




Abstract

The current standard model of cosmology, the ΛCDM model, has proven to be

extremely successful at fitting most cosmological observations on large scales,

such as the cosmic microwave background and the large scale structure of

the Universe. Nonetheless, to be consistent, it requires the introduction of ex-

otic components: cold dark matter, which drives the gravitational evolution,

and dark energy, responsible for the observed accelerated expansion of the

Universe. Unveiling the nature of dark energy and dark matter is one of the

most challenging and elusive open questions in cosmology and fundamen-

tal physics. The ΛCDM model relies on the assumption that the growth of

structures in the Universe is driven by gravitational instability, described by

Einstein’s General Relativity (GR). Under this hypothesis, the simplest expla-

nation for the observed accelerated expansion, and the only one that does

not add new degrees of freedom, is that of a cosmological constant Λ. Its

natural interpretation as the effect of vacuum energy poses however strong

theoretical problems, such as fine tuning: the value of Λ needed to explain

the recent accelerated expansion phase must be ∼120 orders of magnitude

smaller than the value predicted by quantum field theory.

An alternative to the introduction of a cosmological constant is that GR

is not the correct theory for gravity on cosmological scales. This possibility

has prompted the development of a large number of Modified Gravity (MG)

models. Such theories foresee specific signatures on cosmological observ-

ables, that are however not detected in currently available data. Admittedly,

General Relativity has successfully passed all tests up to now, from laboratory,

to Solar System, to the recent breakthroughs provided by the observation of

gravitational waves and the imaging of the black hole in M87. As a conse-

quence, any alternative theory, in order to be viable, must satisfy very tight

constraints. One of the key targets of future generations of large scale struc-
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ture surveys, such as Euclid, DESI, LSST or WFIRST, is indeed to investigate

the nature of dark energy, and possibly disentangle between different gravity

models. In general, MG models involve the introduction of an additional fifth

force, whose behavior can be subdivided in three different regimes: on the

largest scales the background evolution must mimic ΛCDM, but with a large

deviation from GR, in order to explain the accelerated expansion without

the need of a cosmological constant. On the smallest scales, the theory must

reduce to GR: to achieve this, a screening mechanism must be introduced.

Finally, there could still be deviations from GR on intermediate scales, mak-

ing the mildly non-linear (NL) regime of structure formation particularly

suitable to test MG models.

It is therefore of crucial importance that accurate theoretical predictions

for different cosmological observables are available, and that such predic-

tions are pushed to NL scales, in order to better exploit the data coming

from future surveys. The standard, and most reliable tools employed to de-

scribe NL scales are N-body simulations. However, full N-body simulations

are computationally expensive, and even more so if they are run with mod-

ified gravity. Their use becomes impractical, even in the standard GR case,

when addressing the computation of covariance matrices of observables like

the galaxy power spectrum or two-point correlation function; in this case

thousands of realizations are required to properly populate the matrices

and suppress sampling noise. A complementary approach is provided by the

so-called approximate methods, able to quickly generate dark matter dis-

tributions and to describe the mildly-NL scales with minor compromises in

accuracy.

One such method is implemented in the P I N O C C H I O software, devel-

oped at INAF-Osservatorio Astronomico di Trieste (Monaco et al., 2002a,b,

2013), which performs simulations in the context of the ΛCDM model. Its

algorithm is based on Lagrangian perturbation theory (LPT) and ellipsoidal

collapse (EC). The main goal of this PhD work is to extend P I N O C C H I O to

make it capable of producing matter distributions in the context of beyond-

ΛCDM models, with a particular focus on f(R) models. Such extension re-

quires a proper formulation of both LPT and EC in modified gravity, as well

as an efficient numerical implementation of the two.

Together with MG models, the broad class of beyond-ΛCDM cosmologies

includes also Warm Dark Matter (WDM) models, as a possible alternative to
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cold dark matter. Such theories take into account the possibility that dark

matter particles retain relatively high velocities, which allow them to travel

beyond some free-streaming scale, resulting in a suppression of small-scale

fluctuations. As a first project of my PhD I considered the possibility of extend-

ing P I N O C C H I O to WDM cosmologies following the technique of Bode et al.

(2001), that mimics the small-scale suppression of power due to WDM free

streaming by adopting a truncated power spectrum. Such approach showed

a discrepancy between the halo mass function computed from P I N O C C H I O

and the one measured from WDM simulations, with a significant suppres-

sion on the high-mass end of the spectrum. I performed thorough tests by

changing the smoothing scheme adopted by the code, which is equivalent

to feeding the code a truncated power spectrum. Moreover, I performed an

object-by-object analysis on halo catalogs produced with different minimum

smoothing radii. Such analysis revealed an issue in the grouping part of the

algorithm, and highlighted the need of a re-calibration. Since the calibration

process is a rather lengthy one, and the code is currently undergoing major

development, we leave this for a future work.

Afterwards I focused on extending P I N O C C H I O to MG models, which

required a proper reformulation of LPT. The latter is adopted in several fast,

approximate codes that generate halo catalogs, since it allows to factorize

the evolution of the displacement field in terms of a spatial part, and time-

dependent growth functions for the different perturbative orders. It is there-

fore possible, starting from an initial displacement field, to readily compute

particle displacements for any given redshift. In several MG models however

the growth functions become scale dependent, making the separation not

feasible. Moreover, the second order growth rate D2 depends on three wave-

numbers, that are constrained to form a triangle in Fourier space. Solving

the full equation for second-order displacements would be too demanding

in terms of computational time. One possibility is therefore to consider ap-

proximations for D2 that only depend on k, as proposed in Winther et al.

(2017). To find the proper approximation for D2 I developed a new numer-

ical method based on FFTs, consisting in computing the full source term

of the second-order displacement differential equation, and comparing to

several triangle configurations to choose the one that best matches the full

source term. The resulting approximated D2 is then used in a code to com-

pute Lagrangian displacements, and tested against N-body simulations run
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with Hu-Sawicki f(R) (Giocoli et al., 2018). Starting from 2LPT displace-

ments, the halo catalog is constructed by matching the particle membership

to the simulation catalog. From the reconstructed catalog I compute the

halo power spectrum and compare to N-body simulations, showing that our

approximation allows to recover the halo power spectrum of the simulations

within 10% accuracy up to mildly NL scales (∼0.2 h Mpc−1), with the same

performance as in the ΛCDM case. These results are summarized in a paper,

accepted for publication on MNRAS (Moretti et al., 2019).

In order to construct halo catalogs, P I N O C C H I O relies on the computa-

tion of collapse times, obtained by treating overdensities as homogeneous

ellipsoids. Along with the introduction of scale-dependent growth to com-

pute displacements, a proper reformulation of EC is therefore required. In its

standard version, P I N O C C H I O computes collapse times by taking advantage

of the Lagrangian formulation of EC (Monaco, 1997a). Within this frame-

work, the moment of collapse is defined as the moment of orbit crossing,

and the linear growth rate is adopted as a time variable. However, in the

context of MG models such approach is not suitable, since the growth rate

is scale-dependent. An appropriate alternative is the description of the evo-

lution of ellipsoidal overdensities provided by Bond & Myers (1996) (BM).

Such approach involves the solution of integro-differential equations, and

was later reformulated in Nadkarni-Ghosh & Singhal (2016) (NGS) to avoid

integrals. The NGS formulation allows for a faster numerical solution with

respect to BM, making it suitable to implement in P I N O C C H I O. Starting

from the results of Ruan et al. (2020), where the Authors present an exten-

sion of the BM approach to MG, I extend the NGS description to include both

the gravity enhancement and the screening mechanism due to MG. With this

formulation of EC the code will be able to generate the large sets of real-

izations needed to properly compute covariance matrices for cosmological

observables in the MG framework. These results will appear in a forthcoming

paper (Moretti 2020, in preparation).

This thesis is structured as follows:

• Chapter 1 provides a general introduction of cosmology and describes

the standard ΛCDM model, together with current observational con-

straints on the cosmological parameters;

• Chapter 2 describes the growth of cosmic structures and the numer-
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ical tools employed to predict their evolution (such as Eulerian and

Lagrangian perturbation theories, N-body simulations, approximate

methods and ellipsoidal collapse);

• Chapter 3 provides an overview of MG models, with particular focus

on the f(R) family of models that are considered in this work;

• Chapter 4 provides a detailed description of the P I N O C C H I O software,

and an analysis on the extension of the code to WDM cosmologies;

• Chapter 5 provides a description of the new numerical method devel-

oped to compute second-order Lagrangian displacements with MG. I

show how the method can be employed to find approximations for the

second-order scale-dependent growth rate, and illustrate the compar-

ison between my results and the outputs of a suite of N-body simula-

tions;

• Chapter 6 presents a comparison between different descriptions of

ellipsoidal collapse, and their extension to compute collapse times with

modified gravity;

• In the final chapter (7) I discuss the results obtained, present a sum-

mary of the work undertaken during my PhD, and present future prospects.
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Chapter 1

Introduction

Cosmology is peculiar among the sciences for it is both the oldest
and the youngest. From the dawn of civilization man has speculated

about the nature of the starry heavens and the origin of the world,
but only in the present century has physical cosmology split away

from general philosophy, to become an independent discipline.
G. J. Withrow

Cosmology is the study of the Universe as a whole, of its origin and

history, its energy content and structure. While men always wondered where
does the universe come from?, it is only in the last century, with the birth of

modern cosmology, that the latter transitioned from being mostly related to

philosophy, to being fully considered a branch of physics. This shift was made

possible by theoretical developments paired with an increasing amount of

data, owed to astounding technological advancements over the last century.

The beginning of cosmology as a science is usually identified with the

advent of Einstein’s theory for gravity, General Relativity (GR), in 1915. This

theory, together with the cosmological principle, namely the assumption that

the Universe is homogeneous and isotropic on large scales, build up the

theoretical foundations for our understanding of the Universe. In subsequent

years, several observations allowed to consolidate a shared cosmological

picture:
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• The realization that our Universe is expanding (Lemâıtre, 1927; Hub-

ble, 1929), and that the expansion is currently proceeding at an accel-

erated rate (Perlmutter et al., 1999; Riess et al., 1998);

• Observations on the abundances of light elements, explained as result

of a Hot Big Bang followed by a primordial nucleosynthesis phase

(Gamow, 1946). Such theory is supported by the discovery of the

the Cosmic Microwave Background radiation (CMB, Penzias & Wilson

1965; Peebles 1968);

• Investigations of the Large Scale Structure (LSS) of the Universe via

galaxy redshift surveys showed that the distribution of matter in the

Universe is clumpy and forms the so-called cosmic web. Redshift surveys

started in the 1970s (CfA Redshift Survey with ∼ 2000 galaxies, Davis

& Peebles 1983; Geller & Huchra 1989), and have evolved to vast and

modern ones (Sloan Digital Sky Survey 1, millions of galaxies).

Starting from the pioneering work by Edwin Hubble, we know that our Uni-

verse is expanding. In his seminal paper (Hubble, 1926), Hubble confirmed

that spiral nebulæ were extragalactic objects. Further investigations showed

that such objects are moving away from us (Hubble, 1929), with a reces-

sion velocity that is proportional to their distance from the observer. This

result was obtained by combining data from Cepheid variable stars, that can

be used as standard candles, with redshift data. Hubble discovered a rough

proportionality between redshift and distance, the well-known Hubble law:

v = H0r , (1.1)

where H0 is the Hubble constant. His results are shown in Fig. 1.1. The value

of H0 determined by Hubble himself was: H0 ∼ 500 km s−1 Mpc−1, with a

large error associated to it, as can be understood from the scatter of data

points in Fig. 1.1. Even though eq. 1.1 holds only at small redshifts (z � 1),

this result is considered to be the first observational evidence for the cosmic

expansion.

The fact that the Universe is expanding and cooling led to think that

it must have been denser and hotter in the past. This idea brought Robert

Gamow to suggest, in the late 1940s, that the chemical elements might have
1https://www.sdss.org/

https://www.sdss.org/
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Fig. 1.1: Velocity vs. distance, Hubble’s original data from his 1929 paper

been created in the early Universe in a primordial nucleosynthesis phase

(Gamow, 1946). Moreover, Gamow realized that residual light should still

be visible today as a background thermal radiation, with a temperature of a

few degrees Kelvin (i.e. peaking at microwave wavelengths). That was the

first prediction of the Cosmic Microwave Background Radiation (CMB), later

discovered by Arno Penzias and Robert Wilson (Penzias & Wilson, 1965).

According to the Big Bang theory, the earliest stages of life of the Universe

are characterized by an extremely hot and dense fluid. These conditions

are ideal to trigger nucleosynthesis reactions that produce heavier nuclei,

starting from protons, neutrons and electrons. Other than the CMB, this

model can explain the observed helium abundances, which are hard to justify

with stellar nucleosynthesis alone. The verification of the abovementioned

predictions were the first, strong observational evidences that allowed the

Big Bang model to be confirmed as the standard theory in modern cosmology.

Further observations led to the conclusion that the gravitational potential

probed by dynamical observations (e.g. from galaxy rotation curves and tem-

perature of hot gas in galaxy clusters) were in strong disagreement with the

potential derived from light alone. The first proposals for the presence of an

obscure kind of matter, which do not emit electromagnetic radiation, came in

the early 1930s by Fritz Zwicky (Zwicky, 1933) and Jan Oort (Oort, 1932),

who were studying respectively the Coma galaxy cluster and stellar motions

in the local galactic neighborhood. In later years aditional observations on
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the gravitational lensing of background objects by galaxy clusters and, more

recently, the pattern of anisotropies in the CMB confirmed the need for such

dunkle Materie, as Zwicky called it. All of the above are considered probes

of the presence of Dark Matter (DM) in the Universe, and gravitational col-

lapse driven by gravitational instabilities in the DM distribution is commonly

accepted to be the mechanism behind the formation of cosmic structures.

Along with dark matter, another ingredient of the current cosmological

model is Dark Energy (DE). In 1998 the teams of Saul Perlmutter, Adam Riess

and Brian Schmidt, studying the distribution with redshift of Supernovæ Ia

(as standard candles), independently discovered that the expansion of the

Universe is occurring at an accelerating rate (Riess et al., 1998; Perlmutter

et al., 1999). This is at odds with the fact that gravity should slow down its

expansion, due to the presence of matter. A full explanation of the mecha-

nism behind the accelerating expansion of the Universe is still missing: in

general, it is ascribed to an unknown DE component. The simplest interpreta-

tion for DE is that of a homogeneous fluid permeating the Universe, possibly

related to vacuum energy: a cosmological constant Λ. Deviations of the w pa-

rameter in equation of state of DE (p = wρ) from the simplest w = 1, would

represent a departure from the standard ΛCDM model. The interpretation

of DE as a cosmological constant poses some theoretical issues (discussed

in more detail in chapter 3), that have prompted the formulation of several

alternative theories, including evolving DE and modifications of GR. The

nature of DE is one of the biggest open questions in modern physics, one

that future experiments (in particular galaxy redshift surveys) will hopefully

help to solve.

Our current understanding of the Universe relies then on the above dis-

cussed pillars, both theoretical and observational, which are the building

blocks of the standard model of cosmology, the ΛCDM model. This model

successfully predicts all observations so far, describing a Universe that is ho-

mogeneous and isotropic on large scales, where the gravitational interaction

driving the growth of structures is described by GR, and where the energy

content is dominated by DE and DM. In the short time span of a century,

scientists gained an enormous amount of informations and were able to pro-

pose, test and discard different models. Indeed, thanks to both ground- and

space-based observations such as galaxy surveys and CMB experiments, a

wealth of extremely precise cosmological measurements now available al-
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lows to constrain the cosmological parameters to a high degree of precision,

that will improve to reach percent level accuracy with the next generation

of galaxy redshift surveys. This impressive achievements allow us to say that

we are truly living in a golden era for cosmology.

The standard model, however successful, leaves some big open questions,

like those on the nature of DM and DE and the mechanism behind inflation.

The aim of current and future experiments is to investigate alternatives

theories to the standard cosmological model, and possibly to find satisfactory

interpretations of the dark components.

1.1 The metric of space-time

The evolution of the Universe is largely dominated by the gravitational in-

teraction. Hence, cosmology requires a proper theory of gravity as its basic

foundation. One such theory is Einstein’s General Relativity, which passed

a significant number of tests, from solar system (Will, 2014), to the predic-

tion of the orbital decay of the Hulse-Taylor binary pulsar (Weisberg et al.,

2010) and the gravitational wave emission (Abbott et al., 2016, 2017a,b).

According to GR space-time is not a rigid stage upon which events “stay” or

“happen”, but rather a dynamic entity whose geometrical properties depend

on the energy density (in all forms). This idea is summarized in Einstein

field equations (Einstein, 1916):

Gµν = Rµν −
1

2
gµνR = 8πGTµν − gµνΛ (1.2)

where Rµν is the Ricci tensor,R is the scalar curvature (the trace of Rµν), gµν
is the metric of space time, and Tµν is the stress-energy tensor that describes

the distribution of energy and momentum across the Universe. To quote

John Wheeler: “Space tells matter how to move, matter tells space how to
curve”. A general solution to the above non-linear equation has yet to be

found. Eq. 1.2 can however be simplified by considering the symmetries of

the problem at hand, i.e. our understanding of the Universe. The simplest

symmetry is the one provided by the cosmological principle, which states

that on a sufficiently large scale (larger than ∼ 100 h−1 Mpc) the Universe is

isotropic and homogeneous. The most general metric for such Universe is the

Friedmann-Lemâıtre-Robertson-Walker metric (Friedmann, 1922; Lemâıtre,
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1931; Robertson, 1935; Walker, 1937):

ds2 = dt2 − a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (1.3)

where r, θ and φ are comoving spherical coordinates, K is the curvature of

space-time, and a(t) is the scale factor representing how the physical distance

between two points scales with time. The value of K determines whether

the Universe is open (K < 0), flat (K = 0) or closed (K => 0). Most recent

measurements are consistent with a flat universe (Planck Collaboration et al.,

2018; Alam et al., 2017). By inserting this metric in eq. 1.2, one can derive

the first Friedmann equation:(
ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
, (1.4)

where ρ =
∑

i ρi is the sum of the densities of each component of the Uni-

verse, with the cosmological constant having ρΛ = Λc2/8πG. Equation 1.4

states that the variation of the scale factor as a function of the cosmic time

is dictated by the total amount of energy in the Universe (matter, radiation,

curvature and DE). The quantity ȧ/a is usually referred to as the Hubble

factor H(t), whose value evaluated today is just the Hubble constant H0. By

combining the first Friedmann equation with the equation for energy conser-

vation, one can derive the evolution equation for the Hubble parameter, also

known as the second Friedmann equation:

ä

a
= −4πG

3

(
ρ+ 3

p

c2

)
+

Λc2

3
. (1.5)

Equation 1.5 provides the mathematical formalism for the cosmic acceler-

ation, that is produced by the balance between the energy density and the

self-pressure of the fluid. In addition, each component evolves differently

with time:

ρi = ρi,0a
−3(1+w) , (1.6)

where w is the equation of state parameter: w = 1/3 for radiation, w = 0

for non-relativistic matter and w = −1 for the cosmological constant. One

possible extension of the standard model includes a time-dependent w for

DE, a possibility that will be probed by future surveys.

It is possible to re-write equation 1.4 incorporating Λ in ρ: this allows to
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identify a critical value for the density corresponding to K = 0, i.e. to a flat

Universe:

ρcr(t) =
3H2(t)

8πG
. (1.7)

By using this critical density, it is possible to define the dimensionless density

parameters for the cosmic fluids as the ratio Ω = ρ/ρcr:

Ωm(a) =
ρm(a)

ρcr(a)
=

Ωm,0H
2
0

a3H2(a)
, Ωr(a) =

ρr(a)

ρcr(a)
=

Ωr,0H
2
0

a4H2(a)

ΩΛ(a) =
ρΛ(a)

ρcr(a)
=

ΩΛ,0H
2
0

H2(a)
, ΩK(a) =

ρr(a)

ρcr(a)
= − KH2

0

a2H2(a)

(1.8)

The latter allow to write the first Friedmann equation as

H2(a)

H2
0

= E2(a) = Ωm,0a
−3 + Ωr,0a

−4 + ΩK,0a
−2 + ΩΛ,0 , (1.9)

highlighting the relationship between the evolution of the Universe and its

energy content.

1.1.1 The standard model of cosmology

GR planted the seeds that would eventually grow into the current standard

model of cosmology, the ΛCDM model. The latter is a parameterization of

the Hot Big Bang model describing a spatially flat Universe, where the en-

ergy content is dominated by Cold Dark Matter (CDM) and a cosmological

constant Λ, responsible for the late-time accelerated expansion. On the other

hand, CDM drives the formation and growth of cosmic structures, and the

attribute cold refers to the fact that it was non-relativistic at decoupling from

other species. In the framework of the ΛCDM model the minimum set of

parameters to account for currently available observations is:

• Ωm, the matter (CDM and baryons) energy density parameter;

• Ωb, the baryon energy density parameter;

• ΩΛ, the cosmological constant energy density parameter;

• ΩK , the curvature energy density parameter (ΩK = 0 for a flat uni-

verse);

• Ωr, the radiation (photons and neutrinos) energy density parameter;
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• H0, the Hubble constant;

• As, the amplitude of primordial fluctuations;

• ns, the spectral index of the power spectrum of the primordial curva-

ture perturbations.

Different cosmological probes depend on the values of the above parameters,

hence the former can be used to constrain the latter(§1.4). Although the

ΛCDM model successfully fits all cosmological observations so far, the very

idea that most of the energy content of the Universe is in some form of

unknown dark components raises some concerns. Moreover, recent data

have shown the presence of some tensions between the parameters inferred

from early and late probes, namely CMB versus LSS and SNIa (see §3.1.2).

Such tensions are possibly related to to some systematics in the data, or to

unknown physics. Indeed, several modifications or extensions of GR and the

standard model of particle physics have been proposed to explain the dark

sector (§3).

Future generations of experiments including galaxy redshift surveys, such

as Euclid 2 (Laureijs et al., 2011), DESI 3 (Levi et al., 2013), LSST 4 (LSST

Science Collaboration et al., 2009) or WFIRST 5 (Spergel et al., 2013), aim

at addressing these issues, and constrain cosmological parameters to higher

precision.

1.2 A brief thermal history of the Universe

The first suggestion that the Universe is expanding, and thus it could have

originated from a hot and dense primordial state, dates back to Alexander

Friedmann and George Lemâıtre in the 1920s. Despite an early separation of

the scientific community between supporters of the Big Bang theory and the

steady state scenario, a wide range of observational evidence has brought to

a common acceptance of the Big Bang as the starting point for the current

Universe.

2https://www.euclid-ec.org/
3https://www.desi.lbl.gov/
4https://www.lsst.org/
5https://wfirst.gsfc.nasa.gov/

https://www.euclid-ec.org/
https://www.desi.lbl.gov/
https://www.lsst.org/
https://wfirst.gsfc.nasa.gov/
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Fig. 1.2: A representation of the history of the Universe, starting from the seeds
that are quantum fluctuations to today’s accelerated expansion. Credits:
NASA/WMAP

The presence of a hot, dense initial phase was later confirmed by the

discovery of the CMB, a landmark evidence that the baryonic matter was

completely ionized, and hence hot, in the early Universe. The thermal his-

tory of the Universe deals with the evolution of an expanding (and cooling)

fluid, where the energy available for particle interactions slowly decreases

over time. A knowledge of the rate of particle interactions is of crucial impor-

tance, for example in understanding the time at which each particle specie de-

couples from the primordial plasma. Decoupling occurs when the interaction

rate for particles Γ drops below the Hubble rate H: at the very beginning, all

particles are in thermal equilibrium enforced by frequent interactions. Then,

as the Universe expands and cools down, their interaction rate decreases.

The moment of decoupling depends on the type of particle and interaction,

and is therefore different for each specie.

Currently we cannot access the extremely high energies present in the

first phases of the Universe, hence our understanding of those interactions

is possibly based on speculations or assumptions. Before 10−43 seconds from

the Big Bang (or at energies above the Planck mass, MPlc
2 = 1019 GeV), the

common understanding is that quantum effects should be incorporated. Soon

after, inflation is supposed to take place at energies of about 1016 GeV, making

the Universe exponentially expand by at least 26 orders of magnitude in size

and boosting tiny quantum fluctuations to a large enough size to be the seeds
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for the current large scale structures. Inflation was introduced in the 1980s

in works by Starobinskǐi (1979), Guth (1981) and Linde (1982) to solve

some problems related to background cosmology, namely the flatness, the

horizon and the magnetic monopole problem. Several inflationary scenarios

have been proposed over the years, and inflation is still one of the hot-topics

in theoretical physics and cosmology (Mazumdar & Rocher, 2011; Martin

et al., 2014).

After inflation, the Universe keeps expanding and cooling. The tempera-

ture of the fluid scales as

T ∝ a−1 . (1.10)

Neutrinos are kept in thermal equilibrium with the plasma by weak interac-

tions, until their energy drops below ∼ 1 MeV (roughly one second after the

Big Bang) and neutrinos decouple from the plasma. After decoupling, the

temperature of neutrinos continue to decay as the inverse of the scale factor

of the Universe. After about three minutes the energy has dropped to ∼ 0.1

MeV, allowing for the formation of the first nuclei (Big Bang nucleosynthesis,
BBN). Modern BBN numerical codes can compute the abundance of light

elements (H, 4He, D, 3He, 7Li) to 1% precision (e.g. (Arbey, 2012)), with

the number density fraction of baryons to photons η = nB/nγ as the only

parameter. The results can then be compared to observations and current

constraints on η are

η = 4.6− 5.9× 10−10 , (1.11)

a very narrow range that indicates that there is about one baryon per 109

photons in the Universe today (Cyburt et al., 2016).

Up to this point, the evolution has been mainly driven by radiation, that

dominates the energy content of the Universe. However, relativistic species

have a density that scales as ρr ∝ a−4, while non-relativistic particles are

pressure-less, hence ρm ∝ a−3. As a consequence there is a time when

the two are equal: the matter-radiation equality. The redshift at which this

happens can be estimated as:

1 + zeq =
a0

aeq
=

Ωm,0

Ωr,0
' 3× 104 Ωm,0h

2 . (1.12)

Here a0 is the scale factor today (usually normalized so that a0 = 1). The ex-

act value for zeq depends on the density parameters for matter and radiation
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(1.12), as well as on the mass of neutrinos.

As the Universe keeps expanding and cooling, electrons eventually bind

to protons to form neutral hydrogen atoms. The photon mean free paths at

this recombination epoch (zrec ∼ 1270) suddenly increase up to the horizon

scale (Peebles, 1968), making them free to stream and marking the tran-

sition of the Universe from opaque to transparent. It is at this epoch that

the photons of what we measure today as Cosmic Microwave Background

Radiation are emitted from the last scattering surface (zdec ∼ 1100).

After recombination the Universe content is now divided into two non-

interacting fluids: baryon and photons, with the photons no longer able to

damp matter perturbations, and baryons free to collapse under their own

self-gravity. Most importantly, baryons evolve under the gravitational pull

set by DM perturbations that in the meantime have already started to grow.

After a few hundreds of million years, the first stars start to form, marking the

end of the Dark Ages and the beginning of the re-ionization epoch, thought

to happen at 6 < z < 10.

Starting from the equivalence at redshift z ∼ 104, and up to re-ionization,

the energy budget is dominated by matter. This is the epoch where structures

in the Universe grow, finally forming the cosmic web that can be observed

today via galaxy redshift surveys. Later on, at redshift z < 1, a new phase of

accelerated expansion starts, prompted by an unknown mechanism dubbed

Dark Energy.

1.3 Statistics of cosmic fields

According to observations, and in agreement with the cosmological princi-

ple, the Universe is nearly homogeneous and isotropic on very large scales.

However, on scales smaller than galaxy superclusters, the structure of the

Universe is highly inhomogeneous. On such scales the matter distribution

is clumpy, as shown both by CMB experiments and galaxy redshift surveys,

and form over-dense and under-dense regions that are organized in a cosmic
web (see e.g. Fig. 1.3). The widely accepted model to explain the formation

of structures in the Universe is that the latter are the result of the growth

of primordial small-scale seeds, generated in the early Universe by quantum

fluctuations of a scalar field and grown under gravitational instability, as

described in §1.2. As a consequence, the present day matter distribution car-
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Fig. 1.3: The spatial distribution of galaxies observed by the SDSS survey. The ob-
server is at the center, and the lightcones are projected along the DEC
direction in order to get a 2d image as a function of redshift and right as-
cension. The cosmic web can be clearly identified, consisting of filaments,
sheets, clusters and voids. Credits: M. Blanton - SDSS

ries information about the initial fluctuations that are the seed for the Large

Scale Structure, hence it is possible to exploit it to test different cosmological

scenarios. Such studies would however be statistical in their nature, since

• a deterministic description of the evolution would require having di-

rect access to the primordial fluctuations. The latter are however not

observationally reachable, thus we cannot get the initial conditions to

solve the evolution equations;

• it is not possible to directly follow the time evolution of the fluctuations,

owing to the long time-scale for cosmological evolution.

The common approach is therefore to consider our Universe as a single

stochastic realization out of all possible realizations (i.e. universes). It is

possible to consider cosmic scalar fields, as the cosmic density field, the ve-

locity field, or the gravitational potential, for which one can predict statistical

quantities, and compare the latter to statistics derived from observations.
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We can thus think of our Universe as a realization of a random field

ψ(~r, t) with probability density function P (ψ). Cosmic random fields are usu-

ally assumed to be statistically homogeneous and isotropic, i.e. their prob-

ability distribution functions are invariant under translation of the spatial

coordinates and under rotations. Such random fields are used to describe

fluctuations in the distributions of different quantities, such as galaxies or

matter, with respect to a smooth background. As already discussed, theoreti-

cal investigation allows one to compute statistical quantities averaged over

the ensemble of all possible realizations, for istance the first moment and

variance of this field. Performing such average should in principle require

the availability of several realizations (i.e. universes). The problem can be

circumvented if one makes the ergodic hypothesis: if the sampled volume is

large enough, a fair sample, the mean value determined over all universes

can be replaced by a space average calculated over the available volume.

For our purposes, the required random fields are the density contrast of the

matter continuous field δ, and of the galaxy field δg:

δ(~r, t) =
ρ(~r, t)− ρ̄(t)

ρ̄(t)
, (1.13)

δg(~r, t) =
n(~r, t)− n̄(t)

n̄(t)
, (1.14)

where ρ is the matter density and n is the galaxy number density, and the

barred quantities are the respective mean values.

1.3.1 Two-point statistics

One of the most important statistical quantities describing the spatial dis-

tribution of objects in the Universe is the two-point correlation function

(2PCF):

ξ(r) = 〈δ(~x)δ(~x+ ~r)〉 , (1.15)

where δ is the density of a generic proxy for the total matter density field.

The 2PCF represents the excess probability of finding a pair of objects at

distance r respect to a random distribution, hence it is a measurement of the

amplitude of clustering.

The fact that ξ(r) only depends on the magnitude of ~r is a consequence

of the assumptions of homogeneity and isotropy. Such feature no longer
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holds for redshift-space measurements (§1.4.2), affected by peculiar motion

of galaxies. Moreover, performing a proper mapping between the underlying

matter distribution a given tracer for matter is not trivial: galaxy redshift

surveys measure the distribution of galaxies, while theoretical treatments

can only predict matter statistics. The galaxy distribution is indeed assumed

to be a proxy for the matter distribution; the two correlation functions ξg(r)

and ξm(r) are therefore linked by the so-called bias. A careful modeling

of the non-trivial bias relation between luminous and dark matter is then

required when going from ξm(r) to ξg(r) and vice-versa.

A common and useful way of treating density fluctuations is to imagine

them as waves that propagate in the Universe: in this way they can be

decomposed into different wavelengths, each accounting for a different scale.

The equivalent of the correlation function in Fourier space can be obtained

by taking the Fourier transform of the density field δ~k and computing the

correlation between two waves with different wavevectors ~k1 and ~k2:

〈δ~k1 δ~k2〉 =

〈∫
d3~x1

(2π)3
δ(~x1) e−i

~k1·~x1
∫

d3~x2

(2π)3
δ(~x2) e−i

~k2·~x2
〉
. (1.16)

By substituting ~x = ~x1 and ~r = ~x2 − ~x2 in eq. 1.16:

〈δ~k1 δ~k2〉 =

∫
d3~x

(2π)3

∫
d3~r

(2π)3
e−i(

~k1+~k2)·~x e−i
~k·~x 〈δ(~x) δ(~x+ ~r)〉 =

= δD(~k1 + ~k2)

∫
d3~x

(2π)3
e−i

~k·~r ξ(r) ,

(1.17)

where ξ(r) is the correlation function and δD is the Dirac delta function. It

can be seen from eq. 1.17 that two waves with different wavelength are not

correlated in Fourier space. Eq. 1.17 can be written in a different form:

〈δ~k1 δ~k2〉 = (2π)3 δD(~k1 + ~k2)P (k1) . (1.18)

The new quantity introduced here is the power spectrum P (k) = 〈|δ~k|2〉, i.e.

the Fourier transform of the correlation function.

1.3.2 Covariance matrices

The clustering statistics described in the previous section are sensitive to the

underlying cosmology, and are therefore the main quantites considered when
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constraining cosmological parameters. The determination of cosmological

parameters and the associated confidence levels is a task usually performed

through a maximum likelihood analysis: theoretical predictions for the cos-

mological observable under scrutiny are computed and compared to data.

Under the assumption of a Gaussian likelihood L, the best fit model is the

one that minimizes:

− 2 lnL =
∑
i,j

(yd
i − ym

i )C−1
ij (yd

j − ym
j ) , (1.19)

where the sum runs over the data points, d and m stand for data and model

respectively and C−1
ij is the precision matrix, i.e. the inverse of the covariance

matrix.

The latter can be sampled from a set of independent realizations Nr as:

Cij =
1

Nr − 1

Nr∑
n=1

(yn,i − ȳi)(yn,j − ȳj) , (1.20)

where ȳ = 1/Nr
∑Nr

i=1 yi is the average of the observable over all realizations.

Diagonal elements of the covariance matrix represent the square deviations

of measurements from the mean value, while off-diagonal elements pro-

vide information on the correlation between different scales. Usually, the

fitting procedure is carried out with a Markov Chain Monte Carlo (MCMC)

approach, based on a likelihood-dependent sampling of the likelihood it-

self throughout the parameter space. The MCMC is required to sample the

multi-dimensional parameter space in an efficient way. The final result of

the analysis is a density map of the parameter space, corresponding to a

multi-dimensional likelihood which is marginalized over to find the best fit

for the parameters.

Future generations of LSS surveys will provide a large amount of high

precision data (e.g. §1.5), with the potential to constrain cosmological pa-

rameters to % precision, on the condition that systematics are kept under

control. Modeling the errors on cosmic statistics is indeed as fundamental as

the determination of the cosmic statistics itself, making a proper estimation

of the covariance matrix Cij essential. Since a finite sampling of Cij would

result in the propagation of statistical sampling errors into the cosmological

parameter inference, potentially limiting the capabilities of upcoming sur-
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veys, such a task requires the generation of large sets of simulations. The

impact of finite sampling on the estimated covariance matrix was investi-

gated within the Euclid collaboration by Lippich et al. (2019); Blot et al.

(2019); Colavincenzo et al. (2019), showing that ∼2000-3000 realizations

are needed. Moreover, the simulations should properly take into account

halo/galaxy bias, redshift space distortions, and accurately model non-linear

clustering. The selection function of the survey, defining its geometry and

the galaxy sample, should also be included in the analysis.

Such a task is unfeasible with computationally demanding N-body sim-

ulations (§2.2.1. A possible solution is provided by approximate methods,

described in §2.2.2, able to generate the required large sets of realizations

in a fraction of the time with respect to full N-body simulations.

1.4 Cosmological observables and current constraints

In this section I give a brief summary of cosmological observables, as well as

a (non-comprehensive) list of current constraints on ΛCDM parameters.

1.4.1 The Cosmic Microwave Background

CMB experiments aim at observing the last scattered photons, whose spec-

trum is that of a black body at 2.7 K (Fig. 1.4, right panel). This is indeed the

most perfect black body spectrum observed in nature: the CMB is extremely

isotropic and homogeneous, except for very small fluctuations in the tem-

perature ∆T/T ∼ 10−5, that can be clearly seen in the left panel of Fig. 1.5.

CMB anisotropies can be divided into two categories: those originating at

the epoch of last scattering, called primary anisotropies, and the ones due

to interactions of the photons on their way to the observer, called secondary

anisotropies. The main primary anisotropies are acoustic oscillations and

collisionless damping. Acoustic oscillations arise because of a conflict be-

tween the gravitational interaction (that makes overdensities collapse) and

the photon pressure (that tends to erase the anisotropies), and appear in the

CMB temperature power spectrum as peaks and troughs. Collisionless - or

Silk - damping is instead a suppression in the tail of the power spectrum,

due to the increase in the mean free path of photons and the fact that the

last scattering surface is not really a surface, but more of a shell with a finite
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Fig. 1.5: Left: Temperature power spectrum of the CMB (Planck Collaboration et al.,
2018). Right: CMB temperature map (Planck Collaboration et al., 2014).

depth (i.e., decoupling is not instantaneous). Secondary anisotropies, on the

other hand, involve interactions of photons with the inter-galactic medium

(Sunyaev-Zeldovich effect and Sachs-Wolfe effect).

Current constraints

Ever since its discovery, many experiments have been dedicated to studying

the CMB. The most remarkable among these are three satellite missions:

COBE, launched by NASA in 1980, WMAP, also a NASA satellite launched

in 2002, and ESA’s Planck, launched in 2009. The main results of these

experiments are:

• the Universe is highly homogeneous and isotropic on large scales;
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• there are small temperature fluctuations ∼ 10−5, likely being the seeds

for today’s LSS;

• the peak features in the CMB power spectrum can be exploited to put

tight constraints on the cosmological parameters.

The most precise constraints to date on the cosmological parameters from

CMB experiments are those provided by the Planck satellite in its 2018

Legacy release (Planck Collaboration et al., 2018), summarized in table 1.1

and Fig. 1.6. Such results show no significant deviations from the standard

ΛCDM model.

Ωbh
2 0.02237± 0.00015

Ωmh
2 0.1200± 0.0012

100θ∗ 1.040909± 0.00031

τ 0.0544± 0.0073

ln(1010As) 3.044± 0.014

ns 0.9649± 0.0042

Table 1.1: Constraints on parameters of base ΛCDM, from Planck Collaboration
et al. (2018)
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1.4.2 Galaxy redshift surveys

Galaxy redshift surveys aim at scanning large patches of the sky, in order to

determine the spatial distribution of objects, such as galaxies or galaxy clus-

ters. The goal of this kind of measurements is to make statistic measurements

akin to those described in §1.3 and shown in Fig. 1.8. Such measurements

of the clustering of objects in the Universe, as already discussed, allow to

constrain the cosmological parameters.

The actual 3-dimensional position of galaxies is determined reconstruct-

ing their positions from redshifts. The latter can be either spectroscopic, if

measured by means of a spectrograph, or photometric, if redshifts are de-

rived from broad-band colors. The latter, suffer however from uncertainties

that are roughly one order of magnitude larger than those on the spectro-

scopic redshifts: this is why the advent of multi-object spectrographs has

been crucial in the recent advances in galaxy redshift surveys.

Constraining the comoving matter power spectrum from observed galax-

ies requires understanding and modeling a number of effects, both physical

like Baryon Acoustic Oscillations (BAOs), or the bias linking the galaxy dis-

tribution to the underlying matter one, and observational, such as Redshift

Space Distortions (RSDs) and the Alcock-Paczynski effect.

Redshift space distortions

The velocities of galaxies are caused both by the expansion of the Universe

and their peculiar motion, so that the galaxy position can be written as:

~s(~r) = ~r − vr(r)r̂ , (1.21)

where ~s is the redshift-space position of the galaxy, while ~r is the true position

and vr is the radial component of the peculiar velocity. RSDs are due to:

• coherent motion due to the infall of galaxies into matter overdensities

(linear effect, Kaiser (1987)). This determines an apparent squashing

of structures along the line of sight (left in Fig. 1.7) on the largest

scales;

• random motion of galaxies inside clusters (non-linear effect, also known

as Finger-of-God) . This results in an elongation of structures along the

line of sight (right in Fig. 1.7).
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Fig. 1.7: Effect of peculiar motions of galaxies on their apparent position.

These effects result in anisotropic two-point functions (both the correlation

function and the power spectrum). The common approach to describe the

linear, Kaiser effect is to write the power spectrum as

P sm,lin(~k) = (1 + fµ2)2Pm,lin(k) (1.22)

where the superscript s stands for quantities in redshift space, f = d lnD/d ln a

is the logarithmic derivative of the linear growth factor and µ is the cosine

of the angle between the wavevector ~k and the line of sight. To calculate the

galaxy power spectrum one must make some prescriptions for the bias: un-

der the simplest assumption of linear bias δg = bδm, and defining a distortion

parameter β = f/b, the galaxy power spectrum can be written as:

P sg,L(~k) = b2(1 + βµ2)2Pm,L(k) (1.23)

The treatment of the non-linear Finger-of-God effect is more complicated.

One possibility is to treat it in a phenomenological way, including a damping

factor that plays the role of a pairwise velocity distribution, as proposed

in the dispersion model by Peacock & Dodds (1994) and later extended by

Scoccimarro (2004). A more recent model, widely used in RSDs analysis

today, is the so-called TNS model, described in Taruya et al. (2010).
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The anisotropic redshift-space power spectrum is generally expanded as:

P s(k, µ) =
∑
l

P sl (k)Ll(µ) , (1.24)

where Ll are the Legendre polynomials and

P sl (k) =
2l + 1

2

∫ +1

−1
dµP s(k, µ)Ll(µ) (1.25)

are the expansion multipoles. The same procedure can be applied to the

correlation function, so that redshift-space quantities are usually expressed

in terms of the monopole, quadrupole, and exadecapole.

A proper description of RSDs is of crucial importance to extract cosmo-

logical informations from the clustering signal. However cumbersome, an

accurate modeling of RSDs can actually help in constraining cosmological pa-

rameters and breaking degeneracies (Percival & White, 2009). In particular,

RSDs are sensitive to the growth of perturbations, as is clearly seen by the

dependence on f in equation 1.22, and are usually employed to constrain

the combination between f and σ8 (standard deviation of the overdensities

distribution, when averaged over a sphere of radius 8 Mpc h−1), as shown

in Fig. 1.10. Recent works showed that measurements in redshift space can

also be exploited to break the degenerate effects of massive neutrinos and

modified gravity on the two-point statistics (Hagstotz et al., 2019; Wright

et al., 2019).

Baryon acoustic oscillations

BAOS are oscillations in the density of baryonic matter due to the counteract-

ing forces of gravity in a collapsing overdensity, as opposed to the pressure

of photons. They provide a standard ruler for cosmology whose size is set by

the maximum distance that acoustic waves can travel in the plasma before

decoupling, the sound horizon size. Baryon acoustic oscillations show up as

a characteristic peak feature in the CMB, as well as in the galaxy two-point

correlation function as a distinct “bump” at∼ 110 h−1 Mpc, or as “wiggles” in

the galaxy power spectrum (see Fig. 1.8). The BAO signal was first detected

in the CMB by WMAP, and later from the galaxy 2PCF of SDSS (Eisenstein

et al., 2005). By comparing the BAO scale at recombination (observed from
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Fig. 1.8: Left: Two point correlation function from the WiggleZ survey (Blake et al.,
2011). Black dots are data points, the solid red line is the best fitting model
that includes BAOs, while the dashed blue line represents a model without
baryons. Right: Power spectrum from SDSS-II LRG data and CMASS data
(points in upper and lower panel respectively), solid lines represent the
best-fitting models (Anderson et al., 2012).

the CMB) to its size today (measured from galaxy surveys) it is possible to

study the expansion history of the Universe.

Alcock-Paczynski effect

We measure redshift, but want distances. Those are evaluated by making

assumptions on the cosmology (specifically H(z)), so if the cosmology is

wrong, there are distortions in the clustering signal: these are usually taken

into account with the Alcock-Paczynski test (Alcock & Paczynski, 1979). The

most robust source to perform the Alcock-Paczynski test is the BAO signal,

since it is a distinct feature appearing on sufficiently large scales (free from

effects of non-linear physics). Typically, the relevant parameters are:

α⊥ =
DA(z)rfid

d

Dfid
A rd

, α‖ =
Hfid(z)rfid

d

H(z)rd
, (1.26)

where fid is the fiducial cosmological model assumed to convert redshifts to

distances, rd is the comoving BAO scale and H(z) is the Hubble rate.
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Fig. 1.9: Power spectrum (left) and two-point correlation function (right) multipoles
from BOSS (Alam et al., 2017). The top row shows the monopole, while
the middle row shows the quadrupole. In the bottom rows are shown the
power spectrum and correlation function decomposed into transverse to
and along the line of sight components.

Current constraints

Redshift surveys started at the end of the 1970s with the CfA redshift sur-

vey, followed by the 2dF Galaxy Redshift Survey (2dFGRS, Colless et al.

(2003)), and the Sloan Digital Sky Survey (SDSS, York et al. (2000)), whose

stage III included the Baryon Acoustic Oscillation Survey (BOSS, Alam et al.

(2017)). The SDSS is now in its stage IV, with the extended Baryon Acous-

tic Oscillation Spectroscopic Survey (eBOSS) focused on studying BAOs

at redshifts 0.6 < z < 2.5. Fig. 1.9 shows recent measurements on the

redshift-space two-point statistics (power spectrum, on the left, and 2PCF,

on the right) for different redshift bins (Alam et al., 2017). The redshift-
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Fig. 1.10: Summary of the constraints on the measurement of the growth factor
fσ8 from different redshift surveys are shown as points with errorbars.
The ΛCDM prediction is shown as a solid red line, while predictions for
some modified gravity models are shown as black lines. From Okumura
et al. (2016).

space induced anisotropy is clearly evident in the bottom row. Considering

the standard ΛCDM scenario, BOSS data constrain Ωm = 0.3110 ± 0.005,

H0 = 67.06 ± 0.5 km s−1 Mpc−1, and no significant evidence for non-flat

(ΩK 6= 0) or evolving DE (wDE = w(a)) cosmologies.

Fig. 1.10 summarizes measurements of the growth factor f σ8 from differ-

ent redshift surveys (Okumura et al., 2016). While all datasets are consistent

with the standard ΛCDM scenario (solid red line), it is clear that the uncer-

tainty on the measurements do not allow to disentangle between extensions

of the standard model (dashed black lines). As discussed in the next section,

the precise measurements that will be provided by the future Euclid survey

will allow to discriminate between different models.
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1.5 The Euclid Satellite

Fig. 1.11: Artist’s view of the Euclid satellite. Credits: ESA

One of the future experiments that will help in tightening the constraints

on cosmological parameters, as well as testing possible alternatives to the

ΛCDM model, is the Euclid mission. The latter is a medium class space mis-

sion of ESA cosmic vision 2015-2025 program, selected for funding in 2011

and planned for launch in 2022. The satellite will travel to the L2 Sun-Earth

Lagrangian point for a 6 years long mission.

The main science goal for Euclid (Laureijs et al., 2011; Amendola et al.,

2018a) is to understand the mechanism behind the accelerated expansion of

the Universe, by studying the expansion history and evolution of the Large

Scale Structure. The imprints of DE and of the gravitational interaction will

be traced by two main probes: Galaxy Clustering, through observations of

BAOs and RSDs, and Weak Lensing. To this purpose, Euclid will measure

redshifts and shapes of galaxies up to z ∼ 2, covering 15000 deg2 of the sky

free of contamination by light from our Milky Way galaxy and zodiacal light.

Moreover, there will be three Euclid Deep Fields covering around 40 deg2

in total, extending the scientific scope of the mission to the high-redshift

Universe. The two main probes will also be complemented by a number

of additional probes, including abundance and properties of galaxy clusters,

strong lensing and cross-correlation between CMB and Large Scale Structure.

The satellite will be equipped with a 1.2 m diameter, three-mirror tele-

scope, that feeds two instruments to cover visible and near-infrared wave-

lengths. In the optical, a visible imager (VIS) will provide high-resolution

(pixel resolution of 0.1 arcseconds) images with a wavelength range 500 −
800 nm. In the near-infrared, a 3-filter photometer (NISP-P) will deliver im-
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Fig. 1.12: Fisher forecasts for w0, wa (left) and Ωm, σ8 (right). From Euclid Collab-
oration et al. (2019)

ages in Y, J and H bands with a pixel resolution of 0.3 arcseconds, while

slitless spectrography will be performed by NISP-S with two different filters:

a blue grism (920 − 1250 nm), and a red grism (1250 − 1850 nm). These

instruments will measure the 3D distribution of structures in the Universe

from spectroscopic redshifts of galaxies and clusters of galaxies as well as the

modification of shapes of galaxies induced by gravitational lensing effects.

The complete survey will feature billions of images and several tens of

Petabytes of data. About 10 billion sources will be observed by Euclid out of

which approximately 2 billions will be used for weak lensing, while about 30

millions of galaxy redshifts will be measured, and used for galaxy clustering.

Euclid will measure cosmological parameters with percent precision. In

particular, the target precision for w in the DE equation of state is 1% for w0

and 10% for wa, tightly constraining evolving DE models. Fig. 1.12 shows

forecasted constraints on the DE equation of state parameters (left triangular

plot) and on Ωm and σ8 (right triangular plot). Different colors show different

probes, as well as combinations of them. Fig. 1.13 shows the growth rate f

as a function of redshift. The forecast for Euclid are shown as points with

error-bars, while different lines refer to different modified gravity models

(ΛCDM is plotted as a green line). The improvement with respect to currently

available data (e.g. fig. 1.10) is evident, confirming the ability of Euclid data

to disentangle between different gravity models.
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Fig. 1.13: Expected constraints on the growth rate for Euclid, points with error bars.
Shown with lines are predictions for different models, including some
modified gravity models (described in§3). From Amendola et al. (2018a)



Chapter 2

The evolution of perturbations

As discussed in the previous chapter, the Universe is nearly homogeneous and

isotropic on very large scales. A closer look at how galaxies are distributed

in the Universe reveals the presence of a cosmic web of filaments, walls and

voids. As motivated in §1.3, one can merely give a statistical description of

the cosmic web. Nonetheless it is crucial to make predictions for various

observables in the context of different cosmological models, in order to ex-

tract informations from cosmological observations. In particular we need a

theory for structure formation able to predict the statistics of cosmic fields.

The commonly accepted picture for the formation of cosmic structures is

the hierarchical scenario, where the current LSS emerge from a hierarchical,

gravitationally driven assembly of smaller DM structures (halos), originated

by primordial small-scale fluctuations. These structures merge to form larger

and larger halos, generating the potential wells in which baryons eventually

fall, and form stars and galaxies. Although the details of the formation of

structures are affected at small scales by the physics of baryons, in the con-

text of a universe where the dominating matter component is DM the global

properties of the large scale distribution are determined by the collisionless

dynamics of DM itself.

The latter can be approximated linearizing the equations describing the

DM dynamics, an approach that can be safely adopted only under the assump-

tion that densities and velocities are small. This approximation is, however,

not suitable to follow the evolution of structures deeply into the non-linear

regime. One possibility is to adopt a perturbative approach, which allows one
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to push predictions to mildly non-linear scales, such as the BAO scale. The ad-

vantage of such techniques is their quick computability. The fully non-linear

scales however cannot be described with a perturbative method, because

of highly non-linear dynamics and other small-scale phenomena (such as

baryonic effects). These scales can only be accurately described with cosmo-

logical N-body simulations, which are however computationally expensive.

For this reason, an alternative way (useful in particular for the computation

of covariance matrices, §1.3.2) is provided by approximate methods that can

quickly generate large sets of realizations of the density fields.

In this chapter I provide an overview of the numerical approaches cur-

rently used to predict cosmological quantities. Thorough and comprehen-

sive reviews can be found in Bernardeau et al. (2002) (for perturbative ap-

proaches to cosmic growth), Bertschinger (1998) (for cosmological N-body

simulations) and Monaco (2016) (for approximate methods).

2.1 Perturbative approach to cosmic growth

The evolution of the density field can be described approximating the Uni-

verse with an expanding perfect fluid. Such an approximation holds when

the scales considered are much smaller than the particle horizon (k � H)

and the velocities are much smaller than the speed of light (vp � c): in this

case we can adopt a Newtonian approximation, able to account for the linear

regime of perturbations.

Most of the evolution and growth of cosmic structure occurs during the

matter dominated era. Hence, in the following, I will neglect the contribution

of Λ to the background evolution. This is equivalent to considering a universe

that only includes matter, i.e. an Einstein-de Sitter universe. The physical

coordinate ~r can be described in terms of a comoving coordinate ~x times the

scale factor:

~r(t) = a(t)~x(t) . (2.1)

The velocity of perturbations can then be written as:

~v =
d~r

dt
= ȧ~x+ a

d~x

dt
= Ha~x+ ~u = H(t)~r(t) + ~u(t) . (2.2)

where H~r denotes the Hubble flow and ~u is the peculiar velocity. It is useful

to change the time coordinate to the conformal time τ , where dτ = dt/a,
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and introduce a conformal Hubble factor H(τ) = da/(a dτ) = aH, so that

~v(~x, t) = H~x+ ~u (2.3)

The assumption of perfect fluid implies that the evolution of the density

field is described by just three fluid equations: the continuity equation, Euler

equation and Poisson equation,

∂ρ

∂t
+∇r · (ρ~v) = 0

∂~v

∂t
+ (~v · ∇r)~v = −1

ρ
∇rP −∇rΦtot

∇2
rΦtot = 4πGρ

(2.4)

where ρ is the density, ~u = ṙ is the proper velocity, P is the pressure and Φtot

is the gravitational potential. Here I am making the one fluid approximation,

neglecting viscosity, so that the fluid is described completely by ρ and ~v.

Moreover, the fact that CDM is pressureless allows for the first term in the

r.h.s. of Euler equation to be set to zero. It is possible to split quantities in

equations 2.4 into background values and small fluctuations:

ρ(~r, t) = ρ̄(t) + δρ(~r, t) = ρ̄(t) [1 + δ(~r, t)]

~v = H~x+ ~u

Φtot =
2πG

3
ρ̄r2 + Φ(~r, t)

(2.5)

where δ is the matter overdensity. Moreover, using ~x and τ as spatial and

time coordinates, the fluid equations 2.4 become:

∂δ

∂τ
+ ~∇ · [(1 + δ)~u] = 0

∂~u

∂τ
+H~u+ (~u · ~∇)~u = −∇Φ

∇2Φ = 4πGρ̄a2δ .

(2.6)

2.1.1 Linear Eulerian Perturbation Theory

Equations 2.6 are fully non linear equations, so the first approach to describe

the evolution of δ and ~u is to linearize them. This assumption is accurate only

on very large scales, or at large redshifts, where the fluctuation fields are
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small. It is useful at this point to introduce the velocity divergence θ(~x, τ) =

~∇ · ~u. Linearizing the fluid equations gives:

∂δ

∂τ
+ θ = 0

∂θ

∂τ
+Hθ = −∇2Φ

∇2Φ = 4πGρ̄a2δ =
3

2
H2δ

(2.7)

where the last equation is exact only for an Einstein-de Sitter universe, but

still accurate enough during matter domination. The Poisson equation can

then be inserted into the Euler equation, leaving us with just two equations.

The continuity and Euler equations can also be rewritten taking their Fourier

transform:
∂δ~k
∂τ

= −θ~k
∂θ~k
∂τ

+Hθ~k +
3

2
H2δ~k = 0

(2.8)

which can be combined to give:

∂2δ~k
∂τ2

+H∂δ~k
∂τ
− 3

2
H2δ~k = 0 . (2.9)

This last differential equation describes the time evolution of the overden-

sities δ. Factorizing δ~k into a time-dependent and scale-dependent part, we

may look for a solution of eq. 2.9 of the form δ~k(τ) = D(τ)A~k, where D(τ)

is called the growth factor. In this case, we end up with a second order dif-

ferential equation for the time-dependent function D:

∂2D

∂τ2
+H∂D

∂τ
− 3

2
H2D = 0 . (2.10)

This last equation has two solutions, a growing one and a decaying one:

D+(a) ∝ a
D−(a) ∝ a−3/2

(2.11)

so that δ(~x, τ) = D+(τ)A(~x) + D−(τ)B(~x), A(~x) and B(~x) being arbitrary

functions that describe the initial density field configuration. Althoug this

solution is exact only for an Einstein-de Sitter universe, it is still a good

approximation do describe the growth of perturbations during the matter
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dominated era. Extending this approach to a flat Universe with a cosmologi-

cal constant yields:

D+(a) =
5

2
Ωm,0H(a)

∫ a

0

da′

(a′)3H(a′)
, (2.12)

which must be solved numerically.

2.1.2 Non-linear Eulerian Perturbation Theory

The abovementioned approach can be extended considering the evolution of

cosmic fields beyond linear order. This requires a self-consistent approxima-

tion, so that the velocity field is completely characterized by its divergence

and vorticities are negligible. This is a safe assumption as long as one con-

siders a collisionless fluid with vanishing initial vorticity (single-streaming

limit, i.e. the velocity fluid is defined at each point), but breaks down at small

enough scales, at the onset of multi-streaming. The perturbative approach

involves expanding the density and velocity fields about their linear solutions

(that are just time-dependent scalings of the initial fields), so that

δ(~x, τ) =

∞∑
n=1

δ(n)(~x, τ) , θ(~x, τ) =

∞∑
n=1

θ(n)(~x, τ) , (2.13)

where δ(1) = δL is linear in the density field, δ(2) ∼ (δL)2, etc. (the same holds

for θ). It is useful at this point to consider only Fourier space quantities, since

in linear theory each Fourier mode evolve independently form the others.

Considering non-linear contributions to δ and θ, a coupling between different

Fourier modes emerges. The equations of motion can be written as:

∂δ~k
∂τ

+ θ~k = −
∫

d2~k1d3~k2δD(~k − ~k12)α(~k1,~k2)θ~k1δ~k2

∂θ~k
∂τ

+H(τ)θ~k +
3

2
Ωm,0H2(τ) = −

∫
d2~k1d3~k2δD(~k − ~k12)β(~k1,~k2)θ~k1θ~k2 ,

(2.14)

where δD is the Dirac delta, ~k12 = ~k1 +~k2, a subscript ~k denotes Fourier-space

quantities and

α(~k1,~k2) =
~k12 · ~k1

k2
1

, β(~k1,~k2) =
k2

12(~k1 · ~k2)

2k2
1k

2
2

(2.15)



2.1 Perturbative approach to cosmic growth 33

encode the non-linear mode coupling. In an Einstein-de Sitter universe it is

possible to write the solutions to eq.s 2.14 as

δ
(n)
~k

=

∫
d3~q1...d

3~qnδD(~k − ~q1...n)Fn(~q1, ..., ~qn)δL,~q1 ...δL,~qn

θ
(n)
~k

=

∫
d3~q1...d

3~qnδD(~k − ~q1...n)Gn(~q1, ..., ~qn)δL,~q1 ...δL,~qn

(2.16)

where the kernels F and G can be constructed with recursive relations from

the fundamental mode coupling functions of eq. 2.15 (Goroff et al., 1986;

Jain & Bertschinger, 1994).

The leading order contribution to the evolution of the power spectrum is

obtained from the linear overdensity field δL, derived from eq. 2.9:

〈δL(~k, τ)δL(~k′, τ)〉 = δD(~k + ~k′)PL(k, τ) , (2.17)

where PL(k, τ) = D2
+(τ)PL(k), and the linear power spectrum PL(k) derives

from the linear evolution of fluctuations through the radiation dominated

era (usually followed using general relativistic Boltzmann solvers). From

the higher-order expressions 2.16 for δ and θ, it is possible to compute non-

linear corrections to the matter power spectrum: second-order corrections

are obtained considering contributions up to third order in δ:

PNL(k, τ) = PL(k, τ) + P22(k, τ) + P13(k, τ) , (2.18)

with

P22(k, τ) = 2

∫
d2~q F 2

2 (~k − ~q, ~q) PL(|~k − ~q|, τ) PL(~q, τ)

P13(k, τ) = 6PL(k, τ)

∫
d3~q F3(~k, ~q,~k − ~q)PL(~q, τ) ,

(2.19)

where F2 and F3 are the kernels for δ(2) and δ(3). The perturbative approach

described above is called Standard Perturbation Theory (SPT), and the cor-

rection to the power spectrum of equation 2.18 is commonly referred to as

the 1-loop power spectrum, in analogy with particle physics.

The main issue with SPT is that it has poor convergence properties when

higher order corrections are included, introducing large deviations from the

result of N-body simulations, as shown in Fig. 2.1 (Blas et al., 2014). For this

reason, alternative approaches based on different re-summation schemes
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Fig. 2.1: Comparison of matter power spectrum measured from simulations to the
SPT results. Solid black line is the linear prediction. Black dashed, dot-
dashed lines and diamonds show respectively the one-, two- and three-
loop predictions. Blue lines are the result of a re-summation scheme. From
Blas et al. (2014)

have been proposed (Crocce & Scoccimarro, 2006; Bernardeau et al., 2008,

2012), as well as approaches based on Effective Field Theory (Baumann

et al., 2012; Carrasco et al., 2012, 2014). In general, the SPT approach

can predict cosmological quantities such as the power spectrum, showing

good agreement with the results of N-body simulations. The validity range

of different perturbative schemes was recently tested in Osato et al. (2019),

showing that such methods are reliable to get accurate estimations of the

cosmological parameters up to scales k ∼ 0.2− 0.3 h Mpc−1.

2.1.3 Lagrangian Perturbation Theory

One of the assumptions made in §2.1.2 is that DM can be described as a

fluid. It is thus possible to look at the evolution of the fluid considering

specific locations in space, through which the fluid flows: this allows to study

the dynamics of the density and velocity fields, and constitutes the Eulerian

approach of SPT. An alternative method is to describe the fluid following the

trajectories of particles (fluid elements): this is the Lagrangian description.

In a cosmological context, Lagrangian Perturbation Theory (LPT) was
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pioneered by Zel’dovich (Zel’dovich, 1970; Shandarin & Zeldovich, 1989).

The main idea is to map the initial (Lagrangian) comoving particle position

~q to the final (Eulerian) comoving position ~x by means of a displacement

field:

~x(~q, τ) = ~q + ~Ψ(~q, τ) , (2.20)

where the displacement ~Ψ is the main quantity of interest, and the small

parameter in the perturbative expansion of LPT. Applying conservation of

mass to the fluid element it is possible to derive a relation between the

Jacobian of the transformation from Eulerian to Lagrangian coordinates

J(~q, τ) = ∂~x/∂~q and the overdensity δ:

ρ(~x, τ)d3~x = ρ(~q)d3~q → ρ̄(τ)[1 + δ(~x, τ)]d3~x = ρ̄(τ)d3~q

⇒ J(~q, τ) =
1

1 + δ(~x, τ)
←→ δ(~x, τ) = J−1(~q, τ)− 1 .

(2.21)

The above equation establish a direct relation between the overdensity field

δ and the displacement field Ψ.

It is apparent how this result is valid up to orbit crossing: at the first

crossing of trajectories, two fluid elements with different initial ~q end up in

the same final position ~x, the Jacobian J vanishes and the overdensity δ →
∞. Shell-crossing is then taken to be the limit of validity of the Lagrangian

approach.

The equation of motion is given by Euler equation (2.7), that can be

written in Lagrangian coordinates considering that:

• ~u = ∂~x/∂τ = ∂~Ψ/∂τ ;

• δ(~x, τ) = J−1(~q, τ)− 1;

• (∇~x)i = [δijK + ~Ψi,j ]
−1(∇~q)j , with δK the Kroneker delta and ~Ψi,j =

∂~Ψi/∂~qj .

The resulting equation is then:

J(~q, τ)[δijK + ~Ψi,j ]
−1∇~q ·

[
∂2~Ψ

∂τ2
+H(τ)

∂~Ψ

∂τ

]
=

3

2
Ωm(τ)H2(τ)[J(~q, τ)− 1] .

(2.22)
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Zel’dovich approximation

The linearized version of eq. 2.22 is the so-called Zel’dovich approximation

(ZA, Zel’dovich (1970)). Under the assumption that Ψ is curl-free, it is possi-

ble to write the displacement in terms of a potential φ = ∇~q ·~Ψ. The resulting

equation for the first-order displacement potential is then:

∂2φ(1)

∂τ2
+H(τ)

∂φ(1)

∂τ
=

3

2
Ωm(τ)H2(τ)φ(1) . (2.23)

Since the operator acting on φ(1) is only a function of time, the time evolution

can be factored out and the potential can be written as a (time-dependent)

growth factor times the initial potential: φ(~q, τ) = D1(τ)φ(~q), where D1(τ) is

the linear growth factor already derived for SPT. At linear order, the density

can be written as:

δ(~x, τ) + 1 =
1

[1− λ1D1(τ)][1− λ2D1(τ)][1− λ3D1(τ)]
, (2.24)

where λi are the eigenvalues of the Hessian of the potential H = ∂2φ/∂qi∂qj .

This equation allows for a simple interpretation of shell-crossing in ZA, de-

pending on the value of the eigenvalues λi:

• λi < 0: we are looking at an underdense region that will reach δ = −1;

• λ3 > 0, λ1, λ2 < 0: when λ3D1(τ)→ 1 we have planar collapse along

the axis identified by λ3, leading to the formation of a bidimensional

“cosmic pancake”;

• λ2, λ3 > 0, λ1 < 0: tha collapse happens in two dimensions, leading to

the formation of a filament;

• λ1, λ2, λ3 > 0: the collapse proceeds in all directions. λ1 = λ2 = λ3

corresponds to the collapse of a sphere.

Higher-order Lagrangian Perturbation Theory

Considering higher-order terms in eq. 2.22 leads to significant improvements

in the description of the non-linear evolution of overdensities respect to the

ZA. This is due to the fact that higher-order LPT takes into account the effects

of gravitational tidal fields, i.e. the non-locality of the gravitational instability.
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The perturbative expansion is expressed in terms of the displacement field

as:
~Ψ(~q, τ) =

∑
i

~Ψ(i)(~q, τ) , (2.25)

where the first order is related to the linear overdensity∇~q · ~Ψ(1) = D1(τ)δ(~q)

and ~Ψ(2) ∝ (~Ψ(1))2 etc. Keeping second order terms in eq. 2.22, and writing

the displacement field in terms of the potential φ one obtains:(
∂2

∂τ2
+H ∂

∂τ
− 3

2
H2Ωm

)
φ

(2)
,ii = −3

2
H2Ωm

[
1

2

(
φ

(1)
,ii φ

(1)
jj − φ

(1)
,ij φ

(1)
,ji

)]
,

(2.26)

where ,ij = ∂2/∂qi∂qj . Again, it is possible to factorize the second order

potential in a time- and space-dependent part, so that the time evolution is

encoded in a second order growth factor D2(τ), that can be obtained solving

the differential equation(
∂2

∂τ2
+H ∂

∂τ
− 3

2
H2Ωm

)
D2(τ) = −3

2
H2ΩmD

2
1(τ) . (2.27)

The initial second-order displacement potential φ(2)(~q, τin) is the term in

square brackets on the right-hand-side of eq. 2.26. Extensions of LPT up

to third order (3LPT) were developed in Buchert (1992); Buchert & Ehlers

(1993); Buchert (1994), showing significant improvements in the description

of mildly-NL scales. Fig. 2.2 shows the comparison between density maps

obtained from a full N-body simulation (top left), and increasing LPT orders

(first-, second- and third-order, clockwise from the top right panel): the clear

effect is a thickening of the NL structures for higher LPT orders. A more

quantitative way to measure the performance of the Lagrangian approach

is obtained comparing the statistics of the cosmic field. In Munari et al.

(2017a), the authors show the effect of higher perturbative orders on the

predictions for the matter power spectrum. The bottom panel of Fig. 2.3

shows the ratio of the power spectrum with respect to the one measured

from N-body simulations, highlighting the significant improvement of 3LPT

over the ZA and 2LPT.

Given an initial displacement field and once the equations for the growth

factors are solved, the advantage of LPT is the straightforward computation

of potentials and displacements for any time. For this reason, LPT has proven

to be a very powerful tool and is indeed the foundation on which many
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Fig. 2.2: Density maps at z = 0 obtained for a full N-body simluation (top left) and
different orders of LPT (Munari et al., 2017a). The panels show slices of
depth 10 h−1 Mpc and side 200 h−1 Mpc.

Fig. 2.3: Matter power spectrum at z = 1 obtained from N-body simulations (black
solid line) and LPT displacements. The green line is the ZA, red line is
2LPT and blue line is 3LPT. From Munari et al. (2017a).



2.1 Perturbative approach to cosmic growth 39

approximate methods (§2.2.2) rely.
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2.2 Simulating the Universe

As mentioned before, the proper tool to get a full description of the non-linear

scales of the LSS and their evolution are N-body simulations. During the last

decades, technological advances allowed to access a larger and larger number

of cores, as well as large storage facilities, resulting in an improvement of

cosmological N-body simulations both in size and resolution.

However, full N-body remain computationally expensive. On the other

hand, a proper computation of covariance matrices (essential to constrain

cosmological parameters, see §1.3.2) calls for the generation of large sets of

realizations. It has been shown that, in order to reach the precision needed

by future experiments,∼ 103 realizations are needed. Such a problem cannot

be tackled with N-body simulations, however it can be solved with the use of

approximate methods. The latter are the optimal tradeoff between speed and

accuracy, being able to readily generate the large sets of simulated catalogs

needed while following the mildly NL scales with sufficient precision.

2.2.1 N-body simulations

Cosmological N-body simulations involve generating a realization of the

Universe in a finite comoving volume with a cubic box of side L3
box. The con-

tinuous DM distribution is sampled at some discrete locations in phase-space

(grid points), that act as particles in the simulation. The mass resolution of

the simulation depends then on the number of particles Npart:

mp = ρ̄
L3

box

Npart
, (2.28)

where ρ̄ is the homogeneous density fixed by the fiducial cosmology. In the

case of cosmological simulations, N-body particles do not correspond to real

particles but rather to mass elements mp, with position ~xi and velocity ~vi;

this naturally leads to the introduction of a softening length, to deal with the

(unphysical) scattering of particles that get close together.

Initial conditions (particles velocities and positions) for the simulations

are generated displacing particles from a regular grid with LPT displace-

ments; this is done at a sufficiently high redshift, so that the perturbative

approach can be safely adopted (50 ≤ z ≤ 100). The N-body code then pro-

ceeds to numerically solve the equations of motion for particles that interact
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gravitationally. The underlying dynamics is, in general cases, approximated

by Newton law, but it can also include relativistic effects or modified gravity.

The equations of motion for the particles are then

d~xi
dt

= ~vi , mp
d~vi
dt

= ~Fi , (2.29)

where ~Fi is the force acting on the particle i due to interaction with all other

particles j:
~Fi = −

∑
j 6=i

Gmimj
(~ri − ~rj)
|~ri − ~rj |3

. (2.30)

The evaluation of the force of eq. 2.30 is the most time consuming task

in an N-body simulation, due to the large number of particles usually in-

volved (Npart ∼ 109 − 1010, and the number of interactions to be computed

scales as O(N2)). For this reason, methods that evaluate the force acting

on each particle as the sum of the contributions of all other N − 1 particles

(particle-particle methods) are computationally expensive, and different ap-

proximation schemes have been developed to reduce computational time in

collisionless systems. Two commonly adopted approaches are:

• Particle-mesh methods (PM, Hockney & Eastwood (1988)): the density

field is discretised over a grid (mesh). The gravitational potential is

then evaluated solving the Poisson equation (sourced by the discrete

density field) in Fourier space, by means of Fast Fourier Transforms.

The downside of this method is that the mesh size limits the resolution,

introducing errors on the evaluated forces on small scales. To miti-

gate this issue, the mesh can be adaptive (Adaptive Mesh Refinement,
AMR) rather than static, so that more dense regions are sampled with

a finer mesh. The computational cost of particle-mesh methods scales

as O(Ng logNg), Ng being the number of vertices of the mesh;

• Tree methods (Barnes & Hut, 1986): the number of interactions to be

evaluated is reduced dividing the volume into cubic cells by means

of an octree; for nearby cells, the interactions between particles are

evaluated individually, while distant cells are treated as single particles.

In this case, the computational cost scales as O(N logN).

Currently available code for N-body simulations include R A M S E S (PM +

AMR, Teyssier (2002)), P K D G R AV (tree algorithm, Stadel (2001)) and G A D -
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G E T (hybrid tree-PM, (Springel, 2005)). A recent code comparison was per-

formed in Schneider et al. (2016) by the Euclid Cosmological Simulation

Working Group, later extended in Garrison et al. (2019) including the A B A -

C U S code (Garrison et al. (2018)). Despite the different algorithm choice,

both the power spectra and bispectra obtained from different codes showed

percent agreement, ensuring that at least numerical effects are under control.

2.2.2 Approximate methods

Future surveys, such as the Euclid satellite described in §1.5, will observe

billions of galaxies, making the error budget dominated by systematics rather

than statistical errors. Simulating wide modern surveys is still a challenge,

despite the tremendous improvement of N-body codes. The reason behind

this are the large volumes (L ∼ 4h−1Gpc, needed to properly sample the

BAO scale and generate past-light-cones without many replications along

the l.o.s.) and high resolution (resolve halos of at least ∼ 1011M�, which

translates in mp ≤ 109M�, or Npart ∼ 1012) are required. Currently the

largest available N-body simulation is the Euclid Flagship Simulation, with

a box of L = 3780h−1Mpc and Npart = 2 × 1012 particles. Such a simula-

tion is already expensive in term of computational time and storage, but on

top of that, a precise determination of the cosmological parameters from

survey data requires a proper modeling of the covariance matrix, in order

to evaluate the likelihood. To that end, thousands of simulated catalogs are

required for each cosmological model to constrain. The proper tool to ad-

dress this problem are approximate methods: semi-analytical models that

rely on some approximation to make them run significantly faster than full

N-body (a factor of ∼ 1000), with minor compromises on the accuracy of the

modeling of mildly-NL scales (there is a significant loss of accuracy at scales

& 0.5hMpc−1).

During the 1990s approximate methods drew interest (and effort in the

development) as an alternative to N-body simulations (Sahni & Coles, 1995).

In recent years, they are being used as a complement to full N-body, rather

than an alternative, with the purpose of evaluating covariance matrices. Ap-

proximate methods can roughly be divided into two categories:

• Predictive methods that follow the particle trajectories, evolving some

initial linear density field down to the halo formation;
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• Calibrated methods that use some bias scheme to stochastically popu-

late a non-linear density field with halos. They are usually faster than

predictive models, but need to be calibrated on a reference N-body

simulation.

Codes that implement predictive approximate methods are P I N O C C H I O

(Monaco et al., 2002a, 2013), P T H A L O S (Scoccimarro & Sheth, 2002), to-

gether with methods that implement a particle-mesh scheme such as C O L A

(Tassev et al., 2013) and FA S T P M Feng et al. (2016). Hybrid-PM schemes

show an improved accuracy in describing NL scales with respect to purely

Lagrangian methods, but at the price of larger computational time. Codes

like PAT C H Y (Kitaura et al., 2014), E Z M O C K S (Chuang et al., 2015a) and

H A L O G E N (Avila et al., 2015) fall instead in the second category of cali-

brated methods.

A comparison of the clustering statistics obtained using approximate

methods was performed in Chuang et al. (2015b), quantifying deviations

from N-body simulations in the two- and three-point statistics both in real

and redshift space, as well as the mass function. More recently, a series

of paper focused on the performances of different approximate methods

to compute the covariance matrix for the two-point correlation function

(Lippich et al., 2019), power spectrum (Blot et al., 2019) and bispectrum

(Colavincenzo et al., 2019), as compared to the covariance obtained from a

set of N-body simulations. Those works showed that all approximate meth-

ods can accurately recover the mean parameter values inferred using the

N-body covariance. Moreover, the parameter uncertainties agree with the

corresponding N-body results within 10%. These results confirm that, given

their speed with respect to full N-body simulations, approximate methods

are the optimal tool to compute covariances.

This PhD work is focused on extending the P I N O C C H I O code to modified

gravity theories, therefore the code is described in more detail in chapter 4.

2.3 Gravitational collapse

According to the standard cosmological model, structure formation in the

Universe is driven by gravitational collapse of regions that are overdense

with respect to the background. Such overdensities initially expands with

the Hubble flow, until they reach a maximum size (turnaround, TA) and then
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start collapsing, finally forming virialized objects. Baryonic matter, in the

form of gas, feels the gravitational pull of such DM halos: it is accreted onto

the halo, shocked, and eventually cools down and start forming stars and

galaxies. The simplest way to describe the gravitational collapse of pertur-

bation is provided by the spherical collapse model (Gunn, 1977), that can

be extended considering more realistic triaxial shapes for halos, as in the

ellipsoidal collapse model (White & Silk, 1979; Bond & Myers, 1996).

2.3.1 Spherical collapse

The most straightforward way to describe the collapse of perturbations is

treating them as spherical overdensities δ embedded in an expanding Uni-

verse. The evolution of a shell of radius r is described by Newton equation:

d2r

dt2
= −GM

r2
, (2.31)

where M = M(< r) is the mass enclosed within the shell. The assumption

of the model is that there is no shell-crossing, so that both the total mass and

the mass of each shell remain constant. Eq. 2.31 can be integrated once to

get
1

2

(
dr

dt

)2

− GM

r
= E . (2.32)

For E = 0, the solution is r ∝ M1/3t2/3: the overdensity expands as an

Einstein-de Sitter universe, with scale factor a(t) ∝ t2/3. However, if E < 0,

the derivative dr/dr can change sign: in this case, the expansion slows down

until it reaches the TA point, after which collapse starts. This happens when

the region considered is sufficiently denser with respect to the environment,

and the gravitational pull is enough to win over the kinetic energy. The time

evolution of the shell can also be written in terms of a parametric solution

of the form:
r = Arin(1− cos θ)

t = Btin(θ − sin θ) .
(2.33)

where rin is the initial radius of the overdensity. The turnaround moment

corresponds to θ = π, while collapse occurs for θ = 2π.
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The initial conditions for eq. 2.31 are set by the initial overdensity δin:

M =
4π

3
r3(t)ρ(t) = Min =

4π

3
r3
inρ̄b(1 + δin) , (2.34)

where ρ̄b is the background density. The second initial condition is set so

that the initial velocity of the shell matches the expansion of the Universe,

(dr/dt)in = Hinrin. The initial energy of the shell is then: Kin = 1
2

(
dr
dt

)2|in =
H2

inr
2
in

2

Uin = −GMin/rin = −H2
inr

2
inΩm(1 + δin)/2 = −KinΩm(1 + δin)

(2.35)

with K and U being the kinetic and gravitational potential energy respec-

tively, and Ωm the matter density parameter. Equation 2.35 allows to set a

first condition for collapse:

Ein = Kin + Uin = Kin(1− Ωm(1 + δin)) < 0

⇒ (1 + δin) > Ω−1
m .

(2.36)

The moment of TA corresponds to the moment of maximum expansion, when

the kinetic energy is zero and the total energy of the shell is given by the

gravitational potential energy E = −GM
rTA

; after this moment, the overdensity

begins to shrink, until it collapses and reaches virial equilibrium. It is possible

to derive a relation between the radius of maximum expansion rTA and the

virial radius rvir: just considering energy conservation and the virial theorem

(Uvir = −2Kvir) one can derive rvir ∼ rTA
2 , meaning that at virialization the

system is half the size with respect to TA. This last relation can be used

to set A and B in eq. 2.33, and then derive the evolution equation for the

overdensity δ. For an Einstein-de Sitter universe and in the linear regime, the

latter can be written as:

δ ' 3

20
θ2 ' 3

5
δin

(
t

tin

)2/3

, (2.37)

so that the linearly extrapolated values are δL ' 1.062 at TA and δL '
1.686 at virialization. It can be shown that the density at collapse does not

change much if one includes a cosmological constant Λ: in that case, δL '
1.696Ωm(acoll)

0.0055, with a very weak dependence on the cosmology.
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2.3.2 The halo mass function

The dynamical description of the evolution of perturbations deep in the

non-linear regime is quite complicated. However, several methods have been

developed to predict the distribution and masses of collapsed objects starting

from an initial density field δ(~x, tin).

The main idea behind these approaches is that objects of mass M form

from overdense regions in an initial density field δ(~x;R) smoothed on some

scale R; it is somewhat natural to think that such regions correspond to

peaks in the density field. Identifying the number density of peaks with the

number density of objects of mass M ∝ R3 leads however to the so-called

cloud-in-cloud problem: a mass element associated to a peak δ(~x;R1) could

also be associated to δ(~x;R2) with R2 > R1. There are two possibilities:

• δ2 < δ1: the mass element reaches the critical density for collapse first

at t1 on scale R1 (forming an object of M1), then at t2 > t1 on scale

R2 (forming an object of mass M2). Hence, the mass element is part

both of M1 and M2, reflecting a situation where an object of mass M1

merges to form a larger halo of mass M2 at t2;

• δ2 > δ1: the mass element should end up directly in the object of mass

M2, without being part of the object of mass M1. The peak δ1 should

then be excluded from the number density of objects of mass M1, and

considered in the number density of halos with mass M2.

Predicting the halo mass function, i.e. the number densities of halos with

mass betweenM andM+dM , requires a proper way to split the density field

into separate “patches”. It is possible to tackle the problem in a statistical

way, in order to characterize the halo population. The basic assumptions

behind this approach are:

• the initial density field is a Gaussian random field;

• densities are computed extrapolating the linear densities into the non-

linear regime;

• the density is smoothed on some scale R ∝M1/3;

• mass elements at some location ~x end up in halos of mass M at a time

t if their density is above some threshold δc(t);
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A simple method is the so-called Press-Schechter formalism (PS, Press &

Schechter (1974)): the spherical collapse model can be used to set the

threshold for collapse at δc = 1.686. The assumption of the model is that

the fraction of halos with mass > M is given by the probability that the

density contrast (smoothed on scale R) is larger than δc:

P(> δc) =

∫ ∞
δc

1√
2πσ(R)

exp

(
− δ2

2σ2(R)

)
dδ . (2.38)

with σ2(R) = 〈δ2〉 the variance of the smoothed density field. The shortcom-

ing of this approach is that, as M → 0, σ(M)→∞ and P(> δc)→ 1/2: only

half of the mass is in collapsed objects; this is a consequence of the linear

approximation. The problem was circumvented with the introduction of a

“fudge factor” 2. The PS halo mass function can be derived differentiating

eq. 2.38:

n(M, t)dM =

√
2

π

ρ̄

M2

δc
σ

exp

(
− δc

2σ2

) ∣∣∣∣ d lnσ

d lnM

∣∣∣∣ dM (2.39)

An alternative mass function was derived in Bond et al. (1991); Bower

(1991); Peacock & Heavens (1990); Lacey & Cole (1993) (Extended Press-

Schechter formalism, EPS), based on the excursion set formalism. The EPS

approach was further extended with the inclusion of a “moving” barrier in

place of the fixed critical density for collapse at δc (Sheth & Tormen, 1999,

2002). The latter is based also on ellipsoidal collapse, which is the topic of

§2.3.3. All this approaches are more phenomenological than physical, thus

they are not guaranteed to provide an accurate description of the formation

of DM halos.

2.3.3 Ellipsoidal collapse

A more sophisticated description of the evolution of structures in the Uni-

verse can be obtained by relaxing the assumption of spherical symmetry for

the shape of overdensities, for instance employing a triaxial treatment. This

can be done describing the overdensities as homogeneous ellipsoids embed-

ded in a background Universe, as in the ellipsoidal collapse model (EC, first

considered in White & Silk 1979, and further developed in Bond & Myers

1996). EC was also adopted in Sheth & Tormen (1999, 2002) and Monaco
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(1997a,b), to compute predictions for the halo mass function in the frame-

work of the excursion set approach. The triaxial description of overdensities

introduces the problem of finding a proper definition for the time of collapse.

In general, there are two possibilities:

• collapse of the ellipsoid on the third axis: this definition is appropriate

to describe the collapse of peaks, intended as extended regions, and

was adopted in Bond & Myers (1996),Sheth & Tormen (2002). In this

case, the tidal tensor and the inertia tensor are misaligned, leading to

the acquisition of angular momentum (White, 1984);

• collapse of the ellipsoid on the first (shortest) axis, corresponding to

the moment of orbit crossing: this definition is suitable to describe the

collapse of mass elements, and was adopted in Monaco (1997a,b). In

this case the tidal tensor and the inertia tensor are aligned, and there is

no acquisition of angular momentum. The overdensity starts evolving

as a sphere, but acquires a triaxial shape due the presence of tidal

forces.

In this section I describe three different prescriptions for the evolution of el-

lipsoidal overdensities that can be employed to compute the collapse times of

ellipsoids: the one described in Bond & Myers (1996), later reformulated in

Nadkarni-Ghosh & Singhal (2016), and a description based on LPT (Monaco,

1997a).

Bond & Myers approach

The density contrast δ of an ellipsoid with density ρe embedded in a back-

ground with density ρb is given by:

δ =
ρe
ρb
− 1 . (2.40)

The three principal axes of the ellipsoid can be written as ri(t) = ai(t) q,

where q is the comoving radius of the corresponding Lagrangian sphere

(concentric with the ellipsoid and with the same mass, but with density equal

to the background), while ai(t) represents the time evolution of the ellipsoid

axes. Enforcing mass conservation leads to:

a3q3ρm = a1a2a3q
3ρe , (2.41)
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so that

δ =
a3

a1a2a3
− 1 . (2.42)

The evolution equation for the ellipsoid principal axes can be written as

(Bond & Myers, 1996):

d2ai
dt2

=
8πG

3
ρΛai − 4πGρ̄mai

[
1

3
+

(
δ

3
+
δbi
2

+ λext,i

)]
. (2.43)

The term in round brackets in eq. 2.43 represents the contribution from the

gravitational potential of the ellipsoid. In particular, the parameters bi and

λext,i denote the internal and external contributions to the tidal shear. The

total tidal field is described by the tidal field tensor Tij = ∂2ΦP /∂xi∂xj =

Tij,int + Tij,ext, with ΦP the peculiar gravitational potential. The ellipsoid’s

eigensystem is the same as the eigensystem of T , so the internal shear can

be evaluated as:

bi(t) = a1(t)a2(t)a3(t)

∫ ∞
0

dτ

[a2
i (t) + τ ]

∏3
j=1(a2

j (t) + τ)1/2
− 2

3
. (2.44)

On the other hand, the external shear can be evaluated as:λext,i(t) = D1(t)
D1(t0)

(
λi(t0)− δ(t0)

3

)
linear

λext,i(t) = 5bi(t)/4 non linear
(2.45)

where D1 is the linear growth factor, t0 is some initial time and the λi terms

are the eigenvalues of the tidal tensor. The effects of the linear or non-linear

approximation in evaluating the external shear have been studied in Angrick

& Bartelmann (2010), where the authors introduced a hybrid model to inter-

polate between the two. The equation of motion 2.43 can be written using

the expansion rate of the background a as time variable:

d2ai
da2

+

(
1

a
+
E

′
(a)

E(a)

)
dai
da

+

(
3Ωm,0Ci(a)

2a5E2(a)
− ΩΛ

a2E2(a)

)
ai = 0 , (2.46)

where E(a) = H(a)/H0 is the dimensionless Hubble rate, and Ci(a) is the

term in square brackets in eq. 2.43. The initial conditions for this differential
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Fig. 2.4: Evolution of the axes of an ellipsoid with λ1 = 1.2, λ2 = 1, λ3 = 0.8
corresponding to a linearly evolved δ(a0) = 3, computed numerically inte-
grating eq. 2.43: the three axes evolve together at the beginning, with the
expanding Universe, but the evolution proceeds at different rates in the
three directions, with a1 (axis with the largest λ) reaching turnaroud well
before the other ones. The integration is stopped as the first axis collapses
(a1 = 0).

equation are set by the Zel’dovich approximation: ai(a0) = a0[1− λi(a0)]

a
′
i(a0) = 1− λi(a0)− d lnD1

d ln a |a=a0 ≈ 1− 2λi(a0)
(2.47)

Eq. 2.43 defines a set of three coupled second-order integro-differential

equations describing the evolution of the ellipsoidal overdensity. The mo-

ment of collapse is defined as the moment of first axis collapse: assuming

λ1 ≥ λ2 ≥ λ3, collapse corresponds to a1 = 0. The evolution equations for

the ellipsoid can be solved numerically for a given set of eigenvalues λi of

the deformation tensor (e.g. Fig. 2.4). However, the evaluation of the elliptic

integral of eq. 2.45 is computationally demanding, making it unsuitable for

a fast evaluation of collapse times for a large number of objects.
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Nadkarni-Ghosh & Singhal approach

An alternative approach to ellipsoidal collapse is described in Nadkarni-

Ghosh & Singhal (2016). This is just a reformulation of the BM approach in

terms of the eigenvalues of the deformation tensor, the velocity derivative

tensor and the gravity Hessian. The ellipsoid’s evolution is described by a set

of nine dimensionless parameters:

λa,i = 1− ai
a

λv,i =
1

H

ȧi
ai
− 1

λd,i =
δαi
2

+ λext,i = Ci −
1

3

(2.48)

where Ci is again the term in square brackets in eq. 2.43. The eigenvalues

λd,i are ordered as λd,1 ≥ λd,2 ≥ λd,3, so that λv,1 ≤ λv,2 ≤ λv,3 and λa,1 ≥
λa,2 ≥ λa,3. The new parameters of eq. 2.48 correspond to:

• The three λa correspond to the eigenvalues of the deformation tensor

and characterize the shape of the ellipsoid; when an axis is collapsing,

λa → 1;

• The three λv capture the deviation of the velocity of each axis expan-

sion with respect to the Hubble flow;

• The three λd correspond to the eigenvalues of the gravity Hessian

(tensor of second derivatives of the gravitational field), i.e. δ =
∑
λd,i.

The evolution equations for the nine eigenvalues are:

dλa,i
d ln a

= −λv,i(1− λa,i)
dλv,i
d ln a

= −1

2

[
3Ωm(a)λd,i − (Ωm(a)− 2ΩΛ(a)− 2)λv,i + 2λ2

v,i

]
dλd,i
d ln a

= −(1 + δ)

(
δ +

5

2

)−1(
λd,i +

5

6

) 3∑
j=1

λv,j+

+

(
λd,i +

5

6

) 3∑
i=1

(1 + λv,i)−
(
δ +

5

2

)
(1 + λv,i)+

+
∑
j 6=i

(λd,j − λd,i[(1− λa,i)2(1 + λv,i)− (1− λa,j)2(1 + λv,j)]

(1− λa,i)2 − (1− λa,j)2

(2.49)
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These are obtained taking the derivative of eq. 2.48 with respect to the

scale factor a. The collapse times computed solving 2.49 are the same as

those derived from the BM approach, with the added bonus of avoiding the

introduction of elliptic integrals, making the numerical solution of equations

2.49 faster. A comparison between collapse times for different ellipsoidal

configurations can be found in §6.1.

Lagrangian PT approach

A third possibility to describe the evolution of ellipsoidal density pertur-

bations is described in (Monaco, 1997a). The main idea is to expand the

peculiar potential ϕ in a Taylor series:

ϕ(~q) = ϕ(~q0) +
∂ϕ

∂qi
(~q0)qi +

1

2

∂2ϕ

∂qi∂qj
qiqj + ... (2.50)

The first term is a constant, while the second term produces a bulk motion

of the mass element. The third term in eq. 2.50 is the first occurring term

in the expansion to determine the density evolution of the mass element. It

is a quadratic potential (determined by the Hessian of the gravitational po-

tential), and is the same as the case of an homogeneous ellipsoid and can be

used to model the evolution of the overdensity. As shown in Monaco (1997a),

the application of LPT up to third order provides a good approximation to

the evolution of the ellipsoid. Considering a quadratic potential:

ϕ(q) =
1

2
(λ1q

2
1 + λ2q

2
2 + λ3q

2
3) (2.51)

Collapse is identified as the moment the density diverges, corresponding to

vanishing of the Jacobian. This amounts to choosing the moment of orbit

crossing as the time when J(q, t) = 0:

1 + ϕ,11D1 + ϕ
(2)
,11D2 + ϕ

(3a)
,11 D3a + ϕ

(3b)
,11 D3b = 0 , (2.52)
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whereDi are the growth factors for the different LPT orders. In the ellipsoid’s

eigensystem the contribution to the deformation tensor are diagonal:

ϕ,11 = λ1

ϕ
(2)
,11 = λ1(λ2 + λ3)

ϕ
(3a)
,11 = λ1λ2λ3

ϕ
(3b)
,11 = λ1λ2λ3 +

λ1δl(δl − λ1)

2

(2.53)

The D2, D3a and D3b growth factors can be written as functions of the linear

growth factorsD1 (with a weak dependence on the matter density parameter,

as shown in Bouchet et al. (1995)). Eq. 2.52 then becomes:[
µ

9
Ωm(a)−4/275 − 5

42
Ωm(a)−268/17875

(
µ+

λ1δ(δ − λ1)

2

)]
D3

1(a)

− 3

14
Ωm(a)−1/143λ1(δ − λ1)D2

1(a)− λ1D1(a) + 1 = 0 ,

(2.54)

where µ = λ1λ2λ3. Eq. 2.54 can be solved analitically if one neglects the

dependence on Ωm(a), adopting the linear growth rate as time coordinate.

A comparison of collapse times computed with LPT and BM was per-

formed in Monaco (1995), showing good agreement except for the quasi-

spherical case, were the LPT approach significantly overestimates collapse

times. This issue is due to the slow convergence of the LPT truncation for

spherical configurations, however it can be solved with the introduction of a

correction allowing to recover spherical collapse:

DC
n,coll = Dn,coll −∆ exp(−ax− by) , (2.55)

where x = λ1 − λ2, y = λ2 − λ3 andn = 2 , ∆ = 0.580 , a = 5.4 , b = 2.3 ,

n = 3 , ∆ = 0.364 , a = 6.5 , b = 2.8 .
(2.56)

This approach is the one implemented in the P I N O C C H I O code (§4.1), where

ellipsoidal collapse times are used to construct the merger histories of halos.

Such description of ellipsoidal collapse, although allowing for a very fast

solution, can not be trivially extended to the MG case. The reason behind that
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is the introduction of scale-dependent growth in MG theories (§5); as a con-

sequence, the growth rate cannot be used as time coordinate. In Ruan et al.

(2020), the authors extend the Bond & Myers approach to the case of f(R)

models, providing the proper evolution equations for ellipsoidal collapse in

MG. However, as described in §6.1, solving eq. 2.43 is too computationally

demanding for the implementation in a fast approximate method. A suitable

compromise is the joint adoption of the Ruan et al. (2020) extension and the

Nadkarni-Ghosh & Singhal approach (§2.3.3), to achieve a fast computation

of ellipsoidal collapse times in the framework of modified gravity theories.

Such approach, discussed in §6, is our choice for the implementation of ellip-

soidal collapse with MG in P I N O C C H I O.



Chapter 3

Modified Gravity

As discussed in chapter 1, the standard cosmological model relies on GR to

describe the gravitational interactions. GR is indeed in remarkable agree-

ment with a wealth of observations, ranging from Solar System tests, grav-

itational redshift experiments, lensing of light from background stars from

the Sun and the anomalous perihelion of Mercury, as well as the Shapiro

time–delay measured by the Cassini spacecraft and Lunar laser ranging ex-

periments. Outside the Solar System, GR is also in good agreement with tests

involving changes in the orbital period of binary pulsars due to gravitational

waves emission (Hulse & Taylor, 1975). The most recent breakthrough in this

field is the detection of gravitational waves emitted by merging black holes

(Abbott et al., 2016) and neutron stars mergers (Abbott et al., 2017a), to-

gether with the detection of their electromagnetic counterpart (Abbott et al.,

2017b), and the imaging of the black hole in M87 (Event Horizon Telescope

Collaboration et al., 2019).

Despite its remarkable success, a proper test of GR on large cosmological

scales is still missing: hence, the application of GR in cosmological studies

is actually an extrapolation of the regime of validity of the theory. Moreover,

the standard cosmological model requires additional dark components to

be consistent with current data. In particular, DE is required to explain the

observed accelerated expansion of the Universe (Riess et al., 1998; Perlmut-

ter et al., 1999). Finding a physical explanation to the mechanism behind

the accelerated expansion is one of the biggest open questions in modern

physics, and the main driver for current and future LSS surveys.
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The simplest description for DE is the cosmological constant Λ in the field

equations 1.2. However, the introduction of Λ poses some theoretical prob-

lems (§3.1). An alternative to the introduction of a cosmological constant is

to consider extensions to GR. This possibility has prompted the development

of a wealth of MG theories able to explain the accelerated expansion without

resorting to a cosmological constant (Amendola & Tsujikawa, 2010; Joyce

et al., 2015; Koyama, 2018; Ishak, 2019).

This chapter provides a general overview of the motivations to consider

models beyond-ΛCDM, the main classes of MG and their parameterizations,

the signatures of MG on cosmological observables as well as current cos-

mological constraints on such parameters. Particular attention is given to

the f(R) class of theories, especially the Hu-Sawicki model (Hu & Sawicki

(2007), HS).

3.1 Motivation

The unknown nature of the two principal constituents of our Universe, dark

energy and dark matter, could in principle be enough to consider alternatives

to GR. On the other hand, stronger motivations come from the so-called

“cosmological constant problems”, as well as tensions between the value for

some cosmological parameters.

3.1.1 Cosmological constant problems

The cosmological constant can be described as an effective cosmic fluid, with

an equation of state parameter w = −1. This coincides with the equation of

state of the vacuum energy associated with quantum fluctuations, connect-

ing the problem of cosmic acceleration to the cosmological constant/vacuum

energy problems (Weinberg, 1989; Peebles & Ratra, 2003; Padmanabhan,

2003; Martin, 2012; Burgess, 2013): the discrepancy between quantum pre-

dictions for the vacuum energy and the observed value for Λ spans some 120

orders of magnitudes. This first issue is also known as fine-tuning, or “old

cosmological constant problem”.

A second problem emerged with more precise measurements of cosmic

density parameters showing that ΩΛ ∼ Ωm,0: we appear to be living at a

very special moment of the history of the Universe, shown by the grey band
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Fig. 3.1: Evolution of the density parameters. Dashed line is Ωr, dotted line Ωm,
solid line is ΩΛ. Highlighted in grey is the epoch when Ωm ∼ ΩΛ. From
Sivanandam (2013).

in Fig. 3.1. This appears to be further fine-tuning of the model’s parameters,

and is known as the coincidence problem or “new cosmological constant

problem” (Sivanandam, 2013; Velten et al., 2014).

3.1.2 Tensions

Another motivation to pursue alternatives to GR comes from tensions be-

tween the cosmological parameters derived from early versus late cosmo-

logical probes. In particular, combining different approaches to measure the

Hubble constant H0 leads to a ∼ 4 − 5 σ tension with early Universe mea-

surements. This can be seen in fig. 3.2: all early Universe data consistently

predict lower values of H0 (CMB data from Planck Collaboration et al. 2018

and a combination of CMB, BBN, BAO and WL data Abbott et al. 2018) with

respect to low redshift data. The latter include distance ladder measurements

from Cepheids and SNIa (Riess et al., 2019), strong lensing time delays of

quasars (Wong et al., 2019), observations of water masers in circum-nuclear

orbits around supermassive black holes (MCP, Reid et al. 2009), SNIa cali-

brated with the tip of the red giant branch (CCHP collaboration, Freedman

et al. 2019). The nature of such tension is still debated (Verde et al., 2019):

future experiments, with lower statistical errors, will reveal if it is due to

systematics, or if it is a signature of new physics and possibly of deviations

from GR.
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Fig. 3.2: Compilation of Hubble constant measurements from recent data. From
Verde et al. (2019).

3.2 Modified gravity theories

There are several ways to characterize extensions to GR, altough none of

them provides a neat and satisfactory categorization. Starting from Einstein

field equations:

Rµν −
1

2
gµνR+ gµνΛ = 8πGTµν , (3.1)

a first distinction can be performed between models including modifications

to the right hand side of eq. 3.1 as opposed to those modifying the left

hand side. The former operate on the stress-energy content of the Universe,

and are known as Dark Energy (DE) models, while the latter act on the

gravity theory itself, modifying the Einstein-Hilbert action, and are known

as Modified Gravity (MG) models. However, drawing a sharp line between

the two categories is not straightforward. In Joyce et al. (2015) the authors
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use the strong equivalence principle as a characterizing feature: models that

satisfy it are DE models, while those violating it are MG models. Another

possibility comes from considering Lovelock theorem (Lovelock, 1969, 1971),

stating that the only local, second-order, gravitational field equations that can
be derived from a four-dimensional action constructed solely from the metric
tensor, and satisfying the conditions of being symmetric and divergence-free, are
those of the Einstein field equations with a cosmological constant.
Theories can therefore be classified according to which requirement they

violate (Berti et al., 2015; Koyama, 2018; Amendola et al., 2018a; Ishak,

2019).

A third, more phenomenological categorization is proposed in Amendola

et al. (2018a):

• Standard DE models: gravity is standard GR and DE does not cluster

on sub-horizon scales. One example is a minimally coupled scalar-field

with standard kinetic energy, with sound speed cs = c (e.g. quintessence,

Wetterich 1988; Ratra & Peebles 1988);

• Clustering DE models: DE has fluctuations and can cluster on sub-

horizon scales, resulting in an additional contribution to Poisson equa-

tion due to DE perturbations. In terms of the DE parameters (see

§3.4), this amounts to having Q 6= 1, but still η = 1 (e.g. k-essence,

Armendariz-Picon et al. 2000);

• MG models: in these models Einstein field equations are modified, lead-

ing to changes in the Poisson equations and η 6= 1. In particular, these

models postulate the existence of a “fifth force”, and include scalar-

tensor theories, f(R) theories (De Felice & Tsujikawa, 2010) and Dvali-

Gabadadze-Porrati theories (DGP, Dvali et al. 2000).

In general, DE models assume that the cosmological constant is a dynamical

field (Copeland et al., 2006). Current data constrain the parameter of the

DE equation of state to be very close to 1; therefore, an extension of the

case of the cosmological constant (with constant w = −1) is to consider a

time dependent equation of state for DE (w = w(a)), approaching its present

value through some mechanism. Such models share the presence of an ad-

ditional degree of freedom affecting the background evolution, resulting in

modified Friedmann equations, but with unchanged fluid equations. As a
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consequence, these models do not affect structure formation directly, but

only the expansion rate of the Universe.

A first class of models that falls in the MG category is coupled DE. This

includes models where DE, identified with a dynamical scalar field, interacts

with other components of the Universe. The coupling introduces a fifth force,

effectively modifying the gravitational interaction and therefore structure

formation, resulting in distinctive signatures in the cosmological observables.

The case of coupling with all species include scalar-tensor theories and f(R)

models.

3.3 Screening mechanisms

All MG models postulate additional degrees of freedom in the gravitational

sector that, when coupled to matter, effectively introduce a fifth force. In

order to comply with tight Solar System constraints, any viable MG mod-

els should include a screening mechanism to locally “hide” the additional

degrees of freedom, so that on small scales GR is restored. Screening can

be relevant in regions where the Newtonian potential ΦN or its derivatives

become large, suggesting the following classification scheme:

• Large field values: this type of screenings activate in regions where ΦN

exceeds some threshold, hence the largest deviations from GR should

appear in regions where ΦN is small. Large values of the potential may

cause the coupling with matter to weaken, the mass of the scalar field

to increase, or the self-coupling to the field to become large. Exam-

ples are chameleon (Khoury & Weltman, 2004a,b), dilaton (Damour

& Polyakov, 1994; Brax et al., 2011) or symmetron (Olive & Pospelov,

2008; Hinterbichler & Khoury, 2010) screening:

– Chameleon: the scalar field takes a background value ψ̄ deter-

mined by the background density. The potential introduces a mass

term for the scalar field perturbation m(ψ) which depends on the

background field, and that does not propagate beyond the Comp-

ton length m−1. Large masses correspond to screened regions:

this can happen in dense environments, e.g. in the Solar System.

On the other hand, on cosmological scales the density (and thus

m(ψ)) is small, allowing for deviations from GR;
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– Dilaton and symmetron screening: In this case, the coupling of

the scalar field to matter is determined by a function ω(ψ), again

depending on the background scalar field ψ̄ and therefore on the

background density. It is possible to have models where ω(ψ̄) is

large in dense environments, so that the scalar field decouples

from matter, while ω ∼ O(1) on cosmological scales;

• First derivatives: this form of screenings appears when ∇ΦN exceeds

some threshold. And example is given by k-mouflage screening (Babichev

et al., 2009; Brax & Valageas, 2014a,b);

• Second derivatives: these activate in regions of high curvature, where

∇2ΦN is large, therefore the largest deviations from GR are expected

to be in regions of low curvature. Such models rely on non-linearities

of the second derivative of the scalar field. One example is Vainshtein

screening (Vainshtein, 1972), associated with galileon and massive

gravity.

Extensive reviews on screening mechanisms can be found in Khoury (2010);

Joyce et al. (2015); Burrage & Sakstein (2018).

3.4 Parametrizations

Given the large number of proposed MG theories, a thorough exploration

of the parameter space is rather cumbersome, and a possible approach is

to use a parameterization able to account for several models. This involves

considering general time- and scale- dependent functions; such a parameter-

ization should in principle be able to capture all relevant physics with the

least number of parameters. Useful parameterizations can be motivated by

predictions for specific theories of MG/DE (Song et al., 2010) or by mea-

surability (Amendola et al., 2018b): the latter implies measuring departures

from a fiducial model (i.e. ΛCDM). Approaches to parameterization can be

based on:

• Model parameters capturing the degrees of freedom of DE/MG and

modifying the evolution equations of the energy-momentum content

with respect to a fiducial model. Such parameters can be associated

with physical effects, and have a specific behavior for different theories;
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• Trigger relations derived directly from observations: these are con-

structed to break down if the data do not describe the features pre-

dicted by the fiducial model. A widely used trigger relation derives

from the growth rate f(a) = d logD/d log a ∼ Ωm(a)γ . In ΛCDM,

γ ' 0.545 (Linder, 2005): deviations from this value could suggest ex-

tensions of the standard scenario. In general, it is possible to consider

a time and scale dependent function γ(k, a) (e.g. Nunes & Mota 2006;

Linder & Cahn 2007).

A common way to parameterize DE models is via a time dependent equation

of state. The most common parameterization is (Chevallier & Polarski, 2001;

Linder, 2003):

w(a) = w0 + wa(1− a) . (3.2)

Different parameterizations were proposed e.g. in Huterer & Turner (2001);

Maor et al. (2001); Weller & Albrecht (2001) (linear and logarithmic param-

eterizations in z), Bassett et al. (2004) (rapidly varying equation of state).

Current constraints on w0, wa are summarized in §3.6.1, while forecasts for

Euclid can be found in §1.5.

Any generic modification of the dynamics of scalar perturbations beyond

the simple scenario of evolving DE can be obtained with the introduction

of two new degrees of freedom, encoded in the equations for the metric

potentials as:

− k2Φ = 4πGQ(a, k)a2ρmδm , Φ = η(k, a)Ψ (3.3)

In MG models the function Q(a, k) represents a mass screening effect due

to local modifications of gravity, and effectively modifies Newton constant.

In clustering DE models Q represents the additional clustering due to the

DE perturbations. On the other hand, the function η(a, k) parameterizes the

effective anisotropic stress (ratio of the metric potentials, η = 1 in ΛCDM)

introduced by MG or DE. The functional form of Q and η depend on the

particular model considered. In general, Q and η can be combined to obtain

different sets of parameterizations (Amendola et al., 2018b; Pogosian et al.,

2010; Song et al., 2010). A common alternative to (Q, η) is:

µ =
Q

η
, Σ =

Q

2

(
1 +

1

η

)
, (3.4)
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leading to modified linear (Fourier space) Poisson equations for the poten-

tials:
− k2Ψ = 4πGa2µ(k, a)ρmδm

− k2(Ψ + Φ) = 8πGa2Σ(k, a)ρmδm
(3.5)

A summary of different parameterizations can be found in Daniel et al.

(2010). The pair (µ,Σ) was shown to be particularly suited when combining

CMB data with galaxy survey data (Daniel & Linder, 2010; Zhao et al., 2010;

Axelsson et al., 2014).

3.5 f(R) gravity

The f(R) family of models is one of the most popular and well studied

modifications of GR (see Sotiriou & Faraoni 2010, De Felice & Tsujikawa

2010 for reviews). Indeed, one of the simplest extensions of GR is to modify

the Einstein-Hilbert action by substituting the Ricci scalar with a generic

function f(R):

S =
1

16πG

∫
d4x
√−gf(R) +

∫
d4x
√−gLm(ψm, gµν) , (3.6)

where Lm is the Lagrangian of the matter field ψm. By varying the action

with respect to the metric, one obtains the modified field equations:

fRRµν −
1

2
gµνf(R) + (gµν�−∇µ∇ν)fR = 8πGTµν , (3.7)

where fR = df/dR and � is the d’Alembert operator. If f(R) = R, eq. 3.7

reduces to standard GR, and the field equations are second-order in deriva-

tives of the metric. In all other cases, eq. 3.7 contains up to fourth-order

derivatives of the metric gµν .

It can be shown that theories with an action of the form of eq. 3.6 are

equivalent to GR plus a non-minimally coupled scalar field (Bicknell, 1974).

This can be obtained by means of a conformal transformation of the form

ḡµν = gµνfR (Maeda, 1989). Defining φ =
√

3/16πG ln fR, the field equa-

tions become:

R̄µν−
1

2
ḡµνR̄µν = 8πG

(
φ,µφν −

1

2
ḡµν ḡ

ρσφ,ρφ,σ − ḡµνV
)

+8πGT̄µν , (3.8)
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with V = V (φ) = (RfR − f(R))/16πGf2
R. Another possibility is to apply

a Legendre transformation so that the field equations take the form of a

scalar-tensor theory. The action can be written as

S =
1

16πG

∫
d4x
√−g[f(ξ) + (R− ξ)f ′(ξ)] , (3.9)

where ξ is a new field and f ′ = df/dξ ≡ φ. It is possible to define a potential:

Λ(φ) ≡ 1

2
[ξ(φ)φ− f(ξ(φ))] , (3.10)

so that the action is

S =
1

16πG

∫
d4x
√−g [φR− 2Λ(φ)] . (3.11)

which is a scalar-tensor theory with coupling constant ω = 0. The metric is

the same as in eq. 3.6, so the coupling of the field φ to the matter fields is

unchanged.

There are several functional forms for f(R), but all the viable ones must

comply with theoretical and phenomenological constraints:

• The first and second derivatives must be positive, i.e. fR = df/dR >

0 , fRR = d2f/dR2 > 0. This is required to avoid instabilities in the

high curvature regime;

• The derivative fR evaluated today must be |fR0|� 1 to satisfy Solar

System constraints.

This is a particular case of models showing chameleon screening, i.e. the

scalar field acquires a mass in high density environment, effectively hiding

additional degrees of freedom and restoring GR.

f(R) models can be applied to the description of stellar formation and

evolution (Capozziello et al., 2011), gravitational waves emission (De Lau-

rentis & De Martino, 2013), rotation curves of spiral galaxies and the velocity

dispersion of elliptical galaxies (Cardone & Capozziello, 2011; Napolitano

et al., 2012), cluster of galaxies (Peirone et al., 2017; Pizzuti et al., 2017). In

the context of cosmology, f(R) models can be used to explain both early

(inflation) and late time accelerated expansion. Possible models include

Starobinsky (1980), Hu & Sawicki (2007) (see §3.5.1), Appleby & Battye

(2007), Cognola et al. (2008).
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3.5.1 Hu–Sawicki f(R)

One of the f(R) models that evade Solar System constraints was proposed in

Hu & Sawicki (2007) (HS). The functional form of f(R) is chosen to comply

with the following constraints:

• At high redshift the cosmological model mimics ΛCDM;

• At low redshift the expansion is accelerated, in a way similar way to

ΛCDM but without the need of a cosmological constant;

• There are sufficient additional degrees of freedom to have a screening

mechanism in place.

Satisfying these constraints means that f(R) should satisfy:

lim
R→∞

f(R) = const. , lim
R→0

f(R) = 0 (3.12)

These requirements are met by a broken power–law model:

f(R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
. (3.13)

with c1, c2 and n dimensionless parameters of the model and m2 is a mass

scale, defined as m2 = H2
0 Ωm,0. By imposing a background expansion that

mimics the ΛCDM expansion history, c1 and c2 are constrained to be c1/c2 ≈
6Ωm/ΩΛ, therefore the model has only two free parameters, commonly ex-

pressed in terms of the index n and the value fR0.

Hu-Sawicki f(R) is one of the most studied among f(R) models, and it

is included as one of the basic models in several numerical codes to compute

cosmological observables in the context of MG (see §3.7).

3.6 Cosmological probes of the gravity theory

Cosmological probes can broadly be divided in two categories: those prob-

ing the expansion history of the Universe and its geometry, for example via

distance measurements and the expansion rate, and those constraining the

growth and formation history of structures. Combining the two allows to

tighten the constraints on cosmological parameters, and possibly break de-

generacies. However, to test MG models, growth measurements are the most
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useful, providing a test of the gravity theory in the Newtonian limit on sub-

horizon scales. Current constraints on MG from cosmological measurements

are summarized in §3.6.1.

The general approach to constrain MG models from data is to consider

the parameterizations described in §3.4. Usually, constraints are placed on

the linear evolution of density fluctuations. However, considering only the

linear regime is limiting, since most of the information is contained in the

non-linear regime of structure formation. On the other hand, investigating

NL scales requires in general a model-by-model approach. Signatures in the

linear regime include:

• CMB: typically, MG affects the large scale amplitude of the temperature

and the lensing potential power spectrum. Therefore, CMB measure-

ments can be used to constrain the η parameter;

• Growth rate f = d lnD/d ln a: it probes the linear growth of density

perturbations, hence it can constrain deviations from GR in terms of

the µ parameter;

• Galaxy clustering: already at scales k ∼ 0.1 h−1 Mpc the matter power

spectrum could be enhanced by the presence of the MG fifth force.

Such modification can in principle be scale dependent.

Probes for the non-linear regime include:

• Halo counts: the halo mass function is affected because of changes in

the critical density for collapse, resulting in general in a higher abun-

dance of massive halos with respect to the standard GR case. Comput-

ing predictions involves properly taking the screening mechanism into

account;

• Dynamical vs. lensing mass estimates are different for models with µ 6=
0, Σ = 0 (such as for scalar-tensor theories or DGP models), hence

the lensing mass can be different from the dynamical mass, estimated

assuming GR;

• Voids, being low density regions, can exhibit un-screened MG effects,

in particular in their lensing profile.
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3.6.1 Constraints on beyond-ΛCDM models

In this section I give a brief review of current constraints on MG theories

from cosmological data. In general, test of the gravity theory are performed

in terms of deviations of the parameterizations described in §3.4 from their

GR value.

Fig. 3.3 shows the results obtained combining galaxy clustering and weak

gravitational lensing data from the DES Y1 survey (Abbott et al., 2019), to-

gether with external datasets that include CMB (from Planck), BAO (from

SDSS, 6dF and BOSS), RSD (from BOSS) and SNIa (from the Pantheon

compilation). The constraints on the time-varying DE equation of state pa-

rameters are w0 = −1.01+0.04
−0.04, wa = −0.28+0.37

−0.48, shown in the left panel.

The right panel shows constraints on the MG parameters Σ0 = 0.06+0.08
−0.07,

µ0 = −0.11+0.42
−0.46. In both cases, the results are consistent with the standard

ΛCDM model with GR, shown as grey dashed lines.

Fig. 3.3: Left: Constraints on the DE equation of state parameters (w0, wa) (left)
and modified gravity parameters (Σ0, µ0) (right). Blue contours show the
68% and 95% confidence regions from DES alone, yellow is external data
(from Planck, BOSS and the Pantheon SNIa compilation) alone, and red is
the combination of the two. The intersection of the horizontal and vertical
dashed lines shows the parameter values in the ΛCDM model (left panel)
and in general relativity (right). From Abbott et al. (2019).

Fig. 3.4 shows the constraints on w0, wa (left panel) and the MG parame-

ters µ0, η0 (right panel) from CMB data (Planck Collaboration et al., 2018).

The tightest constraints on the DE equation of state are provided by a com-

bination of Planck data with BAO and SNIa, resulting in w0 = 0.961± 0.077,

wa = −0.28+0.31
−0.27. The right panel shows the marginalized posterior distri-
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butions of the MG parameters µ and η. The tightest constraints are pro-

vided by combination with BAO, RSD and WL data: µ0 − 1 = −0.07+0.19
−0.32,

η0 − 1 = 0.32+0.63
−0.89. It is worth noting that in this analysis the scale-

dependence of the MG parameters is not taken into account. Again, there is

no significant evidence for deviations from the standard cosmological model.

Fig. 3.4: Left: Marginalized posterior distributions for (w0, wa) for various data com-
binations. Right: Marginalized posterior distributions for the MG parame-
ters (µ, η), obtained neglecting any scale dependence. In both panels the
ΛCDM values are shown as dashed lines, while the black contours in the
right panel show the Planck2015 results. From Planck Collaboration et al.
(2018)

Fig. 3.5 shows the constraints on the DE parameters w0, wa and the MG

parameters Q,Σ, derived from WL data provided by the KiDS survey Joudaki

et al. 2018. The constraints on the DE equation of state (left panel) are weak,

but still consistent with the standard model shown as grey dashed lines. The

right panel shows marginalized posterior distributions for the MG parameters

Q,Σ. Again, in both cases the results are consistent with the standard ΛCDM

model. In the KiDS analysis, the MG parameters are divided in two redshift

bins and two scale bins, with transition at k = 0.05 h Mpc−1 and z = 1; the

plot shows constraints for the low-z,high-k bin.

It is worth mentioning the constraints on MG models that can be ob-

tained from gravitational wave propagation. The simultaneous detection of

gravitational waves from a neutron star merger by LIGO/VIRGO and obser-

vation of a short gamma ray burst by Fermi/Integral allowed to put stringent

bounds on the difference between the speed of GW propagation and the

speed of light. The observed time delay between the two observations was
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Fig. 3.5: Constraints on the dark energy parameters (left) and MG parameters
(right) from KiDS data (Joudaki et al., 2018).

1.74± 0.05s, resulting in:

− 3× 10−5 <
cGW
c
− 1 < 7× 10−16 . (3.14)

This constraint has heavy implications for all MG models that predict a

change in the GW propagation speed, severely limiting the viable theory

space (see e.g. Creminelli & Vernizzi 2017; Amendola et al. 2018b).

3.6.2 Degeneracy with massive neutrinos

Recently, attention was been drawn to possible degenerate effects that might

arise when one considers MG in presence of massive neutrinos. The effect

of massive neutrinos on cosmological observables are briefly outlined in

section 4.2. Massive neutrinos affect cosmological quantities by damping

the growth of structures on small scales (Lesgourgues et al., 2013). Since

modified gravity models predicts an enhancement in the growth of structures,

the two effects are degenerate, and might result in the inability to distinguish

MG+massive neutrino cosmologies from the standard scenario (Baldi et al.

2014, see e.g. fig. 3.6). Recent works have shown that investigating redshift-

space quantities can help in breaking the degeneracies (Hagstotz et al., 2019;

Wright et al., 2019).
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Fig. 3.6: Matter power spectrum (left) and halo mass function (right) for cosmolo-
gies that include both MG and massive neutrinos. The MG model consid-
ered is n = 1 Hu-Sawicki, with different values of the fR0 parameter, as
described in the legend. The neutrino mass range considered is 0− 0.6 eV.
From Baldi et al. (2014).

3.7 Simulations with MG

As described in §2.2.1, N-body simulations are the standard tools to compute

LSS observables in the fully non-linear regime. Hence, reliable N-body simu-

lations that implement MG models are required in order to robustly test the

gravity theory, especially in light of forthcoming high precision cosmological

data.

In most cases, MG theories include an additional degree of freedom ϕ

which mediates a fifth force. As a consequence, the Einstein and fluid equa-

tions are augmented by an equation of motion for ϕ. For the specific case of

f(R) gravity, the equations to solve are:

1

a2
∇2Φ =

16πG

3
ρ̄δ +

1

6
δR

3

a2
∇2fR = −8πGρ̄δ − δR ,

(3.15)

where δR = R−R̄ are perturbations of the Ricci scalar and fR = df/dR = ϕ

plays the role of the scalar degree of freedom. The screening mechanism is

realized through non-linearities in the equation for ∇2fR, which result in

a complex interplay between the matter distribution and the magnitude of

the fifth force. Hence, in addition to the system of equations solved in stan-

dard N-body simulations, MG simulations must also solve the non-linear
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equation of motion of the scalar field. Performing such task adds to the

already high computational cost of standard N-body simulations, thus requir-

ing the development of new numerical techniques. Early efforts were made

in this direction by solving the equation for ϕ on a fixed grid, as in Oyaizu

(2008), Schmidt (2009), Khoury & Wyman (2009). Further improvements

involved the implementation of adaptive mesh refinements, thus allowing

for a better resolution on small scales (Li & Zhao, 2009) and adaptive-mesh

parallel codes. Examples of parallel codes that implement MG with an AMR

scheme include E C O S M O M G (Li et al., 2013), I S I S (Llinares & Mota, 2013)

and M G - G A D G E T (Puchwein et al., 2013). The latter is an extension of

the TreePM+SPH simulation code P- G A D G E T 3, itself based on G A D G E T 2

(Springel, 2005), which efficiently include modified gravity theories relying

on multigrid acceleration. M G - G A D G E T allows also to include massive neu-

trinos in MG simulations (Baldi et al., 2014).

Multigrid acceleration is a numerical technique developed to speed up

the numerical convergence of the partial differential equation for ϕ. In a gen-

eral particle-mesh scheme, at every time step in the simulation an N-body

solver computes the density field from particle positions, uses the density to

evaluate the gravitational potential via Poisson equation and plugs the po-

tential in the geodesic equation to move particles. To make the process more

efficient, Poisson equation is usually solved by means of FFTs. In the context

of MG however this is in general not possible, because of the non-linearities

in the equations introduced by the presence of ϕ. Such difficulty can be

overcome with the adoption of an FFT-relaxation method if the equations

are solved on fixed grids, while for the case of irregularly shaped grids the

technique adopted consists in discretizing the equation for ϕ on a grid and

using an iterative scheme to obtain improved solutions.

In §5, propose an approximate way of computing 2LPT displacements

in f(R) modified gravity (Moretti et al., 2019). In order to assess the per-

formances of said approximation, I take advantage of simulations run with

M G - G A D G E T with Hu-Sawicki f(R) (Giocoli et al., 2018) and compare the

halo power spectrum obtained from our approximate method to the one

measured from the MG N-body simulations, showing that our method allows

to recover the halo power spectrum within 10% up to mildly-NL scales of

0.2− 0.4 h Mpc−1.



Chapter 4

The P I N O C C H I O code

As discussed in §1.5, future galaxy redshift surveys will provide a large

amount of high precision data. Placing tight constraints on cosmological pa-

rameters requires being able to keep systematics under control and a proper

computation of covariance matrices for different cosmological observables

(§1.3.2), both for the standard ΛCDM model and its extensions. To achieve

this purpose, thousands of different realizations (for each model under inves-

tigation) are required. Such a task cannot be tackled with computationally

expensive N-body simulations, but it can be faced with the aid of approxi-

mate methods (§2.2.2), fast and able to properly reproduce LSS features in

the mildly non-linear regime.

The P I N O C C H I O1 (PINpointing Orbit Crossing Collapsed HIerarchical

Objects) software implements an approximate method to quickly generate

simulated halo catalogs. The package is discussed in Monaco et al. (2002a,b,

2013), and has been extended to second and third-order LPT (Munari et al.,

2017b) and massive neutrino cosmologies (Rizzo et al., 2017). P I N O C C H I O

has been used to generate simulated halo catalogs for the VIPERS survey

(de la Torre et al., 2013), and is currently being used within the Euclid

collaboration for the computation of covariance matrices in the context of

standard ΛCDM.

This PhD work is mainly focused on extending P I N O C C H I O to beyond-

ΛCDM models. In §4.3 I thoroughly test an approach to extend the code to

WDM models. Such tests highlight the inability of the code to reproduce a

1https://github.com/pigimonaco/Pinocchio

https://github.com/pigimonaco/Pinocchio
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WDM mass function, possibly related to a wrong calibration of the fragmen-

tation part of the algorithm. However, the re-calibration process is rather

lengthy, and the code is currently undergoing major development, therefore

we leave it for a future work. In the next chapters (§5, §6) I give a thorough

description of the steps taken to extend the code to MG models, focusing in

particular on f(R) models.

4.1 Description of the code

The P I N O C C H I O code is based on three theories described in §2: Lagrangian

perturbation theory, ellipsoidal collapse, and excursion set theory. P I N O C -

C H I O performs two main task: the computation of collapse times and the

fragmentation of collapsed elements into distinct objects, mimicking the hier-

archical formation of structures. I give a detailed description of how the code

works throughout this section, though the main steps can be summarized as

follows:

• The code generates a linear density field on a regular grid in Lagrangian

space;

• The field is smoothed on a set of scales (smoothing radii). For each

smoothing radius the collapse time (CT) for each particle is computed,

and the earliest CT is stored;

• Overdensities are treated as homogeneous ellipsoids: for each particle,

the code computes the CT (defined as the time of orbit crossing, when

the first axis of the ellipsoid goes to zero) as the earliest collapse time,

considering all smoothing scales. Collapse times are computed with

the LPT approach (§2.3.3);

• After CT are computed, particles are displaced using LPT (up to third

order). Collapsed particles can be accreted onto a halo or become part

of a filament;

• Halos are also displaced with LPT, and they can merge if they get close

enough, i.e. their distance is below some threshold.

Initial conditions are set by generating a realization of a Gaussian field on N

points of a cubic grid with side L; this can be done by inserting a tabulated
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linear power spectrum (e.g. generated with C A M B, Lewis & Challinor 2011),

or by means of the fit of Eisenstein & Hu (1998). The Gaussian field, assumed

to represent a linear density field, is smoothed on a set of smoothing radii

R (typically ∼ 10-20), by means of a Gaussian filter. Smoothing radii are

chosen so that the corresponding mass variances are logarithmically spaced

in intervals of 0.15 dex.

The next step is the computation of CT: the evolution of mass elements is

described as the evolution of ellipsoids, whose principal axes are given by the

deformation tensor (Hessian of the peculiar gravitational potential). Using

the linear growth rate as a time coordinate, the evolution of the ellipsoid is

described with third order LPT (§2.3.3) until the time of orbit crossing, after

which the perturbative approach breaks down. Since the LPT approach is

slow to converge in the spherical case, leading to a significant overestimate

of CT, the empirical correction of eq. 2.55 is adopted to properly reproduce

spherical collapse. The deformation tensor is estimated for each smoothing

radius using Fast Fourier Transforms (FFTs), and the code evaluates and

stores the inverse collapse time F (~q) = 1/D1(tcoll(~q)) at which the mass

element at ~q is predicted to collapse. Therefore, for each grid point the code

evaluates a set of inverse collapse times F (one for each smoothing R), and

assigns to the mass element the earliest CT, corresponding to the maximum

of the inverse collapse time Fmax, with corresponding smoothing scale Rmax.

In order to construct halo catalogs, the software implements an algorithm

to mimic the hierarchical formation of structures. After the computation of

collapse times, particles (grid points) are sorted in order of descending Fmax.

To determine whether a collapsing particle form a new halo, gets accreted

on an existing halo or becomes a filamentary particle, its six grid neighbors

are considered:

• A collapsing particle lacking collapsed neighbors is tagged as a new

DM halo (with one particle);

• If the particle is close enough to a halo, it is considered for accretion.

To determine whether accretion takes place, both the particle and the

halo are displaced with LPT. By calling d their distance, the particle
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gets accreted if d < dthr, with the threshold set to:

d2
thr =

(fRe)2 + (f200R)2 Dσ ≤ Dσ0

{fRe[1 + s(Dσ −Dσ0)]}+ (f200R)2 Dσ > Dσ0

(4.1)

where R is the Lagrangian radius in grid units, Dσ is the standard

deviation of the un-smoothed density and f200 = (200)−1/3 (set by

requiring the halo density to be 200 times that of the background). e,

s and f are free parameters determined through a calibration process

to reproduce a universal mass function. If the particle is not accreted,

it is tagged as belonging to a filament;

• If the particle is close to more than one halo, the algorithm first verifies

whether the particle gets accreted to the closer (in terms of d/R) halo.

Then it computes the distance between the halos to check for halo

merging;

• A particle close to one or more filament particles is tagged as filament

as well.

Fig. 4.1 (Munari et al., 2017b) shows an example of halo mass function com-

puted with P I N O C C H I O, compared to the result of N-body simulations (blue

dashed line) and the analytic fit of Crocce et al. (2010) (solid black line).

P I N O C C H I O mass functions are shown for different LPT orders (Zel’dovich

approximation as purple dotted line, 2LPT as orange dashed line, 3LPT as

red solid line). The bottom panes show residuals with respect to the analytic

fit, confirming P I N O C C H I O can reproduce the analytic prediction with∼ 5%

accuracy.

The advantage of using LPT is clear: the code can work without the need

of time-steps, and is able to readily generate its outputs at any given red-

shift. P I N O C C H I O outputs include DM halo catalogs and merger trees with

continuous time sampling, as well as past light cones. Additionally, the code

can generate G A D G E T-like snapshots with particles displaced with LPT, both

in real and redshift space. The P I N O C C H I O approach is particularly conve-

nient, especially for the generation of merger trees and past light cones. In

general, approximate methods based on particle-mesh integrations over few

time-steps suffer from poor time sampling of halo merger histories. Sparse

time-sampling also complicates the generation of halo catalogs along the



4.1 Description of the code 76

Fig. 4.1: Halo mass function obtained from P I N O C C H I O for different redshifts us-
ing three different LPT orders to construct halos. The black line shows the
analytic fit of Crocce et al. (2010), while dashed blue line is obtained from
an N-body simulation. The lower panel shows residuals with respect to
the analytic fit, with horizontal black lines marking the ±5% region. From
Munari et al. (2017b).

past light cone. On the other hand, in P I N O C C H I O all displacements are

evaluated with a single time-step, thus making any level of time-sampling

easy to achieve. In particular, halo masses are updated every time a parti-

cle is added to a group, and merger histories report masses for each pair

of merging of haloes. Hence, mass accretion histories are available for each

merger event, without the need to output the halo catalogs many times.
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4.2 Extension to massive neutrinos

Although in the standard model of particle physics neutrinos are described

as fundamental massless particles, the discovery of the neutrino oscillations

phenomenon has shown that at least two of the three neutrino families are

indeed massive (Forero et al., 2012), establishing a lower bound on the sum

of the neutrino masses
∑

imνi ≥ 0.06 eV. Such discovery has been one of

the most important of the last decades, pointing towards the existence of

physics beyond the standard model. Massive neutrinos affect cosmological

quantities in several ways (Lesgourgues et al., 2013), therefore precise cos-

mological analyses require to properly account for them. Massive neutrinos

become non-relativistic quite late (znr ∼ 2000) in the thermal history of the

Universe, but they decouple fairly early (zdec ∼ 109). As a consequence they

maintain relatively large velocities with respect to other massive particles.

Thus, they can be considered as a secondary, diffuse matter component with

a thermal free-streaming velocity. The latter acts as an effective pressure

term, setting a scale below which the growth of neutrino perturbations is

strongly suppressed. Such scale is called the free-streaming length and can

be written as:

kfs =

√
3

2
Ωm(a)

aH(a)

cν(a)
, (4.2)

where cν(a) = δPν/δρν is the sound speed corresponding to the effective

neutrino pressure. The evolution of neutrino perturbations is coupled to that

of CDM, resulting in a suppression of growth also for the cold component.

Moreover, the presence of a free-streaming scale results in a scale-dependent

growth rate D(t, R).

Castorina et al. (2014) showed that neutrinos do not cluster significantly

on small scales, despite contributing to the expansion rate of the Universe.

For this reason, the halo mass function and halo bias in a cosmology with

massive neutrinos can be described in terms of the CDM plus baryons den-

sity field. It is then possible to generate simulated halo catalogs by providing

P I N O C C H I O with the proper power spectrum Pcb, as done in Rizzo et al.

(2017). In order to introduce the scale-dependent growth due to massive

neutrinos, Fourier-space linear growth factors are obtained from the linear

CDM+baryons power spectrum Pcb(k, t) generated with the C A M B Boltz-

mann solver for a given cosmological model, on a grid of NCAMB = 150
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output times, logarithmically spaced in scale factor from a = 0.01 to a = 1.

The (now scale-dependent) growth factor is no longer used as a time vari-

able, since ellipsoidal collapse is evaluated at a fixed value of the smoothing

radius R. Moreover, because of the scale-dependence of D1(k, t), the density

and velocity growth factors in configuration space differ. Therefore, the latter

are obtained by means of two different integrals:

D2
δ (t, R) =

∫∞
0 Pcb(k, t)W̃

2(kR)k2dk∫∞
0 Pcb(k, t0)W̃ 2(kR)k2dk

D2
v(t, R) =

∫∞
0 Pcb(k, t)W̃

2(kR)dk∫∞
0 Pcb(k, t0)W̃ 2(kR)dk

(4.3)

where W̃ is the Fourier transform of the window function, and denominator

quantities are needed to normalize the growth factor at some reference time

t0. The second-order growth rate, needed to displace particles with 2LPT,

is computed adopting the fit proposed by Bouchet et al. (1995), shown to

be accurate at percent level for a wide range of values of the cosmological

parameters:

D2 = −3

7
D2

1Ωm(a)−1/143 . (4.4)

The above expression was derived for massless-neutrino cosmologies; 2LPT

displacements are therefore implemented in P I N O C C H I O under the assump-

tion that eq. 4.4 is accurate enough even in presence of massive neutrinos,

provided that the linear growth rate is the scale dependent one derived from

eq. 4.3. Fig. 4.2 and 4.3 show respectively the halo mass function and the

power spectrum obtained from P I N O C C H I O with massive neutrinos, con-

firming that the approximating D2 with the fit of eq. 4.4 does not result in a

significant worsening of the predictive power of the code. In particular, the

halo mass function at z = 0 (left) and z = 1 (right), plotted in Fig. 4.2 for

different neutrino masses, show ≤10% agreement with both N-body simula-

tions and the analytic fit of Crocce et al. (2010) (middle and bottom panel

respectively). Fig. 4.3 shows the real space halo power spectrum at z = 0

(left) and z = 1 (right), confirming that P I N O C C H I O is able to recover

the clustering properties of DM halos, with ∼ 10% deviation respect to the

results of N-body simulations, for a wide range of neutrino masses.
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Fig. 4.2: Top panel: mass function for different values of the neutrino mass. Solid
lines show the result of N-body simulations, while dashed lines show the
P I N O C C H I O predictions. Middle panel: ratio of the P I N O C C H I O mass
function to the one measured from N–body simulations. Bottom panel:
ratio of the P I N O C C H I O mass function to the fit of Crocce et al. (2010).
From Rizzo et al. (2017).

104

105

P
(k

)
[(
h
−

1
M

p
c)

3
]

Real−space z=0

N-body 0.0eV

N-body 0.3eV

N-body 0.6eV

N-body 0.9eV

10-2 10-1

k [h Mpc]

0.7

0.8

0.9

1.0

1.1

1.2

P
in

oc
ch

io
/N

b
od

y 104

105

P
(k

)
[(
h
−

1
M

p
c)

3
]

Real−space z=1

Pinocchio 0.0eV

Pinocchio 0.3eV

Pinocchio 0.6eV

Pinocchio 0.9eV

10-2 10-1

k [h Mpc]

0.7

0.8

0.9

1.0

1.1

1.2

P
in

oc
ch

io
/N

b
od

y

Fig. 4.3: Top panel: halo power spectrum in real space at redshift z = 0 (left) and
z = 1 (right), with different values of the neutrino mass. Bottom panel:
ratio of the P I N O C C H I O real–space halo power spectrum to the one mea-
sured from N–body simulations (Rizzo et al., 2017).
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4.2.1 Testing the massive neutrino approach in MG

The presence of a scale-dependent growth rate is also a feature of modified

gravity models, though in this case it is introduced by the coupling of the

additional MG degree of freedom to the matter field. As a first approach to

extend the computation of Lagrangian displacements to MG we test a similar

technique to the one adopted in the case of massive neutrinos, described in

the previous section. In this case, the linear power spectrum is computed

with E F T C A M B (Hu et al., 2015) for the case of n = 1 Hu-Sawicki with

fR0 = −10−4. From these linear power spectra we compute the linear growth

rate adopting eq. 4.3, while the second order growth rate is computed with

eq. 4.4. To test the validity of our approach, we compare to the D U S T G R A I N-

pathfinder simulations (Giocoli et al. 2018, see §5.4.1), ran with the same

MG model considered in this work. Technical details on how we construct the

halo catalog from the Lagrangian displacement field are described in §5.4.

We compare the halo power spectrum to the one measured from simulations:

in Fig. 4.4 I show the ratio of the halo power spectrum constructed from LPT

displacements to the one measured from the N-body simulations for three

different redshifts.

The first order of LPT (Zel’dovich approximation, green line) exhibit a

similar performance as both in the ΛCDM and in the massive neutrino cases,

being able to recover the halo power spectrum of simulations within 5% up

to scales k ∼ 0.1 hMpc−1. On the other hand, the second order (2LPT, purple

line) shows a significant deviation and does not represent an improvement

over the linear order. Such result suggests that the approach of Rizzo et al.

(2017) is not suitable in the case of MG. This is due to the fact that the

scale-dependence of D2(k, t) is not properly captured by the D2
1(k, t) term

of eq. 4.4. I describe a suitable method to compute the second-order growth

rate in MG in §5, showing the improved agreement to N-body simulations

when displacements are evaluated with the proper D2(k, t) (Moretti et al.,

2019).
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Fig. 4.4: Ratio of the halo power spectrum constructed from LPT displacements
to the one measured from the D U S T G R A I N-pathfinder simulations for
three different redshifts (z = 0,0.2,1, top to bottom). D1(k, a) is computed
as ratio of linear power spectra generated with E F T C A M B and used to
compute the first order of LPT (green line), while D2 is computed from eq.
4.4, and used to compute the second order (2LPT, purple line).
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4.3 Testing P I N O C C H I O with WDM

One of the possible extensions of the standard cosmological scenario is to

consider Warm Dark Matter (WDM) as an alternative to CDM. WDM could

solve several issues appearing from the comparison between CDM N-body

simulations and observations, such as the so-called “missing satellite problem”

(Primack, 2009), the “too big to fail” problem (Boylan-Kolchin et al., 2011),

or the “cusp-core problem” (Bullock, 2010); potential candidates include the

sterile neutrino (Dodelson & Widrow, 1994; Shaposhnikov & Tkachev, 2006)

and the gravitino (Moroi et al., 1993; Gorbunov et al., 2008). In general, DM

particles can be classified according to their velocity dispersion. The latter

defines a free-streaming length, below which overdensity fluctuations are

erased, as in the massive neutrino case (which can in fact be classified as

hot dark matter). This results in a suppression in the growth of structures

below some cutoff scale, smaller than those typically affected by massive

neutrinos, with an associated effect on the abundance of collapsed structures.

In particular, the abundance of high mass halos is predicted to be suppressed

with respect to a standard CDM scenario, as can be seen in Fig. 4.5 (Angulo

et al., 2013).

Part of my PhD project was devoted to testing a possible way of including

WDM in P I N O C C H I O. The general approach to generate initial conditions

for N-body simulations with WDM is to use a scale dependent transfer func-

tion applied to a linear power spectrum, in order to take into account the

suppression of small scale fluctuations (Bode et al., 2001):

TWDM(k) = TCDM(k)
[
1 + (αk)2

]−5
, (4.5)

where α depends on the WDM particle mass. Applying the transfer function

of eq. 4.5 results in a truncated power spectrum, with a cut-off at the free

streaming scale. Following the same approach, we input a truncated power

spectrum in P I N O C C H I O, and compute the mass function. The result is

shown in Fig. 4.6 for mWDM = 250 eV (green line): while the suppression

of the mass function on the low-mass end is similar to the one of Fig. 4.5, a

significant loss of halos is present also at Mh ≥ 1012 − 1013 M� h
−1, where

the WDM mass function should be suppressed by less than 10% respect to

the CDM one.

To better investigate the problem, I perform several tests. A similar effect
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Fig. 4.5: Halo mass function in presence of WDM, computed from N–body simula-
tions (red, green and blue lines). WDM free-streaming results in a suppres-
sion of the mass function on the low-mass end, while the abundance of
high-mass halos is roughly the same as in CDM (black lines). From Angulo
et al. (2013).

to using a truncated power spectrum can in principle be obtained by chang-

ing the minimum scale on which the smoothing is performed. As described

in sec. 4.1, the code performs a number of smoothing for different scales

Rsmooth, with the last smoothing set to Rmin = 0, followed by the computa-

tion of collapse times for all grid points and for each smoothing. Changing

the value of Rmin amounts to washing out overdensities on scales smaller

than Rmin, in a way that is equivalent to having a truncated power spectrum.

The first test was targeted at assessing the stability of the code when

changing the number of smoothing radii: I ran the code several times with all

parameters fixed, but with different number of smoothing radii. The results

are shown in fig. 4.7, where I plot the mass function obtained for the differ-

ent smoothing schemes considered: Nsmooth = 10 (red line), Nsmooth = 30

(purple line) and Nsmooth = 100 (blue line). Dashed lines represent runs

where the last smoothing was removed (hence Rmin > 0). In black I also
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Fig. 4.6: Halo mass function computed with P I N O C C H I O for mWDM = 250 eV
(green line) and CDM (purple) line, for a box with L = 80 Mpc h−1,
Npart = 10243. The effect of WDM is included using a truncated power
spectrum, computed with the transfer function of eq. 4.5. The purple line
is the CDM mass function. Courtesy of P. Monaco

show the Watson fit for the mass function (Watson et al., 2013), on which

P I N O C C H I O is calibrated. The result shows the code is stable in all cases

considered, yielding similar results for the mass function.

I then change the minimum smoothing radius in the range 0 ≤ Rmin ≤
d, where d is the interparticle distance, and compare the obtained mass

functions. The results are shown in Fig. 4.8 for different values of Rmin, as

stated in the legend: while runs withRmin set to a fraction of the interparticle

distance show no significant difference in the mass function, the run with

Rmin = d exhibits a similar behavior to the one displayed in Fig. 4.6, with a

suppression of halos for all masses. In Fig. 4.9 I plot the results obtained for

0 ≤ Rmin ≤ 2.5d, showing how the suppression of the high-mass end of the

halo mass function gets more significant as the value of Rmin increases.

This result shows the presence of a numerical issue, resulting in the

inability of the code to reproduce the high-mass end of the WDM mass

function. To gain more insight, I performed an object-by-object analysis.

Particles in P I N O C C H I O are tagged with an ID and a halo-ID: particles
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Fig. 4.7: Top panel: mass function computed for different number (100 in blue, 30
in purple, 10 in red) of smoothing radii, with the last smoothing set to
Rmin = 0 (solid lines) or removed (dashed lines). In black is shown the fit
of Watson et al. (2013). Bottom panel: ratio of the different mass functions
to the fit.

belonging to the same halo all have the same halo-ID, corresponding to the

ID of the first particle to collapse. For each halo, I compare the results of two

realizations with different minimum smoothing radii Rmin = 0 and Rmin = d,

d being the interparticle distance. After choosing one halo in the Rmin = 0

simulation, I identified the corresponding halo (halo with the same ID) in

the Rmin = d simulation. Particles that are in the halo in the first simulation

can be: (i) in the same halo, (ii) in a different halo, (iii) in a filament or (iv)

not collapsed. Fig. 4.10 show the result of such analysis: while most particle

belong to the same halo in both simulations (light blue curve), a significant

fraction (∼20%) of particles that are in halo in the Rmin = 0 simulation is

tagged as filament particles (i.e. collapsed but not accreted) in the Rmin = d
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et al. (2013). Bottom panel: ratio of the different mass functions to the
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simulation.

4.3.1 Summary and discussion

Using a truncated power spectrum as input in P I N O C C H I O to include the

effects of WDM showed an inability to properly reproduce the halo mass

function (Fig. 4.6), with a significant loss of high-mass halos with respect to

the results of N-body simulations. In P I N O C C H I O, changing the last smooth-

ing radius Rmin is equivalent to using a truncated power spectrum. I run the

code with different smoothing schemes, with the following results:

• The first test (Fig. 4.7) was aimed at assessing the numerical stability of

the code when changing the number of smoothing radii, and confirmed
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that a different Nsmooth does not have significant effects on the halo

mass function;

• The second test (Fig. 4.8 and 4.9) showed that, when considering

Rmin = d (blue line of Fig. 4.8), the mass function is significantly

suppressed on all mass-scales. The effect is more dramatic if the last

smoothing is set to even larger values of Rmin, as shown in Fig. 4.9.

This effect is not noticeable in the Rmin > 0 cases of Fig. 4.7 (dashed

lines), because the last smoothing is always performed on scales that

are a small fraction of the inter-particle distance;

• I perform an object-by-object analysis, comparing halo-by-halo the two

realizations with Rmin = 0 and Rmin = d. The results (Fig. 4.10)
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Fig. 4.10: Comparison between two realizations with different minimum smooth-
ing, Rmin = 0 and Rmin = d, with d the interparticle distance. For each
halo in the Rmin = 0 simulation, I check whether the particles in the
Rmin = d simulation are in the same halo (light blue curve), in a different
halo (orange curve), not collapsed (purple curve), or filament particles
(green curve). A significant fraction of particles are tagged as filament,
highlighting an issue in the calibration of the accretion distance.

showed that while most (∼ 70%) particles are in the same halo in both

simulations, a significant fraction of particles (≥ 10%) that are in halos

in the Rmin = 0 simulation are tagged as filaments in the Rmin = d

simulation.

The last result highlights an issue in the grouping part of the algorithm, in

particular at the level of the calibration of the parameters that determine the

distance threshold for accretion. This results in a higher fraction of filament

particles, and a reduction in the abundance of high-mass halos. Since the

calibration adopted is cosmology independent (eq. 4.1), it should hold also

in the case of WDM cosmologies. Likely, the parameterization adopted for

the threshold distance is wrong, though the effects are not evident in the case

of standard CDM. The process of calibration is however quite cumbersome,
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since it involves identifying a proper parameterization for the threshold dis-

tance dthr as well as performing several runs of the code to fit the parameters

(see Appendix A of Munari et al. 2017b). Moreover, the code is currently un-

dergoing major developments with the purpose of extending it to MG models,

hence we leave the re-calibration for a future work.



Chapter 5

Lagrangian Perturbation
theory with Modified Gravity

The first step towards an extension of P I N O C C H I O to MG models is a proper

reformulation of LPT, that must include the scale-dependence in the growth

of structures induced by MG. This is a potential problem for the LPT ap-

proach, since it makes the factorization of the time evolution to compute dis-

placements unfeasible, and both the theoretical and computational treatment

of LPT with modified gravity become more involved. Additionally, for our pur-

poses we need to be at least second-order in the perturbative treatment to be

sufficiently accurate in the description of mildly-NL scales. While the compu-

tation of the linear order can easily be extended, evaluating the second-order

displacement field is more complicated. A full theoretical description of LPT

(up to third order) in the framework of scalar-tensor modified gravity the-

ories was recently proposed in Aviles & Cervantes-Cota (2017), while Valo-

giannis & Bean (2017); Winther et al. (2017) implement different numerical

approaches to compute cosmological quantities in this framework.

In this chapter I describe a new numerical method, based on FFTs, de-

veloped to compute the source term of the differential equation for 2LPT

displacements when modified gravity theories are considered. In what fol-

lows, I will mostly focus on Hu-Sawicki f(R) models (§3.5.1); the method

is however quite general and can easily be extended to different MG models.

The results presented here are described in a paper, submitted for review to

MNRAS (Moretti et al., 2019).
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5.1 Theoretical framework

I focus on MG models that reproduce the ΛCDM expansion history on large

scales, while on intermediate scales they include a fifth force that is due

to a new scalar degree of freedom. Solar system constraints are met by

means of a screening mechanism (§3.3). The fifth force caused by the gravity

modification introduces mode coupling even at the linear level; additionally,

in order to properly describe non-linear scales, the Klein-Gordon equation

for the scalar field must be solved. Following the approach of Koyama et al.

(2009), the modified Poisson equation and the Klein-Gordon equation can

be written as:
1

a2
∇2Φ = 4πGρ̄δ − 1

2a2
∇2ϕ , (5.1)

(3 + 2ω)
1

a2
∇2ϕ = −8πGρ̄δ + NL , (5.2)

where Φ is the gravitational potential, ρ̄ is the background matter density,

ϕ is the scalar field that encodes the modification of gravity, ω is the Brans-

Dicke (coupling) parameter, and NL are possible non-linearities that might

arise in the Lagrangian, due to the coupling of the scalar field to matter or

self-coupling. Going to Fourier space, eq. 5.2 can be written as:

(3 + ω)
k2

a2
ϕk = 8πGρ̄δk − I(ϕk) . (5.3)

The term I(ϕk) is the scalar field self–interaction, that is related to the screen-

ing mechanism responsible of recovering GR on small scales. It can be ex-

panded as I(ϕk) = M1(k, a)ϕk + δI(ϕk), with

δI(ϕk) =
1

2

∫
d3k1d3k2

(2π)3
δD(~k − ~k12)M2(~k1,~k2, a)

× ϕ(~k1, a)ϕ(~k2, a) +O(ϕ3
k) ,

(5.4)

where the Mi functions are in general scale and time dependent and their

functional form depends on the particular model considered. I now focus

on f(R) models (§3.5), although the method is quite general, and can be

applied to other scalar-tensor theories, provided that the MG potential can

be split in a background value plus perturbations, and the perturbations can

be Taylor expanded (see eq. 5.7 below).
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Taking the trace of the modified field equations 3.7 for f(R), one obtains:

3�fR = R(1− fR) + 2f − 8πGρ , (5.5)

where fR = df(R)/dR. Equivalently, one can split fR and R in background

quantities plus perturbations δfR and δR. In the quasi–static approximation

one can write:
3

a2
∇2δfR = −8πGρ̄δ + δR , (5.6)

which is nothing but the Klein-Gordon equation for a scalar field with poten-

tial δR and Brans-Dicke parameter ω = 0. The potential can be expanded

as

δR =
∑
k

1

k!
Mk(δfR)k , Mk =

dkR(fR)

dfkR

∣∣∣∣
fR=f̄R

(5.7)

For f(R) gravity the coefficientsMk only depend on time; this is an important

feature for the approach we propose in this work (described in §3.5). In the

following treatment I consider Hu-Sawicki f(R) (§3.5.1), where the function

f(R) is the one of eq. 3.13. By fixing n = 1, theMk coefficients can be written

as:

M1(a) =
3

2

H2
0

|fR0|
(Ωm,0a

−3 + 4ΩΛ)3

(Ωm,0 + 4ΩΛ)2
,

M2(a) =
9

4

H2
0

|fR0|2
(Ωm,0a

−3 + 4ΩΛ)5

(Ωm,0 + 4ΩΛ)4
.

(5.8)

Substituting eq. 5.3 in the Fourier space version of the modified Poisson

equation 5.1, and then combining with the equation of motion for the par-

ticle, one can write the evolution equation for the first order displacement

field in Fourier space as:

a2H2(T̂ − 4πGρ̄µ(k, a)) FT[φ
(1)
,ii ](~k, a) = 0 , (5.9)

where FT is the Fourier transform operator, T̂ = d2/da2+3/a+H ′(a)/H(a)×
d/da (′ denoting derivation with respect to the scale factor), and

µ(k, a) = 1 +
1

3

k2/a2

k2/a2 +m2(a)
. (5.10)

The m2(a) function represents the mass of the scalar field, and is related

to M1(a) by M1(a) = 3m2(a). It is no longer possible to separate time and
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space, since the operator acting on the first order displacement potential is

no longer time–dependent only, due to the presence of µ(k, a) in eq. 5.9.

Nonetheless, we can separate time for each Fourier mode, so that:

FT[φ
(1)
,ii ](~k, a) = D1(k, a) FT[φ

(1)
,ii ](~k, ain) , (5.11)

where D1(k, a) is the solution of:

a2H2(T̂ − 4πGρ̄µ(k, a))D1(k, a) = 0 . (5.12)

It is worth noting that the first order growth factor is now scale dependent,

due to the presence of the µ(k, a) function in the differential equation. How-

ever, the scale dependence is fully enclosed in µ, and is only related to the

modulus of k. The linear growth factor can then be computed by fixing a

value for k and solving the differential equation, repeating for a set of k-

values and finally interpolating to obtain the function at any k. I numerically

solve eq. 5.12 with a standard Runge-Kutta algorithm, with initial conditions

for D1(k, a) set to the growing mode for a matter dominated (Einstein–de

Sitter) Universe, namely D1(ain) = ain and D′1(a)|a=ain= 1. The resulting

linear growth factor is then normalized so that D1(k = 0, a = 1) = 1. The re-

sult is shown in Fig. 5.1, where I plot the ratio between the MG linear growth

factor DMG and the ΛCDM one in the case of n = 1 Hu-Sawicki f(R), for

three different values of the fR0 parameter and two different redshifts.

Once again, the initial first–order displacement field can be determined

from the initial density field, and its evolution computed my multiplying it

by D1(k, a). However, when going to second order this kind of separation

cannot be done, since the second order growth factor depends on three

wave-numbers k, k1 and k2 and on the dot product ~k1 · ~k2. The second order

displacement field can be written (in Fourier space) as an integral over k1

and k2:

FT[φ
(2)
,ii ](~k, a) =

∫
d3k1d3k2

(2π)3
δD(~k − ~k12)D2(k, k1, k2, a)δ1δ2 , (5.13)

where δD is the Dirac delta, ~k12 = ~k1 + ~k2, δi = δ(~ki) is the linear density

contrast evaluated at present time and D2(k, k1, k2, a) is the scale-dependent
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Fig. 5.1: Solution to eq. 5.12 for Hu–Sawicki f(R) with n=1 normalized to the
ΛCDM linear growing mode for three different values of the fR0 parameter
(fR0 = −10−4 in red, labeled as F4; fR0 = −10−5 in orange, labeled as
F5; fR0 = −10−6 in blue, labeled as F6), shown for z = 0 (solid line) and
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second order growth rate obtained by solving:

a2H2(a)
[
T̂ − 4πGρ̄µ(k)

]
D2(k, k1, k2, a)

= 4πGρ̄D1(k1, a)D1(k2, a)

{
µ(k)+

− ( ~k1 · ~k2)2

k2
1k

2
2

[µ(k1) + µ(k2)− µ(k)] +

+
m2(a)

Π(k)

[
2

( ~k1 · ~k2)2

k2
1k

2
2

(µ(k1) + µ(k2)− 2) +

~k1 · ~k2

k2
1

(µ(k1)− 1) +
~k1 · ~k2

k2
2

(µ(k2)− 1)

]
+

− 2

27
4πGρ̄

k2

a2

M2(a)

Π(k)Π(k1)Π(k2)

}
.

(5.14)

A full derivation of this last equation can be found in Aviles & Cervantes-Cota
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(2017). For the sake of simplicity, I dropped write the time dependence of

µ(k, a) and Π(k, a) in eq. 5.14.

The presence of the Dirac delta in eq. 5.13 requires that ~k = ~k1 + ~k2, so

that the integral runs over all possible triangle configurations formed by ~k1,
~k2 and ~k in Fourier space. Because of this, implementing the full solution

for the second order displacements would require to solve a different equa-

tion for each wavenumber ~k, whose source term includes a 9-dimensional

integral. While not unfeasible in principle, this computation would be very

time consuming, making an approximate method based on 2LPT a poor

alternative to full N-body simulations.

One possible alternative, already explored by Winther et al. 2017, is to

find an approximation for D2(k, a), in order to achieve an effective factor-

ization of the second order-potential into the same space part as in GR (to

be computed with Fast Fourier Transforms) and an effective k-dependent

growth rate:

φ(2)(~k, a) = D2(k, a)φ(2)(~k, ain) (5.15)

In particular, one can choose a triangle configuration for ~k, ~k1 and ~k2, solve

eq. 5.14 to find D2(k, k1, k2, a) and then compute the displacement field in

the standard way, with φ(2)(~k, ain) being the Fourier-space version of the

initial second order displacement field (term in square brackets on the right-

hand-side of eq. 2.26).

5.2 Source term

As discussed in the previous section, the goal is to find an approximation for

the second-order growth rate which allows to readily compute the second

order displacement field. Moreover, we want to quantify the deviation of the

approximation from the full solution. The approach is to compute the full

source term of the differential equation for the 2LPT displacement field by

taking advantage of FFTs, and then compare it to analytical expressions for

different triangle configurations, in order to find the one that best matches

the full source term. Next, I numerically solve the differential equation forD2

for the chosen triangle configuration, and use it to approximate the evolution

of the displacement field.

The second order displacement field in general, scalar-tensor theories
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of gravity (where the scalar field potential can be expanded as in eq. 5.7)

is the solution of eq. 5.13. The growth factor can be computed by solving

eq. 5.14. This equation reduces to the standard, ΛCDM one for µ(k, a) =

1. The dependence on closed triangles in Fourier space is related to the

presence of derivatives of the first-order displacement field as well as the Mk

functions, which can in principle bear a scale dependence. In the special case

of f(R) gravity theories, the Mk functions only depend on time, so they can

be taken out of the integral we need to solve to compute φ(2)(~k, a). Eq. 5.13

can then be written by expressing the Fourier-space integrals as Fourier

transforms of local, non-linear functions in real space. It is then possible to

take advantage of FFTs to compute the full source term of the differential

equation. The validity of this approach is not limited to f(R) models but

extends to all theories where the MG scalar potential can be expanded into

scale independent coefficients. The full equation for 2LPT displacements can

be written as:

a2H2(T̂ − 4πGρ̄µ(k, a)) FT[φ
(2)
,ii ](~k, a) = S1 + S2 + S3 + S4 , (5.16)

where

S1 = 4πGρ̄ FT
[
φ

(1)
,ij FT−1

[
µ(k, a) FT[φ

(1)
,ji ]
]]

, (5.17)

S2 = −2πGρ̄µ(k, a) FT
[
φ

(1)
,ii φ

(1)
,jj − φ

(1)
,ij φ

(1)
,ji

]
, (5.18)

S3 =

(
8πGρ̄

3

)2 M2(a)

12

k2/a2

Π(k, a)
FT

(FT−1

[
δ

(1)
k

Π(k, a)

])2
 , (5.19)

S4 = −8πGρ̄

3

m2(a)

2a2

1

Π(k, a)
FT

2φ
(1)
,ij

(
FT−1

[
δ

(1)
k

Π(k, a)

])
,ij

+φ
(1)
,iij

(
FT−1

[
δ

(1)
k

Π(k, a)

])
,j

 .

(5.20)

Here Π(k, a) = k2/a2 + m2(a) and the φ(1), δ(1) fields are evolved with

the linear scale–dependent growth factor D1(k, a). The S1 and S2 terms

come from keeping second order terms in the Poisson equation and the

equation of motion. The S3 term is related to the second–order scalar field

self–interaction (NL in eq. 5.2). Finally, the S4 term (first introduced by

Aviles & Cervantes-Cota 2017), is a geometric term, due to the fact that we
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are performing Fourier transforms in Lagrangian Fourier space, not Eulerian.

5.3 Approximations for D2

The method adopted is the following: I generate a linear density field on a

regular grid, compute the first order growth factor D1(k, a) by numerically

solving eq. 5.12 and use it to evolve the field. Next I compute the Si terms

of eq. 5.16, going back and forth from Fourier space to configuration space

to solve the integrals. I divide the source term by the equivalent quantity

evaluated for ΛCDM. The result is a quantity that depends on ~k, which I bin

in a grid of k-values, computing its average and scatter within each bin. The

aforementioned average is compared to the analytical expressions obtained

using various triangle configurations in Fourier space. The result is shown

in fig. 5.2, where I plot the computation of the full source term of the differ-

ential equation divided by its equivalent evaluated for a ΛCDM cosmology,

at z=0. Solid lines represent the source term for boxes with different sizes

(200 h−1 Mpc, 400 h−1 Mpc, 600 h−1 Mpc, 700 h−1 Mpc) with a fixed reso-

lution of 1 particle / h−1 Mpc. For each box I produce two realizations, one

with MG and one with standard GR, both with the same initial conditions in

order to have the same modes and sample variance. Afterwards I compute

the ratio of the two, and compute average and standard deviation in bins of

k. Dashed lines show the obtained 1σ standard deviation of the distribution

of the points in each bin: this represents the scatter, due to the fact that the

source term depends on the vector ~k. This scatter provides a measure of

how accurate a factorization in terms of a mildly k-dependent growth rate

D2(k, t) is: even though the source term is not completely separable, the

standard deviation is always below ∼ 0.2, and goes to zero at large scales, as

expected. Moreover, the average varies smoothly with k, and the standard

deviation of the mean within each bin is not large, σ/
√
N ∼ 10−6 (with N

the number of wave-modes in each bin). We can conclude that the average

is measured with a good precision, and can be used to the purpose of finding

an approximation to D2.

To find an approximation for D2 I compare the average ratio of source

term to the same quantity, obtained analytically by adopting different triangle

configurations: the result is shown in Fig. 5.3. The top panel shows the full

source term (divided by the GR one) of Fig. 5.2 with black dots, and different
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triangle configurations (solid lines), while in the bottom panel we show

the percent difference between the full source term and different triangle

configurations. First I compare to orthogonal (k1 = k2, θ = 90◦), equilateral

(k1 = k2, θ = 60◦) and squeezed (k1 ' 0, k2 = k) configurations: the solution

is very close to the orthogonal configuration, and above the equilateral one.

These are both isosceles triangles with k1 = k2 and angle between ~k1 and
~k2 respectively θ = 90◦ and θ = 60◦. I therefore focus on isosceles triangles,

keeping k1 = k2 and varying the angle. The best configuration is found to

be the orthogonal one (red line in fig. 5.3, hereafter T1) and the one with

θ = 80◦ (orange line in fig. 5.3, hereafter T2). Both T1 and T2 give results

that are well within 1% with respect to the full source term, in particular for

the mildly intermediate scales we are interested in describing with 2LPT. I

also compare the source term to triangle configurations with different ratio

k1/k2 and fixed angle 80◦, finding that increasing the ratio k1/k2 gives a

worse match to the source term (green and magenta lines of fig. 5.3). The

approximation proposed by Winther et al. 2017, is shown in blue in fig. 5.3,

and corresponds to fixing k1 = k2, θ = 90◦ in eq. 5.14, but the first order
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growth rates in that equation are computed as D1(k) instead of D1(k1),

D1(k2). This choice gives a slight overestimation of the source term, but the

deviation is still within 5% up to k ∼ 0.2h Mpc−1.

To understand the generality of this result, I perform the same compu-

tation for three different redshifts (z = 0, z = 0.5 and z = 1) and three

different values of the fR0 parameter (fR0 = −10−4, F4; fR0 = −10−5, F5;

fR0 = −10−6, F6). The result is shown in fig. 5.4. The black dots represent

the result of the ratio of source terms SMG/SGR, while the solid lines repre-

sent the two best triangles found for the F4, z = 0 case: T1 in red and T2

in green. It is worth noting that, when considering different redshifts and

values of fR0, the T1 configuration approximates better the full source term,

and is therefore the one adopted to compute the approximate D2(k, a) when

comparing to full N-body simulations.
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5.4 Displacement test

5.4.1 D U S T G R A I N–pathfinder simulations

To test how well our approximation for second order displacements does at

reconstructing the positions of dark matter halos, I use a suite of N-body

simulations run with f(R) gravity (Giocoli et al., 2018), the D U S T G R A I N-

pathfinder simulations. These simulations are performed with the M G - G A D G E T

code (Puchwein et al., 2013) and consist of 7683 particles of mass 8.1× 1010M�

in a 750 h−1 Mpc side box. The adopted cosmology is the one of (Planck

Collaboration et al., 2016): Ωm = 0.31345, Ωb = 0.0481, ΩΛ = 0.68655,

H0 = 67.31km s−1 Mpc−1,As = 2.199×10−9, ns = 0.9658. The MG model is

Hu–Sawicki f(R) with n=1, and three different values for fR0 = −10−4 (F4),

−10−5 (F5),−10−6 (F6). For our tests, I use the simulation with fR0 = −10−4

to maximize deviations from GR, and compare the halo power spectrum de-

rived with our approximation to the one measured in the simulations. A

reference ΛCDM simulation is also available. Halos are found by running a

standard friends-of-friends halo finder on the simulation snapshots, using a

linking length of 0.2 times the inter–particle distance.

5.4.2 Comparison results

The goal is to assess the performance of approximation for D2 described

in §5.3 for 2LPT in the context of MG models. For this purpose, I conduct

an analysis similar to the one carried out in Munari et al. (2017a): the

code is set up using the same initial conditions of the N-body simulation,

distributing particles on a regular grid. Particles in the same Lagrangian

positions are labelled with the same IDs as in the N-body simulation; they are

displaced particles according to the approximated D2(k, a) and grouped in

halos using the same membership of the simulation. Finally, the halo catalog

is constructed, computing the position of each halo by averaging over the

particles that belong to it. From the reconstructed catalog I evaluate the

halo power spectrum, using the method described in Sefusatti et al. (2016),

both for the “approximated” catalog and the simulation one. The result is

shown in fig. 5.5 for three different redshifts: z = 0, 0.2, 1.0: here I plot the

ratio of the halo power spectrum obtained when displacing particles with

our approximation to the one measured from simulations. I show results
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for the Zel’dovich approximation (green lines) and for 2LPT approximated

with the T1 triangle configuration (red lines), as well as the approximation

proposed by Winther et al. (2017) (blue lines). The same quantities are

computed for a ΛCDM simulation and plotted in fig. 5.6 at redshift z = 0

(top panel) and z = 1 (bottom panel); here the green line is again the

Zel’dovich approximation, while the red line is 2LPT.

Since the fifth force introduced by the gravity modification enhances the

clustering of matter, the value of σ8 at z = 0 is larger for the f(R) simulation

than the ΛCDM one. In a sense, at a given redshift a Universe with MG is

more non-linear with respect to one where gravity is described by GR. Given

that the perturbative approach breaks down as the field becomes non-linear,

a fair comparison between MG and ΛCDM should be performed between

snapshots with the same level of non-linearity. To assess the performance of

our method with f(R) gravity with respect to ΛCDM I choose two snapshots

with the same value of σ8, and compare the halo power spectrum obtained

for ΛCDM at redshift z = 0 (top panel of fig. 5.6) to the f(R) one at z = 0.2

(middle panel of fig. 5.5).

In both cases, the second order approximation allows to reproduce the

halo power spectrum within 10% up to k ' 0.4 h Mpc−1 at z = 1 and

k ' 0.2 h Mpc−1 at z = 0.2 for f(R). This result is similar to the one obtained

for 2LPT with ΛCDM; to better quantify the performance of 2LPT with MG,

I plot in fig. 5.7 the ratio (PMG(k)/Psim,MG(k))/(PΛCDM (k)/Psim,ΛCDM ):

the deviation between the two is within 1% up to scales k ' 0.4 h Mpc−1.

Moreover, it can be seen from fig. 5.5 that the two approximations considered

(T1 and the one proposed in Winther et al. 2017) yield very similar results in

terms of the halo power spectrum, even though they showed a few percent

difference with respect to the full source term.

I also perform a test to check the accuracy with which halo centers are

reproduced from particles displaced with our approximation, with respect

to the simulation catalogs. The result is shown in fig. 5.8 and fig. 5.9, both

for the first-order Zel’dovich approximation (green lines) and 2LPT (red and

blue lines, same color-coding as in fig. 5.5, with the case of ΛCDM 2LPT

plotted in orange). Here I plot the distance between the halo-centers of the

simulation and the ones in the approximated catalog, normalized to the inter-

particle distance (corresponding to ∼ 0.78 Mpc h−1), as a function of the

halo mass. To assess the performance of our 2LPT+MG approach, I compute
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Winther et al. (2017). The dashed and dotted black lines mark respectively
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halo distances also for the ΛCDM scenario (dashed lines in fig. 5.8 and

5.9). As before, in order to do a fair comparison between the perturbative

approaches in the two gravity models with the same level of non-linearity,

I compare the ΛCDM result at z = 0 to the MG one at z = 0.2 (fig. 5.8). It

can be seen that, even though there is on average an error of ∼ 0.8 times the

inter-particle distance (green lines) for the first order, and ∼ 0.4 times the
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inter-particle distance for the second order, the performance is the same as

the one shown by 2LPT+ΛCDM. Moreover, the error on the halo position is

roughly independent from the halo mass. In fig. 5.9 I perform the same test

but at redshift z = 1; as expected, the LPT halo centers are a better match to

the simulation ones’, and the performance for the MG model is again similar

to the one obtained for the standard scenario.
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5.5 Extension to MG: first approach

As anticipated in §4.2, a first approach to extend P I N O C C H I O to MG was to

test if the technique used in Rizzo et al. (2017) for massive neutrinos gives

acceptable results also in the case of f(R) gravity. The linear growth rate is

computed as the square root of ratios of linear power spectra generated with

E F T C A M B, while the second order growth rate is obtained from eq. 4.4. The

result of a comparison between halo power spectra (4.4): when adopting

eq. 4.4 to compute 2LPT displacements, the resulting halo power spectrum

does not show any improvements with respect to the linear approximation

for intermediate scales 0.04 h Mpc−1 ≤ k ≤ 0.1 h Mpc−1.

The reason behind this can be explained if one compares the second

order growth rate obtained from eq. 4.4 to the one obtained by solving the

second order differential equation for the triangle T1 (k1 = k2, θ = 90◦),

shown in fig 5.10. In the top panel I plot the ratio between D2(k, a) and

−3D2
1(k, a)/7 as a function of Ωm(a). The black line represents the best

fit obtained by Bouchet et al. (1995) for a ΛCDM Universe (Ωm(a)−1/143),

while the red, blue, orange and green lines show the ratio D2/(−3D2
1/7)

in the case of Hu–Sawicki f(R) with fR0 = −10−4, for increasing value of

the wavenumber k as specified in the legend. The bottom panel shows the

ratio of the lines of the top panel to Ωm(a)−1/143. It can be seen that, in the

case of scale-dependent growth induced by MG, eq. 4.4 does not provide

a good description for D2. In particular, even though the approximation is

still accurate for the largest scales (10−3 h Mpc−1, red line), where relevant

effects of MG are not expected on the growth rates, for smaller scales (and

already at k = 10−2 h Mpc−1, blue line), the growth rate deviates for more

than ∼ 3-4% from the fit, and the deviation gets more significant for smaller

scales. This is due to the fact that the scale dependence of D2(k, a) is not

accurately modeled by D2
1(k, a), therefore to properly treat mildly non-linear

scales the fit of eq. 4.4 is not adequate, and one must resort to the method

described in the previous sections.
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Fig. 5.10: Top panel: Ratio of the second order scale–dependent growth factor
D2(k, a) to (−3/7)D2

1(k, a), as a function of Ωm(a). The black line is the
fit of Bouchet et al. (1995), Ωm(a)−1/143, while the red, blue, orange and
green lines showD2(k, a) for different values of k, respectively 0.001, 0.01,
0.1 and 1 h/Mpc. The modified gravity model chosen is n = 1 Hu–Sawicki
with fR0 = −10−4. Bottom panel: Ratio of D2(k, a)/(−3/7)D2

1(k, a) to
Ωm(a)−1/143. For small values of k (red line) the fit of Bouchet et al.
(1995) is still valid, as expected, however, already for k = 0.01h/Mpc,
there is a deviation of ∼ 3− 4%.

5.6 Summary and discussion

In this chapter I presented a new computation of second-order LPT that

is valid for a class of modified gravity theories, and specialized it to the
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case of Hu-Sawicki f(R) theory, testing its performances against N–body

simulations. In MG theories the various expansion terms of LPT are typically

not separable as products of time-dependent and space-dependent functions,

and the equation for the second-order Fourier-space Lagrangian potential

φ(2)(~k, a) can be written as an integral over two more vectors ~k1 and ~k2,

that are constrained to form a triangle with ~k. For the case in which the

coefficients Mk (eq. 5.7) of the Taylor expansion of the fluctuations in the

Ricci scalar δR are not scale-dependent, the differential equation for the

2LPT displacement potential can be written in terms of direct and inverse

Fourier transforms. This allows to treat it with a numerical approach.

Using an initial density field sampled in cubic boxes of varying size and

number of grid points, I numerically characterized the source term of the

2LPT potential (normalized by its GR counterpart) by computing its average

and standard deviation as a function of k. I considered different triangle

configurations to find the second order growth factor D2(k, k1, k2, a) that

best reproduces the average of the source term, and used it to achieve an

effective separation of the 2LPT displacement field into a space part, that

does not depend on time and is equal to that used in GR, and a k-dependent

second-order growth rate D2(k, a). The latter can be computed by numeri-

cally integrating a set of ordinary differential equations, one for each k value.

The scatter in the numerical solution around the average source term gives

a measure of the accuracy of this approximation, and is found to be mod-

erate at the scales where 2LPT is relevant. I also tested the approximations

chosen for D2(k, a) at different redshifts and for different values of the fR0

parameter, and found that the chosen triangle configurations can be safely

adopted.

I implemented the solution for both differential equations for D2(k, a) in

our code to compute Lagrangian displacements, and followed the approach

discussed in Munari et al. (2017a) to test the accuracy level to which the

approximation can reproduce halo positions with respect to an N-body simu-

lation. I produced a second-order displacement field, and compared with the

results of a simulation run with MG-Gadget (Giocoli et al., 2018) and Hu-

Sawicki f(R) gravity (with a large value of fR0 = −10−4, to maximize the

effect of modified gravity). The halos in the simulation were identified using

a standard friends-of-friends halo finder algorithm. To construct the “approx-

imated” halo catalog, I used the same particle assignment of the simulation
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to group particles displaced with 2LPT, then I re-computed each halo center

of mass as the average over all particles that belong to it. Using these halo

displacements I computed the halo power spectrum and compared it with

that measured from the N-body halo catalog. As demonstrated by Munari

et al. (2017a) in the context of ΛCDM, this procedure allows to test how an

approximate method like 2LPT can recover the clustering of halos without

being required to solve the much harder problem of identifying halos them-

selves. Both chosen triangle configurations, together with the one previously

proposed by Winther et al. (2017), perform well in terms of the halo power

spectrum, allowing to reconstruct it within ∼ 10% at mildly non linear scales

(k ' 0.2 − 0.4 h Mpc−1). This performance is the same (within 1%) as the

one shown by 2LPT in a standard, ΛCDM Universe with GR, as highlighted in

Fig. 5.7, meaning that the loss of power in the reconstructed halo P (k) with

respect to the N-body one is mostly due to the failure of the perturbative

approach as the displacement field becomes non-linear. I conclude that LPT

can be safely used to displace particles even in presence of MG. The method

used to construct the halos, by matching the particle memberships to the

simulation ones, allows to perform an object–by–object analysis. I verify how

good our approximation for the halo displacements is at recovering the halo

positions with respect to the simulation. The result is again consistent with

the one obtained in a ΛCDM scenario.

Throughout this analysis, I focused in particular on Hu-Sawicki f(R).

The method I propose is however quite general, and can be extended to

other MG theories: once the functional form for the µ(k, a) function (that

parameterizes the Fourier-space Poisson equation) and the Mk coefficients

are known, such procedure propose can be employed to find a proper approx-

imation for D2. If the Mk coefficients are scale-dependent the method can in

principle still be applied, provided that the S3 (scalar field self-interaction)

term of eq. 5.19 can be written in terms of Fourier transforms. This requires

identifying the proper operators in configuration space that correspond to

the Mk coefficients in Fourier space. The procedure must be done only once

for each gravity theory, and does not require the use of N–body simulations.

This allows to produce large sets of approximated simulations for different

gravity models, a task that plays a crucial role in the computation of the

covariance matrices needed to constrain cosmological parameters. Scale-

dependent growth is implemented in the P I N O C C H I O code as an optional
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functionality, making it able to generate 2LPT displacements fields with mod-

ified gravity. However, a key part of the algorithm is the one that groups

particles in halos, needed to make the code fully predictive. In the standard

P I N O C C H I O code this is done by treating overdensities as homogeneous

ellipsoids and computing collapse times as the moment of first orbit crossing,

as described in §4. In the next chapter I describe an extension of ellipsoidal

collapse to MG suitable to be implemented in P I N O C C H I O.



Chapter 6

Ellipsoidal collapse with
Modified Gravity

In the previous chapter I described the extension of 2LPT to f(R) models,

together with a new numerical method developed to test different approxi-

mations for the second-order growth rate. Such approximation is required to

achieve a quick computation of LPT displacements, crucial for implementa-

tion in P I N O C C H I O. The second ingredient, essential to have a full extension

of the code, is a proper formulation of Ellipsoidal Collapse (EC) in the con-

text of MG theories. In the standard case, P I N O C C H I O implements the LPT

approach to EC (Monaco 1997a,b, see §2.3.3). The computation of collapse

times (CT) with the LPT description is fast, since it only requires solving

a cubic equation for D(acoll). Such technique results in an overestimation

of collapse times for spherical overdensities, due to the slow convergence

properties of the LPT series for spherical and quasi-spherical configurations.

However, the problem can easily be circumvented by applying a correction

(eq. 2.55) to reproduce spherical collapse.

Nonetheless, the LPT description of EC cannot be trivially extended to

the MG case, since it employs as a time variable the growth factor. The lat-

ter acquires a scale-dependence in MG theories, as extensively discussed in

§5. As a consequence, the suitable approaches are those that numerically

integrate the equations for the evolution of the ellipsoid axes in their full

generality, as a function of time, developed by Bond & Myers (1996) (BM)

and Nadkarni-Ghosh & Singhal (2016) (NGS). In this chapter I describe how
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to extend the computation of CT for ellipsoidal overdensities in presence

of MG. I perform thorough tests on the three EC approaches described in

§2.3.3 in the standard ΛCDM scenario. Starting from the results of Ruan et al.

(2020), that extend the BM approach to f(R) models, I derive an extension

of the NGS prescription (§6.2.2). The latter is suitable for implementation in

P I N O C C H I O, being ∼30 times faster than the BM approach. The implemen-

tation is currently ongoing. In §6.3 I summarize the software development

status. As for the extension of LPT displacements described in §5, I focus on

Hu-Sawicki f(R). The results discussed here will be the subject of a future

paper (Moretti 2020, in preparation).

6.1 Comparison of EC in ΛCDM

The three different prescriptions for EC described in §2.3.3 can be adopted

for the purpose of computing CT for ellipsoidal overdensities:

• The BM approach (Bond & Myers, 1996), which describes the evolu-

tion of the ellipsoid dimensionless principal axes ai by means of three

coupled second-order integro-differential equations (2.43;

• The NGS approach (Nadkarni-Ghosh & Singhal, 2016), describing the

dynamics of triaxial collapse in terms of eigenvalues of the deformation

tensor λa,i, the velocity derivative tensor λv,i and the gravity Hessian

λd,i. Computing CT involves solving a set of nine coupled first-order

differential equations (2.49);

• The LPT approach (Monaco, 1997a,b) is the one currently implemented

in P I N O C C H I O. It is based on the Taylor expansion of the ellipsoid po-

tential. This method involves solving an algebraic equation for the

linear growth rate D1(a), of the same order of the perturbative order

chosen in the expansion (2.54); in what follows I adopt the LPT expan-

sion up to third-order.

In order to extend the computation of EC in P I N O C C H I O to MG theories,

and in view of the need to adopt a different description with respect to

the one currently implemented, I perform a comparison between the three

methods. I assess the performances of the three approaches, integrating the

equations of EC for the first two methods and solving the algebraic equation
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of the LPT method. I compare the CT obtained, extending the analysis of

Monaco (1995, 1997b). In this context, collapse is defined as the time when

the shortest axis goes to zero, corresponding to the moment of orbit crossing.

Hence, for each method the time of collapse is computed as:

• BM approach: if ai are the dimension-less principal axes of the ellipsoid,

and the eigenvalues of the tidal tensor are ordered as λ1 ≥ λ2 ≥ λ3,

collapse times are evaluated as the time when a1 = 0;

• NGS approach: given the above definition of collapse for the BM ap-

proach, and the definitions of the nine dimensionless parameters of

2.48, collapse occurs when λa,1 = 1;

• LPT approach: collapse corresponds to the time the Jacobian of the

transformation from Eulerian to Lagrangian coordinates vanishes, iden-

tified as the value of the linear growth rate D(acoll) that solves eq. 2.54.

In all cases, CT is completely determined by the eigenvalues of the tidal

tensor λi. Moreover, δ =
∑

i λi.

As previously discussed, the LPT approach provides with a faster numeri-

cal solution than the BM one, though it has slow convergence properties

in the case of spherical overdensities, resulting in an over-estimation of

spherical collapse times evaluated with LPT. This can be seen in Fig. 6.1,

where I plot collapse times obtained with the LPT and the BM descriptions,

shown respectively in blue and orange. Fixing δL(a = 1) = 1.686, I vary the

eigenvalues λi, thus considering different ellipsoidal shapes. The latter are

described as combinations of the eigenvalues of the tidal tensor, x = λ1−λ2,

y = λ2 − λ3, so x = y = 0 corresponds to the spherical case. On the z axis I

plot the collapse times evaluated for the different combinations of λi. Except

for the cases close to spherical, the LPT approach is in good agreement with

the BM approach. The cosmology is set to an Einstein-de Sitter Universe

(Ωm,0 = 1); as expected, the BM approach correctly reproduces the spherical

case (i.e. an overdensity δL = 1.686 collapses at acoll = 1).

A better visualization of the comparison between different approaches

can be obtained plotting the residuals between CT evaluated with two meth-

ods, as in Fig. 6.2. There I plot 100× (CTLPT/CTBM− 1) (color-coded) as a

function of x = λ1 − λ2 and y = λ2 − λ3. I stress that the color-bars in the

two panels span different ranges, to properly display the % deviations as a
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Fig. 6.1: Collapse times as a function of the shape of the ellipsoid λ1−λ2 and λ2−λ3.
The λi are chosen so that the linearly evolved overdensity δ = 1.686.
Collapse times obtained with LPT are in blue, those obtained with BM
are in orange. The poor performance of LPT respect to the BM method in
quasi-spherical cases is evident.

function of the ellipsoid shape. In this case I consider a flat ΛCDM cosmology

with Ωm,0 = 0.3, and a linearly evolved overdensity δL = 3. The values of

λi are chosen varying 0 ≤ x ≤ 3, 0 ≤ y ≤ 6. The top panel of Fig. 6.2

shows the % difference between collapse times computed with LPT and BM

when no spherical correction is applied: in this case the two methods show

a discrepancy as high as 20% for quasi-spherical cases. The bottom panel

shows the same quantity after applying the spherical correction of eq. 2.55:

in this case the deviation is reduced to ≤ 2.5%. Collapse times are evaluated

in terms of the linear growth rate D(acoll).

In Fig. 6.3 I show the comparison between the NGS and the BM pre-

scriptions (top panel), and the LPT and BM prescriptions, with the spherical

correction applied to LPT computed CT (bottom panel, same as the bottom
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panel of Fig. 6.2). Note that again the color-bars span different ranges: the

difference in CT computed with BM and NGS is ≤0.22%, confirming that the

two methods are numerically equivalent.

The same comparison is performed for different values of δ, yielding

similar results. Moreover, the NGS approach is ∼ 30 times faster than BM,

owing to the fact that the differential equations to solve do not involve the

computation of elliptic integrals. The NGS description of EC is therefore

our choice for the implementation in P I N O C C H I O, since it allows for a fast

solution with negligible compromises on the accuracy in the computation of

CT with respect to the BM approach. As of now, the code has been modified

to evaluate CT with the NGS description in the context of standard ΛCDM.

This change results in more precise computation of CT respect to the previous

implementation, based on LPT. Moreover, it is propaedeutic for the purpose

of extending the code to MG, given that the scale-dependent growth rate

(used in LPT) cannot be used as time variable. As anticipated, the BM and

NGS methods are both suitable to be extended to MG, since they numerically

integrate the equations for the evolution of the ellipsoid axes as a function

of time. An extension of the BM approach to Hu-Sawicki f(R) is developed

in Ruan et al. (2020) and described in §6.2.1. Starting from those results, I

derive an extension of the NGS method which is suitable to be implemented

in P I N O C C H I O, described in §6.2.2.
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Fig. 6.2: % deviation of collapse times computed with the LPT and BM approach,
color-coded. The top panel shows the result when no spherical correction
is applied, while the bottom panel shows the corrected results. The dis-
crepancy is reduced from being as high as 20% to ≤ 2.5%. Note that the
color-bars span different ranges.
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Fig. 6.3: % deviation of collapse times computed with the NGS and BM approaches
(top panel), and LPT and BM approaches corrected to reproduce spher-
ical collapse (bottom panel), color-coded. Note that the color-bars span
different ranges.
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6.2 Gravitational collapse in MG

A proper description of gravitational collapse in the context of MG should

take into account both the gravity enhancement due to the fifth force and a

screening mechanism, required to comply with Solar System constraints. As

anticipated in §3.3, for f(R) models the mechanism at play is the chameleon

(Khoury & Weltman, 2004a): a scalar field can acquire an effective mass that

is environmentally dependent. In high density regions, such mass becomes

large, effectively hiding the additional degree of freedom and suppressing

the fifth force. On the other hand, in low density environments such as in

cosmological volumes, the mass associated with the field is small and the

effects of MG can be manifest. In the non-relativistic limit the scalar field

equation of motion can be written as:

∇2ϕ =
dVeff

dϕ
, (6.1)

where Veff(ϕ) is the scalar field potential plus a contribution from the cou-

pling of ϕ to the matter field, Veff(ϕ) = V (ϕ) + ρ exp(
√

8πβϕ). The second

derivative of Veff is the effective mass of the scalar field, m2
ϕ.

The behavior of scalar field outside of massive objects can be shown to

be dependent on the ratio of ∆ϕ (i.e. the difference in the value of the scalar

field inside and outside the object), to the value of the Newtonian potential

at the surface of the object ΦN . In particular, satisfying the condition

√
8π(ϕout − ϕin)

6βΦN
� 1 , (6.2)

results in a configuration of the gravitational field where ϕ occupies the

minima of the effective potential inside and outside the object, except for

a thin shell where the value of ϕ increases from ϕin to ϕout. Here β is

the strength of the coupling between the additional degree of freedom and

matter (β = −1/
√

6 for f(R)).

Khoury & Weltman (2004a) derive an estimation for the radial profile

of the scalar field in the case of a spherical top-hat overdensity of physical

radius RTH, with constant inner and outer densities ρin and ρout respectively.

The distance needed for the MG scalar field ϕ to settle from the outside value
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ϕout to the inside value ϕin in the case of a spherical top-hat is:

RTH −R0

RTH
=

∆R

RTH
' 1√

8πGβ

ϕout − ϕin

ρinR2
TH

. (6.3)

The condition of eq. 6.2 results then in the requirement that ∆R/RTH � 1,

i.e. a thin shell is present. The values of the scalar field that minimize the

effective potential inside and outside the shell are, for Hu-Sawicki f(R):

ϕin/out = fR,in/out '
[

1 + 4ΩΛ/Ωm

ρ̃in/outa−3 + 4ΩΛ/Ωm

]n+1

fR0 , (6.4)

where ρ̃in/out = ρm,in/out/ρ̄m. The thickness of the thin shell 6.3 can then be

written as:

∆R

RTH
' |fR0|a3

Ωmρ̃in(H0RTH)2

[(
1 + 4ΩΛ/Ωm

ρ̃outa−3 + 4ΩΛ/Ωm

)n+1

−
(

1 + 4ΩΛ/Ωm

ρ̃ina−3 + 4ΩΛ/Ωm

)n+1
]
.

(6.5)

Considering the radial profile for the scalar field ϕ(r) for r ∈ [R0, RTH]

derived in Khoury & Weltman (2004a):

ϕ(r) ' ϕin +

√
8πβ

3
ρin

[
r2

2
+
R3

0

r
− 3

2
R2

0

]
, (6.6)

it is possible to write the additional force felt by a test mass at RTH as:

F GM
R2

TH

=
√

8πβ ∇ϕ|RTH
' GM

3R2
TH

[
3

∆R

RTH
− 3

(
∆R

RTH

)2

+

(
∆R

RTH

)3
]
.

(6.7)

Since RTH ≥ R0 and R0 ≥ 0, ∆R/RTH ∈ [0, 1] and the enhancement of grav-

ity is F ∈ [0, 1/3]. Following Lombriser et al. (2013), the force enhancement

is taken to be the quantity in square brackets in eq. 6.7:

F =
1

3
min

(
1, 3

∆R

RTH
− 3

(
∆R

RTH

)2

+

(
∆R

RTH

)3
)
. (6.8)

With this description, the gravity modification can be expressed in terms of

an effective gravitational constant Geff = G (1 + F).
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The evolution for the spherical overdensity in terms of the dimensionless

comoving radius y = r(a)/aRTH, with r the physical radius of the overden-

sity, is:

y′′h +

[
2− 3

2
Ωm(a)

]
y′h +

1

2
Ωm(a)(1 + F)(y−3

h − 1)yh = 0 , (6.9)

where ′ denotes derivation with respect to ln a and F depends on the density

of the environment via eq. 6.3. The environment is assumed to follow a

ΛCDM evolution, so that:

y′′env +

[
2− 3

2
Ωm(a)

]
y′env +

1

2
Ωm(a)(y−3

env − 1)yenv = 0 . (6.10)

6.2.1 Extension of the BM approach

Starting from the modeling of spherical collapse in MG described in the pre-

vious section, Ruan et al. (2020) present an extension of the BM approach

to ellipsoidal collapse to Hu-Sawicki f(R), applying it in the context of ex-

cursion set theory. The basic idea is to consider the gravity modification as

an effective gravitational constant Geff = G(1 + F), where F is the force

enhancement derived from the radial profile of ϕ for the spherical case 6.8.

To take into account triaxial symmetry, the spherical radius yh is replaced by

an “effective” radius (Y1Y2Y3)1/3. The Yi are the dimension-less comoving

principal axes of the ellipsoid. The thickness of the thin shell can then be

written as:

∆R

R
=

|fR0|c2a7

Ωm,0(H0Rinit)2
(Y1Y2Y3)−1/3

[(
1 + 4ΩΛ/Ωm,0

y−3
env + 4a3ΩΛ/Ωm,0

)2

−
(

1 + 4ΩΛ/Ωm,0

(Y1Y2Y3)−1 + 4a3ΩΛ/Ωm,0

)2
]
.

(6.11)

In terms of the dimension-less axes ai = aYi of eq. 2.46, the evolution

equation in MG reads:

d2ai
da2

+

(
1

a
+
E

′
(a)

E(a)

)
dai
da

+

(
3Ωm,0

2a5E2(a)
Ci(a)(1 + F)

−2ΩΛa
3 − Ωm,0

2a5E2(a)

)
ai = 0 .

(6.12)
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Eq. 6.12 constitutes a set of three coupled second-order integro-differential

equations that describe the time-evolution of the ellipsoid principal axes.

The formulation is equivalent to the standard BM prescription of eq. 2.46,

but with an enhanced gravitational force described by the F term. The latter

depends on the evolution of the environment (computed solving eq. 6.10)

through eq. 6.8 and6.11. With respect to the standard case, solving eq. 6.12

involves two additional parameters: the density of the environment δenv and

the mass of the halo Mh = 4π/3(Rinitainit)
3ρ̄m,init (or equivalently Rinit).

The evolution of the ellipsoid is then completely specified by Mh, δenv, λi,

together with the cosmological parameters and the value of fR0.

6.2.2 Extension of the NGS approach

Following the dynamics of the ellipsoid described by eq. 6.12, as in the

standard case, involves the computation of elliptic integrals. As anticipated

before, this makes the BM integro-differential equations ill-suited to be im-

plemented in an fast approximate method such as P I N O C C H I O, in which the

computation of collapse times is repeated many times. However, as I showed

in §6.1, the NGS approach yield very similar results to the BM description,

but in a fraction (∼1/30) of the time. We choose to adopt the NGS descrip-

tion of EC, using the prescription of Ruan et al. (2020) to extend it to f(R).

I start from the definition of the eigenvalues of the deformation tensor, the

velocity derivative tensor and the gravity Hessian:

λa,i = 1− ai
a
,

λv,i =
1

H

ȧi
ai
− 1 ,

λd,i =
δαi
2

+ λext,i = Ci −
1

3
,

(6.13)

and proceed to derive the equations for the evolution of the eigenvalues as

in Nadkarni-Ghosh & Singhal (2016): I derive the eigenvalues 6.13 respect

to the scale factor a, adopting the modified equation 6.12 for the ai. The
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resulting evolution equations for the eigenvalues λa,i, λv,i, λd,i are:

dλa,i
d ln a

= −λv,i(1− λa,i)
dλv,i
d ln a

= −1

2

[
3Ωm(a)λd,i(1 + F)− (Ωm(a)− 2ΩΛ(a)− 2)λv,i + 2λ2

v,i

]
dλd,i
d ln a

= −(1 + δ)

(
δ +

5

2

)−1(
λd,i +

5

6

) 3∑
j=1

λv,j+

+

(
λd,i +

5

6

) 3∑
i=1

(1 + λv,i)−
(
δ +

5

2

)
(1 + λv,i)+

+
∑
j 6=i

(λd,j − λd,i[(1− λa,i)2(1 + λv,i)− (1− λa,j)2(1 + λv,j)]

(1− λa,i)2 − (1− λa,j)2

(6.14)

where F is evaluated from eq. 6.8. The thickness of the thin-shell is:

∆R

R
=

|fR0|c2a7

Ωm,0(H0Rinit)2

[∑
i

(1− λa,i)
]−1/3

×
[(

1 + 4ΩΛ/Ωm,0

y−3
env + 4a3ΩΛ/Ωm,0

)2

−

(
1 + 4ΩΛ/Ωm,0

[
∑

i(1− λa,i)]−1 + 4a3ΩΛ/Ωm,0

)2
 .

(6.15)

Note that only the equation for the eigenvalues of the velocity derivative

tensor λv,i is modified, with the inclusion of the (1+F) term. For the purpose

of implementing EC of mass elements in P I N O C C H I O we set the density of

the local environment to the background value ρenv = ρ̄m, so that δenv = 0

and yenv = 1. Moreover, we identify the initial radius of the halo Rinit with

the smoothing radius.

Following the definition of collapse as orbit crossing, the ellipsoid col-

lapses as λa,1 → 1, provided that the initial eigenvalues are sorted as λa,1 ≥
λa,2 ≥ λa,3. In Fig. 6.4 I show the evolution of the axes ai as a function of

time for an ellipsoidal configuration in Hu-Sawicki f(R) with fR0 = −10−4

(solid lines), as well as the same quantity for the standard GR case (dashed

lines). The evolution is computed solving eq. 6.14, the ai can be evaluated

from the definition of the λa,i 6.13. The initial conditions for the eigenvalues

are set to λa,1 = 1.5, λa,2 = 1.3, λa,3 = 1. In the case shown, collapse occurs

earlier with respect to the GR case because of the gravity enhancement.

In Fig. 6.5 I plot the evolution of the shortest axis of the ellipsoid (the first
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Fig. 6.4: Evolution of the principal axes of an ellipsoid with λa,1 = 1.5, λa,2 =
1.3, λa,3 = 1 computed solving eq. 6.14 (solid lines) for fR0 = −10−4,
compared to the standard case (dashed lines).

to collapse, top panel) and of the λa,1 eigenvalue (bottom panel) for different

values of the fR0 parameter, as stated in the legend. Fig. 6.5 confirms that

increasingly smaller values of fR0 reduce to the GR case (shown in black).

The results summarized in this section are preliminary, tests performed so

far include:

• In cases where the modification of gravity is not screened, collapse

occurs earlier due to enhancement in the gravitational force, as shown

in Fig. 6.4. Future tests will involve a proper characterization of the

screening mechanism;

• I numerically solve eq. 6.12 (BM) and 6.14 (NGS) for some configu-

rations, confirming that the evolution for the ellipsoid axes and the

collapse times are the same in the two approaches. This test will be

extended as the comparison shown in Fig. 6.3, considering a grid of

values for the λi and different values of δ;
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Fig. 6.5: Evolution of the first axis a1 of an ellipsoid with λa,1 = 1.5, λa,2 = 1.3,
λa,3 = 1 (top panel) and of the eigenvalue λ1 (bottom panel) for different
values of fR0: fR0 = −10−4 shown in green, fR0 = −10−5 shown in blue,
and fR0 = −10−6 shown in red. The dashed black line represents the
standard case.

• The results obtained for different values of the fR0 parameter, plotted

in Fig. 6.5, confirm that the evolution of the ellipsoid approaches the

GR one as fR0 → 0.

6.3 Implementation status

The combination of 2LPT and EC described respectively in §5 and §6, for-

mulated in the case of f(R) gravity, provide the theoretical framework for

the extension of P I N O C C H I O to MG models. In both cases, implementation

in a fast approximate method requires to find the optimal balance between

accuracy and speed: solving the full equation for 2LPT displacements and
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computing collapse times with the extension of the BM approach would be

too computationally demanding. In this sense, the ideal methods are pro-

vided by the approximation for the second-order growth rate proposed in

the previous chapter and the extension of the NGS approach to f(R) gravity

described here.

Software development is currently ongoing. With respect to version 4.1.2

of P I N O C C H I O, we performed the following modifications:

• In the context of standard ΛCDM, we implemented the computation of

CT with the NGS prescription. This results in a more accurate evalua-

tion of collapse times with respect to the previous LPT based implemen-

tation, as discussed in §6.1 and shown in Fig. 6.3. For each smoothing

radius the code evaluates CT solving eq. 2.49 on a grid of values of

λ1, λ2, λ3, instead of solving for each particle. The results are stored in

a matrix, and each time the collapse times routine is called CT are

computed interpolating over the matrix;

• The approximate second-order growth rate described in §5 allows to

factorize the Fourier-space displacement field in terms ofD2(k, a) times

the initial displacement field. However, to construct halos the code re-

quires the computation of displacements in configuration space. In the

standard ΛCDM case, the factorization of displacements holds true also

in configuration space; in Rizzo et al. (2017), an effective factoriza-

tion was assumed (4.3), but this could be a poor approximation in the

MG case, because of the mode coupling induced by the scalar field.

We are currently devising an optimal way to compute configuration-

space displacements with the best compromise between accuracy and

computational time.

At the moment, we are working on the implementation of the EC extension

to MG following the approach presented in 6.2.2. Once the code is ready

and well tested, we will go through a comparison of our results with N-body

simulations. Then we will release the code, providing the community with a

tool to compute covariance matrices for different cosmological observables,

useful in the construction of covariance matrices to constrain extensions of

the standard ΛCDM scenario in view of future galaxy surveys.
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Conclusions

This PhD thesis addresses the extension of approximate methods to generate

simulated dark matter halo catalogs in the framework of modified gravity

theories. These are an extension of the standard ΛCDM model of cosmology,

alternative to the introduction of a cosmological constant; MG models fore-

see specific signatures on cosmological observables, that are however not

detected in currently available data. Future galaxy surveys, such as Euclid,

SKA, DESI or LSST, will provide a large amount of high-precision data, with

the potential to provide tight constraint on the cosmological parameters and

disentangle between different gravity theories. Shedding light on these top-

ics requires a precise measurement of the cosmological parameters (with

percent level accuracy) and to discriminate among different MG models. To

achieve these goals it is crucial to accurately model the non-linear regime of

structure formation, where characterizing signatures of different MG models

can be found. The ability to constrain the cosmological model is strongly

dependent on the capability to properly compute covariance matrices and

likelihoods for different cosmological observables. Performing such task re-

quires the generation of large sets of simulated dark matter halo (and galaxy)

catalogs, which would be unfeasible with computationally expensive N-body

simulations. A viable alternative is provided by approximate methods, able

to quickly produce predictions of cosmological observables, and to describe

the mildly NL scales with minor compromises in accuracy.

One such method is implemented in the P I N O C C H I O software (Monaco

et al., 2002a,b), whose algorithm is based on Lagrangian PT, ellipsoidal col-
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lapse and the extended Press-Schechter formalism. P I N O C C H I O is already

used within the Euclid collaboration to compute covariance matrixes in the

context of the standard model of cosmology: the main goal of this PhD was

to extend it to MG theories of gravity.

The first analysis I performed was related to a possible way of includ-

ing warm dark matter cosmologies in the code (§4). The impact of WDM is

a suppression of density fluctuations below some threshold, resulting in a

decrease in the number of high mass halos. The washing out of small scale

fluctuations due to WDM can be described by means of a truncated power

spectrum. However, the use of such truncated power spectrum in P I N O C -

C H I O highlights an inability of the code to properly reproduce the WDM

mass function: the loss of halos is present on all mass scales, and not only

at the high mass end of the spectrum. In the context of P I N O C C H I O, a

similar result can be obtained by changing the minimum radius on which

the code performs the smoothing (by default set to Rmin = 0). To further

investigate the problem, I performed several tests with different smoothing

schemes, described in §4.3. An object-by-object analysis, performed by check-

ing the particle membership to halos in two realizations with different Rmin,

shows that a significant fraction of halo particles end up in filaments in the

Rmin > 0 case. Such outcome reveals an issue in the fragmentation process,

likely related to the calibration of the threshold distance for accretion. Such

calibration is however cosmology independent, and should hold also in the

WDM case. Possibly, the parameterization chosen for the threshold is wrong,

though the issue is not evident in the standard CDM case. Since the process

of re-calibration is quite cumbersome, it is left for a future work.

Extending P I N O C C H I O to MG requires a proper reformulation of both

LPT and EC in modified gravity, as well as implementation in the code. Con-

cerning LPT, the main difficulty arise in the treatment of the growth rate,

since in MG it is scale dependent. Hence, the factorization of displacements

in time- and scale-dependent functions is no longer a viable option. More-

over, to compute the second-order displacement field one must in principle

solve a 9-dimensional integral that runs over all possible triangle configura-

tions formed by ~k1, ~k2 and ~k in Fourier space. Such a computation would

be quite demanding in terms of computational time, and is therefore not

suitable for implementation in P I N O C C H I O. In §5 I described a new numeri-

cal method aimed at determining the second order Lagrangian displacement
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field for particles. Such method relies on fast Fourier transforms to compute

the full source term of the differential equation for second-order Lagrangian

displacements, and allows to test different approximation for the second or-

der growth rate. The MG model I consider is Hu–Sawicki f(R), though the

approach is quite general and can easily be applied to other MG theories. Us-

ing the approximated growth rate, I computed the 2LPT displacement field

for particles, and used it to construct the halo catalogs. The method’s pre-

dictions were tested against the set of full N-body D U S T G R A I N-pathfinder

simulations (Giocoli et al., 2018). I grouped the particles in halos accord-

ing to the halo-membership provided by the N-body catalog, and compute

the halo power spectrum in order to compare it to the one measured from

the simulations. The method is able to recover the simulation power spec-

trum with 10% level accuracy up to scales of k ∼ 0.2 − 0.4 h Mpc−1. Using

this technique, I also tested the Lagrangian approach in the context of MG

and compared it to the standard GR case, showing that the performance of

LPT with modified gravity is the same as the one obtained in the standard

case. The results of this work are presented in a paper (Moretti et al., 2019),

already accepted for publication in MNRAS.

In P I N O C C H I O, the computation of collapse times is performed by treat-

ing overdensities as homogeneous ellipsoids. Therefore, a proper description

of EC in the framework of MG is required. Such description should include

both the enhancement of gravity due to the fifth force and a screening mech-

anism. In its standard version, the code implements the computation of

collapse times based on the LPT description (§2.3.3), which uses the linear

growth rate as a time variable. However, the scale dependence of the growth

rate in MG makes this prescription not easily extendable. Two possible alter-

natives are provided by the Bond & Myers (1996) (BM) and Nadkarni-Ghosh

& Singhal (2016) (NGS) approaches, formulated in the context of standard

ΛCDM. In 6 I performed a thorough comparison between the three meth-

ods, showing that collapse times computed with LPT deviate by less than

2% from those evaluated with BM. The NGS results, on the other hand, dif-

fer by less than 0.2% from BM, hence BM and NGS provide very similar

outcomes. However, the solution of the BM equations is ∼30 times slower

respect to the NGS ones, since the former involves integro-differential equa-

tions. The suitable approach to be implemented in P I N O C C H I O is then the

NGS description. In §6.2.2 I presented an extension of the NGS prescription
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to Hu-Sawicki f(R) models, starting from the results of Ruan et al. (2020).

The force modifications due to MG are introduced by means of an effective

gravitational constant, derived from the radial profile of the MG scalar field

for a spherical top-hat. I performed some preliminary tests on the NGS exten-

sion to MG, confirming that: (i) the NGS extension and the BM extension of

Ruan et al. (2020) yield the same results; (ii) in MG collapse proceeds faster

respect to the standard GR case; (iii) the evolution of the ellipsoid reduces to

standard GR as the value of the fR0 parameter decreases . Implementation

of the extension of the NGS approach to MG in P I N O C C H I O is currently on-

going. These results will be the topic of a forthcoming paper (Moretti 2020,

in preparation).

In the future I will extend the code to include more MG theories, to

broaden its capacity in the framework of beyond-ΛCDM cosmological models.

Moreover, recent works (e.g. Baldi et al. 2014) have highlighted a possible

degeneracy between MG and massive neutrinos, which could in principle

hinder our capability to distinguish between a Universe described by ΛCDM

and one with MG+massive neutrinos. In Rizzo et al. (2017), P I N O C C H I O

was extended to massive neutrino cosmologies. I will implement the code to

account for both effects simultaneously, which would be beneficial both in

the computation of covariance matrices and the determination of the proper

observables to break the abovementioned degeneracies.

To summarize, in this thesis I described the extension of 2LPT and EC to

f(R) gravity, providing the optimal numerical approaches to implement them

using a fast, approximate method. These findings constitute the theoretical

framework for the extension of P I N O C C H I O to MG models. Once the code is

ready and well tested, we will go through a comparison of our results with N-

body simulations, followed by the release of the code. The extended version

of P I N O C C H I O will be a valuable tool to compute covariance matrices for

cosmological observables in the context of beyond-ΛCDM models, a crucial

task for constraining cosmological parameters with future surveys, such as

Euclid.
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Starobinskǐi A. A., 1979, Soviet Journal of Experimental and Theoretical Physics
Letters, 30, 682

Starobinsky A. A., 1980, Physics Letters B, 91, 99

Taruya A., Nishimichi T., Saito S., 2010, Phys. Rev. D, 82, 063522

Tassev S., Zaldarriaga M., Eisenstein D. J., 2013, J. Cosmology Astropart. Phys., 6,
036

Teyssier R., 2002, A&A, 385, 337

Vainshtein A. I., 1972, Physics Letters B, 39, 393

Valogiannis G., Bean R., 2017, Phys. Rev. D, 95, 103515

Velten H. E. S., vom Marttens R. F., Zimdahl W., 2014, European Physical Journal
C, 74, 3160

http://dx.doi.org/10.1103/PhysRevD.80.123003
https://ui.adsabs.harvard.edu/abs/2009PhRvD..80l3003S
http://dx.doi.org/10.1088/1475-7516/2016/04/047
https://ui.adsabs.harvard.edu/abs/2016JCAP...04..047S
http://dx.doi.org/10.1103/PhysRevD.70.083007
https://ui.adsabs.harvard.edu/abs/2004PhRvD..70h3007S
http://dx.doi.org/10.1046/j.1365-8711.2002.04999.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.329..629S
http://dx.doi.org/10.1093/mnras/stw1229
http://adsabs.harvard.edu/abs/2016MNRAS.460.3624S
http://adsabs.harvard.edu/abs/2016MNRAS.460.3624S
http://dx.doi.org/10.1103/RevModPhys.61.185
https://ui.adsabs.harvard.edu/abs/1989RvMP...61..185S
http://dx.doi.org/10.1016/j.physletb.2006.06.063
https://ui.adsabs.harvard.edu/abs/2006PhLB..639..414S
http://dx.doi.org/10.1046/j.1365-8711.1999.02692.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.308..119S
http://dx.doi.org/10.1046/j.1365-8711.2002.04950.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.329...61S
http://dx.doi.org/10.1103/PhysRevD.87.083514
https://ui.adsabs.harvard.edu/abs/2013PhRvD..87h3514S
http://dx.doi.org/10.1088/1475-7516/2010/04/018
http://dx.doi.org/10.1088/1475-7516/2010/04/018
https://ui.adsabs.harvard.edu/abs/2010JCAP...04..018S
http://dx.doi.org/10.1103/RevModPhys.82.451
https://ui.adsabs.harvard.edu/abs/2010RvMP...82..451S
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.364.1105S
https://ui.adsabs.harvard.edu/abs/1979JETPL..30..682S
http://dx.doi.org/10.1016/0370-2693(80)90670-X
https://ui.adsabs.harvard.edu/abs/1980PhLB...91...99S
http://dx.doi.org/10.1103/PhysRevD.82.063522
https://ui.adsabs.harvard.edu/abs/2010PhRvD..82f3522T
http://dx.doi.org/10.1088/1475-7516/2013/06/036
http://adsabs.harvard.edu/abs/2013JCAP...06..036T
http://adsabs.harvard.edu/abs/2013JCAP...06..036T
http://dx.doi.org/10.1051/0004-6361:20011817
https://ui.adsabs.harvard.edu/abs/2002A&A...385..337T
http://dx.doi.org/10.1016/0370-2693(72)90147-5
https://ui.adsabs.harvard.edu/abs/1972PhLB...39..393V
http://dx.doi.org/10.1103/PhysRevD.95.103515
http://adsabs.harvard.edu/abs/2017PhRvD..95j3515V
http://dx.doi.org/10.1140/epjc/s10052-014-3160-4
http://dx.doi.org/10.1140/epjc/s10052-014-3160-4
https://ui.adsabs.harvard.edu/abs/2014EPJC...74.3160V


REFERENCES 149

Verde L., Treu T., Riess A. G., 2019, Nature Astronomy, 3, 891

Walker A. G., 1937, Proceedings of the London Mathematical Society, 42, 90

Watson W. A., Iliev I. T., D’Aloisio A., Knebe A., Shapiro P. R., Yepes G., 2013, MNRAS,
433, 1230

Weinberg S., 1989, Reviews of Modern Physics, 61, 1

Weisberg J. M., Nice D. J., Taylor J. H., 2010, ApJ, 722, 1030

Weller J., Albrecht A., 2001, Phys. Rev. Lett., 86, 1939

Wetterich C., 1988, Nuclear Physics B, 302, 668

White S. D. M., 1984, ApJ, 286, 38

White S. D. M., Silk J., 1979, ApJ, 231, 1

Will C. M., 2014, Living Reviews in Relativity, 17, 4

Winther H. A., Koyama K., Manera M., Wright B. S., Zhao G.-B., 2017, J. Cosmology
Astropart. Phys., 8, 006

Wong K. C., et al., 2019, arXiv e-prints, p. arXiv:1907.04869

Wright B. S., Koyama K., Winther H. A., Zhao G.-B., 2019, arXiv e-prints,

York D. G., et al., 2000, AJ, 120, 1579

Zel’dovich Y. B., 1970, A&A, 5, 84

Zhao G.-B., Giannantonio T., Pogosian L., Silvestri A., Bacon D. J., Koyama K., Nichol
R. C., Song Y.-S., 2010, Phys. Rev. D, 81, 103510

Zwicky F., 1933, Helvetica Physica Acta, 6, 110

de la Torre S., et al., 2013, A&A, 557, A54

http://dx.doi.org/10.1038/s41550-019-0902-0
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..891V
http://dx.doi.org/10.1112/plms/s2-42.1.90
https://ui.adsabs.harvard.edu/abs/1937PLMS...42...90W
http://dx.doi.org/10.1093/mnras/stt791
https://ui.adsabs.harvard.edu/abs/2013MNRAS.433.1230W
http://dx.doi.org/10.1103/RevModPhys.61.1
http://adsabs.harvard.edu/abs/1989RvMP...61....1W
http://dx.doi.org/10.1088/0004-637X/722/2/1030
https://ui.adsabs.harvard.edu/abs/2010ApJ...722.1030W
http://dx.doi.org/10.1103/PhysRevLett.86.1939
https://ui.adsabs.harvard.edu/abs/2001PhRvL..86.1939W
http://dx.doi.org/10.1016/0550-3213(88)90193-9
https://ui.adsabs.harvard.edu/abs/1988NuPhB.302..668W
http://dx.doi.org/10.1086/162573
https://ui.adsabs.harvard.edu/abs/1984ApJ...286...38W
http://dx.doi.org/10.1086/157156
https://ui.adsabs.harvard.edu/abs/1979ApJ...231....1W
http://dx.doi.org/10.12942/lrr-2014-4
https://ui.adsabs.harvard.edu/abs/2014LRR....17....4W
http://dx.doi.org/10.1088/1475-7516/2017/08/006
http://dx.doi.org/10.1088/1475-7516/2017/08/006
http://adsabs.harvard.edu/abs/2017JCAP...08..006W
https://ui.adsabs.harvard.edu/abs/2019arXiv190704869W
http://dx.doi.org/10.1086/301513
https://ui.adsabs.harvard.edu/abs/2000AJ....120.1579Y
http://adsabs.harvard.edu/abs/1970A26A.....5...84Z
http://dx.doi.org/10.1103/PhysRevD.81.103510
https://ui.adsabs.harvard.edu/abs/2010PhRvD..81j3510Z
https://ui.adsabs.harvard.edu/abs/1933AcHPh...6..110Z
http://dx.doi.org/10.1051/0004-6361/201321463
https://ui.adsabs.harvard.edu/abs/2013A&A...557A..54D

	Abstract
	Introduction
	The metric of space-time
	The standard model of cosmology

	A brief thermal history of the Universe
	Statistics of cosmic fields
	Two-point statistics
	Covariance matrices

	Cosmological observables and current constraints
	The Cosmic Microwave Background
	Current constraints

	Galaxy redshift surveys
	Redshift space distortions
	Baryon acoustic oscillations
	Alcock-Paczynski effect
	Current constraints


	The Euclid Satellite

	The evolution of perturbations
	Perturbative approach to cosmic growth
	Linear Eulerian Perturbation Theory
	Non-linear Eulerian Perturbation Theory
	Lagrangian Perturbation Theory
	Zel'dovich approximation
	Higher-order Lagrangian Perturbation Theory


	Simulating the Universe
	N-body simulations
	Approximate methods

	Gravitational collapse
	Spherical collapse
	The halo mass function
	Ellipsoidal collapse
	Bond & Myers approach
	Nadkarni-Ghosh & Singhal approach
	Lagrangian PT approach



	Modified Gravity
	Motivation
	Cosmological constant problems
	Tensions

	Modified gravity theories
	Screening mechanisms
	Parametrizations
	f(R) gravity
	Hu–Sawicki f(R)

	Cosmological probes of the gravity theory
	Constraints on beyond-CDM models
	Degeneracy with massive neutrinos

	Simulations with MG

	The pinocchio code
	Description of the code
	Extension to massive neutrinos
	Testing the massive neutrino approach in MG

	Testing pinocchio with WDM
	Summary and discussion


	Lagrangian Perturbation theory with Modified Gravity
	Theoretical framework
	Source term
	Approximations for D2
	Displacement test
	dustgrain–pathfinder simulations
	Comparison results

	Extension to MG: first approach
	Summary and discussion

	Ellipsoidal collapse with Modified Gravity
	Comparison of EC in CDM
	Gravitational collapse in MG
	Extension of the BM approach
	Extension of the NGS approach

	Implementation status

	Conclusions
	List of Figures
	References

