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Abstract

Concentrated Winding Electrical Machine Modelling,

Design and Optimization

Over the last few years, fractional slot concentrated winding (FSCW)
electrical machines have received increasing attention mainly due to their
characteristics of low manufacturing cost and short end-coil dimensions.
Conversely, if compared with traditional distributed winding, FSCWs are
known to produce large space harmonics in the air-gap, which may lead
to several issues such as eddy current losses and unbalanced magnetic
pull (UMP).

In this thesis, the possibility is investigated of optimizing FSCWs
to minimize magnet losses and UMP issues. FSCW with unconventional
slot-pole combinations are introduced and analysed, based on a quadratic
programming procedure.

The developed theory is applied to the design and analysis of a test

machine prototype.

Modellizzazione, progettazione e ottimizzazione di mac-

chine elettriche ad avvolgimenti concentrati

Negli ultimi anni, le macchine elettriche ad avvolgimenti concentrati
hanno ricevuto sempre piu attenzioni principalmente per le loro carat-
teristiche di un basso costo di produzione e di un ridotto ingombro delle
testate. Per contro, rispetto alle piu diffuse macchine ad avvolgimenti
distribuiti, sono note per avere un forte contenuto armonico spaziale che
puod dare origine a vari inconvenienti tra cui [’aumento delle perdite net
magneti e forze radiali indesiderate tra rotore e statore (UMP).

Nella presente tesi viene analizzata la possibilita di ottimizzare gli
avvolgimenti concentrati a cave frazionarie (FSCW) per minimizzare le
perdite nei magneti e 'UMP. Gli FSCW non convenzionali Vengono in-
trodotti, analizzati ed ottimizzati tramite ottimizzazione quadratica. La
teoria sviluppata viene applicata alla progettazione ed analisi di un pro-

totipo di prova.
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Introduction

Over the last few years, Fractional Slot Concentrated Winding (FSCW)
electrical machines have gained increasing popularity [1] mainly because
of their simple manufacturing and modularity [2], their short end coils|3]
and fault tolerance features [4]. Conversely, if compared with traditional
distributed windings, FSCWs are known to produce a high spatial har-
monic content in the air-gap field, which may lead to several issues such
as higher losses 5] [6], undesired unbalanced magnetic pull (UMP), vi-
brations [7] [8] [9] and torque ripple [10] [11].

Among the FSCW variants, the dual layer one (with a single coil
for each tooth) with an arrangement of the winding determined by the
star of slots algorithm is the most common choice [12]. The star of slots
method (when applicable) guarantees the symmetry of the winding and
the maximum fundamental amplitude. It is so widely adopted, that its
applicability constraints, involving the slot-pole configuration, are com-
monly regarded as a feasibility constraint for any FSCW topology [13].
In this work it will be shown that the configurations for which the star
of slots is applicable is only a subset of the possible configurations fea-
turing symmetry and high winding factor. The slot-pole configurations
for which the star of slots can be applied will be referred to as “conven-

tional”, while the others will be defined as “unconventional”.

In this thesis the cited topics are addressed as follows.

In Chapter 1, an analytical method for the harmonic content evalu-
ation of a FSCW is presented, starting with the definition of a mathe-
matical framework for a generic multi-phase FSCW topology, to get to
the prediction of its space harmonic spectrum. The harmonic spectrum
is eventually examined to derive the winding factor and to analyse the
mutual dependence among the harmonics.

In Chapter 2, the formalism developed in chapter 1 is used to formu-

late the winding topology design as a classical optimization problem with



List of Tables 2

constraints and objectives. It will be seen that the necessary constraints
do not require the slot-pole configuration to be conventional. Eventu-
ally, three objectives, depending on the harmonic content, are taken into
account: the maximization of the fundamental, the minimization of the
magnet losses and the minimization of the UMP.

In Chapter 3, the design procedure of a prototype machine which
implements an unconventional FSCW is presented. Finally, the results of
the tests on the prototype are presented to confirm the FSCW feasibility

and its expected performance.
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Chapter 1

FSCW and Extended-FSCW

formalization

In this chapter the conventional and the unconventional design of a
multi-layer FSCW topology is presented and mathematically formalised.
The formalisation, applicable for multiphase windings, will be used to
derive the harmonic content of the winding. FEventually, the harmonic
content will be analytically examined to derive the mutual dependence
among harmonics and to calculate the winding factor. Finally the har-
monic contribution of a surface mounted permanent magnet (SPM) rotor

is equally developed.

1.1 Topolgy description

In any kind of electrical rotating machine some fundamental parameters
are defined by design, such as the number of phases (L), the number of
pole pairs (p) and the number of slots (Z). The ratio

q=5— (1.1)

expresses the slots per pole per phase. The most common machines
are designed with distributed winding and with an integer ¢, which im-
plies a number of slots equal to Z = 2p- Lq and each coil embraces several
teeth.

In FSCW machines all coils are wound around a single tooth (con-
centrated winding). In particular, the number of layers describes the
number of coil sides that can be found in a slot. It has been shown [1]

that, in order to achieve a good winding factor, the ratio between the



Chapter 1. FSCW and Extended-FSCW formalization 6

number of poles and the number of teeth must be near unity. To obtain

this, ¢ must be fractional:

A 1
2] = g~ 1.2
2% ¢~ 7 (1.2)

The coil arrangement around the stator can be defined by a simple
algorithm [2], referred to as the star of slots. The star of slots can be
used to design single or double layer windings, but a constraint must be

met for the winding feasibility:

Z

L-ged(Z,p) en (13)

where ged(Z, p) represents the greatest common divisor between the
arguments. The machines that meet this constraint will be referred to as
conventional while the others will be reoffered to as unconventional.

In double layer FSCWs, a single coil of N; turns is wound around each
tooth. The notation “Extended” FSCW is referred to windings in which
on each tooth the Ny turns can consist of more than one coil belonging
to different phases. Of course, to design a winding with an arbitrary
number of turns of different phases around each tooth requires to define
a suitable mathematical model to represent the winding and optimize it,

as explained in the next sections.

1.2 Stator contribution to air gap harmonic

content

While developing formulas for the stator and rotor magnetomotive force
production, a matrix notation will be defined, which allows for more
compact symbolic expressions and makes the implementation through
symbolic and numerical software both easier and more efficient and will

allow to make some statements derived from linear algebra.

1.2.1 Basic definitions

It is worth noting that, for a three phase current, the phasors are dis-
placed by 27/3 electrical radians and this approach can be generalized

to any odd L number of phases adopting a 27/ L electrical displacement.
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Clearly, if the opposite of phase X has to be applied to a coil, indeed
the coil can be connected to phase X exchanging the connections, which
makes an hypothetical -X phase redundant. When L is an even number,
adopting a 27/ L electrical displacement would lead to a configuration in
which half the phases are redundant.

To overcome this problem a different approach is necessary. Using a
redundant number of phasors, numbered from zero to 2L —1, with the 2L
phasors equally spaced, the first L phasors (I =0,...,L — 1) correspond
to the actual phases, the other L phasors (I = L,...,2L — 1) correspond
to “dummy” phases, as better explained next.

Each phase current is represented by its phasor:

i=1i-eCI) withi>0 Vi=0,...,2L—1 (1.4)

As an example, in Fig. 1.1 a three phase scheme is shown in its clas-
sical representation (Fig. 1.1a) and through the dummy phase represen-
tation (Fig. 1.1b).

(a) A,B,C.

FIGURE 1.1: Phasor representation of three phase sys-
tem: (a) classical and (b) dummy

The column vector i € CP2*! can be defined imposing [i], = 4. The

currents in the time domain are given by

i(t) =Re{i-e™'} =Re{ [lLejm} (1.5)

At this point the winding topology must be defined. The teeth are
identified by k = 0,...,Z — 1 and their axis is positioned at §(k) = 2w £,
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Table 1.1: (b) Highlighted in blue, example of winding
matrix W using dummy phases. (a) beside (highlighted
in yellow) its correspondent representation using classic
phases. The column index [ is relative to the dummy
phase, the row index k is relative to the tooth

(a) classic (b) dummy
phases phases
l 0 1 2 3 4 5
k A B © k At C- BY A~ C* B~
0 100 0 0 0 100 0 0 0 0 0
1 -100 0 0 1 0 0 0 100 O 0
2 0 0 -100 2 0 100 O 0 0 0
3 0 0 100 3 0 0 0 0 100 O
4 0 0 -100 +— 4 0 100 O 0 0 0
5 0 -100 O 5 0 0 0 0 0 100
6 0 100 0 6 0 0 100 O 0 0
7 0 -100 O 7 0 0 0 0 0 100
8 -100 0 0 8 0 0 0 100 O 0

where 0 is defined as the stator angular coordinate.
On tooth k, the positive number of turns of phase [ is identified by
Wi The [Z x 2L] matrix W, here called “winding matrix”, is defined

so that the element in the kth row and lth column is Wy, ;.

(Wit = Wiy (1.6)

As an example, a conventional winding for a three phase, 9 slots, 8
poles machine holding a hundred turns per tooth would be represented
by the matrix in Tab. 1.1. In the following this machine will be referred
to as the “conventional 9 — 8"

Using the notation defined by (1.5) and (1.6), the Magneto Motive
Force (MMF) applied by each tooth, given by the sum of the contributions
of the 2L phases, can be conveniently expressed in matrix form by the

k™ element of the column vector resulting from the product W - i el

2L-1

MMF,(t) = Re { Z {Wi, - mlejwt}} — Re{[W.ﬂkejwt} (1.7)
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1.2.2 Modelling space harmonics

This section is aimed at demonstrating that the harmonic content is
determined by linear transformations involving the winding matrix (W).

Defining matrix W and the vector i, means to define the winding and
the set of applied currents and therefore to define the magneto motive
force (MMF). The shape of the MMF [3|that the stator generates in the

gap at any position at any time is therefore completely defined.

M(t
0( ) 0
Mg (t)

Ts

FIGURE 1.2: MMF along the gap angular coordinate 6 at
time ¢ due to the sole tooth 0 contribution

The MMF due to the tooth k£ = 0, is represented in Fig. 1.2 and its
value can be obtained as the real part of the complex function My(6,t)

defined as follows:
_ 7 —1

Wro(t) = S~ (Wilt)o i 16] < 3

My(0,t) = (1.8)
1

M"y(t) = —Z(Wi(t))0 if 2 <g <
As the function is periodic over 6, it can be expanded in Fourier Series

highlighting its spatial harmonic content (1.9),

Mo(0,t) = [a, cos(nd)] - [W - i(t)]o (1.9)

n=0

where the obtained Fourier coefficients are
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2 nm-(Z —1)
n=—(=1)"sin | ———~ 1.10
a mr( )" sin ( 7 ) (1.10)

Observing (1.9) we can easily extend the definition to any tooth
changing the index from 0 to k and shifting the angular position of k

slot pitches: from 6 to 6 — 2%%.

The ¢ subscript stands for column (the reason will be made clear after
(1.14)).

At this point it is useful to separate the harmonic contributions of the
teeth by defining M,, x(0,t), which is an indexed scalar function whose

value depends both on the arguments and on the indexes
v 2k : -
M, ,(0,t) = {an oS {n(& - %)} } el W -y (1.12)

The total air gap MMF is obtained as Re{M;(0,t)} (where the sub-
script S stands for stator), which can be calculated summing all the teeth
contributions (1.13)

Ms(0,t) = J\;Ik(ﬁ,t)
N (1.13)
=) M(0,1)

From (1.13), the contribution to a specific space harmonic can be
easily obtained considering only the corresponding term of the series

instead of the whole series.

N

J\IZn(e, t) = 3 M, 1(0,t) (1.14)

0

B
Il

The “r” and “c” subscripts, standing for row and column, depend on the
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fact that if M, is considered as the generic element of a matrix, M,
would be the sum along the n™ row (summing over k), while M} would

be the sum along the k™ column (summing over n).
In Fig. 1.3 the resulting total MMF is represented in green along with
its fundamental Re{M,(6,t)} in red.

FiGure 1.3: The MMF along the air gap angular co-

ordinate 6 for the conventional 9-8 configuration with

wt = 0.2. In green the actual wave-shape, in red its fun-
damental (n = p).

In order to separate equi-rotating and counter-rotating harmonics we
can decompose the cosine contained in (1.12) into two complex compo-

nents and combine them with the time dependent exponential:

cos (n(9 - %—WD et = % -e_j <n(9_%;)> + ej<n(0_2?>> . elwt

_ _ej(wt—ne)ej(n%”) _}_ej(wt+n9)e—j(n2§’r):|

(1.15)

A more compact notation can be given defining the indexed scalar
function (1.16)

_ 1 : x
8, = auy [ (nQé)] (1.16)
It is worth noting that with the present notation the symbol © is

related to the anti-clockwise rotating harmonics (positive mechanical
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speed), while the symbol @ is related to clock-wise rotating harmon-
ics (negative mechanical speed) and, because a,, is a real number, it is
easy to see that Sy, is complex conjugate of Sy,

Equation (1.12), substituting (1.15) and (1.16), becomes

Mmk(e’t) _ a_n |:ej(wt nd) J(n ’2”) i ej(wt+n9)e—j(n2k7”) . [W ﬂk
2 (1.17)
= ej(wtan)Ssk W)+ ej(wt+n0)5765k [W i),
Each spatial harmonic component is given by (1.18)
Z-1
n® =35 (W1 (1.18)
k=0

The complex scalar mi@ is a phasor, meaning that its module and
phase represent amplitude and phase of the n'" counter-rotating () or

2

equi-rotating (©) spatial harmonic, where “counter-" or “equi-” rotating
is referred to the positive speed direction.

Equation (1.13), substituting (1.17) and then (1.18), becomes

N

-1

Z n,k
0 n=0 (1.19)
[ej(wt—ne) mg + ej(wt-i—nG) mia]

>
Il

I
NE

3
Il
=)

Again, all the terms can be collected in vectors by defining the matrix

S«@

and the column harmonic vector m®

to obtain all the equi-rotating or the counter-rotating spatial harmonic

components in a single operation.
m® = §%W .1 (1.22)

Algebraically, the selection of a specific harmonic n from a harmonic

vector can be done defining s, as a selection row-vector having 1 in
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600 | B O cqui-rotating
¢ counter-rotating
— 400
De
=
200 |

012345678 9101112131415161718
n

FIGURE 1.4: Amplitude of the harmonics produced by

the star-of-slots winding in a conventional 9 — 8 config-

uration, in red the harmonics rotating anticlockwise like

the fundamental, in blue the harmonics rotating clock-
wise.

position n and zero elsewhere, so that
m® =s,mS (1.23)

Finally, for the sake of completeness, to obtain the M (6,t) function
using the matrix form it is possible to define the space-time row vector

function as follows:

[é@(e, t)} — oJwtEnd) (1.24)

and the following equation holds:
M(0,t) = e®(0,t) - m® + &°(0,t) - m° (1.25)

1.2.2.1 About the interpretation of the MMF components

Developing (1.25), the components in (1.26)can be found. In this section
the meaning of the components will be summarized and in some cases
an interpretation will be offered for its role.

m® mo

_ — —
My(0,t) = &®(0,t) - S"W -1+&°(0,t) - S"W i (1.26)

[i] — The column vector i contains in each component a phasor defin-
ing the current of the corresponding phase, the dummy-phase notation

being used (p. 7).
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[W] — The winding matrix W defines the number of turns for each
phase and for each tooth . The row index corresponds to the tooth index
while the column index corresponds to the dummy-phase index. With
this notation the product W -1i gives a column vector in which the Z
elements are the phasors corresponding to the total MMF imposed on
each tooth.

[S’®] — The contribution to each MMF harmonic of each tooth de-
pends both on the tooth position along the air gap and on the harmonic
order. In matrix S ® the row index n represents the harmonic order and
the column index k corresponds to the tooth index. The generic element
of the matrix (57%) multiplied by the correspondent total tooth MMF
([W -i]z) gives a phasor, which represents the contribution (in amplitude
and phase) of tooth k to harmonic n. The product of the whole n™ row
of §% (i.e sn5'®), by the whole column vector W - i, gives a phasor
(m®P) which is the total contribution of all teeth to the n™ harmonic.
Finally, the product of the whole S S matrix by the W -1 vector gives a
column vector (ﬁz®) whose phasor elements represent the corresponding
harmonic contributions of the winding.

[é®(9, t)] — Finally, in order to calculate the MMF value in any point
of the air gap and at any time, the harmonic phasors must be transformed
into a sinusoid depending on space and time. The real part of each
harmonic phasor corresponds to the starting point (i.e t = 0 and 6§ = 0) of
the corresponding sinusoidal wave. The value of the sinusoid, depending
on the position and time (@, t), can be calculated multiplying the phasor
by [é®(9, t)]n. The complete shape of the air gap MMF is the sum of all
the harmonic contributions, which can be calculated as the real part of
the sum of the products of the row vectors é®(9,t) and the respective

harmonic vectors &, which is (1.25).

1.2.3 Mutual dependence of space harmonics

At a first look, we can see that the harmonics produced by the stator are
infinite. But clearly, a feasible machine design implies that the number of
teeth, of turns per tooth and of phases is finite, so the number of possible
configurations is finite and so the number of independent harmonics must
be finite.
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This section will be dedicated the demonstration of the following facts

and their implications.

e The number of teeth (Z) determines the number of independent

harmonics.

e The entire spectrum (on both rotation directions) can be derived

from the first Z harmonics of any of the two directions.

The number of columns of § S is Z, so the rank of the matrix can be
no grater than Z, independently of the number n of harmonics (rows) that
are considered. This implies that the maximum number of independent
harmonics cannot be grater than Z. On the other hand, the first Z —
1 rows are linearly independent (which can be easily seen through a
gaussian elimination), and this implies that the rank of 5’® is Z —1.

The two vectors m® and m® contain the entire MMF harmonic con-
tent information. To show how to derive the harmonics above the Z"

order, a generic element is now taken into account and expanded:

5%,
Z-1 -~
2 nr (Z =1\ 1 2 .
,®: e 1n+1 _:FJ(nZ)
my mr( ) Sln( 7 ) 5e (W - i
k=0
(1.27)
1 2 2k7r —
B G U [ F(n 2 w3
szt (D) S

Observing (1.27), the ratio between two harmonics rotating the same

D

way m, , and m® can be found.

:1

s auiz DI, FIOHD%F ) (W T, (1.28)

FERSS S A

m

The second factor of the product is equal to 1, so it gives no con-

&)

tribution to the ratio between m,7 , and m®. It can be seen that the
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numerator of the second term is equal to the denominator considering

the following

T+ 2)27) _ (Fi(n57) | Fi(2%7)
Fi(n25") | oFi(2km) (1.29)

2
Fi(nZE)

I
o

e

So the ratio is determined by the first factor:

2 n+2 o (ntZ)m(Z-1)
an+z (n+Z)7r(_1)( e sm( Z )

Gy, %(_1)7&1 . (%)
" 1)Zsin ("”5*” Y r(Z - 1)])
n+27 sin <w> (1.30)
(—=1)%* sin (mr-(Z 1))
n
=y
n+2 sin <w>
-
n+Z

By induction, the result can be extended stating that

_ n(—-1)"  _
m?ihz n+ hZz mi@

In Fig. 1.5 the amplitudes of all the harmonics are shown, in red the

where h = 1,2, ... (1.31)

ones rotating like the fundamental (i.e. m = p = 4), in blue the ones

rotating the other way and in green the function reported in (1.32)

’B

flp,n) == |m;| (1.32)

3|

It can be observed that the function f(p,n) intercepts the fundamen-
tal harmonic n = p = 4 and all the harmonics n = p+hZ = 13,22,31, ...
A similar rule holds for opposite rotating harmonics respectively of

order n”/ and nifn’' +n=27

g aw S e FIW ), (1.33)
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600 |- B © equi-rotating
B © counter-rotating
— f(p,n
a0l fp,n)
De
=
200 -
0 I I i | m ml | -] - \

0 2 4 6 g§ 10 12 14 16 18 20
n

FIGURE 1.5: Amplitudes of the harmonics for a 9 teeth,
8 pole conventional configuration, in red the harmon-
ics rotating anticlockwise as the fundamental, in blue
the harmonics rotating clockwise, in green the function

f(p,n)

considering that

(1.34)
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mi}/ _ O  Qz-n
ms a,  ap
—n . Z—n)m-(Z—1
(Z_Qn)w(_l)(z S+ S <( )Z( )>

i ()
+ [

n (_1)Zsin {

(Z-1)]}
Z—=n sm( (2= )
w(z-

Z (1.35)
__" (_1)2( ne [_Sm< ))}
Z—n sin (%)
. (1)@ (1) sin (=
- Z—n(_l) sin <n7r(§1()) )
- A 71 n n#z

For this reason, as can be seen in Fig. 1.5, the same function inter-
cepting the equi-rotating harmonics p, p+ 2, p+27, ... intercepts also the
counter-rotating harmonic Z — p = 5 and all the counter-rotating har-
monics obtained summing hZ, which are 27 —p =14, 372 —p =23, ...

It should be noted the the dependence of the MMF harmonics is due
only to the number of teeth in the stator, the winding topology is not
involved. This means that once the number of teeth is chosen, all har-
monics are divided in Z “families”, in each family the module and the
phase are linked to the ones of the other members. Every harmonic

family Hj can be identified by the following rule

Hk:{{ne:n@:k—FhZ}U{n@:n@:hZ—k}’hEN}

k=0,...,Z—1 (1.36)

where the elements included in the {n® = k + hZ} set are the harmonic
order of positive rotating (anticlockwise or ©) harmonics, while the el-
ements included in the {n® = hZ — k} set are the harmonic order of
negative rotating (clockwise or @) harmonics. In this way every family

is named after the first equi-rotating harmonic contained in its set. It
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should be noted that all harmonic amplitudes relative to the family H,

D

(my7) are equal to 0.

p Em S equi-rotating
300 | _r p E © counter-rotating
- HP : f(pa n)
@g 200 — H7 : f(?, TL)
— PtZoy D
100 | L v
T+ Z
0 %-‘\ J
0 2 4 6 § 10 12 14 16 18 20

FIGURE 1.6: Amplitudes of the harmonics for a 9 — 8 con-

ventional configuration. The function f(p,n) (in green)

highlights the members of the family H,. The function

f(7,n) (in purple) highlights the members of the family
Hr

In Fig. 1.6 the linkage among the amplitudes of the members of two
families is highlighted. The family H, includes the indexes p®, (Z —p)®,
(p+ 2)°, (2Z — p)®, ... Similarly, the family H; includes the members
T (Z =T (T+2)°, (2Z-T)%,...

It can be easily seen that the relation between harmonics holds for

(or comes from) the rows of the S S matrices:

o n(=1)" 4 .
S%Jrhz),k:hZJrn-S% with h =1,2,... (.37
o o= .5 with n < Z

(Z-n)k — 7, Pnk
This fact is particularly interesting because it makes clear that the de-
pendence between harmonics depends only on the number of teeth in the
stator. The number of poles, of phases and the winding topology are not
involved.

In their first formulation, S° and S° have n rows, where n is not
limited. Because of the harmonic dependence, it is sufficient to define
only the first Z rows of one of the two (making them square Z x Z
matrices). For example S° can be chosen, being needed for the funda-
mental, to have a full view of the winding harmonic content. The first

Z opposite rotating harmonics can be obtained by (1.37), the harmonics
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over the Z™ order of both rotation ways can be obtained applying the
appropriate coefficient defined in (1.31).

Furthermore, while observing (1.16) it can be seen that §° is simply
the complex conjugate of S°, observing (1.22), m® does not inherit this
property (it is not the complex conjugate of M) because of the phase

contribution given by W - i.

1.2.4 Winding factor computation

In general, the winding factor k,, ranging between 0 and 1, indicates
the effectiveness of a winding to produce or link the fundamental space
harmonic. Because the winding factor is also commonly calculated for
other space harmonics, depending both on the harmonic order and the
rotation direction, the notation will be k5 or k' respectively for the
n™ order anticlockwise or clockwise rotation.

In this section the developed notation will be firstly used to calcu-
late the winding factor directly from the harmonic amplitudes and some
winding data, secondly the chord factor is calculated and finally the dis-
tribution factor is derived.

For any winding, the n™ harmonic winding factor (/{W;L@) can be de-
fined as the ratio between the space harmonic peak value produced by
the actual winding (|m&|) and the space harmonic peak value (T%n) pro-
duced by a hypothetical winding, consisting of a single concentrated coil
with a span equal to the n™ harmonic pole pitch and a number of turns
equal to the sum of all the series connected turns of all phases as the

actual winding [4].

7@
h® = |”Z” | (1.38)
mpy

The peak value of the harmonic of the actual winding ]m?\ can be
calculated by (1.23).
m@| =5,5%W .1
and the peak value of the hypothetical winding, is calculated as follows

[5]:

Niowi
My = ot (1.39)

nm
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where N is the total number of turns of the machine (the sum of all
the W elements) and i; is the phase current peak value.

The winding factor can be calculated as the product of the chord
factor k. (also called pitch factor) and the distribution factor kg4, as in
(1.40). The first takes into account the effect of the difference between the
pole pitch and the coil pitch, the second takes into account the positioning

of the coils along the air gap.

/@Wn® = /{C;l@lidi@ (1.40)
The chord factor is purely geometric. As all coils have the same pitch,

it can be easily calculated with the traditional formula [6]

kD = sin (@Z) = Ken (1.41)

T 2

where 7. represents the coil pitch. As can be seen in (1.41), the har-
monic direction has no effect on the chord factor so the @ notation is
unnecessary. Considering that the in FSCW windings the coil pitch 7.y
coincides with the slot pitch and that the pole pitch (7,) of the n'™ har-

monic is half period of the space harmonic,

2m 2T
Teoil = Ts = 7 Tn = % (142)
the chord factor is obtained substituting (1.42) in (1.41)
Ken = Sin (%7‘(‘) (1.43)

The distribution factor can be calculated simply as the ratio of the

winding factor and the chord factor.

D
kq® = Do (1.44)

cn
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1.3 SPM rotor contribution to air gap har-

monic content

The rotor MMF has a fixed shape due to the geometry of the SPMs and
of the air gap, but its position will depend on time, mechanical speed
and on its initial position.

The following references are fixed:

e the mechanical speed is considered proportional to the frequency
so that the machine is working synchronously (positive rotating

anti-clockwise);
e the poles are numbered from 1 to 2p anti-clockwise;

e odd numbered poles are “North”, meaning the flux density (B) is
oriented from the rotor to the stator; consequently even numbered

poles are “South”, with opposite B direction;

e the angular position of the first pole axis is taken as a reference for

the rotor angular position.

Based on the cited references, the rotor angular position will be re-
ferred to as 0y, the MMF will be initially calculated as My (0y), (relative
to rotor angular reference) and eventually as a function of time (¢) and
stator referenced angle (0)

For the rotor, the MMF contribution will be calculated considering
radially magnetized magnets with constant height (hmae), the magnet
angular span is Tag, the pole pitch is referred to as 7, and kg is the
magnet span to pole pitch ratio. The waveform of the MMF can then be
represented by a 3-level square wave (Fig. 1.7):

In order to define the My function, a normalized 3-level rectangu-
lar periodic function (recty) will now be defined in the |—m, 7] interval

coinciding with its period (1.45), and represented in Fig. 1.8.
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My (0r)
A
O
" m
L R
i Tp |
Period |-, 73]
FIGURE 1.7: MMF due to the surface magnets, where 6
is rotor referenced angular position. 7, pole pitch, kpyag
magnet width to pole pitch ratio and hy,,g magnet height.
( k s
L if |of < =527
rectN(oz)hfﬂm] =<0 if k“’%ﬂ <la] <7m— k“’%ﬂ (1.45)

: k
—1 ifr—"= <ol <mora=m
\

As recty is a periodic even function, it can be fully represented by its
cosine Fourier series development. In (1.46) the n"" coefficient is calcu-
lated.

2 . [ kmagnm "
rn = —sin (%) (1= (=1)") (1.46)
It can be seen that all coefficients of even order are zero.

As can be seen from Fig. 1.8, (1.45) represents a 2 pole machine
but, generally, a function representing 2p poles on the | — 7, 7| geometric
domain will be needed. Such function can be easily obtained by its
Fourier series (1.47), that is represented in Fig. 1.9, where the magnet

width Tp,a is defined as Tyag = KkmagTp and the rotor referenced angular
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recty ()
“1
«
—7 | o o T
S O S
| Fmag™
I

FIGURE 1.8: Normalized recty(a) on its 27 period

coordinate is defined as 0.

rect(0r) = Z T cos(pnby) (1.47)
n=1
rect(6y)
Al
O

— "j

FIGURE 1.9: rect(fg) representation with arbitrary num-
ber of p pole pairs, where 7, is the pole pitch and 7, is
the angular magnet width

The function rect(fy ), multiplyed by the maximum value of the MMF,
defines My (6y) in (1.48) by .
Mg (0r) = Mg max - rect(0r) (1.48)

Finally, the MMF waveform has been expressed in the rotor-referenced

coordinate 0y, (1.49) must be used to pass to the absolute 6 reference

wt

Or =60 —0 — — 1.49
R 0 D ( )
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The complete expression is given in (1.50) depending explicitly on
time (¢) and on pole pairs (p), on the initial rotor position (fy) and on

the electrical pulsation (w).

t
MR(67 t) - MR,I'H&X . I'eCt (8 - 90 — w_>
p

> wt
= My max - Y "n c0s(pn(6 — 6o — > (1.50)

n=1

= Re

My Y mejn(p(e—eo)—wt)]
n=1

Defining the stator contribution as in (1.51),the full MMF contribution
content in the air gap is given by (1.52)

M(0,t) = Re [Mq(6,1)] (1.51)

{MR iy Z rnejn(p(O—Go)—wt) + Z ej(wt-l—n@)m@ + ej(wt—n@)mGB}
n=1 n=0

S My - €M00-00=t)y, it n0)zo ej(wt—nmmia}

n=1

= Re

(1.52)
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Chapter 2

FSCW air gap harmonic

content optimization

In general, an optimization problem implies the definition of an objective
function that combines all variables to obtain a single real number, so
that the optimum can be defined as the maximum or minimum of the
objective function. In most cases, some kind of constraints are applied
to variables.

In our case, some quantities of interest depend on the harmonic con-
tent of the flux density in the air gap, like the torque, eddy current losses
or the UMP.

As an example, the average torque depends on the fundamental space
harmonic amplitude, eddy current losses depend on a quadratic function
of all harmonics, UMP depends on the products of neighbour harmonics.

Normally optimizing algorithms act on a set of variables which are
organized in a vector. By this approach constraints and objectives can
be easily defined both for linear and quadratic cases through well known
algebraic operations. It is important to notice that efficiency and efficacy
of optimization algorithms depend on the number of variables and the
problem type complexity, which depends on the objective function and
on the constraints definition. For instance a problem defined by a lin-
ear objective and over linear constraints can be solved very quickly and
exactly by specific algorithms. As non-linearities are introduced, com-
plexity grows and finally algorithms have to be used that cannot take
advantage of any property of the objective function and which can only
find an approximate local solution.

The compact formalization defined in chapter 1 is very efficient to
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obtain the harmonic vectors ™, but optimization algorithms are nor-
mally defined to act on vector variables, therefore the winding matrix W
elements must be reorganised into a vector in order to be treatable by
known specifically designed algorithms. A reasonable way to reorganise
the winding matrix is to define a winding vector w, through the following

vectorizing operation
Wkt = Wl Yk (2.1)

When the winding vector is defined as in (2.1), the following identity
can be verified
WA=[I;®A"|w (2.2)

where A represents any matrix (having 2L rows), [; represents the iden-
tity matrix of order Z and ® represents the Kronecker product, as an

example the product in(2.2) is developed in (2.3).

AT 0 ... 0
0 AT .

;AT = | . (2.3)
0 ... 0 AT

where 0 indicates a zero valued matrix of the same size of AT.

The effect of a winding on the generic n'" harmonic (mF) can be

obtained taking the n'™ element of its harmonics vector (m*) using the

selection vector as defined in (1.23).

m® =s,m®
—s, 59Wi (2.4)
~5,5% [, 01" w

so, by defining the complex line vector \72@ € Clx2Lz

v9 =5, 8% [1, ®17] (2.5)

n

the following can be written

m® = vOw (2.6)
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Equations (2.2) — (2.6) will be used to rewrite some equations defined

for the winding matrix in the winding vector form.

2.1 Constraints

In this section it will be shown how the constraints used for all opti-
mization problems are defined. It will also be shown that constraints
are linear, divided between (a) equality constraints and (b) inequality

constraints, expressed in the following forms.
a)Ax =Db b)Ax <b (2.7)

In the first constraint, all the elements of W must be positive to

comply with the convention described in Section 1.2.1
Wi, >0 VE,I (2.8)

Defining 0,, as a column vector of n elements equal to zero and Iz
the identity matrix of rank 2L 7,

A0W S 02LZ (29)

where Ag = —ls17.

In the second constraint, the number of turns that can be wound on a
tooth is limited, so, if /V; is the maximum number of turns per tooth and
1,, as a column vector of n elements equal to one, the following constraint
is defined:

2L—1
> Wi <N, Vk (2.10)
1=0

or, in matrix form
Wiy, < N, -1y (2.11)

Equation (2.11) represents a linear constraint, that using (2.2) can be

rewritten in the matrix form (as defined in (2.7)) for the winding vector:

Arw < N;-1; with Ap=1I;® 15, (2.12)
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In the third constraint, the winding is required to be symmetric, which
implies that all phases give the same contribution to the MMF fundamen-
tal harmonic (m).

The contribution of a single phase to the fundamental MMF harmonic
could be easily obtained by (1.22), using a winding matrix of a single
phase derived from W. This can be done defining K; as a 2L x 2L
symmetric matrix having 1 in positions ([,!) and (I + L, + L) and
zero elsewhere with the matrix indexes starting from 0. In this case
l=0,...,L—1 because the same matrix takes into account the contri-
bution both of phase [ and its opposite, i.e. the dummy phase [ + L. In
(2.13) K is exemplified.

Ko= | 5 (2.13)

0 0 0

The phase winding matrix and the corresponding phase winding vec-

tor are obtained as follows.
Wl = WK[ W, = (HZ X KZ)W (214)

the resulting W,|w; is a winding matrix|vector with the same dimensions
of W|w having unmodified elements in the positions relative to phases
[ and [ + L and zeros elsewhere. Clearly, the complete winding ma-

trix|vector can be obtained as a sum of all phase winding matrices|vectors
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as can be seen in (2.15)

L-1 L-1 L—1
W =) [WK]=W) K =W, =W
=0 =0 =0
L-1 L-1 L—1
W, = (I @ K)) w = <I[Z ® Z KZ) w=([;0L)w=Ihz)W=w
=0 =0 =0

(2.15)

The contribution of each phase [ to the fundamental harmonic is

calculated applying (2.6) to the phase winding vector.

my, = V5w, (2.16)

Imposing that all phases must produce the same fundamental har-

monic means to impose the following L — 1 equations

-6 _ =06
my, = My,

=0 o, _ O

vV, Wi =V, Wi (2.17)

\_’I? (HZ & Kl) W = \_/S (]IZ X Kl+1> W

VoI, @ (K —Kiq)]w=0 1=0,...,L—2 (2.18)

Equation (2.18) guarantees the symmetry of the phase windings. Follow-

ing the defined constraint notation, (2.18) can be expressed as follows

v Iz ® (Ko — Ky)]
\_/9 [HZ ® (Kl — KQ)] W Asw -0 (219)
VoI ® (K;z —Ki-1)]

It should be noted that Ag is a complex valued matrix so, for some
solvers, it may be necessary to derive two constraints from the real and

the imaginary parts.
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So, finally, any optimization must be subject to the constraints de-
fined by
Aogw <031z
Cw)=<S Apw <N, -1, (2.20)
Agw =0

2.2 Objective function

As mentioned at the beginning of the chapter, there are several quanti-
ties of interest depending on the harmonic content of the air gap that
may be optimized in a machine. These include the maximization of the
average torque, the minimization of torque ripple, losses and UMP. It
is immediately apparent that all minimizations are trivially solved by a
machine with no winding at all, which would not produce a fundamental
harmonic (/) and therefore could not be able to make a conversion
between electric and mechanic power. So the fundamental harmonic am-
plitude must always be included as a lower bound (LB) constraint or as

an objective function.

2.3 Fundamental harmonic maximization

As seen in section 2.1, the harmonics are a linear function of the winding
vector, in particular the fundamental harmonic can be calculated with

(2.6) defined specifically for the fundamental component.
m, =, w (2.21)

However, the cited function is a complex function of the winding
vector and its result is a phasor (mJ € C). As C is not ordered, the
maximum and minimum cannot be defined. What must be maximized
or minimized actually is not the fundamental harmonic but its module,
and unfortunately the module operator is not linear, so the linear opti-
mization algorithms (which are extremely efficient) are not suitable to
find the optimum. Nonetheless, the square module of the fundamental

harmonic (or any other) can be expressed as a quadratic form.
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= \_/S@>*W \_/S@W
mT (2.22)
= |w’ (\7n® } {,S@W

where * apex represents the complex conjugate and H apex represents
the complex conjugate transpose (i.e. the hermitian conjugate). Matrix
H,, is symmetric and complex valued but, considering that the square
of the absolute value obtained in (2.22) is a real number and that w is

composed of real numbers, the following can be stated:
mP|* = Re {WTI_{?L@ w} =w' Re {ﬁn@} w=w'QPw (223

where QS@ = Re {I_Lé@} is a symmetric real valued matrix of dimension
(2LZ x 2L7).

So, finally, considering that the harmonic amplitudes are real non-
negative numbers by definition and that the square function is monotone
over a non-negative domain, an optimization on the amplitude has the
same solution as an optimization over its square value. So if the objective
function is defined as

ms )P =w' QS w (2.24)

and the constraints as in (2.20), the solution is valid for the amplitude
of the fundamental harmonic too.

It is important to notice that if the fundamental optimization is ap-
plied to a conventional configuration, for which the method of stars of
slots is applicable (i.e. when Z and p comply with (1.3)), the same wind-
ing is obtained from the optimization and the star-of-slots methods. In
other words, it an be said that the star of slots algorithm is already op-
timal for the fundamental amplitude. It is therefore licit to consider the

star-of-slots windings as a reference for conventional configurations, when
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other optimizations are applied sacrificing part of the fundamental. If
also non-conventional configurations (not complying with (1.3)) are took
into account, a wider set of feasible windings is obtained. By applying
the fundamental optimization to obtain the unconventional winding, the
result can be considered as a reference for further optimizations, as the
star of slots is considered as a reference for the conventional configuration.

As an example, the winding matrix obtained by the fundamental
maximization for a five teeth (Z = 5), four poles (p = 2) and three
phases (L = 3) machine is shown in Tab. 2.1, where some characteristics

of unconventional windings can be noticed.

Table 2.1: Example of winding matrix W (highlighted
in blue), obtained for the 5 — 4 configuration with L = 3

l 0 1 2 3 4 5
k
0 0 8855 11.44 0 0 0
1 0 0 0 33.82  66.17 0
2 100 0 0 0 0 0
3 0 0 66.17 33.82 0 0
4 0 0 0 0 11.44 88.55

First, as the optimization is operated on a continuous domain, the
calculated number of turns is not integer. Furthermore, the three phases
have different distribution, meaning that the pattern of the first phase is
different from the one of the other two, but also they do not feature the
same total number of turns (167.65 for the first phase and 166.17 for the
other two). Nevertheless, the three phases give equal contribution to the
fundamental harmonic because of the symmetry constraint.

Clearly, for the winding feasibility, the values obtained from the op-
timization must be rounded as in Tab. 2.2, but if the number of turns
is sufficiently high the MMF contribution will be affected marginally. In
this case, counter-intuitively, the winding factor of the rounded result
(0.8834) is higher than the one of the optimized result (0.8829), but this
is due to the fact that, strictly speaking, the rounding operation breaks

the symmetry constraint.
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Table 2.2: Rounded winding matrix W' (highlighted in
blue), obtained for the 5 — 4 configuration with L = 3

l 0 1 2 3 4 5
k At C- Bt A Ct* B~
0 0 &8 11 0 0 0
1 0 0 0 34 66 O
2 100 0 0 0 0 0
3 0 0 66 34 0 0
4 0 0 0 0 11 89

It should be noted here that, for the conventional configurations, the
solution of the maximization of the fundamental amplitude is unique,
meaning that the winding matrix is always the same except for rotations
of the phases, so the harmonic content does not change. Conversely, for
unconventional configurations, the same maximum fundamental can be
obtained for different winding matrices, having more than two non zero
values for each line, showing different harmonic content (except for the
fundamental of course) and different permanent magnet (PM) losses (this
topic will be developed in section 2.4).

In particular, it has been observed that the matrices giving lower
losses tend to have more regular layouts, with only two values per line of
the matrix and showing a certain symmetry between the phases. Table
2.2 is an example: the symmetry of phase A (I = 0,3) around tooth 2
is apparent, the other two phases B and C (I = 1,4 and | = 5,2) are

specular. This fact is more evident if the classic phase notation is used.

Table 2.3: Classic phase notation of the winding matrix
(highlighted in yellow), equivalent to Tab. 2.2

A B C
k
0 0 11 -89
1 34 0 66
2 100 0 0
3 -34 66 O
4 0 -8 11

In all cases (as in Tab. 2.2) the winding matrix that appears most

regular and giving the lowest losses has been used for unconventional
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windings.

2.3.1 Winding selection

With this technique, a whole set of conventional and unconventional
windings can be obtained, for almost any Z — 2p pair. By the way not
all pairs have the same performance. For example any machine having
equal number of teeth and poles (Z = 2p) would produce zero torque
when the poles face exactly the teeth. Not only this would produce a
high torque ripple, but also, because of the reluctance of the stator, the
cogging torque would most likely cause the rotor to stop exactly in the
zero torque position, giving no starting torque.

The winding factor is another important parameter normally taken
into account, as the winding factor of the fundamental harmonic is di-
rectly connected to the average torque that the machine can produce.

Recalling (1.40) and (1.43) particularized for the fundamental harmonic:
nwf = /fcp/idf Kep = SIN (%ﬂ')

the value of the chord factor (k.,) is maximum when Z = 2p, but this case
has been excluded. On the other hand, all the cases in which Zm = 7 +hm
with h > 0 have a low distribution factor. So the best choice is to take a
configuration for which Z ~ 2p but Z # 2p. In the Tab. 2.4 the winding
factors are given both for conventional and non-conventional windings,
the non-conventional windings have been optimized to have the highest
possible winding factor.

Table 2.4 shows the winding factors calculated for several Z — 2p,
three phase configurations. Only the values for which }L < q < % are
shown, as this criterion in most cases brings to an acceptable winding
factor (i.e. grater than 0.7). It can be seen, the table has been truncated
at 20 poles, by the way it can be noticed that the winding factors show a
symmetry around a pole number 2p = Z (highlighted by the black line)
so the eliminated values can be deduced by the lower pole number values.

Defining ky(Z,2p) the winding factor obtained for 2p poles and Z
teeth,

kw(Z,Z —71) = kw(Z,Z +) (2.25)
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Table 2.4: Winding factor, obtained for various Z — 2p
combinations and three phases (L = 3), only the values
for which i <g< % are shown, unconventional
configurations are shaded.

p 2p 2 4 6 8 10 12 14 16 18 20
3 ]0.866| 0.866

4 10.549 0.549

5 10.546 0.883 | 0.883

6 0.866

7 0.736

8 0.549

9

10

11

12

13

14

15

16

17

18

21 0.747 0.866 0.890 0.918 0.953

where 7 is any even or odd natural number respectively if Z is odd or

even.

2.4 Permanent magnet losses minimization

FSCW windings are known to be affected by large MMF harmonics which
produce eddy current losses in the rotor permanent magnets. While the
losses in the magnets may be marginally relevant from the efficiency point
of view, the rare earth magnets are known to be particularly vulnerable
to high temperatures and the eddy currents induced in the magnets can
be responsible for overheating. Exploiting the possibility to modify the

harmonic content generated by the stator, it is possible to modify the
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ratio between the fundamental harmonic and other harmonics that gen-
erate losses.

It has been shown [1] that each harmonic produces losses proportional
to its square amplitude and that the harmonic losses are independent of
each other, meaning that the total eddy current losses can be obtained
by the sum of the losses of each harmonic calculated separately. The
weight of harmonic m& will be referred to as y& so that its produced

losses will be
Y® = y@mdP? (2.26)

and the total losses will be

Y=Y (Y2+Y?) n=12... (2.27)

It may be noted that in this expression yp@ must be zero, as ml? is syn-
chronous with the rotor, and therefore it cannot induce eddy currents.
By substituting (2.23) and (2.26) into (2.27), it is possible to consider

the total losses as a quadratic function of the winding vector w.
Y(w) =) (ysImS [+ |me )
= (gw' QW+ yyw' QY w)

n (2.28)
=w' ) (15QT +vEQY ) w

T
=W Qharmw

where Qharm = ., (45 Q5 +yP Q) is the square matrix taking into

account the contributions to the losses by all the harmonics.

At this point we have two objectives for the problem defined by the
maximum fundamental (2.24) and the minimum losses (2.28), which lead
to different solutions. To calculate both the optimizations as a minimiza-

tion, the two objective functions will be

3loss (W) - WTQharmW (229&)
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FIGURE 2.1: Example on a per-unit base of a Pareto

curve obtained from the fundamental maximization

(highlighted by O) and gradually reducing the fundamen-
tal to allow the losses minimization

A common way to combine the two objectives into a single multi-ob-
jective function § is to sum the two functions assigning them two com-

plementary weights as in (2.30),
(W) = (a) Fruna(W) + (1 — a) Fross(Ww)  with  a€[0,1]  (2.30)

which gives a single quadratic function with linear constraints. Theoret-
ically, moving a in its range, a Pareto frontier is drawn on a fundamental
amplitude against losses plane (Fig. 2.1).

Because in some cases the optimization turned out to be too sensi-
tive to the variations of the weight parameter a to obtain a continuous
Pareto curve, an alternative way to obtain the curve can be used. The
starting point is set by the winding obtained by the maximization of the
fundamental amplitude alone, corresponding to (2.29b) or to @ = 1 in
(2.30). The obtained value of the maximum fundamental will be referred
to as Mupax-

The following points are obtained using as objective function only the
loss function (2.29a), whose absolute minimum is trivially found with an
empty winding, giving no losses. To avoid the trivial solution, a lower
bound for the fundamental amplitude is fixed below the maximum value
LB = ampuax. A sequence of constrained minima along the Pareto curve

can be found using a sequence of decreasing lower bound constraints on
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Imi

FIGURE 2.2: Representation of a series of linear lower
bound optimizations whose envelope coincides with a
quadratic lower bound optimization

the fundamental amplitude:
LB < |m§| (2.31)

Unfortunately, the condition on the absolute value of the phasor de-
fined by (2.31) would be a quadratic constraint but in quadratic pro-
gramming the constraints must be linear. This problem can be overcome
defining a set of linear lower bounds (2.33) whose envelope coincides with
the circumference defined by LB.

LB < cos(a) Re(mf) + sin(a) Im(mS) (2.32)

p

which can be expressed as a linear function of w

LB < [cos(a) Re(V) + sin(e) Im(¥5)| w (2.33)

In Fig. 2.2, the linear constraints are represented varying « so that

they are tangential to the circumference defined by |m5| = LB, the region

filled in blue represents (2.31), while the region filled in grey (including
the blue region) represents (2.33).
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Each optimization complying with a linear constraint certainly com-
plies with the underlying quadratic constraint given by the lower bound
module of the fundamental harmonic. A quasi-optimum is obtained from
the minimum among all the linearly constrained minima.

In Fig. 2.3 the reduction of the losses can be seen. The star-of-slots
winding is taken as reference, the optimized winding features a decrease
of the losses by the 25.8% with a decrease of the fundamental by the
2%, a decrease of the fundamental by the 4% brings a losses decrease by
the 35%. By the way it can be seen, from the ratio between losses and
the square of the fundamental, that pushing the optimization beyond
the 4% of fundamental decrease, the losses decrease is mainly due to the
fundamental itself (or rather of mg that is linked to the fundamental).

finally, the reducible harmonics are reduced to 0 when the fundamental
i reduced by the 9%

14
——loss [PU]
——loss/|(m{)?| [PU]
0.9
0.8
=)
=}
0.7
0.6
05 | | | | | J
1 0.98 0.96 0.94 0.92 0.9 0.88

m| [PU]

FIGURE 2.3: Losses (red) ratio between losses ad the
square of the fundamental (blue)

The result of the minimization on the harmonics can be seen in
Fig. 2.4, showing respectively the conventional star of slots winding de-
sign and the optimized winding design. On the left ((a) and (c)) there is
the winding matrix in the classical phase notation, and on the right ((b)
and (d)) the spectra, limited to the fist Z harmonics.
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FIGURE 2.4: Reduction of the harmonics causing losses
on the 9 — 8 configuration, (a) and (c) classic notation
winding matrix, (b) and (d) spectra
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For the calculation of the harmonic losses, the formulas in [1] have
been used and, for the sake of completeness, they are reported hereafter.
The computed losses are given in table Tab. 2.5. The results, obtained

analytically, are confirmed by FEA simulations [1].

@ ::; “ZLZ® > ©Y, (1) - @7, (x@1)[* rdr
0® = — By, @j@Rmag) +nRyLY, (m?Rmag)
e® =B, (/-@n@RR) R, (&RR)
6P =PV (WO R.) = nBY, (KPR, )
KD =\ —jorw? = (1 — )\ opws /2
AP = (8PP - oD@ - 1022 + (DD R R
+ (0&@%3@ — BPeP —j0Ped +jxi@<ﬂ§®) R s

o®

n JTLJn (H?Rmag> Rr:ulig
D — Yy (K Ronae ) Rk,
&

_'KJZ@JnJrl <H§Rmag) + nR;ian <’€SL®Rmag)

sy

Xn

Where Ry, Rmas and Rs represent respectively the radius at the iron
surface of the rotor, the radius at the surface of the magnets towards the
air gap and the bore radius of the stator. Y, and J, represent the nth

order Bessel functions of the first and second kind.
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Table 2.5: Specific losses expressed in mW /mm?
calculated for various Z — 2p combinations. The
unconventional configurations are shaded.

2p 2 4 6 8 10 12 14 16 18

20

0.18 7.81

0.07 \ 20.63

3
4

5 004 036 342

6 0.17 \ 773
7 0.11 0.55 247 1381
8

9

0.06 0.26 \ 4.58

0.16 0.7v9 217 7.60

10 0.11 0.33 \ 3.33  11.48

11 013 024 0.69 1.79 5.46

12 0.15  0.58 \ 288  7.51

13 012 034 072 164 404 1061

14 0.09 0.19 0.49 \ 2.35  5.71

15 014 029 079 156 312 7.41
16 011 022 053 ™~ 202 428
17 013 0.18 045 074 139 2.82
18 013 038 0.72 \ 2.01

2.5 Unbalanced magnetic pull analysis and
minimization

In general, in rotating electrical machines, the magnetic flux in the air
gap between stator and the rotor produces a surface force density with
both a tangential and a normal component. If the net result of the surface
forces is not zero, the net force will be called Unbalanced Magnetic Pull
(UMP).

There may be several causes for the UMP in an electrical machine,
mechanical eccentricity, that has been studied from the beginning of the
20" century to nowadays [2| [3] [4], being the most well known.

In the case that rotor and stator have an eccentricity, the reduced
air gap on one side will induce a larger flux density compared to the
opposite side. If they maintain their reciprocal positions a static pull

arises[5]. Conversely, an eccentricity due to rotor bending leads to a
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dynamic UMP [6] (and therefore vibrations) and vice versa |7]. It is also
known that electrical faults [8] can cause dynamic UMP.

Excluding mechanical or electrical anomalies, it is known that for
some particular slot-pole configurations, FSCW machines are affected by
an UMP due to the interaction of induction space harmonics. In this
section an explanation of the relation between the harmonic content of
the air gap and the UMP will be given to identify the configurations
affected by UMP.

2.5.1 Magnetic interaction between stator and rotor

The Maxwell stress tensor is commonly used to evaluate electromagnetic
forces; the general form can be found in [9]. For the sake of calculating
the UMP in electrical machines, in most cases a simplified 2D model is
adequate; in this case the stress tensor can be used in its simplified form
[10].

= 5 H On BB dS  (234)

where fi and t are respectively the normal and tangential unit vectors,
“n” and “t” subscripts indicate the normal and tangential components of
the flux density (B) and S is a cylindrical surface separating the rotor
and the stator. The normal component of the force is referred to as
magnetic pressure and the tangential component as magnetic tension.
A further simplification is commonly used to calculate the force be-
tween stator and rotor, if the tangential component of the magnetic flux

density is negligible, (2.34) is reduced to

9.4
Feypr j Ba2h dS (2.35)

It is well known that UMP is caused by the interaction of two field
space harmonics differing by one order. It also known that, in conven-
tional windings, there cannot be two harmonics of the same order ro-
tating in opposite directions and, if there are two neighbour harmonics,
they must rotate in opposite directions [11]. Considering a non-saturated

machine with constant air gap, the normal component of the flux density
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(B,,) can be considered proportional to the MMF, therefore the harmonic

analysis developed in chapter 1 can be used.

F,(t) = 2“—902 /O - [Re (M(0,1))] c08(8) Lax Ryap 40 (2.36a)
Fyt) = 2”—;2 /0 " [Re (M(6,1))]” $in(0) Lax Rgap d6 (2.36b)

where L,y is the axial length of the machine, Ry, Rgap = RR;RS and Ry
are respectively the rotor iron surface radius, the mid-gap radius and the

stator bore radius.

2.5.2 Harmonics causing dynamic UMP

As stated before, the UMP can be divided in static and dynamic com-
ponents. In this paragraph the components will be separated and the
dynamic component will be explored in detail as it is the one responsible
for vibrations and noise.

From (2.36a), the following can be obtained substituting (1.19) (the
same procedure can be applied to (2.36b) analogously)

IUOLaXRgap ) o jlwt—nb) = O j(wt+nb) = @& i
F.(t)= e ), Z Re [e m,, +e my] ¢ cos(9) do
n=0

(2.37)

The square component of the integrand can be expressed as follows

n

2
Re [ej(wtfne)mg + ej(thrnG)méB] }

i

3
Il
o

oo
3 — _ 3 _ : o lpY : 9\ _
Re [ej(wt ne)mg + ej(wt-‘rn@)mg} E Re [ej(wt n G)mg + eJ(wt—I—n H)mfl]
0 n'=0
s _ _ H _ H ! _ s li _
oo eJ(wt n@)mg + e](wt—&—n@)mg_i_ oo eJ(UJt n Q)mrel/ + eJ(wt—l-n G)m??/‘i‘
(§]

—j(wt—nb) = Ox —j(wt+nb) — B Z
e m, +e my | w—=o

[M]¢

n

B~ =

1 — / — —] / —
jlwt—n G)m?ﬂ* +e j(wt+n 9)m§3*

developing the products
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j(wt—n@) eJ(wt n'0) j(wt+nb)

!
e m , + el m, Dolwt=—n0)m ,+

. _ _ /
ej(wt nG)mne jwt+n’ 9)m + e_](wt+n9)m ej(wt—f—n 9)

_.I_
eJ(wt ne)m e jwt—n G)mg* + eJ(wt—i-nG)mn e j(wt—n G)mfl*

n/

N oy . o oy
eJ(wt no) rel j(wt+n G)mGB*_i_eJ(thrn&)mEBe j(wt+n O)mEB*

L
WK

efj(wt n@)m@*ej(wt n@)m +e J(thrnG)mGB*eJ(wt n@) /+

3
Il
=)
3\
I
=)

e —j(wt— n@)me*ej(wt—l—n G)m +e J(wt—l—nG)m@*eJ(wt—l—n 0) /+
e—J(wt—nG)mG e—J(wt—n e)me* + e—J(wt-i-nG)mGB e—J(wt—n G)mT@L’*_i_

’ / _
e —j(wt— n@)me e —j(wt+n 0) 69* +e J(Lut-l—n@)m@ e —j(wt+n G)m@

Reorganizing the exponentials

[ oJ(2wt—(n+n")6)

ej(2wt+(nfn’)9)

ej(2wt—(n—n’)9)

ol
(2.38)

The dynamic terms of the sum (having 2wt) can be clearly distin-
guished from the static terms, in which wt is not present; it can be
observed that the dynamic components have a double frequency with
respect to the electric frequency.

Considering that the integrand of (2.37) contains cos(§) = 1(e¥ + e71%)
and considering only the dynamic component from (2.38), the integrand

of the dynamic component can be expressed as
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_ / _ _ 3 _ / _ _ N
e_](2wt (n+n )e)mresz’ +e j2wt—(n+n )G)mg*mreﬂ*_i_
. Ny o . ey B
1 o 00 eJ(th+(n n )H)mgmf/ +e jwt+(n—n )G)mis*ms;k_i_ ( 0 _j@)
Z E E (e’ +e
8 ej(2wt—(n—n’)9)m6m@ + e—j(?wt—(n—n’)&)me*m@*+
n=0 n/=0 n''on/ n n'
j(2wt 6) = ® = —j (2wt 0) 5, ®* =
_eJ( wi+(n+n') )m?fmf?, 4 o i@utt(ntn’) )mg*m@/*_‘__
(2.39)

It should be noted that, in the exponent, the sign of n and n’ is
related to the rotation sense of the correspondent harmonics, meaning
that if the correspondent harmonics rotate in the same direction, n and
n' have the same sign; if the correspondent harmonics rotate the opposite
way, n and n’ have the opposite sign. Now, developing the product in

(2.39), we obtain the following expression of the integrand:

_— B , B B , - - .
eJ(th (n+n'+1)0) j2wt—(n+n +1)«9)mrel* 9*+

my, my, + e Moy
ej(Z“’H(n_n/H)e)m?mr@ﬂ + e—j(2wt+(n—n/+1)0)m§*mr@/*—i—
i@t (= H DOm0 & | @it (n=n' S 1)0) i Oty B |
o ej(sz(nJrn,H)@)m%m% + e—j(2wt+(n+n'+1)9)mi)*m§3*_I_
8 g n/z::o I@ut=(n4n' =10 RO mS o i@wt=(ntn'=1)0) g OxmOx |
It = =10 ROy om i@t (= =1)0) g Brm O |
QI Gwt= (= =00 O ® . @ mI(2wt—(n=n = 1)0) g Oy B

o2t +<n+n’—1>9)m§m§3 + e—j(2wt+(n+n/—1)9)m§?*m§?/*

(2.40)

Because of the linearity of the integral, the force can be split in a
sum of integrals. For instance, considering generically that all terms in
(2.40) contain the product of two harmonic phasors, whose value can be
indicated as m{mS, = Bel* (and mSmS = Be*) the component of
the force referred to the first line of (2.40) will be
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OL R /
F, = HoLiax HoLaxlgap / J(2wt (n+n +1)0)m6m6
0

e—j(2wt (n+n’ +1)9)m m@* do

2
MoLangap / J(th (n+n'+1) 9+a)6+
0

(2.41)

e—j(2wt—(n+n’+1)9+o¢)ﬁ do

LaX a) 2m
— Mo Rgp/ 2cos (2wt — (n+n' +1)0 + )5 d
0

oL
Ho angapﬁ / cos (2wt — (n+n' +1)0 + «) df

where mimS, = 3 * el®

As it can be seen from (2.41), the force depends on n and n' and
on the product of the amplitudes of the respective harmonics 5. Now,
considering n” € 7Z the generic coefficient of 6, the force component of

any line would have the following form
LaxR a)
Ho — 0 / cos (2wt +n"0 + «) d (2.42)

The result of the integral in (2.42) depends on n” € 7Z meaning that

2 0 it n” £ 0
/ cos (2wt + n"0 + ) df = (2.43)
0 2m * cos(2wt + ) if n" =0

This means that the net force resulting from two harmonics for which

n” # 0 is always zero. The cases in which the n” is zero are now examined:

n” =n +n' 4+ 1 = 0 impossible for n,n’ € N
n” =n +n' — 1 =0 impossible for n,n’ € N

(2.44)
n'=n-n"4+1=0=n=n"—1 n and n' opposite way

n=n-n"-1=0=n=n"+1 n and n’ opposite way

From (2.44) it can be seen that the harmonics causing dynamic pull
must belong to pairs of neighbour orders (differing by one) and rotating in

opposite senses. Based on this result, it is simple to identify the harmful
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harmonics in the spectrum of the machine. As an example, the spectrum

of the 6 — 4 machine is shown. In this case all harmonics are separated

so no UMP arises.

I © equi-rotating
1,000 - = @ counter-rotating
D
£ 500)
0 | | ! I \ I ‘ ‘
1 2 3 4 5 7T 8 9 10 11 12
n

FIGURE 2.5: Amplitudes of the harmonics for the con-

ventional 6 — 4 configuration, in red the harmonics ro-

tating anticlockwise as the fundamental, in blue the har-
monics rotating clockwise.

If the spectrum of the 9 — 8 machine of Fig. 1.4 is considered, har-

monics 3,6,9,... are not present, all the remaining ones differ by one

order and rotate in opposite directions.
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FI1GURE 2.6: Amplitude of the harmonics for the conven-

tional 9 — 8 configuration, in red the harmonics rotating

anticlockwise as the fundamental, in blue the harmonics
rotating clockwise.

It is clear that the worst contribution is given by the pair 4 — 5.
Here, as in many cases, the fundamental harmonic (4) is the highest and
the pair that gives the highest product of harmonic amplitudes is the

fundamental with the previous or the next. In order to reduce the main
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cause of the UMP, targeting any of the two harmonics would be effective,
but reducing the fundamental, as seen before, cannot be accepted.

As reducing harmonic 4 is not acceptable, the remaining option is to
reduce harmonic 5, but as seen in (1.36) mi and mg, belong to the same
family (as Z = 9 and Z — 5 = 4), so it is not possible to reduce one
without reducing proportionally the other.

This fact, observed in the 9 — 8 configuration, has an important con-
sequence. It can be seen from Tab. 2.4 that the highest values of the
winding factors are the ones for which Z = 2p + 1. Unfortunately, if
Z = 2p + 1,the opposite rotating harmonic p £+ 1 near the fundamental
is always present, and therefore also its magnetic pull, which cannot be
reduced (because Z —p = p+£1, as states (1.36), the harmonic responsible
for the pull is linked to the fundamental).

At this point the configurations Z — 2p affected by a relevant UMP
must be identified and, among these, which ones are good candidates for
a UMP reduction through an optimization of the winding.

In Tab. 2.6, the same set considered for the winding factor in Tab. 2.4
is examined. For each configuration, the spectrum has been calculated
for the independent harmonics with (1.22), and eventually the product
of all neighbour opposite-rotating pairs of harmonics has been calcu-
lated, as expected, the highest product always contained the fundamen-
tal harmonic. In all cases it has been checked if the fundamental and the
neighbour harmonic causing UMP were linked. When they are linked,
the neighbour harmonic causing UMP cannot be reduced (without re-
ducing proportionally the fundamental); these cases ae marked by “X”;
conversely, the cases in which harmonics near the fundamental can be
reduced are marked by “v"”. Finally the configurations in which the
fundamental is separated from the other harmonics by a zero-valued har-
monic are marked by “0” The shaded configurations are unconventional.
A particular attention is given to the 21 — 16 combination (highlighted
in yellow) as it is the first conventional winding affected by UMP that
can be optimized in order to reduce the UMP.

To make a realistic comparison of the UMP for the cited machines,
the magnetic flux density caused by the stator and the magnets must be
considered together in load conditions. To this end, for each combination

Z — 2p, a sequence of magneto-static FEA simulations has been made in
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Table 2.6: UMP analysis for various combinations of
Z — 2p. “0”indicates null UMP, “X” indicates that there
is UMP that cannot be changed by the winding,
“v”indicates that there is UMP that can be changed
modifying the winding.

The unconventional configurations are shaded,
highlighted in yellow the 21 — 16 combination

2
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«\

X

synchronous conditions, so that the stator at the rated current gives the
maximum torque (i.e. with the armature reaction fundamental aligned
with the g-axis)

Clearly, the amount of pull depends on several factors. First of all di-
mensional factors as machine diameters, gap width, magnets height, but
also magnet coercive force and phase current. To make a coherent com-
parison across several machines with different slot — poles combinations,
maintaining a feasible design, the following criteria have been adopted.
The conductor current density, the magnets coercive force and the fun-
damental flux density amplitude had to be fixed depending on typical

technical or physical constraints. Also the number of turns per tooth
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and relative fill factor have been chosen to remain constant. The scaling
of the other dimensional parameters is now explained.

The air gap flux density is the sum of the rotor and stator contribu-
tions and both are required to remain constant. The rotor flux density
fundamental amplitude is proportional to pole pitch and average flux
density, which depends on the ratio between magnet height (fmag) and
the magnetic gap (gmag), comprising the air gap and the magnet height:
27 R Niag

g 2.45
D o (2.45)

B

X

Rp

As it is reasonable to maintain the ratios between stator radius and air
gap for mechanical reasons and for magnetic consistence it is reasonable
to maintain the ratio between air gap, magnetic gap and magnet height,
Ry, hmag and gmag are kept proportional to p.

The stator flux density fundamental can be expressed as

=0
mp

BSp = MO
Jmag (2.46)
[o Fwp '
= — LAy Nipp Lo
T Gmag P

where Ny, is the number of turns per phase, the total number of turns
is LNy, = Z Ny so

o
Rw
By, =201 7N, (2.47)
T Jmag P
which means that
HWSIO ZNt X gmagp (248)

So, being gmag < p, we obtain

p2

Iy N,
0 tOCKW?Z

(2.49)

The slot section (Sgot), for a given current density and fill factor, is

proportional to the current and to the number of turns per tooth

Sslot X ]ONt (250)
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Which, substituting (2.49) becomes

2

KWZ? Z

Slot X (2.51)
Geometrically, the slot section is proportional to the slot height (hgot)
and to the the slot pitch, which is proportional to the radius and inversely

proportional to the number of slots

S

R
Sslot X hslot : 7 (252)

which solved for hg gives

SslotZ
Ry
p Z
x ngzﬁs (2.53)

hslot X

p2

Kwy Rs

So, as p < Ry,
Ry

HJW]?

hslot 0.8

(2.54)

Finally, the electrical loading (A;), which is the linear density of cur-

rent distributed on the air gap, is defined as follows

2N, I,
Ry

2

_ ”WgZ (2.55)
R.Z
p

&_

HW?

which is proportional to p, as it is a common practice in the design of
electrical machines [12].

So, once a machine is dimensioned for a certain configuration Z — 2p,
a similar machine can be obtained scaling all dimensions proportionally
to the number of poles except the slot height (which depends also on the
winding factor) and the slot pitch (which depends also on the number of
teeth).
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Because in the machine scaling the average value of the flux density
has been maintained, also the magnetic pressure has been maintained,
so the magnetic pull force is expected to increase proportionally with the
gap surface. As the proposed scaling does not involve the machine axial
length (which has been arbitrarily kept to 0.1 m in the FEA simulations),
the gap surface is proportional to Rg or also to p.

Based on the described model, for each configuration a sequence of
FEA simulations has been done tracking the UMP for a complete turn
(half electric period, as the UMP frequency is double of the electric fre-
quency (2.38)). The average UMP has been subtracted to all values to
obtain the dynamic pull excluding the static component, eventually the
maximum was considered.

Table 2.7: Specific UMP, obtained for various Z — 2p
combinations, unconventional configurations are shaded,

the conventional 21 — 16 is highlighted in yellow and v/
indicates the configurations for which the UMP can be

reduced.
p gy 6 8 10 12 14 16 18 20 22
3 | 1.67 4.52
4 | o001 \ 0.04
5 (007, 264 287
6 0 \ 0
7 0.68, 3.28 208 113,
8 0 0 \ 0
9 396 165 0
10 0 0 \ 0 0
11 0.87, 0.83, 4.62 1.34 0.35,
12 0 0 \ 0 0
13 038, 022, 528 1.1 1.0,6 0.44,
14 0 0 \ 0 0
15 0 595  0.98 0
16 0 0 0 \ 0 0
17 031, 048, 0.13, 659 0.82 0.06, 0.24,
18 0 0 0 \ 0
21 0.16, 0 7.86 0.67
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In Tab. 2.7, the resulting maximum pulls of all the cited Z — 2p
combinations have been collected, expressed as specific UMP [N /cm?| so
that the effect of the scaling on the force is eliminated. The results of
Tab. 2.7 confirm the evaluation of Tab. 2.6. The unconventional con-
figurations are shaded and the ones for which the UMP is reducible are
indicated by “v”. The 21 — 16 UMP has been highlighted in yellow,
this configuration has been chosen to demonstrate the application of the

UMP minimization described in the following section.

2.5.3 Rotational symmetry

It is known that machines featuring a rotational symmetry are not af-
fected by UMP [13|. This is intuitively explained by the consideration
that if the module of the function representing the flux density has two
or more periods along the air gap, the resulting forces will be similarly
repeated along the air gap, resulting in a balanced set of forces.

This phenomenon can be seen also through the examination of the
winding spectra. It has been demonstrated that a Z — 2p configuration
having UMP is characterized by a spectrum having neighbour harmonics
different from zero. If a machine is built with a kZ — k2p configuration,
the resulting winding will be a Z — 2p configuration repeated k times
and the pull is balanced by the rotational symmetry. What happens
in terms of spectrum is shown taking as an example the conventional
configurations 5 — 4, 10 — 8 and 15 — 12.

It can be seen from Fig. 2.7 that every harmonic n is shifted to the
position £n and the £ — 1 harmonics separating them remain zero-valued.
For this reason no harmonic can have a neighbour harmonic and therefore
the UMP cannot arise.
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FIGURE 2.7: Comparison between spectra of repeated
configurations in order to achieve rotational symmetry
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2.5.4 Application to a case study

As it can be seen in Tab. 2.7, there are many configurations for which
the UMP is reducible, some of which having high UMP values, the first
is the unconventional 5 — 2. Nevertheless, in order to demonstrate the
procedure, a conventional configuration was preferred to underline the
generality of the method, so the 21 — 16 configuration has been chosen
even if it has a relatively low UMP.

The conventional winding for a 21 — 16 configuration can be obtained
by the star of slots method. The principles of the machine design have
been explained in section 2.5.2, (2.45) — (2.54); the resulting dimensions

that have been used are referred to Fig. 2.8 and summarized in Tab. 2.8.

FIGURE 2.8: Data used for the 21 — 16 configuration FEA
simulation

In Fig. 2.9a the spectrum of the winding is represented; the main
UMP component is due to the fundamental harmonic (Sth) and the 7",
Another relevant component of the pull is due to the 13" - 1™ pair.
From (1.36) it can be seen that the 13" harmonic is linked to the 8",
so it cannot be modified, but the 14™is connected to the 7th, which
means that optimizing the winding in order to reduce the 7™ harmonic
will necessarily reduce the 13" harmonic too, therefore reducing both the

UMP components simultaneously.
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Table 2.8: Data used for the 21 — 16 configuration FEA

simulation
Symbol definition value
Ry rotor iron radius 132 mm
Pmag magnet height 24 mm
Jmag magnetic air gap 28 mm
I lip height 2.5 mm
Rlot slot height 80 mm
Qglot slot angular amplitude 0.133 rad
Oimag magnet angular amplitude 0.284 rad
Welot slot opening 2 mm
Iy current peak value 4.27 A
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(b) UMP force vector trajectory, the max-
imum pull is indicated by the green line.

FIGURE 2.9: Spectrum and pull trajectory of a
star-of-slots winding applied to 21 — 16 configuration
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In Fig. 2.9b, the trajectory of the force vector of the magnetic pull
is represented. It can be seen that the UMP does not have a constant
module. This is due to the presence of pull due to other harmonics. The
instant in which the maximum value of the force is reached is represented
by the green line.

In order to reduce the pull, the objective function relative to the
7" harmonic can be obtained form (2.23) using only Q7. The minimum
fundamental lower bound is not a linear constraint, so it is treated (as
seen in 2.4) with a sequence of linearly constrained optimizations using
(2.33) together with the constraints deriving from (2.20).

§, (W) = w QY w (2.56a)
LB < [cos(ar) Re(V})) 4 sin(e) Im(v))| w (2.56b)

p

A quasi-optimum is obtained from the minimum among all the minima

obtained varying «.

1r Increased UMP

0.8
061 Minimum
0.4+

0.2 Initial linear decrease

max UMP module |N]

O | | | | | |

|
6 18 20 22 24

|
o 2 4 6 & 10 12 14 1

optimization iteration

. C . . . h

FiGURE 2.10: UMP relative variation iterating the 7'

harmonic minimization. in abscissa the iteration step,
corresponding to a fundamental decrease of 0.1%

A sequence of simulations has been performed using the increas-
ingly optimized windings obtained minimizing the 7" harmonic, while
decreasing the fundamental lower bound. The results are summarized

in Fig. 2.10. The UMP is represented relative to its maximum value,
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corresponding to the conventional configuration. For every step, the op-
timization has been made decreasing the fundamental lower bound by
0.1%, which means that the lowest UMP value is reached decreasing the
fundamental by 2.2%.

Each of the points in Fig. 2.10 has been obtained extracting the max-
imum UMP from a sequence of simulations made to obtain the UMP for
every angular position of the rotor. In Fig. 2.11 the whole trajectories
of the relative UMP are shown for a selection of indexes. The UMP di-
rection in which the maximum module is reached is highlighted for every
case. While the UMP due to the 7" harmonic decreases, the contribution

of the residual harmonics becomes more and more evident.
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FIGURE 2.11: Relative UMP trajectories for a selection

of indexes. The axes scales have been modified in accor-
dance to the UMP module
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A comparison between the star of slots spectrum and the one with
the minimized 7" harmonic is shown in Fig. 2.12. The highest harmonic
peaks (8 and 13) are linked and the neighbour harmonics causing UMP
are the 7"and the 14threspectively. The reduction of the 7" harmonic
is evident, and also the linked 14™ harmonic (near the 13th) is propor-
tionally reduced as expected. By the way it can be noticed that other
harmonics grow to such an extent (see the orange marking) that reducing
further the 7" harmonic increases the UMP because the other contribu-
tions have become predominant. This justifies the fact that the last value

in Fig. 2.10, is slightly higher than the previous.
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FIGURE 2.12: Comparison between (a) star-of-slots and

(b) optimized 21 — 16 configuration spectrum, the in-

creased harmonics are highlighted by the marking chang-
ing from green to orange
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Chapter 3

Study and implementation of an

unconventional FSCW

The study on unconventional FSCW windings has been applied to an
innovative machine designed to be both a motor and a generator for sail-
ing boats. The particular application and the environmental conditions
determined a set of requirements that were frequently in contrast and
hard to meet.

The core of the machine is a hub-less, high efficiency propeller de-
signed for 1000 rpm at cruising speed of 8 kts (i.e. about 4 m/s) with
an internal diameter of 400 mm and a rated power of 15 kW. A concept

design is shown Fig. 3.1

R B |

FI1GURE 3.1: Concept design of the sailing boat hub-less
motor-generator
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3.1 Machine specifications and requirements

The hub-less propeller is a ducted propeller with the blades attached to
a rotating duct. While the hub-less design, if compared to the conven-
tional design, granted a higher fluid-dynamic efficiency to the propeller,
the design of the electrical machine was strongly conditioned by the per-
formance requirements leading to geometrical, mechanical and electrical
constraints.

First, to eliminate any mechanical couplings that would bring friction
losses and vibrations, a direct coupling was required. As the propeller has
a hub-less design, the only solution was a “rim motor”: instead of having
a conventional motor connected to the propeller through a shaft, the
electrical machine in this case occupies the circumferential area around
the propeller that is housed inside the rotor.

Second, to reduce the hydro-dynamic drag due to the motor section
as much as possible, the radial dimension of the machine has been con-
strained to be less than 100 mm including the propeller duct, the rotor,
the stator and the outer frame. Because of the high ratio between the
machine diameter and the sections of the stator and the rotor, the rigid-
ity could become a critical issue, so the mechanical gap had to be wide
enough to guarantee no contact between the two parts in case of defor-
mation. In fact, at the same time the whole structure may be subject to
the thrust of the propeller, the drag of the stator section, to vibrations ,
to the impact of debris, and to magnetic forces, especially if part of the
machine is deactivated for a fault.

Finally, the machine was required to be self-contained, meaning that
it had to be connected only to the 12 V — DC shipboard system and the

converter had to be internal to the structure.

3.2 Rotor

A wide mechanical gap excluded the option of an induction machine
that would have required an excessive magnetizing current, impacting
negatively on the efficiency or on the dimensions of the converter and
the winding. A wound rotor synchronous machine has not even been

considered because of the difficulty to connect the rotor field circuit, in
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sea water and with no shaft. So finally, a PM solution looked both the
most efficient and easily implementable. Between an IPM and an SPM
design, the SPM was preferred because any Internal Permanent Magnet
(IPM) design would have required a higher radial dimension and more
weight.

The requirement of a high efficiency leads on one hand to reduce the
radial dimension of the machine, that can be obtained increasing the
number of poles, but on the other hand an increase of the number of
poles increases the working frequency and therefore the iron losses. A
limit had to be established at a rated frequency 200 Hz, so the number
of pole pairs (p) was calculated as

-2
_ 60/ _60-200 (31)
n 1000

where f indicates the maximum frequency and n the rated rotation speed

p

expressed in rpm. The choice of 24 poles allowed for a radial dimension
of the yokes of 10 mm which is also a mechanical limit for the machine

rigidity. The rotor layout is shown in Fig. 3.2

FI1GURE 3.2: Half section of the 24 poles rotor

3.3 Stator

In order to achieve a certain degree of fault tolerance, the stator was
required to be divided into sections, so that if a fault leads to deactivate
one section, the others continue operating. To maintain a balance in
the magnetic forces between stator and rotor, if a section is deactivated,
another diametrically opposite one, must be deactivated too, in order to

preserve the rotational symmetry. For this reason the sections had to
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organized in pairs and an odd number of sections is excluded. In order
to meet the fault tolerance requirement, the lowest number of section
pairs was two, so a total of four sections.

In its final design (Fig. 3.3), the machine consists of four independent
three-phase sections, each connected to an AC/DC converter fed by the
12 V — DC shipboard system. Also the power required from the single
AC/DC converter is reduced by a factor of four, reducing its dimen-
sions. This aspect was particularly important because it was specifically

required to house the converters in the machine frame.

@ 7 slots

= B3 = =
DC DC DC DC

ONBOARD
BATTERY
PACK

FIGURE 3.3: Schematic of the four sections of the ma-
chine fed by the four converters

When the machine is operated as a generator, a low torque and power
may be available. Clearly in this case a high efficiency is particularly im-
portant, but also a low cogging torque is required, both to start the
machine passively and because the cogging torque would lead to an un-
desirable torque ripple, which has to be avoided so that the propeller can
run fluidly at constant speed and no vibrations are produced.

The cogging torque is proportional to the greatest common divisor
(ged) between Z and 2p. As it can be easily seen by [1], where the

torque is stated to be proportional to Cp, with

Z - 2p

Cr = LCM(Z, 2p)

= ged(Z, 2p) (3.2)
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where LCM denotes the least common multiple. Clearly the best choice
from this point of view would be a configuration for which Z and 2p are
co-prime numbers, so that Cr takes its minimum value (i.e. 1).

Because the stator has been divided into four sections, each section
works as a 6-poles machine. From table Tab. 2.4 we can see that a
conventional Z — 2p configuration having 6 poles would be the 9 — 6,
having a Cr = 3, a winding factor k,, = 0.866 and magnet specific losses
(0.16 mW/mm?, from Tab. 2.5). From the first table we can see that
the highest winding factor is obtained with a 7-teeth-per-section stator
(kw = 0.918, 7 — 6 configuration), which has a value of C7 = 1, even
though the losses are a little higher (0.55 mW /mm?), but still below the
acceptable limits. In this case the UMP is not a concern because the
machine has a rotational symmetry (see section 2.5.3). So, finally, a 28

teeth stator has been chosen, shown in Fig. 3.4.

FIGURE 3.4: Half section of the 24 poles rotor coupled
with the 28 teeth stator

For the chosen configuration (28 — 24) a test on the cogging torque
has been done by FEA analysis (Fig. 3.5), the maximum value was below

0.5 Nm.
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Ficure 3.5: Cogging torque obtained by FEA simula-
tion on the 28 — 24 configuration
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3.4 Unconventional FSCW choice

To obtain the winding layout, a two step optimization has been done. As
a first step, using the constraints €(w) given by (2.20) and shown below,
the winding vector (wy) was obtained from the objective function (3.3)

that maximizes the fundamental

Aow <0917
E(w)=qArw <N, -1y
Asw =0

Frna(W) = —w QY w (3.3)

In the second step, the losses are minimized (3.4a), while, together
with €(w), the maximum module of the fundamental has been imposed
as a lower bound (3.4b).

Sloss (W) = WTQharmW (348“)

LB < [cos(a) Re(vy)) 4 sin(e) Im(v))] wy (3.4b)

p

The winding obtained from the optimization has been rounded and

the correspondent winding matrix is shown in Tab. 3.1.
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Table 3.1: Winding matrix used for each 7 — 6 section of
the 28 — 24 configuration, N; = 60.

l 0O 1 2 3 4 5
k

0 0O 60 0 0 0 O
1 0O 0 0 20 40 O
2 60 0 0 O 0 O
3 0O 0 7 53 0 O
4 7T 0 0 0 0 53
5 0O 0 60 0 0 O
6 0O 0 0 0 40 20

So, finally, Fig. 3.6 shows the winding layout of the 28 — 24 machine
(only half the complete machine is shown). In Fig. 3.7 the spectrum

corresponding to the complete machine is shown.

\e!
Na |

FiGURE 3.6: Half section of the 28 — 24 configuration
with the winding representation
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FIGURE 3.7: Amplitude of the harmonics for the 28 — 24

configuration, in red the harmonics rotating anticlockwise

as the fundamental, in blue the harmonics rotating clock-
wise.

In Fig. 3.7, the characteristics of a repeated configuration is confirmed
(see section 2.5.3, the 28 — 24 is obtained by a 7 — 6 repeated 4 times): the
harmonics different from 0 are separated by three zero-valued harmonics,
therefore no UMP is generated.

Once the configuration was decided, in order to optimize the machine
dimensions, a set of FEA simulations has been done to refine the design,
so that the radial dimensions were minimized while maintaining a suffi-
cient slot section to avoid excessive current density and a sufficient yoke

section for the structural rigidity and to avoid saturation.

FiGURE 3.8: Half section of the 28 — 24 configuration.
the winding colours are related to the current density,
the flux lines are represented in red
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FIGURE 3.9: Torque obtained by a 15A FEA simulation
on the 28 — 24 configuration

For the chosen configuration, the torque ripple obtained was obtained
by FEA simulation (Fig. 3.9) is and calculated in (3.5) where Tyax, Thnin
and T,y represent respectively maximum, minimum and average torque:

Tmax - T

T =~ mn_ 1.4% (3.5)
avg

while the one obtained for the conventional winding 36 — 24 was 14.8%

3.5 Mechanical design

The mechanical design has been developed after making several consid-
erations and after evaluating several options.

The first consideration was if the sea water was to enter the struc-
ture. The choice was free at the beginning, because on one hand the
losses did not require an internal water flux to dissipate the heat, as the
dissipation through the immersed frame was widely sufficient. On the
other hand, because the entrance of some water could not be excluded in
any condition, all the active parts had to be insulated with resin anyway.

The first option was to use plastic material sleeve bearings lubricated
and refrigerated by sea water (see Fig. 3.10). The sleeve bearings had to
be mounted between the rotor frame structure and a shield mounted on

the stator frame.
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‘Water inlet

Shield
Rotor frame

Sleeve bearing

FIGURE 3.10: Section of the sleeved machine the sleeve
is highlighted in yellow

This solution would have let in at least the amount of water necessary
to lubricate the sleeve bearings, filling the machine. Because the drag
caused by any turbulence in the gap was hardly predictable and because
the water remaining in the motor on the long term may cause the growth
of marine organisms, it was finally decided to prevent the water entrance.

A second option was to use ball bearings coupled with a hydraulic

sealing 3.11.

Ball bearing

Hydraulic sealing

FiGURE 3.11: Second design of the machine the ball
bearing and the hydraulic sealing are shown

In this case the ball bearing solution seemed optimal. The size of
the ball bearing that can be seen in Fig. 3.11 is taken from a catalogue

and the loads and materials were suitable for the seawater environment.
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Unfortunately it was not available for purchase and the available ones
were not fit for the application as they were far too big, weighing 25kg
each.

The final design substituted the ball bearing with a series of cam
rollers fixed to the rotor frame and running on a track fixed to the stator
frame. The front and rear tracks have an angle so that they can react

both to radial and axial forces.

Wheels

Track O-ring housings

Screws

Rear shield

Hydraulic sealing housings

FIGURE 3.12: Section of the final machine with the cam
rollers

The shields include the housings of sealing O-rings. The rear shield
is designed so that tightening the screws, the sealing lets the shield free
to slide forward. In this way the radial mechanical slack between the
wheels and the tracks can be absorbed and the correct pressure can be
applied to the tracks.

Some more particulars of the construction can be seen in Fig. 3.13,
in particular, the ferromagnetic inter-magnets and the threaded holes for
the propeller can be seen. The ferromagnetic inter-magnets, in addition
to a higher structural rigidity, give the rotor a magnetic anisotropy that
is required by the sensor-less control system. The internal threaded holes

were used both for the propeller and to fix the machine to the test bench.
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Magnets Ferromagnetic inter-magnets

FIGURE 3.13: Rotor of the prototype

3.6 Measurements

During the design stage, each design was tested throug FEA simulation-
sto assess the prototype performance and to establish the final dimen-
sions. For the final design and the alternative designs considered earlier
with different slot — poles combinations, the simulations showed that
the FSCW windings did not introduce any kind of unexpected parasitic
phenomenon such as eddy current losses in non-active parts.

In order to achieve an experimental validation of FEA time-stepping
simulations, the results are compared to the laboratory test bench mea-
surements.

The tests have been performed on the machine operating in generator
mode, on two diametrically opposite sections connected in parallel on an
RL load or to a diode rectifier feeding a resistor (Fig. 3.15). The other
two sections were left at open circuit.

In the test conducted with the RL load, the load is composed of three
star-connected RL loads (Fig. 3.15a), while in the arrangement depicted
in (Fig. 3.15b) the load consists of a diode rectifier connected to a resistive
load. The voltages and currents measured on each phase in the two test

arrangements at 50 Hz are shown in Fig. 3.16a and Fig. 3.16b.
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Prototype

Motor Connections to load

FIGURE 3.14: Rotor of the prototype

It can be seen that the machine, although loaded on only two of
its four sectors, exhibits the same balanced symmetrical behaviour that
would be expected in case of a conventional FSCW winding.

The tests have been repeated exchanging the sections (4 and 2 con-
nected, 1 and 3 left open) and, as expected, the same voltage and current

waveforms shown in Fig. 3.16 have been obtained under the same load

conditions.
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Conclusion

In this dissertation an analysis, optimization and extension of the Frac-
tional Slot Concentrated Windings design has been proposed. In partic-
ular, after developing a mathematical framework to model multi-phase
multi-layer FSCW windings and the produced harmonic content, it has
been shown that there are a number of independent harmonics equal to
the number of teeth and all the other harmonics are linearly dependent
on them. This structural constraint affects any winding independently
of number of phases and winding topology.

After this, the design of the winding topology has been approached
as an optimization problem applied to the winding topology. As a part
of the study, it has been shown how FSCWs can be designed with “un-
conventional” slot-pole configurations that are regarded as unfeasible if
the star of slots is used.

The first step was to obtain symmetric windings with the highest
possible fundamental. It has been shown that, for any slot-poles configu-
ration, the winding topology can be obtained by quadratic optimization
of the fundamental amplitude and the symmetry of the winding can be
imposed as a linear constraint. The resulting windings for unconventional
configurations feature analogous performance to conventional windings
and conventional windings obtained by optimization coincide with the
ones obtained by the star of slots.

As a second step, it has been shown that quadratic maximization can
be also used to reduce the losses in the magnets, which corresponds to
suitably reducing all harmonics other than the fundamental. The effec-
tiveness and usefulness of the method has been proven. As an example
the conventional 9-slot — 8-pole configuration , has shown a reduction of
losses by 25.8%, accepting reduction of the fundamental by 2%.

A third step has been to analyse the relationship between harmonic
content and UMP. Again it has been demonstrated that the winding

can be optimized in order to reduce the specific harmonics responsible
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for the UMP. Based on the harmonic content, a simple criterion has
been given to identify the slot-pole configurations for which the UMP
can be optimised. While it has been shown that in many cases the
UMP reduction is not necessary or not possible (because the harmonics
responsible for the UMP are linked to the fundamental), a conventional
configuration has been chosen among the optimizable ones as a case study
to test the method effectiveness. In this case the UMP was reduced to
18% accepting a reduction of the fundamental by only 2.2%.

Finally, an application in which the unconventional FSCW has been
used has been presented. The manufacturing the prototype and the test
results have confirmed the feasibility of the winding and the performance
expected from FEA simulation.

As a conclusion it can be said that unconventional windings extend
noticeably the amount of configurations available for the designer with no
drawbacks. Furthermore, the same technique used to design the uncon-
ventional configuration windings can be used to optimize the conventional

windings obtained by the star-of-slots to reduce losses or UMP.
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