1	Revision 1-clean version
2	
3	The occurrence, origin and fate of water in chromitites in ophiolites
4	
5	Ben-Xun Su ^{1, 2, 3*} , Paul T. Robinson ¹ , Chen Chen ^{1, 2, 3} , Yan Xiao ^{2, 4} , Frank Melcher ⁵ , Yang Bai ^{1, 2, 3} ,
6	Xiao-Yan Gu ⁶ , Ibrahim Uysal ⁷ , Davide Lenaz ⁸
7	
8	¹ Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of
9	Sciences, Beijing 100029, China
10	² Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
11	³ University of Chinese Academy of Sciences, Beijing 100049, China
12	⁴ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese
13	Academy of Sciences, Beijing 100029, China
14	⁵ Chair of Geology and Economic Geology, Montanuniversität Leoben, Leoben 8700, Austria
15	⁶ School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
16	⁷ Department of Geological Engineering, Karadeniz Technical University, 61080-Trabzon, Turkey
17	⁸ Department of Mathematics and Geosciences, University of Trieste, Via Weiss 8, 34122 Trieste, Italy
18	
19	Words: 3899
20	Figures: 8
21	Tables: 4
22	Supplementary Tables: 1
23	

24 Abstract

^{*} Corresponding author: BX Su, subenxun@mail.igcas.ac.cn.

25	This study presents petrological investigations and mineral chemistry of several Tethyan
26	ophiolites to reveal occurrence, origin and fate of water in podiform chromitites. The
27	results show that clinopyroxene and olivine in chromitites have H ₂ O contents of 801-366
28	ppm and 53-17 ppm, respectively. The highest water contents of olivine occur in massive
29	chromitite and the lowest always in the clinopyroxene-bearing ores because much of the
30	available hydrous fluid was taken up by the clinopyroxene during crystallization. The major
31	and trace elemental and Li isotopic compositions of clinopyroxene associated with
32	chromite and olivine in podiform chromitites indicate formation from a mixture of surface
33	hydrous fluids on chromite grains and evolved melts from which olivine crystallized. The
34	hydrous fluids initially originated from dehydration of subducting slab revealed by Li
35	isotopic compositions of clinopyroxene and olivine in the chromitites. High fluid/rock
36	ratios facilitated concentration of chromite to form chromitite, suppressing crystallization
37	of olivine. The hydrous fluids that were collected on the chromite grain surface during
38	crystallization allow chromite grains to rise via decreasing density in form of bubbles, thus
39	promoting their gathering and concentration. The fate of these hydrous fluids depends on
40	ambient physical and chemical conditions. Mostly they hydrate adjacent olivine grains in
41	the chromitite or penetrate the surrounding dunite envelope. In some cases, the fluids
42	dissolve into silicate melts to produce water-bearing clinopyroxene and/or hydrous minerals,

43	such as amphibole, or silicate and chromite grains that may later exsolve as clinopyroxene
44	and magnetite lamellae. These investigations provide direct natural evidence for the
45	presence and importance of water in the formation and evolution of chromite deposits, as
46	inferred by earlier experimental studies.
47	Keywords: Podiform chromitite; Clinopyroxene; Olivine; Ophiolite; Water
48	
49	1. Introduction
50	The discovery of various exotic minerals (e.g., diamond, moissanite) in podiform
51	chromitites of ophiolites (e.g., Robinson et al., 2004; Yang et al., 2007) has led to a
52	renewed interest in these enigmatic bodies and challenged many existing assumptions on
53	the nature of the upper mantle and the extent of large-scale recycling of sub-oceanic
54	lithosphere (e.g., Arai, 2013). The key to understanding the formation of podiform
55	chromitites is to examine critically the nature and origin of their parental magmas. It is
56	widely thought that high-Al and high-Cr chromitites are crystallized from MORB
57	(mid-ocean ridge basalts) -type and boninite-type melts, respectively (e.g., Zhou et al., 1996;
58	Pagé and Barnes, 2009). However, many details about podiform chromitite formation are
59	still poorly understood in light of experimental and mineralogical data. For example,
60	experiments show that chromite can form under dry conditions at temperatures of 1250 \pm

61	100 °C and $f(O_2)$ around ±1 log units relative to the FMQ buffer (Irvine, 1977; Roeder and
62	Reynolds, 1991), precluding the need for water. On the other hand, the common presence
63	of hydrous inclusions (e.g., amphibole, phlogopite and fluids) in chromite (e.g., Melcher et
64	al., 1997; Schiano et al., 1997; Borisova et al., 2012; González-Jiménez et al., 2014;
65	Rollinson et al., 2018; Liu et al., 2018) is taken as evidence for the presence of hydrous
66	fluids. Such hydrous inclusions may have been trapped contemporaneously with chromite
67	crystallization or later during post-magmatic hydrothermal activity, e.g., during annealing
68	and sintering processes that affect chromite in the presence of hydrous fluids (Lorand and
69	Ceuleneer, 1989; Melcher et al., 1997; Johan et al., 2017; Kapsiotis et al., 2019). In
70	addition, chromite in podiform chromitite typically undergoes sub-solidus re-equilibration
71	with olivine making it difficult to determine parental melt compositions (e.g., Rollinson and
72	Adetunji, 2015; Xiao et al., 2016; Zhang et al., 2019).
73	On the basis of experimental studies, Matveev and Ballhaus (2002) and Johan et al.
74	(2017) suggest that water plays a major role in the crystallization and aggregation of
75	chromite grains. However, as yet no clear, there is no direct natural evidence for the role of
76	magmatic water or aqueous hydrothermal fluids in the formation of podiform chromitite in
77	the mantle, nor has the fate of such water after chromitite formation been considered
78	because of limited studies on water in natural samples (Yu et al., 2019). In this study, we

79	present new petrological and mineralogical data on ophiolitic chromitites and present direct
80	measurements of water contents of clinopyroxene and olivine associated with chromite in
81	these bodies. Using these data, we critically evaluate the origin of water in podiform
82	chromitites and discuss the nature of their parental melts. We also consider the role played
83	by interstitial water in the alteration of chromitites and their associated dunites.

84

85 **2. Samples and analytical methods**

86 A number of samples having chromite, olivine and clinopyroxene associations were 87 collected from various ophiolites, including Kars in east Turkey, Lycian nappes in 88 southwest Turkey, Kızıldağ and Pozantı-Karsantı in southeast Turkey, Kempirsai in 89 Kazakhstan and Purang in western Tibet (Fig. 1). The petrographical and mineralogical 90 features were carefully described as shown in Figs. 2-4 and Section 3. Major elements of 91 clinopyroxenes in all these samples were analyzed, and trace elements of clinopyroxene 92 associated with chromite in the Kızıldağ and Kars ophiolitic rocks were also measured. 93 Larger-scale features of the ophiolites were taken from the literatures (e.g., Melcher et al., 94 1997; Saka et al., 2014; Chen et al., 2015, 2019; Su et al., 2015a, 2018, 2019; Avcı et al., 95 2017; Liu et al., 2018). Samples for water content analysis including mantle harzburgite, 96 dunite and various types (disseminated, banded, anti-nodular, and massive) of chromitite,

97	were all collected from Kızıldağ ophiolite. The constituent minerals of the samples are very
98	fresh (Fig. 2) and can be used for Fourier transform infrared spectrometry (FTIR).
99	Major element compositions of clinopyroxene associated with chromite in chromitite,
100	dunite and harzburgite in the ophiolites were determined on thin sections using a JEOL
101	JXA8100 electron probe microanalyser (EPMA) at the Institute of Geology and
102	Geophysics, Chinese Academy of Sciences (IGGCAS). The analysis was conducted at the
103	operating conditions of 5 μm beam diameter, 10 nA beam current, 15 kV accelerating
104	voltage and 10-30 s counting time on peak. Natural and synthetic minerals were used for
105	standard calibration, and a program based on the ZAF procedure was used for matrix
106	corrections. The representative values are present in Table 1, and raw data are available in
107	Supplementary Table S1.
108	Trace element concentrations of clinopyroxene were determined with a 193 nm
109	Coherent COMPex Pro ArF Excimer laser coupled to an Agilent 7500a inductively coupled
110	plasma mass spectrometer at IGGCAS. Before LA-ICP-MS analysis, thin sections
111	previously coated with carbon for EPMA analyses were treated with 3% HNO ₃ , followed
112	by de-ionized water and ethylene to clean the surfaces. Each analysis was performed using
113	80 μ m-diameter ablating spots at 6 Hz with an energy of ~100 mJ per pulse for 45 s after
114	measuring the gas blank for 20 s. Standard references materials NIST610 and NIST612

115	were used as external standards to produce calibration curves. Off-line data processing was
116	performed using the GLITTER 4.0 program. The results are listed in Table 2.
117	Lithium concentration and isotopic ratio of clinopyroxene were measured using
118	Cameca IMS 1280HR SIMS at IGGCAS. The O ⁻ primary ion beam was accelerated at 13
119	kV, with an intensity of about 15 to 30 nA. The elliptical spot was approximately 20×30
120	μ m in size. Positive secondary ions were measured on an ion multiplier in pulse counting
121	mode, with a mass resolution (M/DM) of 1500 and an energy slit open at 40 eV without
122	any energy offset. A 60-second pre-sputtering with raster was applied before analysis. The
123	secondary ion beam position in apertures, as well as the magnetic field and the energy
124	offset, were automatically centred before each measurement. Eighty cycles were measured
125	with counting times of 7 and 2 seconds for ⁶ Li and ⁷ Li, respectively. The clinopyroxene
126	standard 06JY29CPX (Su et al., 2015b) was used for calibration. The results are shown in
127	Table 3.
128	Doubly-polished thin sections with a thickness ~ 0.2 mm were prepared for FTIR
129	analysis. Unpolarized spectra were obtained from 1000 to 4500 cm^{-1} on a Nicolet iS50
130	FTIR coupled with a Continuum microscope in the School of Earth Sciences, Zhejiang
131	University. The spectra were collected close to optically clean, inclusion- and crack-free

132 areas of the grains. 128 scans were accumulated at a resolution of 4 cm⁻¹. A squared

133	aperture (30×30 to 100×100 $\mu m^2)$ was used and adjusted depending on the mineral grain
134	size and quality. More than 10 non-oriented grains of olivine and clinopyroxene in each
135	section were measured under unpolarized light. Due to the absorbance of structural OH
136	lower than 0.3, the water content calculated from average spectra in each section is reliable
137	with a deviation of less than 10% (Withers, 2013). Water contents of minerals were
138	calculated from FTIR spectra based on the Lambert-Beer law:
139	c=A/εtγ
140	where c is the OH concentration (H ₂ O in wt. ppm), A is the integrated area (cm ^{-2}) of
141	absorption bands in the measured region, ε is the molar absorption coefficient (ppm ⁻¹ cm ⁻²),
142	and t is the thickness of the sample (cm). The baseline was drawn by hand at least three
143	times using the Nicolet Omnic software, and the uncertainty is less than 5%. The area of
144	each analysis used to calculate the water content was averaged from three calculations. The
145	thickness of the samples was measured using a digital micrometer and averaged from 20-30
146	measurements covering the whole section. Uncertainties in the calculated water contents
147	come from: (1) using unpolarized infrared beams on unoriented minerals (<10%); (2)
148	baseline correction (<5%); (3) variable sample thickness (<3%); and (4) differences
149	between the absorption coefficients (<10%) of our samples and those of samples used by
150	Bell et al. (1995) due to differences in composition. The total uncertainty is estimated to be

- 151 less than 20-30%. Detailed analytical methods and calculations were the same as described
- 152 in Xia et al. (2010). Average water contents of olivine, clinopyroxene and orthopyroxene in
- 153 the Kızıldağ ophiolitic rocks are shown in Table 4, and representative infrared spectrometry
- spectra of olivine, clinopyroxene and orthopyroxene are illustrated in Fig. 3.
- 155

156 3. Petrography

- 157 **3.1. Clinopyroxene-bearing chromitite**
- Silicate minerals associated with chromite in podiform chromitites are mainly olivine (e.g., Borisova et al., 2012; Arai and Miura, 2016), but we show that podiform chromitites in several Turkish ophiolites (Fig. 1) have a clinopyroxene matrix (Figs. 2, 4a-h). Such a mineralogy is rare, having previously been reported only in the Celebration Mine, Oregon (Thayer, 1969) and the Oman ophiolite (Rollinson and Adetunji, 2015). These chromitites have textures ranging from massive, nodular and anti-nodular to banded and disseminated, in order of decreasing abundance of chromite. Green clinopyroxene is visible in
- hand-specimen (Fig. 2a) and occurs as anhedral crystals of variable size (Fig. 2b). It
- 166 occasionally coexists with olivine and orthopyroxene as silicate matrix of chromitite (Fig.
- 167 2c) or totally occupies the silicate matrix (Fig. 2d). Clinopyroxene in olivine-free chromitite
- 168 fills the interstices between chromite grains (Fig. 4a-c), whereas in olivine-bearing samples,

169	clinopyroxene is commonly present at the contacts between olivine and chromite grains,
170	increasing abundance from the olivine to the chromite side (Fig. 4d-f). These clinopyroxene
171	crystals, in most cases, are isolated by chromite grains with no external connections (Fig.
172	4b, c, f, h) and are even partly enclosed in some chromite grains (Fig. 4a) probably due to
173	fast crystallization of chromite. The minerals are well preserved in most samples, and partly
174	altered samples typically have more fresh relict grains (Fig. 4f-h) than the
175	clinopyroxene-free varieties (Fig. 4).
176	The association of chromite and clinopyroxene is extensively developed in the
177	associated dunite envelopes (Fig. 4i-m) and the host harzburgites of the Turkish ophiolites
178	(Fig. 4n-p). In this association, chromite is commonly anhedral and is surrounded by
179	clinopyroxene, which is morphologically distinct from the euhedral, interstitial grains (Fig.
180	4j). Clinopyroxene can form very thin films, partially or completely surrounding chromite
181	grains, and in some cases, extending into cracks in olivine (Fig. 4k, 1). Fresh olivine is
182	present in almost equal quantities as the chromite and clinopyroxene, whereas in samples
183	containing large chromite crystals with minor clinopyroxene, the olivine is serpentinized
184	(Fig. 4m). Because ophiolitic harzburgite is a refractory rock, it typically contains very little
185	clinopyroxene and rarely hosts chromite-clinopyroxene associations. However, in the
186	Tethyan ophiolites, clinopyroxene occurs as intergrowths with chromite in the peridotites,

187	as interstitial grains surrounding chromite or surrounded by chromite (Fig. 4n-p). It is also
188	noted that chromite grains associated with clinopyroxene are free of alteration, indicating
189	no or less modification from later melt percolation. In summary, both the amount and grain
190	size of clinopyroxene associated with chromite in ophiolitic rocks correlate positively with
191	chromite abundance. The texture and mode of occurrence of the clinopyroxene grains,
192	together with the compositions shown below, suggest that their crystallization were related
193	with surface hydrous fluids (not necessarily aqueous fluids) between the chromite grains.
194	3.2. Selective alteration features in podiform chromitites
195	The former presence of hydrous fluids in ophiolitic podiform chromitites is also
196	documented by the nature and distribution of alteration in these rocks. Podiform chromitites
197	are normally surrounded by dunite envelopes, which grade outward into harzburgite (Fig. 5)
198	(Lago et al., 1982). Alteration is common in chromitites, typically causing partial to
199	complete replacement of olivine by serpentine (Fig. 5a), whereas the dunite envelopes and
200	host harzburgites typically contain remnants of pristine olivine (Fig. 5b, c). The decreasing
201	intensity of alteration outward from chromitite to dunite envelope to harzburgite clearly
202	suggests that the hydrous fluids originated within the chromitite itself.
203	If the hydrous fluids responsible for alteration in chromitites came from external
204	sources, the rocks would display a different pattern of alteration. Because dunite is less

205	competent than either chromitite or harzburgite, it can accommodate more stain than the
206	other lithologies (Rassios and Smith, 2000; Kapsiotis et al., 2019). Thus, as the temperature
207	decreases dunite may form brittle shear zones whereas the host harzburgite continues to
208	undergo ductile deformation (e.g., Boudier and Coleman, 1981; Zhang et al., 2019). Such
209	shear strain can cause tectonic thinning of the original dunite "envelope", facilitating fluid
210	penetration along the shear zones resulting in alteration of the dunite to even less competent
211	serpentinite (e.g., Boudier and Coleman, 1981; Rassios and Smith, 2000). If this process
212	occurs, intensity of alteration would decrease inward and the chromitite would be
213	surrounded by an envelope of serpentinite. This can explain why some chromitites, and
214	particularly their dunite envelopes, are more serpentinized than their host harzburgite. Thus,
215	the general increase in serpentinization outward from chromitite to dunite to harzburgite
216	indicates that the hydrous fluids responsible for the alteration likely originate from an
217	external source. It is opposite to the decreasing intensity of alteration outward from
218	chromitite to dunite envelope to harzburgite.
219	Selective alteration in banded chromitite ore (Fig. 5d) further suggests a close affinity
220	between fluids and chromite aggregates. Because chromite is a nominally anhydrous
221	mineral, the hydrous fluids producing the observed self-alteration presumably would have

been released from the surfaces of the chromite grains, which is thought to be coated with

223 water during crystallization (Matveev and Ballhaus, 2002).

224

225 **4. Mineral chemistry of chromitites**

226 4.1. Chemistry of clinopyroxene associated with chromite

227	The clinopyroxene compositions in our samples are essentially the same in the
228	different rock types (Fig. 6). All analyzed grains have relatively large variations in Na ₂ O
229	(<0.6 wt.%), Al_2O_3 (<4 wt.%) and Cr_2O_3 (0.2-1.7 wt.%). They are considerably richer in
230	SiO ₂ (51-56 wt.%), Cr ₂ O ₃ and CaO (21-26 wt.%), and more depleted in TiO ₂ (<0.4 wt.%)
231	and FeO (<3 wt.%) than clinopyroxene from MORB and boninite (Fig. 6). Thus, they
232	appear to have crystallized from melts that were neither boninitic nor MORB-like in
233	composition.
234	Instead, the high Si and Ca, together with the low Fe and Al of the clinopyroxenes
235	(particularly those in the chromitites) suggest a possible relation with hydrothermal origin,
236	as in the Oman ophiolite (Python et al., 2007; Akizawa et al., 2011). Because the hydrous
237	fluids presumably were generated internally, they most likely were released from the
238	chromite surfaces. However, the composition may have been modified by chemical
239	exchange with chromite, akin to that between chromite and olivine (e.g., Pagé and Barnes,
240	2009; Xiao et al., 2016; Zhang et al., 2019). Such sub-solidus re-equilibration would have

241 produced Cr-enrichment and Fe-depletion in the clinopyroxene.

242	The identical trace element patterns of the clinopyroxenes in chromitite, harzburgite
243	and dunite (Fig. 7) further point to their cogenetic origin. They are featured by enrichments
244	of heavy rare earth elements (HREEs) and depletion of light rare earth elements (LREE),
245	which are comparable to the patterns of hydrothermal clinopyroxene (Fig. 7; Akizawa et al.,
246	2011). However, the overall higher trace element concentrations and remarkable negative
247	Ce, Sr, Ti and Y anomalies of the studied clinopyroxenes are far beyond the features of the
248	typical hydrothermal clinopyroxene. This suggests that the other component should have
249	involved during clinopyroxene formation. Such component could be inferred as evolved
250	melts from which olivine crystallized in the immiscible basalt-water system (Matveev and
251	Ballhaus, 2002).
252	The clinopyroxenes in chromitites has variable Li concentrations (0.29 to 2.52 ppm
253	with one up to 6.70 ppm) and δ^7 Li values (-11.7 to 6.54 ‰ with one down to -29.9‰)
254	(Table 3). These results, together with Li isotopic compositions of olivines in chromitite,
255	exceed the normal ranges of MORB and arc lavas and extend to altered MORB, marine
256	sediment and eclogite (Fig. 8a), suggesting involvement of subduction components in the
257	parental melts from which olivine and clinopyroxene crystallized (Su et al., 2018; Chen et
258	al., 2019). The subduction components could be inferred as initial origin of water measured

in the study minerals.

260 **4.2.** Water contents of olivine, clinopyroxene and orthopyroxene

261	Olivine in harzburgite has no measurable water, which is consistent with its residual
262	origin. Two analyzed samples from dunite have relatively high H ₂ O contents of 13-38 ppm
263	(average of 24 ppm) and 17-70 ppm (average of 42 ppm) (Table 4), which are consistent
264	with their magmatic origins (Chen et al., 2015, 2019). The moderate H ₂ O content (4-13
265	ppm with average of 9 ppm) of olivine in a harzburgite-dunite transition sample indicates
266	minor water diffusion from dunite into harzburgite, which is consistent with fluid
267	infiltration outward into harzburgite as inferred above. Water content variation in
268	orthopyroxene between the rocks (harzburgite: 113 ppm; harzburgite-dunite transition: 59
269	ppm; chromitite: 74 ppm; Fig. 8b) likely reflects a mixed signature of partial melting and
270	diffusion.
271	Olivine in clinopyroxene-bearing chromitite has variable H_2O contents, with the
272	lowest values (9-25 ppm; average of 17 ppm) being in disseminated ore, and the highest (48
273	ppm and 53 ppm) in massive ore. Banded and anti-nodular ores contain olivine with
274	moderate H_2O contents with averages of 21 ppm and 24 ppm, respectively (Table 4).

- 275 In contrast, clinopyroxene grains in the massive ore have much higher H₂O contents
- 276 (average of 801 ppm) compared to the banded ore (366 ppm) (Table 4). These large water

277	variations in olivine and clinopyroxene are not attributed to magmatic differentiation (e.g.,
278	Kohn and Grant, 2006), but are rather thought to be related to the different ore types. The
279	positive correlation between water content in silicate minerals and the modal abundance of
280	chromite (Figs. 3, 8b) implies that water in the silicate minerals was derived from hydrous
281	fluids on the chromite surfaces, supporting the conclusion that hydrous fluids are collected
282	on chromite during crystallization (Matveev and Ballhaus, 2002).
283	

284 **5. Effects of hydrous fluids on chromite surfaces**

285 It has been experimentally documented that in immiscible basalt-water systems 286 chromite and olivine can be physically fractionated due to differential wetting properties of 287 fluid and melt on oxide and silicate surfaces; chromite collects exsolved fluid whereas 288 olivine does not (Ballhaus, 1998; Matveev and Ballhaus, 2002). As shown above some of 289 the hydrous fluids were trapped in clinopyroxene and olivine grains or mixed with evolving 290 melts to form large amounts of H₂O-rich clinopyroxene and hydrous minerals such as 291 amphibole. Excess hydrous fluids hydrate olivine in the chromitites and wall rocks (dunite 292 and harzburgite).

293 Such hydrous fluids could easily enhance chemical diffusion between silicate phases 294 and chromite (Shimizu and Okamoto, 2016; Bai et al., 2019). Some components in the

295	hydrous fluids might also be partitioned into olivine around chromite and even into
296	chromite itself, which are later expelled in the form of mineral exsolutions (e.g., Liang et al.,
297	2018). Such additional components in olivine of chromitite might also lead to some of the
298	observed isotopic differences between olivine from dunite and chromitite (e.g., Li isotopes
299	in Su et al., 2016, 2018). This may also partially explain the presence of clinopyroxene,
300	chromite and magnetite lamellae in olivine (Xiong et al., 2017; Liang et al., 2018) and
301	clinopyroxene and rutile lamellae in chromite (Yamamoto et al., 2009; Miura et al., 2012).
302	Arai (2013) even suggested that hydrous mineral inclusions in chromite represent the actual
303	origin of silicate lamellae. When conditions permit, clinopyroxene (Fig. 4; Rollinson and
304	Adetunji, 2015) and amphibole (Melcher et al., 1997) could form by fluid-melt mixing.
305	These minerals could accommodate most of the water in the fluids thus preventing
306	hydration of the surrounding olivine. More recently, preiswerkite
307	(NaMg ₂ Al ^{VI} Al ^{IV} ₂ Si ₂ O ₁₀ (OH) ₂), found in chromitite of the Khoy ophiolite in Iran, has been
308	interpreted as a precipitate from fluid trapped by chromite, which was possibly a precursor
309	of the fluid (Zaeimnia et al., 2017).
310	From these observations, it is clear that surface hydrous fluids on chromite grains play
311	a critical role in H ₂ O enrichment of associated olivine and clinopyroxene and such hydrous

312 fluids may be responsible for the hydrous mineral inclusions commonly observed in

chromite grains. Additionally, such fluids might elevate $Fe^{3+}/\Sigma Fe$ ratios of chromite in 313 314 chromitite making them unreliable for oxygen fugacity estimations (Melcher et al., 1997; 315 Rollinson and Adetunji, 2015). 316 317 6. Implications: Initial origin and role of hydrous fluids in chromite deposit formation 318 On the basis of experimental data, water is considered to be a crucial phase controlling 319 many aspects of chromite formation (Matveev and Ballhaus, 2002; Johan et al., 2017). For 320 example, involvement of water in mafic magmas can lower the temperature of chromite 321 crystallization, although the effect is less than for silicate minerals (Boudreau, 1999). The 322 presence of water can also ensure that chromite is the first mineral to crystallize and can 323 stabilize chromite on the liquidus of silicate melt (e.g., Lorand and Ceuleneer, 1989; 324 Nicholson and Mathez, 1991). Our study provides petrographic, mineralogical and 325 geochemical evidence confirming the occurrence and fate of water in podiform chromitites 326 and inferring its direct origin from chromite grain surface and initial origin from subducting 327 slab. We have shown that crystallizing chromite can collect water on its surface, which is 328 the direct origin of hydrous fluids and may then hydrate surrounding grains of pyroxene 329 and olivine. Matveev and Ballhaus (2002) suggest that very small, dispersed grains of 330 chromite may even collect enough water to form bubbles. This allows chromite grains to

331	rise via decreasing density, thus promoting their gathering and concentration and enhancing
332	melt-fluid immiscibility. The fate of the water in a podiform chromitite varies depending on
333	local conditions. In most cases it hydrates surrounding silicate minerals in the chromitite
334	and/or penetrates the surrounding wall rocks (Fig. 4). In some cases, it may mix with
335	evolving melts to generate hydrothermal-like clinopyroxene (Fig. 2) or infiltrate silicates
336	and chromite to form inclusions, which may exsolve later in the form of mineral lamella.
337	Matveev and Ballhaus (2002) estimated that for a basaltic melt to produce a chromite
338	deposit it should have a high primary H ₂ O content (up to 4 wt.%), high enough to exsolve a
339	water-rich fluid phase. Such high H ₂ O contents in mafic magmas are likely to exist only in
340	supra-subduction zone (SSZ) environments. Lithium isotopic compositions of olivine and
341	clinopyroxene in chromitites (Fig. 8a) confirm this inference. However, formation of
342	chromite deposits is not exclusively related to the water contents of the host magmas. Such
343	deposits can be hosted in Alaskan-type intrusions, and in SSZ-type and in MOR-like
344	ophiolites. The host magmas for such deposits have highly variable water contents; e.g.,
345	2.0-6.0 wt.% H ₂ O in island arc tholeiites (Plank et al., 2013; Ballhaus et al., 2015), 1.0-2.9
346	wt.% H ₂ O in boninites and 0.12-0.51 wt.% in MORB-like lavas (Sobolev and Chaussidon,
347	1996). The crystallization and accumulation of chromite in magmas with different water
348	contents may reflect the pressure-dependent behavior of water (Keppler and

349	Bolfan-Casanova, 2006). At mantle or mantle-crust transition depths, where podiform
350	chromitites commonly occur in ophiolites, hydrous minerals are rare in crystallizing
351	magmas so whatever water is available to promote crystallization of chromite. Water can
352	also be concentrated during magma-peridotite interaction (Arai et al., 1997), suggesting that
353	economic deposits of chromitite may also form in relatively water-poor MORB systems. In
354	this aspect, initial water content of the parental magmas is not critical for chromitite
355	formation. We do not negate the widely accepted explanation of chromitite formation
356	preferred in subduction settings, but do point out that on the grounds of efficiency,
357	melt-fluid immiscibility should be of first importance.
358	Hydrous fluids tend to wet chromite much better than silicate phases (Matveev and
359	Ballhaus, 2002), to an extent that chromite may be concentrated selectively in exsolved
360	fluids when fluid saturation occurs at magmatic temperature. $\mathrm{H_2O}$ also depresses the
361	liquidus temperatures of silicates more profoundly than that of chromite. A dry basaltic
362	melt may be saturated with olivine and chromite, but the same melt at the same temperature
363	will be chromite-only saturated if it contains a few percent of H ₂ O. Hence, podiform
364	chromitites most readily form in hydrous basaltic to boninitic melts generated above
365	intra-oceanic subduction zone.

366

367 Acknowledgements

This research was financially supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0801), National Natural Science Foundation of China (91755205 and 41772055) and the State Key Laboratory of Lithospheric Evolution (201701).

372 **References**

- Ahmed, A.H., Arai, S. (2002). Unexpectedly high-PGE chromitite from the deeper mantle
 section of the northern Oman ophiolite and its tectonic implications. Contributions to
 Mineralogy and Petrology 143, 263-278.
- Akizawa, N., Arai, S., Tamura, A., Uesugi, J., Python, M. (2011). Crustal diopsidites from
 the northern Oman ophiolite: evidence for hydrothermal circulation through
 suboceanic Moho. Journal of Mineralogical and Petrological Sciences 106, 261-266.
- Anders, E., Grevesse, N. (1989). Abundances of the elements: meteoritic and solar.
 Geochimica et Cosmochimica Acta 53, 197-214.
- Arai, S. (2013). Conversion of low-pressure chromitites to ultra-high-pressure chromitites
 by deep recycling: A good inference. Earth and Planetary Science Letters 379, 81-87.
- Arai, S., Matsukage, K., Isobe, E., Vysotskiy, S. (1997). Concentration of incompatible
 elements in oceanic mantle: effect of melt/wall interaction in stagnant or failed
 conduits within peridotite. Geochimica et Cosmochimica Acta 61, 671-675.
- Arai, S., Miura, M. (2016). Formation and modification of chromitites in the mantle. Lithos
 264, 277-295.
- Avcı, E., Uysal, I., Akmaz, R.M., Saka, S. (2017). Ophiolitic chromitites from the
 Kızılyüksek area of the Pozantı-Karsantı ophiolite (Adana, southern Turkey):
 Implication for crystallization from a fractionated boninitic melt. Ore Geology
 Reviews 90, 166-183.
- Bai, Y., Su, B.X., Xiao, Y., Chen, C., Cui, M.M., He, X.Q., Qin, L.P., Charlier, B. (2019).
 Diffusion-driven chromium isotope fractionation in minerals of ultramafic cumulates:
 elemental and isotopic evidence from the Stillwater Complex. Geochimica et
 Cosmochimica Acta 263, 167-181.
- Ballhaus, C. (1998). Origin of podiform chromite deposits by magma mingling. Earth and
 Planetary Science Letters 156, 185-193.

- 398 Ballhaus, C., Fonseca, R.I.O.C., Kirchenbaur, M., Zirner, A. (2015). Spheroidal textures in
- 399 igneous rocks–Textural consequences of H₂O saturation in basaltic melts. Geochimica
- 400 et Cosmochimica Acta 167, 241-252.Bell, D.R., Ihinger, P.D., Rossman, G.R. (1995).
- 401 Quantitative analysis of trace OH in garnet and pyroxenes. American Mineralogist 80,402 465-474.
- Borisova, A., Ceuleneer, G., Kamenetsky, V., Arai, S., Béjina, F., Bindeman, I., Polvé, M.,
 de Parseval, P., Aigouy, T., Pokrovski, G. (2012). A new view on the petrogenesis of
 the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions.
 Journal of Petrology 53, 2411-2440.
- Boudier, F., Coleman, R.G. (1981). Cross section through the peridotite in the Samail
 ophiolite, southeastern Oman Mountains. Journal of Geophysical Research: Solid
 Earth 86, 2573-2592.
- Boudreau, A. (1999). Fluid fluxing of cumulates: the JM reef and associated rocks of the
 Stillwater Complex, Montana. Journal of Petrology 40, 755-772.
- Chen, C., Su, B.X., Uysal, I., Avcı, E., Zhang, P.F., Xiao, Y., He, Y.S. (2015). Iron isotopic
 constraints on the origin of peridotite and chromitite in the Kızıldağ ophiolite,
 southern Turkey. Chemical Geology 417, 115-124.
- Chen, C., Su, B.X., Xiao, Y., Pang, K.N., Robinson, P.T., Uysal, İ., Lin, W., Qin, K.Z.,
 Avcı, E., Kapsiotis A. (2019). Intermediate chromitite in Kızıldağ ophiolite (SE
 Turkey) formed during subduction initiation in Neo-Tethys. Ore Geology Reviews
 104, 88-100.
- Dilek, Y., Furnes, H. (2009). Structure and geochemistry of Tethyan ophiolites and their
 petrogenesis in subduction rollback systems. Lithos 113, 1-20.
- González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., Gervilla, F., O'Reilly, S.Y., Akbulut,
 M., Pearson, N.J., Arai, S. (2014). Chromitites in ophiolites: How, where, when, why?
 Part II. The crystallization of chromitites. Lithos 189, 140-158.
- 424 Irvine, T.N. (1977). Chromite crystallization in the join Mg_2SiO_4 -Ca $MgSi_2O_6$ -425 Ca $Al_2Si_2O_8$ -MgCr₂O₄-SiO₂. Carnegie Institution of Washington, Yearbook 76, 426 465-472.
- Johan, Z., Martin, R.F., Ettler, V. (2017). Fluids are bound to be involved in the formation
 of ophiolitic chromite deposits. European Journal of Mineralogy 29, 543-555.

- 429 Kapsiotis, A., Economou-Eliopoulos, M., Zheng, H., Su, B.X., Lenaz, D., Jing, J.J.,
- 430 Antonelou, A., Velicogna, M., Xia, B. (2019). Refractory chromitites recovered from 431 the Eretria mine, East Othris massif (Greece): Implications for metallogeny and
- deformation of chromitites within the lithospheric mantle portion of a forearc-typeophiolite. Geochemistry 79, 130-152.
- Keppler, H., Bolfan-Casanova, N. (2006). Thermodynamics of water solubility and
 partitioning. Reviews in Mineralogy and Geochemistry 62, 193-230.
- Kohn, S.C., Grant, K.J. (2006). The partitioning of water between nominally anhydrous
 minerals and silicate melts. Reviews in Mineralogy and Geochemistry 62, 231-241.
- 438 Lago, B.L., Rabinowicz, M., Nicolas, A. (1982). Podiform chromitite ore bodies: a genetic
 439 model. Journal of Petrology 23, 103-125.
- Liang, Z., Xiao, Y., Thakurta, J., Su, B.X., Chen, C., Bai, Y., Sakyi, P.A., 2018. Exsolution
 lamellae in olivine grains of dunite units from different types of mafic-utramafic
 complexes. Acta Geologica Sinica 92, 586-599.
- Liu, X., Su, B.X., Bai, Y., Chen, C., Xiao, Y., Liang, Z., Yang, S.H., Peng, Q.S., Su, B.C.,
 Liu, B. (2018). Ca-enrichment characteristics of parental magmas of chromitite in
 ophiolite: inference from mineral inclusions. Earth Science 43, 1038-1050 (in Chinese
 with English abstract).
- Lorand, J.P., Ceuleneer, G. (1989). Silicate and base-metal sulfide inclusions in chromites
 from the Maqsad area (Oman ophiolite, Gulf of Oman): a model for entrapment.
 Lithos 22, 173-190.
- 450 Matveev, S., Ballhaus, C. (2002). Role of water in the origin of podiform chromitite
 451 deposits. Earth and Planetary Science Letters 203, 235-243.
- Melcher, F., Grum, W., Simon, G., Thalhammer, T.V., Stumpfl, E.F. (1997). Petrogenesis
 of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid
 and fluid inclusions in chromite. Journal of Petrology 38, 1419-1458.
- Miura, M., Arai, S., Ahmed, A.H., Mizukami, M., Okuno, M., Yamamoto, S. (2012).
 Podiform chromitite classification revisited: a comparison of discordant and
 concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. Journal of
 Asian Earth Sciences 59, 52-61.

- 459 Nicholson, D.M., Mathez, E.A. (1991). Petrogenesis of the Merensky Reef in the
 460 Rustenburg section of the Bushveld Complex. Contributions to Mineralogy and
- 461 Petrology 107, 293-309.
- 462 Pagé, P., Barnes, S.J. (2009). Using trace elements in chromites to constrain the origin of
 463 podiform chromitites in the Thetford Mines ophiolite, Québec, Canada. Economic
 464 Geology 104, 997-1018.
- Plank, T., Kelley, K.A., Zimmer, M.M., Hauri, E.H., Wallace, P.J. (2013). Why do mafic
 arc magmas contain ~4 wt% water on average? Earth and Planetary Science Letters
 364, 168-179.
- 468 Python, M., Ceuleneer, G., Ishida, Y., Barrat, J.A., Arai, S. (2007). Oman diopsidites: a
 469 new lithology diagnostic of very high temperature hydrothermal circulation in mantle
 470 peridotite below oceanic spreading centres. Earth and Planetary Science Letters 255,
 471 289-305.
- 472 Rassios, A., Smith, A.G. (2000). Constraints on the formation and emplacement age of
 473 western Greek ophiolites (Vourinos, Pindos, and Othris) inferred from deformation
 474 structures in peridotites. Special Papers-Geological Society of America 473-484.
- Robinson, P.T., Bai, W.J., Malpas, J., Yang, J.S., Zhou, M.F., Fang, Q.S., Hu, X.F.,
 Cameron, S., Staudigel, H. (2004). Ultra-high pressure minerals in the Luobusa
 ophiolite, Tibet, and their tectonic implications. Geological Society London Special
 Publication 226, 247-271.
- 479 Roeder, P.L., Reynolds, I. (1991). Crystallization of chromite and chromium solubility in
 480 basaltic melts. Journal of Petrology 32, 909-934.
- Rollinson, H., Adetunji, J. (2015). The geochemistry and oxidation state of podiform
 chromitites from the mantle section of the Oman ophiolite: a review. Gondwana
 Research 27, 543-554.
- Rollinson, H., Mameri, L., Barry, T. (2018). Polymineralic inclusions in mantle chromitites
 from the Oman ophiolite indicate a highly magnesian parental melt. Lithos 310-311,
 381-391.
- Saka, S., Uysal, I., Akmaz, R.M., Kaliwoda, M., Hochleitner, R. (2014). The effects of
 partial melting, melt-mantle interaction and fractionation on ophiolite generation:

- 489 constraints from the Late Cretaceous Pozanti-Karsanti Ophiolite, southern Turkey.
 490 Lithos 202-203, 300-316.
- Schiano, P., Clocchiatti, R., Lorand, J.P., Massare, D., Deloule, E., Chaussidon, M. (1997).
 Primitive basaltic melts included in podiform chromites from the Oman ophiolite.
 Earth and Planetary Science Letters 146, 489-497.
- Shimizu, H., Okamoto, A. (2016). The roles of fluid transport and surface reaction in
 reaction-induced fracturing, with implications for the development of mesh textures in
 serpentinites. Contributions to Mineralogy and Petrology 171, 73.
- Sobolev, A.V., Chaussidon, M. (1996). H₂O concentrations in primary melts from
 supra-subduction zones and mid-ocean ridges: implications for H₂O storage and
 recycling in the mantle. Earth and Planetary Science Letters 137, 45-55.
- Su, B.X., Chen, C., Pang, K.N., Sakyi, P.A., Uysal, I., Avcı, E., Zhang, P.F. (2018). Melt
 penetration in oceanic lithosphere: Li isotope records from the Pozantı-Karsantı
 ophiolite in southern Turkey. Journal of Petrology 59, 191-205.
- Su, B.X., Teng, F.Z., Hu, Y., Shi, R.D., Zhou, M.F., Zhu, B., Liu, F., Gong, X.H., Huang,
 Q.S., Xiao, Y., Chen, C., He, Y.S. (2015a). Iron and magnesium isotope fractionation
 in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites. Earth and
 Planetary Science Letters 430, 523-532.
- Su, B.X., Gu, X.Y., Deloule, E., Zhang, H.F., Li, Q.L., Li, X.H., Vigier, N., Tang, Y.J.,
 Tang, G.Q., Liu, Y., Brewer, A., Mao, Q., Ma, Y.G. (2015b). Potential orthopyroxene,
- 509 clinopyroxene and olivine reference materials for in situ lithium isotope determination.
- 510 Geostandards and Geoanalytical Research 39, 357-369.Su, B.X., Zhou, M.F., Jing, J.J.,
- Robinson, P.T., Chen, C., Xiao, Y., Liu, X., Shi, R.D., Lenaz, D., Hu, Y. (2019).
 Distinctive melt activity and chromite mineralization in Luobusa and Purang
 ophiolites, southern Tibet: constraints from trace element compositions of chromite
 and olivine. Science Bulletin 64, 108-121.
- 515 Su, B.X., Zhou, M.F., Robinson, P.T. (2016). Extremely large fractionation of Li isotopes
 516 in chromitite-bearing mantle sequence. Scientific Reports 6, 22370.
- 517 Thayer, T.P. (1969). Gravity differentiation and magmatic re-emplacement of podiform
 518 chromite deposits. Economic Geology Monograph 4, 132-146.

- 519 Tomascak, P.B., Magna, T., Dohmen, R. (2016). Advances in Lithium Isotope 520 Geochemistry. Berlin: Springer.
- Withers, A.C. (2013). On the use of unpolarized infrared spectroscopy for quantitative
 analysis of absorbing species in birefringent crystals. American Mineralogist 98,
 689-697.
- Xia, Q.K., Hao, Y., Li, P., Deloule, E., Coltorti, M., Dallai, L., Yang, X., Feng, M. (2010).
 Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the
 North China Craton. Journal of Geophysical Research: Solid Earth 115(B7).
- Xiao, Y., Teng, F.Z., Su, B.X., Hu, Y., Zhou, M.F., Zhu, B., Shi, R.D., Huang, Q.S., Gong,
 X.H., He, Y.S. (2016). Iron and magnesium isotopic constraints on the origin of
 chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet.
 Geochemistry, Geophysics, Geosystems 17, 940-953.
- Xiong, F., Yang, J., Dilek, Y., Wang, C. (2017). Nanoscale diopside and spinel exsolution
 in olivine from dunite of the Tethyan ophiolites, southwestern Turkey: Implications
 for the multi-stage process. Journal of Nanoscience and Nanotechnology 17,
 6587-6596.
- Yamamoto, S., Komiya, T., Hirose, K., Maruyama, S. (2009). Coesite and clinopyroxene
 exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform
 chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109, 314-322.
- 538 Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., Fang, Q.S., Robinson, P.T., Zhang, J., Green,
- H.W. (2007). Diamond-and coesite-bearing chromitites from the Luobusa ophiolite,
 Tibet. Geology 35, 875-878.
- Yu, M., Wang, Q., Yang, J.S. (2019). Fabrics and water contents of peridotites in the
 Neotethyan Luobusa ophiolite, Southern Tibet: Implications for mantle recycling in
 supra-subduction zones. Journal of the Geological Society176, 975-991.
- Zaeimnia, F., Arai, S., Mirmohammadi, M. (2017). Na-rich character of
 metasomatic/metamorphic fluids inferred from preiswerkite in chromitite pods of the
 Khoy ophiolite in Iran: Role of chromitites as capsules of trapped fluids. Lithos
 268-271, 351-363.
- Zhang, P.F., Zhou, M.F., Liu, Q.Y., Malpas, J., Robinson, P.T., He, Y.S. (2019).
 Modification of mantle rocks by plastic flow below spreading centers: Fe isotopic and

- 550 fabric evidence from the Luobusa ophiolite, Tibet. Geochimica et Cosmochimica Acta
- 551 253, 84-110.
- Zhou, M.F., Robinson, P.T., Malpas, J., Li, Z. (1996). Podiform chromitites from the
 Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and
 chromite segregation. Journal of Petrology 37, 3-21.
- 555

556 **Figure captions:**

Fig. 1. Distribution of the Tethyan ophiolites and highlighted locations of the studied
ophiolites including Lyclan nappes, Pozanti-Karsanti, Kızıldağ, Kars, Kempirsai and
Purang (modified after Dilek and Furnes, 2009).

560 Fig. 2. Clinopyroxene occurrence in hand-specimen (a), thin-section (b) and 561 microphotographs (c, d) of chromitites from the Kızıldağ ophiolite.

562 Fig. 3. Representative infrared spectrometry spectra of olivine (a), clinopyroxene (b) and 563 orthopyroxene (c) in harzburgite, dunite and various chromitite of the Kızıldağ ophiolite.

564 Fig. 4. Features of chromite-clinopyroxene association in a variety of rocks from several

ophiolites. a, b) Disseminated and massive chromitite (Cic15-10) from Kars ophiolite; c)

566 Massive chromitite (PK14-02) from Pozanti-Karsanti ophiolite; d) Massive chromitite

567 (KZ15-21), e) Nodular chromitite (KZ15-31), f) Anti-nodular chromitite (KZ15-23), and g)

568 Banded chromitite (KZ14-32-01) from Kızıldağ ophiolite; h) Disseminated chromitite

569 (LN15-05) from Lycian nappes ophiolite; i) Dunite (PL14-3-1), j) Dunite (PL14-5-10), k)

570 Dunite (PL14-5-12) from Purang ophiolite; l) Dunite (KZ15-16) from Kızıldağ ophiolite; m)

571 Dunite (PK14-70) from Pozanti-Karsanti ophiolite; n) Harzburgite (PK14-35) from

572 Pozantı-Karsantı ophiolite; o) Harzburgite (KZ14-24) from Kızıldağ ophiolite; p)

573 Lherzolite (PL14-5-7) from Purang ophiolite. Chr, chromite; Cpx, clinopyroxene; Opx, 574 orthopyroxene; Ol, olivine; Srp, serpentine.

575 Fig. 5. General features of podiform chromitite in ophiolites showing chromitite enveloped 576 by dunite with a serpentine corona between them. a) Olivine in chromitite is almost entirely 577 serpentinized with rare relicts; b) A few partly altered olivine grains are preserved in the 578 serpentine corona; c) Less-altered olivine grains are present in the dunite; d) Banded 579 chromitite (PK14-52) from the Pozanti-Karsanti ophiolite showing narrow bands of 580 serpentine between olivine and chromite bands. Fig. 6. Compositions (wt.%) of clinopyroxene associated with chromite in chromitite, dunite and harzburgite of ophiolites compared to those in boninites and mid-ocean ridge basalts (MORBs) (GEOROC database) and hydrothermal clinopyroxene (Akizawa et al., 2011).

585 Fig. 7. Chondrite-normalized rare earth element and primitive mantle-normalized trace 586 element patterns of clinopyroxene associated with chromite in the Kızıldağ ophiolitic rocks. 587 Hydrothermal clinopyroxene data are from Akizawa et al. (2011) and chondrite

- 588 normalizing values from Anders and Grevesse (1989).
- 589 Fig. 8. (a) Correlation diagram of δ^7 Li and 1/Li of clinopyroxene in the Kızıldağ

590 chromitites with comparison of those published values in olivine (Chen et al., 2019) and (b)

591 H₂O content variations of minerals from harzburgite to dunite and chromitite. The δ^7 Li 592 ranges of MORB, arc lava, eclogite, altered MORB and marine sediment are from

- 593 Tomascak et al. (2016) and references therein.
- 594

595 **Tables:**

596 Table 1 Representative data of major element contents of clinopyroxene associated with

597 chromite in chromitites and peridotites from ophiolites.

598 Table 2 Trace elemental compositions of clinopyroxene associated with chromite in 599 chromitites and peridotites from ophiolites.

Table 3 Li isotopic compositions of clinopyroxene in Kizildag chromitites.

Table 4 H₂O contents of olivine, clinopyroxene and orthopyroxene in the rocks from the

602 Kızıldağ ophiolite.

Fig. 1

Fig. 3

Fig. 4

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Fig. 6

Fig. 7

Fig. 8

Sample	Rock type	No.	SiO ₂	TiO ₂	Al ₂ O ₃	Cr_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	NiO	Total	Mg#
Oman	- 1		-	-	2 9	2 9			č		-	-			-
61*	Massive chromitite	1	52.5	0.02	2.30	1.00	1.74	0.11	17.1	24.1	0.18	0.05		99.1	94.7
Kempirsai, Ka	azakhstan														
AZ1B**	Chromitite	1	56.5	0.03	0.50	1.11	0.78	0.10	18.8	24.5	0.08	0.03	0.12	102.5	97.7
Kars, Turkey															
Cic15-10	Massive chromitite	10	53.9	0.09	1.97	0.78	2.59	0.12	17.3	22.9	0.19	0.00	0.06	99.9	92.3
Cic15-13	Massive chromitite	6	55.4	0.06	0.96	0.35	2.39	0.08	17.3	24.0	0.08	0.02	0.04	100.7	92.9
Lycian nappe	s, Turkey														
LN15-05	Sparsely disseminated chromitite	3	55.0	0.04	0.54	0.49	0.89	0.02	17.2	25.0	0.17	0.01	0.03	99.3	97.2
LN15-06	Sparsely disseminated chromitite	5	54.8	0.05	0.29	0.40	1.23	0.01	17.5	25.0	0.12	0.00	0.07	99.5	96.2
LN15-13	Sparsely disseminated chromitite	3	54.0	0.01	0.91	0.46	1.42	0.07	16.8	25.2	0.09	0.00	0.07	99.1	95.5
LN15-15	Dunite	3	54.5	0.03	0.76	0.46	1.42	0.00	17.1	24.8	0.14	0.00	0.01	99.3	95.6
LN15-18	Harzburgite	3	53.6	0.06	1.70	1.10	1.63	0.01	16.8	24.1	0.10	0.00	0.04	99.1	94.9
Kızıldağ, Tur	key														
KZ14-17	Disseminated chromitite	1	54.3	0.07	0.84	0.73	1.40	0.04	17.3	24.2	0.18	0.00	0.02	99.1	95.7
KZ15-10	Disseminated chromitite	8	53.2	0.05	3.45	1.00	2.22	0.02	16.5	23.9	0.07	0.00	0.06	100.4	93.0
KZ14-20	Disseminated chromitite	4	53.6	0.06	1.28	1.05	1.84	0.06	17.8	22.0	0.58	0.00	0.06	98.2	94.6
KZ15-24	Disseminated chromitite	2	53.7	0.08	1.11	0.96	1.53	0.00	17.4	24.1	0.24	0.02	0.09	99.3	95.3
KZ14-32-1	Banded chromitite	4	53.6	0.10	1.81	1.20	1.76	0.00	17.9	23.7	0.16	0.01	0.05	100.3	94.8
KZ14-27-2	Banded chromitite	6	46.8	2.06	10.6	2.69	3.06	0.05	18.8	11.1	2.97	0.14	0.09	98.4	91.7
KZ15-27	Nodular chromitite	4	53.8	0.03	0.85	0.75	1.33	0.00	17.9	24.4	0.31	0.01	0.08	99.4	96.0
KZ15-37	Nodular chromitite	7	54.0	0.07	1.22	1.55	1.24	0.00	17.1	23.8	0.40	0.01	0.10	99.6	96.1
KZ15-32	Nodular chromitite	2	53.8	0.10	1.44	1.59	1.62	0.03	17.0	22.9	0.32	0.01	0.02	98.8	95.0
KZ15-29	Nodular-disseminated chromitite	5	54.8	0.03	0.91	0.96	1.24	0.04	17.5	24.3	0.27	0.00	0.05	100	96.2
KZ15-31	Nodular chromitite	14	55.3	0.07	0.20	0.50	0.34	0.00	17.7	25.9	0.03	0.00	0.05	100	98.9
KZ14-32-2	Massive chromitite	12	54.4	0.19	2.11	1.07	2.22	0.05	17.8	22.2	0.39	0.00	0.02	100	93.5
KZ15-38	Massive chromitite	6	54.2	0.08	1.33	0.66	2.08	0.12	17.2	23.7	0.18	0.00	0.06	99.6	93.7

m 1	1	1 D		1 .	<u> </u>	1	1	•	• • • • • • •	• . 1	1	1	. 1	• 1 . • .	C	1 * 1*
Ink		ιv	onrogontativa	doto ot	t moior o	lomont conto	nta ot ol	Inonurovono	in accounted	with o	hromito 11	a obromiti	tog ond	noridatitac	trom o	nhialitaa
121	ne	1 N	eniesemanyea		г шаюге	тентент соше	IIIS OF CE	monvioxene	III associated	WIIII C	ппонне п		ies and	Demonstres		ninomes.
IUL			coprobolituit to	aata O				mopyromene	III abboolated	· · · · · · · · · · · · · · · · · · ·	In onnice n		tob und	perioutice	monn o	pinonces.

KZ15-25	Massive chromitite	4	53.4	0.04	2.43	1.26	2.39	0.05	18.1	21.3	0.28	0.00	0.06	99.3	93.1
KZ14-38	Massive chromitite	2	53.2	0.07	2.29	1.51	1.96	0.00	17.9	21.8	0.40	0.01	0.09	99.2	94.3
KZ15-21	Massive chromitite	5	51.9	0.11	3.27	1.29	2.66	0.06	18.4	20.7	0.25	0.00	0.09	98.9	92.6
KZ15-16	Dunite	2	52.9	0.11	2.64	1.27	2.07	0.02	17.3	23.4	0.20	0.00	0.06	100	93.8
KZ15-13	Dunite	3	53.4	0.12	2.14	1.22	2.03	0.01	16.9	23.7	0.38	0.00	0.01	100	93.7
KZ14-18	Dunite	4	55.3	0.04	0.13	0.08	0.92	0.03	18.4	24.7	0.02	0.00	0.00	99.6	97.3
KZ14-09	Harzburgite-dunite	1	54.0	0.09	1.83	1.21	2.37	0.04	18.4	21.5	0.41	0.00	0.06	99.9	93.3
KZ14-24	Harzburgite	2	53.2	0.02	2.07	0.83	2.09	0.06	17.6	23.3	0.02	0.00	0.03	99.2	93.8
KZ14-01	Harzburgite	6	53.1	0.02	2.27	0.98	2.16	0.09	17.5	22.9	0.17	0.01	0.06	99.2	93.6
KZ14-08	Harzburgite	2	53.3	0.06	2.42	1.00	2.25	0.09	17.8	22.6	0.14	0.00	0.02	99.6	93.4
KZ14-10	Harzburgite	2	53.9	0.03	2.29	1.12	2.61	0.04	18.3	21.2	0.25	0.00	0.05	99.9	92.7
KZ14-11	Harzburgite	6	52.7	0.04	2.51	1.25	2.15	0.03	17.6	22.2	0.32	0.00	0.03	98.7	93.6
KZ14-13	Harzburgite	4	52.9	0.04	1.72	0.56	2.30	0.05	18.0	22.7	0.03	0.01	0.09	98.4	93.4
Purang, China	ı														
PL14-5-20	Disseminated chromitite	3	54.2	0.00	0.77	0.49	1.53	0.09	17.5	25.0	0.07	0.00	0.08	99.7	95.4
PL14-5-18	Disseminated chromitite	5	50.9	0.11	3.47	0.97	1.78	0.05	15.7	25.0	0.33	0.02	0.05	98.4	94.1
PL14-3-1	Dunite	5	51.0	0.36	4.00	1.42	2.19	0.05	15.5	24.4	0.53	0.00	0.04	99.5	92.7
PL14-5-23	Dunite	2	50.6	0.06	2.79	0.96	1.86	0.05	16.0	24.5	0.26	0.00	0.02	97.2	93.9
PL14-5-22	Dunite	5	51.4	0.08	3.04	1.25	1.79	0.03	15.9	24.9	0.25	0.00	0.02	98.7	94.1
PL14-5-21	Dunite	4	51.5	0.07	3.47	1.36	1.94	0.06	16.0	24.4	0.30	0.00	0.06	99.2	93.7
PL14-5-14	Dunite	1	51.4	0.12	3.06	0.99	2.05	0.02	16.3	24.6	0.21	0.00	0.06	98.9	93.4
PL14-5-10	Dunite	1	53.8	0.03	1.06	0.78	1.55	0.03	17.3	24.0	0.23	0.01	0.12	99.0	95.3
PL14-5-4	Harzburgite	3	52.4	0.10	2.67	0.97	1.77	0.06	16.9	24.1	0.07	0.01	0.02	99.0	94.5

Note: * from Ahmed and Arai (2002). ** from Melcher et al. (1997). No., number of analyses.

Sample	Rock type	Ti	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
KZ14-01	Harzburgite	145	0.55	1.19	0.42	0.35	0.25	1.45	1.50	0.40	1.31	0.19	0.70	0.18	0.56	0.16	0.74	0.16
KZ14-23	Harzburgite	155	0.64	1.09	0.44	0.41	0.28	1.49	1.76	0.45	1.53	0.21	0.86	0.21	0.54	0.17	0.83	0.17
KZ14-25	Harzburgite	106	0.37	0.82	0.28	0.26	0.20	1.15	1.40	0.35	1.16	0.18	0.71	0.18	0.50	0.16	0.68	0.17
KZ15-09	Harzburgite-dunite	510	0.66	3.54	0.43	0.37	0.25	1.43	1.47	0.40	1.33	0.20	0.75	0.18	0.56	0.16	0.75	0.15
KZ15-10	Disseminated chromitite	1001	4.50	5.64	0.37	0.34	0.25	1.43	1.68	0.50	1.66	0.29	1.18	0.28	0.73	0.24	1.12	0.26
KZ14-27-1	Banded chromitite	1031	10.5	8.07	0.27	0.60	0.19	1.19	1.21	0.31	1.30	0.23	1.37	0.35	0.89	0.18	1.08	0.21
KZ14-32-1	Banded chromitite	449	0.87	4.79	0.39	0.36	0.26	1.49	1.70	0.45	1.47	0.22	0.89	0.22	0.75	0.19	1.10	0.20
KZ15-37	Nodular chromitite	366	11.3	12.1	0.35	0.69	0.23	1.39	1.48	0.39	1.39	0.27	1.88	0.47	1.33	0.20	1.38	0.20
KZ15-38	Massive chromitite	390	2.38	6.44	0.33	0.28	0.20	1.16	1.36	0.34	1.30	0.22	1.22	0.31	0.92	0.20	1.17	0.21
KZ15-21	Massive chromitite	437	2.50	8.03	0.43	0.39	0.27	1.47	1.68	0.43	1.39	0.20	1.30	0.32	1.01	0.17	1.26	0.19
KZ14-32-2	Massive chromitite	1064	10.7	9.37	0.29	0.46	0.21	1.21	1.30	0.37	1.31	0.23	1.69	0.39	1.14	0.18	1.13	0.19
KZ14-38	Massive chromitite	680	5.59	7.40	0.46	0.42	0.28	1.47	1.69	0.46	1.34	0.20	0.99	0.24	0.78	0.17	1.30	0.17
CIC15-13	Massive chromitite	498	4.10	3.98	0.80	0.64	0.50	2.68	2.94	0.75	2.50	0.37	1.24	0.34	0.94	0.31	1.43	0.29
CIC15-10	Massive chromitite	485	4.73	3.27	0.33	0.32	0.21	1.19	1.38	0.38	1.18	0.18	0.67	0.18	0.49	0.15	0.74	0.14

Table 2. Trace element compositions of clinopyroxene associated with chromite in chromitites and peridotites from Kızıldağ and Kars ophiolites.

	1 1	15	δ ⁷ Li		Li	
Sample	Rock type	Mineral	(‰)	1se	(ppm)	1se
KZ14-32-2	Massive chromitite	Cpx	-1.39	1.07	0.29	0.00
		Cpx	-29.9	0.55	1.28	0.00
		Cpx	-10.5	0.69	1.87	0.02
		Срх	-11.7	0.55	1.90	0.02
		Cpx	-10.8	0.61	2.15	0.02
		Срх	-8.55	0.51	2.52	0.02
KZ15-38	Massive chromitite	Cpx-rim	-0.99	1.12	1.77	0.02
		Cpx-core	6.54	1.62	0.65	0.01
		Cpx-rim	0.34	1.38	0.46	0.01
		Cpx-single	-0.67	1.27	0.61	0.00
		Cpx-core	0.93	1.14	0.33	0.00
		Cpx-rim	-5.02	1.36	0.63	0.00
KZ14-38	Massive chromitite	Срх	-1.78	1.42	0.48	0.00
		Срх	1.62	1.60	0.49	0.02
		Срх	-9.11	0.37	6.70	0.03

Table 3. Li isotopic compositions of clinopyroxene in Kızıldağ chromitites.

Table 4. Water contents (ppm) of olivine (Ol), clinopyroxene (Cpx) and orthopyroxene (Opx) in rocks of the Kızıldağ ophiolite, Turkey.

Sample	Rock type	Mineral	Grain No.	H_2O
KZ14-23	Harzburgite	Ol	2	udl
		Opx	12	113
KZ15-09	Harzburgite-dunite transition	Ol	18	9
		Opx	13	59
KZ15-16	Dunite	Ol	12	24
KZ14-40	Dunite	Ol	13	42
KZ15-10	Disseminated chromitite	Ol	12	17
KZ14-32	Banded chromitite	Ol	12	19
		Срх	3	366
		Opx	14	74
KZ15-23	Anti-nodular chromitite	Ol	10	24
KZ15-38	Massive chromitite	Ol	10	48
		Срх	13	801
KZ15-21	Massive chromitite	Ol	12	53

Note: ndl, under detection limit.