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Abstract: We address an informational puzzle that appears with a non-Markovian open qubit
dynamics: namely the fact that, while, according to the existing witnesses of information flows,
a single qubit affected by that dissipative dynamics does not show information returning to it from
its environment, instead two qubits do show such information when evolving independently under
the same dynamics. We solve the puzzle by adding the so-called quasi-entropies to the possible
witnesses of information flows.
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1. Introduction

The theory of non-Markovian quantum dynamics [1–4] of open quantum systems in interaction
with an environment has exposed behaviours that peculiarly differ from those typical of memoryless
quantum dynamical semigroups. One possible approach towards non Markovianity is based on
the presence of a so-called back-flow of information from environment to system [5,6], while in the
standard semigroup setting, information about an open quantum system gets lost to the environment
in the course of time.

Within this scheme, there appears an informational puzzle: a recent result [7] provides a
non-Markovian qubit dynamics Λt that does not show information flowing from the environment to
the system, while the tensor product dynamics Λt ⊗Λt does. In other words, in some cases it may
happen that while the irreversible time-evolution Λt of one qubit in a given environment is such that
information can only flow from the qubit to the environment, by placing two non-interacting qubits
in the same environment which affects them independently and in the same way, one instead finds
that, under the dynamics Λt ⊗Λt, information may flow back from the environment to the compound
two-qubit open quantum system.

Obviously in order to talk of back-flow of information one needs witnesses to expose it: these
witnesses have recently been generically characterised as Physicality Quantifiers [8], namely as
functionals I (d)S on statistical ensembles E (d)S consisting of d quantum states that monotonically decrease
under the action of completely positive maps. Within this framework, Markovianity of a time-evolution
is identified with the monotonic decrease in time of all possible Physicality Quantifiers I (d)S .

Most Physicality Quantifiers I (d)S used so far, as trace-distances or generalised trace-distances [5,6],

depend on statistical ensembles E (2)S consisting of two density matrices: all of them are unable to see
any back-flow of information under the dynamical maps Λt mentioned above, while they do witness
it in the case of Λt ⊗Λt. On the other hand, Physicality Quantifiers relative to three or more density
matrices are scarcely available; therefore, instead of looking for suitable higher degree monotone
functionals on E (d)S , with d ≥ 3, we propose to enlarge the class of functionals on E (2)S by adding
to them the so-called quasi-entropies [9–12]. These quantities, besides generalising to the quantum
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setting various classical informational tools, may be used in quantum error corrections [12]. Instead,
in the following we suggest a dynamical use of them, by showing that quasi-entropies can witness
a back-flow of information under Λt. The key point will be the lack of Schwartz-Positivity of the
maps Λt,s that intertwine the dynamics Λs up to time s ≥ 0, with the dynamics Λt up to time t ≥ s:
Λt = Λt,s ◦Λs. In this way, the informational puzzle disappears; namely, it is not true that there is
back-flow of information under Λt ⊗Λt but not under Λt; rather, what occurs is that the back-flow
of information due to Λt needs more powerful witnesses to be revealed than those offered so far in
the literature.

The material below is organised as follows: in Section 2 we resume the basics of open quantum
dynamics and of non-Markovianity by means of a few illustrative models; in Section 3 we introduce
the notion of Physicality Quantifiers, present and discuss in detail the informational puzzle relative to
the back-flow of information, while in Section 4 we solve the puzzle by means of the quasi-entropies
that we then propose to add to the class of Physicality Quantifiers.

2. Open Quantum Dynamics

Open quantum systems S interacts weakly with their environment E, typically a large quantum
system with many degrees of freedom in equilibrium with respect to a given Hamiltonian HE. The
open system S is instead a, usually finite, n-level system subjected to a Hamiltonian HS, while S and
E interact via a Hamiltonian λHSE, λ being a small, dimensionless coupling constant making the
interaction a perturbation of the free Hamiltonian HS + HE.

In the following, we shall mainly focus upon the time-evolution in the Schrödinger picture where
the dynamics of the open system S is given by linear maps on the state space S(S), that is on the
convex set of density matrices, that are n× n positive matrices of trace one, whose eigenvalues are
interpreted as probabilities and fix the system S statistical properties.

The standard approach [1–3,13] to the description of the dynamics of S in the presence of the
environment E starts from a factorised initial state of the systems S + E, namely ρSE = ρ⊗ ρE, where
ρ is any possible system S density matrix and ρE is an environment equilibrium reference state such
that [ρE, HE] = 0. The compound initial state ρ ⊗ ρE evolves in time into ρSE(t) according to the
Liouville-von Neumann equation

∂tρSE(t) = −i [Hλ , ρSE(t)] , Hλ = HS + HE + λ HSE , h̄ = 1 . (1)

The state of S at time t is obtained by partial tracing over the environment degrees of freedom,

TrE (ρSE) = ρ 7−→ ρt = Tr (ρSE(t)) =: Λt[ρ] , (2)

yielding a linear dynamical map Λt formally generated by an integro-differential master
equation [1–3,13]

∂tρt =
∫ t

0
dτ K(t− τ)[ρτ ] =

∫ t

0
dτ K(τ)[ρt−τ ] , (3)

where the kernel K(τ) acts linearly on the state space S(S) and depends on the full Hamiltonian
dynamics e−itHλ integrated over the past of S.

Not much can in general be said about the linear map Λt solution to (3), except that it must
be Completely Positive [1], namely that, besides preserving the positivity of any initial state ρ of S,
when extended to the dynamics Λt ⊗ id of the system S + S, that is to the system S coupled to an
identical inert ancilla S, it also preserves the positivity of any density matrix in Mn(C)⊗Mn(C). In the
expression above, "id" denotes the identity operation on the algebra Mn(C) of n× n complex matrices
associated with the Hilbert space Cn of the system S.

Dynamical maps Λt must be positivity preserving, in short Positive, as they must turn density
matrices into density matrices leaving intact the positivity of their spectrum which must, at each
positive time t ≥ 0, amount to a probability distribution. Complete Positivity instead refers to the fact
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that the extended dynamics Λt ⊗ id must preserve the positivity of all states of the compound systems
S + S. The reason why Positivity of the map is not enough is that, without Complete Positivity, there
might be entangled states of S + S that develop negative eigenvalues under the action of Λt ⊗ id [14].
The fact that the solutions of (3) are Completely Positive stems from the maps Λt being expressible in
Kraus-Stinespring form [1],

ρt = Λt[ρ] = ∑
α

Lα(t) ρL†
α(t) , ∑

α

L†
α(t)Lα(t) = I , (4)

which identifies Completely Positive maps. In the above expression, the matrices Lα(t) ∈ Mn(C)
depend on the whole compound dynamics of open quantum system S and environment E between
times 0 and t, while the last equality guarantees the maps Λt to be trace-preserving: Tr(ρt) = Tr(ρ) for
all t ≥ 0.

2.1. Quantum Dynamical Semigroups

Because of its dependence on the system S past evolution, the linear map Λt in (4) cannot in
general fulfil the forward-in-time semigroup composition law

Λt ◦Λs = Λs ◦Λt = Λt+s , s, t ≥ 0 . (5)

Such a property can be enforced enforce by a so-called Markovian approximation whereby in (3) ρt−τ is
replaced by ρt and

∫ t
0 dτ K(τ) by a time independent linear map L : ρ 7→ L[ρ] :=

∫ +∞
0 dτ K(τ), so that

the family of true, but analytically uncontrollable, Completely Positive maps Λt, t ≥ 0, solutions to (3),
is substituted by a one-parameter semigroup of linear maps Λt = etL solutions to time-independent
master equation

∂tρt = L[ρt] . (6)

Only specific approximation procedures like the weak and strong coupling limits and the low density
limit [1], guarantee that the approximating maps Λt are Completely Positive: in general, one easily ends
up with a not even Positive dynamics [2,3,14,15]. Instead, under the above mentioned mathematically
rigorous approximations, the generator L has the so-called GKSL form in agreement with the renown
theorems of Gorini-Kossakowski-Sudarshan [16] and Lindblad [17] about the generators of semigroups
of Completely Positive, trace-preserving maps Λt.

Theorem 1. A semigroup Λt, t ≥ 0, on the state space S(S) of an open quantum system S consists of
Completely Positive maps if and only if the generator L reads

L[ρ] = −i [H , ρ] +
n2−1

∑
α,β=1

Cαβ

(
Fα ρ F†

β −
1
2

{
F†

β Fα , ρ
})

, (7)

where the matrices Fα ∈ Mn(C) are traceless and orthogonal with respect to the Hilbert-Schmidt scalar product

Tr
(

F†
α Fβ

)
= δαβ, so that, together with Fn2 :=

I√
n

, they constitute an orthonormal basis in Mn(C), while the

complex coefficients form a Positive semi-definite (n2 − 1)× (n2 − 1) (Kossakowski) matrix C = [Cαβ] ≥ 0 .

The following example discusses the physical consequences of Complete Positivity.

Example 1. Consider one qubit (2-level system) undergoing a purely dissipative time-evolution generated by
the master equation

∂tρt = L[ρ] =
α

2

(
σ1 ρt σ1 − ρt

)
+

α

2

(
σ2 ρt σ2 − ρt

)
− β

2

(
σ3 ρt σ3 − ρt

)
, (8)
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where α ≥ 0, with initial condition ρ0 = ρ. By means of the Pauli matrices σ1,2,3 and the 2× 2 identity matrix
I, in the so-called Block representation, one writes the initial density matrix ρ ∈ M2(C) as

ρ =
1
2

(
I+ r1σ1 + r2σ2 + r3σ3

)
, r2

1 + r2
2 + r2

3 ≤ 1 , (9)

where the condition on~r = (r1, r2, r3) ∈ R3 is necessary and sufficient for the positivity of the spectrum of ρ.
Since σjσk = δjk − (1− δjk) σkσj, the Pauli matrices are eigenvectors of the generator:

L[I] = 0 , L[σ1] = −(α− β) σ1 , L[σ2] = −(α− β) σ2 , L[σ3] = −2 α σ3 . (10)

Then, the semigroup Λt = etL solution to (8) is such that

Λt[I] = I , Λt[σ1,2] = e−(α−β)t σ1,2 , Λt[σ3] = e−2αtσ3 , (11)

whence the solution ρt = Λt[ρ] to (8) reads

ρt =
1
2

(
I+ e−(α−β)t(r1σ1 + r2σ2) + e−2αtr3σ3

)
, (12)

whence positivity of ρt at all times t ≥ 0 is equivalent to α ≥ β. Whether the maps Λt are also Completely
Positive depends on whether the so-called Choi-matrix

Mt := Λt ⊗ id[Psym] =
1
4

(
I⊗ I+ e−(α−β)t(σ1 ⊗ σ1 − σ2 ⊗ σ2) + e−2αtσ3 ⊗ σ3

)
(13)

=
1
2


1 + e−2αt 0 0 2e−(α−β)t

0 1− e−2αt 0 0
0 0 1− e−2αt 0

2e−(α−β)t 0 0 1 + e−2αt

 , (14)

is also positive [18], where

Psym =
1
4

(
I⊗ I+ σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3

)
(15)

is the projection onto the symmetric entangled two-qubit state

|Ψsym〉 =
1√
2

(
|00〉+ |11〉

)
, where σ3|0〉 = |0〉 , σ3|1〉 = −|1〉 . (16)

Notice that Mt describes the time-evolution of the initial entangled two-qubit state Psym under the dynamical
maps Λt ⊗ id. One computes that, at small times t ≥ 0, the determinant of Mt,

Det(Mt) =
(

1− e−2αt
)2
((

1 + e−2αt
)2
− 4 e−2(α−β)t

)
' −32 α2 β t3

and can thus be positive if and only if β ≤ 0. The condition α ≥ β with β > 0 guarantees the positivity of ρt,
but it makes a negative eigenvalue appear in the spectrum of the time-evolving two-qubit state state Mt which
could not then be any longer considered a proper density matrix. The condition β ≤ 0 is indeed the only way to

comply with the positivity of the Kossakowski matrix C =
1
2

diag(α, α,−β) associated to the generator in (8)
and thus, as demanded by Theorem 1, with Complete Positivity.

Through the positivity of the Kossakowski matrix C = [Cαβ] (see (7)), Complete Positivity puts
constraints on the dynamics of the system described by Λt; in particular, in the above example the
parameter β must be non-positive, while mere Positivity of Λt only asks β not to be larger than α.
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Complete Positivity is sometimes rejected as an unphysical mathematical simplification [19] because
the constraints it imposes upon the dynamics follow from a hypothetical initial statistical coupling of
the open quantum system S with an uncontrollable, dynamically inert copy of itself whose only role is
to allow for initial entanglement between them. A more physically palatable ground for the necessity
of Complete Positivity emerges when one considers the dynamical maps Λt ⊗Λt on S + S, namely,
when the physical context is one where both system and ancilla are under control and in independent
weak interaction with a same environment so that they both evolve according to the same map Λt.
Then, the following result holds [20].

Theorem 2. Λt ⊗Λt is Positive on S(S + S), if and only if Λt is Completely Positive on S(S).

The physical implications of the above theorem are the following: if Λt ⊗ Λt is to describe a
physical time-evolution, it must be Positive for all t ≥ 0, otherwise negative probabilities may appear
in the course of time when one starts with initial bipartite entangled states of S + S. Then, according to
the above theorem, necessarily the single system dynamics Λt must be Completely Positive and not
only Positive. Notice that if all initial states of S + S were separable, ρsep = ∑i,j λijρ

S
i ⊗ ρS

j , with λij ≥ 0,

∑ij λij = 1, and ρS
i,j ∈ S(S), then the Positivity of Λt would suffice for physical consistency; indeed,

ρsep 7→ ρsep(t) = ∑
i,j

λijΛt[ρ
S
i ]⊗Λt[ρ

S
j ] ≥ 0 . (17)

This shows that, far from just being a mathematical nicety, Complete Positivity is the dynamical alter
ego of quantum entanglement.

2.2. Non-Markovian Quantum Dynamics

The semigroup composition law (5) follows from the time independence of the generator L in (6)
as results from suitable Markovian approximations operated on the integro-differential equation (3).
Let us now proceed without such approximations, taking the equation (3) at its face value. Suppose
the dynamics Λt : ρ 7→ ρt = Λt[ρ] generated by (3) to be invertible as a linear map, then the time
non-local equation can be recast into the time local form

∂tρt =
∫ t

0
dτ K(τ) ◦Λt−τ ◦Λ−1

t [ρt] = Lt[ρt] , (18)

with a time-dependent generator Lt =
∫ t

0 dτ K(τ) ◦ Λt−τ ◦ Λ−1
t . Explicitly time-dependent master

equations of the form
∂tρt = Lt[ρt] , (19)

are at the basis of the theory of non-Markovian open quantum dynamics [5,6,21–24]. Formal solutions
to such equations, with initial condition ρt0 at t = t0 ≥ 0 read

ρt = Λt,t0 [ρt0 ] := Te
∫ t

t0
dτ Lτ [ρt0 ] , (20)

by means of the time-ordered exponentials

Te
∫ t

t0
dτ Lτ := id +

∞

∑
k=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 · · ·
∫ τk

t0

dτk Lτ1 ◦ Lτ2 ◦ · · · ◦ Lτk−1 . (21)

The maps Λt,t0 form a two parameter semigroup:

Λt,s ◦Λs,t0 = Λt,t0 ∀ t ≥ s ≥ t0 ≥ 0 . (22)
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Setting Λt := Λt,0, the family of dynamical maps Λt, t ≥ 0, is automatically divisible in the sense that
for all t ≥ s ≥ 0 there exists an intertwining operator mapping Λs into Λt; indeed,

Λt,s = Λt ◦Λ−1
s , and Λt = Λt,s ◦Λs ∀ t ≥ s ≥ 0 . (23)

Remark 1. The inverse Λ−1 of a Completely Positive map Λ is Completely Positive if and only if Λ[ρ] = U ρ U†

with U unitary [3]. In general, Λ−1
s is not Completely Positive and neither is Λt,s. However, if Λt,s is Completely

Positive for all t ≥ s ≥ 0 such are also the dynamical maps Λt = Λt,0. Nonetheless, as we shall see, the Complete
Positivity of Λt for all t ≥ 0 does not require the intertwining maps Λt,s to be Completely Positive. Furthermore,
unlike for one-parameter semigroups with time-independent generator, there have not yet been found necessary
conditions on the time-dependent generator Lt, as those provided by Theorem 1, ensuring the Complete Positivity
of the generated dynamical maps Λt.

The following theorem fixes the form of the generators Lt when they provide Completely Positive
intertwining maps Λt,s for all t ≥ s ≥ 0 [21].

Theorem 3. The solutions Λt,t0 to the time-dependent master equation (19), for all t ≥ t0 ≥ 0, are Completely
Positive maps if and only if the generator Lt reads

Lt[ρ] = −i [Ht , ρ] +
n2−1

∑
α,β=1

Cαβ(t)
(

Fα ρ F†
β −

1
2

{
F†

β Fα , ρ
})

, (24)

where the matrices Fα ∈ Mn(C) are as in Theorem 1, while Ht = H†
t is a time-dependent Hamiltonian and

Ct = [Cαβ(t)] a time-dependent positive semi-definite Kossakowski matrix.

The previous result states that a positive semi-definite, time-dependent Kossakowski matrix is
equivalent to the Complete Positivity of all intertwining maps Λt,s, t ≥ s ≥ 0, associated with Lt;
however, as commented in Remark 1, the latter property is not necessary for the Complete Positivity of
Λt, t ≥ 0. Therefore, Ct ≥ 0 for all t ≥ 0 implies, but it is not implied by, Λt being Completely Positive
for all t ≥ 0.

The following example provides a simple model of qubit dynamics that allows to discuss some
of the most prominent aspects of non-Markovianity; in particular, the fact that another property of
semigroups fails general one-parameter families of maps Λt, t ≥ 0. Namely, unlike in Theorem 2, there
exist families of dynamical maps Λt solutions to (19) such that Λt ⊗Λt is Positive without Λt being
Completely Positive.

Example 2. Consider the following 1-qubit master equation ∂tρt = Lt[ρ] with time-dependent generator [7]:

Lt[ρ] :=
α

2

(
σ1 ρt σ1 − ρt

)
+

α

2

(
σ2 ρt σ2 − ρt

)
− α

2
tanh t

(
σ3 ρt σ3 − ρt

)
, α ≥ 0 . (25)

By comparison with (8), the generator Lt is characterised by a time-dependent Kossakowski matrix

Ct =
α

2

1 0 0
0 1 0
0 0 − tanh t
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which is Positive semi-definite only at t = 0, while − tanh t < 0 for t > 0. Therefore, according to Theorem 3,
the intertwining maps Λt,s can never be Completely Positive; nevertheless, the generated maps Λt are Completely
Positive only for α ≥ 1 while they are Positive for α ≥ 0. Indeed, as in Example 1,

Lt[I] = 0 Lt[σ1,2] = −α(1− tanh t) σ1,2 Lt[σ3] = −2α σ3 (26)

Λt[I] = I Λt[σ1,2] = e−αt coshα t σ1,2 Λt[σ3] = e−2αt σ3 . (27)

Such an action corresponds to Λt being expressible very similarly to the Kraus-Stinespring decomposition in (4):

ρt := Λt[ρ] =
3

∑
a=0

λa(t) σa ρ σa , (28)

with coefficients

λ0(t) =
e−αt

2
(cosh(αt) + coshα t) , λ1,2(t) :=

1− e−2αt

2
, λ3(t) =

e−αt

2
(cosh(αt)− coshα t) . (29)

The maps Λt are trace-preserving for all α ≥ 0; indeed, ∑3
α=0 λα(t) = 1. Furthermore, by means of the convexity

of the function log cosh t for t ≥ 0 one checks that λ3(t) is negative for all 0 < α < 1 and Positive if α ≥ 1.
Thus, the expression (28) reduces to (4) and Λt is Completely Positive only for α = 0 and α ≥ 1.

On the other hand, Λt is Positive for all α ≥ 0; indeed, in the Block representation (9),

ρt =
1
2
(I+~rt ·~σ) , ~rt = (r1 e−αt coshα t, r2 e−αt coshα t, r3 e−2αt) , (30)

whence the Block vector~rt belongs to the unit sphere in R3 and Λt is Positive for all t ≥ 0 so that ρt is a
legitimate 1-qubit state for all α ≥ 0.

Let us now consider the tensor product dynamics Λt ⊗Λt which describes two qubits subjected to identical
and independent interactions with their environment. By means of (28), its action on two qubit states ρ12 can
also be cast in a Kraus-Stinespring-like diagonal form

Λt ⊗Λt[ρ12] =
3

∑
a,b=0

λa(t) λb(t) σa ⊗ σb ρ12 σa ⊗ σb , (31)

However, because of λ3(t), the coefficients λa(t) λ3(t), a = 0, 1, 2, 3, are negative for 0 < α < 1. Thus, Λt⊗Λt

is Completely Positive when and only when α = 0 or α ≥ 1, namely when and only when Λt is Completely
Positive.

Further, a result in [25] ensures that, for trace preserving qubit maps Λt, the Positivity of the tensor
product maps, Λt ⊗Λt, on two qubits is equivalent to the Complete Positivity of the squares, Λ2

t = Λt ◦Λt, of
the 1-qubit maps. Since from (27) it follows that Λ2

t acts as Λt by changing α into 2α, Λt ⊗Λt is Positive for
α ≥ 1/2. Thus, for α ∈ [1/2, 1), Λt and Λt ⊗Λt are both Positive but not Completely Positive.

Finally, one easily computes the algebraic inverse of Λt as a linear map on S(S),

Λ−1
t [σ1,2] =

eαt

coshα(t)
σ1,2 , Λ−1

t [σ3] = e2αt σ3 . (32)

The intertwining maps thus read Λt,s = Λt ◦Λ−1
s and are such that

Λt,s[σ1,2] = µt,s σ1,2 , Λt,s[σ3] = λt,s σ3 , (33)

where

µt,s := e−α(t−s) coshα(t)
coshα(s)

=

(
1 + e−2t

1 + e−2s

)α

, λt,s = e−2α(t−s) . (34)
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We have thus seen that, unlike for one-parameter semigroups, Λt ⊗Λt can be Positive with Λt

being not Completely Positive; however, similarly to Theorem 2, the following results holds for the
intertwining maps Λt,s [7].

Theorem 4. Given a one-parameter family of maps Λt, t ≥ 0, with intertwining maps Λt,s, t ≥ s ≥ 0, then the
tensor product maps Λt,s ⊗Λt,s on S(S + S) are Positive if and only if the maps Λt,s are Completely Positive.

Theorem 4 has an important consequence in relation to Example 2: it excludes that the tensor
products Λt,s ⊗Λt,s of the maps in (30) could be Positive for all t ≥ s ≥ 0 when α ∈ [1/2, 1). Indeed,
if Λt,s ⊗Λt,swere Positive, then the single system maps Λt,s would be Completely Positive and thus
such would be also the single system dynamical maps Λt, but this is impossible for the α in the
interval considered.

The qubit time-evolution in the previous example is also an instance of a dynamics Λt which is
fully legitimate, namely Completely Positive, for α > 1, but non-Markovian according to the so-called
divisibility criterion that we are now going to discuss (se also Ref. [3,24,26]).

Definition 1. A one-parameter family Λt of Completely Positive dynamical maps on S(S) is called CP-divisible,
respectively P-divisible, if Λt = Λt,s ◦Λs for all t ≥ s ≥ 0, with Completely Positive, respectively Positive,
intertwining maps Λt,s. The one-parameter family Λt, t ≥ 0, is called Markovian by divisibility if and only if it
is CP-divisible.

Because the generator Lt in Example 2 has a non-positive definite Kossakowski matrix, according
to Theorem 3, the dynamical maps Λt studied there cannot be CP-divisible. However, they are always
P-divisible. Indeed [3,27], trace-preserving maps Λ : Mn(C) 7→ Mn(C) are Positive if and only if they
are contractive on self-adjoint operators with respect to the trace norm

‖X‖1 := Tr
(√

X† X
)

. (35)

For self-adjoint operators X = X†, ‖X‖1 = Tr(X+) + Tr(X−), where X± are the positive orthogonal
parts of X = X+ − X− and for contractive Λ it holds that

‖Λ[X]‖1 ≤ ‖X‖1 . (36)

Then, P-divisibility of invertible maps Λt becomes equivalent to [28]

d
dt
‖Λt[X]‖1 =

d
dt
‖Λt,s ◦Λs[X]‖1 ≤ 0 ∀ t ≥ 0 , ∀X = X† ∈ Mn(C) . (37)

This condition is satisfied by the map Λt in the example: indeed, given X = X† = x0 + ∑3
i=1 xiσi,

using (27) with real x0 and xi, i = 1, 2, 3, the eigenvalues of Λt[X] are

x±(t) = x0 ± ∆t , ∆t :=
√

x2
3e−4αt + (x2

1 + x2
2)e
−2αt cosh2α(t) . (38)

Since ∆t ≤ ∆0, ‖Λt[X]‖1 is either constant, ‖Λt[X]‖1 = 2|x0| = ‖X‖1, or it decreases in time,
‖Λt[X]‖1 = 2 ∆t ≤ 2 ∆s = ‖Λs[X]‖1 for t ≥ s ≥ 0.

On the other hand, in view of the last comment in Example 2, the double tensor products Λt ⊗Λt

are no longer P-divisible, whence P-divisibilty as much as Positivity is not a property which is in
general stable under tensorisation. This is in contrast to Complete Positivity and CP-divisibility: if Λt

is Completely Positive or CP-divisible, that is if Λt = Λt,s ◦Λs with Λt,s Completely Positive for all
t ≥ s ≥ 0, then both Λt ⊗Λt and Λt,s ⊗Λt,s are also Completely Positive. In fact, the Kraus-Sinespring
form (4) which identifies Completely Positive maps is robust against tensor products Λt,s ⊗Λt,s.
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The various properties of the maps and intertwining maps introduced in Example 2 are resumed
in the following table (Table 1).

Table 1. Positivity and Complete Positivity of maps, intertwining maps and their tensor products with
varying α.

Maps/α Λt Λt ⊗ Λt Λt,s Λt,s ⊗ Λt,s

0 < α ≤ 1/2 P, not CP not P P not P
1/2 ≤ α ≤ 1 P, not CP P, not CP P, not CP not P

α ≥ 1 CP CP P, not CP not P

3. Physicality Quantifiers

The fact that, unlike CP-divisibility, P-divisibility is not stable under double tensorisation
represents a puzzle within another approach to non-Markovianity that identifies it with an information
back-flow from the environment E into the open quantum system S [5,6]. In order to discuss this
issue, we shall use a recent approach [8] that has been developed as a unifying framework for all
measures, called Physicality Quantifiers, of information flows. Indeed, whether the latter goes into
the system S from the environment E or vice versa from S into E can be witnessed by suitable
bounded functionals from all possible statistical ensembles of states of S into the positive reals, that
monotonically decrease under the action of Completely Positive maps. A statistical ensemble of
states of S is any set ES := {pi, ρS

i }
n
i=1 of density matrices ρi ∈ S(S) and statistical weights pi ≥ 0,

∑n
i=1 pi = 1.

Definition 2. Let F (n)
S denote the set of all statistical ensembles ES = {pi, ρS

i }
n
i=1 comprising n states and

weights and let FS =
⋃∞

n=1 F
(n)
S correspond to the set of all possible statistical ensembles. A Physicality

Quantifier, IS, is any Positive, bounded functional on FS decreasing under the action of Completely Positive
trace-preserving maps Λ on the state space of the system S, in the following sense

IS

({
pi, Λ[ρi]

})
≤ IS

({
pi, ρi)

})
∀ t ≥ 0 . (39)

The most used among such Physicality Quantifiers are the trace-distance (see (35))

D(ρ1, ρ2) =
1
2
‖ρ1 − ρ2‖1 , (40)

and the extended trace distance

GTD(p1, p2, ρ1, ρ2) := ‖p1 ρ1 − p2 ρ2‖1 0 ≤ p1 ≤ 1 , p2 = 1− p1 . (41)

Both these Physicality Quantifiers involve two density matrices and thus act on F (2)
S the first one being

characterised by fixed weights p1 = p2 = 1/2. Both these quantities decrease under Positive (and thus
a fortiori under Completely Positive) maps because, as already observed, Positive trace-preserving
maps are contractive with respect to the trace-norm.

Remark 2. Another quantity with the same monotonic behaviour relative to statistical ensembles consisting of
two density matrices ρ1,2 is the relative entropy

S(ρ1, ρ2) = Tr
(

ρ1

(
log ρ1 − log ρ2

))
. (42)
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This expression vanishes only when ρ1 = ρ2 and it has been much used in describing entropy production in
quantum thermodynamics [29]. Recently, it has been shown [30] that Positivity of Λt is sufficient to ensure that

S(Λt[ρ1], Λt[ρ2]) ≤ S(ρ1, ρ2) ∀ t ≥ s ≥ 0 . (43)

Though the relative entropy, being unbounded on F (2)
S , is not a Physicality Quantifier as in Definition 2, we

will nevertheless consider it as such by virtue of its monotonic behaviour.

All the three previous functionals on F (2)
S measure the degree of distinguishability of two density

matrices and can thus be related to how the information about the system S behaves in time: the
argument goes as follows. In the case of unitary time-evolutions, both the maps ρ 7→ ρt = UtρU†

t and
their inverse maps ρ 7→ U†

t ρUt are of the Kraus-Stinespring form (4) and thus Completely Positive.
Therefore, any Physicality Quantifier dos not change in time under their action:

IS

({
pi, Utρi U†

t
})
≤ IS

({
pi, ρi

})
= IS

({
pi, U†

t UtρiU†
t Ut

})
≤ IS

({
pi, UtρiU†

t
})

. (44)

Given a monotonically decreasing functional IS on ES = {pi, ρi}, one may distinguish between an
internal information content relative to the systems S, only; namely,

Iint(t) := IS

({
pi, Λt[ρi]

})
, (45)

and a global one concerning the entire closed compound system S + E together with its statistical
ensembles of the form {pi, ρi ⊗ ρE}, the environment state ρE being the equilibrium state from which,
together with Ut, one derives the reduced dynamics Λt of the open system S. By subtracting from the
global information content the internal one, one gets a measure of the information external to S:

Iext(t) := IS+E

({
pi, Utρi ⊗ ρEU†

t
})
− IS

({
pi, Λt[ρi]

})
. (46)

Since the dynamics of S + E is unitary, IS+E

({
pi, Utρi ⊗ ρEU†

t
})

is constant in time; then,

Iint(t) + Iext(t) = IS+E

({
pi, ρi ⊗ ρE

})
. (47)

Therefore, if Iint(t) decreases, the information content of the environment increases; this is an effect
that can be interpreted as a flow of information from the system S to the environment E. Vice
versa, if Iext(t) decreases, the increase of the internal information is interpreted as an information
back-flow from the environment to the system. This argument is at the basis of the definition of
non-Markovianity proposed in [5], respectively [6], and based on the trace-distance (40), respectively
generalised trace-distance (41). Both these approaches to non-Markovianity can be accommodated
within the framework of Physicality Quantifiers in [8] where one can introduce various degrees
of Markovianity.

Definition 3. A physical map Λt is said to be IS-Markovian if IS is monotonically decreasing in time for any
given statistical ensemble ES ∈ FS,

IS

({
pi, Λt[ρi]

})
≤ IS

({
pi, Λs[ρi])

})
∀ t ≥ s ≥ 0 . (48)

Λt is said to be n-Markovian if all Physicality Quantifiers IS on F (n)
S are monotonically decreasing and

S-Markovian if it is n-Markovian for all n.
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The idea behind this classification is clear: CP-divisible dynamics cannot break the monotonic
decrease of Physicality Quantifiers, by the very definition of these latter quantities. However, lack of
Markovianity is not identified with lack of CP-divisibility; indeed, as we have seen, the trace-distances
and the relative entropy behave monotonically also under the action of P-divisible, but not necessarily
CP-divisible maps. Rather, lack of Markovianity is identified with back-flow of information as
witnessed by the lack of monotonicity of some Physicality Quantifier of a certain degree that might
be higher than that of the trace-distance or of the generalised trace-distance and might thus require
statistical ensembles comprising more than two density matrices.

An important result is the following one which asserts that if the generalised trace-distance
monotonically decreases under Λt then so must do all Physicality Quantifiers over statistical ensembles
with two density matrices.

Theorem 5. A qubit dynamics Λt is Markovian with respect to the generalised trace-distance if and only if it is
2-S-Markovian.

Consider the maps Λt in Example 2, they are P-divisible; therefore, because of their contractive
character, both the trace-distance and the generalised trace-distance monotonically decrease under they
action and thus they and the relative entropy as well signal no back-flow of information. According
to Theorem 5, back-flow of information, if any, cannot be witnessed, at the single qubit level, by
Physicality Quantifiers in F (2)

S . However, the dynamics Λt ⊗Λt of two independent qubits is Positive,
but not P-divisible for α ∈ [1/2, 1) and can thus be accompanied by back-flow of information as
explicitly shown in the following example. The puzzling fact that the information flow can be inverted
by tensorisation will be dealt with in the next section.

Example 3. Let us consider the intertwining map Λt,s in (32). For sufficiently small 0 ≤ ∆t, it is linearly
approximated by

Λt+∆t,t[I] = I , Λt+∆t,t[σ1,2] ' σ1,2 − α ∆t
(

1− tanh t
)

σ1,2 , Λt+∆t,t[σ3] ' σ3 − 2 α ∆t σ3 . (49)

Then, up to first order in ∆t, its action on the entangled bipartite state Psym in (15) yields

Q(t, ∆t) := Λt+∆,t ⊗Λt+∆t,t
[
Psym

]
' Psym −

α

2
∆t (1− tanh t)

(
σ1 ⊗ σ1 − σ2 ⊗ σ2

)
− α ∆t σ3 ⊗ σ3 .

(50)
It can be checked that, for sufficiently small 0 ≤ ∆t and all t > 0, Q(t, ∆t) has a negative eigenvalue; indeed,

Q(t, ∆t)
|00〉 − |11〉√

2
' −α ∆t tanh t

|00〉 − |11〉√
2

. (51)

Therefore, since Tr
(

Q(t, ∆t)
)
= Tr

(
Psym

)
= 1, the sum of the absolute values of the eigenvalues of Q(t, ∆t),

namely its trace-norm, must exceed 1, whence

‖Q(t, ∆t)‖1 =
∥∥∥Λt+∆t ⊗Λt+∆t

[
Λ−1

t ⊗Λ−1
t
[
Psym

]]∥∥∥
1

≥ 1 = ‖Psym‖1 =
∥∥∥Λt ⊗Λt

[
Λ−1

t ⊗Λ−1
t
[
Psym

]]∥∥∥
1

. (52)
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Consider the trace-norm Nt(s) of

Λs ⊗Λs

[
Λ−1

t ⊗Λ−1
t [Psym]

]
=

1
4

(
I⊗ I + µ2

s,t (σ1 ⊗ σ1 − σ2 ⊗ σ2) + λ2
s,t σ3 ⊗ σ3

)

=
1
4


1 + λ2

s,t 0 0 2 µ2
s,t

0 1− λ2
s,t 0 0

0 0 1− λ2
s,t 0

2 µ2
s,t 0 0 1 + λ2

s,t

 (53)

with µs,t and λs,t are as in (34) with t and s exchanged. As a function of s ≥ 0 for fixed t, Nt(s) increases for
t ≤ s ≤ t + ∆t, thus revealing the presence of a back-flow of information from the environment to the compound
system S + S. The non-monotonically decreasing behaviour of Nt(s) is shown in Figure 1 for various values of
α and fixed t = 0.5.

0 2 4 6 8

1.00

1.05

1.10

1.15

1.20

1.25

Figure 1. Behaviour of the trace norm of the matrix (53), Nt(s), for t = 0.5 and α = {0.8, 0.9, 1.0, 1.1, 1.2}.

In the following we shall provide a cure to the puzzle presented by the fact that Λt does not
show back-flow of information while Λt ⊗ Λt does. Such a puzzle occurs for 1/2 ≤ α < 1, range
of values for which Λt is Positive but not Completely Positive: for this range of values, the physical
consistency of Λt does not extend then to the maps Λt ⊗ id which fail to be Positive. Nonetheless, the
maps Λt ⊗Λt are Positive and thus represent a physically legitimate two qubit dynamics. Therefore,
the informational puzzle cannot be outright discarded as unphysical also in view of the fact that, as
already noticed, the available Physicality Quantifiers in F (2)

S monotonically decrease even under maps
that are only Positive and not Completely Positive.

4. Quasi-Entropies

The hierarchy of Markovianity degrees elaborated in [8] suggests an obvious way out of the
informational puzzle presented above; namely, it might occur that the back-flow of information
affecting Λt ⊗Λt also affects Λt, though in a way that cannot be exposed by either the trace-distance,
the generalised trace-distance or the relative entropy and that demands Physicality Quantifiers of
higher degree than n = 2. Indeed, as from Theorem 5, no Physicality Quantifier IS with two density
matrices can witness any back flow information affecting a qubit non-Markovian dynamics if this
cannot be done by the generalised trace-distance.

Then, one should look for Physicality Quantifiers involving more than two density matrices to see
whether monotonic decrease fails at a higher level than on statistical ensembles in F (2)

S ; unfortunately,

very few IS on F (n)
S , n ≥ 3, are known in the literature. Instead, we propose to enlarge the class of
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Physicality Quantifiers by adding to them the so-called quasi-entropies originally introduced in [9–12]
that we will now briefly review.

Given two density matrices ρ1 and ρ2 ∈ M(C)n, with ρ2 invertible, their relative modular operator
∆(ρ1/ρ2) is the linear operator acting on the algebra Mn(C) as a linear space and defined by

Mn(C) 3 a 7→ ∆ρ1.ρ2 [a] = ρ1 a ρ−1
2 . (54)

By introducing the left and right multiplication operators Lb and Rb, b ∈ Mn(C) such that

Mn(C) 3 a 7→ Lb[a] = b a , Rb[a] = a b , (55)

one can write ∆ρ1,ρ2 = Lρ1 R
ρ−1

2
. Then, using the spectral decompositions

ρ1 =
n

∑
i=1

r(1)i P(1)
i , ρ2 =

n

∑
i=1

r(2)i P(2)
i , (56)

with orthogonal eigen-projections P(1)
i and P(2)

j , one obtains the spectral decomposition

∆ρ1,ρ2 =
n

∑
i,j=1

r(1)i

r(2)j

L
P(1)

i
R

P(2)
j

. (57)

Indeed, Lb Rb = Rb Lb for all b ∈ Mn(C) and L2
b = Lb, R2

b = Rb if b2 = b: this fact guarantees that
L

P(1)
i

R
P(2)

j
are idempotent. Furthermore, by considering the matrices in Mn(C) as vectors of the linear

space Cn ⊗Cn equipped with the Hilbert-Schmidt product, 〈a|b〉HS := Tr(a† b), the adjoint L†
b and R†

b
of the left and right multiplication operators are given by

〈a|Lb[c]〉HS = Tr(a† b c) = Tr((b† a)† c) = 〈Lb† [a]|c〉HS . (58)

Thus, L†
b = Lb† and, similarly R†

b = Rb† , so that L
P(1)

i
R

P(2)
j

are orthonormal projections onto Mn(C)

interpreted as a Hilbert space..

Definition 4. Given a ∈ Mn(C) and a real function f : I ⊂ R+ → R continuous on an interval of the
positive half-line, the quasi-entropy relative to a and f of two density matrices ρ1 and ρ2, with the latter one
invertible, is [9,10]

Sa
f (ρ1 , ρ2) := Tr

(
ρ1/2

2 a† f
(
∆ρ1,ρ2

) [
aρ1/2

2
])

= 〈a√ρ2| f
(
∆ρ1,ρ2

)
| a√ρ2〉HS , (59)

where in the last equality, the Hilbert-Schmidt scalar product has been used.

By means of the spectral decomposition (57), one writes

f
(
∆ρ1,ρ2

)
=

n

∑
i,j=1

f

 r(1)i

r(2)j

 L
P(1)

i
R

P(2)
j

, (60)

whence the quasi-entropies can be expressed in terms of the eigenvalues r1i, r2j and eigenvectors |r1i〉,
|r2j〉 of ρ1, respectively ρ2; namely,

Sa
f (ρ1 , ρ2) =

n

∑
i,j=1

r(2)j f

 r(1)i

r(2)j

 ∣∣〈r1i|a|r2j〉
∣∣2 . (61)
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The quasi-entropies generalise many well-known quantum informational tools [9–11]; observe that
they depend on two density matrices, but also on the operator a. In this sense, they also generalise the
notion of Physicality Quantifier IS of order 2 , namely the family defined on F (2)

S .

Example 4. The following ones are among the most noticeable quasi-entropies.

• Choosing f (x) = xγ, with γ ∈ [0, 1], from (61) one obtains the so-called Lieb functional

Sa
γ(ρ1 , ρ2) = Tr

(
a†ρ

γ
1 a ρ

1−γ
2

)
. (62)

• Choosing f (x) = x log(x) and a = I, one recovers the relative entropy (42)

SI
f (ρ1 , ρ2) = Tr

(
ρ1

(
log ρ1 − log ρ2

))
. (63)

• Choosing fγ(x) =
1− xγ

γ(1− γ)
, γ ∈ (0, 1), and a = I yields the so-called relative entropies of degree γ:

SI
f (ρ1, ρ2) =

1
γ(1− γ)

Tr
(

ρ2

(
1− ρ

γ
1 ρ
−γ
2

))
:= Sγ(ρ2, ρ1) . (64)

In relation to the informational puzzle considered in the previous section, the most important
property of quasi-entropies is the following. Consider the class of so-called operator monotonically
increasing functions; these are positive functions from the real positive half-line, (0,+∞), into R+

such that
f (x) ≤ f (y) ∀ 0 ≤ x ≤ y ∈ Mn(C) , (65)

where f (x) = ∑n
i=1 f (xi) Pi if x = ∑n

i=1 xi Pi, xi ≥ 0, is the spectral decomposition of x ≥ 0. Then, the
quasi-entropies increase under the action of the so-called Schwartz-Positive unital maps ΛT , namely
linear maps from Mn(C) into 7→ Mn(C) such that ΛT [I] = I, ΛT [a†] =

(
ΛT [a]

)† and

ΛT [a† a] ≥ ΛT [a†]ΛT [a] ∀ a ∈ Mn(C) , (66)

where ΛT is such that Tr(ρ ΛT [a]) = Tr(Λ[ρ] a) for all a ∈ Mn(C), with Λ trace-preserving on density
matrices. Indeed, one has the following result [11], a sketch of whose proof is provided in Appendix A.

Theorem 6. Let f : R+ → R be a continuous operator monotonically increasing function with f (0) ≥ 0.
Then, the quasi entropy corresponding to f is monotonically increasing with respect to to any Schwartz-Positive
Λ, in the following sense:

Sa
f
(
Λ[ρ1], Λ[ρ2]

)
≥ SΛT [a]

f
(
ρ1, ρ2

)
∀ a ∈ Mn(C) (67)

and for all density matrices ρ1, ρ2 with ρ2 invertible.

Notice that unital Completely Positive-maps Λ are certainly Schwartz-Positive; indeed, they are
in particular 2-Positive, whence Λ⊗ id2 is a Positive linear map on matrices a⊗ I ∈ Mn(C)⊗M2(C):

0 ≤
(
I a†

a a†a

)
7→
(

I Λ[a]†

Λ[a] Λ[a†a]

)
≥ 0 .

Then, Λ[a†a] ≥ Λ[a]†Λ[a] follows from

(
〈φ|Λ[a]† −〈φ|

)( I Λ[a]†

Λ[a] Λ[a†a]

)(
Λ[a]|φ〉
−|φ〉

)
≥ 0 ∀|φ〉 ∈ Cn .
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Example 5. Consider the map discussed in Example 1, which is Positive for all α ≥ 0 and α ≥ β, but

Completely Positive only when β = 0 and set α = β 6= 0. Then, choosing a = σ− one has σ+σ− =
I+ σ3

2
and

from (11):

ΛT
t [σ±] = σ± , ΛT

t [σ+σ−] =
I+ e−2αtσ3

2
, ∆(t) := ΛT

t [σ+σ−] − ΛT
t [σ+]Λ

T
t [σ−] = −

1− e−2αt

2
σ3 .

The matrix ∆(t) has always a negative eigenvalue unless β = 0. Therefore, for β 6= 0, Λt is Positive; however, it
fails to be not only Completely Positive but also Schwartz Positive.

What matters with Physicality Quantifiers is their monotonic decrease under Completely Positive
maps as in Equation (48) of Definition 3; therefore, based on the preceding theorem, we here propose
to extend the class of Physicality Quantifiers to include also the quasi-entropies defined by matrix
monotonically decreasing functions f : R+ 7→ R, with f (0) ≤ 0, and such that 0 ≤ x ≤ y implies
f (x) ≥ f (y). For such functions the result in Theorem 6 reads:

Sa
f
(
Λt[ρ1], Λt[ρ2]

)
≤ SΛT

t [a]
f

(
ρ1, ρ2

)
∀ a ∈ Mn(C) (68)

for all dynamical maps Λt, t ≥ 0, on S(S) with Schwartz-Positive duals ΛT
t on Mn(C).

Including the quasi-entropies in the class of Physicality Quantifiers will extend the constraints on
any purportedly Markovian dynamics Λt that must then also fulfil monotonic decrease:

Sa
f
(
Λt[ρ1], Λt[ρ2]

)
≤ S

ΛT
t,s [a]

f
(
Λs[ρ1], Λs[ρ2]

)
∀ t ≥ s ≥ 0 , (69)

with respect to all quasi-entropies satisfying (68), where ΛT
t,s is the dual of the intertwining operator

such that Λt = Λt,s ◦Λs. Notice that, with respect to the monotonic behaviour (48) of the standard
Physicality Quantifiers, in the above inequality, beside the density matrices ρ1,2 there also appears the
operator a at the left hand side which at the right hand side has evolved in time to ΛT

t,s[a] under the
action of the dual intertwiner.

Example 6. The function fε(x) = − log
( x+ε

ε

)
is matrix monotonically decreasing and f (0) = 0, then

choosing a = I, the expression (61) yields (notice the exchange, with respect to Definition 4, of the density
matrices in the argument)

SI
fε
(ρ2, ρ1) = −∑

ij
r1j log(r2j + ε r1i)− log ε + ∑

i
r1i log r1i ,

where ρ1 is assumed to be invertible or the inverse ρ−1
1 is defined on the range of ρ1 [10]. Then, for all unital,

Schwartz-Positive maps ΛT : Mn(C) 7→ Mn(C) , ΛT [I] = I, Theorem 6 yields (with the monotonically
increasing function f turned into the monotonically decreasing function − f )

SI
fε
(Λ[ρ2], Λ[ρ1]) ≤ SI

fε
(ρ2, ρ1) . (70)

Then, the limit ε→ 0 recovers the monotonicity of the relative entropy (42) under dynamical maps Λ that are
dual of unital, Schwartz-Positive ones (compare Remark 2), this latter result being now a particular case of the
more general monotonicity of the relative entropy under maps that are dual of unital, only Positive ones [30].

Instead, consider the maps Λt discussed in Examples 1 and 5 which are not Schwartz-Positive for β 6= 0
and choose

a = σ− =
σ1 − iσ2

2
, ρ1 =

I+ rσ3

2
, ρ2 =

I
2

,
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with −1 ≤ r ≤ 1. Then, as ΛT
t [σ±] = σ±, one gets

Sσ−
fε
(Λt[ρ2],

I
2
) = −1

2
log

1 + ε− e−2αt r
ε

, SΛT
t [σ− ]

fε
(ρ2],

I
2
) = −1

2
log

1 + ε − r
ε

,

whence, for r ≥ 0,

∆(t) := Sσ−
fε
(Λt[ρ2],

I
2
) − SΛT

t [σ− ]
fε

(ρ2,
I
2
) =

1
2

log
1 + ε − r

1 + ε− e−2αt r
≥ 0

and the monotonic decrease of the quasi-entropy for t ≥ 0 is broken.

Back-Flow of Information

Having enlarged the class of Physicality Quantifiers by the introduction of the quasi-entropies,
there is a wider spectrum of quantities whose monotonic decrease must be guaranteed in order to
ensure Markovianity, namely absence of back-flow of information. We shall now show that to the
lack of P-divisibility of Λt ⊗Λt, with Λt as in Example 2, and thus to the breaking of Markovianity by
back-flow of information due to the tensor product dynamics, there indeed corresponds a back-flow
of information also at the level of the single system dynamics Λt. Such a back-flow of information is
invisible to Physicality Quantifiers as the trace distances and the relative entropy, but exposable by
suitable quasi-entropies. In view of Theorem 6, such a witnessing is possible only if the intertwining
map Λt,s are not Schwartz-Positive.

As generalised Physicality Quantifier we consider the quasi entropy (62) built upon inverting the
sign of the function fγ(x) = −xγ, 0 ≤ γ ≤ 1, and upon choosing

a = σ+ :=
σ1 + iσ2

2
, ρ1 = ρ =

I+ rσ3

2
, ρ2 =

I
2

. (71)

Using the expressions (27) for the action of Λt and (33) for the action of the intertwining map Λt,s one
sees that it coincides with its dual and computes

Λt[ρ1] = ρ(t) =
I+ λt r σ3

2
, Λt[ρ2] =

I
2

, ΛT
t,s[σ+] = µt,s σ+ , (72)

where µt := µt,0 and λt := λt,0 are given in (34). Then, from (62) with xγ changed into −xγ,
one computes

Sσ+
γ

(
ρ(t),

I
2

)
= −1

2

(
1 + λt r

)γ
, SΛT [σ+ ]

γ

(
ρ(s),

I
2

)
= −1

2
µ2

t,s

(
1 + λs r

)γ
. (73)

In order to see whether the chosen quasi-entropy, as a Physicality Quantifier, can actually witness a
back-flow of information due to Λt when Λt ⊗Λt exhibits one, namely for α ≥ 1/2, one needs to check
the behaviour in time of the sign of the difference

∆γ(t, s) := Sσ+
γ

(
ρ(t),

I
2

)
− Sµt,sσ+

γ

(
ρ(s),

I
2

)
=

1
2

µ2
t,s

(
1 + λs r

)γ
− 1

2

(
1 + λt r

)γ
. (74)

Whenever ∆γ(t, s) changes from negative to positive, the chosen quasi-entropy reveals that information
starts flowing from the environment into the system.

Due to Theorem 6, the only chance to avoid a monotone behaviour and see a change in sign in
between 0 ≤ s ≤ t is that the intertwining map Λt,s be not Schwarz-Positive on σ−σ+ when α ≥ 1/2:
whether and when this occurs can be ascertained by looking at the eigenvalues of the matrix

Λt,s[σ−σ+]−Λt,s[σ−]Λt,s[σ+] =
1− λt,s σ3

2
− µ2

t,s
1− σ3

2
, (75)
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with µt,s and λt,s in (34), which are

e1(t, s) =
1− e−2α(t−s)

2
≥ 0 , e2(t, s) =

1
2

(
1 + e−2α(t−s)

(
1− 2

(
cosh t
cosh s

)2α
))

. (76)

Lack of Schwarz-Positivity can thus be witnessed by e2(t, s) becoming negative for some t ≥ s ≥ 0.
The following Figure 2 concerns the behaviour of both the quantities ∆γ(t, s) and e2(t, s) for

the following choices of parameters: r = 0.98, γ = 0.98 and α = 0.51, 0.6. It shows the lack of
Schwartz-Positivity for α = 0.51 which then allows, at a later time, the breaking of monotonic decrease
of ∆γ(t, s). The figure also shows that the monotonic decrease of the chosen quasi-entropy is never
broken when Schwartz-Positivity holds, that is for α = 0.6.

2 4 6 8 10

-0.10

-0.05

0.05

0.10

Figure 2. ∆γ(t, s) (continuous lines) and e2(t, s) (dashed lines) for r = 0.98, γ = 0.98, s = 0.1 and
α = {0.51, 0.6}.

5. Conclusions

We discussed and solved an informational puzzle provided by an example of non-Markovian
qubit dynamics Λt which does not show back-flow of information from the environment to the qubit
which is instead witnessed when considering the tensor product dynamics Λt ⊗Λt of two dynamically
non-interacting qubits both embedded within the same environment. The solution to the puzzle
consists in enlarging the class of witnesses involving two density matrices by means of the so-called
quasi-entropies which are monotonic with respect to Schwartz-Positive maps: a suitable quasi-entropy
of Lieb functional type is indeed able to witness the presence of a back-flow of information under Λt.
The reason is that because the maps Λt are P-divisible maps with intertwining maps Λt,s, Λt = Λt,s ◦Λs,
t ≥ s ≥ 0, that are Positive but may fail to be Schwartz-Positive.
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The following abbreviations are used in this manuscript: CP standing for Completely Positive

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD linear dichroism

Appendix A. Quasi-Entropy Monotonicity

We provide here a sketch of the proof, taken from [9,10] that, as in Theorem 6,

Sa
f
(
Λ[ρ1], Λ[ρ2]

)
≥ SΛT [a]

f
(
ρ1, ρ2

)
∀ a ∈ Mn(C)

for all monotonically increasing functions f , a ∈ Mn(C) and for all density matrices ρ1, ρ2 with
ρ2 invertible.

It proves convenient to work within the Hilbert-Schmidt framework where matrices a ∈ Mn(C)
become vectors and the relative modular operator a linear operator acting on them. Let us rewrite

SΛT [a]
f

(
ρ1, ρ2

)
=

〈
ΛT [a]

√
ρ2
∣∣ f
(
∆ρ1,ρ2

)∣∣ ΛT [a]
√

ρ2

〉
HS

(A1)

=

〈
a
√

Λ[ρ2]
∣∣∣V† f

(
∆ρ1,ρ2

)
V
∣∣∣ a
√

Λ[ρ2]

〉
HS

, (A2)

where V is a linear operator sending vectors of the form
∣∣∣ a√Λ[ρ2]

〉
HS

, with varying a ∈ Mn(C), into

vectors of the form
∣∣∣ΛT [a]

√
ρ2

〉
HS

. Due to the assumed Schwartz-Positivity of the map ΛT on Mn(C),
one gets〈

a
√

Λ[ρ2]
∣∣∣V† ∆ρ1,ρ2 V

∣∣∣ a
√

Λ[ρ2]

〉
HS

=
〈

ΛT [a]
√

ρ2
∣∣∆ρ1,ρ2

∣∣ ΛT [a]
√

ρ2

〉
HS

= Tr
(

ρ1ΛT [a†]ΛT [a]
)

≤ Tr
(

ρ1 ΛT [a†a]
)
= Tr

(
Λ[ρ1] a† a

)
=

〈
a
√

Λ[ρ2]
∣∣∣∆Λ[ρ1],Λ[ρ2]

∣∣∣ a
√

Λ[ρ2]

〉
HS

,

whence V† ∆ρ1,ρ2 V ≤ ∆Λ[ρ1],Λ[ρ2]
. Furthermore, again because of Schwartz-Positivity, the operator V

is contractive with respect to the Hilbert-Schmidt norm:〈
a
√

Λ[ρ2]
∣∣∣V† V

∣∣∣ a
√

Λ[ρ2]

〉
HS

= Tr
(

ρ2ΛT [a†]ΛT [a]
)

≤ Tr
(

ρ2ΛT [a† a]
)
= Tr

(
Λ[ρ2]a†a]

)
=

〈
a
√

Λ[ρ2]
∣∣∣ a
√

Λ[ρ2]

〉
HS

. (A3)

Then, since f (x) is matrix-monotone, if f (0) = 0, then it s also matrix convex, whence

V† f
(
∆ρ1,ρ2

)
V ≤ f

(
V†∆ρ1,ρ2 V

)
≤ f

(
∆Λ[ρ1],Λ[ρ2]

)
. (A4)

Finally from (A1) and (A2) one deduces

SΛT [a]
f

(
ρ1, ρ2

)
=

〈
a
√

Λ[ρ2]
∣∣∣V† f

(
∆ρ1,ρ2

)
V
∣∣∣ a
√

Λ[ρ2]

〉
HS

≤
〈

a
√

Λ[ρ2]
∣∣∣ f
(

∆Λ[ρ1],Λ[ρ2]

)∣∣∣ a
√

Λ[ρ2]

〉
HS

= Sa
f

(
Λ[ρ1], Λ[ρ2]

)
. (A5)
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