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Abstract. The aim of this paper is characterizing the development of singularities by the positive
solutions of the quasilinear indefinite Neumann problem

−(u′/
√

1 + (u′)2)′ = λa(x)f(u) in (0, 1), u′(0) = 0, u′(1) = 0,

where λ ∈ R is a parameter, a ∈ L∞(0, 1) changes sign once in (0, 1) at the point z ∈ (0, 1), and

f ∈ C(R) ∩ C1[0,+∞) is positive and increasing in (0,+∞) with a potential,
∫ s
0 f(t) dt, superlinear at

+∞. In this paper, by providing a precise description of the asymptotic profile of the derivatives of the

solutions of the problem as λ → 0+, we can characterize the existence of singular bounded variation
solutions solutions of the problem in terms of the integrability of this limiting profile, which is in turn

equivalent to the condition(∫ z
x a(t) dt

)− 1
2 ∈ L1(0, z) and

(∫ z
x a(t) dt

)− 1
2 ∈ L1(z, 1).

No previous result of this nature is known in the context of the theory of superlinear indefinite problems.

1. Introduction

This paper analyzes the quasilinear indefinite Neumann problem −
(

u′√
1 + (u′)2

)′
= λa(x)f(u) in (0, 1),

u′(0) = u′(1) = 0.

(1.1)

Here, λ ∈ R is regarded as a parameter and

(a1) the function a ∈ L∞(0, 1) satisfies, for some z ∈ (0, 1), a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e.

in (z, 1), as well as
∫ 1

0
a(x) dx < 0;

(f1) the function f ∈ C(R) ∩ C1[0,+∞) satisfies f(s) > 0 and f ′(s) ≥ 0 for all s > 0, and there exist
four constants, h > 0, k > 0, q > 1 and p ≥ 2, such that

lim
s→+∞

f(s)

sq−1
= qh, lim

s→0+

f(s)

sp−1
= pk.

Condition (f1) implies that the potential F of f , defined by F (s) =
∫ s

0
f(t) dt, satisfies

lim
s→+∞

F (s)

sq
= h, lim

s→0+

F (s)

sp
= k

and, thus, F must be superlinear at +∞. and either quadratic or superquadratic at 0. We also introduce
the following condition on the weight function a at the nodal point z, which is going to play a pivotal
role in the mathematical analysis carried out in this work
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(a2)

(∫ z

x

a(t) dt

)− 1
2

∈ L1(0, z) and

(∫ z

x

a(t) dt

)− 1
2

∈ L1(z, 1).

Throughout this paper, we are going to use the following notions of solution.

• A couple (λ, u) is said to be a regular solution of (1.1) if u ∈ W 2,1(0, 1) and it satisfies the
differential equation a.e. in (0, 1), as well as the boundary conditions.

• A couple (λ, u) is said to be a bounded variation solution of (1.1) if u ∈ BV (0, 1) and it satisfies∫ 1

0

DauDaφ√
1 + |Dau|2

dx+

∫ 1

0

Dsu

|Dsu|
Dsφ =

∫ 1

0

λaf(u)φdx

for all φ ∈ BV (0, 1) such that |Dsφ| is absolutely continuous with respect to |Dsu| (cf. [2]).
• A couple (λ, u) is said to be a singular solution of (1.1) whenever it is a non-regular bounded

variation solution; that is, u ∈ BV (0, 1) \W 2,1(0, 1).
• When the couple (λ, u) solves (1.1) in any of the previous senses, it is said that (λ, u) is a positive

solution if, in addition,

λ > 0, ess inf u > 0.

As usual, for any function v ∈ BV (0, 1),

Dv = Dav dx+Dsv

stands for the Lebesgue decomposition of the Radon measure Dv and Dsv
|Dsv| denotes the density function

of the measure Dsv with respect to its total variation |Dsv| (see [1]). By [22, Prop. 3.6], any positive
singular solution, (λ, u), of (1.1) actually satisfies

u|[0,z) ∈W 2,1
loc [0, z) ∩W 1,1(0, z) and is concave,

u|(z,1] ∈W 2,1
loc (z, 1] ∩W 1,1(z, 1) and is convex;

(1.2)

moreover, u′(x) < 0 for every x ∈ (0, 1) \ {z}, u′(0) = u′(1) = 0 and

u′(z−) = u′(z+) = −∞, (1.3)

where u′(z−) and u′(z+) are the left and the right Dini derivatives of u at z. In full agreement with (1.3),
throughout this paper, for any singular solution (λ, u) of (1.1), it is intended that

−u′(z)√
1 + (u′(z))2

= 1.

The same argument used in [22, Lem. 2.1] shows that λ > 0 is necessary for the existence of positive
non-constant, either regular or singular, solutions.

Problem (1.1) is a one-dimensional prototype model of
−div

(
∇u√

1 + |∇u|2

)
= g(x, u) in Ω,

− ∇u · ν√
1 + |∇u|2

= σ on ∂Ω,

(1.4)

where Ω is a bounded regular domain in RN , with outward pointing normal ν, and g : Ω × R → R and
σ : ∂Ω → R are given functions. Problem (1.4) plays a central role in the mathematical analysis of
a number of geometrical and physical issues, such as prescribed mean curvature problems for cartesian
surfaces in the Euclidean space [24, 3, 19, 25, 9, 14, 12, 15, 13], capillarity phenomena for incompressible
fluids [6, 11, 10, 16, 17, 7], and reaction-diffusion processes where the flux features saturation at high
regimes [23, 18, 5, 4, 8].

The model (1.1) has been recently investigated by the authors in [21], [22] and [20]. In [21] the existence
of bounded variation solutions was analyzed by using variational methods and in [22] the existence of
regular solutions was dealt with by means of classical phase plane and bifurcation techniques. The main
result of [20] established the existence of a component of bounded variation solutions bifurcating from
the trivial state (λ, 0) in the special, but significant, case where p = 2. According to the results of these



CHARACTERIZING THE FORMATION OF SINGULARITIES 3

papers, it is already known that, under conditions (a1) and (f1), problem (1.1) cannot admit a positive
solutions if λ < 0 and that it possesses at least one positive bounded variation solution for sufficiently
small λ > 0.

Quite strikingly, whether or not these bounded variation solutions are singular depends on whether or
not condition (a2) holds true: this is the main result of this paper, which can be stated as follows.

Theorem 1.1. Assume (a1) and (f1). Then, the following conclusions hold for sufficiently small λ > 0:

(i) any positive solution of (1.1) is singular if (a2) holds;
(ii) any positive solution of (1.1) is regular if (a2) fails.

In other words, condition (a2) completely characterizes, under (a1) and (f1), the development of sin-
gularities by the positive solutions of (1.1) for sufficiently small λ > 0.

By having a glance at condition (a2) it becomes apparent that it fails whenever the function a is
differentiable at the nodal point z, whereas a very simple example where (a2) holds occurs when the
function a is discontinuous at z, like, for instance, in the special case when a is assumed to be a positive
constant, A > 0, in [z − η1, z) and a negative constant, −B < 0, in (z, z + η2], for some η1, η2 > 0.
The huge contrast on the nature of the positive solutions of the problem with respect to the integrability
properties of the function a near the node z can also be realized by considering any weight function a
satisfying the requirements of (a1) except for the fact that a = 0 in [z − η, z + η] for some η > 0. In
such case, thanks to the convexity and concavity properties of the positive bounded variation solutions
of (1.1) guaranteed by [22, Prop. 3.6], any positive solution u must be linear in the interval [z − η, z + η]
and hence, due to (1.2), it cannot develop singularities.

As a consequence of Theorem 1.1, when p = 2, the global structure of the component of the positive
solutions of (1.1), C+, whose existence is guaranteed by the main theorem of [20], drastically changes
according to whether or not the condition (a2) holds as illustrated in Figure 1, where λ0 stands for the
principal positive eigenvalue of the linear weighted problem{

−ϕ′′ = λa(x)ϕ in (0, 1),
ϕ′(0) = ϕ′(0) = 0.

The non-existence of positive regular solutions of (1.1) in the very special cases when p = 2 and the

‖u‖∞

λ0

•
λ

regular solutions

singular solutions

‖u‖∞

λ0

•
λ

regular solutions

Figure 1. Global components emanating from the positive principal eigenvalue λ0 in case
p = 2 when (a2) holds (on the left), or (a2) fails (on the right).

weight a is constant in [0, z) and in (z, 1] has been recently established in Section 8 of [22] by using
some classical, but sophisticated, phase portrait techniques. This induced the authors to presume that
an analogous non-existence result should also be valid for general weight functions a, without imposing
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the integrability condition (a2). So, they formulated [22, Th. 7.1]. Theorem 1.1 in particular shows that
[22, Th. 7.1] has to be complemented with condition (a2).

Similarly as for p = 2, also in the case p > 2 the global structure of the set of positive solutions of
(1.1), C+, whose existence is now guaranteed by [21, Th. 1.1] and [22, Th. 10.1], changes for sufficiently
small λ > 0 according to whether or not condition (a2) holds, as illustrated by Figure 2.

‖u‖∞

λ

regular solutions

singular solutions

‖u‖∞

λ

regular solutions

Figure 2. Global bifurcation diagrams in case p > 2 when (a2) holds (on the left), or (a2)
fails (on the right).

Our proof of Theorem 1.1 is based upon the characterization of the exact limiting profiles of the positive
solutions of (1.1), both regular and singular, as the parameter λ approximates zero. These profiles are
provided by the next theorem, regardless their particular nature.

Theorem 1.2. Assume (a1) and (f1), and let ((λn, un))n be an arbitrary sequence of positive solutions
of (1.1) with lim

n→∞
λn = 0. Then, for sufficiently small η > 0, the following assertions hold:

lim
n→+∞

un(x)

un(0)
= 1 uniformly in x ∈ [0, z − η], (1.5)

lim
n→+∞

un(x)

un(0)
=
( ∫ z

0
a(t) dt

−
∫ 1

z
a(t) dt

) 1
q−1

uniformly in x ∈ [z + η, 1], (1.6)

lim
n→+∞

(λnf(un(x))) =
1∫ z

0
a(t) dt

uniformly in x ∈ [0, z − η], (1.7)

lim
n→+∞

(λnf(un(x))) =
1

−
∫ 1

z
a(t) dt

uniformly in x ∈ [z + η, 1], (1.8)

lim
n→+∞

u′n(x) =
−
∫ x

0
a(t) dt√(∫ z

0
a(t) dt

)2 − (∫ x
0
a(t) dt

)2 uniformly in x ∈ [0, z − η], (1.9)

and

lim
n→+∞

u′n(x) =

∫ 1

x
a(t) dt√(∫ 1

z
a(t) dt

)2

−
(∫ 1

x
a(t) dt

)2
uniformly in x ∈ [z + η, 1]. (1.10)
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Note that condition (a2) is equivalent to requiring the integrability in both intervals, (0, z) and (z, 1),
of the asymptotic profile of the derivatives of the positive solutions of (1.1) as λ→ 0+, which is equivalent
to impose that the “limiting derivative” (represented in Figure 3)

u′ω(x) =


−

∫ x
0
a(t) dt√

(
∫ z
0
a(t) dt)

2−(
∫ x
0
a(t) dt)

2
for x ∈ [0, z),

∫ 1
x
a(t) dt√

(
∫ 1
z
a(t) dt)

2−(
∫ 1
x
a(t) dt)

2
for x ∈ (z, 1],

belongs to both L1(0, z) and L1(z, 1).

x0 z 1

Figure 3. Profile of the limiting derivative u′ω.

The distribution of this paper is as follows. Section 2 contains some preliminary technical lemmas of
interest on their own, Section 3 delivers the proof of Theorem 1.2, Section 4 derives another technical
result from Theorem 1.2 and, finally, Section 5 consists of the proof of Theorem 1.1. Section 6 collects
some additional remarks.

2. Preliminary results of a technical nature

The first result collects some identities that will be used systematically in the sequel.

Lemma 2.1. Assume (a1) and (f1). Let (λ, u) be a positive, regular or singular, solution of (1.1). Then,
the following identities hold:

−u′(x) =

−u′(z)√
1+(u′(z))2

−
∫ z
x
λa(t)f(u(t)) dt√

1− u′(z)√
1+(u′(z))2

−
∫ z
x
λa(t)f(u(t)) dt

√
1 + u′(z)√

1+(u′(z))2
+
∫ z
x
λa(t)f(u(t)) dt

(2.1)

for all x ∈ [0, 1] \ {z};

λ

∫ x

0

a(t) dt =
1

f(u(x))

−u′(x)√
1 + (u′(x))2

+

∫ x

0

d

dt

(
1

f(u(t))

)
u′(t)√

1 + (u′(t))2
dt (2.2)

for all x ∈ [0, z);

λ

∫ 1

x

a(t) dt =
1

f(u(x))

u′(x)√
1 + (u′(x))2

+

∫ 1

x

d

dt

(
1

f(u(t))

)
u′(t)√

1 + (u′(t))2
dt (2.3)

for all x ∈ (z, 1];

−u′(x)√
1 + (u′(x))2

= λf(u(x))

∫ x

0

a(t) dt− λ
∫ x

0

(∫ t

0

a(s) ds

)
d

dt
f(u(t)) dt (2.4)
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for all x ∈ [0, z);

−u′(x)√
1 + (u′(x))2

= λf(u(x))

∫ 1

x

−a(t) dt+ λ

∫ 1

x

(∫ 1

t

−a(s) ds

)
d

dt
f(u(t)) dt (2.5)

for all x ∈ (z, 1].

Proof. Integrating the differential equation of (1.1) in the interval (x, z) yields

u′(x)√
1 + (u′(x))2

=
u′(z)√

1 + (u′(z)2
+

∫ z

x

λa(t)f(u(t)) dt

for all x ∈ [0, 1], x 6= z. Thus, (2.1) follows easily by inverting the function ϕ : R→ (−1, 1), defined by

ϕ(s) =
s√

1 + s2
.

The identities (2.2) and (2.3) can be derived by writing down the differential equation of (1.1) in the form

λa(t) =
d

dt

(
1

f(u(t))

−u′(t)√
1 + (u′(t))2

)
+
d

dt

(
1

f(u(t))

)
u′(t)√

1 + (u′(t))2

and integrating it in (0, x) and (x, 1), respectively.
The identity (2.4) follows by expressing the differential equation of (1.1) as

−u′(x)√
1 + (u′(x))2

= λ

∫ x

0

f(u(t))a(t) dt = λ

∫ x

0

f(u(t))
d

dt

(∫ t

0

a(s) ds

)
dt

and integrating by parts the last term. Finally, (2.5) follows by writing down the differential equation of
(1.1) as

−u′(x)√
1 + (u′(x))2

= λ

∫ 1

x

f(u(t))(−a(t)) dt = λ

∫ 1

x

f(u(t))
d

dt

(∫ 1

t

a(s) ds

)
dt

and integrating by parts the last term. �

Throughout the rest of this paper, ((λn, un))n stands for a sequence of positive, regular or singular,
solutions of (1.1) such that

lim
n→∞

λn = 0. (2.6)

The next series of technical lemmas provides us with some important features of these sequences.

Lemma 2.2. Assume (a1) and (f1). Then,

lim
n→+∞

un(x) = +∞ uniformly in x ∈ [0, z].

Proof. First, we will prove that

lim
n→+∞

un(0) = +∞. (2.7)

Arguing by contradiction, assume that (un(0))n possesses some bounded subsequence. Then, passing to
a further subsequence, that we still label with n, one can suppose that there exists a constant C ≥ 0 such
that

lim
n→+∞

un(0) = C (2.8)

and, since un is a decreasing function, for sufficiently large n we have that

un(x) ≤ un(0) ≤ C + 1 for all x ∈ [0, 1].

Thus, by integrating the differential equation of (1.1) in [0, z) and in (z, 1], we find that, for sufficiently
large n,

−u′n(x)√
1 + (u′n(x))2

=

∫ x

0

λnf(un(t))a(t) dt ≤ λnf(C + 1)

∫ z

0

a(t) dt for all x ∈ [0, z)



CHARACTERIZING THE FORMATION OF SINGULARITIES 7

and that

−u′n(x)√
1 + (u′n(x))2

=

∫ x

1

λnf(un(t))a(t) dt ≤ λnf(C + 1)

∫ 1

z

−a(t) dt for all x ∈ (z, 1],

respectively, because f is non-decreasing. By (2.6), these estimates imply that

lim
n→+∞

u′n(x)√
1 + (u′n(x))2

= 0 uniformly in x ∈ [0, 1]

and hence

lim
n→+∞

u′n(x) = 0 uniformly in x ∈ [0, 1].

So, for sufficiently large n, the solutions un are regular and, owing to (2.8),

un(x) = un(0) +

∫ x

0

u′n(t) dt→ C uniformly in x ∈ [0, 1].

Thus, integrating the differential equation of (1.1) in [0, 1] yields

0 =

∫ 1

0

f(un(t))a(t) dt→ C

∫ 1

0

a(t) dt as n→ +∞. (2.9)

Therefore, since we are assuming that
∫ 1

0
a(t) dt < 0, it follows that C = 0 and hence

lim
n→+∞

un = 0 in C1[0, 1]. (2.10)

Let us set, for each n,

vn(x) =
un(x)

un(0)
for all x ∈ [0, 1].

It is apparent, from (1.1), that each vn satisfies −v′′n = λna
f(un)

un(0)
(1 + (u′n)2)

3
2 in (0, 1),

v′n(0) = v′n(1) = 0.
(2.11)

As we assumed p ≥ 2 in (f1), we can find a constant L > 0 such that

0 ≤ f(s) ≤ Lsp−1 ≤ Ls for all 0 ≤ s ≤ 1.

and thus, by (2.10), we have that, for sufficiently large n,

0 ≤ f(un(x)) ≤ un(x) ≤ Lun(0) for all x ∈ [0, 1].

Therefore, using (2.10) and lim
n→+∞

λn = 0, we get

lim
n→+∞

λna
f(un)

un(0)
(1 + (u′n)2)

3
2 = 0 in L∞(0, 1).

Accordingly, we infer from (2.11) that the sequence (v′′n)n is bounded in L∞(0, 1) and hence (v′n)n is
bounded in L∞(0, 1). Since, for all n ≥ 1, ‖vn‖∞ = 1, the sequence (vn)n is bounded in W 2,∞(0, 1).
Therefore, there exist a subsequence of (vn)n, still labeled by n, and a function v ∈ C1[0, 1] such that

lim
n→+∞

vn = v in C1[0, 1].

As by (2.11)

lim
n→+∞

v′′n = 0 in L∞(0, 1),

we derive that v′ = 0 and v = 1. This entails, in particular, that

lim
n→+∞

un(x)

un(0)
= 1 uniformly in x ∈ [0, 1].
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Consequently, by (f1), it follows from (2.9) that

0 = lim
n→+∞

∫ 1

0

a(t)
f(un(t))

up−1
n (t)

(
un(t)

un(0)

)p−1

dt = p k

∫ 1

0

a(t) dt < 0,

which is impossible. This contradiction yields (2.7).
Since un is decreasing for all n ≥ 1, to conclude the proof of the lemma it suffices to show that

lim
n→+∞

un(z) = +∞.

Assume by contradiction that there exists a constant C such that, along some subsequence relabeled by
n, we have that

un(x) ≤ un(z) ≤ C
for all n ≥ 1 and x ∈ [z, 1]. Then, arguing as above, we see that

lim
n→+∞

u′n(x) = 0 uniformly in x ∈ [z, 1].

Hence un is a regular solution of (1.1) and, as ‖u′n‖∞ = −u′n(z),

lim
n→+∞

‖u′‖∞ = lim
n→+∞

−u′n(z) = 0.

Therefore, for sufficiently large n, we find that

un(0) = un(z)−
∫ z

0

u′n(t) dt ≤ C + 1,

which contradicts (2.7) and completes the proof. �

Lemma 2.3. Assume (a1) and (f1). Then,

lim
n→+∞

u′n(z) = −∞.

Proof. It suffices to prove the conclusion for regular solutions, for as we already know that any singular
solution satisfies (1.3). Arguing by contradiction, assume that there exist a constant C > 0 and a
subsequence of (u′n(z))n, still labeled by n, such that, for all n ≥ 1,

|u′n(z)| = ‖u′n‖∞ ≤ C.
Hence, by Lemma 2.2, we infer that

un(x)

un(0)
= 1 +

∫ x
0
u′n(t) dt

un(0)
→ 1 uniformly in x ∈ [0, 1].

In particular, this entails that

lim
n→+∞

un = +∞ uniformly in x ∈ [0, 1].

Thus, according to condition (f1), we find that

lim
n→+∞

f(un(x))

uq−1
n (0)

= lim
n→+∞

[
f(un(x))

uq−1
n (x)

(
un(x)

un(0)

)q−1
]

= qh,

uniformly in x ∈ [0, 1]. Hence, we get

lim
n→+∞

∫ z

0

f(un(t))

uq−1
n (0)

a(t) dt = qh

∫ z

0

a(t) dt.

and

lim
n→+∞

∫ 1

z

f(un(t))

uq−1
n (0)

a(t) dt = qh

∫ 1

z

a(t) dt.

On the other hand, integrating the differential equation of (1.1) in (0, 1) yields∫ z

0

a(t)f(un(t)) dt = −
∫ 1

z

a(t)f(un(t)) dt. (2.12)
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Consequently, dividing (2.12) by uq−1
n (0) and letting n→ +∞ yields

qh

∫ z

0

a(t) dt = −qh
∫ 1

z

a(t) dt,

which implies
∫ 1

0
a(t) dt = 0. As this identity contradicts (a1), the proof is complete. �

Lemma 2.4. Assume (a1) and (f1). Then, the following estimates hold:

λnf(un(x)) ≤ −u′n(x)√
1 + (u′n(x))2

(∫ x

0

a(t) dt

)−1

for all x ∈ (0, z],

λnf(un(x)) ≤
(∫ z

0

a(t) dt

)−1

for all x ∈ [z, 1],

(2.13)

λnf(un(x)) ≥ −u′n(z)√
1 + (u′n(z))2

(∫ 1

z

−a(t) dt

)−1

for all x ∈ [0, z],

λnf(un(x)) ≥ −u′n(x)√
1 + (u′n(x))2

(∫ 1

x

−a(t) dt

)−1

for all x ∈ [z, 1],

(2.14)

and, moreover,

λnf(un(0)) ≥ −u′n(z)√
1 + (u′n(z))2

(∫ z

0

a(t) dt

)−1

,

λnf(un(1)) ≤ −u′n(z)√
1 + (u′n(z))2

(∫ 1

z

−a(t) dt

)−1

.

(2.15)

Proof. It should be remembered that f(un) is non-increasing in [0, 1] for all n ≥ 1, because f is non-
decreasing and un is decreasing. Thus, the second term on the right hand side of (2.2) is non-positive.
Hence it follows from (2.2) that

λn

∫ x

0

a(t) dt ≤ 1

f(un(x))

−u′n(x)√
1 + (u′n(x))2

for all x ∈ [0, z]. Thus, the first estimate of (2.13) holds. Similarly, from (2.3) we infer that, for every
x ∈ [z, 1],

λn

∫ 1

x

a(t) dt ≤ 1

f(un(x))

u′n(x)√
1 + (u′n(x))2

,

which implies the second estimate of (2.14).
From the first estimate of (2.13), it becomes apparent that, for every x ∈ [z, 1],

λnf(un(x)) ≤ λnf(un(z)) ≤ −u′n(z)√
1 + (u′n(z))2

(∫ z

0

a(t) dt

)−1

≤
(∫ z

0

a(t) dt

)−1

,

which provides us with the second estimate of (2.13). Analogously, from the second estimate of (2.14) it
can be inferred that, for every x ∈ [0, z],

λnf(un(x)) ≥ λnf(un(z)) ≥ −u′n(z)√
1 + (u′n(z))2

(∫ 1

z

−a(t) dt

)−1

,

which provides us with the first estimate of (2.14).
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Our proof of the first estimate of (2.15) is based upon (2.2). Indeed, thanks to (2.2), we have that

λn

∫ z

0

a(t) dt =
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

+

∫ z

0

d

dt

(
1

f(un(t))

)
u′n(t)√

1 + (u′n(t))2
dt

≥ −u′n(z)√
1 + (u′n(z))2

[
1

f(un(z))
−
∫ z

0

d

dt

(
1

f(un(t))

)
dt

]

=
−u′n(z)√

1 + (u′n(z))2

1

f(un(0))
,

which provides us with the desired estimate. Similarly, our proof of the second estimate of (2.13) relies
upon (2.3). Indeed, changing of sign (2.3), it is apparent that

λn

∫ 1

z

−a(t) dt =
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

+

∫ 1

z

d

dt

(
1

f(un(t))

)
−u′n(t)√

1 + (u′n(t))2
dt

≤ −u′n(z)√
1 + (u′n(z))2

[
1

f(un(z))
+

∫ 1

z

d

dt

(
1

f(un(t))

)
dt

]

=
−u′n(z)√

1 + (u′n(z))2

1

f(un(1))
,

which provides us with the second estimate of (2.13) and ends the proof. �

Lemma 2.5. Assume (a1) and (f1). Then, for sufficiently small η > 0, there exist constants C1 =
C1(η) > 0, C2 = C2(η) > 0 and an integer n0 = n0(η) such that, for every n ≥ n0,

C1 ≤ λnf(un(x)) ≤ C2 for all x ∈ [z − η, z + η]. (2.16)

Proof. Pick η ∈ (0, z). Then, owing to the first estimate of (2.13), we find that, for every n ≥ 1 and
x ∈ [z − η, z],

λnf(un(x)) ≤ −u′n(x)√
1 + (u′n(x))2

(∫ x

0

a(t) dt

)−1

≤
(∫ x

0

a(t) dt

)−1

≤
(∫ z−η

0

a(t) dt

)−1

.

Thus, since f(un) is non-increasing in [0, 1], it becomes apparent that

λnf(un(x)) ≤
(∫ z−η

0

a(t) dt

)−1

for all x ∈ [z − η, 1].

This yields the upper estimate of (2.16).
The proof of the lower estimate is technically more delicate. It relies on the fact that there exist

x̄ ∈ (z, 1) and C̄ > 0 such that, for sufficiently large n,

−u′n(x)√
1 + (u′n(x))2

≥ −u′n(x̄)√
1 + (u′n(x̄))2

≥ C̄ for all x ∈ [z, x̄]. (2.17)

Our proof of (2.17) follows by contradiction. Suppose that, for every x̄ ∈ (z, 1), there is a subsequence of
(u′n(x̄))n, labeled again by n, such that

lim
n→+∞

−u′n(x̄)√
1 + (u′n(x̄))2

= 0.

As u′n is increasing in (z, 1], this implies that

lim
n→+∞

−u′n(x)√
1 + (u′n(x))2

= 0 uniformly in x ∈ [x̄, 1].
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Since, integrating the differential equation of (1.1) on (x̄, 1), we have that

−u′n(x̄)√
1 + (u′n(x̄))2

=

∫ 1

x̄

λna(t)f(un(t)) dt,

it follows that

lim
n→+∞

∫ 1

x̄

λna(t)f(un(t)) dt = 0. (2.18)

On the other hand, using the second estimate of (2.13), it is easily seen that∫ 1

z

−a(t)λnf(un(t)) dt =

∫ x̄

z

−a(t)λnf(un(t)) dt+

∫ 1

x̄

−a(t)λnf(un(t)) dt

≤
∫ x̄
z
−a(t) dt∫ z

0
a(t) dt

+

∫ 1

x̄

−a(t)λnf(un(t)) dt.

Consequently, owing to (2.18), we infer that

lim sup
n→+∞

∫ 1

z

−a(t)λnf(un(t)) dt ≤
∫ x̄
z
−a(t) dt∫ z

0
a(t) dt

. (2.19)

On the other hand, using Lemma 2.3, it follows from the first estimate of (2.14) that

lim inf
n→+∞

∫ z

0

a(t)λnf(un(t)) dt ≥
∫ z

0
a(t) dt∫ 1

z
−a(t) dt

lim
n→+∞

−u′n(z)√
1 + (u′n(z))2

=

∫ z
0
a(t) dt∫ 1

z
−a(t) dt

. (2.20)

Therefore, since ∫ 1

0

λna(t)f(un(t)) dt = 0

for all n ≥ 1, we can conclude from (2.19) and (2.20) that∫ z
0
a(t) dt∫ 1

z
−a(t) dt

≤
∫ x̄
z
−a(t) dt∫ z

0
a(t) dt

,

which is impossible if x̄ is sufficiently close to z.
Finally, combining (2.17) with the second estimate of (2.14) shows that, for sufficiently large n,

λnf(un(x̄)) ≥
(∫ 1

x̄

−a(t) dt

)−1 −u′n(x̄)√
1 + (u′n(x̄))2

≥
(∫ 1

x̄

−a(t) dt

)−1

C̄

and hence

λnf(un(x)) ≥
(∫ 1

x̄

−a(t) dt

)−1

C̄ for all x ∈ [0, x̄].

Therefore, for every η ∈ (0, x̄− z), the lower estimate of (2.16) also holds. This completes the proof. �

Finally, the next result provides a uniform a priori bounds for u′n in [0, z− η]∪ [z+ η, 1] for sufficiently
large n.

Lemma 2.6. Assume (a1) and (f1). Then, for any η ∈ (0,min{z, 1−z}), there exists a constant C = C(η)
and an integer n0 = n0(η) such that, for every n ≥ n0,

|u′n(x)| ≤ C for all x ∈ [0, z − η] ∪ [z + η, 1].

Proof. Fix η ∈ (0,min{z, 1− z}). We claim that

sup
n≥1
|u′n(z − η)| < +∞. (2.21)

Assume, on the contrary, that there is a subsequence of (u′n(z − η))n, relabeled by n, such that

lim
n→+∞

u′n(z − η) = −∞.
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Then, integrating the differential equation of (1.1) on (z−η, z), it follows from the first estimate of (2.14)
that

u′n(z − η)√
1 + (u′n(z − η))2

− u′n(z)√
1 + (u′n(z))2

=

∫ z

z−η
a(t)λnf(un(t)) dt

≥ −u′n(z)√
1 + (u′n(z))2

∫ z
z−η a(t) dt∫ 1

z
−a(t) dt

.

Thus, letting n→ +∞ in this inequality and using Lemma 2.3 yields

0 ≥
∫ z
z−η a(t) dt∫ 1

z
−a(t) dt

> 0,

which is impossible. Therefore, (2.21) holds.
Analogously, to prove that

sup
n≥1
|u′n(z + η)| < +∞, (2.22)

we will argue by contradiction assuming that, along some subsequence (u′n(z + η))n labeled again by n,

lim
n→+∞

u′n(z + η) = −∞.

As above, integrating the differential equation of (1.1) on (z, z + η), we find from the second estimate of
(2.14) that

−u′n(z)√
1 + (u′n(z))2

+
u′n(z + η)√

1 + (u′n(z + η))2
= −

∫ z+η

z

a(t)λnf(un(t)) dt

≥
∫ z+η

z

−a(t)

(∫ 1

t

−a(t)dt

)−1 −u′n(t)√
1 + (u′n(t))2

dt

≥
∫ z+η
z
−a(t) dt∫ 1

z
−a(t) dt

−u′n(z + η)√
1 + (u′n(z + η))2

.

Thus, letting n→ +∞, again from Lemma 2.3, it follows that

0 ≥
∫ z+η
z
−a(t) dt∫ 1

z
−a(t) dt

> 0,

which is impossible. Therefore, (2.22) holds true and the proof is complete. �

3. Proof of Theorem 1.2

From Lemmas 2.2 and 2.6 we infer that, for any given η ∈ (0,min{z, 1− z}),

lim
n→+∞

un(x)

un(0)
= lim
n→+∞

(
1 +

1

un(0)

∫ x

0

u′n(t) dt

)
= 1 uniformly in x ∈ [0, z − η],

which provides us with (1.5). In particular, we have that

lim
n→+∞

un(x)

un(0)
= 1 for all x ∈ [0, z).

Thus, condition (f1) implies that

lim
n→+∞

f(un(x))

uq−1
n (0)

= lim
n→+∞

[
f(un(x))

uq−1
n (x)

(
un(x)

un(0)

)q−1
]

= qh uniformly in x ∈ [0, z − η] (3.1)

and, in particular,

lim
n→+∞

f(un(x))

uq−1
n (0)

= qh for all x ∈ [0, z). (3.2)
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Moreover, by the monotonicity properties of un and f , there exists an integer n0 such that, for every
n ≥ n0 and x ∈ [0, 1],

0 ≤ f(un(x))

uq−1
n (0)

≤ f(un(0))

uq−1
n (0)

≤ qh+ 1. (3.3)

Consequently, integrating the differential equation of (1.1) on (0, z) and using (3.2) and (3.3), it follows
from the dominated convergence theorem that

lim
n→+∞

(
1

λnu
q−1
n (0)

−u′n(z)√
1 + (u′n(z))2

)
= lim
n→+∞

∫ z

0

a(x)
f(un(x))

uq−1
n (0)

dx = qh

∫ z

0

a(x) dx (3.4)

and hence

lim
n→+∞

(
λnu

q−1
n (0)

)
=

1

qh
∫ z

0
a(x) dx

. (3.5)

Therefore, it follows from (3.1) that

lim
n→+∞

(λnf(un(x))) = lim
n→+∞

(
f(un(x))

uq−1
n (0)

λnu
q−1
n (0)

)
=

1∫ z
0
a(x) dx

uniformly in x ∈ [0, z − η],

which provides us with (1.7).
According to Lemma 2.5, for sufficiently small η > 0, we have that

lim
n→+∞

f(un(z + η)) ≥ lim
n→+∞

C1

λn
= +∞.

Thus, according to (f1), we get

lim
n→+∞

un(z + η) = +∞

and hence, thanks to Lemma 2.6,

lim
n→+∞

un(1)

un(z + η)
= lim
n→+∞

(
1 +

1

un(z + η)

∫ 1

z+η

u′n(t) dt

)
= 1.

Consequently, we also have that

lim
n→+∞

un(1) = +∞.

Thus, by Lemma 2.6, we infer

lim
n→+∞

un(x)

un(1)
= lim
n→+∞

(
1 +

1

un(1)

∫ x

1

u′n(t) dt

)
= 1 uniformly in x ∈ [z + η, 1],

or, equivalently,

lim
n→∞

un(x)

un(z + η)
= 1 uniformly in x ∈ [z + η, 1]. (3.6)

Integrating the differential equation of (1.1) in (0, 1) yields∫ 1

0

f(un(x))a(x) dx = 0

and hence ∫ z

0

f(un(x))

uq−1
n (0)

a(x) dx = −
∫ z+η

z

f(un(x))

uq−1
n (0)

a(x) dx−
∫ 1

z+η

f(un(x))

uq−1
n (0)

a(x) dx. (3.7)

From (3.4), we already know that

lim
n→+∞

∫ z

0

f(un(x))

uq−1
n (0)

a(x) dx = qh

∫ z

0

a(x) dx. (3.8)
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On the other hand, from (3.3), we infer that

lim sup
n→+∞

∫ z+η

z

−a(x)
f(un(x))

uq−1
n (0)

dx ≤ ‖a‖∞(qh+ 1)η

and thus

lim sup
n→+∞

∫ z+η

z

−a(x)
f(un(x))

uq−1
n (0)

dx = O(η) as η → 0+. (3.9)

In order to estimate the second term on the right hand side of (3.8) we proceed as follows. Since the

sequence
(
un(z+η)
un(0)

)
n

is bounded, from each of its subsequences we can extract a further subsequence,

labeled by nk, such that

lim
k→+∞

unk
(z + η)

unk
(0)

= c(η) ∈ [0, 1]. (3.10)

Hence, thanks to (f1), it follows from (3.6) that

lim
k→+∞

f(unk
(x))

uq−1
nk (z + η)

= lim
k→+∞

(
f(unk

(x))

uq−1
nk (x)

uq−1
nk

(x)

uq−1
nk (z + η)

)
= qh uniformly in x ∈ [z + η, 1].

So, due to (3.10), we find that

lim
k→+∞

∫ 1

z+η

a(x)
f(unk

(x))

uq−1
nk (0)

dx = lim
k→+∞

∫ 1

z+η

a(x)
f(unk

(x))

uq−1
nk (z + η)

uq−1
nk

(z + η)

uq−1
nk (0)

dx

= qh(c(η))q−1

∫ 1

z+η

a(x) dx.

(3.11)

Consequently, particularizing (3.7) at n = nk, k ≥ 1, letting k → +∞, using (3.8), (3.9) and (3.11), and
dividing by qh, we are driven to the identity∫ z

0

a(x) dx = (c(η))q−1

∫ 1

z+η

−a(x) dx+O(η). (3.12)

Therefore, from (3.6) and (3.10) one can also infer that

lim
k→+∞

unk
(x)

unk
(0)

= lim
k→∞

(
unk

(x)

unk
(z + η)

unk
(z + η)

unk
(0)

)
= c(η) uniformly in x ∈ [z + η, 1]. (3.13)

Subsequently, we pick any η1 ∈ (0, η) and fix it. As the sequence
(
unk

(z+η1)

unk
(0)

)
k

is bounded, we can extract

from it a further subsequence, relabeled by nk, such that

lim
k→+∞

unk
(z + η1)

unk
(0)

= c(η1) ∈ [0, 1]

and, arguing as above, we also have that∫ z

0

a(x) dx = (c(η1))q−1

∫ 1

z+η1

−a(x) dx+O(η1),

as well as

lim
k→+∞

unk
(x)

unk
(0)

= c(η1) uniformly in x ∈ [z + η1, 1]. (3.14)

Since η1 < η, we can conclude from (3.13) and (3.14) that c(η) = c(η1). This shows that c(η) is constant
in a right neighborhood of z, say c(η) = c. Consequently, (3.12) becomes into∫ z

0

a(x) dx = cq−1

∫ 1

z+η

a(x) dx+O(η).
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Therefore, letting η → 0+, it turns out that

c =

( ∫ z
0
a(x) dx∫ 1

z
−a(x) dx

) 1
q−1

.

As this constant is independent of the particular subsequence chosen, one can conclude that, for the
whole sequence,

lim
n→+∞

un(x)

un(0)
=

( ∫ z
0
a(x) dx∫ 1

z
−a(x) dx

) 1
q−1

uniformly in x ∈ [z + η, 1], (3.15)

which ends the proof of (1.6). Moreover, by (f1), (3.5) and (3.15), we also find that

lim
n→+∞

(λnf(un(x))) = lim
n→+∞

(
λnu

q−1
n (0)

f(un(x))

uq−1
n (x)

uq−1
n (x)

uq−1
n (0)

)

=
1

qh
∫ z

0
a(x) dx

qh

∫ z
0
a(x) dx∫ 1

z
−a(x) dx

=
1∫ 1

z
−a(x) dx

uniformly in x ∈ [z + η, 1],

which provides us with (1.8).
Finally, integrating the differential equation of (1.1) and using the identities (1.7) and (1.8), we conclude

that

lim
n→+∞

−u′n(x)√
1 + (u′n(x))2

= lim
n→+∞

∫ x

0

λnf(un(x)) dx =

∫ x
0
a(t) dt∫ z

0
a(t) dt

uniformly in x ∈ [0, z − η]

and

lim
n→+∞

−u′n(x)√
1 + (u′n(x))2

= lim
n→+∞

∫ 1

x

λnf(un(x)) dx =

∫ 1

x
−a(t) dt∫ 1

z
−a(t) dt

uniformly in x ∈ [z + η, 1].

From these relations, (1.9) and (1.10) can be easily obtained. This ends the proof of Theorem 1.2. �

4. A technical lemma derived from the proof of Theorem 1.2

As a direct consequence of the proof of Theorem 1.2, the next result holds.

Lemma 4.1. Assume (a1) and (f1). Then,

lim
n→+∞

(un(0)− un(1)) = +∞.

Proof. From (3.15) it follows that

lim
n→+∞

un(1)

un(0)
=

( ∫ z
0
a(x) dx∫ 1

z
−a(x) dx

) 1
q−1

∈ (0, 1),

because
∫ 1

0
a(x) dx < 0. Consequently, by Lemma 2.2, we get

lim
n→+∞

(un(0)− un(1)) = lim
n→+∞

[
un(0)

(
1− un(1)

un(0)

)]
= +∞,

which ends the proof. �
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The proof of this result can be substantially simplified if one further assumes that f is globally Lipschitz
in [0,+∞). Indeed, in such case, (3.15) is far from necessary in the proof of Lemma 4.1. Indeed, the
estimates (2.15) in Lemma 2.4 yield

f(un(0))− f(un(1)) ≥ 1

λn

−u′n(z)√
1 + (u′n(z))2

[(∫ z

0

a(t) dt

)−1

−
(∫ 1

z

−a(t) dt

)−1
]

for all n ≥ 1. Thus, letting n→ +∞ in the previous estimate, it follows from Lemma 2.3 that

lim
n→+∞

(f(un(0))− f(un(1))) = +∞,

because
∫ 1

0
a(x) dx < 0. Moreover, as f is globally Lipschitz continuity, there is a constant L > 0 such

that
f(un(0))− f(un(1)) ≤ L (un(0)− un(0))

and then
lim

n→+∞
(un(0)− un(0)) = +∞.

It is clear that this situation is compatible only with assuming q ≤ 2 in (f1).

5. Proof of Theorem 1.1

Proof of Part (i). Let us prove that if

both

(∫ z

x

a(t) dt

)− 1
2

∈ L1(0, z) and

(∫ z

x

a(t) dt

)− 1
2

∈ L1(z, 1)

then, for sufficiently small λ > 0, any positive solution of (1.1) is singular. Our proof of this feature
proceeds by contradiction. Assume that there exists a sequence of positive regular solutions, ((λn, un))n,
with

lim
n→+∞

λn = 0. (5.1)

Then, integrating the differential equation of (1.1), it is easily seen that, for every n ≥ 1,

0 ≤
∫ z

x

λna(t)f(un(t)) dt =
u′n(x)√

1 + (u′n(x))2
− u′n(z)√

1 + (u′n(z))2
≤ 1 for all x ∈ [0, 1]. (5.2)

According to Lemma 2.3, we also have that, for sufficiently large n,

1

2
<

−u′n(z)√
1 + (u′n(z))2

< 1. (5.3)

Moreover, if we pick a sufficiently small η > 0 so that Lemma 2.5 holds, then there exist constants C1, C2,
with 0 < C1 < C2, such that, for sufficiently large n,

C1 ≤ λnf(un(x)) ≤ C2 for all x ∈ [z − η, z + η]. (5.4)

Incorporating (5.2), (5.3) and (5.4) into the estimate (2.1) of Lemma 2.1, it follows that there exists a
constant D > 0 such that, for sufficiently large n,

|u′n(x)| ≤ D
(∫ z

x

a(t) dt

)− 1
2

for all x ∈ [z − η, z + η] \ {z}.

Therefore, according to Lemma 2.6, we have that

un(0)− un(1) =

∫ z−η

0

|u′n(t)| dt+

∫ z

z−η
|u′n(t)| dt+

∫ z+η

z

|u′n(t)| dt+

∫ 1

z+η

|u′n(t)| dt

≤ C(1− 2η) +D

[∫ z

z−η

(∫ z

x

a(t) dt

)− 1
2

dx+

∫ z+η

z

(∫ z

x

a(t) dt

)− 1
2

dx

]
< +∞.

As this contradicts the thesis of Lemma 4.1, the proof of Part (i) is complete. �
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Proof of Part (ii). Let us prove that if

either

(∫ z

x

a(t) dt

)− 1
2

/∈ L1(0, z) or

(∫ z

x

a(t) dt

)− 1
2

/∈ L1(z, 1),

then, for sufficiently small λ > 0, any positive solution of (1.1) is regular. Indeed, suppose, by contradic-
tion, that there is a sequence ((λn, un))n of positive singular solutions of (1.1) satisfying (5.1). As in the
proof of Part (i), integrating the differential equation also provides us with the identity (5.2). Similarly,
by Lemma 2.5, η > 0 can be chosen so that (5.4) holds for sufficiently large n. Shortening the size of η,
we can also assume that

C2

∫ z+η

z−η
|a(t)| dt < 1. (5.5)

Thus, substituting (5.2), (5.4) and (5.5) into the estimate (2.1) of Lemma 2.1 and taking into account
that now

−u′n(z)√
1 + (u′n(z))2

= 1,

we find that, for sufficiently large n and every x ∈ [z − η, z + η] \ {z},

−u′n(x) =
1−

∫ z
x
λna(t)f(un(t)) dt√

2−
∫ z
x
λna(t)f(un(t)) dt

√∫ z
x
λna(t)f(un(t)) dt

≥
1− C2

∫ z+η
z−η |a(t)| dt

√
2
√
C2

∫ z
x
a(t) dt

.

Consequently, there exists a constant, C3 > 0, such that, for sufficiently large n,

|u′n(x)| ≥ C3

(∫ z

x

a(t) dt

)− 1
2

if 0 < |x− z| < η.

Therefore, either un /∈ L1(z − η, z), or u′n /∈ L1(z, z + η), which contradicts the fact that both un ∈
W 1,1(0, z) and un ∈ W 1,1(z, 1), as it was already established by (1.2). This ends the proof of the
theorem. �

6. Final remarks

The restriction p ≥ 2 that we have imposed in assumption (f1) has been used only in the proof of Lemma
2.2 to guarantee that any sequence ((λn, un))n of positive bounded variation solutions of problem (1.1),
with

lim
n→∞

λn = 0, (6.1)

satisfies
lim

n→+∞
un(0) = +∞. (6.2)

Regardless the assumptions that one might impose to f at 0, condition (6.2) implies that

lim
n→+∞

un(x) = +∞ uniformly in x ∈ [0, z]. (6.3)

Therefore, whenever (6.1) and (6.2) are satisfied, we can replace (f1) with

(f2) the function f ∈ C(R) ∩ C1(0,+∞) satisfies f(s) > 0 and f ′(s) ≥ 0 for all s > 0, and there exist
four constants, h > 0, k > 0, q > 1 and p > 1, such that

lim
s→+∞

f(s)

sq−1
= qh, lim

s→0+

f(s)

sp−1
= pk,

in order to conclude that, under (a1) and (f2), the condition (a2) characterizes the development of
singularities by the positive solutions of (1.1) having large L∞-norms.

Theorem 6.1. Assume (a1) and (f2). Let ((λn, un))n be an arbitrary sequence of positive solutions of
(1.1) satisfying (6.1) and (6.2). Then, for all large n, the following assertions hold:

(i) (λn, un) is singular if (a2) holds;
(ii) (λn, un) is regular if (a2) fails.
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It should be further observed that, under (a1) and (f2), condition (6.1) is a consequence, via (6.3), of
(6.2). Indeed, as we are assuming in particular that a(x) > 0 for a.e. x ∈ [0, z] and

lim
s→+∞

f(s) = +∞,

integrating the equation of (1.1) on [0, z] and using (6.3) yield

lim inf
n→+∞

1

λn
≥ lim inf

n→+∞

(
1

λn

−u′n(z)√
1 + (u′n(z))2

)
= lim
n→+∞

∫ z

0

a(x)f(un(x)) dx = +∞.
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