we divided the population of particles into groups of 20 par-
ticles consisting of active and inactive particles. In every 20
particles, an active particle brings an almost equal number of
inactive particles that are closest to the active particle toward
the target of zero for the cost function. This simple simula-
tion setting is straightforward and rational for task sharing.

We considered population sizes S ranging from 20 to 400,
because swarms of workers from the Temnothorax albipen-
nis ant species have been observed to range from a minimum
of 20 ants to a maximum of 400 (Geraghty et al., 2007).

The maximum number of iterations was set to 40, 80, 120,
160, 200, 240, 400, or 1000, equivalent to 1, 2, 3, 4, 5, 6, 10,
or 25 cycles of mutual contact among ants during nest relo-
cation at a frequency of 40 contacts per minute, respectively.

Our simulations consisted of 50 runs of the PSO-based
algorithm for each population size.

Results
The performance of our PSO-based algorithm was measured
by the average global best position (hereafter referred to as
the global best) and the average execution time (hereafter

referred to as the execution time) of the algorithm. These
metrics evaluate the precision of convergence and the speed
of convergence toward the target point of zero for the cost
function, respectively. Smaller values of the global best in-
dicate better performance, and a smaller execution time de-
notes faster performance. The simulations were performed
on a Windows 10 Pro (64-bit) laptop PC equipped with a
Core i7-7700 3.6 GHz quad-core processor with 16 GB of
RAM.

We identified the active ratios at which our PSO-based
algorithm performed better and faster than the full 100% ac-
tive ratio for all population sizes.

We measured the global best and execution time for all
population sizes at active ratios of 5%, 10%, . . . , 95%,
and 100%. Statistical testing was employed to determine
whether our PSO-based algorithm performed better and
faster than with the full 100% active ratio. The null hypoth-
esis assumed that the global best and execution time were
equal to those given by the full 100% active ratio for all
population sizes. We used a two-tailed F-test to measure the
two-sample variances and a two-tailed t-test for two-sample
equality assuming equal/unequal variances.

Behavioral biologists divide the entire population into
small populations of 20–100 and large populations of 100–
400 (Franks et al., 2006; Dornhaus et al., 2008, 2009). We
examined the active ratios at which our PSO-based algo-
rithm performed better and faster than the full 100% ac-
tive ratio in the entire population sizes, the small population
sizes, large population sizes, and population sizes of 57 and
165, which are the medians of the small population sizes and
large population sizes, respectively (Dornhaus et al., 2008).
The simulation results of our PSO-based algorithm for these
population sizes are omitted from this study due to page lim-
itation.

Discussion
We now discuss the simulation results and show that our
PSO-based algorithm performed significantly better and
faster than the full 100% active ratio at low active ratios.
We also confirm the robust and stable performance of our
algorithm at certain low active ratios. Three field studies on
ant nest relocation that were conducted by ant biologists are
then consulted. Their records provide sufficient support to
demonstrate that our PSO-based algorithm performed like
real-world ant swarm behavior at low active ratios.

First, we identify the active ratios at which our PSO-based
algorithm performed significantly better and faster than the
full 100% active ratio. Our PSO-based algorithm performed
significantly better and faster than the full 100% active ratio
at active ratios of 15%, 30%, 35%, 45%, 55%, 60%, and
75%–95% for certain maximum numbers of iterations.

Over the entire range of population sizes, our PSO-based
algorithm performed significantly better and faster than the
full 100% active ratio at active ratios denoted by a red check
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mark (X), namely 15%, 30%, 75%, and 80% at certain max-
imum numbers of iterations (see Table 2). With the small
population sizes, our PSO-based algorithm performed sig-
nificantly better and faster than the full 100% active ratio at
active ratios of 15%, 30%, 45%, 75%, and 80% for certain
maximum numbers of iterations (see Table 3). With the large
population sizes, our PSO-based algorithm only performed
significantly better and faster than the full 100% active ra-
tio at an active ratio of 75% for certain maximum numbers
of iterations (see Table 4). With a population size of 57,
our PSO-based algorithm performed significantly better and
faster than the full 100% active ratio at active ratios of 30%,
35%, 60%, 75%, and 85%–95% for certain maximum num-
bers of iterations. Finally, with a population size of 165,
our PSO-based algorithm performed significantly better and
faster than the full 100% active ratio at active ratios of 15%,
30%, 45%, 55%, and 80%–95% for certain maximum num-
bers of iterations. Tables with the population sizes of 57 and
165 are omitted from this study due to page limitation.

We performed the two statistical tests (F-test and t-test)
using the simulation results for the various active ratios and
maximum numbers of iterations. The results are in conflict
in terms of the global best and execution time. Instead of
relying on the statistical tests, we used clustering to iden-
tify the active ratios at which our PSO-based algorithm per-
formed significantly better and faster than the full 100% ac-
tive ratio.

We placed a check mark against the active ratios at which
our PSO-based algorithm performed better and faster than
the full 100% active ratio in the simulation results. We then
applied standard k-means clustering to the simulation re-
sults. The results of clustering indicate that our PSO-based
algorithm achieved equivalent performance to the full 100%
active ratio for a number of active ratios (denoted by the
square symbol, �). We excluded the active ratios with a
check mark within a square symbol (�X) from the simulation
results. Our PSO-based algorithm performed significantly
better and faster than the full 100% active ratio at those ac-
tive ratios indicated by a red check mark (X).

In the standard k-means clustering, we classified the
global best and execution time at active ratios of 5%, ...,
100% for the entire set of population sizes as well as the
small population sizes, large population sizes, and popula-
tion sizes of 57 and 165. Each matrix of the data object
for clustering has twenty rows, corresponding to active ra-
tios from 5% to 100%, and two columns for the global best
and execution time at each maximum number of iterations.
We iteratively calculated the distance between each data ob-
ject (here, the global best and execution time) and all cluster
centers, and assigned the data object to the closest cluster
(in terms of Euclidean distance) at every iteration. We itera-
tively updated the calculation process and assigned the new
means as the centroids of the data objects in the new clusters
until the assignments no longer changed.

Active Maximum Number of Iterations
Ratio 40 80 120 160 200 240 400 1000

5%-10%
15% � � � � � � � X

20%-25%
30% � � �X � �X � X
35% � � � � � � �X �X
40% � �X � �X � � � �
45% � � � � � � �
50%
55% � � � � � � � �
60% � �X � �X � �X � �X
65% � �X � � � �X � �
70% � � � � � �X � �
75% � � � � � � X �
80% � �X � � � � �X X
85% � � � �X � � �

90%-95%
100% � � � � � � � �

Table 2: Active ratios that performed better and faster than the full
100% active ratio across all population sizes (X).

Active Maximum Number of Iterations
Ratio 40 80 120 160 200 240 400 1000

5%-10%
15% � � � � � � X

20%-25%
30% � � � �X �X � X
35% � � � � � � �
40% � �X � �X � � � �
45% � X � � � � �
50%
55% � � � � �X � �
60% � �X � �X � �X � �X
65% � �X � � � �X � �
70% � � � � �X � �
75% � � � � � X �
80% � �X � � � �X X
85% � � � �X � � �
90% �
95% �

100% � � � � � � � �

Table 3: Active ratios that performed better and faster than the full
100% active ratio with small population sizes (X).

Active Maximum Number of Iterations
Ratio 40 80 120 160 200 240 400 1000

5%-10%
15% � � �X �X � �X �

20%-25%
30% � � �X � �X �
35% � � � �X � � �X �X
40% � � � �X � �X � �
45% � � �X � �X �X � �
50%
55% � � � �X � � � �
60% � � � �X � � � �
65% � � �X �X � �X � �
70% � � �X �X � �X � �
75% � � � � � � X �
80% � � �X �X � �X �X
85% � � �X �X � � �
90% �
95% �

100% � � � � � � � �

Table 4: Active ratios that performed better and faster than the full
100% active ratio with large population sizes (X).
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At the active ratios denoted by square symbols, the sim-
ulation results of our PSO-based algorithm were ultimately
assigned to the cluster that included the simulation results
for the full 100% active ratio. We repeated the clustering
process using 2–11 clusters, and found that the assignments
remained unchanged when six clusters were used. Thus, the
number of clusters was set to six.

Next, we identify the active ratios that remained robust
and stable over various ranges of maximum numbers of iter-
ations (e.g., 40–80, ..., and 40–1000). Our PSO-based algo-
rithm was robust and stable at the three active ratios of 60%,
80%, and 85%, over certain ranges of maximum numbers of
iterations.

For the entire set of population sizes and the small popula-
tion sizes, the performance of our PSO-based algorithm was
neither robust nor stable for any active ratios (see Tables 5
and 6). With the large population sizes, our PSO-based al-
gorithm was robust and stable at an active ratio denoted by
a red check mark (X), namely 80% for maximum numbers
of iterations from 40 to 1000 (see Table 7). With a popu-
lation size of 57, our PSO-based algorithm was robust and
stable at two active ratios, 60% and 85%, over maximum
numbers of iterations from 40 to 240 and from 40 to 1000,
respectively. With a population size of 165, our PSO-based
algorithm was robust and stable at an active ratio of 60%
over maximum numbers of iterations from 40 to 80. Tables
with the population sizes of 57 and 165 are omitted from this
study due to page limitation.

We averaged the rank of the simulation results in terms of
the global best and execution time for active ratios of 5%, ...,
100% over ranges of maximum numbers of iterations 40–80,
40–120, 40–160, 40–200, 40–240, 40–400, and 40–1000 for
the entire set of population sizes, as well as the small pop-
ulation sizes, large population sizes, and population sizes
of 57 and 165. Check marks indicate the active ratios at
which our PSO-based algorithm performed better and faster
than the full 100% active ratio in the averaged ranking of
the simulation results over the various ranges of maximum
numbers of iterations. We applied standard k-means cluster-
ing to the averaged ranking results. The clustering results
show that our PSO-based algorithm was equivalent to the
full 100% active ratio at a number of active ratios (denoted
by the square symbol, �). We excluded active ratios with a
check mark within a square symbol (�X) from the averaged
ranking results. The performance of our PSO-based algo-
rithm was robust and stable at the active ratios indicated by
a red check mark (X).

In the standard k-means clustering, we classified the
global best and execution time at active ratios of 5%, ...,
100% for the entire set of population sizes, as well as the
small population sizes, large population sizes, and popula-
tion sizes of 57 and 165. Each matrix of the data object for
clustering has twenty rows, corresponding to active ratios
5%–100%, and 4–16 columns consisting of the global best

Active Range of Maximum Numbers of Iterations
Ratio 40-80 -120 -160 -200 -240 -400 -1000

5%-10%
15% � � � � � �

20%-25%
30% � � � � � �

35%-45% � � � � � � �
50%
55% � � � � � � �
60% � � �X � � � �X

65%-75% � � � � � � �
80%-85% � � � � � �
90%-95%

100% � � � � � � �

Table 5: Robustness and stability of active ratios for all population
sizes (X).

Active Range of Maximum Numbers of Iterations
Ratio 40-80 -120 -160 -200 -240 -400 -1000

5%-10%
15% � � � � � �

20%-25%
30% � � � � � �
35% � � � � � � �
40% �X � � � � � �
45% �X � � � � � �
50%
55% � � � � � � �
60% �X �X �X � � �X �X

65%-75% � � � � � � �
80%-85% � � � � � �
90%-95% � � � � �

100% � � � � � � �

Table 6: Robustness and stability of active ratios with small popu-
lation sizes (X).

Active Range of Maximum Numbers of Iterations
Ratio 40-80 -120 -160 -200 -240 -400 -1000

5%-10%
15% � � � � � �

20%-25%
30% � � � � � �

35%-40% � � � � � � �
45% � � � � � �X �
50%
55% � � � � � � �
60% � � �X � � � �

65%-75% � � � � � � �
80% � � �X �X �X �X X
85% � � �X �X �X �

90%-95%
100% � � � � � � �

Table 7: Robustness and stability of active ratios with large popu-
lation sizes (X).

and execution time at maximum numbers of iterations 40–
80, ..., 40–1000. We iteratively calculated the distance be-
tween each data object (here, the global best and execution
time) and all cluster centers, and assigned the data object
to the closest cluster (in terms of the Euclidean distance) at
every iteration. We iteratively updated the calculation pro-
cess and assigned the new means as the centroids of the data
objects in the new clusters until the assignments no longer
changed.

Active ratios with square symbol indicate that the aver-
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aged ranking results were ultimately assigned to the cluster
that included the averaged ranking results at the full 100%
active ratio (again, the number of clusters is six).

The results presented above are supported by three field
studies on ant nest relocation that were carried out by ex-
pert ant biologists (Pratt, 2005b; Dornhaus et al., 2009,
2008). These field studies show that the maximum active ra-
tios range 31.0%–58.0% across all population sizes, 31.0%–
56.0% for small population sizes, and 52.0%–58.0% for
large population sizes.

Active ratios 30%–60% in our simulation results com-
pletely cover the range of maximum active ratios observed
in the field studies. The maximum of 58.0% is between the
active ratios of 55% and 60% in our simulation results, and
is slightly closer to the latter value. The performance of our
PSO-based algorithm was not only significantly better and
faster than the full 100% active ratio, but was also robust and
stable at an active ratio of 60%. Thus, based on the empiri-
cal support of these three field studies, we have successfully
simulated ant nest relocation at low active ratios using our
PSO-based algorithm.

We chose the sphere function as the objective in our PSO-
based algorithm. With this simple function, we generated
various sets of simulation results and identified the bene-
fits and limitations of the algorithm very clearly. Although
we have only presented simulation results obtained with the
sphere function, we could apply various cost functions to
our PSO-based algorithm. We will conduct simulations us-
ing other functions in future studies.

Our modeling has been limited to the relation between the
active ratio and ant nest relocation, because real-world ant
nest relocation is a scale-free swarm behavior that depends
not on the population size, but on the frequency of mutual
contact among ants, which determines the active ratio.

Conclusion
Ant nest relocation is smoother and swifter than the same
process performed by other animals. However, many worker
ants are never involved in nest relocation. An open problem
concerns whether this low active ratio improves ant nest re-
location. In this study, we used an algorithm based on the
original PSO and simulated real-world ant nest relocation.
Our PSO-based algorithm mimics the real-world ant swarm
behavior of active and inactive workers in ant nest reloca-
tion. Our algorithm duplicates the velocity and position of
an inactive particle, which represents an inactive worker ant,
with the velocity and position of an active particle, repre-
senting an active worker ant. Clustering of the simulation
results of our PSO-based algorithm provides sufficient sup-
port to demonstrate that the simulation results are reliable.
Our PSO-based algorithm performs significantly better and
faster than the full 100% active ratio at active ratios of 15%,
30%, 35%, 45%, 55%, 60%, and 75%–95%. In particular,
we have confirmed the robust and stable performance of our

PSO-based algorithm at active ratios of 60%, 80%, and 85%.
The active ratio of 60% is very close to the maximum active
ratio of 58.0% reported in three field studies conducted by
expert ant biologists. We have shown that low active ratios
significantly improve ant nest relocation in terms of speed
and the precision of movement. Our model is limited to
the relation between the active ratio and ant nest relocation,
because the population size has no impact on the reloca-
tion process. The simulations used a simple cost function,
though we could apply other functions to the algorithm. In
future work, we will conduct simulations using various cost
functions.
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Abstract

Mobile sensor networks and robotic swarms are being used
for monitoring and exploring environments or environmental
events due to the advantages offered by their distributed na-
ture. However, coordination and self-organization of a large
number of individuals is often costly in terms of energy and
computation power, thus limiting the longevity of the dis-
tributed system. In this paper we present a bio-inspired algo-
rithm enabling a robotic swarm to collectively detect anoma-
lies in environmental parameters in a self-organized, reli-
able and energy efficient manner. Individuals in the swarm
communicate via 1-bit signals to collectively confirm the de-
tection of an anomaly while minimizing energy spent for
communication and taking measurements. This algorithm is
specifically designed for a swarm of underwater robots called
“aMussels” to examine a phenomenon referred to as “anoxia”
which results in oxygen depletion in the lagoon of Venice. We
present the algorithm, conduct simulations and robotic exper-
iments to examine the performance of the algorithm with re-
spect to early detection of anoxia while minimizing energy
consumption.

Introduction
With the decreasing size of computation and memory de-
vices, the number of computers has been increasing dra-
matically. Koh and Magee (2006) observed that computing
power available per dollar has increased by a factor of ten
roughly every four years over the last quarter of a century.
The increase in the available computation power has brought
massively parallel multi-agent systems such as ubiquitous
computers (Kim and Follmer, 2017), IoT systems (Gubbi
et al., 2013), swarm robotics (Zahadat and Schmickl, 2016;
Witkowski and Ikegami, 2016) to the forefront. Such sys-
tems with increasingly large number of individual interact-
ing parts pose challenges to the traditional top down con-
trol schemes. Therefore, decentralized computing strate-
gies with little or no top down control are being widely
explored and implemented (Schmickl et al., 2008; Cazangi
et al., 2005). Inspiration for such strategies are drawn from
self organizing natural systems such as starling murmura-
tions (Cavagna et al., 2010), honeybee colonies (Seeley,
1992), slime mould aggregates (Durston, 1973; Bonner,
1949).

We present a decentralized algorithm for a swarm of un-
derwater robots to detect, to collectively validate and to re-
port significant variations in environmental parameters. In
a nutshell, if a member of the swarm detects an anomaly in
its measurements it will register an event and alert its neigh-
bors. A periodic oscillator and traveling wave based com-
munication paradigm inspired by slime mould and fireflies is
then used to periodically communicate with neighbors who
registered the event. As soon as the event is validated by
a sufficient number of neighbors, an alert is sent to a base
station.

The algorithm presented here is developed for a swarm
of underwater robots which is intended to detect the anoxia
phenomenon (Runca et al., 1996) in the lagoon of Venice.
During anoxia the oxygen content of a small part of the la-
goon decreases suddenly, resulting in the death of flora and
fauna and thus damaging the local ecosystem. Thenius et al.
(2018a) suggest a strategy for examining and documenting
this recurring phenomenon by utilizing a swarm of underwa-
ter robots. According to this strategy, a team of underwater
robots known as “aMussels” will be used for monitoring a
set of environmental parameters, including oxygen concen-
tration levels to detect the phenomenon within the frame-
work of project subCULTron (subCULTron, 2015) 1. On the
one hand, the detection of anoxia by individual robots needs
to be validated with a number of neighbors before a global
alarm can be raised for greater reliability. On the other hand,
underwater communication is expensive, noisy and there-
fore, exchange of information between the robots needs to
be minimized. For this reason we focus on detecting and
validating the event of anoxia with a swarm of robots while
considering the modes of communication available on the
aMussel robots.

Many environmental monitoring systems which use sen-
sor networks for collecting data in a large area have focused

1In subCULTron, a heterogeneous swarm of autonomous
aquatic robots (aMussels, aPads and aFish) and associated algo-
rithms are being developed for collective exploration and monitor-
ing of environmentally diverse underwater niches in the lagoon of
Venice. Please refer to http://www.subcultron.eu/ for
further details.
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on reducing the energy consumption in order to increase net-
work longevity (Zhou et al., 2015; Kaur and Sood, 2017).
However, most of the existing protocols and algorithms for
underwater sensor networks focus on making the algorithms
usable for a wide range of communication devices, espe-
cially for deep sea environments. By contrast, we focused
on designing an event detection algorithm suitable for the
low cost, narrow bandwidth and low payload communica-
tion devices used in subCULTron. Specifically, aMussels
are equipped with three kinds of underwater communica-
tion devices. Modulated blue light communication and elec-
tric sense for extremely short ranges (∼ 1 meter) as well
as a low-frequency acoustic nanomodem for comparatively
longer range underwater communication (∼ 100 meter). In
addition to that, aMussel robots are not mere sensor nodes
but have the capability of diving up and down in a water
column. This enables the aMussels to dive up to the wa-
ter surface and report the occurrence of an event using ultra
long range communication devices rather than forwarding
packets to the sink nodes like traditional sensor networks
do. Keeping these constraints and special capabilities of the
aMussel robots in mind, in the following we suggest an algo-
rithm for event detection in autonomous swarms of robots.

Related Work
Many algorithms and protocols have been proposed and im-
plemented for improving deep sea monitoring using under-
water wireless sensor networks (UWSNs)(Zhou et al., 2015;
Debont et al., 2012). Although many techniques used in the
classical wireless sensor networks can be used for their un-
derwater counterparts, communication in an underwater en-
vironment is especially challenging. Therefore, we will give
a brief overview of some event localization schemes sug-
gested for UWSNs.

Since underwater sensor networks might be mobile due to
underwater currents, the communication protocol presented
by Zhou et al. (2015) includes a “heartbeat” which periodi-
cally communicates with neighboring nodes and constructs
a routing tree. Additionally, the system aggregates data and
processes it locally to detect an event before forwarding the
event to the sink node.

Debont et al. (2012) suggest a solution for event detec-
tion using a cyclic graph model. The solution optimally
places “beacon” nodes which act as location-aware refer-
ences for surrounding nodes. In Debont et al. (2012) the
authors showed that the intelligent placement of beacons re-
duces the number of sends required by 80 % as compared
to a naı̈ve placement. In case of an event, a message is for-
warded to the beacon node which in turn acts as a buffer
to collect more event messages from other nodes. Then a
batch of messages containing alarms is forwarded to the sink
node. While such an implementation is helpful for underwa-
ter sensor networks in general, it requires elaborate routing
protocols and non-minimal message lengths.

Repeated and periodic exchange of information is em-
ployed in the above implementations of event detection.
While a “heartbeat” signal (Zhou et al., 2015) is important
for dynamic deep sea sensor networks where nodes move
with currents, it is a costly solution for the shallow lagoon of
Venice with minimal water movement. As previously men-
tioned, each aMussel robot is able to dive up to the surface
of the lagoon and use their ultra long range communication
capabilities to alert the base station and therefore obviates
beacon nodes as in (Debont et al., 2012) or “data aggre-
gator” nodes. In addition, the construction of an elaborate
routing tree as suggested by Zhou et al. (2015) and (Debont
et al., 2012) necessitates an increased communication pay-
load which is not necessary for event detection in systems
such as the robotic swarms developed within the framework
of subCULTron.

The Algorithm
To enable a swarm to detect and report an event in an energy
efficient manner, we introduce three modes of operation of
the robots (or agents): “observation mode”, “alert mode”
and “event mode”. A schematic representation of the differ-
ent modes can be found in Figure 1.

• Observation mode: Initially, all agents are in this mode
where they periodically take measurements but refrain
from any means of active communication.

• Alert mode: If an agent in the observation mode receives
any active communication signal, it will enter the alert
mode. In the alert mode an agent also increases its fre-
quency of measurement in order to detect a prospective
event as early as possible but refrains from any active
communication.

• Event mode: As soon as an agent deducts the potential
occurrence of an event from its measurements, it enters
the event mode. In this mode an agent takes measure-
ments with higher frequency in order to observe changes
in the environment and collect data with higher temporal
resolution. Furthermore, in the event mode agents period-
ically send 1-bit signals which are received by neighbor-
ing agents. If an agent in the event mode receives a signal,
it simply relays the signal. In the event mode the agents
also estimate the number of other swarm members which
are in the event mode. As soon as an agent reaches a suf-
ficiently high estimate of other agents detecting an event,
it reports the event to the base station. The mechanism
used by the agents to estimate the number of agents in the
event mode is explained below.

We designed the algorithm to validate the event with a suf-
ficient number of neighboring agents in order to cope with
sensor failure and hence potentially erroneously reported
events. The swarm validates the occurrence by estimating

635



(a) (b) (c) (d) (e) (f)

Figure 1: A schematic representation of the modes of oper-
ation. (a): A swarm of agents in observation mode (black).
(b): An irregularity in environmental parameters occurs
(blue area). (c): The agent in the blue area takes a mea-
surement and detects the irregularity. The agent enters the
event mode (yellow). (d): The agent in the blue area sends a
signal to neighboring agents. (e) The neighboring agent re-
ceive the signal and subsequently enter alert mode (red). The
agent which sent a signal enters stays insensitive to incom-
ing signals (dark blue) for a defined duration after which, in
(f) it is able to receive signals again.

the total number of agents in the swarm which are in event
mode. To explain how this was realized, we first introduce
two concepts.

First, every time an agent in event mode sends a signal,
it gets relayed by all the other agents in event mode. This
leads to a wave-like propagation of signals through a sub-
swarm of agents in event mode. In order to ensure forward
propagation of the signal, we introduce a “refractory” time
(tref ), where every agent stays insensitive to signals for a
brief period after sending a signal. The propagation of a
wave through the sub-swarm of robots which has detected
an event is schematically shown in Figure 2.

Secondly, all agents have an internal timer with a defined
and fixed periodicity P . An agent in the event mode broad-
casts a signal once during each period of this internal timer.
Due to the relaying of the signals by other agents in the event
mode, every signal broadcast by the agents reach the other
agents in the sub-swarm. This wave of signals propagat-
ing through the sub-swarm combined with the periodicity of
communication enables the agents to estimate the number of
agents in event mode. This estimation is done by counting
the number of signals the agents receive during one period
of their internal timers. The time at which an agent sends
a signal during this period is chosen randomly in order to
avoid overlapping signals. As soon as an agent detects a
predefined number of agents (n∗) in the event mode, it dives
up to the water surface and reports the event to a base station
via the ultra long range communication mode.

The wave like propagation of signals through the swarm
is inspired by the cyclic Adenosine Monophosphate (cAMP)

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

Figure 2: A schematic representation of the relaying of sig-
nals in the event mode. (a): An agent in event mode initi-
ates the sending of a signal (yellow star). After signaling,
an agent stays insensitive to incoming signals for a specified
duration (shown in dark blue). The consecutive relaying of
this signal by neighboring agents in event mode is shown in
(b) - (d), respectively.

signaling used by dictyostelium discoideum (Chisholm and
Firtel, 2004). The internal timer with a defined periodicity
is analogous to timer like behavior found in fireflies (Buck
and Buck (1966), Camazine et al. (2001)). Further details
of this bio-inspired communication method are explained in
Thenius et al. (2018b).

Simulation

We utilized Netlogo 6.0.2 for conducting simulations and
the fundamental units for space and time are referred to as
“patches” and “ticks” respectively. Agents are randomly
distributed within a system of size 110 × 110 patches with
periodic boundary conditions. Agents have a communica-
tion range of 9, i.e., a signal can be received by all agents
within euclidean patch-to-patch distance of sr = 9. We take
the perception of communication for the individual agents
to be circular and therefore the communication area to be
sA ≈ π · 81. At a random position in the system the
anoxic phenomenon is initialized with an area of 1 patch
and spreads to all adjacent patches within the Moore neigh-
borhood at a constant rate (ticks). The agents can detect
anoxia solely at the exact position where they are located.
All agents choose random times during each of their internal
periods at which they measure and potentially send signals.
The refractory time during which agents stay insensitive to
incoming signals after sending a signal is tref = 5 ticks.
Figure 3 shows two screen shots of an exemplary simulation
in an early state as well as its final state where an agent re-
ports the occurrence of an event. If not stated otherwise, the
number of agents necessary to agree on the occurrence of
an event in order to report it is set to n∗ = 5. The parame-
ters are deliberately selected to demonstrate the working of
the algorithm and those parameters which affect the perfor-
mance will be introduced in the upcoming section.
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(a) (b)

Figure 3: Screen shots of a simulation run of the presented
algorithm. The agents are placed randomly in the arena with
uniform probability; in (a) and (b) the blue domain repre-
sents the presence of anoxia. The black, yellow and red
squares represent the individual robots which are in obser-
vation mode, event mode and alert mode, respectively. The
red target symbol in (b) represents the agent in event mode
which sends an alert to the base station.

Swarm level parameters
In order to quantify the performance of the algorithm, we
introduce some parameters which reflect the characteristics
and performance of the swarm of robots monitoring the en-
vironment for the event.

• Measurement and communication periodicity (P ): This
parameter signifies the periodicity with which all agents
in the system communicate. P is measured in unit ticks.

• Density of robots (D): This parameter measures how
densely or sparsely the agents are spread in the environ-
ment. D is measured in robots/s2r where s2r · π is the area
of perception of one robot.

• Time until reporting (T ): Assuming the start of anoxia at
tick = 0, the number of ticks taken until an agent sends a
message to the base station. The unit of measurement of
this parameter is ticks.

• Area of spread of anoxia(A): The total area anoxia covers
until an agent sends a message to the base station. The
unit of measurement of this parameter is in patches.

Results
In Figure 4 we show the dependence of time T until agents
report an event on the periodicity P of agents. Every data
point is averaged over 100 independent simulations.

As P approaches 1, the time until reporting diverges to-
wards infinity. For P < 100, the agents communicate so fre-
quently that due to the refractory time associated with each
broadcast, they rarely receive signals. Thus, agents rarely
get to confirm that other agents share their opinion on the

Figure 4: Time T until reporting an event versus measur-
ing periodicity P , i.e., the periodicity of agents taking mea-
surements of environmental parameters and optionally (if
they are in event state) send signals. Parameters: D = 1,
tref = 5 ticks.

occurrence of an event. For P ≈ 300, the time until report-
ing has a minimum value of T ≈ 4500 ticks. Thereafter
T grows in an approximately linear manner for increasing
P . In the extreme case of P → ∞, the area of the event
spreads throughout the system and is detected only when
agents first measure and then signal. From Figure 4, we de-
rive an optimal measuring periodicity of P ∈ [200, 500] for
which time T is at a minimum. Since within the interval the
time to report the event T remains rather stable, we choose
P = 500 in order to minimize signal collisions among the
pinging agents.

Figure 5 shows the time until reporting of an event (aver-
aged over 100 independent simulations per data point) ver-
sus the spatial density of agents D, i.e., the average number
of agents within an area of s2r . For D = 1, the average time
until reporting of an event is T ≈ 6200 ticks. For increas-
ing D, T decreases until for D = 3.5 it reaches a plateau
at T ≈ 2000 ticks. As D approaches 0, we expect T to
diverge, since the density is too low for agents to commu-
nicate with neighbors and therefore too low for confirming
the occurrence of an event. However, for D > 3.5 we reach
a regime where agents are sufficiently well connected such
that a further increase in density does not change the collec-
tive behavior or performance of the swarm anymore.

Since for D > 3.5 the time T does not dramatically de-
crease further and therefore the performance in detecting
events as fast as possible does not further increase, for the
following simulations we choose D = 3.5 as optimal pa-
rameter value.

For a set of agents within the vicinity of an occurring
event we identified a set of parameters for optimal perfor-
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Figure 5: Time T until reporting of an event versus agent
density D, i.e., the number of agents within an area of s2r .

mance of the swarm, i.e., for minimizing the time until re-
porting an event. However, in case a swarm succeeds in
detecting and reporting an event relatively quickly, the area
of the event is comparably small and therefore the majority
of all agents in the swarm is not within the neighborhood of
the event. Furthermore, in a practical application a swarm is
likely to be deployed over a long time period until an event
might occur. In order to minimize energy consumption not
only the communication between agents can be minimized
but also the frequency of taking measurements in the ob-
servation mode. In the following we examined, how well a
swarm performs if we decrease the periodicity P in taking
measurements for all agents in observation mode. As soon
as an agent enters alert mode or event mode, they adjust their
periodicity P to the original value again. Therefore, agents
in observation mode measures less frequently, but as soon as
they detect an anomaly, they take measurements (and poten-
tially send signals) more frequently.

Figure 6 shows the time T until reporting an event versus
the factor k by which the periodicity in taking measurements
for agents in observation mode is reduced (black circles).
All data points shown are averaged over 100 independent
simulations. For k = 1, agents have the same periodicity P
in all states and take on average T ≈ 2700 ticks until re-
porting an event. Up to k = 4 the time T fluctuates around
T = 2900 ticks or slightly increases. For k > 4 time T
increases linearly. For k approaching∞, agents in observa-
tion mode take measurements (linearly) increasingly rarely
such that over time the event area spreads out until agents
first measure and subsequently report the event. Therefore
for large k a linear increase is expected. The number of mea-
surements taken until reporting of the event are also shown
in Figure 6. The blue squares denote the total number of

Figure 6: Time until reporting T (black circles) versus the
factor by which the agents in the observation mode reduce
their P as compared to the agents in alert mode or event
mode. The number of signals sent and measurements taken
(blue squares and crosses, respectively) are also visualized
against the factor of reduction k. Parameters: P = 500,
tref = 5 ticks.

measurements taken by the swarm, averaged over the simu-
lation runs. With increasing k, the agents which are in obser-
vation mode detect the phenomenon later, thus letting anoxia
spread to a larger area. A large number of agents then tran-
sition into event mode, therefore increasing the number of
messages sent. The blue crosses denote the total number of
measurements taken averaged over each simulation run. As
expected, as periodicity is scaled down by an increasing k,
the number of measurements taken decreases.

We can conclude from the graph that for the given system
a value of k = 4 will produce relatively fast reporting of
events while reducing the number of measurements taken
and therefore reducing the energy consumed.

Robotic Experiments
In order to validate the algorithm, we implemented it on
the aMussel robots and tested it under laboratory conditions.
Five aMussels were arranged in a linear manner in an arena
as shown in the photographs in Figure 7 (a). A projector was
used to manipulate the local ambient light around the aMus-
sels to represent oxygen content in the lagoon of Venice.
The robots were programmed to register an event when the
measured ambient light fell below a particular threshold. As
the experiment progressed, the dark patch on the right side
of the arena expanded towards the center of the arena as
shown in in figures 7 (b), (c) and (d). The robots were pro-
grammed to light up the LEDs on their top-caps to represent
their mode of operation. As shown in Figure 7 (b), the first
robot from the right transitioned into the event mode as rep-
resented by the green LED on its top-cap. At the same time,
a signal was broadcast by this robot using the short range
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(a) (b)

(c) (d)

Figure 7: An exemplary run from the robotic experiments
conducted with aMussels under laboratory conditions. The
agents indicate their modes of operation using the LEDs on
their respective top-caps. The blue, green and red LEDs sig-
nify the alert mode, the event mode and contacting base sta-
tion respectively. When there is no LED lit, it means that the
agents are in the observation mode.

modulated blue light communication module. This signal
triggered the second robot from the right into the alert mode
as shown by the blue LEDs on its top-cap. As the dark patch
expanded towards the center of the arena (figures 7 (b) - (d)),
the robots transitioned into the alert mode and subsequently
into the event mode. In the event mode, the robots counted
the incoming signals to estimate the number of other robots
in event mode. In Figure 7 (d), the event threshold of n∗ = 3
was reached for the second robot from the right. It sent a sig-
nal via bluetooth to the monitoring station and lit up the red
LEDs on its top-cap to signal a validated event in its locality.

Discussion
In the above sections, we presented a simple but practi-
cal bio-inspired event detection algorithm for detecting the
anoxia phenomenon in the lagoon of Venice using the aMus-
sel robots. Our solution is designed to minimize the amount
of communication needed while specifically taking into ac-
count the communication and locomotion capabilities of the
aMussel robots. Although energy minimization is an ongo-
ing subject of research in sensor networks, the main body
of existing literature focuses on reducing the frequency of
communication. In contrast to the energy minimization dis-
cussed in Zhou et al. (2015) and Debont et al. (2012), this
work not only focuses on reducing the number of messages
required for effective coordination but also on minimizing
the length of each message. From figures 4 and 5, we can
conclude that the periodicity of measurement and communi-
cation as well as the density of distribution of robots are cru-
cial factors in limiting the spreading time of a phenomenon

like anoxia. Figure 6 implicitly shows the energy consumed
for taking measurements by displaying the total number of
measurements taken by the swarm as well as the average
number of measurements taken per robot.

For a spreading phenomenon it is intuitive that an increase
in the number of robots which are monitoring the area en-
sures a faster detection of a spreading phenomenon. Figure
5 shows how the density of robots in the area of interest af-
fects the performance of the algorithm. In order to ensure
an interconnected network, a requirement for the presented
algorithm to reliably work, each robot needs to be connected
to the rest of the swarm through at least one other robot being
in its communication range. It follows that there must be at
least one robot per sensor area. Assuming a perfectly circu-
lar sensor radius of robots, the limits to density of robots D
and its relation to sensor area (sA), and the event threshold
(n∗) can be modeled by equations 1 and 2. In simulations,
we randomly placed robots in the environment. In reality,
rather than using a naı̈ve placement or random distribution
of robots, we will generate a set of GPS positions to deploy
the aMussels. Since there is a set threshold of n∗ agents
necessary to agree on detecting the anoxia across a preset
maximum area of Amax, the density can be so chosen to be
D according to Equation 2.

Dmin = 1 robots/sA ≈
0.32

s2r
robots (1)

D =
n∗

Amax
robots/sA (2)

Figure 4 shows the relation between periodicity P of mea-
surement and communication and the time until reporting T .
In general, as P decreases, the time taken for reporting the
event decreases since faster measurement and communica-
tion enables faster detection. However, below a particular
value Pmin, the event cannot be detected due to signal col-
lisions as shown by the initial spike in Figure 4. Therefore
P has to be selected so as to minimize the probability of
signal collisions. Generally, P has to be large enough to al-
low each agent to communicate in a different “time slot”.
Each of these slots consists of a temporal span for each
robot to send the one bit signal and complete its associated
refractory time. As a rule of thumb, we used the relation
Pmin = 3 n∗(tref + 1) ticks in order to allow n∗ agents
to communicate in different temporal slots. The maximum
value of P can be so selected to minimize T and therefore is
a design choice.

Some assumptions were made in this paper which need
revisiting when considering the application of the algorithm
to detect anoxia or any other environmental phenomenon.
Anoxia is a local phenomenon which spreads to its sur-
roundings. In this paper, we simplified the dynamics of this
phenomenon by assuming a constant spreading rate starting
from a random patch and spreading radially outwards. In
reality the periodicity of measurement and communication
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as well as sensor placement needs to be modified accord-
ing to the actual dynamics of the phenomenon being exam-
ined. In contrast to anoxia, not all events that are of interest
have a spreading nature. While tragedies like oil spills move
through the water body (Oudhuis and Tengblad, 2018), an
aircraft crash (Kaiser, 2014) is an example of an event of
interest that does not spread. In this paper we assume that
an event can be detected easily using simple thresholding
of some parameters. While this is true for the detection of
anoxia, other methods such as machine learning (Bahre-
pour et al., 2009) or other event specific techniques can be
employed for the detection of events. Even in such cases,
the algorithm presented in this paper can be employed for
confirming the detected event with neighbors using minimal
communication.

As part of future work, the algorithm presented here will
be tested in the field for anoxia detection. There are many
more energy saving techniques which can be employed but
which are likely to require more than 1-bit communication.
A study of energy consumed per bit can be conducted in or-
der to establish the relation between energy consumed and
the communication payload. This will enable the implemen-
tation of more sophisticated algorithms for event detection.
Such a method might allow for a certain amount of node to
node data exchange.

In conclusion, we presented a simple, bio-inspired, en-
ergy conserving event detection algorithm for the detection
of the anoxia phenomenon in the lagoon of Venice using the
aMussel robots. The suggested algorithm can go beyond de-
tecting anoxia using the subCULTron system. Robotic or
sensory systems with limited local communication can uti-
lize the algorithm presented here to generate an alarm based
on the number of swarm members that detected a local event.
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Abstract

Robot swarms are known to be robust to individual robot fail-
ures. However, a reduced swarm size causes a reduced swarm
density. A too low swarm density may then decrease swarm
performance, that should be compensated by adapting the in-
dividual behavior. Similarly, swarm behaviors can also be
adapted to changes in the environment, such as dynamic light
conditions. We study aggregation of swarm robots controlled
by an extended variant of the BEECLUST algorithm. The
robots are asked to aggregate at the brightest spot in their en-
vironment. Our approach efficiently adapts this swarm aggre-
gation behavior to variability in swarm density and light con-
ditions. First, each robot individually monitors its environ-
ment continuously by sampling its local swarm density and
perceived light condition. Second, we exploit the collabora-
tion of robots by letting them share features of these measure-
ments with their neighbors by communication. In extensive
robot swarm experiments with ten robots we validate our ap-
proach with dynamically changing swarm densities and under
dynamic light conditions. We find an improved performance
compared to robot swarms without communication and with-
out awareness of the swarm density.

Introduction
Swarm density has usually a significant impact on swarm
performance in general and consequently on scalabil-
ity (Hamann, 2018), for example, as observed in collective
decision-making processes (Khaluf et al., 2017). Known ad-
vantages of swarm robotics, such as robustness and scalabil-
ity, depend on a swarm’s density and most swarm behaviors
are sensitive to changes in swarm density. With large swarm
sizes, more robots break, get lost, or may intentionally be re-
moved. As an effect, the swarm density can decrease at run-
time. Similarly, an operator may add robots to the system
or the operating area may decrease over time, both effec-
tively increasing the swarm density. Online changes in den-
sity have an impact on the swarm performance and adaptiv-
ity to these changes may prove to increase efficiency (Kern-
bach et al., 2013). Similarly, adapting the swarm behavior
to dynamic environmental changes may be essential even for
survival (Mallon et al., 2001) or may at least increase perfor-
mance (Bonabeau et al., 1999).

In this paper, we make two main contributions that ad-
dress two main challenges of designing swarm algorithms
that adapt to dynamic densities and dynamic environments:
(1) swarm density and environment are global features that
can only be efficiently detected collectively; (2) for both, we
face a tradeoff between filtering noise while reacting quickly
to changes. In statistics, this problem is known as change
detection (Picard, 1985) requiring to minimize the detection
delay but also the cost of false alarms. Only here we re-
quire a decentralized implementation. Once a change in the
swarm density is detected collectively, robots may be able to
react individually. In the case of a too high density, robots
may take themselves out of the game by leaving the operat-
ing area (Mayya et al., 2018). In the case of too low density,
we get the more interesting challenge because we have to
adapt the individual behavior appropriately, as studied here.

Previously, we have investigated the automatic adapta-
tion of a robot swarm’s behavioral features to the light set-
tings in static environments (Wahby et al., 2016). This was
based on an initial calibration phase by individual robots
without exploiting collaboration between robots. However,
certain environmental features may only be detected collec-
tively (Schmickl et al., 2007) and it may be required to share
information (Valentini et al., 2016). Here, we present an
extension that adapts the robot behaviors to dynamic light
conditions and exploits collaboration using communication.

Our approach is based on a site-specific aggregation be-
havior (Trianni et al., 2003; Soysal and Şahin, 2007). The
robot swarm is supposed to aggregate at a spot of specific
environmental conditions. Here, the aggregation spot is sup-
posed to be the brightest spot. A robot can explore the whole
arena, but it cannot know whether a yet unexplored brighter
area exists or a previously explored area has increased its
brightness meanwhile. Hence, a swarm robot should always
stay explorative and as a sum of individual behaviors also
the robot swarm should stay adaptive to changes.

As control algorithm we use BEECLUST (Schmickl
and Hamann, 2011; Schmickl et al., 2008; Kernbach
et al., 2009), a standard approach to aggregation in swarm
robotics. BEECLUST is inspired by the behavior of young
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honeybees (Szopek et al., 2013) that collectively find and se-
lect the warmest spot in a temperature gradient. According
to the behavioral model they do that in a decentralized way
and without any explicit communication. This behaviour
was modeled and studied often in swarm robotics (Schmickl
et al., 2009; Valentini and Hamann, 2015; Correll and
Hamann, 2015), and a fuzzy-logic-based extension was pro-
posed (Arvin et al., 2012, 2014), but with the original en-
vironmental feature of temperature being replaced by lumi-
nance. Here, the desired aggregation area is indicated by a
light spot. We want a majority of the swarm to aggregate at
the brightest light spot while a minority still stays adaptive
as it keeps exploring the environment. We test a dynamic en-
vironment with changing light conditions (Schmickl et al.,
2009). Initially, there are two peaks in the light distribution
that we can see as local and global optima. It is essential
that the swarm has a global awareness of the light distribu-
tion. A greedy search is not an option as the swarm needs to
avoid both local optima and splitting between bright areas.
The light conditions change three times during an experi-
ment requiring three switches of the swarm’s aggregation
spot. The swarm robots need to explore the arena continu-
ously and re-allocate quickly.

We implemented our proposed extension to the
BEECLUST algorithm on Thymio II robots (Riedo
et al., 2013) and tested our approach in 25 robot exper-
iments of 24+ minutes. We analyze the obtained results
and find that the adaptation to dynamic environments is
effective, that sharing gathered information between robots
by communication is advantageous, and that our adaptivity
approach to dynamic swarm densities is also effective.

A Short History of BEECLUST
BEECLUST is a bio-inspired aggregation algorithm, de-
rived from the navigation behavior of young honeybees
in temperature gradients within beehives (Schmickl and
Hamann, 2011; Schmickl et al., 2008; Kernbach et al., 2009;
Hamann, 2018). The original behavioral model of bees is
translated to a swarm robot controller where a light gra-
dient is considered instead of a temperature gradient. Ex-
perimenting with light simplifies sensing compared to tem-
perature measurements (temperature sensors are less sensi-
tive, are fragile, and have longer latencies). The original
BEECLUST algorithm is defined as follows:

1. A robot moves forward.
2. If a robot approaches the arena borders, it turns away

to a random direction and continues with step 1.
3. If a robot meets another robot, it stops and measures the

local luminance. The higher the luminance, the longer
its waiting time is (i.e., the amount of time the robot
stays stationary).

4. After the waiting time is over, the robot turns away to a
random direction and continues with step 1.

The BEECLUST algorithm produces a characteristic

swarm-level behavior: Initially several small robot clusters
form across the environment. When the waiting time has
elapsed, robots leave their cluster again and, hence, clusters
may disappear. Clusters in brighter areas persist longer and
have a higher probability to increase in size by being ap-
proached by additional robots. There is a positive feedback
loop on cluster growth because bigger clusters have a bigger
probability to grow. In addition, robots within a big cluster
may not be able to leave after their waiting time has elapsed
because they are physically blocked. This contributes as ad-
ditional positive feedback. Finally, one or a few big clusters
form. A few robots still leave the cluster, explore the possi-
bly dynamic environment, and may come back, joining the
cluster again.

The key point for the BEECLUST algorithm to succeed
is the correct mapping of environmental conditions to the
resulting waiting times. Proper waiting times depend on en-
vironmental features, for example, the light distribution, and
the swarm density (i.e., the number of robots in a given area).
A lower swarm density means that robots are less likely to
approach a robot cluster, hence, longer waiting times would
compensate for this effect and ensure that clusters still have
a good chance of growing. High swarm densities may result
in a limited competition between clusters, such that clusters
at suboptimal positions do not dissolve as quickly as desired.
Similarly, bright robot arenas may in average give too long
waiting times and dark arenas too short waiting times.

Schmickl and Hamann (Schmickl and Hamann, 2011) de-
fined the waiting time as a sigmoid function

w(I) =
wmaxI

2

I2 + c
, (1)

where wmax is a predetermined maximum waiting time in
seconds, I is the locally measured luminance, and a con-
stant c = 4.86 × 105. The swarm’s clustering performance
depends on the constants wmax and c. If they are set incor-
rectly, then robots do not cluster at all or cluster at undesired
places. Similarly, these values need to be adapted dynam-
ically in the case of a dynamic light gradient or dynamic
swarm densities.

In a previous study, we have introduced an approach to
automatically adapt the waiting function to any light config-
uration by setting the maximal waiting time wmax to a big
value which is then scaled according to the minimum light
intensity Imin and maximum light intensity Imax measured
by the robot in the arena (Wahby et al., 2016). This infor-
mation is then used to rescale the light intensity Ī to the
interval [0, 1] by

Ī =
I − Imin

Imax − Imin
. (2)

An additional initial calibration phase was required, where
the robots explore the arena and collect illumination sam-
ples in regular intervals. For the used arena dimensions (3×
2.5 m2), a calibration period of three minutes was found to
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be sufficient for estimating Imin and Imax. Then, the robots
adapt their waiting time individually using Ī instead of I in
eq. 1 and start the aggregation phase. This approach suc-
ceeds in the automatic adaption to surrounding light condi-
tions. However, if light conditions change during the pro-
ductive phase of the experiment, then the robot swarm may
fail to cluster at the brightest spot. Also, without communi-
cation each robot has its own estimation of the light condi-
tions that may lead to inconsistent waiting times and aggre-
gation behavior within the swarm.

Boosting BEECLUST for Dynamic Swarm
Densities and Dynamic Environments

We extend the BEECLUST algorithm by making the robots
aware of the swarm density and by allowing for more collab-
oration between robots in order to share measurements (see
Fig. 1). When a robot moves, it measures the average time
taken between robot-to-robot-encounters tr, to get an esti-
mate of the swarm density. Instead of a calibration phase,
the robots collect measurements of the light during the ac-
tual execution of the experiment. Each robot measures and
stores a light intensity sample every second. Robots share
features of these measurements (‘communicate parameters’,
Fig. 1) to collectively perceive the dynamic environment and
to adapt their waiting times accordingly. Not every robot
has to travel individually to all relevant places in the arena
to collect appropriate measurements.

According to kinetic gas theory, the mean free path ` =
(nσ)−1 is the average distance traveled by a moving particle
between successive collisions with other moving particles.
n is the number density of molecules (ideal gas law) and
σ = π(2r)2 is the effective cross-sectional area for spher-
ical particles with radius r. This indicates that, in swarm
robotics, the density of moving robots on a fixed area may
scale similarly, however, inversely proportional to the av-
erage robot-to-robot-encounter time interval tr (Kernbach
et al., 2013). For example, if we halve the swarm size, then
the robots measure on average a 100% increase of time tr,
that is, they should also increase their waiting time by 100%
for effective clustering.

Therefore, we include the average time between two robot
encounters tr into the waiting function as a product

w(Ī) =
tr
12

wmaxĪ
2

Ī2 + c
, (3)

which substitutes the original waiting function given in eq. 1.
We have to introduce another constant here as we normal-
ize tr by 12. This corresponds to the average value mea-
sured for tr (in seconds) in our arena. By normalizing tr we
can keep the value of the maximal waiting time wmax as it is
and preserve its interpretability.

Robots share their measured values by communication
with other swarm members to ensure the consistency of
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Figure 1: Finite state machine describing the adaptive
BEECLUST algorithm.

their behaviors and to enhance the swarm’s collective per-
formance. Robots locally exchange their adaptivity param-
eters (Imin, Imax, and tr) at every time they are in proximity
of other robots. After receiving parameters from a neighbor,
a robot checks the new Imin and Imax and computes a new av-
erage tr. According to the robots’ memory lifetime, the mea-
surements are considered outdated after a certain amount of
time (90 seconds). The memory lifetime introduces a trade-
off between the adaptivity and speed.

Robot and Experiment Setup
Thymio II is a small mobile robot designed for chil-
dren (Riedo et al., 2013), it measures approximately 11 ×
11 × 5 cm3 in width, depth, and height. Its programming
is based on ASEBA (Magnenat et al., 2011), which is an
open source modular architecture for event-based robot con-
trol. The robot is based on a differential wheeled drive,
and is equipped with many sensors, such as seven horizon-
tal infrared sensors, two ground infrared sensors, a 3-axis
accelerometer, a remote control infrared receiver, and a tem-
perature sensor. Thymio II robots also provide attachment
knobs for LegoTM bricks on top, which allows an easy in-
stallation of hardware extensions. The infrared sensors are
used for kin recognition, ensuring a robot makes a transition
to the stopped state only when another robot is detected at a
distance of 5 cm or less. A second purpose of the infrared
sensors is robot-to-robot communication. Two Thymios can
communicate over distances of up to about 25 cm, as long
as at least one of the seven IR emitters is within line of sight
of a horizontal sensor of the other robot. For bi-directional
communication this alignment has to be reciprocal.

In our experiments, the robots need to communicate
the extremes of their memorized light intensity measure-
ments Imin and Imax as well as their swarm density estima-
tion parameter tr. However, the angular displacement of
the horizontal sensors does not provide a full circumferen-
tial view. The sides of a Thymio robot have no infrared
sensors, (see Fig. 2) leaving two large blind areas without
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Figure 2: Thymio II robot with a Raspberry Pi, an ambi-
ent light sensor, and a power bank attached to the LegoTM

attachment knobs on top of the robot.

possible communication. To increase the chances for com-
munication, we rotate the robots on the spot while in the
‘stopped state’ which vastly increases frequency of success-
ful communications of waiting robots. Thymios can send
11 bit messages at 100 ms intervals, with one bit being used
by the firmware itself leaving 10 bits for user data. The first
two bits determine the type of the communicated parameter
(00 for Imin, 01 for Imax, and 10 for tr), and the parameter
value is encoded in the remaining eight bits as integer on the
interval [0, 255]. In the case a robot receives two subsequent
messages of the same type and value, the earlier message
is discarded to avoid duplicates. The robots don’t relay re-
ceived messages and delete them after the memory lifetime
has been reached. This is an important feature that ensures
robustness because it prevents spreading of faulty or out-
dated information (Schmickl et al., 2006). It also acts as
first line of defense against Byzantine robots.

According to our experiment setup, the robots go through
different phases of light intensity configurations (see Fig. 4)
of at least six minutes each to simulate a dynamic environ-
ment. Therefore, we set the memory lifetime to 90 seconds,
which is a good compromise between quick adaptation to
such quick changes and still relying on averaged measure-
ments. Although our motivation is to maximize the degree
of adaptivity in our system, a few parameters, such as as
the memory lifetime and the normalization of tr by 12 in
Eq. 1, are required. Certainly, shorter memory lifetimes
may be advantageous in even more dynamic environments
and longer intervals may help in environments that change
slowly. However, we assume that these environmental fea-
tures are unknown a priori and cannot be anticipated.

Following our earlier approach (Wahby et al., 2016), we
extend the capabilities of the Thymio II robots by a hardware
extension consisting of a Raspberry Pi, an ambient light sen-
sor (TSL45315), a power bank, and a LegoTM attachment
plate (see Fig. 2). The ambient light sensor is interfaced
with the Raspberry Pi through the I2C bus and it provides an
output range that corresponds to environmental conditions
ranging from 3 lux to 2.2× 105 lux. The Raspberry Pi con-
nects to the Thymio II through the USB port and the D-Bus

Figure 3: The 3.0 × 2.5 m2 arena is bound by a white line
on the ground (duct tape) emulating virtual walls that can be
detected by the robots’ ground sensors. N = 10 robots are
initially placed in an evenly spaced grid.

interface, and considers the robot as a sensor/actuator unit1.
In order to have comparability to previous studies based

on other versions of the BEECLUST algorithm as in (Wahby
et al., 2016), (Schmickl et al., 2008), and (Schmickl et al.,
2009), we constructed an arena of size 3.0 × 2.5 m2 (see
Fig. 3). This arena is bounded by a white line on the ground
emulating virtual walls that can be detected by the robots’
ground sensors. In the case a ground sensor detects a virtual
wall, the robot rotates into the opposite direction for a ran-
dom amount of time between 0.5 and 2.2 seconds, before it
continues moving forward. The virtual walls allow for using
the horizontal proximity sensing exclusively for kin recog-
nition, which increases the reliability.

When moving forward, the robots operate in full speed of
20 cm/second. Two projectors are fixed to the ceiling above
the arena, that allows the projection of two light spots (each
at the middle of one half of the arena), in different intensity
configurations (see Fig. 4). With this setup we can demon-
strate different aggregation behaviours while keeping the
configuration simple and reproducible. At the beginning of
each experiment, ten robots are initially placed in an evenly
spaced grid (see Fig. 3). All the experiments are video cap-
tured by a digital camera, which is also fixed to the ceiling.
We divided each experiment into non-overlapping intervals
of five seconds. For every interval, we counted the maxi-
mum number of clustered robots (i.e., in the stopped state)
at each of the two light spots. Then the median, minimum
and maximum values at every four intervals (from n = 5
repetitions) are used to construct the graphs in Figs. 5 and 6.

Results
We tested four variants of the BEECLUST algorithm: of-
fline (with initial calibration but no online illumination sam-
pling and no communication, similar to our previous ap-
proach in (Wahby et al., 2016)), online non-communicating

1source code:
https://git.iti.uni-luebeck.de/CEschke/A BEE.git
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(a) dimmed / off (b) dimmed / bright (c) bright / dimmed (d) off / dimmed (e) off / bright (f) bright / off

Figure 4: Light configurations of the arena during the different phases of the two kinds of experiments. In the light adaptivity
experiments (our first three sets of experiments) the light configuration sequence (a)→ (b)→ (c)→ (d) is used. For the swarm
density adaptivity experiments (the last two set of experiments) (e) followed by (f) is used. The projector operates at 100%
brightness to project bright spots, which is measured as about 30 lux by the light sensor of our robots. 20% brightness is
projected for dimmed spots, which is measures as about six lux. Both light spots are about 70 cm in diameter.
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(a) offline approach (initial calibration phase, no online illumination sampling and no communica-
tion; control experiment).
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(b) online non-communicating approach (online illumination sampling but no communication).
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(c) online communicating without density estimation approach (with online illumination sampling,
swarm density sampling, and communication).

Figure 5: Static density runs, analysis of practical robot experiments using N = 10 Thymio robots and the different variants
of the BEECLUST algorithm in consecutive phases of light settings. Each of the five rows represents the results of n = 5
repetitions and gives the number of aggregated robots at the left and right area. The shown data is obtained by processing the
time series in 20 second segments, extracting the maximum, minimum, and median number of robots observed over all n = 5
repetitions within that segment. The sun-like symbols indicate the dynamically changing light intensity at the corresponding
projected light spot. A white sun indicates a bright light spot, a gray sun indicates a dimmed light spot, and a black sun indicates
no light.
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(with online illumination sampling but no communication),
online communicating without density estimation (with on-
line illumination sampling and communication), and online
communicating with density estimation (with online illumi-
nation sampling, swarm density sampling, and communica-
tion). The first three BEECLUST variants were tested in
a first experiment setup with dynamic light conditions and
static density. There are four different consecutive phases of
light settings, six minutes each (see Fig. 4). In the second
experiment setup we tested the adaptivity to dynamic swarm
densities using the online communicating without density es-
timation BEECLUST variant as control experiment and the
online communicating with density estimation BEECLUST
variant. This second experiment setup consists of only two
phases with a slightly longer duration of 14 minutes each,
where the swarm is manually halved from N = 10 robots to
N = 5 robots after 14 minutes. Each experiment is repeated
n = 5 times (totaling to 25 robot experiments)2. We test for
statistical significance by comparing numbers of clustered
robots pooled over the whole phase from all n = 5 repeti-
tions using the Wilcoxon signed-rank test (p ≤ 0.001).

In Fig. 5(a) we give the results for the offline BEECLUST
variant as control experiment. Before the experiment starts,
the robots adapt their waiting time individually to the light
configuration in the first phase (dimmed / off ). Here, the
robots learn that the dimmed spot is the brightest possible
spot, and in case they encounter a brighter spot in the later
phases, the maximum waiting time computed during the ini-
tial calibration is still considered. Focusing on the medians
given in Fig. 5(a), we notice that during the first two min-
utes in the first phase, the number of robots clustering at
the dimmed spot increases about linearly. Then a median
of about five is reached and only minor fluctuations occur
due to scouting behaviors until the end of the phase. In the
next phase (dimmed / bright), a bright spot emerges at the
right side of the arena. However, clusters of only two robots
form at the bright spot, because the robots are assured by
the initial calibration phase that they are at the brightest spot
already. In this and the third phase, following the minimum,
maximum, and median values of clustering robots, it is ob-
vious that the robots are unable to locate the brighter spot
until the bright spot disappears in the last phase.

In Fig. 5(b) we give the results for the online non-
communicating without density estimation variant, that is,
robots do not require an initial offline calibration phase but
sample light measurements online. Similar to the above
experiment, the robots form a cluster at the dimmed spot
during the first phase. When the bright spot emerges at
the right side of the arena, the cluster of about five robots
at the dimmed spot required almost the whole duration of
the phase to dissolve and to form again at the bright spot.
Possibly robots are assured by locally collected informa-

2video available online: https://vimeo.com/271398596

tion that they are at a bright spot already, while the scout-
ing robots fail to communicate the information about the
new bright spot. From the results of the remaining two
phases it is obvious that this variant outperforms the offline
approach in terms of adapting to dynamic light conditions
(significantly more clustered robots during both phases, p ≤
0.001).It deals relatively well with a required aggregation at
the dimmed spots but fails to aggregate many robots quickly
at the bright spots (second phase, right; third phase, left).

In Fig. 5(c) we show the results for testing the online
communicating without density estimation variant, that is,
we test whether we can improve performance once we al-
low the robots to communicate their light adaptivity param-
eters (Imin and Imax). Similar to the previous two setups,
the robots form a cluster at the dimmed spot during the first
phase. When the bright spot emerges at the right side of the
arena, the cluster at the left side quickly dissolves and the
robots form a new cluster at the bright spot. The scouting
robots probably detect the bright spot in the arena and col-
lect light intensity samples of bigger values (i.e., acquired
high Imax). They successfully share their knowledge with
the robots clustered at the dimmed spot. This way the ag-
gregated robots notice that they are currently clustering at
a local optimum without having to explore the arena them-
selves. This allows to quickly dissolve the cluster. We find
that this variant is performing significantly better than the
online non-communicating without density estimation vari-
ant when bright light spots emerge in new locations. In the
third phase, the cluster at the dimmed spot quickly dissolves
and forms again at the bright spot. In the last phase, the
dimmed spot is at the right side of the arena. Since the
robots can retain an Imax value for up to three minutes after
it was acquired by another robot and then communicated,
the first half of this phase shows no reliable cluster forma-
tion. Probably the waiting times of the robots are still scaled
for an optimum with a bright spot and not a dimmed spot.
During the last three minutes of the experiment, however,
they form a cluster at the right side. Especially the perfor-
mance of the online communicating without density estima-
tion variant during phase two and three is a clear improve-
ment over the online non-communicating without density es-
timation variant. The performance increase is statistically
significant (Wilcoxon signed-rank test, p ≤ 0.001).

Finally, we test our BEECLUST approach in a setting
with dynamic swarm densities. We compare the perfor-
mance of our online communicating with density estimation
BEECLUST approach, see Fig. 6(b), to a control experiment
using the online communicating without density estimation
variant, see Fig. 6(a). In the first phase (off / bright) we start
with N = 10 robots. Big robot clusters of up to nine or ten
robots are formed at the bright spot. At the beginning of the
second phase, the bright spot is switched to the left side and
half of the robot swarm (five robots) is randomly manually
removed from the arena, only N = 5 robots remain. The
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(a) online communicating without density estimation approach (control experiment).
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(b) online communicating with density estimation approach

Figure 6: Dynamic density runs, analysis of practical robot experiments using initially N = 10 Thymio robots, then the
swarm size is manually reduced to N = 5 robots at t = 14 min. To identify the advantage of the density estimation approach,
only the 2nd phase (14 < t ≤ 28 min) is relevant. Significantly more robots aggregate at the left light for t > 14 min using
density estimation. n = 5 repetitions per row, number of aggregated robots at the left and right area, dynamically changing
light intensity.

clusters quickly dissolve as usual due to the shared knowl-
edge from scouts. The online communicating with density
estimation variant succeeds in forming robot clusters of up
to five robots (i.e., the complete swarm) at the bright spot
after about seven minutes. The online communicating with
density estimation variant outperforms the control experi-
ment because significantly more robots cluster during the
second phase of the experiment (p < 0.001). In these two
experiments light intensity was not changed, hence, cluster-
ing at the opposite side of the arena was not delayed due
to the robots’ local history. The observed behavior in this
setup indicates the ability of our approach to adapt to the dy-
namic change in the swarm size and successfully aggregate
the swarm at the desired area. We have analyzed the mea-
sured robot-to-robot encounter time tr of an arbitrary robot.
In the first phase, tr is about 13 seconds in average. In the
second phase, it increases to about 18 seconds in average.
Hence, the robots successfully detect the change in swarm
density and adapt their behavior. All experiment data, pho-
tos, and videos are available online (Wahby et al., 2019).

Discussion and Conclusion
We have extended the BEECLUST algorithm with a method
to adapt waiting times to dynamic swarm densities. Times
between robot-to-robot encounters and environmental fea-
tures (information about the light distribution) are mea-
sured and gathered by each robot, shared by communica-
tion, and aggregated. This way we contribute a solution to
the challenge of collectively detecting global features and

their changes, that is, collective change detection. We also
found parameters to balance the tradeoff between minimal
detection delay and false alarms. We have successfully ver-
ified our approach in 25 swarm robot experiments that show
a clear improvement in performance over the non-adaptive
variant. Adaptivity to swarm density is a relevant feature in
swarm robotics with possible impact on the swarm’s scala-
bility properties. Similarly, adaptivity to environmental fea-
tures is crucial for the operation in dynamic environments.
Both properties enable long term autonomy and are essential
in real world applications (e.g., environmental monitoring).

An interesting extension in future work is to combine col-
lective perception (Schmickl et al., 2007) with other scenar-
ios of swarm robotics to allow for adaptivity to even more
features. Other options for future work include a more in-
tensive study of adaptation to swarm density and scalability.
A better control of when data shared with other robots is
outdated could be achieved by adding time stamps. How-
ever, the Thymio’s infrared-based communication may be
too primitive and WiFi or scalable protocols could be used
instead. Finally, we could try to protect our adaptivity pro-
cess against malicious robots that intentionally or by acci-
dent spread wrong measurements. Methods of error detec-
tion and correction in distributed robot systems may be use-
ful (Tarapore et al., 2015).
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M., Ohkura, K., Pinciroli, C., and Stützle, T., editors, Swarm
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Abstract

Liquid droplets possess some life-like behaviors and have
been the subject of artificial life studies. Life-like behaviors
such as fission, fusion and movement can be artificially re-
created exploiting highly simplified chemical systems. Re-
cently we showed that droplet-based chemotactic systems
can be interfaced with biological systems (1). We devel-
oped a chemotactic droplet able to move light cargos such
as hydrogel alginate capsules embedded with living cells as
a transporter. We transported efficiently and in a sterile way
a few types of bacteria and yeast, and we are now modify-
ing our protocols to transport efficiently human cell lines.
We recently discovered that some eukaryotic cell lines re-
lease surfactants when placed in our artificial transport sys-
tem, thereby reinforcing the interface between the artificial
and living systems. This is an example of not only how the
interface between artificial life and biological life could be
designed but how the one system can augment the other. In
this case the living system produces the surfactants that the
droplet needs for cargo transport and the artificial system pro-
vides the transport for the otherwise sessile mammalian cells.

Introduction
Protocell systems are examples of bottom-up synthetic biol-
ogy. A leading property of cells and living organisms is the
ability to move. Motile protocells can be created using sim-
ple chemical systems: for example, droplet of oil in water or
droplet of water in oil. Lively droplets of water in oil were
first described by Otto Bütschli in 1892 (2). He used al-
kaline water droplets in olive oil to initiate a saponification
reaction. This simple protocell system recreated an entity
that moved and seemed to behave like an amoeba. Since
then many researchers have been developing oil droplet sys-
tems as models of living systems (3), (4). For example, the
research of the group of Hagan Bayley in Oxford created
3D customized patterns of water droplets in oil with sta-
ble lipid bilayers forming the droplet-droplet interfaces as
mimics of living tissues (5). In addition these networks of
droplets with integrated porins can show current transmis-
sion. Each droplet in this system can be complemented with
cell-free expression systems controlled by light activating
protein expression (6). In this way they demonstrated that

life-like behaviours such as current transmission and protein
expression can be activated even in water-in-oil droplets.

We mainly focused our work on chemotactic 1-decanol
motile droplets. Chemotaxis is defined as a stimulated mi-
gration towards an increasing (or decreasing) chemical gra-
dient, and 1-decanol droplets, formed in an aqueous medium
containing decanoate at high pH, show chemotaxis when a
chemical gradient is placed in the external aqueous environ-
ment. Droplets using such chemical gradients are able to
solve 3d mazes, displaying a rudimentary artificial intelli-
gence. This kind of movement can be compared to already
well-described system of eukaryotic chemotaxis. For ex-
ample, Dictyostelium amoebae migrates along an increas-
ing concentration of cyclic adenosine-3′,5′-monophosphate
(cAMP) (7). Cejkova et al. showed in 2014 1-decanol
chemotaxis towards a salt source (8). This system works
even in mazes (9) and can be exploited to transport non liv-
ing (9) objects. There is a challenge and benefit to begin
to interface living and artificial systems to exploit potential
synergies, increase robustness or increase the functionalities
of both systems. We then attempted to interface the purely
artificial decanol droplet system with living cells.

We therefore show how to interface the purely artifi-
cial decanol droplet system with living cells, preserving the
function of both systems.

Protocell-cell transport system
We developed our artificial chemotactic system to make it
compatible with natural living systems by creating a par-
tially hydrophobic alginate capsule as a protective unit that
can be precisely embedded in a droplet, transported along
chemical gradients and deposited. This system was able
to transport Escherichia coli, Bacillus subtilis and Sac-
charomyces cerevisiae. Both bacteria survived the trans-
port. However, yeast survived but not in a consistent and
repeatable way. The droplet containing a capsule with
live cargo could be manipulated with salt gradients sev-
eral times with the capsule remaining stably attached to the
droplet. In addition, several capsules can be stably fixed to
a single decanol droplet. For a video of this system, see:
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https://www.youtube.com/watch?v=zCB2bPhFoCI. We af-
terwards conceived the idea to develop this system to trans-
port mammalian eukaryotic cells. To do this we needed to
evolve the droplet chemotaxis system under conditions more
conducive to physiological environments. We decreased the
pH from 12 to 7 and tried to transport A549 cells inside our
alginate capsules. We found that A549 cells can be encap-
sulated in alginate hydrogels and survive. When in capsules
incubated in growth medium DMEM, the cells survive and
secrete into their environment some compounds that lower
the surface tension and act as surfactants. The water phase
in which capsules are incubated shows, if analyzed using
pendant drop method with a tensiometer, a reduction in sur-
face tension (60-55 mN/m) if compared to water (72 mN/m)
and can be used in our artificial system as chemotactic water
phase. Some of the molecules secreted by the cells modu-
late the surface tension of the alginate capsule. This surface
modification allows the normally hydrophilic hydrogel cap-
sule to associate efficiently and for an extended time with
the hydrophobic 1-decanol droplets (up to 1 hour in the case
of cell culture water phase mixed 1:1 with water). The se-
cretion of surfactants is probably due to the mucus secreting
phenotype transition of A549 cells. This transition leads to
surfactant release in the water phase in which the capsules
are incubated. This surfactant secretion is shown only when
A549 are in capsules and this demonstrates that the integra-
tion of the biological system (A549) with the artificial one
(capsules) can be exploited to increase the functionalities of
the system. In addition, this association is selective for live
cells as dead or non-proliferating cells do not produce the
required amount of surfactant. The capsule containing live
cells can then be transported using chemical gradient to a
specific location and dropped though the addition of a water
phase with concentrated surfactant.

We show that chemotactic droplet systems can interface
with biological systems and transport live cells in petri
dishes, but other scenarios are possible. Active droplets
containing cells could be applied in smaller environments
such as microfluidic chips, leading to the implementation
of next generation technologies for cell screening (e.g. live
vs dead). Chemotaxis systems and alginate capsules are
inexpensive and easy to manipulate and could be applied
more widely. For example, alginate capsules could be ex-
ploited to delivery bacteria or enzymes for improved biore-
mediation (10). Droplets determine the transport to loca-
tions not accessible by human hands and capsules could pro-
tect bacteria from harsh environmental conditions (11). This
same approach could be used for environmental planning, to
test possible bacterial/enzymatic/chemical treatments, trans-
ported by capsules and droplets, on systems with reduced
scale. Therefore we expect a certain degree of societal im-
pact through the ongoing development of this artificial life
technology.
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Abstract 

One of the salient features of living systems is presence of 
autocatalytic chemical reaction networks. Here we present a 
stochastic model of an inorganic autocatalyst, which is derived 
directly from empirical results. Using the model, we can 
explore the emergence of autocatalysis and its consequences on 
the larger, hierarchical, chemical network. This model provides 
a useful tool to study the emergence and organization of 
autocatalytic chemical networks and the effect autocatalysis 
has on the global system dynamics.  

 
A characteristic feature of living systems is the existence of 
autocatalytic cycles, which enables the exponential growth of 
individuals and thus evolutionary dynamics (Cronin & Walker 
2016, Kauffman 1992). Accordingly, a primary goal of origins 
of life and artificial life research is the design and synthesis of 
autocatalytic chemical reaction networks (Ashkenasy et al, 
2017, Ashkenasy et al 2004, Kauffman 1992). Here we 
demonstrate a stochastic kinetic model of network 
autocatalysis based on an inorganic chemical system (Miras et 
al 2010). This model provides mechanistic insights into how 
autocatalytic cycles can be stabilized in real chemical systems 
and how their emergences effects the large-scale dynamics of 
hierarchically organized chemical networks. Our goal is to use 
this model to generate design constraints for observing 
autocatalytic reactions in the experimental system. 
 
We model the formation of large molybdenum nano-
structures, known as Mo-Blue wheels (Miras et al 2010). In 
experimental platforms, these large structures are synthesized 
using flow through systems fed with Molybdate (MoO4

-) 
monomers in a reduced solution (Miras et al 2010). Current 
analytical techniques cannot elucidate the exact assembly 
mechanism for large structures such as the Mo154 wheel 
(Miras et al 2010). It is hypothesized that Molybdenum 
intermediates (Mo6) are stabilized around a Mo36 structure. 
This mechanism would imply that the Mo36 structure would be 
capable of templating both Mo6 building blocks, and the 
larger wheel structure. This introduces the possibility that the 
Mo36 structure is both autocatalytic (since it is formed from 
the Mo6 structures it templates) and cross-catalytic in that it 
templates the larger Mo154 structure. Structural studies suggest 
that the Mo36 can be ejected from the larger scale structure 
enabling it to participate in further templating reactions. These 
mechanisms may lead to the exponential amplification of the 
wheel after the emergence of the Mo36 template.  
 

The Mo-Blue wheel system presents an interesting chemical 
system because it contains three clear hierarchical levels of 
organization: small intermediates (Mo1-Mo6), small templates 
(Mo36) and larger structures (Mo154). The existence of these 
clearly delineated levels of organization enables us to explore 
the consequences of autocatalysis on the levels above and 
below the proposed autocatalytic entity. 
 
To explore the consequences of this proposed mechanism we 
developed a model of the Mo-Blue dynamics. Our model is 
implemented using a kinetic Monte Carlo algorithm 
(Gillespie, 1977). This technique represents all reactions as 
either uni-molecular degradation reactions (A → B + C) or 
bimolecular (A + B→ C). Structures and intermediates form 
as the products of bimolecular reactions between building 
blocks and other intermediates. We assume that all molecules 
(besides Molybdate monomers, Mo1) can degrade into 
component parts. We initialized the system with 106 Mo1 
molecules. The model uses Mo1, Mo2, and Mo6, as building 
blocks, which are given a different degradation rate. Both the 
Mo36 (template) and Mo154 (Wheel) form in these simulations. 
The Mo36 templates host intermediate compounds and act to 
enhance the net rate of bimolecular reactions with those 
intermediates. This is included in the model by increasing the 
reaction rate constant of bimolecular reactions when one of 
the reactants is bound to a template.  
 
To characterize the formation of Mo Blue structures, 
simulations were run using different sets of bimolecular rate 
constants. We first modeled the system by inhibiting 
templates and setting the rate constant to 1.0 for all 
bimolecular reactions, such that the only differences in 
propensities were due to the differences in the reduced mass 
and the relative abundances of molecules. In this setting the 
only structure which formed was Mo36, albeit in relatively low 
abundance. We next included the effect of templating for the 
formation of Mo6 (templated by the Mo36) and the formation 
of Mo154 (also templated by Mo36). We found that while 
including the effect of templating did result in dramatic 
increase in the formation of Mo36 (both in rate and in steady 
state abundance), it did not ensure the formation of Mo154 or 
Mo132. While intermediate compounds between the Mo36 and 
the Mo154 or Mo132 formed readily, those intermediates always 
degraded before forming complete structures, resulting in 
many “frustrated attempts.” We propose several mechanisms 
which overcome this limitation without fine-tuning the model. 
Including any one of these mechanisms in the model results in 
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the robust formation of larger structures over a large range of 
parameters.  
 
The model recovers the dynamical characteristics of the 
experimental system. In typical simulations the abundance of 
Mo154 remains 0 for a time followed by a period of explosive 
growth. This feature is also seen in experimental data when 
the solution is not seeded with Mo36. An example time series 
of this effect is shown in figure 1. 

 
We are currently using this model to investigate alternative 
mechanisms which could reproduce these dynamical features. 
We expect to generate new testable hypotheses from the 
proposed mechanistic pathway which can ultimately be tested 
in the lab. We are exploring the interactions between the three 
levels of organization and identifying the most dramatic 
observable differences between alterative mechanistic 
pathways. 
 
By interweaving experimental constraints and computational 
studies we will be able to characterize and explore 
autocatalysis in a purely inorganic chemical reaction network. 
Thanks to the hierarchical organization of this particular 
chemical system we hope to develop new theoretical insights 
related to how autocatalytic processes drive dynamics within 
and between different levels.  
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Figure 1: Typical time series from the stochastic 
simulation. The mass fractions of different molecular 
species are shown over time. At the beginning of the 
simulation small intermediates (blue) form rapidly but are 
transformed into the Mo36 template (green), which then 
enables the emergence of the larger Mo154 wheel (red).  
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Abstract 
Synthetic biology lies on the interface between natural and 
artificial life. It consists of the assembly of natural biological 
components into artificially configured biological systems. A 
main focus of synthetic biology has been the engineering of new 
gene circuits that can produce artificial cellular functions. I 
propose to scale up this approach to include, beyond single cells 
and gene circuits, also entire multi-cellular organisms and the 
brain circuits that regulate their behavior. Such synthetic biology 
in the brain will offer new ways for understanding how brain 
connectivity relates to brain function, and could ultimately lead 
to futuristic technologies such as neuronally-programmed 
organic robots or biologically-based brain repair. As a first step 
towards this ambitious goal I have developed a technique for 
genetically inserting new synaptic connections into the nervous 
system of the nematode worm C. elegans, enabling the 
manipulation of information flow in the nervous system and the 
reprogramming of whole animal behavior in this organism. This 
approach may be expanded and adapted to other genetic models, 
and opens the way to possible new forms of artificial life. Such 
technology, if practiced responsibly, could offer considerable 
benefits to science, industry and medicine.  

Synthetic biology in the brain 
Synthetic biology elegantly fuses the fields of engineering 

and biology, to accomplish the goal of designing and 
constructing new biological systems out of basic biological 
parts (Xie and Fussenegger, 2018). The rationale is that the 
creative process and the practical challenges faced when 
building a system can substantially contribute to understanding 
how that system works and to establish causal links between 
the system’s organization and its operation. Synthetic 
biological systems can be considered as a special form of 
artificial life, which strongly hinges on natural life. On the one 
hand, they are composed entirely of organic matter and follow 
biological principles of operation. On the other hand, they are 
designed and constructed by human beings intended for human 
benefit. The organic nature of synthetic biological systems 
makes them self-reproducible, ecologically compatible with 
other organisms and the environment, and fully degradable. A 
unique combination of features that can rarely be found in other 
forms of artificial life. 

Many synthetic biological applications focus on single cells 
and on the gene networks that control their function (Bashor 
and Collins, 2018). The potential outcomes are spectacular. For 
example, synthetic bacteria that could monitor, synthesize and 
regulate drug administration in a patient’s body (Flores Bueso, 
et al. 2018); or engineered microalgae that could produce 

biofuels (Jagadevan, et al. 2018). I propose to expand synthetic 
biology beyond single cells or populations of single cells, to the 
realm of multi-cellular organisms. These modified animals 
exhibiting novel artificial behaviors could substantially enrich 
the repertoire of synthetic biology, producing more complex 
and farther-reaching forms of artificial life. Multi-cellular 
animals, just like single cells, are fundamentally governed by 
networks of gene interactions. However, the direct coordination 
and control of their overall behavior is produced by higher 
order networks of neurons and the synaptic connections that 
link between them. If it were possible to design and implement 
specific synaptic connections in the nervous system of an 
animal, then, in principle, new behaviors could be derived. At 
some point, an animal harboring an accumulation of such 
engineered connections, or perhaps new synthesized neural 
circuits, or, ultimately, an overall redesign of neural 
connectivity could arguably qualify as a form of artificial life. 

Engineering synaptic connections in worms 
Ceanorhabditis elegans is a 1 mm long nematode worm 

(Fig. 1a) that dwells in soil and compost, where it feeds on 
bacteria. Its nervous system consists of only 302 neurons, 
interlinked by a set of several thousand synaptic connections, 
which constitute its connectome. In fact, the C. elegans 
connectome is the first and, to date, only connectome of any 
animal to have been mapped. It is intriguing to consider the 
potential impact of editing the C. elegans connectome and 
forming within it new synthetic patterns of connectivity. Could 
new behaviors be programmed into the worm in this way? How 
would such novel behaviors coexist with native ones? To what 
extent could the entire lifestyle of the worm be reshaped 
through synthetic design of its neural circuits? Such synthetic 
biology at the level of the nervous system could help elucidate 
fundamental principles of brain structure-function relations. 

 One can think of various hypothetical ways to manipulate, 
modify and establish new patterns of synaptic connectivity in a 
live organism. One possible approach is to genetically insert 
new synthetic synapses into existing neural circuits. Like other 
metazoans, C. elegans uses both chemical and electrical 
synapses for neural communication. Chemical synapses are 
complex in structure and are thus challenging to construct 
artificially. Electrical synapses or gap junctions, in contrast, are 
considerably simpler. In vertebrates, gap junctions are 
composed of connexin proteins that assemble together to form 
hemi-channels embedded in the cell membrane. When two 
compatible hemi-channels contact each other, they fuse to from 
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a gap junction, a physical channel that enables the passage of 
charged ions between the connected neurons (Fig. 1b). 
Invertebrates, like C. elegans, do not possess connexin 
proteins. Instead, they use innexins for constructing gap 
junctions, an independently evolved protein family. Ectopic 
expression of connexin in C. elegans neuron pairs could thus 
lead to the artificial formation of a gap junction, functionally 
and specifically linking the two neurons. I have found that 
connexin driven by cell-specific promoters readily expresses in 
C. elegans neurons in a punctate form, typical to synaptic 
proteins (Fig. 1c). Moreover, some of these puncta appeared in 
close apposition (Fig. 1c, inset), suggestive of putative gap 
junctions. To test the functionality of such presumed 
engineered electrical synapses, I expressed connexin in two 
sensory neurons (Fig. 1d). Normally, only one of these neurons 
responds to a certain stimulus (Fig. 1d, top). However, when, 
and only when, both neurons ectopically expressed connexin, 
the responses became equalized, consistent with a coupling of 
these neurons by a gap junction (Rabinowitch, et al. 2014). 

 Using the techniques described in Rabinowitch, et al. 2014 
I also examined the capacity of engineered electrical synapses 
to reshape simple worm behaviors. For example, in C. elegans, 
the polymodal sensory neuron, ASH, is specialized for 
detecting noxious stimuli, which normally elicits a withdrawal 
response (Fig. 2a), resulting from the activation of premotor 
interneurons, such as AVA (Fig. 2b), and the inhibition of 
AVB, which otherwise drives forward acceleration. Strikingly, 
synthetically coupling of ASH to AVB caused worms to move 
forward, towards noxious stimuli, rather than escaping them by 
reversing (Fig. 2c), demonstrating a significant functional 
impact of a specific engineered synaptic connection. A similar 
principle enabled artificial switching of worm navigation 
towards a food-related odor, into avoidance of that odor, 
mimicking an effect that is otherwise attainable through 
training (Fig. 2d-f). I am currently applying these methods to 
generate completely novel behaviors in C. elegans, and am 
developing additional techniques for altering its connectome. 

Future prospects 
This work illustrates an encouraging step towards a long-

term vision of extensive rewiring of the nervous system. Such 
advances could enhance our understanding of how neural 
structure determines brain function and could ultimately pave 
the way to the creation of small organic robots – a new form of 
artificial life, such as nematode worms programmed to 
distribute fertilizer among crops and hunt down pests, or to 
crawl into a patient, perform a medical procedure, and then 
leave. A long path awaits until such visions may become 
reality, and considerable ethical, safety and societal 
considerations will have to be weighed, but the potential gains 
for science and society are immense. Now is the time to start 
planning this journey. 
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Figure 2: Genetic insertion of new synaptic connections between C. 
elegans neurons. (a) C. elegans is a 1mm long nematode worm. (b) 
Electrical synapses or gap junction are composed (in vertebrates) of 
connexin proteins expressed in two adjacent neurons. These form 
hemi-channels in each neuron and fuse together into a complete gap 
junction that electrically couples the neurons. (c) Ectopic expression 
of connexin fused to mCherry or GFP in two C. elegans neurons, A 
(AWC) and B (AIA). The rectangle, enlarged in the inset, marks the 
nerve ring, the region in which most synaptic contacts in C. elegans 
occur. Putative gap junctions are visualized as proximally localized 
puncta (p). Scale bars: 5 µm and 2µm (d) Calcium responses of two 
(ASEL and ASER) neurons to a stimulus (salt removal). 

Figure 1: Engineered connections produce behavioral changes. (a) 
Worms reverse to escape noxious stimuli detected by the ASH sensory 
neuron. (b) Simplified circuit illustrating ASH connections to 
premotor interneurons AVA and AVB, which elicit reversing and 
forward acceleration, respectively. (c) An engineered ASH-AVB 
connection causes the worm to approach rather than avoid a noxious 
stimulus (unpublished). (d) Worms use chemotaxis to migrate towards 
attractive odors. (e) Simplified circuit shows the connectivity between 
olfactory sensory neuron, AWC, and downstream interneurons 
important for navigation. (f) An engineered AWC-AIA connection 
switches behavior from attraction to aversion, mimicking the effects of 
training (unpublished).  
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Abstract

Active matter sometimes exhibits life-like complex spatio-
temporal patterns. Here we report on complex oscillatory
behaviors of droplets floating on an aqueous surfactant so-
lution. Even if the droplets consist of only simple chem-
icals, the behaviors they exhibit are unexpectedly compli-
cated. They are likely induced by the interaction among
droplets, which is mediated through the surface tension field
as well as Marangoni flow field created by the droplets them-
selves.

Introduction

Active matter can be a model of primitive life. Whereas
they obey relatively simple laws of physics, which makes the
analysis of their behaviors possible, the behaviors they can
exhibit are rich and sometimes comparable with biological
systems (Toyota et al., 2006; Hanczyc, 2014). For example,
droplets of aqueous propylene glycol solution placed on a
glass plate exhibit self-propelled motion where inter-droplet
interaction mediated by diffusion field creates complex dy-
namic structures (Cira et al., 2015). Camphor boats floating
on a circular channel (Suematsu et al., 2010; Ikura et al.,
2013) show peculiar clock-like spatio-temporal patterns. It
has even been shown that a droplet can evolve with the help
of robotics (Gutierrez et al., 2014).

Recently we found even more complex behaviors in a sys-
tem of organic-solvent droplets floating on aqueous solution
(Tanaka et al., 2015, 2017; Čejková et al., 2019). There, dis-
solution of organic solvent from droplets decreases the sur-
face tension of aqueous surface, which propels the droplets.
When many droplets coexist, the concentration field of dis-
solved solvent from a droplet overlaps according to the rela-
tive position of droplets. Thus the dissolution of surface ac-
tive substances induces interaction among elements that are
providing the substances. Then the elements can show com-
plex spatio-temporal patterns as clusters. In this paper, we
summarize our recent findings on complex spatio-temporal
structures observed in a chemically simple system.

Methods
Our system consists of droplets floating on a surface of aque-
ous surfactant solution. The droplets are made of ethyl sal-
icylate (ES, Tokyo Chemical Industry) mixed with paraffin
liquid (Sigma-Aldrich). The volume of a droplet was fixed
at 10 µL. They are put on the surface of 35 mM aqueous
sodium dodecyl sulfate (Tokyo Chemical Industry) solution
in a glass dish of 90 mm in diameter. The droplets con-
tains also dye, Oil Red O (Nacalai Tesque, Tokyo) for vi-
sualization. The Oil Red O sometimes affects the motion
of droplets, so its concentration was fixed at a low value,
0.005wt%, to minimize the effect.

Results
Figure 1 shows how chains of droplets form ring structures
and then collapse (Tanaka et al., 2017). Their motion is peri-
odic, which is explained from a state where a ring of droplets
is fully formed [Fig. 1(a)]. First, the ring breaks at a cer-
tain position and then starts shrinking [Fig. 1(b) and (c)] to
a collapsed state. Then new rings appear in the collapsed
state [Fig. 1(c) and (d)] which immediately start growing
[Fig. 1(d) and (e)]. Finally, a fully-expanded ring is formed,
and the process repeats itself. This wiggling mode of mo-
tion continues more than several hours, sometimes days.
Whereas two chains coexisted in a case shown in Fig. 1, the
number of chains changes with time. Two or more chains
sometimes merge into a chain and a chain sometimes breaks
into several chains.

We recently showed that nearly same oscillatory motion
can be observed also in a decanol system, despite the dif-
ference of chemical and physical conditions (Čejková et al.,
2019).

Discussion
We found a complex collective mode of motion of droplets,
which consist of only a few chemically simple molecules.
These droplets are driven by inhomogeneous surface ten-
sion field around them, which is created by the dissolution
of ES from the droplets (Tanaka et al., 2015). They interact
with each other through the surface tension field, as well as
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Periodic formation and destruction of rings of
droplets. The elapsed time from the first picture was: (a)
0 s, (b) 43 s, (c) 85 s, (d) 127 s, (e) 170 s, and (f) 212 s. The
scale bar is 20 mm. The arrow in (b) shows two two-droplet
chains align in parallel. A new ring starts growing from this
structure.

Marangoni flow induced by the gradient of surface tension.
While the details of the interaction among the droplets are
not yet fully understood, characteristic features of the inter-
actions are summarized as follows.

First, the droplets do not easily merge together, even if
they seem to touch with each other. Precise mechanism of
this stabilization is unclear. The stability depends on the
condition, such as ES and Oil Red O concentration. For
example, if the concentration of Oil Red O is high, they be-
come vulnerable to merge.

Second, there coexists short-range attraction and long-
range repulsion, judging from chain structures formed
by droplets. Recently it was found that the mixture of
short-range attraction and long-range repulsion can in-
duce a chain-like lamellar structure in a confined geome-
try (Pȩkalski and Ciach, 2018). A peculiar feature of our
dynamic system is, however, that the chains can be formed
even in a low number density state as seen in Fig. 1. More-
over, the interaction seems dependent on the arrangement of
droplets, so that it changes with time.

Third, if we focus on the properties on the chains, they
have a tendency to shrink in the direction parallel to them.
So a chain starts shrinking and collapsing as soon as it breaks

at a point. On the other hand, two chains repel each other in
the direction perpendicular to them. This repulsion likely
creates rings of chains. In fact, a new ring start its expan-
sion in a collapsed state as soon as two two-droplet chains
align in parallel [Fig. 1(d), arrow] serving as its nucleus. In
combination, chains behave like electric lines of force, apart
from the fact that the chains here can break easily.

Conclusions
The droplets of this system gradually dissolving into solu-
tion as well as on the surface of solution. The amount of
dissolution is small, but it can create large enough force to
propel the droplets with the help of surface tension gradient.
It was shown here that even a tiny amount of changes in a
simple chemical system can induce its complex behaviors,
thanks to the instability of surfaces or interfaces. Given the
fact that there are potentially many chemicals that can be
used to observe similar spatio-temporal patterns, it is possi-
ble to induce more complex behaviors, even those compara-
ble to life’s complexity.
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Abstract 
The surface metabolism theory posits that adaptive evolution 
initiated when autocatalytic chemical systems became spatially 
localized on mineral surfaces. We searched for such surface-
limited metabolisms (SLiMes) using a chemical ecosystem 
selection paradigm. This involves creating a prebiotic microcosm 
containing mineral grains and a “soup,” rich in food and potential 
sources of chemical energy, and then serially transferring a subset 
of the grains to a new microcosm containing fresh soup and new 
grains. This repeated dilution should enrich for chemical systems 
that can self-propagate more rapidly than the rate of serial dilution, 
and such enrichment should be detectable based on changes in 
microcosm chemistry over the course of multiple transfers. We 
deployed chemical ecosystem selection on several different soups 
and minerals and identified a combination that appears to be 
conducive to the enrichment of a SLiMe. In these conditions, 
chemical changes were observed over the first 12-18 transfers, 
most notably a loss of both orthophosphate and organics (as 
detected by optical density) from the solution. This loss from the 
solution correlated with the appearance of fractal structures on the 
surface of the grains. The putative SLiMes show clear evidence of 
self-propagation ability and manifest basic ecological dynamics. 
Ongoing work is evaluating the systems’ evolutionary capacity. 
 

Introduction 
The surface metabolism model, first presented 30 years 

ago by Wächtershäuser, suggests that the first self-
propagating systems were autocatalytic sets of simple 
organic compounds adsorbed onto mineral surfaces 
(Wächtershäuser, 1988). Once seeded, these surface-
limited metabolisms (SLiMes) could use fluxes of food and 
energy to generate all of their components, resulting in 
lateral growth as they collectively propagated over the 
surface (Baum, 2015). Furthermore, because rare chemical 
reactions can alter or expand an autocatalytic network, 
SLiMes could be evolvable (Vasas et al., 2012; Baum, 
2018). In the context of a plausible prebiotic environment 
such as the seafloor, the turnover of mineral surface could 
select for variants that are more stable, more competitive, 

and/or better at colonizing newly exposed mineral (Baum, 
2019). We used chemical ecosystem selection (Baum & 
Vetsigian, 2017), a procedure which enriches SLiMes 
based on their ability to repeatedly colonize new mineral 
surfaces, to identify a putative SLiMe that emerges 
repeatedly when incubating synthetic prebiotic soups with 
pyrite. 

 
Approach 

Chemical ecosystem selection involves incubating 
simulated prebiotic soups with mineral grains and 
mimicking the active turnover of the mineral surface 
expected to occur in natural environments. We used a rich 
chemical soup, reasoning that the more diverse the inputs 
the higher the likelihood of an autocatalytic systems being 
present (Kauffman, 1986; Mossel and Steel, 2005; Virgo, 
et al., 2013). We included minerals to provide a surface, 
which is needed to spatially segregate cooperating species 
and might also provide useful catalytic functions. Most of 
the experiments reported here transferred 10% of either the 
grains, or the grains and soup every 2-3 days (future 
experiments will examine the effect of liquid transfer 
only). The serial dilution protocol means that self-
propagating systems will only become enriched over 
transfers if they are initially rare but can move from grain 
to grain at a rate greater than 10X each 2-3 days. 
Furthermore, if multiple systems are present or arise over 
time (e.g., through addition of new side-reactions), our 
procedure should enrich for variant SLiMes that propagate 
faster. To seek evidence of systematic changes in the 
chemistry of the systems over multiple transfers, we 
monitored several chemical proxy traits of the solutions 
following each incubation. In addition to looking for 
changes over transfers, we also look for heritable 
differences among lineages (a lineage being a chain of 
“parent” and “offspring” vials), and compare experimental 
lineages with control lineages that are generated in parallel 
with a certain set of experimental vials, but have only 
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undergone one prior round of transfer. We have deployed 
the protocol on some dozen different combinations of 
mineral substrate, organic soup, energy source, and 
atmospheric gases and have identified at least one set of 
conditions that consistently provides evidence of SLiMe 
formation. 

 
Results 

We have found that incubating a synthetic, enriched 
prebiotic soup with natural pyrite grains maintained under 
low-oxygen conditions produced significant and repeatable 
evidence of a self-propagating system. Over the first 10+ 
transfers, chemical proxy traits (free orthophosphate and 
optical density at UV-Vis wavelengths) show systematic 
changes suggesting autocatalysis (=self-propagation). 
During this period of change, lineages differ heritably and 
we frequently find dramatic and significant differences 
between experimental and control lineages. This evidence 
of self-propagation is seen whether we transfer just mineral 
grains or a grain/soup slurry.  

Coincident with the reductions in phosphate and 
organics from the solution, we observe an increase in the 
abundance of branched fractal structures on the surface of 
the pyrite (Fig. 1). These structures are observed never to 
touch or over-grow one another, suggesting a diffusion-
limited growth process We hypothesize that these 
structures correspond to SLiMes, which nucleate rarely, 
but once nucleated are able to transfer readily to other 
grains. Fractal structures are only formed when organics 
are present but can form when phosphate is replaced by 
sulfate. We are conducting additional experiments to 
further characterize the putative SLiMes and their chemical 
composition. 

We observed that once a proxy trait (e.g., phosphate) 
reaches a certain critical value, the lineages suddenly return 
to their initial value. After a few further transfers, lineages 
begin declining again, resulting in a multigenerational 
oscillation. We interpret this phenomenon as an ecological 
boom-and-bust cycle, in which SLiMes reach carrying 
capacity at which point they deplete their food within the 

incubation period, resulting in dissolution of all structures. 
We are testing this hypothesis using experiments in which 
we dilute populations to prevent them reaching carrying 
capacity. This experiment will also allow us to see if the 
rate of self-propagation increases over generations, which 
would suggest a capacity for adaptive evolution. 

 
Significance 

Our discovery that SLiMes appear to be able to arise 
spontaneously in plausible prebiotic environments 
provides circumstantial support for the surface-metabolism 
model. If we find evidence that the systems are evolvable, 
our data will support a model in which selection is initiated 
in SLiMes prior to the formation of compartments.  It will 
be interesting to see how chemically similar these putative 
SLiMes are to extant life and how alike the systems are that 
are enriched in different iterations. Moreover, the chemical 
ecosystem selection framework can be adapted to explore 
a nearly infinite number of combinations of chemical 
soups, mineral grains, and environmental factors, which 
would permit a broad search for conditions conducive to 
the spontaneous emergence of systems capable of self-
propagation and open-ended evolution. 
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