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Kernel-Based Simultaneous Parameter-State

Estimation for Continuous-Time Systems
Peng Li, Francesca Boem, Gilberto Pin, Thomas Parisini

Abstract—In this note, the problem of jointly estimating the
state and the parameters of continuous-time systems is addressed.
Making use of suitably designed Volterra integral operators,
the proposed estimator does not need the availability of time-
derivatives of the measurable signals and the dependence on the
unknown initial conditions is removed. As a result, the estimates
converge to the true values in arbitrarily short time in noise-free
scenario. In the presence of bounded measurement and process
disturbances, the estimation error is shown to be bounded. The
numerical implementation aspects are dealt with and extensive
simulation results are provides showing the effectiveness of the
estimator.

I. INTRODUCTION

In many practical engineering problems, due to incomplete

knowledge of the system, both the parameters and the state

variables are usually uncertain and need to be estimated.

Examples can be seen in power systems [8], mechanical

engineering [9], [13] and architecture [10].

One of the early approaches to solve the problem of jointly

estimating the parameters and the state of linear systems

consisted of using augmented observers, in which the unknown

parameters are treated as additional state variables that enter

nonlinearly in the system’s dynamics [11]. However, the

augmented nonlinear dynamics result in unnecessary increase

of the complexity and computational burden. Alternatively, a

hierarchical methodology has been explored to separate the

problem into two interconnected parts: parameter estimation

and state estimation. Iterative corrections between the esti-

mators are implemented using Kalman filters [12], adaptive

methods [9], [10] and so on. Besides, in [25], parameters and

states are estimated through an EM or Rauch-Tung-Striebel

process with iterative correction. However, the aforementioned

methods can only achieve asymptotic convergence while in

many time-critical applications, such as medical diagnosing

systems [13] and power systems [14], it is often desirable to

obtain accurate and simultaneous state-parameters estimates
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in finite or fixed time. The finite-time estimation has been

gaining research attention in the recent decades. Sliding mode

methods [9], [15] rely on discontinuous high-gain injection to

achieve the finite-time convergence, which makes this class of

estimators quite sensitive to the measurement noise. Alterna-

tively, algebraic and modulating function (MF) methods are

proposed to deal with the unmeasurable signal derivatives and

to remove the effects of the initial conditions, thus achieving

the finite or fixed-time convergence (see [16], [17]). It can

also be seen in [5] that the modulating theorem is a key tool

to avoid explicit time-differentiation and achieve the iden-

tification of a continuous-time stochastic state-space model.

More importantly, MF methods are proven to be effective

in practical applications, such as in smart grids [14] and

for heating ventilation and air conditioning systems [1]. It

is worth noting that, for algebraic and some univariate MF-

based approaches, integrals with expanding window suffer

from internal instability that may cause error accumulation as

shown in [2]. To address this issue, moving-horizon integrals

are adopted as in [3], [18]. Alternatively, periodic resettings,

also known as periodic deflation, can be useful as shown in

[14], [17] to avoid error-accumulation.

Furthermore, a methodology based on Volterra operators

has been developed to solve the specific tasks of parameter

estimation [19] and state estimation [20], separately. With

properly shaped kernel functions, the Volterra operators avoid

the explicit time-differentiation, annihilating, at the same time,

the effects of the initial conditions, thus attaining deadbeat

convergence. Moreover, thanks to the specific class of kernel

functions defined therein, the Volterra operators are inherently

endowed with BIBO stability and can be realized by internally

stable LTV systems, not requiring neither periodic resetting

neither moving window implementation.

In this note (see [22] for some preliminary results), a

joint parameter-state estimator based on Volterra operators

is illustrated, providing simultaneous estimates of parameters

and state variables with fixed-time convergence. Differently

from classical hierarchical methods, the proposed methodol-

ogy is non-iterative. Furthermore, the persistency of excitation

(PE) conditions, the robustness against bounded measurement

noise, process disturbance and digital implementation are

characterized analytically. Extensive simulation results are also

provided to show the effectivess of the proposed estimation

methodology.

II. PROBLEM STATEMENT

Consider a Multi-Input-Single-Output (MISO) system in the

input-output form:
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y(n)(t) =

n−1
∑

i=0

aiy
(i)(t)+

p−1
∑

k=0

mk−1
∑

j=0

bk,ju
(j)
k (t) (1)

with unknown initial conditions y(i)(0), i ∈ {0, . . . , n − 1}

and u
(j)
k (0), j ∈ {0, . . . ,mk − 1}, k ∈ {0, . . . , p− 1} where

n, mk ∈ Z>0, mk ≤ n, ∀k. The parameters {ai}, {bk,j} are

assumed to be constant but unknown. Only the input and

output signals, i.e. uk(t), k ∈ {0, ..., p − 1} and y(t), are

assumed to be available.

Consider now the observer canonical form for system (1):






z(1)(t) = Az(t) +Bu(t)

y(t) = c⊤z(t)
(2)

where z(t) , [z0(t) z1(t) . . . zn−1(t)]
⊤ ∈ R

n is

the state vector and the input vector is defined as

u(t) , [u0(t), u1(t), . . . , up−1(t)]. A ∈ R
n×n, B ∈ R

n×p

and c ∈ R
n are given by:

A =























an−1 1 0 · · · 0

an−2 0 1
. . .

...

...
...

. . .
. . . 0

a1 0 . . . 0 1

a0 0 · · · 0 0























, c =

















1

0
...

0

















,

B = [b0, b1, . . . , bp−1], bk = [0, . . . , 0, bk,mk−1, . . . , bk,0 ]
⊤,

∀k∈{0,..., p−1}. The state dynamics of (2) can be written as

zr(t)=y(r)(t)−

r−1
∑

j=0

an−r+jy
(j)(t)−

p−1
∑

k=0

r−1+pk
∑

j=0

bk,n−r+ju
(j)
k (t)

where pk , n − mk and the convention
∑k

j=0{·} = 0, for

k < 0 is used. The proposed approach aims at simultaneously

estimating the state vector z(t) and the unknown parameters

{ai} and {bk,j}.

III. FIXED-TIME PARAMETER-STATE JOINT ESTIMATION

The key tool used by the proposed algorithm to achieve non-

asymptotic convergence is the Volterra integral operator VK .

It maps the signal x(t) to the transformed one: [VKx] (t) ,
∫ t

0 K(t, τ)x(τ)dτ , t ∈ R≥0, with K(t, τ) being an nth order

non-asymptotic kernel satisfying the non-asymptotic condition

K(i)(t, 0) = 0, ∀i ∈ {0, . . . , n − 1}. For further details

about the algebra of the Volterra integral operator, readers are

suggested to refer to [19], [20] and the references therein.

The kernel adopted in this paper is the Bivariate

Feedthrough Non-asymptotic Kernel (BF-NK proposed in

[20]) function Kh(t, τ) having the form

Kh(t, τ) = e−ωh(t−τ)
(

1− e−ω̄t
)N

, (3)

where N ∈ Z≥n, ωh, ω̄ ∈ R>0 are the design tuning

parameters. Remarkably, the kernel (3) satisfies K(i)(t, 0) =
0, ∀t ∈ R≥0, i ∈ {0, . . . , N − 1}, that allows the Volterra

transformation of the signal derivative x(i)(t) to become

[VKx(i)](t) =
∑i−1

j=0(−1)i−j−1x(j)(t)K(i−j−1)(t, t)

+(−1)i[VK(i)x](t), ∀t ∈ R≥0,

where K(i)(t, τ) denotes the ith partial derivative of K(t, τ)
with respect to the second argument. As a result, the estimator

can get rid of explicit time-differentiation without the effects

of the unknown initial conditions. For more details regarding

the non-asymptotic property of the BF-NK, readers can refer

to [20], [21] and the reference therein. It is worth noting that

the tuning parameter ωh acts as a forgetting factor that reduces

the error accumulation in the noisy scenario.

Applying the BF-NK to (1) and after some quite lengthy

algebra, we get

(−1)n−1[V
K

(n)
h

y](t) = −

n−1
∑

i=0

ai(−1)i[V
K

(i)
h

y](t)

−

p−1
∑

k=0

mk−1
∑

i=0

bk,i(−1)i[V
K

(i)
h

uk](t) +

n−1
∑

r=0

γh(t)zr(t),

(4)

where γh,r(t) = (−1)n−r−1K
(n−r−1)
h (t, t). In turn, (4) can

be rearranged as a vector equation

(−1)n−1[V
K

(n)
h

y](t) = νh(t)
⊤θ(t), (5)

where θ(t) ,
[

a0, . . . , an−1, b0,0, . . . , b0,m0−1, . . . ,

bp−1,mp−1−1, z0(t), . . . , zn−1(t)
]

and νh(t) ,
[

− [VKh
y](t), . . . , (−1)n[V

K
(n−1)
h

](t),−[VKh
u0](t), . . . ,

(−1)mp−1[V
K

(mp−1−1)

h

up−1](t), γh,n−1(t), . . . , γh,0(t)
]⊤

.

Note that the vector νh(t) consists of the derivatives of the

kernel Kh(t, τ) and the Volterra images ξh,i,⋆(t) , [V
K

(i)
h

⋆](t)

which can be calculated from the I/O by a dynamic system

ξ
(1)
h,i,⋆(t) = −ωhξh,i,⋆(t) +Kh(t, t) ⋆ (t), (6)

where ⋆ represents signals y(t) and uk, ∀k ∈ {0, . . . , p− 1}.

In order to solve for nδ , 2n+
∑p−1

k=0 mk unknowns, n of

which are time-varying, an augmentation of (5) is necessary.

Therefore, we use nδ BF-NKs tuned by a common ω̄ but

different ωh, h ∈ {0, . . . , nδ − 1}. As a result, the problem

consists in solving the following matrix equation for θ:

κ(t) = Γ(t)θ, (7)

where κ(t)=
[

(−1)n−1[V
K

(n)
0

y](t), . . . ,(−1)n−1[V
K

(n)
nδ−1

y](t)
]

⊤

and Γ(t) = [ν0(t), ν1(t), . . . , νnδ−1(t)]
⊤. Moreover, the

following definition and assumption is needed to guarantee

the invertibility of the matrix Γ(t) in (7).

Definition III.1. (Persistency of Excitation (PE))[23]: A

bounded locally-integrable vector function ϕ(t) : R →
R

n is said to be persistently exciting if there exist a

constant s0 and positive constants T0 and α such that

1

T0

∫ s+T0

s

ϕ(t)ϕ(t)⊤dt ≥ αI > 0 ∀s ≥ s0.

Assumption 1. Given the I/O measurement y(t) and uk(t)
and the BF-NKs in (3), there exist some αh ∈ R>0 and tα,h ∈
R>0,∀h ∈ {0, . . . , nδ − 1} such that

∫ t

t−tα,h

νh(τ)νh(τ)
⊤ ≥ αhI, ∀t > tα,h, (8)

following the Definition III.1.
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Proposition III.1. (Implication) The PE condition (8) is

satisfied if the following conditions are verified

• The inputs uk(t) are sufficiently rich (SR) of at least order

mk, ∀k ∈ {0, . . . , p− 1}, ∀t > 0;

• The output y(t) is SR of at least order n, ∀t > 0;

• The I/O vector ζ(t) ,

[y(t), y(1)(t), ..., y(n−1)(t), u0(t),..., u
(m0−1)
0 (t), ...u

(mp−1−1)
p−1 (t)]

is PE.

Proof. Let us split the vector νh(t) into p+2 vectors νh,y(t),
νh,uk

(t), k ∈ {0, . . . , p − 1} and νh,γ(t) where νh,y(t) =
[

[VKh
y](t), [V

K
(1)
h

y](t), . . . , (−1)n[V
K

(n−1)
h

y](t)
]

, νh,uk
(t) =

[

[VKh
uk](t), [VK

(1)
h

uk](t), . . . , (−1)mk[V
K

(mk−1)

h

uk](t)
]

, k ∈

{0, . . . , p− 1}, νh,γ(t) =
[

γh,n−1(t), γh,n−2(t), . . . , γh,0(t)
]

.
Recall the shape of the kernel (3) and its derivatives, which

can be expressed in the following forms

K
(i)
h (t, τ) = e−ωht

N
∑

q=0

(−1)q
(

N

q

)

(ωh−qω̄)ie(ωh−qω̄)τ . (9)

Substituting τ in (9) with t, it is obvious that with the designed

set of kernel functions, the vector νh,γ(t) is PE.

By analysing the transformed signals in

the Laplace domain, one gets L {νh,y(t)} =
[−χh,0,y(s), χh,1,y(s), . . . , (−1)nχh,n−1,y(s)], L{νh,uk

(t)}=
[−χh,0,uk

(s), χh,1,uk
(s),. . . , (−1)mkχh,mk−1,uk

(s)],
for all k ∈ {0, . . . , p − 1} and χh,i,⋆(s) =
N
∑

q=0

(−1)q
(

N

q

)

(ωh − qω̄)i
1

s+ ωh

⋆ (s + qω̄), where

⋆(s) represents the I/O signals in the Laplace domain. In this

regard, one gets

L {νh,y(t)
⊤} = Ψh,y(s)[Y (s), Y (s+ ω̄), . . . , Y (s+Nω̄)]⊤,

where

Ψh,y(s) =






















−
(

N
0

)

1
s+ωh

(

N
1

)

1
s+ωh

. . . (−1)N+1
(

N
N

)

1
s+ωh

(

N
0

)

ωh

s+ωh
−
(

N
1

)

ωh−ω̄
s+ωh

. . . (−1)N
(

N
N

)

ωh−nω̄
s+ωh

−
(

N
0

) ω2
h

s+ωh

(

N
1

) (ωh−ω̄)2

s+ωh
. . . (−1)N+1

(

N
N

)(ωh−nω̄)2

s+ωh

...
...

...

−
(

N
0

)(−ωh)
n−1

s+ωh

(

N
1

)(ω̄−ωh)
n−1

s+ωh
. . . (−1)n+N

(

N
N

)(ωh−nω̄)n−1

s+ωh























.

(10)

Therefore, L {νh,y(t)
⊤} can be regarded as the output

of an MIMO system with transfer function matrix Ψh,y(s)
fed by an input vector [Y (s), Y (s + ω̄), . . . , Y (s + Nω̄)].
Referring to [24], this input vector is at least sufficiently

rich of order (n, n, . . . , n/1). Note that the system (10) is

output reachable, i.e. there exists no β 6= 0, β ∈ R
n such

that β⊤Ψh,y(s) = 0, ∀s. Hence, in the light of Theorem 4.2

of [24], one can conclude that in the time-domain the vector

νh,y(t) is PE. In the same line of reasoning, vectors νh,uk
(t)

are PE for all k ∈ {0, . . . , p− 1}. Owing to the third condition

in Proposition III.1, i.e. the I/O vector ζ(t) is PE, it turns

out that the vector [νh,y(t), νh,u0(t), . . . , νh,up−1(t)] is also

PE. Moreover, considering the Laplace transformation of the

kernel derivatives (9) and the fact that y(t) and uk(t) are SR

of at least order n and mk, ∀k ∈ {0, . . . , p−1} respectively,

it is straightforward to prove that the combined vector νh(t)
is PE. �

It is worth noting that conditions in Proposition III.1 can be

examined off-line. Therefore, under Assumption 1, stacking

nδ vectors νh(t) with Kh(t, τ), h ∈ {0, . . . , nδ − 1} ensures

that the matrix Γ(t) is invertible ∀t > 0. In turn, the unknown

vector θ can be estimated by

θ̂(t) = Γ(t)−1κ(t), ∀t > 0.

IV. ROBUSTNESS ANALYSIS

In this section, we characterize the robustness of the pro-

posed estimator against measurement noise and process distur-

bance. Consider the following model affected by disturbances:
{

z
(1)
d (t) = Azd(t) +Bu(t) + η(t)

yd(t) = c⊤zd(t) + dy(t),
(11)

where dy(t) ∈ R denotes the measurement noise and η(t) =
[η0, η1, . . . , ηn−1]

⊤ ∈ R
n represents the process disturbance,

both are assumed to be bounded, i.e.|dy(t)| ≤ d̄y and |η(t)| ≤
η̄, ∀t ≥ 0.

Under the action of dy(t) and η(t), thanks to the linearity

of the Volterra operator, (5) becomes

(−1)n−1[V
K

(n)
h

y](t) + (−1)n−1[V
K

(n)
h

dy](t)

+

n−1
∑

i=0

(−1)i[V
K

(i)
h

ηn−1−i](t) = ν̂h(t)
⊤θ̂(t),

(12)

where ν̂h(t) =
[

− [VKh
yd](t), . . . , (−1)n[V

K
(n−1)
h

yd](t),−[VKh
u0](t),

. . . , (−1)mp−1 [V
K

(mp−1−1)

h

up−1](t) , γh,n−1(t), . . . , γh,0(t)
]⊤

.

In turn, by defining ǫνh(t) , ν̂h(t) − νh(t) =
[

−

[VKh
dy](t), . . . , (−1)n[V

K
(n−1)
h

dy](t), 0, . . . , 0
]⊤

and ǫθ(t) ,

θ̂(t) − θ(t), by subtracting (5) from (12), we have

ǫκh
= ν̂h(t)

⊤ǫθ(t). with ǫκh
= (−1)n−1[V

K
(n)
h

dy](t) +
∑n−1

i=0 (−1)i[V
K

(i)
h

ηn−1−i](t) − ǫνh(t)
⊤θ.

We now introduce the PE conditions in the noisy scenario.

Assumption 2. Given the noisy output measurement yd(t), the

input uk(t) and the kernel (3), there exists some αd,h ∈ R>0

and td,h ∈ R>0 satisfying

∫ t

t−td,h

ν̂h(τ)ν̂h(τ) ≥ αd,hI, ∀t > td,h,

for all h ∈ {0, . . . , nδ − 1}.

Namely, in the presence of noise, the noisy Γ(t), denoted

as Γ̂(t), could be singular on some time instances. Therefore,

in the noisy scenario, we resort to online calculating the deter-

minant of Γ̂(t) and switching off the estimator on certain time

instances when Γ̂(t) loses rank. Therefore, under Assumption

2, the estimation error can be written as

ǫθ(t) = Γ̂(t)−1ǫκ(t), ∀t ∈
{

R>0|det
(

Γ̂(t)
)

> 0
}

, (13)
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where Γ̂(t) ,
[

ν̂0(t), ν̂1(t), . . . , ν̂nδ−1(t)
]⊤

, ǫκ(t) ,
[

ǫκ0(t), . . . , ǫκnδ−1(t)
]⊤

. Remarkably, elements in ǫκ(t) are

linear combinations of the Volterra images of the measurement

noise [V
K

(i)
h

dy](t) = ǫξd,i,h(t), and of the process noise

[V
K

(i)
h

η](t) = ǫξη,i,h(t), i ∈ {0, . . . , n}, h ∈ {0, . . . , nδ − 1}.

ǫξd,i,h(t) has the dynamics

ǫ̇ξd,i,h((t) = −ωhǫξd,i,h(t) +K
(i)
h (t, t)dy(t).

Therefore, after applying the Volterra mapping, the trans-

formed measurement disturbance satisfies:

|ǫξd,i,h(t)| ≤

∣

∣

∣

∣

1

ωh

d̄y sup
0<τ≤t

K
(i)
h (τ, τ)

∣

∣

∣

∣

, ǭξd,i,h(t). (14)

Following the same line of reasoning, the Volterra images

of ηi(t), ∀i ∈ {0, . . . , n − 1} have their upper bounds

ǭξη,i,h(t) , | 1
ωh

η̄ sup
0<τ≤t

K
(i)
h (τ, τ)|. In turn, |ǫνh(t)| ≤

[ǭξd,0,h, ǭξd,1,h, . . . , ǭξd,n−1,h, 0, . . . , 0] , ǭνh(t). Hence, the

upper bound ǭκh
(t) can be defined as

|ǫκh
(t)| ≤ ǭξd,n,h(t)+

n−1
∑

i=0

ǭξη ,i,h + ǭνh(t)
⊤|θ| , ǭκh

(t)

for all h ∈ {0, 1, . . . , nδ −1}. Thus, the upper bound on ǫκ(t)

is ǭκ(t) ,
[

ǭκ0(t), . . . , ǭκnδ−1(t)
]

. Under Assumption 2, the

estimation error is bounded as long as the measurement noise

dy(t) and the process noise η(t) are bounded, i.e.

|ǫθ(t)| ≤
[

Γ̂(t)−1
]

ǭκ(t), ∀t ∈
{

R>0|det
(

Γ̂(t)
)

> 0
}

.

V. NUMERICAL ISSUES CAUSED BY DISCRETIZATION

When deploying the proposed algorithm in a digital com-

puting platform, the impact of time discretization has to

be carefully analyzed. Specifically, the discretization error is

unavoidable and causes some deterioration of performance

compared to the theoretical characterization obtained so far

in the continuous-time case.

Let us consider the discrete-time implementation of (6). The

discretized Volterra transformation admits the dynamics

ξ̆h,⋆(k + 1) = ξ̆h,⋆(k) + Υ⋆(k), (15)

with ξ̆h,⋆(1) = 0 and Υ⋆(k) is the integral approxima-

tion which, depending on the discretization methods, could

be function of ⋆(tk), ⋆(tk+1),K(tk, tk),K(tk+1, tk+1) and

ωh, with tk = (k − 1)Ts. The global discretization error

ǫ
V̆⋆,i,h

(k) , [V
K

(i)
h

⋆](tk) − [V̆
K

(i)
h

⋆](k), varies between dif-

ferent discretization methods due to different Υ⋆, e.g.O(T 2
s )

for midpoint method (2nd order) and O(T 4
s ) for classic

order Runge-Kutta method (4th order). Needless to say, the

discretization error decreases with increasing complexity of the

discretization methods [26]. Similarly as the deduction from

(12) to (13), the estimation error introduced by discretization

in the noise-free scenario can be expressed as

ǫ
θ̆
(k) , θ̆(k)− θ(tk) = Γ̆(t)−1ǫκ̆(k), ∀t > 0, (16)

where Γ̆(k) ,
[

ν̆0(k), ν̆1(k), . . . , ν̆nδ−1(k)
]⊤

, ǫκ̆(k) ,
[

(−1)n−1ǫ
V̆y,n,h

(k) − ǫν̆0(k)
⊤θ, . . . , (−1)n−1ǫ

V̆y,n,h
(k) −

ǫν̆nδ−1(k)
⊤θ

]⊤
, ǫν̆h(k) , ν̆h(k)− νh(tk), ∀h ∈ {0, . . . , nδ −

1}. Therefore, reducing the discretization error ǫ
V̆⋆,i,h

(k)
minimizes the error in (16) by the term ǫκ̆(k). On the other

hand, the discretization error undergoes a major amplification

for small t, when Γ̆(t) is close to singularity. To address

this issue, we use an activation λa to hold the algorithm

for a short time Ta (activation time) before activation until

the det
(

Γ̆(t)
)

≥ λa. Specific implementation and tuning are

detailed in Section VI with examples.

VI. NUMERICAL EXAMPLES

In this section, numerical examples are presented to show

the effectiveness of the proposed simultaneous parameter-state

estimation method.

A. Example 1

We consider a double-input single-output LTI system

y(2)(t) = a1y
(1)(t) + a0y(t) + b11u

(1)
1 (t) + b20u2(t).

The inputs are u1(t) = 10 sin (10t) and

u2(t) = sin (2t)− 0.5, where both u1(t) is sufficiently

rich of order 2 and u2(t) is sufficiently rich of order 3. As

a result, the output will be rich of order 5. Moreover, the

elements in the I/O vector [y(t), u1(t), u2(t)] are mutually

independent, thus verifying the PE condition.

1) Discretization and parameter tuning: Theoretically, the

proposed estimator achieves deadbeat convergence instanta-

neously as t 6= 0 in the noise-free scenario. However, in the

numerical implementation, distortion may occur due to the

discretization, significantly depending on the sampling time

Ts and the discretization scheme. Evidence can be found in

Table I, in which the Root Mean Square Error (RMSE) is de-

fined as RMSE(ς)(t1,t2] ,
√

(
∑

nrmse
e⊤ς eς

)

/nrmse, where

ς represents the parameter vector ς , [a0, a1, b11, b20]
⊤ and

(t1, t2] represents the time interval we consider to calculate the

RMSE and nrmse is the number of samples in this interval.

Moreover, Table I also shows the effectiveness of the

activation threshold λa which minimizes the influence of

discretization in the initial phase comparing to the no-threshold

(λa = 0) mechanism. Notably, after the initial phase (e.g.

t ∈ (2, 3] in Table I), effects of the discretization becomes so

tiny that can be ignored with Runge-Kutta solver.

TABLE I: RMSE with different Ts and discretization methods

Methods λa Ts RMSE(ς)(0,1] RMSE(ς)(2,3]

Euler

(1st order)

0
10−3 3.43× 1020 p.u. 34.3 p.u.

10−4 1.64× 1014 p.u. 3.40 p.u.

10−20
10−3 5.87× 103 p.u. 34.3 p.u.

10−4 498 p.u. 3.40 p.u.

Runge-Kutta

(4th order)

0
10−3 5.95× 103 p.u. 5.11× 10−4 p.u.

10−4 1.88× 104 p.u. 3.62× 10−7 p.u.

10−20
10−3 1 p.u. 5.11× 10−4 p.u.

10−4 7.11 × 10−4 p.u. 3.62× 10−7 p.u.
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Fig. 1: Influence of activation threshold λa, kernel parameter

M and sampling interval Ts on activation time Ta(s) .
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Fig. 2: Influence of activation threshold λa, kernel parameter

M and sampling interval Ts on distortion overshoot σ%(dB).

Therefore, to implement the proposed estimator, the activa-

tion threshold λa, the sampling interval Ts and the kernel pa-

rameters [ω0, . . . , ω5], ω̄ must be determined off-line. In order

to guarantee an accurate approximation of the continuous-time

algorithms, the parameter tuning are conducted to show how

the effects of the discretization, in terms of the the activation

time Ta and the overshoot σ% , maximal estimate−true value
true value

×
100%, are influenced by λa, T s. Differently parametrized sets

of BF-NKs with [ω0, . . . , ω5] = [1 2 3 4 5 6] × M, M ∈
{0.5, 1, 5, 10, 15} and ω̄ = 2.5 are utilized obtaining results in

Fig. 1 and 2.

In Fig. 1, it is indicated that smaller activation thresholds

will shorten the activation times. Meanwhile, with fixed thresh-

old λa, the activation times tend to be shorter with larger

kernel parameters M . However, the influence of the thresholds

on the activation time is more significant than that of the kernel

parameters. Fig. 1 also shows that the sampling time Ts does

not have obvious effects on the activation time. As depicted in

Fig. 2, smaller activation thresholds or larger kernel parameters

result in larger overshoots. Conclusion can be drawn intuitively

that shorter activation times correspond to larger overshoot.

Therefore, the designer should consider the trade off between

the overshoot and the activation time in tuning λa. Needless

to say, the overshoot, caused by discretization, will be reduced

significantly in more precise discretization (i.e., more complex

scheme and smaller sampling time). Moreover, there is no

explicit relation between the variation of the kernel parameters

and the overshoot which reaches a minimum at M = 5.

Taking the accuracy and complexity into consideration, we

adopt Runge-Kutta solver with sampling time Ts = 10−3.

As for the kernel parameters [ω0, . . . , ω5], they play a

more significant role in noise immunity than discretization. In

the noisy scenario, we consider a measurement noise within

[−0.2, 0.2] additive to the output y(t) and a process noise

within [−0.5, 0.5]. The RMSE of the parameter-state estimates

ς̂(t) and x̂(t) with different parameter settings are listed in

Table II. Recall the fact that the threshold is also used to detect

the loss of excitation in the noisy scenario, its variation is also

considered. For the purpose of analyzing only the effects of

the parameters on the robustness, we exclude the effect of the

overshoot by using the samples from 0.2s after activation time

until the end of the simulation to calculate RMSEs.

TABLE II: RMSEs with different parameters choice in the

noisy scenario

Ts λa M Ta RMSE(ς) RMSE(x)

10−3

10−7

0.5 3.667 1 p.u. 1 p.u.

1 2.715 4.14 p.u. 1.22 p.u.

2 1.371 31.12 p.u. 2.14 p.u.

3 1.272 230.44 p.u. 5.33 p.u.

5 1.374 1.19× 103 p.u. 28.39 p.u.

10−6

0.5 4.398 0.42 p.u. 4.16 p.u.

1 2.717 1.56 p.u. 2.24 p.u.

2 1.821 10.37 p.u. 0.91 p.u.

3 1.680 68.69 p.u. 2.85 p.u.

5 2.109 446.90 p.u. 11.47 p.u.

According to Table. II, the robustness of the estimator de-

grades with increasing kernel parameters verifying the analysis

in Section IV. Furthermore, the threshold λa is also able to

detect the singularity of Γ̂(t). In our simulation, when the

loss of excitation is detected, we switch off the estimation

and all the estimates are frozen to the last values until the

measurements become excited again. Therefore, the increase

of λa helps to enhance the noise attenuation which has been

verified in Table II. However, this may not be applicable in the

case of state estimation for small kernel parameters (M ≤ 1),

since smaller values of the parameters result in smaller de-

terminants of Γ̂(t), and therefore higher activation thresholds

make the estimator to be switched off more often. On the

other hand, although being theoretically feasible, extremely

large M may be computationally challenging thus risking to

increase the sensitivity to the noise, and therefore should be

avoided. In this regard, designer should judge comprehensively

the activation time, robustness to noise and PE conditions, in

tuning M and λa.

2) Noise-free scenario: According to Table I and Fig. 1 2,

to verify the effectiveness of the parameter-state joint estimator

in the noise-free scenario, we use 6 BF-NK functions with

ω̄ = 2.5, [ω0, . . . , ω5] = [1, 2, 3, 4, 5, 6]× 5 and N = 4. The

activation threshold is chosen as λa = 10−20.

Fig. 3 shows the instantaneous convergence of the estimator

where both the estimates of the parameters and state variables

jump to the corresponding true values.

3) Noisy scenario: We examine the estimator performance

in a scenario where the measurement y(t) is corrupted by a

uniformly distributed random disturbance within [−0.2, 0.2]
and the system dynamics are perturbed by a signal η(t) =
[0.5 sin(50t), 0.5 sin(50t)]⊤ as in (11).

In this example, we are adopting the parameter settings

M = 0.5 and λa = 10−7 obtaining the estimation results

as in Fig. 4. It is worth noting that, at the beginning, the
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Fig. 3: Parameter-state joint estimates in noise-free scenario.

discretization error tends to amplify the effect of noise; there-

fore, a relatively large threshold λa is needed to pause the

estimator until the elements in Γ̂(t) are large enough to avoid

the distortion. Namely, it is not the number of data samples

collected before activation, but the values of the elements in

Γ̂(t), that influence the performance. This is shown by the

parameter-state joint estimates in Fig. 5, where the sampling

interval is set to be Ts = 10−2s. With the proposed activation

mechanism, 342 data points are collected before activation

while the proposed method still provides good estimation.

However, a longer sampling interval is prone to enlarge the

discretization error increasing the sensitivity to the noise.

Therefore, the peak of the spikes tends to be amplified while

Ts = 10−2s. All in all, the proposed estimator is able to deal

with the measurement and process noise. All the estimates

converge to the close neighbour of the true values albeit with

some spikes which are likely to happen periodically. This

phenomena is due to the effect of the measurement noise,

making the matrix Γ̂(t) close to its singularity. Moreover,

since the output signal is sinusoidal whose derivatives will

suffer from the maximum effects of noise at their positive and

negative peaks thus give rise to the periodicity of the spikes.

B. Example 2

In this example, inspired by a recent finite-time parameter-

state joint estimator in [18], our methodology is extended to

deal with a certain class of nonlinear system in which the

parameters appear linearly in a nonlinear input-output differ-

ential equation. Herein, we are considering the parameter-state

estimation of the standard form of the unforced Van der Pol

oscillator y(2)(t) = µ(1 − y2)y(1)(t) − y(t), which has its

state-space form

x
(1)
1 (t) = µx1(t) + x2(t)−

µ
3x

3
1(t),

x
(1)
2 (t) = −x1(t).

(17)

The estimation results of the proposed method will be

compared with the finite-time modulating function (MF)-based

estimator with Ts = 10−3s. For the MF method, we refer

to the two cascading estimator structure in [18] with the
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Fig. 4: Estimation results in noisy scenario with Ts = 10−3s.
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Fig. 5: Estimation results in noisy scenario with Ts = 10−2s.

left and total modulating functions used therein, i.e. φk(t) =
(T − t)ktk, k = 4, 5, 6, 7 and ϕ1 = tie−t, i = 2, 3. Moreover,

integrals with expanding window are used for t < 2s and for

t ≥ 2s, receding horizon are applied with T = 2s. All the

kernel parameters remain the same with Example 1.

In noise-free scenario, the estimation results are depicted

as in Fig. 6. The figure indicates that both the kernel-based

and the MF-based estimator are able to achieve finite-time

convergence in parameter-state estimation. However, thanks

to the usage of the activation threshold, the kernel-based

parameter estimation appears to be less vulnerable to the

discretization error with the same discretization technique.

Owing to the fact that only a single estimator is used, there is

no cascading error affecting the state estimation.

In the noisy scenario, we consider only measurement noise

on y(t) with SNR=28. The RMSE of the parameters and the

state variables for t ∈ (2, 10]s of both methods are compared

in Table III, where the proposed kernel-based estimator ap-

pears to be robust against measurement noise.
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Fig. 6: State estimates comparison in noise-free scenario.
TABLE III: state estimation RMSE of both methods

Methods Kernel-based method MF-based method

RMSE(2,10](µ) 1.38 2.89

RMSE(2,10](x) 0.15 0.81

VII. CONCLUDING REMARKS

In this work, a simultaneous parameter-state estimator for

MISO systems has been developed resorting to Volterra in-

tegral operators. Thanks to the usage of the non-asymptotic

kernels, the exact estimates can be achieved in an arbitrarily

small fixed time in the noise-free scenario. In the noisy

scenario, the estimator still guarantees bounded estimation

error against bounded noises. The numerical analysis also pro-

vides implementation hints. The effectiveness of the proposed

estimator has been verified by extensive simulations.
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