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ABSTRACT
Rationale: Alveolar type II (ATII) cells act as adult stem cells contributing to alveolar type I (ATI) cell
renewal and play a major role in idiopathic pulmonary fibrosis (IPF), as supported by familial cases
harbouring mutations in genes specifically expressed by these cells. During IPF, ATII cells lose their
regenerative potential and aberrantly express pathways contributing to epithelial–mesenchymal transition
(EMT). The microRNA miR-200 family is downregulated in IPF, but its effect on human IPF ATII cells
remains unproven. We wanted to 1) evaluate the characteristics and transdifferentiating ability of IPF ATII
cells, and 2) test whether miR-200 family members can rescue the regenerative potential of fibrotic ATII
cells.
Methods: ATII cells were isolated from control or IPF lungs and cultured in conditions promoting their
transdifferentiation into ATI cells. Cells were either phenotypically monitored over time or transfected
with miR-200 family members to evaluate the microRNA effect on the expression of transdifferentiation,
senescence and EMT markers.
Results: IPF ATII cells show a senescent phenotype (p16 and p21), overexpression of EMT (ZEB1/2) and
impaired expression of ATI cell markers (AQP5 and HOPX) after 6 days of culture in differentiating
medium. Transfection with certain miR-200 family members (particularly miR-200b-3p and miR-200c-3p)
reduced senescence marker expression and restored the ability to transdifferentiate into ATI cells.
Conclusions: We demonstrated that ATII cells from IPF patients express senescence and EMT markers,
and display a reduced ability to transdifferentiate into ATI cells. Transfection with certain miR-200 family
members rescues this phenotype, reducing senescence and restoring transdifferentiation marker expression.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a devastating progressive fibrotic disease of the lungs, leading to
chronic respiratory failure and death within 2–5 years from diagnosis in most patients [1]. Gradual loss of
lung function and increased exercise limitation correspond to progressive spreading of the typical
histopathological findings that show the usual interstitial pneumonia pattern, which is characterised by
patchy involvement of distal airways and lung parenchyma with areas of alveolar damage and fibrotic
remodelling [2].

Despite the recent introduction of two antifibrotic drugs for the treatment of IPF, lung transplantation
remains the only intervention able to improve survival [3]. The incidence of IPF increases with age and
ageing-related mechanisms such as cellular senescence may be pathogenic drivers [2]. Prior studies
focused on activated fibroblasts to induce excessive deposition of extracellular matrix that causes fibrosis
and scarring for targeting therapy [4]; nevertheless, recent evidence suggests that alveolar type II (ATII)
cells may have a central role in the pathogenesis of IPF due to a loss of regenerative potential [5, 6]. A
pathogenetic relationship between ATII cell dysfunction and the development of scarring is indicated by
the discovery that patients with familial pulmonary fibrosis harbour mutations in genes that are
specifically expressed in ATII cells [7]. These data suggest that alveolar epithelial dysfunction may be a key
driver to induce the fibrotic response [8, 9].

In normal lung which has been injured, ATII cells act as stem cells that enhance alveolar type I (ATI) cell
renewal through transdifferentiation [10]. Conversely, ATII cells isolated from IPF patient lung explants
showed impaired in vitro colony-forming capacity that suggests ATII stem cell failure [11].
Immunohistochemistry staining of IPF lung specimens shows aberrant activation of major developmental
pathways (e.g. canonical Wnt/β-catenin signalling, zinc finger E-box binding homeobox 1 (ZEB1),
transforming growth factor (TGF)-β and β-tubulin III) [12, 13].

All these pathways contribute to dysfunction of epithelial–mesenchymal transition (EMT) in the alveolar
epithelium, which is a possible pathogenic mechanism that leads to pneumocyte loss, myofibroblast
accumulation and lung fibrosis [14, 15], although the role of EMT in murine models is less established [16].
Aberrant EMT can also be triggered by ageing-related mechanisms, including alveolar epithelial cell injury
alone [17], endoplasmic reticulum stress and unfolded protein response [18], overexpression of TGF-β [19],
and premature apoptosis of ATII cells [14], as well as through the differential expression of microRNAs
(miRNAs) [20].

Interestingly, these pathways have been shown to be controlled by miR-200 family members [21]. YANG

et al. [22] demonstrated that miR-200 family members are significantly downregulated in the lungs of both
mice with bleomycin-induced pulmonary fibrosis and patients with IPF. Furthermore, they reported that
introduction of miR-200c into the lungs diminishes experimental pulmonary fibrosis in mice, suggesting
that restoring miR-200c levels may be a novel approach for treating lung fibrosis [22]. Nevertheless, the
similarity of the bleomycin-induced lung fibrosis model with IPF is frequently questioned [23] and the
applicability of miRNA mimics in humans has yet to be proven [24].

The availability of human ATII cells isolated from explanted IPF lungs provides a unique opportunity to
study the effect of different miRNAs on alveolar epithelial cells [25, 26]. Herein, we provide evidence of
the failure of human ATII cells harvested from patients with IPF to transdifferentiate into ATI cells when
compared with ATII cells obtained from healthy normal human subjects. Secondly, we evaluate whether
the miR-200 family can restore normal regenerative function in exhausted senescent IPF pneumocytes.

Methods
Human lung tissue from unidentified patients with IPF or recently deceased donors was obtained from the
Lung Tissue Bank at Temple Lung Center (Dept of Thoracic Medicine and Surgery, Temple University,
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Philadelphia, PA, USA). ATII cells were isolated as we previously described [26], obtaining a yield of
2–3×106 and 2–6×104 cells·g−1 (wet weight) for controls and IPF lungs, respectively. Purity of the cells, as
assessed by flow cytometry and immunostaining, is shown in supplementary figures S1 and S2. The
selected donors had a reasonable lung function: an arterial oxygen tension/inspiratory oxygen fraction
ratio of >250, limited time on a ventilator, a clinical history and radiography that did not reveal infection.

Institutional written informed consent was obtained for each lung specimen studied which was donated
for lung research from patients undergoing lung transplantation for IPF or from family members for
brain-dead normal subjects whose family members donated lung tissue for human research from the Gift
of Life Donor Program (control). The study was approved by the Institutional Review Board (approval
4407) at Partners Healthcare and Temple University, and conformed to the Declaration of Helsinki
protocols. ATII cells were harvested and grown in culture from lungs of either patients affected by
end-stage IPF or recently deceased human donors whose lungs were not suitable for transplantation.
Patients’ data are reported in supplementary table S1.

Alveolar epithelial cell culture
The isolated ATII cells were resuspended in DMEM supplemented with 10% fetal bovine serum (FBS),
2 mM glutamine, 2.5 μg·mL−1 amphotericin B, 100 U·mL−1 penicillin, 100 μg·mL−1 streptomycin and
10 μg·mL−1 gentamicin (all reagents from Thermo Fisher Scientific, Waltham, MA, USA), and plated on
plates previously coated with rat tail collagen (200000 cells per well in 96-well plates). To transdifferentiate
the ATII cells to ATI cells, the cells were kept in DMEM and 10% FBS for 2 days, and cultured in DMEM
supplemented with 5% FBS in addition to glutamine, amphotericin B, streptomycin, penicillin and
gentamicin. The culture medium was replaced every other day. These culture conditions promote the
transdifferentiation of ATII cells into ATI cells, as we previously described [25, 26].

Cell transfection with small interfering RNA and miRNA
All small interfering RNAs (siRNAs) (siGENOME siRNAs) and all miRNAs (miRIDIAN miRNA mimics)
were purchased from Dharmacon (Lafayette, CO, USA). In order to identify the best transfection
conditions, ATII cells were plated in 96-well plates and cultured as previously described. ATII cell
transfection was performed using DMEM and 5% FBS without antibiotics and according to a standard
forward transfection protocol with either a scramble siRNA (siScr; Dharmacon D-001210-0X), designed
not to target any known human genes, or an siRNA targeting the polyubiquitin C gene (siUBC;
Dharmacon M-019408-01) at a final concentration of 50 nM. Two different amounts of transfection
reagent (Lipofectamine RNAiMAX; Thermo Fisher Scientific) were tested, i.e. 0.4 or 0.6 μL, in a final
volume of 150 μL. Briefly, the reagent was diluted in Opti-MEM (Thermo Fisher Scientific), added to the
siRNA and, after 30 min of incubation at room temperature, the transfection mix was added to the cells.
At 12 h after transfection the medium was replaced by fresh medium. ATII cells were fixed after an additional
3 days for the assessment of transfection efficiency. The siUBC targets the polyubiquitin C gene that is
essential for cell survival; thus the efficiency of transfection was assessed as we previously described [27]. The
setup experiment led to the identification of the condition which utilises 0.6 μL of the transfection reagent as
the most efficient (transfection efficiency >80%). The miRNA transfection was performed as described earlier,
using the miRNA mimics corresponding to the 11 members of the miR-200 family and the miRNA mimic
negative controls, which have minimal sequence identity in the human genome. Cells were either fixed for
immunofluorescence analysis or lysed in TRIzol reagent (Thermo Fisher Scientific) for subsequent gene
expression analysis, 6 days after transfection.

RNA isolation and quantitative real-time PCR
Total RNA from either freshly isolated or cultured ATII cells was extracted with TRIzol reagent according
to the manufacturer’s instructions. RNA concentration was assessed by means of a NanoDrop
fluorospectrometer (Thermo Fisher Scientific), 1 μg was treated with DNase I (Roche Diagnostic,
Indianapolis, IN, USA) and reverse transcription was performed with Moloney murine leukaemia virus
reverse transcriptase (Thermo Fisher Scientific) in the presence of hexameric random primers (Thermo
Fisher Scientific). Gene expression analysis was performed by SYBR Green technology using the GoTaq
qPCR master mix (Promega, Madison, WI, USA) on a CFX96 Touch real-time PCR detection system
(Bio-Rad, Hercules, CA, USA). The relative expression levels were calculated according to the 2−ΔCt

method, by using the equation ΔCt=Ct(target)−Ct(housekeeping). The housekeeping gene glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used for normalisation.

Immunofluorescence
Cells were fixed with 4% paraformaldehyde for 10 min, permeabilised with 0.1% Triton X-100 (Sigma, St
Louis, MO, USA) diluted in PBS solution for 10 min, followed by blocking in 2% bovine serum albumin
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(Roche Diagnostic) for 2 h at room temperature. Cells were then stained overnight at 4°C with the
following primary antibodies diluted in blocking solution: anti-AQP5 1:100 (clone EPR3747; Abcam,
Cambridge, UK), anti-pro-SPC 1:1000 (Millipore, Burlington, MA, USA), anti-p21 1:100 (clone C-19;
Santa Cruz Biotechnology, Dallas, TX, USA) and anti-Ki-67 (clone D3B5; Cell Signaling Technology,
Danvers, MA, USA). Cell were washed with PBS and incubated for 2 h with the respective secondary
antibodies conjugated to Alexa Fluor 594 (Thermo Fisher Scientific). Cell nuclei were counterstained with
Hoechst 33342 (Thermo Fisher Scientific).

Image acquisition and analysis
Image acquisition was performed using an ImageXpress Micro (Molecular Devices, San Jose, CA, USA)
automated high-content screening fluorescence microscope at ×10 magnification; a total of 16 images were
acquired per wavelength. Image analysis was performed using MetaXpress (Molecular Devices).

Statistical analysis
All data are presented as mean with standard deviation. Statistical analysis was performed using Prism
version 6 (GraphPad, San Diego, CA, USA) considering a p-value <0.05 as statistically significant. For
gene expression analysis at a single time-point, statistical significance of the differences between groups
was determined using the unpaired t-test. For multiple group comparison (more than two), results were
analysed using ANOVA followed by Fisher’s least significant difference test. For gene expression and
immunofluorescence analysis among the time-points within each group and among the groups within
each time-point, we used two-way ANOVA followed by Šídák’s multiple comparison post hoc test.

Results
ATII cells harvested from IPF patients show a senescent phenotype and impaired expression of
epithelial markers
ATII cells expressed negligible levels of ATI markers, including aquaporin 5 (AQP5) and HOP homeobox
(HOPX) [10]; no significant differences were observed between control and IPF cells (figure 1a and b). In
contrast, we detected significantly reduced levels of ATII cell markers, namely pro-surfactant protein C
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FIGURE 1 Quantitative analysis of differentiation and senescence markers in freshly isolated alveolar type II (ATII) cells from control and idiopathic
pulmonary fibrosis (IPF) lungs. Real-time quantification of the expression levels of the following genes in ATII cells harvested from control (n=6)
and IPF (n=6) patients: a) aquaporin 5 (AQP5), b) HOP homeobox (HOPX), c) surfactant protein C (SFTPC), d) surfactant protein A1 (SFTPA1), e) zinc
finger E-box binding homeobox 1 (ZEB1), f ) zinc finger E-box binding homeobox 2 (ZEB2), g) cyclin dependent kinase inhibitor 1A (CDKN1A) and
h) cyclin dependent kinase inhibitor 2A (CDKN2A). Data are presented as mean±SD relative expression normalised to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). NS: nonsignificant; *: p<0.05; **: p<0.01.
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(pro-SPC; SFTPC) and surfactant protein A1 (SFTPA1), in IPF when compared with control cells (figure
1c and d). In addition, IPF cells expressed abundant levels of zinc finger E-box binding homeobox 1
(ZEB1) and 2 (ZEB2), both markers of EMT (figure 1e and f). Finally, these cells also exhibited
significantly increased levels of the cell cycle inhibitors cyclin dependent kinase inhibitor 1A (CDKN1A)
and 2A (CDKN2A), coding for the proteins p21 and p16, respectively (figure 1g and h).

ATII cells harvested from IPF patients fail to efficiently transdifferentiate into ATI cells in culture
IPF and control ATII cells were isolated and subsequently cultured on rat tail collagen-coated dishes to
promote their transdifferentiation into ATI cells [25] with subsequent characterisation of their markers
over the following 6 days. While AQP5 and HOPX were significantly upregulated over time in control cells,
IPF cells had negligible expression of either marker nor were they increased over time (figure 2a and b).
Inversely, the ATII markers SFTPC and SFTPA1 were progressively downregulated over time, with very low
expression at day 6, while IPF cells consistently showed low expression (figure 2c and d). The EMT
markers ZEB1 and ZEB2 were expressed in cultured control cells and remained high in IPF cells, with a
peak of ZEB1 expression at day 6 (figure 2e and f). As expected, the senescence markers CDKN1A and
CDKN2A progressively increased in expression over time in both control and IPF cells, although the IPF
cells expressed significantly higher levels of both proteins, with the highest increase for p16 (figure 2g and h).

We validated the expression of several proteins by immunofluorescence in cells from at least three patients
per condition, by quantifying the percentage of positive cells. Consistent with the mRNA data, at day 2
control cells expressed higher pro-SPC (coded by the SFTPC gene) levels compared with IPF cells and
both progressively downregulated expression of these markers (figure 3a and b). In contrast, AQP5 was
nearly undetectable in both control and IPF cell lines at day 2, and was progressively upregulated, reaching
a significantly higher level in control compared with IPF cells at day 6 (figure 3c and d). The senescence
marker p21 was also progressively upregulated in both control and IPF cells over the 6 days, with a
significantly higher expression in IPF cells compared with control (figure 3e and f). The coexpression of
p21 and SPC in ATII cells from IPF lungs at day 2 is shown in supplementary figure S3. Consistently, the
expression of marker of proliferation Ki-67, which labels proliferating cells, was reduced in IPF cells
compared with controls at all time-points, with marked differences at days 4 and 6 (figure 3g and h).

miRNA-200 family members enhance IPF ATII cell transdifferentiation into ATI cells and reverse
senescence without rescuing proliferation
We tested the effect of various members of the miRNA-200 family on ATII cells isolated from four IPF
patients, divided into two pools, by transfecting miRNA on day 2 and assessing the expression of
differentiation and senescence-associated genes on day 8. We identified four interesting miRNAs that
regulate the expression of markers of ATII cell transdifferentiation and senescence, and validated them in
an additional four IPF patients. These selected miRNAs contained very similar seed sequences, with the
seed sequence of miR-200b/c-3p, AAUACU, differing from the seed sequence of miR-200a/141-3p,
AACACU, by only one nucleotide (figure 4a). All four miRNAs significantly downregulated their direct
and validated targets ZEB1 and ZEB2 [12, 28], which are also implicated in EMT (figure 4b and c).

Interestingly, miR-200b-3p and miR-200c-3p, which share the same seed sequence, were most effective in
promoting the expression of AQP5 (figure 4d and e), consistent with their capacity to foster
transdifferentiation of ATII into ATI cells. A similar trend, although less pronounced, was observed for the
additional ATI cell marker HOPX (figure 4f). No significant difference in the expression of ATII markers
was induced by any of the tested miRNAs.

In contrast, miR-200a-3p and miR-141-3p, which also share the same seed sequence, markedly reduced
the expression of the senescence-associated genes CDKN1A and CDKN2A, coding for p21 and p16,
respectively (figure 4g–i). However, no significant difference in the proliferation rate of ATII cells, as
assessed by immunofluorescence staining for Ki-67, was observed upon treatment with any of the miRNAs
(figure 4j).

Discussion
Our study provides the first characterisation of human ATII cells harvested from explanted lungs of
patients with IPF who underwent lung transplantation in comparison with control ATII cells isolated from
organ donors. We used an established protocol to obtain a pure population of ATII cells from human
lungs [26] and harvested these cells from patients with end-stage IPF. This gave us the unique opportunity
to culture cells that until now were considered too fragile to be isolated from the extremely fibrotic
end-stage IPF lungs and establish a viable culture. Culturing these so-called “fibrotic” human ATII cells [29]
in conditions favouring their transdifferentiation to ATI allowed us to study both their gene and protein
expression, as well as their ability to transdifferentiate to ATI cells. Furthermore, we transfected ATII cells
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FIGURE 2 Time-course analysis of differentiation and senescence markers in alveolar type II (ATII) cells upon
ex vivo transdifferentiation into alveolar type I (ATI) cells. IPF: idiopathic pulmonary fibrosis. Real-time
quantification of the expression levels of the following genes in ATII cells harvested from control (n=6) and IPF
(n=6) patients and kept in culture for 2, 4 and 6 days in conditions promoting their transdifferentiation into ATI
cells: a) aquaporin 5 (AQP5), b) HOP homeobox (HOPX), c) surfactant protein C (SFTPC), d) surfactant protein
A1 (SFTPA1), e) zinc finger E-box binding homeobox 1 (ZEB1), f ) zinc finger E-box binding homeobox 2 (ZEB2),
g) cyclin dependent kinase inhibitor 1A (CDKN1A) and h) cyclin dependent kinase inhibitor 2A (CDKN2A). Data
are presented as mean±SD relative expression normalised to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). *: p<0.05; **: p<0.01; ***: p<0.001.
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FIGURE 3 Validation by immunofluorescence of the expression of differentiation and senescence markers in
alveolar type II cells upon ex vivo transdifferentiation into alveolar type I cells. SPC: surfactant protein C; IPF:
idiopathic pulmonary fibrosis; AQP5: aquaporin 5. a) Quantification of cells expressing pro-SPC at day 2, 4 and
6 of culture in differentiating conditions obtained from control (n=6) and IPF (n=6) patients. b) Representative
images of cells expressing pro-SPC (red) after 2 days of culture in differentiating conditions. c) Quantification
of cells expressing AQP5 as in (a). d) Representative images of cells expressing AQP5 (red) after 6 days of
culture in differentiating conditions. e) Quantification of cells expressing p21 as in (a). f ) Representative
images of cells expressing p21 as in (d). g) Quantification of cells expressing marker of proliferation Ki-67 as
in (a). h) Representative images of cells expressing Ki-67 as in (d). Data are presented as mean±SD
percentage of positive cells. *: p<0.05; **: p<0.01; ***: p<0.001. Nuclei are stained in blue with Hoechst 33342.
Scale bar: 100 μm.
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FIGURE 4 Effect of miR-200 family members on the differentiation, senescence and proliferation of alveolar type II (ATII) cells from idiopathic
pulmonary fibrosis patients. miRNA: microRNA. a) Sequences of the selected miR-200 family members, with indication of the seed sequence and
the unique single nucleotide difference between miR-200b/c-3p and miR-200a/141-3p, highlighted in green and red, respectively. b, c) Real-time
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with an miRNA family found to be downregulated in IPF. Consistent with our hypothesis, our results
showed that ATII cells derived from IPF patients display higher levels of senescence and EMT markers and
inability to transdifferentiate into ATI cells [30]. Our observation further confirms the hypothesis that ATII
cells in IPF are exhausted and unable to transdifferentiate into ATI cells, although the role of senescence in
modulating ATII into ATI differentiation is still unclear [31].

Our results are supported by the findings of XU et al. [32] who used single-cell RNA sequencing to
demonstrate that human epithelial cells from IPF lungs follow an abnormal differentiation programme that
leads to a disrupted alveolar architecture. Available data indicates that cells derived from IPF lung tissue
suppress the miRNA processing machinery, which leads to a global miRNA dysregulation that favours
progressive lung scarring [33].

A number of miRNA networks have been implicated in the complex pathogenesis of IPF [34], among
them the miR-200 family members which are dysregulated in fibrotic alveolar epithelial cells [22].
Importantly, our study supports previous publications showing a critical role of the miR-200 family
members in regulating multiple aspects of ATII cell physiology in IPF. It is known that levels of miR-200
family members are reduced in the lungs of IPF patients and are downregulated in the lungs of mice with
experimental lung fibrosis [22]. PECOT et al. [35] showed that miR-200 family members can either limit or
reverse the progression of experimental lung fibrosis.

Our predominant finding is that specific members of the miR-200 family induce transdifferentiation of
primary human IPF ATII cells into ATI cells. To demonstrate this, we transfected IPF ATII cells with
synthetic mimics of the entire miR-200 family and were able to demonstrate that two miRNAs, i.e.
miR-200b-3p and miR-200c-3p, are able to restore the capability of exhausted senescent IPF ATII cells to
transdifferentiate into ATI cells. Probably, we are the first to demonstrate that diseased “fibrotic” and
exhausted human ATII cells obtained from end-stage IPF may improve their ability to transdifferentiate
into ATI cells when transfected with miR-200 family members.

A further finding of our study was that two additional miR-200 family members, i.e. miR-200a-3p and
miR-141-3p, significantly reduce the expression of senescence markers in IPF ATII cells, without reverting
their inability to proliferate. To what extent this is due to either intrinsic properties of primary human
ATII cells, which spontaneously tend to become ATI cells when put in culture, or to the culture
conditions promoting transdifferentiation rather than proliferation is still an open question [36, 37].

miRNAs are key players in the transdifferentiation of somatic cells by regulating gene expression in
development, tissue regeneration and disease [38]. As regulatory molecules, miRNAs may be involved not
only in the processes of cell proliferation and apoptosis, but also in EMT. Recently it was demonstrated
that the miR-200 family, upregulated in human fetal lung, promotes differentiation of epithelial alveolar
cells by targeting ZEB1 and ZEB2 [39]. Transcription factors of the ZEB protein family form a
double-negative feedback loop with several miRNAs, predominantly miR-200 family members, which
control EMT and mesenchymal-to-epithelial programmes during repair that normally generate fibroblasts
and other related cells in order to reconstruct tissue following injury [40]. Previous evidence indicates that
miR-200a–c inhibit EMT [22], which is in line with our experiments showing that the same miRNAs
downregulate ZEB1/2. We have observed that miR-200a blocks EMT without increasing
transdifferentiation, while miR-200b and miR-200c block EMT and increase transdifferentiation. This
suggests that the inhibition of EMT is not sufficient for induction of transdifferentiation.

The observation that the miR-200 family is downregulated in human IPF lungs [12], together with our
results, supports the perspective for an expanding view of the role of miRNA cellular reprogramming in
the pathogenesis of IPF. The failure of ATII cells to complete the normal re-epithelisation process after
injury may be a key mechanism leading to pulmonary fibrosis. While it is emerging that the dysregulation
of miRNAs plays an important role in the development of IPF, they may also serve as potent tools to
rescue the pathological process of injury and the response of aberrant repair that is observed in patients
with IPF. The fact that some members of the miR-200 family are able to promote ATII cell
transdifferentiation to ATI cells without stimulating cell proliferation suggests a possible therapeutic
strategy to rescue the regeneration process.

quantification of the expression of the described targets zinc finger E-box binding homeobox 1 (ZEB1) and 2 (ZEB2) at day 8 after the delivery of
the indicated miRNAs. d) Real-time quantification and e) representative images of the expression of aquaporin 5 (AQP5) at day 8 after the delivery
of the indicated miRNAs. f ) Real-time quantification of the expression of HOP homeobox (HOPX) at day 8 after the delivery of the indicated
miRNAs. g) Real-time quantification and h) representative images of the expression of cyclin dependent kinase inhibitor 1A (CDKN1A, p21) at day 8
after the delivery of the indicated miRNAs. i) Real-time quantification of the expression of cyclin dependent kinase inhibitor 2A (CDKN2A) at day 8
after the delivery of the indicated miRNAs. j) Quantification of marker of proliferation Ki-67+ cells at day 8 after the delivery of the indicated
miRNAs. Data are presented as mean±SD expressed as fold change over mock (cells transfected with lipid only). NS: nonsignificant; *: p<0.05;
**: p<0.01; ***: p<0.001. Nuclei are stained blue with Hoechst 33342. Scale bar: 50 μm.
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Conclusions
Our study pioneers the isolation and culture of ATII cells from human fibrotic lungs that are a valuable
resource for comparative biology experiments and effective translational treatments of IPF. Moreover, we
describe the phenotype of ATII cells from patients with IPF and how this may be rescued with miR-200
family members. We demonstrated that ATII cells from IPF patients express senescence and EMT
markers, and display a reduced ability to transdifferentiate into ATI cells. Transfection with certain
miR-200 family members rescues this phenotype, reducing senescence and restoring transdifferentiation
marker expression.

Acknowledgements: The authors are grateful to the staff (Sudhir Bolla and Chenna Mandapati) of the Lung Tissue Bank
at Temple University (Philadelphia, PA, USA) for providing the human lung specimens.

Author contributions: S. Moimas and F. Salton designed, discussed, conceived and performed the study experiments,
participated in cell transfection and microscopy, collected data, produced figures, and helped to draft the
manuscript. B. Kosmider and K. Bahmed participated in the study design, performed cell isolation and purification,
shared expertise in assays, and produced figures. N. Ring and M.C. Volpe performed study experiments, microscopy,
data collection and statistical analysis, produced figures, and reviewed the final manuscript. L. Braga, M. Rehman,
S. Vodret and M.L. Graziani assisted in the design of the study, participated in the experiments and reviewed the final
manuscript. N. Marchetti, T.J. Rogers and M.R. Wolfson participated in the study design, coordinated study procedures,
and selected and collected lung samples. M. Giacca assisted in the design of the study, provided reagents and other
resources, and reviewed the drafted manuscript. M. Confalionieri, S. Zacchigna and G.J. Criner conceived the study and
participated in its design, drafted the manuscript, and were responsible for the supervision of the project. All authors
read and approved the final manuscript.

Conflict of interest: None declared.

Support statement: This work was supported by a Fondazione CRTrieste grant (2016.0045) and a US National Institutes
of Health grant (NIH R01 HL118171). The funding institutions played no role in the design of the study and collection,
analysis or interpretation of data, or in writing the manuscript. Funding information for this article has been deposited
with the Crossref Funder Registry.

References
1 Schwartz DA, Helmers RA, Galvin JR, et al. Determinants of survival in idiopathic pulmonary fibrosis. Am J

Respir Crit Care Med 1994; 149: 450–454.
2 Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet 2017; 389: 1941–1952.
3 Kumar A, Kapnadak SG, Girgis RE, et al. Lung transplantation in idiopathic pulmonary fibrosis. Expert Rev Respir

Med 2018; 12: 375–385.
4 Noble PW, Homer RJ. Idiopathic pulmonary fibrosis. New insights into pathogenesis. Clin Chest Med 2004; 25:

749–758.
5 Naikawadi RP, Disayabutr S, Mallavia B, et al. Telomere dysfunction in alveolar epithelial cells causes lung

remodeling and fibrosis. JCI Insight 2016; 1: e86704.
6 Selman M, Lopez-Otin C, Pardo A. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary

fibrosis. Eur Respir J 2016; 48: 538–552.
7 Kropski JA, Lawson WE, Yong LR, et al. Genetic studies provide clues on the pathogenesis of idiopathic

pulmonary fibrosis. Dis Model Mech 2013; 6: 9–17.
8 Maitra M, Wang Y, Gerard RD, et al. Surfactant protein A2 mutations associated with pulmonary fibrosis lead to

protein instability and endoplasmic reticulum stress. J Biol Chem 2010; 285: 22103–22113.
9 Thomas AQ, Lane K, Phillips J 3rd, et al. Heterozygosity for a surfactant protein C gene mutation associated with

usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am J Respir Crit
Care Med 2002; 165: 1322–1328.

10 Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 2013;
123: 3025–3036.

11 Liang J, Zhang Y, Xie T, et al. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor
cell renewal and prevent severe pulmonary fibrosis in mice. Nat Med 2016; 22: 1285–1293.

12 Chilosi M, Caliò A, Rossi A, et al. Epithelial to mesenchymal transition-related proteins ZEB1, beta-catenin, and
beta-tubulin-III in idiopathic pulmonary fibrosis. Mod Pathol 2017; 30: 26–38.

13 Chilosi M, Poletti V, Zamo A, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary
fibrosis. Am J Pathol 2003; 162: 1495–1502.

14 Kim KK, Wei Y, Szekeres C, et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to
promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 2009; 119: 213–224.

15 Marmai C, Sutherland RE, Kim KK, et al. Alveolar epithelial cells express mesenchymal proteins in patients with
idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2011; 301: L71–L78.

16 Rock JR, Barkauskas CE, Cronce MJ, et al. Multiple stromal populations contribute to pulmonary fibrosis without
evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA 2011; 108: E1475–E1483.

17 Kasper M, Barth K. Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep 2017;
37: BSR20171301.

18 Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of
idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2012; 302: L721–L729.

19 Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112:
1776–1784.

20 Aravinthan A. Cellular senescence: a hitchhiker’s guide. Hum Cell 2015; 28: 51–64.

https://doi.org/10.1183/23120541.00138-2019 10

INTERSTITIAL LUNG DISEASE | S. MOIMAS ET AL.

https://www.crossref.org/services/funder-registry/


21 Nho RS. Alteration of aging-dependent microRNAs in idiopathic pulmonary fibrosis (IPF). Drug Dev Res 2015;
76: 343–353.

22 Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol 2012; 180:
484–493.

23 Williamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycin-induced lung injury in animals and its
applicability to human idiopathic pulmonary fibrosis. Exp Lung Res 2015; 41: 57–73.

24 Garg M. Emerging role of microRNAs in cancer stem cells: implications in cancer therapy. World J Stem Cells
2015; 7: 1078–1089.

25 Kosmider B, Mason RJ, Bahmed K. Isolation and characterization of human alveolar type II cells. Methods Mol
Biol 2018; 1809: 83–90.

26 Lin C-R, Bahmed K, Criner GJ, et al. S100A8 protects human primary alveolar type II cells against injury and
emphysema. Am J Respir Cell Mol Biol 2019; 60: 299–307.

27 Eulalio A, Mano M, Dal Ferro M, et al. Functional screening identifies miRNAs inducing cardiac regeneration.
Nature 2012; 492: 376–381.

28 Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal
transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

29 Jenkins G, Blanchard A, Borok Z, et al. In search of the fibrotic epithelial cell: opportunities for a collaborative
network. Thorax 2012; 67: 179–182.

30 Borok Z. Alveolar epithelium: beyond the barrier. Am J Respir Cell Mol Biol 2014; 50: 853–856.
31 Chilosi M, Poletti V, Rossi A. The pathogenesis of COPD and IPF: distinct horns of the same devil? Respir Res

2012; 13: 3.
32 Xu Y, Mizuno T, Sridharan A, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in

idiopathic pulmonary fibrosis. JCI Insight 2016; 1: e90558.
33 Parker MW, Rossi D, Peterson M, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop.

J Clin Invest 2014; 124: 1622–1635.
34 Pandit KV, Milosevic J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol 2015;

93: 129–137.
35 Pecot CV, Rupaimoole R, Yang D, et al. Tumour angiogenesis regulation by the miR-200 family. Nat Commun

2013; 4: 2427.
36 Borok Z, Lubman RL, Danto SI, et al. Keratinocyte growth factor modulates alveolar epithelial cell phenotype in

vitro: expression of aquaporin 5. Am J Respir Cell Mol Biol 1998; 18: 554–561.
37 Foster CD, Varghese LS, Skalina RB, et al. In vitro transdifferentiation of human fetal type II cells toward a type

I-like cell. Pediatr Res 2007; 61: 404–409.
38 Ong SG, Lee WH, Kodo K, et al. MicroRNA-mediated regulation of differentiation and trans-differentiation in

stem cells. Adv Drug Deliv Rev 2015; 88: 3–15.
39 Benlhabib H, Guo W, Pierce BM, et al. The miR-200 family and its targets regulate type II cell differentiation in

human fetal lung. J Biol Chem 2015; 290: 22409–22422.
40 Kolesnikoff N, Attema JL, Roslan S, et al. Specificity protein 1 (Sp1) maintains basal epithelial expression of the

miR-200 family: implications for epithelial-mesenchymal transition. J Biol Chem 2014; 289: 11194–11205.

https://doi.org/10.1183/23120541.00138-2019 11

INTERSTITIAL LUNG DISEASE | S. MOIMAS ET AL.


	miR-200 family members reduce senescence and restore idiopathic pulmonary fibrosis type II alveolar epithelial cell transdifferentiation
	Abstract
	Introduction
	Methods
	Alveolar epithelial cell culture
	Cell transfection with small interfering RNA and miRNA
	RNA isolation and quantitative real-time PCR
	Immunofluorescence
	Image acquisition and analysis
	Statistical analysis

	Results
	ATII cells harvested from IPF patients show a senescent phenotype and impaired expression of epithelial markers
	ATII cells harvested from IPF patients fail to efficiently transdifferentiate into ATI cells in culture
	miRNA-200 family members enhance IPF ATII cell transdifferentiation into ATI cells and reverse senescence without rescuing proliferation

	Discussion
	Conclusions

	References


