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1. Introduction 

In natural wetlands and submerged soils, humic acids (HA) are involved in numerous redox processes (Keller et al., 2009). 

HA can be used by facultative anaerobic bacteria as terminal electron acceptors during anaerobic respiration (Lovley et al., 1996) and 

upon re-aeration, they can donate electrons to oxygen (Klupfel et al., 2014). In addition to acting as redox buffers, HA can stimulate Fe 

reduction via electron shuttling. HA also mediate electron transfer to organic (e.g. halogenated hydrocarbons) and inorganic (e.g. As, 

Hg) pollutants, affecting their geochemical cycle. 

The antioxidant capacity (AOC) of HA, defined as the capacity to donate electrons by the reduced functional groups, depends 

on their molecular structure (phenolic groups and quinones act as major reducible moieties in HA) (Nanny and Ratasuk, 2007) and on 

soil conditions (pH and Eh). 

The aim of this work is to quantify the AOC of free and bound HA extracted from saltmarsh soils of the Marano and Grado 

Lagoon (northern Adriatic Sea) using the ABTS decolorization assay and to link AOC to their geochemical characteristics. 

 

2. Materials and methods 

Surface soils were sampled in three saltmarshes of the Marano and Grado Lagoon: Allacciante di Marano (AM) (natural 

saltmarsh with strong river influences), Allacciante di San Andrea (ASA) (channel-fringing saltmarsh where dredging operations 

influenced the natural process of soil formation) and Barena di Martignano (BM) (back-barrier saltmarsh where the influence of the 

open sea is dominant). In each saltmarsh two sampling points were considered. 

HA were extracted from soils under a N2 flux for 1h, first with 0.5 M NaOH (free HA) and then with 0.1 M Na4P2O7 plus 0.1 

M NaOH (bound HA) (De Nobili et al., 2008) The extracts were centrifuged (14000 rpm for 20 min) and supernatants were filtered 

using 0.2 µm cellulose filters. Free and bound HA were precipitated at pH 1 with 6 M HCl, separated by centrifugation, dialyzed against 

ultrapure water (until Cl- free), frozen and then freeze-dried. 

Organic carbon (Corg), total nitrogen (Ntot) and carbon stable isotope composition (δ13C) of bulk soils and HA (free and bound) 

were determined by a Costech Instruments Elemental Combustion System elemental analyser, coupled with an Isotope Ratio Mass 

Spectrometer (Thermo Scientific Delta V Advantage). UV-vis spectra were recorded using a Varian Cary 1E spectrophotometer from 

220 to 800 nm at a scan rate of 60 nm min-1. ATR-FTIR spectra were recorded with a PerkinElmer Spectrum 100 FTIR spectrometer 

over an interval from 4000 to 800 cm-1. A linear baseline correction was applied to all spectra. Intensity ratios were calculated for 

specific pairs of bands (Inbar et al., 1989). 

AOC was determined using the 2,2’-azinobis-(3-ethylbenzothiazolinesulfonic acid) radical cation (ABTS•+) decolorization 

assay. The ABTS•+ was generated according to Re et al. (1999) at two different pH: 4.79 (0.1 M citrate buffer) and 7.00 (0.1 M phosphate 

buffer). For measurements, the ABTS•+ solution was diluted to an absorbance of 0.70 at 734 nm. After adding spikes (20, 50, 100, 200, 

300, 400 µL) of HA solutions (0.5 g L-1), the absorbance decrease at 734 nm was measured continuously for 18 min. The AOC, expressed 

as mmol e- gHA
-1,was calculated considering the decrease in absorbance measured 30 s after addition of HA. 

 

3. Results and discussion 

Corg, Ntot and δ13C values of bulk soils and free and bound HA are reported in Table 1. These results highlight the presence of 

a geographical gradient among the three saltmarshes. The amount of Corg present in soils decreases from the innermost saltmarsh (AM) 

toward the most external one (BM). At the same time, δ13C values become less negative, reflecting the decreasing contribution of 

terrestrial inputs. This is confirmed by C/N ratios. Free and bound HA reflect the same trend of bulk Corg. On the other hand, bound HA 

well differentiate from free HA on the basis of their C/N ratio. 

 
Table 1: Corg, Ntot, δ13C and C/N values of bulk soils, free and bound HA. 

Station  Soil  Free HA  Bound HA 

  Corg Ntot δ13C C/N  Corg Ntot δ13C C/N  Corg Ntot δ13C C/N 

  % % ‰ V-PDB   % % ‰ V-PDB   % % ‰ V-PDB  

AM1  4.5 0.4 -24.9 11.1  52.0 6.5 -25.9 8.0  51.6 4.3 -25.6 11.9 

AM3  4.9 0.4 -25.1 12.2  49.5 5.6 -25.5 8.8  53.3 3.9 -25.7 13.7 

                ASA1  1.6 0.2 -19.0 9.3  n.d n.d. -19.4 n.d.  48.5 5.1 -19.2 9.6 

ASA3  4.8 0.4 -21.4 10.9  48.7 6.4 -21.6 7.6  52.4 5.2 -21.4 10.1 

                BM1  0.4 0.1 n.d. 9.1  53.4 8.8 -22.5 6.1  56.2 6.0 -22.9 9.4 

BM3  0.5 0.1 -19.4 9.1  50.9 8.8 -19.1 5.8  51.0 5.3 -18.5 9.7 
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Figure 1: a. Time course of absorbance at 734 nm for the reactions of ABTS·+ with increasing quantities of HA (BM3 free HA, as example). b. 

Correlation between the AOC measured at pH 4.79 and 7.00 for free (grey circles) and bound (black squares) HA. 
 

A stable end-point of the reaction between ABTS•+ and HA was not reached during the time allowed for the experiment (Figure 

1a). This suggests that at least two mechanisms may be involved: a faster one, that occurs at the beginning of the reaction and a slower 

one that lasts over time. We decided to calculate the AOC after 30 s of reaction because long periods of time are not environmentally 

significant considering that, to support electron transfer for biological reactions, fast processes are involved. 

We determined the AOC both in acid and neutral conditions. For all samples, the AOC is higher at pH 7.00 compared to pH 

4.79 (Figure 1b), probably due to a greater dissociation of phenolic groups. Moreover, bound HA present a higher AOC (about +20%) 

compared to that of free HA: this can be attributed to increased molecular complexity and degree of aromaticity in the bound HA (as 

highlighted by FTIR and UV-vis spectra). 

Both free and bound HA show a decrease of AOC values moving from the innermost saltmarsh (AM) to the most external one 

(BM). The negative correlation between δ13C and AOC values (Figure 2a) and the positive correlation between C/N ratio and AOC 

values (Figure 2b) are consistent with each other and confirm that HA with more terrestrial influence have a higher AOC. This could 

be due to a major phenolic character of terrestrial-derived HA. FTIR band ratios and SUVA254 support this hypothesis. 

 

 
Figure 2: Antioxidant capacity as a function of δ13C (a) and C/N ratio (b) of free (grey circles) and bound (black squares) HA. 

 

4. Conclusions 

This study demonstrates that the AOC of HA extracted from saltmarsh soils is strongly related to their geochemical 

characteristics. Future studies will focus on the kinetics and the mechanisms involved during electron transfer from HA to the ABTS•+, 

to highlight the processes involved in the fast and slow steps of the ABTS•+ reduction. 
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