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A B S T R A C T

The efficient computation of eddy-current effects in medium voltage elec-
tric machines is discussed in this dissertation. Two particular cases are con-
sidered.

Firstly, the effects of shaft eddy-currents on two-pole induction motor per-
formance is addressed, with special focus on the power factor. In the second
part of the thesis the start-up calculation of a large synchronous motor with
solid rotor is analyzed.

For each application a special calculation procedure is introduced. These
procedures adopt a set of suitable finite-element models to properly com-
pute the machine equivalent circuit parameters that are mainly influenced
by eddy-current-related phenomena. By suitably choosing finite-element
models boundary conditions and excitations their geometry is simplified to
the maximum possible extent, in order to reduce the computational burden.

The results of the new calculation methods are compared with experimen-
tal data and with analogous results obtained from commonly-adopted calcu-
lation procedures. The comparison proves that the proposed approaches can
lead to high accuracy levels with very remarkable computational savings.

Lo scopo di questa tesi è presentare alcuni metodi efficienti (dal punto di vista com-
putazionale) per il calcolo degli effetti dovuti alle correnti parassite (eddy currents)
in macchine elettriche rotanti in media tensione. Due applicazioni in particolare
sono state considerate nel dettaglio.

Inizialmente viene analizzato il fenomeno delle correnti parassite indotte nell’al-
bero di motori asincroni a due poli e il conseguente effetto sulle prestazioni della
macchina, focalizzandosi in particolare sul fattore di potenza. La seconda parte del-
la tesi concentra la sua attenzione sullo studio dell’avviamento da rete di motori
sincroni con rotore massiccio.

Per ciascuna applicazione vengono introdotte alcune procedure di calcolo, facenti
uso di opportuni modelli numerici basati sul metodo degli elementi finiti, per mezzo
delle quali vengono adeguatamente calcolati i parametri dei circuiti equivalenti di
macchina, tenendo conto degli effetti legati alle correnti parassite. I modelli numerici
sono opportunamente definiti, in modo tale da ridurre al massimo la complessità delle
geometrie e il conseguente onere computazionale.

I risultati delle procedure innovative qui proposte sono confrontati con i dati pro-
venienti da prove sperimentali sulle macchine oggetto di studio e con analoghi risul-
tati di calcolo dedotti tramite le procedure comunemente utilizzate. Il confronto fra
questi dati ha dimostrato che gli approcci di calcolo introdotti in questa tesi permet-
tono di ottenere risultati con un elevato livello di accuratezza e una netta riduzione
dell’onere computazionale.
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I N T R O D U C T I O N

Eddy currents are current loops that arise in any conductor that expe-
riences a variable magnetic field, i.e. practically any metallic part of any
rotating electrical machine.

Their study is a crucial aspect in the electric machine design process, for
many reasons:

• a large amount of the losses that occur in a rotating machine are re-
lated to eddy currents arising in both active or auxiliary parts of the
machine;

• eddy currents arising in windings are the main cause of AC resistance
increase, because of skin and proximity effects;

• similarly, eddy currents arising in conductive regions of the machine
magnetic circuit would partially reject the flux lines, causing a change
in the machine magnetic working point and, thus, its performance;

• some applications are based on eddy currents, such as in the case of
solid-rotor synchronous machine direct-on-line starting.

These aspects are crucial in all machine typologies, from the traditional ones,
like induction motors, to the most recent, like permanent-magnet machines.

The eddy current calculation is not a trivial task, because several aspects
have to be taken into account simultaneously. In fact eddy-currents arise in
conductors because of the variation in the magnetic field but, on the other
hand, the magnetic field distribution is modified by the eddy current too.
This problem can be formalized in terms of a Partial Differential Equation
(PDE), which generally does not admit a closed-form solution. The machine
non-linearities, due to iron cores saturation, have to be taken into account as
well.

Numerical methods, such as Finite-Element Method (FEM), are usually
employed to deal with the eddy current calculation issue. This method is
indeed the most accurate tool that machine designers can adopt to cope
with such challenging problems, because it allows to represent complex ge-
ometries and model the machine physics without the need for simplifying
hypoteses and simplifications on which analytical methods rely. The main
drawback of numerical methods is their computational burden, which slows
down the design process and sometimes may not be acceptable, for instance
when the design optimization through genetic algorithms is needed.

This PhD dissertation presents a collection of computationally-efficient
methods to deal with the eddy-currents analysis for designing medium-
voltage rotating machines. The effectiveness of these methods is the limited
use of finite-element models, in combination with analytical approaches de-
rived from rotating machine and electromagnetic field theory, in order to
limit the computational burden. The simulation time is further reduced by

1



2 list of tables

exploiting the machine symmetries and limiting the models to minimal ge-
ometries, in which the eddy current phenomenon is being investigated.

The thesis is subdivided into two parts, each covering a different aspect of
eddy-current related issues, as summarized next.

• Part I focuses on the eddy currents arising inside the shaft of two-pole
induction motors; this has a detrimental effect on the machine perfor-
mance, especially as regards its power factor. This part is organized as
follows:

– chapter 1 gives an insight on the phenomenon, qualitatively de-
scribing it at first and then quantitatively assessing its impact on
the magnetizing current through some laboratory tests;

– chapter 2 is a compendium of literature methods to analytically
compute the induction machine (IM) performance; these methods
are based on the calculation of the machine equivalent circuit;

– chapter 3 focuses on the shaft eddy-currents calculation through
FEM. A new calculation procedure, based on a shaft-focused model
used to properly compute the motor magnetizing reactance, is in-
troduced. The standard FEM applied to the complete geometry is
described as well;

– chapter 4 presents the results of the performance calculation for
seven real medium-voltage induction machines, adopting the meth-
ods presented in chapters 2 and 3. The results are compared with
the machines acceptance tests and a discussion on computational
performance is given.

• Part II presents a beneficial effect of eddy-currents, i.e. their use in the
Direct-On-Line (DOL) starting of a large synchronous machine (SM)
with solid rotor; this construction is the most effective and reliable
solution to realize the SM self-starting. The eddy currents induced
in the rotor core realize a fictitious squirrel cage, which creates an
accelerating torque, until the synchronous speed is reached. This part
presents the calculation of the starting performance prediction and it
is organized as follows

– chapter 5 summarizes the main features for the solid-rotor struc-
ture of synchronous motors;

– chapter 6 describes the two-axis circuit model employed for the
SM start-up performance calculation and its identification from
stand-still tests;

– chapter 7 presents a new method for the computation of the equiv-
alent rotor cage parameters, based on FEM. It is shown as, by
properly defining the model, the numerical investigation can be
limited to just half of the rotor pole, and an experimental assess-
ment on the computation time saving is also given;

– an iterative method, based on the reduced model described in
the previous chapter, is used in chapter 8 to compute the start-
ing performance of a large solid salient-pole synchronous motor;
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the calculation results are compared to the experimental data and
to the analogous results coming from a standard Finite-Element
Analysis (FEA). A comparative discussion on the computational
burden is finally given.





Part I

E F F E C T S O F S H A F T C U R R E N T S I N
T W O - P O L E I N D U C T I O N M A C H I N E S





Induction motors have been the most widespread option in the industrial
electric drive field for several decades [1]. They can be preferable to SMs
thanks to their high reliability [2] and low cost, but suffer for a relatively
poor efficiency and power factor (PF) [3–5].

PF plays a key role in determining an IM performance as it closely re-
lates to its electric power consumption over time [5]. An accurate prediction
of full-load PF is an essential task in IM design also because international
standards prescribe tight tolerances on its measured value with respect to
specifications [6].

Many industrial experiences suggest that significant error in the machine
performance prediction occur in the case of two-pole IMs. This phenomenon
is jusified by the fact that the machine magnetic configuration is changed
when passing from no-load to full load condition. In fact the flux-lines that
normally cross the motor shaft do not produce any effect at no load, when
the air-gap magnetic field rotates at the same speed of the rotor; on the other
hand, when the motor is loaded, the rotor slows down and so eddy current
arise in the shaft. The main consequence of this fact is the flux being rejected
from the shaft to the rotor yoke, resulting in a higher saturation of the lat-
ter. As a further implication, a greater magnetizing current is absorbed by
the machine and this is detrimental for the machine on-load performance,
especially as regards PF. These considerations explain why there is such dis-
crepancy between experimental results and calculation prediction, because
the motor performance is usually computed (in the design stage) through
the Equivalent Circuit Method (ECM) and the magnetizing reactance is cal-
culated referring to the no-load magnetic state.

The efficient on-load PF computation problem is analyzed in the following
chapters. First of all, the shaft-to-yoke magnetic flux rejecton phenomeno in
IMs is studied and quantified through laboratory tests in chapter 1; chap-
ter 2 is an overview of literature methods to implement the ECM for power
factor calculation, whereas chapter 3 presents numeric methods applied to
PF computation. More in detail, two methods have been considered:

• standard FEM method applied to the complete motor geometry;

• a hybrid numerical-analytical method, which make use of a simpli-
fied FEA to properly correct the motor equivalent circuit, taking into
account the on-load magnetizing reactance modification

Finally, chapter 4 presents the application of PF calculation methods dis-
cussed above to a set of real IMs, comparing the results with data obtained
from machine acceptance test.

The research presented in this part has been submitted for publication by
author [P8].
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1 P R O B L E M O V E R V I E W

In this chapter an insight into the shaft eddy currents physics is given
(section 1.1) and the impact of this phenomenon on machine magnetizing
current is quantified through some experiments (section 1.2). Finally, a gen-
eral overview of the problem as seen by technical literature is provided (sec-
tion 1.3).

1.1 shaft eddy-currents in induction motors

The shaft of electric machines is usually not classified as an active part,
but rather treated as an electromagnetically passive mechanical component.
However, for medium-voltage two-pole IMs, which typically include a lam-
inated rotor core and a large solid-steel shaft (figure 1.1), the situation is
different.

In these machines, when operated at no load, the main flux tends to cross
the shaft as illustrated in figure 1.2a, encountering a relatively low reluc-
tance and requiring a given magnetizing current. When the motor is loaded,
instead, the relative motion between the rotating field and the rotor causes
eddy currents in the shaft as shown in figure 1.2c; these tend to partly reject
the flux lines into the laminated rotor yokes (figure 1.2d) causing an increase
in their magnetic saturation as it can be observed by comparing figure 1.2b
and figure 1.2e. As a consequence, the main flux encounters a higher reluc-
tance at full load on crossing the rotor and requires a larger magnetizing
current than at no load. Such variation in the magnetizing current as a func-
tion of the slip (from no-load to loaded conditions) is usually neglected in
the performance calculation of IMs [7–10], while it may have a significant
entity as experimentally investigated in the section 1.2.

The main impact of this increased magnetizing current on the motor over-
all performance regards its PF. In fact, as shown in figure 1.3, the magnetiz-
ing current amplitude (Im) is directly related to the phase lag (φ) between
the total stator current (Is) and the phase voltage (U). It can be noticed how,
assuming that the torque-producing component of the motor current (Ir) is
invariant with respect to the shaft flux rejection phenomenon, the stator volt-
age is almost unchanged whether the flux is rejected or not, whereas there
is a notably difference betweeen the current phase lag in the two cases. For
this reason the actual PF value measured from test is worse than expected,
calculated assuming the magnetizing current always equal to the no-load
value.

9
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Figure 1.1: Rotors of MV two-pole squirrel-cage IMs with laminated core and solid-steel
shaft (courtesy of Nidec ASI, Monfalcone, Italy)

(a) No-load, flux lines (b) No-load, flux-density

(c) Full load, shaft eddy-currents

(d) Full load, flux lines (e) Full load, flux-density

Figure 1.2: Magnetic maps of an induction motor in different loading conditions
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Figure 1.3: Impact of the increased magnetizing current on the motor power factor

1.2 experimental investigation

1.2.1 Test equipment description

Some laboratory tests have been carried out, using the equipment shown
in figure 1.4, on a special electric machine prototype having a solid steel shaft
and a laminated rotor core without any kind of squirrel cage or winding.
The main prototype data are given in table 1.1. The stator has a usual design
with a three-phase winding fed from a 50 Hz adjustable-voltage source. The
rotor is coupled to a Variable Frequency Drive (VFD) through which its
speed can be changed. Due to the absence of rotor circuits, the machine
mainly absorbs its magnetizing current at steady state, except for a small
active current component required to sustain core and mechanical losses.

By adjusting the rotor speed through the VFD, the prototype has been
forced to operate at different slips and, for any given slip, the voltage-versus-
current characteristic have been measured by varying the stator supply volt-
age.

1.2.2 Test results

The experimental results are shown in figure 1.5a for slip values between
0 and 1.2%. It can be noticed how, as the slip increases, the magnetizing
current drawn for a given voltage (i.e. motor flux) grows. The fact can be
more clearly observed by plotting the current-versus-slip characteristics for
different voltages as shown in figure 1.5b. For instance, it can be seen that
the magnetizing current for a terminal voltage of 400 V grows by 23% as
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Figure 1.4: Test equipment used for investigating shaft eddy-currents impact on the magne-
tizing current a) variable-speed driven shaft b) special prototype for test c) digital
wattmeter d) adjustable electric power supply e) prototype rotor laminated core
f) prototype solid steel shaft

Table 1.1: Prototype data for the investigation of shaft eddy-
currents on magnetizing current.

Stator outer diameter 240.0 mm
Stator inner diameter 148.0 mm
Air-gap width 0.5 mm
Rotor yoke thickness 20.2 mm
Stack length 150.0 mm
Shaft diameter 38.0 mm
Number of poles 2
Number of stator slots 36
Number of rotor slots 28
Number of turns per phase 60
Number of parallel paths per phase 1
Stator coil pitch 5/6
Stator phase connection Y
Laminations material M530 − 65A(a)

Shaft material C40(b)

(a) see standard in [11]
(b) see standard in [12]
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the slip increases from 0 to 1%. The growth is less pronounced for lower
terminal voltages (i.e. weaker fluxes) because saturation effects in the rotor
yoke are reduced.

In conclusion, the experimental tests had confirmed that, for a two-pole
IM, a significant change may occur in the magnetizing current as a function
of the slip due to the physical phenomenon qualitatively described in sec-
tion 1.1. A relatively traditional way to consider this fact in IM full-load PF
prediction employs time-harmonic FEAs performed on a relatively complete
motor model as discussed in chapter 3.

1.3 literature review

Shaft eddy-currents and their effect on rotor magnetic field distribution
have been already investigated in the literature, using both FEAs of the entire
motor [13] and analytical methods [14, 15].

Finite-Element (FE)-based approaches suffer from the known drawback of
being time-consuming, so they are not convenientely applicable, for instance,
in the case of IM design optimization [16]. The most efficient way to imply
FEM for IMs design is using several FEAs to identify the motor equivalent
circuit parameters [10]. However, this method does not allow to properly
taking into account the magnetizing current variation, so a complete simu-
lation of the motor working point is needed, as presented in section 3.1 and
[17].

On the other hand analytical techniques, though fast, rely on simplifying
heuristic assumptions that may compromise their accuracy and generality.
For instance, they are typically incapable of accounting for axial cooling
vents in the rotor core [13] or for strongly non-uniform flux-density distribu-
tions in the rotor yoke and shaft [14, 15]. As an example consider figure 1.6.
In this diagram the observer position versus flux-density, field strength, cur-
rent density and magnetic permeability are reported. The obserever position
is expressed as a percentage with respect to the rotor yoke outer radius. It
can be noticed how the magnetic permeability inside the yoke is strongly
non-uniform.
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(a) Voltage-versus-Current for different slips

(b) Current-versus-Slip for different voltages

Figure 1.5: Magnetization characteristics obtained from experimental investigation
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Figure 1.6: Magnetic quantities trend inside the shaft and rotor for an induction motor





2 I N D U C T I O N M OTO R E Q U I VA L E N T
C I R C U I T C A LC U L AT I O N

This chapter is a compedium of literature methods adopted to calculate
the equivalent circuit of a large-size medium-voltage IM. These methods are
herein collected for the sake of completeness and they will be adopted in
combination with FEM in chapter 3.

Starting with the motor main geometry (section 2.1) the resistances, leak-
age reactances and no-load parameters calculation methods are illustrated
(sections 2.2, 2.3 and 2.4 respectively). The determination of motor perfor-
mance through ECM is finally presented (section 2.5).

2.1 motor geometry and main dimensions

Figure 2.1 sketches the typicl sections of a medium-voltage IM, with power
ratings varying from ≈ 100 kW up to ≈ 5000 kW. The main dimensions and
the geometrical relations between them are collected in table 2.1.

It is worth noticing that these type of machines adopt embricated pre-
formed windings, so it is important to know the end-winding geometry (fig-
ure 2.1d) to properly compute the average turn length and the end-winding
leakage reactance.

This work is focused on squirrel-cage motors, but it can be easily extended
to wound-rotor IMs. Two slot types have been considered (figure 2.1c):

1. rectangular semi-closed slots, usually adopted for copper cages;

2. diamond-shaped closed slots, usually adopted for aluminium cages.

The magnetic cores of both stator and rotor are laminated. Most of the ma-
chines addressed in this work are cooled through closed circuit ventilation,
with the motor internal air blown through a separate heat exchanger (for
instance with cooling codes IC511, IC611 and so on [18]). In this kind of ma-
chines the magnetic stacks are not continuous, but they are made by several
elementary packs of laminations interspersed with radial cooling ducts (see
figure 2.1b). If there are radial cooling ducts in both stator and rotor then the
latter must have also axial cooling vents, through which the air is blown by
axial fans. However, in two-pole machines, these axial cooling vents would
reduce the yoke section, so it is preferable to not realize them, in order to
prevent the rotor core saturation; thus the radial cooling ducts are missing as
well and the rotor is a continuous stack of laminations. The stator has always
the radial cooling ducts, except in the case of Totally-Enclosed Fan-Cooled
(TEFC) motors.

Table 2.2 collects some useful physical properties adopted for the machine
modeling in the following, whereas table 2.3 shows the magnetic properties
for typical electrical and structural steels.

17
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(a) Transverse section view (b) Axial section view

(c) Stator and rotor slots (d) Stator coil

Figure 2.1: Induction motor main dimensions and geometry sketches



2.1 motor geometry and main dimensions 19

Table 2.1: Three-phase induction motors main dimensions

Quantity Symbol Notes

Nameplate data

Rated line voltage Vn

Rated phase voltage Un
1

Rated current In

Rated power Pn
2

Apparent power Sn
3

Input active power Pin

Efficiency η 4

Power factor cos φ 5

Frequency f0

Angular frequency ω0
6

Number of pole pairs Npp
7

Synchronous speed [rpm] n0
8

Synchronous speed [rad/s] Ω0
9

Rotor speed [rpm] n

Rotor speed [rad/s] Ω

Slip s 10

Torque T 11

Stator stack data

Outer diameter Ds,out

Inner diameter Ds,inn

(continued)

1 Assuming a star-connection for the stator phases then U = V/
√

3.
2 This is the rated output power, i.e. the mechanical power.
3 Sn =

√
3Vn In

4 η = Pmec/Pele
5 cos φ = Pele/Sele
6 ω0 = 2π f0
7 Clearly, the number of poles is Np = 2 Npp.
8 n0 = 60 f0/Npp
9 Ω0 = ω0/Npp

10 s = 1 − n/n0 = 1 − Ω/Ω0
11 T = 30/π Pmec/n
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(continued)

Yoke average diameter Ds,yk
12

Yoke height hsyk
13

Total axial length ℓs,tot

Number of radial cooling ducts Nscd

Cooling ducts width ℓscd

Net axial length ℓs,net
14

Stacking factor ksst

Number of slots Nssl

Stator slot data

Slot total height hssl,tot

Pre-slot height hssl,pre

Wedge height hssl,wed

Slot width wssl,tot

Wedge width wssl,wed

Stator winding data

Number of turns per coil Ntc

Number of parallel circuits per phase Npc

Number of turns per phase Ntph
15

Number of slots per-pole per-phase q 16

Coil-to-pole pitch ratio χ

Winding factor kw
17

Number of overlayed elementary wires per turn Nsew,h

Number of adjacent elementary wires per turn Nsew,w

Elementary wire width wsew

Elementary wire thickness hsew

Elementary wire insulation double-thickness bins,sew

(continued)

12 Ds,yk =
(︁

Ds,out + Ds,inn + 2 hssl,tot
)︁

/2
13 hsyk = (Ds,out − Ds,inn) /2 − hssl,tot
14 ℓs,net = ℓs,tot − Nscdℓscd
15 For a two-layer winding Ntph = Nssl/3 Ntpc/Npcp.
16 q = Nssl/Np/3
17 See (2.21)
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(continued)

Elementary wire cross-section area Ssew

Turn insulation double-thickness bins,stu

Turn cross-section area Sstu
18

Ground-wall insulation double thickness bins,scs

Coil-side height hscs
19

Coil-side width wscs
20

End-winding axial lenght, straight part ℓend,str

End-winding axial lenght, helicoidal part ℓend,hel

End-winding axial lenght, eye part ℓend,eye
21

End-winding outer radius rend,out
22

End-winding inner radius rend,inn
23

End-winding angular half-width αend
24

End-winding average line total length ℓend
25

Average turn length ℓstu
26

Air-gap data

Air-gap radial length g 27

Air-gap average diameter Dgap
28

Average pole pitch τp
29

Rotor stack data

Outer diameter Dr,out

Inner diameter Dr,inn
30

Yoke average diameter Dr,yk
31

(continued)

18 Sstu = Nsew,wNsew,hSsew
19 hscs = (hssl,tot − hssl,pre − hssl,wed)
20 wscs = wssl,tot
21 ℓend,eye ≈ hcs
22 rend,out = Ds,inn/2 + hssl,tot − hcs/2
23 rend,inn = rs,out − hcs
24 αend = χπ/Npp

25 ℓend = 2ℓend,str + πℓend,eye +
√︂
ℓ2

end,hel + r2
end,innα2

end +
√︂
ℓ2

end,hel + r2
end,outα

2
end

26 ℓtur = 2 (ℓend + ℓs,tot)
27 g = (Ds,inn − Dr,out) /2
28 Dgap = (Ds,inn + Dr,out) /2
29 τp = πDgap/Np
30 This is the shaft outer diameter.
31 Dr,yk =

(︁
Dr,inn + Dr,out − 2 hrsl,tot

)︁
/2
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(continued)

Yoke height hryk
32

Total axial length ℓr,tot
33

Number of radial cooling ducts Nrcd
34

Cooling ducts width ℓrcd

Net axial length ℓr,net
35

Stacking factor krst

Number of slots Nrsl

Rotor slot data
36

Slot total height hrsl,tot

Pre-slot height hrsl,pre

Special slot height, gap side hrsl,top
37

Special slot height, yoke side hrsl,bot

Pre-slot width wrsl,pre
38

Slot width, gap side wrsl,top

Slot width, yoke side wrsl,bot
39

Rotor cage data

Bar total height hbar
40

Bar cross section area Sbar
41

Bar length ℓbar

Ring outer diameter Drng,out

Ring inner diameter Drng,inn

Ring average diameter Drng,avg
42

(continued)

32 hsyk = (Dr,out − Dr,inn) /2 − hrsl,tot
33 Usually this is equal to the stator total length.
34 The number of cooling ducts in the rotor can be lower than the stator one.
35 ℓr,net = ℓr,tot − Nrcdℓrcd
36 The nomenclature here presented allows to represent both of the slot shapes shown in fig-

ure 2.1c.
37 For a rectangular slot it is hrsl,top = hrsl,bot = 0.
38 Of course it results wrsl,pre = 0 in a closed slot, like the aluminium cage here examined.
39 For a rectangular slot it is wrsl,top = wrsl,bot; for a diamond-shaped slot it is wrsl,top > wrsl,bot.
40 hbar = hrsl,tot − hrsl,pre

41 Sbar = wrsl,top
(︁
hrsl,tot − hrsl,bot

)︁
/2 + wrsl,bot

(︂
hrsl,tot − hrsl,top

)︂
/2

42 Drng,avg =
(︁

Drng,out + Drng,inn
)︁

/2
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(continued)

Ring height hrng
43

Ring thickness ℓrng

Ring cross-section area Srng
44

Table 2.2: Physical properties of commonly used materials

Material
ρ (20 ◦C) α δ

[Ω mm2/m] [◦C−1] [kg/dm3]

Copper 0.0172 0.00393 8.94
Aluminium 0.0265 0.00390 2.70
Brass 0.0464 0.00017 8.55
Electrical steel _ _ 7.60
Structural steel 0.1420 0.00094 7.87

Table 2.3: Magnetic properties of commonly used steel

Electrical steel Shaft steel
B H p [W/kg] H

[T] [kA/m] 50 Hz 60 Hz [kA/m]

0.10 0.07 0.013 0.017 0.24
0.20 0.09 0.052 0.067 0.48
0.30 0.10 0.117 0.151 0.71
0.40 0.12 0.208 0.268 0.94
0.50 0.14 0.325 0.420 1.16
0.60 0.16 0.468 0.604 1.38
0.70 0.19 0.637 0.822 1.59
0.80 0.21 0.832 1.074 1.81
0.90 0.24 1.053 1.359 2.01
1.00 0.29 1.300 1.678 2.22
1.10 0.34 1.573 2.030 2.42
1.20 0.43 1.872 2.416 2.60
1.30 0.55 2.197 2.836 2.72
1.40 0.81 2.548 3.289 2.89
1.50 1.31 2.925 3.776 3.33
1.60 3.22 3.328 4.296 5.56
1.70 10.11 3.757 4.849 9.21
1.80 32.30 4.212 5.437 15.00
1.90 76.75 4.693 6.058 24.76
2.00 135.97 5.200 6.712 43.00

43 hrng,avg =
(︁

Drng,out − Drng,inn
)︁

/2
44 Srng = hrngℓrng
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2.2 resistances

The stator and rotor resistance calculation is taken from [19].

2.2.1 Stator resistance

The DC resistance of a stator phase is simply given by:

Rs,DC = ρCu,75 ◦C
Ntph

Npc

ℓstu

Sstu
(2.1)

and the AC value is obtained through:

Rs =

[︃
1 +

2
9
ℓs,net

ℓstu

(︁
16 N2

tc N2
sew,h − 0.2

)︁
ξ4
]︃

Rs,DC (2.2)

with

ξ = hsew

√︄
µ0 ω0

2 ρCu,75 ◦C

Nsew,w wsew

wssl,tot
(2.3)

2.2.2 Rotor resistance

In a squirrel cage motor the rotor resistance is calculated as the equivalent
resistance of a bar and the corresponding ring portion, referred to the stator
by means of a proper transformation coefficient:

kr2s,Z =
12 k2

w N2
stu

Nrsl
(2.4)

The ohmic resistance of the bar is simply given by:

Rbar = ρbar
ℓbar

Sbar
(2.5)

whereas the ring resistance expression is slightly complicated, because the
phase difference between two adjacent bars must be taken into account:

Rrng = ρbar
π Drng,avg

2 Nrsl Srng sin2
(︃

Np
π

Nrsl

)︃ (2.6)

Since the rotor frequency at rated speed is close to zero the AC-resistance
effect can be neglected, so the rotor equivalent resistance is finally given by:

Rr = kr2s,Z
(︁

Rbar + Rrng
)︁

(2.7)

2.3 leakage reactances

For both stator and rotor the flux leakage can be classified into three con-
tributions:

1. slot leakage;
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2. end-winding leakage;

3. air-gap leakage.

Each of these contributions corresponds to a reactance, whose calculations
are reported below. The phase leakage reactances are finally given by:

Xs = Xs,sl + Xs,end + Xs,gap (2.8)

Xr = kr2s,Z
(︁
Xr,sl + Xr,end + Xr,gap

)︁
(2.9)

with kr2s,Z obtaned from (2.4).

2.3.1 Slot leakage

According to [20] the slot leakage reactance of a double-layer three-phase
winding is given by:

Xs,sl = 12 µ0 ω0 ℓs,net
N2

tph

Nssl
λssl (2.10)

whereas, for a single rotor bar it is:

Xr,sl = µ0 ω0 ℓr,net λrsl (2.11)

The factors λssl and λrsl that appear in (2.10) and (2.11) respectively are the
slot permeance factors, defined accordingly to the slot geometry. For a rect-
angular stator slot we have:

λssl =
2
3

(︃
1
4
+

3
4

χ

)︃
hscs − bins,scs

wssl,tot
+ χ

(︃
bins,scs

2 wssl,tot
+

hssl,pre

wssl,tot

)︃
+

bins,scs

4 wssl,tot
(2.12)

For a rectangular rotor slot the permeance factor becomes:

λrsl =
hbar

3 wrsl,top
+

hrsl,pre

wrsl,pre
(2.13)

and, finally, for a diamond-shaped rotor slot we have:

λrsl =
hbar − hrsl,top − hrsl,bot

3 wrsl,top
+

hrsl,pre

0.35 wrsl,pre
+ 0.66 (2.14)

2.3.2 End-winding leakage

The end-winding leakage reactance calculation is not a trivial task, be-
cause of the complicated three-dimensional geometry. The approach pre-
sented in [21, 22] is adopted in appendix A for the stator end-winding leak-
age computation, whereas the rotor case is analyzed according to [20], giv-
ing:

Xr,end =
2
3

µ0 ω0
Nrsl

Np

[︃
ℓbar − ℓr,net

2
+ Krng

πDrng,avg

Np

]︃
(2.15)

where Krng = 0.18 for a two-pole machine, Krng = 0.36 otherwise.



26 induction motor equivalent circuit calculation

2.3.3 Air-gap leakage

In appendix B it is shown that, for a three-phase double-layer distributed
winding, the air-gap flux-density distribution is a function of time and elec-
tric angle:

Bgap(α, t) = B1 cos(ωt − α) +
+∞

∑
k=1

∑
κ=±1

B6k+κ cos(ω0t − κ(6k + κ)α)

with

Bh = µ0
6
√

2
hπ

kw,hNtph

Np

I
g′

(2.16)

where the winding factor for the h-th harmonic is defined:

kw,h = sin
(︂

hχ
π

2

)︂ sin
(︂

h
π

6

)︂
q sin

(︃
h
q

π

6

)︃ (2.17)

and g′ is the equivalent air-gap radial length, defined as explained in sec-
tion 2.4.1. From the flux-density h-th harmonic the corresponding flux-per-
pole is obtained:

Φh =
2
π

Bh
τp

h
ℓgap

45 (2.18)

and, finally, the total flux-linkage is obtained:

Ψtot = kw,1 NtphΦ1 + ∑
h=6k±1

kw,h NtphΦh (2.19)

It is worth noticing that, for every spatial harmonic order, the flux-linkage
components in (2.19) are pulsating at the grid frequency ω0. The first com-
ponent in (2.19) is the fundamental flux, i.e. the flux-linkage producing the
motor back-EMF:

Ψ = Ψ1 = kw,1 NtphΦ1 = kwNtphΦp (2.20)

where:

• kw is the fundamental winding factor

kw = kw,1 = sin
(︂

χ
π

2

)︂ sin
(︂π

6

)︂
q sin

(︃
π

6q

)︃ (2.21)

• Φp is the main flux-per-pole:

Φp = Φ1 =
2
π

B1 τp ℓgap (2.22)

• B1 is the fundamental of air-gap flux-density:

B1 = µ0
6
√

2
π

kwNtph

Np

I
g′

(2.23)

45 ℓgap is the air-gap equivalent axial length, calculated as presented in section 2.4.1
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The fundamental flux-linkage is proportional to the stator current according
to the unsaturated magnetizing inductance, i.e. the reactance corresponding
to the magnetic energy stored in the air-gap only (see section 2.4.1). Combin-
ing (2.20), (2.22) and (2.23) together the unsaturated magnetizing reactance
is obtained:

Xm,uns = ω0
Ψ√
2I

= µ0 ω0
6

π2

(︁
kw Ntph

)︁2 τpℓgap

Nppg′
(2.24)

By subtracting the fundamental flux linkage (2.20) from the total flux link-
age (2.19) the stator-related air-gap leakage flux is obtained. The leakage
reactance is then defined as:

Xs,gap = ω0
Ψtot − Ψ1

I
= ∑

h=6k±1
kw,h Ntph ω0

Φh

I
(2.25)

This expression can be simplified if (2.16) and (2.18) are rewritten in term of
the fundamentals quantities:

Bh =
kw,h

h kw
B1 (2.26)

Φh =
kw,h

h2 kw
Φp (2.27)

so (2.25) becomes:

Xs,gap = ∑
h=6k±1

kw,h Ntph
kw,h

h2 kw
ω0

Φp

I

and finally, considering (2.20) and (2.24), it results:

Xs,gap =
Xm,uns

k2
w

∑
h=6k±1

(︃
kw,h

h

)︃2

(2.28)

The rotor-related air-gap leakage reactance is obtained as by[20]:

Xr,gap =
Xm,uns

kr2s,Z

+∞

∑
h=1

(︃
1
h

)︃2

(2.29)

2.4 magnetization and no-load losses

The no-load parameters of an IM equivalent circuit are the magnetizing
reactance Xm and the equivalenr resistance accounting for the iron-core
losses RFe. These parameters are, generally, variable with the motor back-
EMF, because of the magnetic core saturation. Furthermore, the friction-
and-windage mechanical losses Pfw have to be computed and considered.

In this section the approach given in [8] is adopted to determine the ma-
chine magnetization characteristic (section 2.4.1), which is then used to calcu-
late the magnetizing reactance (section 2.4.2) and the core-losses resistance
(section 2.4.3). Finally, the mechanical losses are computed (section 2.4.4)
accordingly to [23].
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2.4.1 Magnetization characteristics

The magnetizing current needed to sustain a certain voltage E is not
known a priori, because of the non-linearity of ferro-magnetic core. The ap-
proach followed in [8] is determining the total Magneto-Motive Force (MMF)
drop in the magnetic circuit for any arbitrary amount of air-gap flux density.
This allows to define, for any flux-density – MMF pair, the machine magne-
tizing characteristic.

Air-gap MMF drop

The air-gap MMF drop to sustain a given amount of flux-density B is
simply given by:

Fgap(B) =
B
µ0

kC,tot g (2.30)

where kC,tot is the Carter factor [24], introduced to take into account the
fringing effect due to open slot. The general expression for the Carter factor
is:

kC =
τ/w

τ/w − w/g
5 + w/g

=
τ

τ − w2

w + 5g

with τ as the slot pitch and w as the slot opening. Using the nomenclature
from table 2.1 the Carter factors for stator and rotor are obtained:

kC,ssl =
πDgap

πDgap −
Nssl w2

ssl
wssl + 5g

(2.31)

kC,rsl =
πDgap

πDgap −
Nrsl w2

rsl,pre

wrsl,pre + 5g

(2.32)

and, finally, the total Carter factor is simply given by:

kC,tot = kC,ssl kC,rsl (2.33)

It is worth noticing that the Carter factor is always not lower than one,
because the denominators in (2.31) and (2.32) are always not greater than
the numerator. In particular kC,rsl is equal to one if and only if wrsl,pre = 0,
i.e. for closed slots. From (2.30) it is observed that the Carter factor in (2.33)
produces an increase of the air-gap actual length, so the equivalent air-gap
length is defined as:

g′ = kC,tot g (2.34)

Tooth MMF drop

The tooth MMF drop computation must take into account for the flux lines
crossing the air regions because of the tooth saturation. Figure 2.2 shows the
reference geometry for the tooth MMF drop computation. The approach is
the same for the stator and rotor, so the procedure is presented considering a
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generic laminated core, having Nsl slots (and Nsl teeth), with stacking factor
kst and net length ℓnet.

Let us consider a generic tooth and the surrounding slot, as shown in
figure 2.2. This region is divided into K elementary slices; each slot and
tooth slice has a width denoted by sk and tk respectively and it is placed
at a distance rk from the machine center; hk is the radial tickness of the ele-
mentary slice. Since the slice shape is a generic trapezoid, the widths sk and
tk have to be considered as the average width of the elementary slice. It is
assumed that each tooth-slice is axially made of both ferromagnetic material
(laminated core) and air (insulation between two elementary laminations).
Thus, the total axial length of the ferromagnetic part is kstℓnet, whereas the
axial length of the slot part is ℓnet. The axial length of the inter-lamination
insulations is 1 − kstℓnet.

The cooling ducts are not considered for the computation of tooth axial
length and neither it is for the slot, because it is assumed that the fringing
effect does not occur inside the core. Conversely, their presence must be
taken into account for the air-gap region equivalent axial length. The latter
is calculated accordingly to [25]:

ℓgap =
ℓs,tot + ℓr,tot

2
+ 2g − kC,scd(Nscd − Nrcd)ℓscd − kC,rcdNrcd

ℓscd + ℓrcd

2
(2.35)

with kC,scd the Carter factor for cooling ducts on the stator only:

kC,scd =
ℓscd

5g + ℓscd
(2.36)

and kC,rcd the Carter factor for cooling ducts on both stator and rotor:

kC,rcd =
ℓscd + ℓrcd

5g + ℓscd + ℓrcd
(2.37)

Equation (2.35) assumes that the rotor has at most as many cooling ducts as
the stator.

If the magnetic core is unsaturated the elementary flux entering a slot–
tooth pair entirely flows through the iron cross section, thus we can write:

B
πDgap

Nsl
ℓgap = B̂t,k tk kstℓnet (2.38)

where B̂t,k is the ideal flux-density value for the k-th elementary tooth slice.
This quantity is obtained by solving (2.38):

B̂t,k =
πDgap

Nsltk

ℓgap

kstℓnet
B (2.39)

The actual flux balance equation must take into account the amount of
flux crossing the air regions:

B
πDgap

Nsl
ℓgap = Bt,k tk kstℓnet + Ba,k [tk(1 − kst)ℓnet + skℓnet] (2.40)

It is worth noticing that the second term on the right hand side of (2.40)
accounts for the total air radial cross-section area, which is the actual slot
area plus the inter-lamination area.
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Figure 2.2: Reference geometry for the teeth region MMF drop computation

Combining (2.38) and (2.40) we can write:

B̂t,k = Bt,k +
(1 − kst) + sk/tk

kst
Ba,k (2.41)

The only unknown terms in (2.41) are the actual flux-density value in the
iron and in the air region, Bt,k and Ba,k. These quantities are linked by the
magnetic field intensity Hk, that can be assumed equal to the two regions,
because the MMF drop is the same across the whole slot–tooth elementary
slice. The iron flux-density depends on Hk through the non-linear magnetiz-
ing characteristic (table 2.3), whereas the analogous relationship is linear for
the air region:

Bt,k → Bt(Hk) Ba,k → µ0Hk

so (2.41) becomes

B̂t,k = Bt(Hk) + µ0
(1 − kst) + sk/tk

kst
Hk (2.42)

We need to bear in mind that the term B̂t,k depends on the air-gap flux-
density B according to (2.39), so equation (2.42) can be written (and solved)
for any value of B and for any k-th elementary slice.

Solving (2.42) for any k finally allows to determine Hk and, thus, to com-
pute the total MMF drop along the tooth, by summing all the drops in the
elementary slices:

Ft(B) =
K

∑
k=1

Hk hk (2.43)

The tooth MMF drop can be computed as a function of the air-gap flux-
density using the following procedure:
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1. the air-gap flux-density (maximum) value B is fixed;

2. the tooth is subdivided into K elementary segments and, for every
k = 1, 2, . . . , K the ideal tooth flux-density value B̂t,k is calculated ac-
cordingly to (2.39). Solving the non-linear equation in (2.42) the mag-
netic field intensity Hk is determined as well;

3. the tooth MMF drop is calculated accordingly to (2.43).

Iterating this procedure for any value of B the Ft(B) characteristic is deter-
mined.

Saturated air-gap flux-density wave

The MMF drop in the air-gap and teeth region allows to determine the
saturated air-gap flux-density wave, i.e. the actual flux-density spatial wave
in the air-gap which sustains the magnetizing flux.

Firstly the MMF drop across the air-gap and the stator and rotor teeth
has to be determined. The MMF drop computation is made for several
values of the air-gap flux-density, so that the flux-density vs MMF drop plot
in figure 2.3 is determined. The calculation procedure is summarized as
follows:

1. the air-gap flux-density value B is given;

2. the air-gap MMF drop is determined, according to (2.30);

3. the stator tooth MMF drop is computed according to (2.43);

4. the rotor tooth MMF drop is calculated in the same way as the stator
tooth;

5. the total MMF drop is simply given adding the three elementary drops:

F0(B) = Frt(B) + Fgap(B) + Fst(B) (2.44)

At this point the saturated flux-density wave is determined as follows
(figure 2.3):

1. the air-gap maximum flux-density Bg,max is fixed ;

2. the MMF needed to sustain Bg,max is determined according to the B-
vs-MMF characteristic of the air-gap and teeth region previously calcu-
lated. Let F0,max be the MMF value;

3. F0,max is the peak value of the air-gap MMF fundamental wave. There-
fore, the air-gap MMF as a function of the electric angle α is given by
F0(α) = F0,max cos α;

4. for any α the air-gap flux-density Bg(α) is calculated, reverting the B-
vs-MMF characteristic of the air-gap and teeth region;
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Figure 2.3: Determination of the air-gap saturated flux-density wave from the B-vs-MMF
characteristic of air-gap and teeth region

5. the fundamental of the air-gap flux-density wave is determined:

Bfund =
1
π

∫︂ 2π

0
Bg(α) cos αdα (2.45)

This value gives the main flux in (2.22); the saturation factor is also
introduced, given by:

ksat(Bg,max) =
Bfund

Bg,max
(2.46)

The saturation factor is equal to 1 if the wave is unsaturated, otherwise
becomes greater than 1.

An example of saturated flux-density wave is given in figure 2.4, where it
is adopted to compute the yoke MMF drop. Before moving to this calcula-
tion it is worth saying that the procedure for the saturated flux-density wave
determination can be iterated for several values of Bg,max, obtaining the cor-
responding flux-density fundamental Bfund(Bg,max) and the saturation factor
ksat(Bg,max). This allows one to introduce a new machine characteristic curve,
i.e. the Bg,max-vs-Bfund characteistic or, equivalently, the Bfund-vs-ksat charac-
teristic.

Yoke MMF drop

The calculation of the MMF drop in the machine yokes is illustrated in
figure 2.4. As for the teeth case, the procedure is the same for both the
stator and the rotor yokes, so the method will be explained considering a
generic laminated yoke, having net length ℓnet and stacking factor kst. The
yoke radial height is hyk and is calculated accordingly to what presented in
table 2.1. For symmetry reasons the MMF drop calculation is limited to half
a pole, i.e. an electric angle of 90◦. It is assumed that the yoke starts at a
pole axis and ends at an inter-pole axis, covering half of a pole pitch. The
yoke is subdivided into N elementary segments. The number of segments
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Figure 2.4: Calculation of the MMF drop across a yoke. This figure also shows the air-gap
MMF wave (sinusoidal) and the saturated air-gap flux-density wave

should be close to the number of slots. The average between Nssl and Nrsl is
usually a good choice. Each segment has an elementary width equal to yn

and is placed at an electric angle αn with respect to the pole axis. The axial
length of the iron section for each elementary segment is, of course, kstℓnet

and this is the only section that experiences magnetic flux, i.e. the effect of
air-crossing considered for the teeth is not assumed in this case, because of
the reduced level of saturation that usually occurs in the yokes.

The flux-balance equation for the n-th segment has to take into account
the contribution of flux coming from the air-gap and from the adjacent yoke
segment. Thus it can be written:

By,n−1 hyk kstℓnet + Bg,n
τp

2N
ℓgap = By,n hyk kstℓnet (2.47)

where By,n is the flux-density in the n-th yoke segment and Ba,n is the air-gap
value of the flux-density at angle αn, calculated as described in 2.3; since this
procedure depends on the arbitrary value of maximum air-gap flux-density,
equation (2.47) can be written for any given Bg,max. It is worth noticing
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that (2.47) is valid for any n, except for n = 1; in this case the flux coming
from the previous segment is not defined, because, there is no segment 0.
However, for symmetry reasons, the total flux entering this segment comes
from the air-gap only, i.e. we can assume:

By,0 = 0

From (2.47) the flux-density in the yokes can be calculated recursively, for
n = 1, 2, . . . , N:

By,n = By,n−1 + Bg,n
τp

2Nhyk

ℓgap

kstℓnet
with By,0 = 0 (2.48)

Once the flux-density is determined, the magnetic field intensity Hy,n is ob-
tained from the material BH curve (table 2.3) and, finally, the MMF drop:

Fy(Bg,max) =
N

∑
n=0

Hy,n(By,n)yn (2.49)

At this point the Bg,max-vs-Fy characteristic can be determined as follows:

1. the maximum air-gap flux density Bg,max is fixed;

2. the saturated air-gap flux-density wave is determined, applying the
procedure described at page 31;

3. the flux-density profile along the yoke is calculated recursively using
(2.48);

4. the MMF drop in the yoke is determined accordingly to (2.49).

Total magnetization characteristic

The MMF calculation procedures presented above can be combined to de-
termine the final magnetization characteristic of the whole machine. This
characteristic will be used, in the next section, to determine the magnetizing
reactance of the IM. It is convenient to express the magnetization character-
istic in terms of a E-vs-Fmag curve, being E the motor back-EMF and Fmag

the total magnetizing MMF, i.e. the total MMF drop.
The characteristic is determined as follows:

1. the root-mean square (RMS) value of back-EMF E is fixed;

2. the flux-per-pole is calculated

Φp =

√
2E

ω0kwNtph
(2.50)

3. the fundamental of air-gap flux-density is determined inverting (2.22)

Bfund =
π

2
Φp

τpℓgap
(2.51)
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4. the corresponding maximum value of the saturated flux-density wave
is determined reverting the Bfund-vs-ksat characteristic:

Bg,max =
Bfund

ksat
(2.52)

5. the value of Bg,max determined from (2.52) is used in the B-vs-MMF
characteristics previously evaluated in (2.44) and (2.49) to determine
the total MMF drop:

Fmag = F0(Bg,max) + Fsy(Bg,max) + Fry(Bg,max) (2.53)

Iterating this procedure for any E the Fmafg(E) characteristic is finally deter-
mined.

2.4.2 Magnetizing reactance

Expression (B.23) in appendix B, limited to the first harmonic, gives the
relationship between the magnetizing MMF and the RMS value of the mag-
netizing current:

Fmag =
6
√

2
π

kwNtph

Np
Im (2.54)

Since the magnetizing MMF must equal the MMF drop in the whole mag-
netic circuit that has been calculated before, this expression can be inverted
determining the magnetizing current needed to sustain a certain Fmag:

Im =
π

6
√

2

Np

kwNtph
Fmag (2.55)

It is worth noticing that the peak of magnetizing MMF wave is actually
evaluated by the drop along half of the magnetic circuit (as presented in
section 2.4.1), because the drop along the remaining half is substained by
the MMF wave in the adjacent pole.

The magnetizing reactance is simply given by the ratio E/Im; however,
since the magnetizing MMF in (2.53) is defined as a function of the back-
EMF, the magnetizing reactance is defined as a function as well:

Xm(E) =
E

Im(E)
=

6
√

2
π

kwNtph

Np

E
Fmag(E)

(2.56)

If the magnetizing MMF is limited to the air-gap amount then the unsatu-
rated magnetizing reactance is obtained. The fundamental value of B should
be used to evaluate Fgap in this case. Since the air-gap MMF is linearly depen-
dent on the back-EMF, the unsaturated reactance is a constant parameter:

Xm,uns =
6
√

2
π

kwNtph

Np

E
Fgap(Bfund)

(2.57)
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2.4.3 Core losses

Core losses are due to hysteresis and eddy currents. Most of the laminated
electric steel suppliers provide, along with the BH curve, the material loss
characteristic, expressed as a specific power loss (W/kg) at different given
values of frequency and flux-density (see table 2.3). Using the flux-density
distributions in the teeth and in the yokes evaluated in 2.4.1 the total core
loss can be calculated from this specific loss.

The procedure is applied to the stator parts only; in fact the rotor core loss
is usually neglected, because of the low frequency that this part of the ma-
chine experiences in its normal operation. The specific loss of an elementary
volume is related to the maximum value of flux-density that it experiences
during an electric cycle. Therefore:

• for the teeth we need to consider the flux-density distribution deter-
mined for a tooth placed on the pole axis;

• for the yoke it is sufficient considering the flux-density value on the
inter-pole axis.

The specific losses provided by material suppliers are obtained from labo-
ratory tests on normalized specimens. Because of the manufacturing pro-
cess of the electric machine the actual losses are generally larger than the
supplier-provided values. This fact can be taken into account considering
the following core loss factors, different for yoke an teeth:

• for the yoke it can be considered a factor KL,y = 1.25-1.50

• for the teeth the factor is higher, say KL,t = 1.75-2.00

Because of the saturation the core loss varies non-linearly with the ma-
chine back-EMF. Thus, as done for the magnetizing characteristic, the pro-
cedure has to be iterated for several values of E to determine the voltage-vs-
loss characteristic, i.e. the function PFe(E). The calculation procedure is the
following:

1. the RMS value of back-EMF E is fixed;

2. the maximum value of air-gap flux density Bg,max is determined as
explained in the procedure at page 35;

3. the tooth flux-density distribution Bst,k and the maximum yoke flux-
density Bsy,N are determined as described at page 30 and 34 respec-
tively;

4. the tooth and yoke specific losses are given by:

pFe,t(E) =
K

∑
k=1

pFe(Bst,k)tkhk (2.58)

pFe,y(E) = pFe(Bsy,N)πDs,ykhsyk (2.59)

being pFe(B) the specific loss of the ferromagnetic material at the flux-
density value B and for the rated machine frequency;



2.5 performance calculation 37

Table 2.4: Values of Kfw for different machine types

TEFC motors 15 W s2 m−4

Open circuit cooling machines 10 W s2 m−4

Large induction motors 8 W s2 m−4

Turbogenerators 5 W s2 m−4

5. the total core loss is finally given by:

PFe(E) = δ
[︁
KL,y pFe,y(E) + KL,tNssl pFe,t(E)

]︁
ℓnet (2.60)

From (2.60) the core equivalent resistance can be obtained as well.

RFe(E) =
E2

PFe(E)
(2.61)

2.4.4 Mechanical losses

The mechanical losses depend on friction and windage, i.e. the bearings
losses and the friction between the rotating surfaces of the rotor and its
surrounding gas (air). In addition, the self-consumption of the ventilator
using for machine self-cooling has to be taken into account as well. The
following emphirical relation can be used:

Pfw,0 = Kfw
Dr,out

(︁
ℓr,tot + 0.6τp

)︁
N2

p
ω2

0 (2.62)

where Kfw is a loss coefficient, depending on machine type, accordingly to
table 2.4.

The expression in (2.62) is referred to synchronous speed n0; at a generic
speed n < n0 the value given by (2.62) has to be reduced. Since most of
the loss is due to windage and the mechanical characteristic of the rotor is
approximately a quadratic torque-vs-speed curve (as a fan), the total loss is
almost cubic-proportional to the speed, i.e. it can be written:

Pfw(s) = Pfw,0(1 − s)3 (2.63)

being s the slip associated to speed n.

2.5 performance calculation

Figure 2.5 shows the standard equivalent circuit for an induction motor.
The parameters Rs, Xs, RFe, Xm, Rr and Xr are determined according to what
has been presented in sections 2.2, 2.3 and 2.4. The motor performance at a
rated voltage Vn and power output Pn is determined through the following
procedure:

1. the phase voltage Un is calculated:

Un =

{︄
Vn√

3
for star-connected motors

Vn for delta-connected motors
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2. a first guess pair (Ẽ, s̃) is fixed for back-EMF and slip;

3. the motor impedances are given by:

Z̄s = Rs + ȷXs (2.64a)

Z̄0 =
RFe(Ẽ) ȷXm(Ẽ)

RFe(Ẽ) + ȷXm(Ẽ)
(2.64b)

Z̄r =
Rr

s̃
+ ȷXr (2.64c)

and the equivalent impedance is:

Z̄eq = Z̄s +
Z̄0Z̄r

Z̄0 + Z̄r
(2.65)

4. the stator current is:

Īs =
Ūn

Z̄eq
(2.66)

where it is assumed Ū = U, i.e. the phase voltage is chosen as reference
for the phasors arguments. The rotor current is given as well:

Īr = Īs
Z̄0

Z̄0 + Z̄r
(2.67)

5. the back-EMF is:
Ē = Z̄r Īr (2.68)

whereas the power output is:

P̃out = 3Rr
1 − s̃

s̃
| Īr|2 − Pfw,0(1 − s̃)3 (2.69)

6. the values of E from (2.68) has to be compared with the first guess cho-
sen at point 2; similarly P̃out obtained from (2.69) has to be compared
to the rated power. If the difference is above the acceptable tolerance
the first guess pair (Ẽ, s̃) has to be updated and the procedure from
point 2 to here has to be repeated. A good choice for the back-EMF
is |Ē| from (2.68), whereas for the slip it can be used the fact that the
power output is almost linear with the slip:

s̃new =
Pn

P̃out
s̃old

Once the convergence is reached the remaining parameters are calculated.
The motor losses are given by:

• stator joule losses
Pj,s = 3Rs| Īs|2 (2.70)

• core losses

PFe = 3
|E|2
RFe

(2.71)

• rotor joule losses
Pj,r = 3Rr| Īr|2 (2.72)
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Figure 2.5: Induction motor standard equivalent circuit

• mechanical losses accordingly to (2.63).

The input complex power is:

S̄in = 3Ūn Ī∗ (2.73)

and so the active and reactive power are, respectively:

Pin = Re
{︁

S̄in
}︁

(2.74)

Qin = Im
{︁

S̄in
}︁

(2.75)

and the power factor is:

cos φ =
Pin

|S̄in|
(2.76)

Subtracting the losses from the input power the output power is obtained:

Pout = Pin −
(︁

Pj,s + PFe + Pj,r + Pfw
)︁

(2.77)

so the motor efficiency is:

η =
Pout

Pin
(2.78)

and, finally, the motor speed and torque:

n = (1 − s)n0 (2.79)

T =
60Pout

2πn
(2.80)





3 S H A F T E F F E C T S C A LC U L AT I O N
M E T H O D S

In this chapter the problem of determining the motor performance for
two-pole IMs is investigated. In fact, as said before, the ECM presented
in chapter 2 is not accurate for those machine whose shaft experiences a
variable magnetic field and, thus, eddy currents arise inside of it. Numerical
methods have to be involved to take into account this complex phenomenon.
Two methods are detailed here:

1. in section 3.1 the standard, classic FEM applied to the whole motor
model is considered; the modeling hypoteses and the analysis proce-
dure are presented and discussed;

2. the FE model detailed in section 3.1 is drastically simplified in sec-
tion 3.2; this elementary FE model is used to present an innovative
method, i.e. an improved version of the ECM detailed in the previous
chapter. More in detail, this innovative method is an hybrid numeric-
analytical method, which uses a set of FEAs to properly take into ac-
count the effect of shaft eddy currents on the motor equivalent circuit
magnetizing reactance.

The two methods here presented, together with the ECM from chapter 2,
will be applied to some real motors in chapter 4.

3.1 standard finite-element method

Finite-Element Method is a standard, well-known method applied to many
complex engineering problems involving PDEs, like structural analysis, heat
transfer, fluid-flow, mass transport and so on. Technical literature is full
of publications that apply this method to electromagnetic analysis as well,
with particular focus on the low-frequencies and electrical machine analysis
[9, 10, 16, 17]. Notable PDE problems for electric machines are detailed in
section 3.1.1.

Time-stepping FE simulations are certainly a possible way to compute the
full-load power factor of two-pole IMs with a solid-steel shaft [15]. How-
ever, they are known to be very time consuming. A faster but sufficiently
accurate alternative, described in this section, is an extension of the hybrid
approach proposed in [9] such that analytical equivalent-circuit-based cal-
culations are combined with 2D Time-Harmonic (TH) FE simulations per-
formed on the complete machine cross section model at the slip frequency,
taking shaft eddy-current effects into account. Section 3.1.2 presents the
strategies adopted to simplify the motor in order to fit it into a planar model.
The solution procedure is detailed in section 3.1.3.

41
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3.1.1 Notable PDEs for electric machine analysis

The low-frequency formulation for the Maxwell equation is given [26]:

∇⃗ · B⃗ = 0 (3.1a)

∇⃗ × H⃗ = J⃗ (3.1b)

∇⃗ × E⃗ = − ̇⃗B (3.1c)

subject to the constitutive relations:

B⃗ = µH⃗ (3.2a)

E⃗ = ρ⃗J (3.2b)

The three equations in (3.1) can be combined into a single one by means
of the Magnetic Vector Potential (MVP) A⃗ defined so that:

∇⃗ × A⃗ = B⃗ (3.3a)

∇⃗ · A⃗ = 0 (3.3b)

Equation (3.3a) always guarantees a solution for (3.1a). Substituting (3.3a)
into (3.1c) it can be shown that:

E⃗ = − ̇⃗A − ∇⃗ϕ (3.4)

being ϕ a scalar potential depending on external excitations, introduced for
generality. Reverting (3.2b) it is also obtained:

J⃗ = σE⃗ = −σ ̇⃗A − σ∇⃗ϕ (3.5)

and, plugging (3.3) into (3.1b) the fundamental equation is obtained:

∇⃗ ×
(︂
µ−1∇⃗ × A⃗

)︂
+ σ ̇⃗A + σ∇⃗ϕ = 0 (3.6)

This equation is valid for region subjected to eddy-currents. If there are only
source (external) currents (or no current at all) (3.6) can be simplified into

∇⃗ ×
(︂
µ−1∇⃗ × A⃗

)︂
= J⃗ (3.7)

The solution of (3.6) or (3.7) with respect to A⃗ allows to determine the re-
maining quantities through the definition in (3.3a), the constitutive relations
in (3.2) and the relation (3.5).

Most of the problems addressed in the electrical machine design admit a
planar solution. This means that the magnetic field vectors B⃗ and H⃗ lie on
a plane, whereas J⃗, E⃗, A⃗ and ∇⃗ϕ are normal to this plane, so they can be
considered as scalars. Equations (3.6) and (3.7) become scalar equations as
well:

∇⃗ ·
(︂
µ−1∇⃗A

)︂
− σȦ = 0 (3.8a)

∇⃗ ·
(︂
µ−1∇⃗A

)︂
+ J = 0 (3.8b)
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The flux-density components are given by:

Bx =
∂A
∂y

(3.9a)

By =− ∂A
∂x

(3.9b)

or, in polar coordinates:

Br =
1
r

∂A
∂θ

(3.10a)

Bθ =− ∂A
∂r

(3.10b)

A further simplification derives if the material is magnetically linear and
isotropic:

∇2A − µσȦ = 0 (3.11a)

∇2A + µJ = 0 (3.11b)

Equation (3.8b) and its particular case (3.11b) are classified as Poisson’s
equations and, in the specific case of rotating electrical machines, are the
theoretical reference for synchronous-state operation. The FE problem of
these equation is called magnetostatic FE problem.

The equations (3.8a) or (3.11a) are called diffusion equations; their solution
is more complex and, generally, might require a time-discretization, so the
corresponding FE problems are called Time-Stepping problems. However, if
the time-dependency is sinusoidal, i.e. the AC steady-state of a machine is
being investigated, the equation can be furtherly transformed and simpli-
fied.

If ω is the system angular frequency then all the electro-magnetical quan-
tities in (3.8a) can be represented as complex phasors rotating at speed
ω, so the time derivative is expressed as Ȧ = ȷωĀ and the explicit time-
dependency can be eliminated, giving:

∇⃗ ·
(︂
µ−1∇⃗Ā

)︂
− ȷωσĀ = 0 (3.12)

and, for linear and homogeneous materials:

∇2 Ā − ȷωµσĀ = 0 (3.13)

The current density is obtained from the MVP accordingly to (3.5):

J̄ = −ȷωσĀ (3.14)

Equations (3.12) and (3.13) are classified as Helmholtz equations and the cor-
responding FE formulation is called Time-Harmonic problem.

3.1.2 2D modeling of an induction motor

The steady-state operation of an induction motor can be analyzed by
means of a TH-FEA at slip frequency [10]. The FE model for a two-pole
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machine is sketched in figure 3.1. The motor geometry is modeled assum-
ing a polar system of coordinate, i.e. each point in the motor is identified
through the pair of coordinates (r, θ), as shown in figure 3.1a. Thanks to the
motor symmetry the model can be limited to a single pole, so the domain of
definition for the coordinates is

(r, θ) ∈ [0, Ds,out/2]× [0, π]

As shown in (3.12) the problem is solved once the MVP A is determined
inside of this domain. To guarantee the uniqueness of the solution a suitable
set of Boundary Conditions (sBCs) have to be set on the model border. More
in detail:

• on the stator external diameter the MVP is assumed as zero (Dirichlet’s
BC):

A(Ds,out/2, θ) = 0 ∀θ ∈ [0, π]

• on the radial axis a anti-periodic BC is assumed:

A(r, 0) = −A(r, π) ∀r ∈ [0, Ds,out/2]

The FEM solution is based on the meshing, i.e. the discretization of the
geometric model. As shown in figure 3.1b the mesh size is thinner in the
regions where there is a high variation rate of the magnetic field (such as in
the air-gap) and in the regions subjected to eddy currents, like the cage and
the shaft.

The simplification of modeling a 3D object as a 2D surface implies that
all the machine parts are assumed to have the same length. In fact the
2D modeling of the flux that passes from the stator to the rotor through
the air-gap, for instance, is realized considering the flux-density distribution
inside each of these model region and multiplying it for the corresponding
pole surface; each pole surface has the same length for the model, but they
actually are different in the motor. As a consequence, the fields inside certain
parts of the motor model are not the actual fields in the corresponding parts
of the real machine. This fact can be partially corrected by properly adjusting
the physical properties of the materials included in the model, similarly to
what is suggested in [27].

Let us consider two adjacent regions of the motor, having axial length ℓ0

and ℓ respectively. The flux is preserved when passing from one region to
the other, thus we can write:

B0ℓ0dx = Bℓdx (3.15)

being dx the width of the interface between the two regions on the cross-
plane. The motor is modeled assuming as a reference the length of the first
region, so ℓ′ = ℓ0. The flux balance equation becomes:

B0ℓ
′dx = B′ℓ′dx (3.16)

The left hands in (3.15) and (3.16) are the same, so the right hands must be
equal as well:

Bℓ = B′ℓ′ (3.17)
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(a) Geometric model

(b) Meshed model

Figure 3.1: Finite-Element modelling of an induction motor
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Using the constituitive relationship for magnetic field this expression can be
rewritten as follows:

µHℓ = µ′H′ℓ′ (3.18)

It can be assumed that H = H′, because the field H depends only on the
MMF (source currents) and on the dimensions of the cross-section. There-
fore, equation (3.18) leads to:

µ′ =
ℓ

ℓ′
µ (3.19)

This correction on the model permeability guarantees the preservation of
MMF, accordingly to (3.18). From (3.17) the relation between the actual and
the model flux-density is also derived:

B′ =
ℓ

ℓ′
B (3.20)

The introduction of (3.19) requires an additional condition on material
resistivity, in order to preserve the penetration depth in the regions subjected
to eddy-currents. Since the penetration depth is:

δ =

√︄
2ρ

ωµ
(3.21)

the latter is preserved if the resistivity is adjusted in the same way of the
permeability, i.e.:

ρ′ =
ℓ

ℓ′
ρ (3.22)

or, equivalently:

σ′ =
ℓ′

ℓ
σ (3.23)

As regards the transformation of the remaining fields from the system to
the model we can observe that the MVP is proportional to the flux density
through a geometric operator (planar curl, see (3.9) or (3.10)) that is invariant
when switching from the motor to the model, so the mapping condition for
the potential modeling is analogous to the flux-density one:

A′ =
ℓ

ℓ′
A (3.24)

The source currents preservation is the basis of the model equivalence;
the eddy currents are actually preserved as well, because considering (3.14),
(3.23) and (3.24) it can be written:

J′ = −σ′ Ȧ′ = − ℓ′

ℓ
σ
ℓ

ℓ′
Ȧ = −σȦ = J (3.25)

Finally, few considerations about the macroscopic and energetic quantities.
The flux in the radial direction is preserved, as directly follows from (3.20):

Φ′ ∝ B′ℓ′

Φ ∝ Bℓ

}︄
−→ Φ′

Φ
=

B′

B
ℓ′

ℓ
= 1 (3.26)

From (3.26) the preservation of voltages directly follows as well, whereas
the preservation of current is the initial hypothesis; thus the impedances,
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Table 3.1: Equivalence between motor and 2D-model quantities

Quantity Motor 2D Model

Geometric quantities

Axial length ℓ = κℓ′ ℓ′

Cross-section area S S′ = S
Volume V V ′ = V/κ

Permeability µ µ′ = κµ

Resistivity ρ ρ′ = κρ

Conductivity σ σ′ = σ/κ

Field quantities

Flux-density B B′ = κB
Magnetic field intensity H H′ = H
Magnetic vector potential A A′ = κA
Current density J J′ = J
Electric field E E′ = κE

Macroscopic quantities

Flux Φ Φ′ = Φ
Flux linkage Ψ Ψ′ = Ψ
Voltage U U′ = U
Current I I′ = I
Resistance R R′ = R
Inductance L L′ = L

Energetic quantities

Specific energy w w′ = κw
Total energy W W ′ = W
Specific loss p p′ = κp
Total loss P P′ = P
Torque T T′ = T

resistances and inductances are preserved too. The specific energy (energy-
per-volume) is given by:

w′ =
1
2

µ′H′2 =
1
2
ℓ

ℓ′
µH2 =

ℓ

ℓ′
w (3.27)

and, therefore, since the volume is scaled as V ′ = ℓ′/ℓV the total energy is
preserved. Similar relations are obtained as regards the specific power loss
(p = ρJ2), the total power and the torque.

All the notable motor-model equivalences are collected in table 3.1. The
motor 2D model is defined according to the geometry correction provided in
this table, considering the model "depth" equal to the air-gap length defined
in (2.35). All the post-processed quantities are evaluated according to this
length and to the relations in table 3.1.

As regards the rotor cage representation, since the bar only can be mod-
eled in the FE geometry (see figure 3.1a) the bar material resistivity is cor-
rected taking into account the contribution of the end-rings portions corre-
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Figure 3.2: Schematic flow chart for the steady-state analysis of an induction motor through
FEM, using a current-fed model

sponding to each bar as well. Considering the actual bar and ring resistance
from (2.5) and (2.6) respectively the equivalence is expressed as:

ρ′
ℓgap

Sbar
= ρ

⎡⎣ ℓbar

Sbar
+

πDrng,avg

2NrslSrng sin2
(︂

Np
Nrsl

π
)︂
⎤⎦

where ρ is the actual cage resistivity and ρ′ its model equivalent, which is
finally calculated as:

ρ′ = ρ

⎡⎣ ℓbar

ℓgap
+

π

2Nrsl sin2
(︂

Np
Nrsl

π
)︂ Drng,avg

ℓgap

Sbar

Srng

⎤⎦ (3.28)

3.1.3 Solution procedure for steady-state analysis

The computation procedure is represented by the flowchart in 3.2. It aims
at determining the IM power factor during operation at rated voltage, power
and frequency. For this purpose, an iterative process similar to that proposed
in [17] is employed as described next.

The model is excited with a balanced three-phase current system of ampli-
tude I′ and frequency f ′ = s′ f0, being I′ and s′ first-guess values for rated
current and rated slip respectively. From the TH-FE model solution the sta-
tor flux linkage complex phasor Ψ̄′ and the electromagnetic torque T′ are
determined as follows:
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• the phase flux linkage is obtained from the vector potential in the slots.
In fact, from Kelvin-Stokes theorem [28] the flux of the field’s curl
through a surface is equal to the circuitation of the field along the
outer border of the surface:

ϕ =
∫︂∫︂

Ω

B⃗ · d⃗σ
(3.3a)
=

∫︂∫︂
Ω

∇⃗ × A⃗ · d⃗σ
KST
=

∮︂
∂Ω

A⃗ · d⃗ℓ (3.29)

For a 2D model the flux calculation is even simpler to calculate. Let
us consider an elementary turn having the coilsides placed at points
C+ = [r+, θ+], C− = [r−, θ−] in the cross-plane polar reference frame
from figure 3.1a. Since the MVP is always normal to this plane and it is
independent of the axial coordinate, then the line integral from (3.29)
is computed just along the two coil-sides, giving:

ϕ =
[︁
A(r+, θ+)− A(r−, θ−)

]︁
ℓ (3.30)

being ℓ the coil axial dimension. The flux linkage of a phase is cal-
culated extending the calculation in (3.30) to every coilside belonging
to that phase. It is assumed that the midpoints of a phase positive
coilsides are placed in [r+k , θ+k ], with k = 1, 2, . . . , Nssl/3, whereas the
negative ones are in [r−k , θ−k ]. If the model is reduced to 1/Ksym-th of
the machine (like in figure 3.1, where Ksym = 2) then some of the points
[r±k , θ±k ] might be outside of the model domain, so such points must be
ignored in that case. Taking into account the number of turns per coil
and the number of parallel circuits per phase the total flux linkage is
finally given:

Ψ̄′ =
KsymNtc

Npc

Nssl/3

∑
k=1

[︁
Ā(r+k , θ+k )− Ā(r−k , θ−k )

]︁
ℓgap (3.31)

• the torque is calculated applying the Maxwell’s stress tensor [28], that
gives the force per unit surface in air:

f⃗ =
1
µ0

[︃(︂
B⃗ · n⃗

)︂
B⃗ − 1

2
∥B⃗∥2n⃗

]︃
(3.32)

where n⃗ is a unit vector normal to the surface. Integrating (3.32) on a
cylindrical surface surrounding the rotor (having radius r0 = Dgap/2)
the electromagnetic torque is obtained:

Tem = e⃗z ·
∫︂∫︂

r⃗ × f⃗ · dσ =
Dgap

2ℓgap

4µ0

∫︂ 2π

0
BrBθdθ (3.33)

If the model is symmetry-reduced, (3.33) becomes:

Tem = Ksym
D2

gapℓgap

4µ0

∫︂ 2π/Ksym

0
BrBθdθ (3.34)

This expression is valid for the magnetostatic problems, when Br and
Bθ are real and time-independent. In dynamics, expression (3.34) should
be applied to the instantaneous distribution of flux-density, obtaining
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the instantaneous torque. However, taking advantage of the AC steady-
state condition, the instantaneous torque components can be computed
from the complex flux-density distribution. In fact, considering the
trigonometric expression for the flux-density components, it can be
written: {︄

Br(t) = |B̄r| cos(ωt +∠B̄r)

Bθ(t) = |B̄θ | cos(ωt +∠B̄θ)

so the instantaneous torque expression becomes:

Tem(t) = Ksym
D2

gapℓgap

4µ0

∫︂ 2π/Ksym

0
|B̄r||B̄θ | cos(ωt +∠B̄r) cos(ωt +∠B̄θ)dθ

and then, applying the prosthaphaeresis formulas [29]:

Tem(t) = Ksym
D2

gapℓgap

4µ0

∫︂ 2π/Ksym

0

[︃
|B̄r||B̄θ |

2
cos(∠B̄r −∠B̄θ)

+
|B̄r||B̄θ |

2
cos(2ωt +∠B̄r +∠B̄θ)

]︃
dθ

Therefore the torque is composed of a static component (at zero fre-
quency) and a fluctuating one, pulsating at double the model frequency,
respectively given by:

Tem,0 =Ksym
D2

gapℓgap

8µ0

∫︂ 2π/Ksym

0
Re {B̄r B̄∗

θ}dθ (3.35a)

T̄em,2ω =Ksym
D2

gapℓgap

8µ0

∫︂ 2π/Ksym

0
B̄r B̄θdθeȷ2ωt (3.35b)

Since the steady-state operation is being investigated the torque from
the FE model is the static one, i.e. T′ = Tem,0.

The actual motor working point is deduced from the model quantities
Ψ̄′ and T′ including the external effects not included in the FE model from
figure 3.1:

1. the voltage drop on the phase resistance Rs and on the stator end-
winding reactance Xs,end;

2. the core losses, dissipated on the equivalent resistance RFe;

3. the mechanical losses at the working slip Pfw(s′)

All these parameters are calculated according to what has been presented in
chapter 2. The motor back-EMF is approximately given by the derivative of
the flux-linkage from the FE model1:

Ē′ = ȷω0Ψ̄′ (3.36)

It is worth noticing that this expression considers the stator frequency, not
the model one2.

1 In fact the proper motor back-EMF comes from the air-gap fundamental flux-linkage,
whereas Ψ′ from (3.31) also includes the slot and gap flux leakages.

2 An explanation of this fact will be given in part ii



3.1 standard finite-element method 51

The total stator current is obtained from the model current Ī′ = I′ consid-
ering the active contribution for compensating core losses:

Ī′s = Ī′ +
Ē′

RFe(|Ē′|) (3.37)

and finally the phase and line voltage are obtained:

Ū′ = Ē′ + (Rs + ȷXs,end) Ī′s (3.38)

V ′ =

{︄√
3|Ū′| if the stator is star-connected

|Ū′| if the stator is delta-connected
(3.39)

The output power is obtained considering that the gap electromagnetic
power Ω0T′ is dissipated on the resistance Rr/s from circuit in 2.5:

Ω0T′ = 3
Rr

s′
I2
r

and, according to (2.69):

P′ = 3Rr
1 − s′

s′
I2
r − Pfw(s′)

with Pfw(s) = Pfw,0(1 − s)3. Combining these two expression it is finally
obtained:

P′ = (1 − s′)Ω0T′ − Pfw(s′) (3.40)

The output data estimated from (3.39) and (3.40) are compared to the IM
rated voltage and power. If the difference is larger than a suitable tolerance,
the excitation current I′ and the slip s′ of the FE model are adjusted using a
quasi-Newton algorithm [30]. The problem of determining the rated work-
ing point of the IM is reduced to the solution of a non-linear vector equation:⃓⃓⃓⃓

P′
out(I′, s′)
V ′(I′, s′)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
Pn

Vn

⃓⃓⃓⃓
Letting Ik

′, sk
′, Pk

′ and Vk
′ the current, the slip, the output power and the

line voltage for the k-th solution of the FE model then, assuming:

xk =

⃓⃓⃓⃓
Ik
′

sk
′

⃓⃓⃓⃓
yk =

⃓⃓⃓⃓
Pk

′

Vk
′

⃓⃓⃓⃓
yn =

⃓⃓⃓⃓
Pn

Vn

⃓⃓⃓⃓
then the next model excitation is given by:

xk+1 = xk − J−1
k (yk − yn)

where J−1
k is the jacobian matrix at the k-th iteration, given by:

J−1
k =

⎡⎢⎢⎣
∂P′

∂I′
(xk)

∂P′

∂s′
(xk)

∂V ′

∂I′
(xk)

∂V ′

∂s′
(xk)

⎤⎥⎥⎦
−1

The jacobian matrix must be evaluated numerically, assuming a slight varia-
tion of each of the FEM inputs separately and calculating the corresponding
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output and variations rate. The reference in [30] allows to update the jaco-
bian matrix from the previously solved steps:

J−1
k = J−1

k−1 +
δxk − J−1

k−1δyk

δxk
TJ−1

k−1δyk
δxk

TJ−1
k−1

with δxk = xk − xk−1 and δyk = yk − yk−1.
The FE model excitations are updated using this method and the calcula-

tion procedure is repeated. The iteration loop ends when the percent error
between rated and estimated power and voltage values is below the chosen
threshold. The IM power factor at rated conditions is finally computed as:

cos φ′ = cos(∠Ū′ −∠ Ī′s) (3.41)

3.2 improved equivalent circuit method

The computation procedure described in section 3.1.3, even if faster than
a time-stepping FE simulation, suffers from a relatively poor computational
performance because it implies solving time-consuming non-linear TH-FEAs
of a complete model. Instead, the new proposed approach to the problem,
presented in this section, employs a reduced IM 2D model, which will be
shown to yield remarkable savings in terms of computation time without
significant loss of accuracy. The general procedure is firstly described in
3.2.1 and an insight on the reduced model is given in 3.2.2.

3.2.1 Overall procedure description

The proposed procedure is illustrated in figure 3.3. As in sections 2.5
and 3.1, the objective is to determine the IM working point (and, in particular,
the power factor) in rated conditions, i.e. with voltage Vn, frequency f0 and
output power Pn, considering shaft eddy-current effects as well.

As a starting point, it is assumed that the IM operates with a first-guess
flux per pole Φ and slip s. From the flux-per pole the first-guess value of the
back-EMF and the maximum air-gap flux-density are also determined, ac-
cordingly to (2.50), (2.51) and (2.52). The MMF drop across the contour MPQ
shown in figure 3.4 is analytically estimated, as presented in section 2.4.1. It
can be noticed how the contour MPQ crosses half of the stator yoke, the
stator and rotor teeth and the air-gap, so it is simply given by:

Fmag,0 =
∫︂

MPQ

H⃗ · d⃗ℓ = F0(Bg,max|Φ
) + Fsy(Bg,max|Φ

) (3.42)

where Bg,max|Φ
is the maximum air-gap flux-density corresponding to the

flux per pole Φ. It is assumed that the MMF drop from (3.42) is the same
in both no-load and full-load conditions. This is a reasonable hypothesis
because the shaft eddy currents arising at full load produce a flux density
increase in the rotor yoke but do not significantly alter the flux density (and
hence the magnetic field H) in the other IM cross-section regions, as can be
seen in figure 1.2.
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Figure 3.3: Schematic flow chart for the steady-state analysis of an induction motor through
an improved equivalent circuit method. The FEM is limited to a reduced model
for the calculation of the on-load magnetizing reactance
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What varies with rotor slip s (hence from no-load to loaded conditions)
is, instead, the MMF drop across the arc QN placed inside the rotor yoke
(figure 3.4). In fact it has to be borne in mind that the MMF drop from (2.49)
is obtained in no-load conditions, i.e. ignoring the shaft flux rejection due
to shaft eddy currents. For an accurate and sufficiently fast computation
of the correct value of this MMF drop, it is herein proposed to perform a
time-harmonic FE simulation of the very simple semi-circular model shown
in figure 3.4 in order to reproduce the behavior of the rotor yoke and shaft
in full load conditions (rated slip). The details on how such reduced model
is built and solved will be separately provided in section 3.2.2 for the sake
of clarity.

After the rotor yoke MMF drop F′
ry and the no-load drop Fmag,0 are calcu-

lated, it is possible to estimate the IM full-load magnetizing current I′m and,
from it, the full-load magnetizing reactance X′

m, accordingly to (2.55) and
(2.56):

I′m =
π

6
√

2

Np

kwNtph
(Fmag,0 + F′

ry) (3.43)

X′
m =

6
π

ω0k2
wN2

tph
Φ

Np(Fmag,0 + F′
ry)

(3.44)

The value of magnetizing reactance obtained from (3.44) is inserted into
the equivalent circuit from figure 2.5 in place of the reactance from (2.56);
the remaining circuit parameters are the same as presented in chapter 2.
The circuit is solved as presented in section 2.5 and the output power is
determined. The latter is compared with the rated one (and the actual flux
per pole from circuit solution is compared with the first-guess value); if the
difference is above the chosen tolerance threshold the input data is adjusted
and the whole method is repeated until the convergence is obtained. The PF
is finally calculated accordingly to (2.76).

3.2.2 Reduced model for induction motor analysis

This section describes the definition of the reduced model which needs
to be solved by TH-FEM at any iteration of the procedure described in sec-
tion 3.2.1. The model is shown in bottom of figure 3.4. The reduced model
is obtained from the complete model shown in figure 3.1a, limiting the geo-
metric dominion to:

(r, θ) ∈ [0, rmax]× [0, π]

with rmax the rotor yoke outer radius, given by:

rmax =
Dr,inn

2
+ hr,yk (3.45)

The same considerations made for the standard model in section 3.1.2 are
valid for the simplified model. The model frequency is the slip frequency s f0,
with s the slip being investigated in the procedure illustrated in figure 3.3.
As regards the boundaries, the anti-periodic condition is still valid for the
radial axis:

Ā(r, 0) = −Ā(r, π) ∀r ∈ [0, rmax]



3.2 improved equivalent circuit method 55

Figure 3.4: Reduced FE model for on-load MMF drop computation. This model is obtained
by extracting a sub-domain from the complete FE model in figure 3.1, limited to
the shaft and the rotor yoke

whereas a suitable condition involving vector potential must be defined on
the outer radius.

In fact, since this model does not have any source of field defined inside
it, the condition on outer radius must provide the model excitation, repre-
senting the effects of the field source that are located outside of this model,
i.e. the air-gap flux-density distribution. The hypothesis is made that the
fundamental flux-density (and hence the vector potential) has a sinusoidal
spatial distribution along the outer radius (see fig. 3.5), thus it can be written
(see also (B.26) in appendix B):

A(rmax, θ, t) = Amax cos(Nppθ − sω0t) = Re
{︂

Amaxeȷ(Nppθ−sω0t)
}︂

or, using the phasor notation:

Ā(rmax, θ) = AmaxeȷNppθ ∀θ ∈ [0, π] (3.46)

It is worth noticing that in these expressions the number of pole-pairs have
been introduced, to take into account the fact that θ is a mechanical angle,
whereas expressions like (B.26) have been so far written for electric angles
only. However, in the particular case of a two-pole motor, this detail is purely
formal, since Npp = 1.

The constant Amax in (3.46) is determined observing that the flux per pole
along the mean air-gap circumference is the same as the flux per pole enter-
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Figure 3.5: Plots of the air-gap flux-density and MVP obtained from FE solution of figure 3.1.
It can be noticed how the potential along the yoke mean line is almost the same
of air-gap mean line

ing the rotor yoke across the model outer radius. Thanks to relation in (3.30)
we can write:

Φ = [Ā(rmax, π)− Ā(rmax, 0)]ℓgap = −2Amaxℓgap (3.47)

This relation is valid in the 2D model (and so is (3.46)), because the model
(air-gap) length is used as axial length (see also table 3.1). Hence, solving
(3.47) the condition in (3.46) becomes:

Ā(rmax, θ) = − Φ
2ℓgap

eȷNppθ ∀θ ∈ [0, π] (3.48)

Once boundary conditions are set based on the estimated value of the
flux per pole Φ, the model is solved through a time-harmonic FEA at the
estimated slip frequency s f0. From the solution the rotor yoke on-load MMF-
drop is calculated (see figure 3.4):

F′
ry =

∫︂ N

Q
H⃗ · d⃗ℓ (3.49)

and used to calculate the on-load magnetizing reactance in (3.44).



4 M E T H O D S C O M PA R I S O N

In the previous chapters three methods to deal with the problem of evalu-
ating the on-load performance in two pole motors have been presented:

1. the "Classic" Equivalent Circuit Method (C-ECM), which is an analyti-
cal method (chapter 2);

2. the Finite-Element Method (FEM), which is a numerical method (sec-
tion 3.1);

3. the "Improved" Equivalent Circuit Method (I-ECM), which is an hybrid
of the two previous methods (section 3.2)

In order to asses the validity of the I-ECM and compare it with the stan-
dard methods a set of real medium-voltage IMs is considered and the three
calculations method are applied (section 4.1) and the results are examined
and commented (section 4.2)

4.1 real-motors performance calculation

In order to assess the validity of the proposed calculation method a set
of built and tested medium-voltage two-pole induction motors of different
sizes is considered. Their ratings and some characteristic dimensions are
given in table 4.1.

All motors are for S1 service [6] and have insulation class F [31]. They
have all undergone a full factory test according to [32]. Load tests have been
conducted at rated load, except for motor M6, which has been tested at 75%
of its rated load.

The full-load performance for all the IMs in table 4.1 is also computed
with the three calculations methods presented in the previous chapters; for

Table 4.1: Sample IMs for experimental validation

Machine label M1 M2 M3 M4 M5 M6 M7

Shaft height [mm] 315 355 400 450 500 630 710
Rated power [kW] 250 450 360 1150 1560 2980 2550
Rated voltage [V] 4000 4000 6600 4000 4000 4000 11000
Rated current [A] 42 75 37 187 257 485 154
Rated frequency [Hz] 60 60 50 60 60 60 50
Rated PF [–] 0.883 0.892 0.882 0.902 0.899 0.899 0.885
Total mass [kg] 1700 2400 3500 5000 6900 9400 12500
Core length [mm] 420 420 420 600 600 950 950
Outer diameter [mm] 546 620 700 780 865 970 1080
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(a) Line current

(b) Slip

(c) Power factor

Figure 4.1: Experimental and calculated data for two-pole IMs
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Figure 4.2: Magnetizing current from no-load test and from on-load improved equivalent
circuit

Table 4.2: Power factor estimation errors for the motors in table 4.1

Machine Tolerance FEM C-ECM I-ECM

M1 2.21% 0.00% 2.15% 0.41%
M2 2.02% 0.11% 2.58% 0.44%
M3 2.23% 0.45% 2.38% 0.77%
M4 1.81% 0.22% 1.55% 0.60%
M5 1.87% 0.00% 1.11% 0.06%
M6 1.87% 0.11% 3.34% 0.70%
M7 2.17% 0.45% 2.37% 0.07%

every machine power factor, line current and slip are predicted through the
three methods. Test and calculation results for the various quantities are
shown in figure 4.1.

Figure 4.2 shows the comparison from the no-load current (obtained from
factory no-load test) and the full load magnetizing current calculated accord-
ingly to (3.43).

4.2 discussion

It can be noticed how the three calculation methods being compared in fig-
ure 4.1 are generally equivalent and in good accordance with experimental
data as far as the line current and slip prediction is concerned. Conversely,
the power factor value obtained with the C-ECM appears much higher than
that estimated using FEM and I-ECM (see fig. 4.1c). The results obtained
with FEM and I-ECM are in good accordance between them and with mea-
surements as far as the power factor prediction is concerned. It is therefore
confirmed that conventional analytical calculation techniques may lead to
significant errors in the estimation of two-pole IMs equipped with solid-steel
shaft, as pointed out in chapter 1.
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Figure 4.3: Computation time requested by FEM and I-ECM to evaluate the correct on-load
working point for the motors in table 4.1

Table 4.3: Computational statistics

Machine label
FEM I-ECM

Nodes Iterations Nodes Iterations

M1 27 134 3 4183 1
M2 36 634 4 4165 2
M3 33 668 4 4208 1
M4 51 483 5 4161 2
M5 53 352 3 4174 2
M6 68 662 4 4176 3
M7 81 729 4 4183 1

Average 50 380 4 4179 2

In order to have a clearer assessment of the accuracy of the three compared
methods, the percent errors in the prediction of the full-load power factor
with respect to measurements are provided in table 4.2. This table also shows
the tolerance, intended as the maximum error allowed in accordance to the
IEC standard [6], calculated from the motor rated PF:

ε% <
1
6

1 − cos φn

cos φn
· 100 [%] (4.1)

It can be noticed that, for each of the sample motors taken into account
in table 4.1, the C-ECM overestimates the power factor with an error which
exceeds the IEC tolerance provided by (4.1) or, even if the error is within
the tolerance, it is significantly larger than those affecting the other two
computation methods.

Finally, figure 4.3 shows the total computation time for FEM and the I-
ECM in order to provide a quantitative assessment of the computational
benefit resulting from the use of a reduced IM model (as in section 3.2.2) in-
stead of the complete one (from section 3.1). All calculations are performed
on the same workstation equipped with an Intel CoreTM i5-3470@3.20 GHz
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processor and 16 GiB RAM, using a single-thread user-defined routine in
MatlabTM.

Table 4.3 reports other calculation statistics, i.e. the number of nodes of
the 2D FE models (respectively complete and reduced) employed by the
FEM and I-ECM for the various IMs from table4.1, as well as the number of
iterations required by the two methods to converge. In this regard, it is high-
lighted that, both for the FEM and the I-ECM, the iterative procedure starts
with initial guess values (of the current, slip and flux per pole according
to figures 3.2 and 3.3) obtained analytically by solution of the conventional
equivalent circuit in figure 2.5. It is clear from figure 4.3 and table 4.3 that the
I-ECM is much preferable to the FEM from a computational point of view,
because it leads to the same level of accuracy (table 4.2) with an average
90 % saving in terms of computation time. Such feature makes the proposed
improved equivalent circuit method more suitable than the FEM for being
incorporated in genetic optimization programs for two-pole IM design opti-
mization [16], where hundreds or thousands of iterations may be requested
to identify optimal design solutions.

With respect to purely analytical algorithms [14, 15] the method suffers
from the drawback of requiring a time-harmonic 2D FEA, but this is ap-
plied to a very simple reduced motor model which can be built, solved and
processed very quickly and in a fully-automated way. The convenience of
solving such reduced FE model is explained by two main reasons. Firstly, it
makes the procedure suitable for including the effect of axial cooling vents in
the rotor core [13], by simply adding them in the reduced FE model from fig-
ure 3.4. Secondly, it makes it possible to cope with the strongly non-uniform
distribution of the magnetic-flux and eddy-current fields in the shaft and ro-
tor yoke regions, as it has been shown in fig. 1.6. It is clear that the strongly
non-uniform distribution of the magnetic field, flux density, magnetic per-
meability and eddy currents in the rotor core and solid-steel shaft is such
that it would be extremely difficult to identify average or equivalent values
for the mentioned quantities without a FEA (at least limited to the yoke and
shaft domains as proposed in section 3.2).





Part II

S TA R T I N G P E R F O R M A N C E O F
D O L S Y N C H R O N O U S M OTO R S





Oil&Gas industries adopt high-voltage electric motors with power ratings
from few hundreds of kWs up to 50 MW [33] and more to drive pumps and
compressors in pipelines, refineries and processing systems. Wound field
SMs have been increasingly used because of their sudden overload capabil-
ity and higher power factor [34]. The main disadvantage of this kind of ma-
chines in their traditional form is that they are unable to start autonomously,
i.e. they require a suitable starting system to reach the synchronous speed
[35, 36].

One possibility for synchronous motor startup is to feed it through a
variable-frequency converter [37], so as to control its speed and current.
However, if the motor is designed to operate DOL at a fixed frequency, the
converter would be needed only for start-up and this would decrease the
overall drive system competitiveness. The use of a small-size converter for
no-load starting may be a good compromise, but it still has the drawback
of requiring a complex mechanical system for motor-load coupling; further-
more, it leads to a decreased reliability due to the presence of the static
converter [38].

For these reasons several applications require synchronous motors with
DOL-starting capability. A simple way to fulfill this requirement is using
solid-rotor synchronous motors; in fact, the eddy currents that arise in the ro-
tor core when the motor speed is lower than the synchronous speed provide
a considerable starting torque, limiting the over-heating problems which
would occur if a damper cage was used for start-up [39]. Furthermore, the
solid rotor is mechanically stronger than a laminated one and, therefore, it
has less vibrational and roto-dynamics issues.

The use of a solid rotor introduces a complexity in the machine model-
ing and design. Many approaches have been proposed in the literature to
deal with this problem, some with analytical procedure [40–42] and other
relaying on numerical simulations [43–46]. Analytical methods are easy to
implement but they often include semi-empirical formulas or suffer from
strong simplifications (for example, iron saturation is frequently neglected).
On the other hand, numerical methods are generally based on FEM and can
well describe the machine behavior, but they suffer from high computational
cost [47].

In this part the problem of starting performance prediction for a large
synchronous motor with solid rotor is addressed. The general featurs of
DOL SMs are firstly presented (chapter 5) and the theroretical background,
focused on the starting up, is given (chapter 6). The motor is described
through the two-axis equivalent circuit model, and its parameters are deter-
mined by means of a suitable set of time-harmonic FEAs performed on a
simplified model (chapter 7), taking into account the frequency-dependent
variability of the rotor field winding resistance as well. The calculated pa-
rameters are finally used to compute the machine current, average torque
and pulsating torque as functions of the speed (chapter 8). The results are
compared with experimental data collected during the machine acceptance
test.
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5 S Y N C H R O N O U S M OTO R S W I T H
S O L I D R OTO R

The general features of a synchronous motor with solid salient poles are
presented in this chapter. The solid rotor gives mechanical strength against
centrifugal force and realizes the DOL self-starting capability. Its main geo-
metrical features are presented in section 5.1, limited to the rotor, since the
stator is identical to the IMs one, presented in chapter 2.

The solid core is suitable for motor DOL starting because the eddy-currents
that arise in the solid parts of the rotor interact with the armature rotating
field and create a synchronizing torque that accelerates the rotor allowing for
the asynchronous starting of the machine. However, because of the slotting
effect, rotor eddy-currents may arise in the synchronous operation too, but in
this case their effect is detrimental in terms of efficiency and overheating [48,
49]. Thus, to limit eddy currents at steady-state, rotor surface is circumfer-
entially grooved [50]. Section 5.2 presents an experimental investigation on
the impact of different groove geometry on losses and magnetizing current.

5.1 synchronous motor rotor geometry

Figure 5.1 shows the main geometric charactersitic of a synchronous ma-
chine rotor with salient poles. These kind of motors are usually adopted for
machines with more than two poles. The solid rotor consists of a properly
shaped forged shaft on which the solid pole shoes are bolted by means of
screws (see also fig. 5.2). The field winding coils are directly wound around
the pole body. They are usually built with a single elementary conductor per
turn and, possibly, they have several adjacent layers of stacked conductors.
The main geometric quantities that characterize a salient-pole solid rotor are
collected in table 5.1. The stator data is identical to that of an induction
machine (table 2.1).

Because of the pole-shoe curvature, the air-gap is not uniform, neither
between direct (polar) and quadrature (inter-polar) axes, nor in the region
in correspondance of the pole shoe. More in detail, the gap in the pole-shoe
region varies accordingly to the following law, valid for θ ∈ [−αps, αps]:

g(θ) = Ds,inn/2 −
[︃

δps cos(θ) +
√︂

r2
ps − δ2

ps sin2(θ)

]︃
(5.1)

The geometric justification of (5.1) is given in figure 5.3. The maximum and
average gap are respectively given by:

gmax = g(αps) =
Ds,inn

2
− 1

2

√︂
wps +

[︁
Dr,out − 2

(︁
hps − h′ps

)︁]︁
(5.2)

gavg =
1

αps

∫︂ αps

0
g(θ)dθ (5.3)
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(a) Cross-section

(b) Groove detail

Figure 5.1: Rotor geometric sketch of a salient-pole synchronous motor

Figure 5.2: Example of manufactured salient-pole solid rotor (courtesy of Nidec-ASI, Mon-
falcone, Italy)
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Figure 5.3: Air-gap variation for a salient-pole rotor

whereas the air-gap under the inter-pole axis is:

gq = gmin + hps + hpb (5.4)

The average gap in (5.3) is adopted to compute the equivalent core length
according to (2.35).

Table 5.1: Salient-pole rotor characteristic data

Quantity Symbol Notes

General data

Rotor core axial length ℓr,tot

Rotor outer diameter Dr,out

Rotor diameter at pole base Dr,base
1

Minimum air-gap length gmin
2

Average gap diameter Dgap
3

(continued)

1 Dr,base = Dr,out − 2(hps + hpb)
2 gmin = (Ds,inn − Dr,out)/2
3 Dgap = Ds,inn − gmin
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(continued)

Average pole pitch τp
4

Pole data

Pole shoe curvature radius rps

Pole shoe center offset δps
5

Pole shoe width wps

Pole shoe angular half width αps
6

Pole shoe to pole pitch ratio γps
7

Pole shoe total height hps

Pole shoe side height h′ps
8

Pole body width wpb

Pole body height hpb

Pole pitch at pole base τ′
p

9

Field winding data

Elementary wire width wrew

Elementary wire thickness hrew

Elementary wire cross-section area Srew

Number of elementary wires per turn Nrew

Number of overlayed turns per coil (pole) Nrtc,h

Number of adjacent layers per coil (pole) Nrtc,w

Number of turns per pole Nrtc
10

Average turn length ℓrtu

Turn cross section area Srtu
11

Inter-turn insulation thickness bins,rtu

Pole-to-winding radial distance dpwr

Pole-to-winding tangential distance dpwt

Inter-layer tangential distance dwwt

Grooving data

Number of grooves NG

(continued)

4 τp = πDgap/Np
5 δps = Dr,out/2 − rps
6 αps = arcsin(0.5wps/rps)
7 γps = 2rpsαps/τp

8 h′ps = hps − rps[1 −
√︂

1 − 0.25(wps/rps)2]

9 τ′
p = π(Dr,out − 2hps − 2hpb)/Np

10 Ntcr = Ntcr,wNtcr,h − 1
11 Srtu = NrewSrew
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(continued)

Groove axial pitch τG

Groove depth hG

Groove width ℓG

5.2 experimental study of rotor-groove impact

5.2.1 Testing procedure description

The impact of a given groove geometry can be experimentally assessed by
means of the testing apparatus shown in figure 5.4. The testing apparatus
is composed of three electric machines mechanically coupled into the same
shaftline (fig. 5.4a):

1. the prime mover is a variable-speed driven induction motor;

2. the second machine is a two-pole wound rotor synchronous generator
(SG), excited by an independent DC power source;

3. the final machine is the same testing prototype adopted in section 1.2
to study the on-load magnetizing current. The stator is the same of
the prototype as in section 1.2, whose data are collected in table 1.1,
whereas three different types of rotor are mounted, in order to perform
different tests (fig 5.4b):

• a solid smooth rotor;

• a solid grooved rotor;

• a laminated rotor;

The prototype is designed so that the rotor can be withdrawn and
changed, allowing to identify the system losses, as explained in the
following.

The prototype under test is electrically fed by the SG, so the stator field
and the rotor are perfectly synchronous. As a result the prototype absorbs,
from both the stator winding and the mechanical shaft, an amount of power
that compensates for the losses of the prototype itself, i.e.:

Pmech,in + Pelt,in = Ploss,tot (5.5)

The electrical input power Pelt,in is measured through a digital wattmeter
(not shown in fig. 5.4), whereas the mechanical power Pmech,in is obtained
through a torque sensor placed between the SG and the testing prototype.
Naturally, given the torque measurement T̂ and the system speed Ω then
the mechanical power is simply Pmech,in = ΩT̂.

When the test is carried out on a solid rotor the following losses are dissi-
pated inside the prototype:

• stator winding joule loss;
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(a) Assembled test bench – A) Prime mover (VFD) B) Syn-
chronous generator C) Torque sensor D) Testing prototype

(b) Rotor set – E) Smooth solid rotor F) Shaft G) Grooved solid
rotor H) Laminated rotor

Figure 5.4: Experimental set for the investigation of rotor grooving impact

• stator core hysteresis and eddy current loss;

• mechanical loss;

• rotor eddy current loss.

The rotor eddy current is due to stator slotting effect and it is the loss that has
to be reduced by the rotor grooving. This test procedure allows to identify
such loss by measuring the total input power and separately identifying all
the remaining losses. In fact:

• the stator joule loss is simply given by:

Pjs = 3Rs I2
s

where Rs is the DC measured resistance of a stator phase12 and Is is its
current RMS-value;

• the mechanical loss is measured from the torque sensor performing the
test with the prototype winding disconnected from the SG;

• the stator core loss is measured performing the test on the prototype
equipped with the laminated rotor. In this situation no eddy currents
arise in the rotor, so subtracting the remaining (known) losses from

12 Since the prototype winding is made of round wire the skin effect is negligible, so the AC
resistance is actually equal to the DC resistance
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Figure 5.5: Different type of grooving for experimental investigation

Table 5.2: Solid rotor data for grooving investigation

Grooving type 1 2

Outer diameter 147 mm
Axial length 150 mm
Number of grooves 50 27
Groove pitch 3 mm 5 mm
Groove width 1.5 mm 0.8 mm
Groove depth 3 mm 3.5 mm

the total input the stator core loss is finally obtained. The rotor core
loss is neglected because the rotor is at zero frequency, thanks to the
synchronism guaranteed by the testing apparatus layout.

The core and mechanical losses are identified for a certain speed (frequency)
and voltage pair, i.e. for a certain flux; performing the test on the prototype
equipped with a solid rotor in the same voltage and speed conditions finally
allows to determine the rotor eddy-current loss. Furthermore, the current
absorbed by the prototype in this condition is the magnetizing current asso-
ciated with the flux value under test. Thus the impact of the rotor grooving
on these quantity can be experimentally assessed performing the procedure
described above on a smooth solid rotor and on a grooved one.

5.2.2 Example of grooving impact investigation

The testing procedure detailed in section 5.2.1 is applied to two different
type of grooves, that are shown in figure 5.5. It can be noticed that the
second groove-type is thinner and deeper than the first one. The groove
characteristic dimensions are collected in table 5.2. The smooth solid rotor
and the laminated one have the same outer diameter and axial length as
the grooved rotors. All the solid rotor are made of C40 standard steel [12],
whereas the laminated rotor and the stator are made of M530-65A electrical
steel[11]. The stator data is the same as in table 1.1.

The test results are shown in figure 5.6. The tests have been conducted
keeping the flux constant, i.e. choosing the voltage-speed values having
the same ratio (153 V-2000 rpm, 192 V-2500 rpm and 230 V-3000 rpm). From
figure 5.6a it can be noticed that groove 1 is more effective than groove 2

in terms of loss reduction, because it allows to limit the eddy-current loss
at about 20 % of the smooth case, whereas the groove 2 loss is more than
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(a) Eddy-current losses

(b) Magnetizing current

Figure 5.6: Results from experimental assessment of grooving efficacy
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50 % of the latter. On the other hand the groove type 2 practically does not
influence the magnetizing current with respect to the smooth case, as it is
shown in fig. 5.6b. The groove type 1, instead, increases the magnetizing
current by about 40 %.





6 T W O - A X I S M O D E L F O R S TA R T- U P

In this chapter the classic two-axis circuit model of the synchronous ma-
chine is recalled. The model is based on the Clarke-Park Transformation
(CPT) [51], which allows to represent all the phase quantities (voltages, cur-
rents and flux-linkages) on a rotor attached-reference frame. This produces
a simple linear model which can be associated with two lumped-parameter
circuits. The circuit parameter calculation will be detailed in the next chap-
ter. The two-axis model can be easily extended to the starting transient
and, assuming a sufficiently slow start process, simplified into a couple of
induction-machine like circuit, from which the starting performance is ana-
litically computed (section 6.1). A brief introduction on how the model is
identified from the experiments is also given (section 6.2).

6.1 synchronous machine modeling

6.1.1 Clarke-Park Transformation

The Clarke-Park Transformation [51] is a variable transformation that al-
lows to represent a generic triplet of stator phase quantities from the static
(actual) reference frame into a rotor-attached one. The variable transforma-
tion is realized through the following transformation matrix:

P(ϑ) =

√︃
2
3

⎡⎢⎢⎢⎢⎢⎢⎣
cos (ϑ) cos

(︃
ϑ − 2

3
π

)︃
cos

(︃
ϑ +

2
3

π

)︃
− sin (ϑ) − sin

(︃
ϑ − 2

3
π

)︃
− sin

(︃
ϑ +

2
3

π

)︃
1√
2

1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎥⎦ (6.1)

where ϑ is the electric angular position of the rotor, i.e. ϑ = Nppϑr, be-
ing ϑr the mechanical angle between the rotor pole axis (direct axis) and
the phase U stator axis. The generic triplet of phase quantities ⟨a⟩UVW =⃓⃓
aU aV aW

⃓⃓T
is transformed into the dqo triplet ⟨a⟩dqo =

⃓⃓
ad aq ao

⃓⃓T
:

⟨a⟩dqo = P(ϑ) ⟨a⟩UVW (6.2)

Here ad is the direct-axis quantity, aq is the quadrature-axis quantity and ao

is related to the zero sequence component of the phase quantity.
The expression of the CPT in (6.1) must be applied to the instantaneous

value of aU, aV and aW. However, assuming a steady-state AC system at
angular frequency ω, the phasor notation can be employed and the triplet of
stator phase quantities can be written as:

⟨a⟩UVW = Re

⎧⎨⎩
⃓⃓⃓⃓
⃓⃓ ĀU

ĀV

ĀW

⃓⃓⃓⃓
⃓⃓ eȷωt

⎫⎬⎭ (6.3)
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The generic system is transformed into the sum of three symmetric system
[52]. Letting ω̌ = eȷ 2

3 π the sequence components are then defined as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ā0 =

1
3
(ĀU + ĀV + ĀW)

Ā1 =
1
3
(︁

ĀU + ω̌ĀV + ω̌2ĀW
)︁

Ā2 =
1
3
(︁

ĀU + ω̌2ĀV + ω̌ĀW
)︁ (6.4)

so that (6.3) becomes:

⟨a⟩UVW =
⟨︂

a(0)
⟩︂

UVW
+
⟨︂

a(1)
⟩︂

UVW
+
⟨︂

a(2)
⟩︂

UVW

with:⟨︂
a(0)
⟩︂

UVW
= Re

⎧⎨⎩
⃓⃓⃓⃓
⃓⃓11
1

⃓⃓⃓⃓
⃓⃓ Ā0eȷωt

⎫⎬⎭ =

⃓⃓⃓⃓
⃓⃓A0 cos(ωt +∠Ā0)

A0 cos(ωt +∠Ā0)

A0 cos(ωt +∠Ā0)

⃓⃓⃓⃓
⃓⃓ (6.5a)

⟨︂
a(1)
⟩︂

UVW
= Re

⎧⎨⎩
⃓⃓⃓⃓
⃓⃓ 1
ω̌2

ω̌

⃓⃓⃓⃓
⃓⃓ Ā1eȷωt

⎫⎬⎭ =

⃓⃓⃓⃓
⃓⃓ A1 cos(ωt +∠Ā1)

A1 cos(ωt +∠Ā1 − 2π/3)
A1 cos(ωt +∠Ā1 + 2π/3)

⃓⃓⃓⃓
⃓⃓ (6.5b)

⟨︂
a(2)
⟩︂

UVW
= Re

⎧⎨⎩
⃓⃓⃓⃓
⃓⃓ 1

ω̌

ω̌2

⃓⃓⃓⃓
⃓⃓ Ā2eȷωt

⎫⎬⎭ =

⃓⃓⃓⃓
⃓⃓ A2 cos(ωt +∠Ā2)

A2 cos(ωt +∠Ā2 + 2π/3)
A2 cos(ωt +∠Ā2 − 2π/3)

⃓⃓⃓⃓
⃓⃓ (6.5c)

Thanks to the linearity of CPT the generic system on the dqo reference frame
is obtained applying the CPT matrix in (6.1) to each of the components in
(6.5) and superposing the effects, thus we can write:

⟨a⟩dqo =
⟨︂

a(0)
⟩︂

dqo
+
⟨︂

a(1)
⟩︂

dqo
+
⟨︂

a(2)
⟩︂

dqo
(6.6)

with: ⟨︂
a(0)
⟩︂

dqo
= P(ϑ)

⟨︂
a(0)
⟩︂

UVW⟨︂
a(1)
⟩︂

dqo
= P(ϑ)

⟨︂
a(1)
⟩︂

UVW⟨︂
a(2)
⟩︂

dqo
= P(ϑ)

⟨︂
a(2)
⟩︂

UVW

Combining (6.1) and (6.5), after some algebraic transformations, we finally
obtain:⟨︂

a(0)
⟩︂

dqo
=

⃓⃓⃓⃓
⃓⃓ 0

0√
3A0 cos(ωt +∠Ā0)

⃓⃓⃓⃓
⃓⃓ = Re

⎧⎨⎩√
3Ā0

⃓⃓⃓⃓
⃓⃓00
1

⃓⃓⃓⃓
⃓⃓ eȷωt

⎫⎬⎭ (6.7a)

⟨︂
a(1)
⟩︂

dqo
=

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

√︃
3
2

A1 cos(ωt +∠Ā1 − ϑ)√︃
3
2

A1 sin(ωt +∠Ā1 − ϑ)

0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ = Re

⎧⎨⎩
√︃

3
2

Ā1

⃓⃓⃓⃓
⃓⃓ 1
−ȷ
0

⃓⃓⃓⃓
⃓⃓ e−ȷϑeȷωt

⎫⎬⎭ (6.7b)

⟨︂
a(2)
⟩︂

dqo
=

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

√︃
3
2

A2 cos(ωt +∠Ā2 + ϑ)

−
√︃

3
2

A2 sin(ωt +∠Ā2 + ϑ)

0

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ = Re

⎧⎨⎩
√︃

3
2

Ā2

⃓⃓⃓⃓
⃓⃓1ȷ
0

⃓⃓⃓⃓
⃓⃓ eȷϑeȷωt

⎫⎬⎭ (6.7c)
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and (6.6) becomes:

⟨a⟩dqo = Re

⎧⎨⎩
√︃

3
2

⃓⃓⃓⃓
⃓⃓ Ā1e−ȷϑ + Ā2eȷϑ

−ȷ
(︁

Ā1e−ȷϑ − Ā2eȷϑ
)︁

√
2Ā0

⃓⃓⃓⃓
⃓⃓ eȷωt

⎫⎬⎭ (6.8)

All these considerations allow to extend the CPT to the phasors as follows:

Given ĀU, ĀV, ĀW

↓⃓⃓⃓⃓
⃓⃓Ā0

Ā1

Ā1

⃓⃓⃓⃓
⃓⃓ = 1

3

⎡⎣1 1 1
1 ω̌ ω̌2

1 ω̌2 ω̌

⎤⎦ ⃓⃓⃓⃓⃓⃓ ĀU

ĀV

ĀW

⃓⃓⃓⃓
⃓⃓ (6.9)

↓⃓⃓⃓⃓
⃓⃓Ād
Āq

Āo

⃓⃓⃓⃓
⃓⃓ =

√︃
3
2

⎡⎣ 0 e−ȷϑ eȷϑ

0 −ȷe−ȷϑ ȷeȷϑ
√

2 0 0

⎤⎦ ⃓⃓⃓⃓⃓⃓Ā0

Ā1

Ā2

⃓⃓⃓⃓
⃓⃓ (6.10)

Clearly, if the three-phase system is already symmetric (positive sequence)
then the transformation follows immediatly:⃓⃓⃓⃓

⃓⃓ ĀU

ĀV

ĀW

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓ 1
ω̌2

ω̌

⃓⃓⃓⃓
⃓⃓ Ā P−→

⃓⃓⃓⃓
⃓⃓Ād
Āq

Āo

⃓⃓⃓⃓
⃓⃓ =

√︃
3
2

Ā

⃓⃓⃓⃓
⃓⃓ 1
−ȷ

0

⃓⃓⃓⃓
⃓⃓ e−ȷϑ

All the phasors in (6.9) and (6.10) have to be intended as associated with
the stator complex-frequency operator eȷωt, i.e. they rotate at angular speed
equal to ω.

The inverse CPT allows to determine the actual stator triplet from a vec-
tor on the rotor-attached reference frame. The inverse transformation is ob-
tained taking the inverse of the matrix in (6.1); since the latter is orthonormal
then its inverse is equal to its transposed, so:

⟨a⟩UVW = P(ϑ)T ⟨a⟩dqo (6.11)

The inverse transformation for phasors is obtained reverting (6.9) and (6.10):

Given Ād, Āq, Āo

↓⃓⃓⃓⃓
⃓⃓Ā0

Ā1

Ā2

⃓⃓⃓⃓
⃓⃓ = 1√

6

⎡⎣ 0 0
√

2
eȷϑ ȷeȷϑ 0

e−ȷϑ −ȷe−ȷϑ 0

⎤⎦ ⃓⃓⃓⃓⃓⃓Ād
Āq

Āo

⃓⃓⃓⃓
⃓⃓ (6.12)

↓⃓⃓⃓⃓
⃓⃓ ĀU

ĀV

ĀW

⃓⃓⃓⃓
⃓⃓ =

⎡⎣1 1 1
1 ω̌2 ω̌

1 ω̌ ω̌2

⎤⎦ ⃓⃓⃓⃓⃓⃓Ā0

Ā1

Ā2

⃓⃓⃓⃓
⃓⃓ (6.13)

The orthonormality of the CPT matrix in (6.1) guarantees the preserva-
tion of the energetic quantities from the actual reference frame to the rotor
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attached one and vice-versa. In fact the instantaneous power entering the
three-phase system is given by:

P =⟨U⟩T
UVW⟨I⟩UVW

=⟨U⟩T
UVWP(ϑ)TP(ϑ)⟨I⟩UVW

=[P(ϑ)⟨U⟩UVW]T [P(ϑ)⟨I⟩UVW]

=⟨U⟩T
dqo⟨I⟩dqo

6.1.2 Standard dq dynamic model for synchronous motors

The introduction of the CPT allows to simplify the synchronous machine
dynamic model in the rotor-attached reference frame as follows[53]:

Ud =Rs Id + Ψ̇d − ϑ̇Ψq (6.14a)

Uq =Rs Iq + Ψ̇q + ϑ̇Ψd (6.14b)

0 =Rkd Ikd + Ψ̇kd (6.14c)

0 =Rkq Ikq + Ψ̇kq (6.14d)

Uf =Rf If + Ψ̇f (6.14e)

with the flux-linkages given by:

Ψd =Lad(Id + Ikd + If) + Ls Id (6.15a)

Ψq =Laq(Iq + Ikq) + Ls Iq (6.15b)

Ψkd =Lad(Id + Ikd + If) + Lkd Ikd (6.15c)

Ψkq =Laq(Iq + Ikq) + Lkq Ikq (6.15d)

Ψf =Lad(Id + Ikd + If) + Lf If (6.15e)

The term ϑ̇ in (6.14) is related to the rotor speed by the relation ϑ̇ = NppΩ.

This model assumes that the synchronous machine is equipped with three
rotor windings, i.e. the field winding (on the direct-axis) and two (short-
circuited) damping windings (one per each axis). In the equations (6.14) and
(6.15) the zero-sequence terms are omitted, because these are independent
of the d and q terms. In the case of solid rotor machines the model is still
valid, but the rotor parameters are speed-dependant. The dynamic model in
(6.14) and (6.15) is summarized in the two circuits in figure 6.1. The model
can be also written in a matrix form; letting the phase variable arrays:

U =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓
Ud
Uq

0
0

Uf

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ I =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

Id
Iq

Ikd
Ikq
If

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ Ψ =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

Ψd
Ψq

Ψkd
Ψkq
Ψf

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓
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(a) Direct axis

(b) Quadrature axis

Figure 6.1: Synchronous machine dynamic circuits
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and the parameter matrices:

[R] =

⎡⎢⎢⎢⎢⎢⎣
Rs 0 0 0 0
0 Rs 0 0 0
0 0 Rkd 0 0
0 0 0 Rkq 0
0 0 0 0 Rf

⎤⎥⎥⎥⎥⎥⎦

[L] =

⎡⎢⎢⎢⎢⎢⎣
Ls + Lad 0 Lad 0 Lad

0 Ls + Laq 0 Lad 0
Lad 0 Lkd + Lad 0 Lad
0 Laq 0 Lkq + Laq 0

Lad 0 Lad 0 Lf + Lad

⎤⎥⎥⎥⎥⎥⎦

[J ] =

⎡⎢⎢⎣
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎦
then (6.14) and (6.15) become, respectively:

U = [R]I + Ψ̇ + ϑ̇[J ]Ψ (6.16)

Ψ = [L]I (6.17)

The machine dynamics is completed by the mechanical equation, given
by:

Tem = Tload + KfΩ + JΩ̇ (6.18)

The expression for the motor electro-magnetic torque is obtained from the
power balance. In fact it has to be:

Pin = ∑ Ploss + ΩTem (6.19)

The input power comes from (6.16); in fact, multiplying both members by
IT it results:

ITU = IT[R]I + ITΨ̇ + ϑ̇IT[J ]Ψ (6.20)

Considering that:

• ITU = Ud Id + Uq Iq + Uf If is the total input power;

• IT[R]I = Rs(I2
d + I2

q) + Rkd I2
kd + Rkq I2

kq + Rf I2
f is the total joule loss

• ITΨ̇ = IdΨ̇d + IqΨ̇q + IkdΨ̇kd + IkqΨ̇kq + IfΨ̇f is the variation of the
energy stored in the magnetic circuit

then comparing (6.19) and (6.20) it has to be:

TemΩ = ϑ̇IT[J ]Ψ

and, finally:
Tem = NppI

T[J ]Ψ = Npp
(︁
Ψd Iq − Ψq Id

)︁
(6.21)
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6.1.3 Quasi-stationary dq model for motor starting

The dq model for the study of SM starting is obtained from the standard
model in section 6.1.2 considering that:

1. the motor is started with no rotor excitation and the field winding
is generally short-circuited or closed on an additional resistor (called
discharge resistor). For this reason, in the following, it will be assumed
Uf = 0 and Rf will be intended as the proper winding resistance plus
the (possible) discharge resistance;

2. the stator is fed with a three-phase symmetric voltage system with
positive sequence, having amplitude Umax ≤ Un,max

1 and angular fre-
quency ω0. From this hypotesis, accordingly to (6.7b), the feeding
voltage system on the rotor-attached dq reference frame is⃓⃓⃓⃓

Ud
Uq

⃓⃓⃓⃓
= Re

{︄√︃
3
2

Umax

⃓⃓⃓⃓
1
−ȷ

⃓⃓⃓⃓}︄
eȷ(ω0t−ϑ) (6.22)

3. the motor starting is a slow process, so it can be studied as a sequence
of steady-state working points with the rotor spinning at a constant
speed, given by:

Ω = (1 − s)Ω0 = (1 − s)
ω0

Npp

so the rotor electric position at a generic instant t is given by:

ϑ(t) = NppΩt = (1 − s)ω0t (6.23)

Here s is analogous to the slip for an induction motor, since we have
s = 1 − Ω/Ω0; the electrical dynamic in the transtion from a certain
speed point to another can be ignored, so the starting performance can
be intended as a function of the speed only, not involving the time.

At this point, combining (6.22) and (6.23) the final stator supply on the dq
reference frame is obtained:⃓⃓⃓⃓

Ud
Uq

⃓⃓⃓⃓
= Re

{︄√︃
3
2

Umax

⃓⃓⃓⃓
1
−ȷ

⃓⃓⃓⃓
eȷsω0t

}︄
(6.24)

Since the terms in (6.24) are the only source terms and the hypotesis of AC
steady-state has been assumed, the two circuits on the dq reference frame can
be studied at the slip frequency sω0 and the phasor notation can be adopted.
It is useful to re-define the phasors with respect to the rotor-referred fre-
quency, i.e. the stator voltage system is:⃓⃓⃓⃓

Ud
Uq

⃓⃓⃓⃓
= Re

{︃⃓⃓⃓⃓
Ūd
Ūq

⃓⃓⃓⃓
eȷsω0t

}︃
(6.25)

being ⃓⃓⃓⃓
Ūd
Ūq

⃓⃓⃓⃓
=

⃓⃓⃓⃓
1
−ȷ

⃓⃓⃓⃓ √︃
3
2

Umax (6.26)

1 Un,max is the maximum value of the rated phase voltage, that it is usually expressed as RMS
value, i.e. Un,max =

√
2Un
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With this assumption the explicit time dependency can be eliminated from
the electric equations and, thus, expression (6.14) becomes:

Ūd =Rs Īd + ȷsω0Ψ̄d − (1 − s)ω0Ψ̄q (6.27a)

Ūq =Rs Īq + ȷsω0Ψ̄q + (1 − s)ω0Ψ̄d (6.27b)

0 =Rkd Īkd + ȷsω0Ψ̄kd (6.27c)

0 =Rkq Īkq + ȷsω0Ψ̄kq (6.27d)

0 =Rf Īf + ȷsω0Ψ̄f (6.27e)

Expression (6.15) is formally identical in the phasor notation, thus it is still
valid.

It can be observed that, if the stator resistance is neglected in (6.27a) and
(6.27b) then the cross-dependency of the two axis can be eliminated [54]. In
fact we have: ⃓⃓⃓⃓

Ūd
Ūq

⃓⃓⃓⃓
= ω0

[︃
ȷs −(1 − s)

(1 − s) ȷs

]︃ ⃓⃓⃓⃓
Ψ̄d
Ψ̄q

⃓⃓⃓⃓
⇕⃓⃓⃓⃓

Ψ̄d
Ψ̄q

⃓⃓⃓⃓
=

1
(1 − 2s)ω0

[︃
ȷs (1 − s)

−(1 − s) ȷs

]︃ ⃓⃓⃓⃓
Ūd
Ūq

⃓⃓⃓⃓
and then, using (6.26):⃓⃓⃓⃓

Ψ̄d
Ψ̄q

⃓⃓⃓⃓
=

⃓⃓⃓⃓
−ȷ

−1

⃓⃓⃓⃓ √︃
3
2

Umax

ω0
= − ȷ

ω0

⃓⃓⃓⃓
Ūd
Ūq

⃓⃓⃓⃓
⇕⃓⃓⃓⃓

Ūd
Ūq

⃓⃓⃓⃓
= ȷω0

⃓⃓⃓⃓
Ψ̄d
Ψ̄q

⃓⃓⃓⃓
As regards the rotor equations (6.27c), (6.27d) and (6.27e) they can be re-
duced to an analogous form dividing both sides of each equation by s. Fi-
nally, reintroducing the effect of stator resistance, equations in (6.27) are
reduced to:

Ūd =Rs Īd + ȷω0Ψ̄d (6.28a)

Ūq =Rs Īq + ȷω0Ψ̄q (6.28b)

0 =
Rkd

s
Īkd + ȷω0Ψ̄kd (6.28c)

0 =
Rkq

s
Īkq + ȷω0Ψ̄kq (6.28d)

0 =
Rf

s
Īf + ȷω0Ψ̄f (6.28e)

or, making the flux linkage expressions explicit:

Ūd =Rs Īd + ȷω0Ls Īd + ȷω0Lad ( Īd + Īkd + Īf) (6.29a)

Ūq =Rs Īq + ȷω0Ls Īq + ȷω0Laq
(︁

Īq + Īkq
)︁

(6.29b)

0 =
Rkd

s
Īkd + ȷω0Lkd Īkd + ȷω0Lad ( Īd + Īkd + Īf) (6.29c)

0 =
Rkq

s
Īkq + ȷω0Lkq Īkq + ȷω0Laq

(︁
Īq + Īkq

)︁
(6.29d)

0 =
Rf

s
Īf + ȷω0Lf Īf + ȷω0Lad ( Īd + Īkd + Īf) (6.29e)



6.1 synchronous machine modeling 85

From (6.29) it can be noticed that all the inductances, with the previous
assumptions and simplifications, are associated with the stator frequency
ω0; therefore the following reactances can be defined:

Xs = ω0Ls Xaq = ω0Laq Xkq = ω0Lkq

Xad = ω0Lad Xkd = ω0Lkd Xf = ω0Lf

and the resistance and reactance matrix can be defined as:

[Rdq] =

⎡⎢⎢⎢⎢⎢⎣
Rs 0 0 0 0
0 Rs 0 0 0
0 0 Rkd/s 0 0
0 0 0 Rkq/s 0
0 0 0 0 Rf/s

⎤⎥⎥⎥⎥⎥⎦

[Xdq] =

⎡⎢⎢⎢⎢⎢⎣
Xs + Xad 0 Xad 0 Xad

0 Xs + Xaq 0 Xaq 0
Xad 0 Xkd + Xad 0 Xad

0 Xaq 0 Xkq + Xaq 0
Xad 0 Xad 0 Xf + Xad

⎤⎥⎥⎥⎥⎥⎦
so (6.29) can be expressed in a more compact way as:

Ū =
(︁
[Rdq] + ȷ[Xdq]

)︁
Ī (6.30)

The model in (6.30) leads also to the two-axes circuit in figure 6.2.
The impedance seen by each axis (excluding the stator resistance) is called

operatorial impedance and, for the two axes, are given by:

Z̄d(s) = ȷXs +
1

1
ȷXad

+
1

Rkd

s
+ ȷXkd

+
1

Rf

s
+ ȷXf

(6.31a)

Z̄q(s) = ȷXs +
1

1
ȷXaq

+
1

Rkq

s
+ ȷXkq

(6.31b)

6.1.4 Starting performance calculation

The introduction of the operational impedances allow to easily calculate
the stator currents on the dq reference frame:

Īd =
Ūd

Rs + Z̄d(s)
Īq =

Ūq

Rs + Z̄q(s)
(6.32)

and the flux linkages are given as well:

Ψ̄d =
Z̄d(s) Īd

ȷω0
Ψ̄q =

Z̄q(s) Īq

ȷω0
(6.33)
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(a) Direct axis

(b) Quadrature axis

Figure 6.2: Synchronous machine circuits for slow start-up
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The phasors of current and flux-linkage are used to calculate the torque
expression in accordingly to (6.21), similarly to what is proposed in [54].
Letting:

Īd = D1 + ȷD2 Z̄d(s) = Rd + ȷXd

Īq = Q1 + ȷQ2 Z̄q(s) = Rq + ȷXq

then from (6.33) the flux-linkages are given:

Ψ̄d =
XdD1 + RdD2

ω0
+ ȷ

XdD2 − RdD1

ω0

Ψ̄q =
XqQ1 + RqQ2

ω0
+ ȷ

XqQ2 − RqQ1

ω0

The torque expression in (6.21) must be evaluated using the instantaneous
values of currents and fluxes, that are given by:

Id(t) = Re
{︁

Īdeȷsω0t}︁ =D1 cos (sω0t)− D2 sin (sω0t) (6.34a)

Iq(t) = Re
{︁

Īqeȷsω0t}︁ =Q1 cos (sω0t)− Q2 sin (sω0t) (6.34b)

Ψd(t) = Re
{︁

Ψ̄deȷsω0t}︁ =
XdD1 + RdD2

ω0
cos (sω0t)

−XdD2 − RdD1

ω0
sin (sω0t)

(6.34c)

Ψq(t) = Re
{︁

Ψ̄qeȷsω0t}︁ =
XqQ1 + RqQ2

ω0
cos (sω0t)

−
XqQ2 − RqQ1

ω0
sin (sω0t)

(6.34d)

Substituting (6.34) into (6.21), after some algebraic transformations we ob-
tain [54]:

Tem(t) =
1
2

Npp

[︃
(Q1D1 + Q2D2)

Xd − Xq

ω0
+ (Q1D2 − Q2D1)

Rd + Rq

ω0

]︃
1
2

Npp

[︃
(Q1D1 − Q2D2)

Xd − Xq

ω0
+ (Q1D2 − Q2D1)

Rd − Rq

ω0

]︃
cos (2sω0t)

1
2

Npp

[︃
(Q1D2 + Q2D1)

Xq − Xd

ω0
+ (Q1D1 − Q2D2)

Rd − Rq

ω0

]︃
sin (2sω0t)

Therefore the starting torque consists of the sum of a constant term (the
average torque) plus a fluctuating term at double the slip frequency (the torque
pulsation). The average torque can be written as:

Tavg =
1
2

Npp

ω0
Im
{︂

ĪdZ̄d(s) Ī∗q − ĪqZ̄q(s) Ī∗d
}︂

(6.35)

whereas the peak of the torque pulsation is

Tpul =
1
2

Npp

ω0
| Īd| |Z̄d(s)− Z̄q(s)| | Īq| (6.36)

Similarly, the actual system of currents is calculated. Assuming:

Īd = | Īd|eȷ∠ Īd Īq = | Īq|eȷ∠ Īq
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then the instantaneous values of the currents in the dq reference frame is
given by:

Id(t) = Re
{︁

Īdeȷsω0t}︁ = | Īd| cos (sω0t +∠ Īd) (6.37a)

Iq(t) = Re
{︁

Īqeȷsω0t}︁ = | Īq| cos
(︁
sω0t +∠ Īq

)︁
(6.37b)

Applying the expressions in (6.37) to the inverse transformation in (6.11),
assuming Io(t) = 0 the current system on the stator reference frame is ob-
tained:

IU(t) =
1√
6

[︃
| Īd| cos (ϑ + sω0t +∠ Īd)− | Īq| sin

(︁
ϑ + sω0t +∠ Īq

)︁
+| Īd| cos (ϑ − sω0t −∠ Īd)− | Īq| sin

(︁
ϑ − sω0t −∠ Īq

)︁]︃
IV(t) =

1√
6

[︃
| Īd| cos

(︃
ϑ + sω0t +∠ Īd − 2

3
π

)︃
− | Īq| sin

(︃
ϑ + sω0t +∠ Īq −

2
3

π

)︃
+| Īd| cos

(︃
ϑ − sω0t −∠ Īd − 2

3
π

)︃
− | Īq| sin

(︃
ϑ − sω0t −∠ Īq −

2
3

π

)︃]︃
IW(t) =

1√
6

[︃
| Īd| cos

(︃
ϑ + sω0t +∠ Īd +

2
3

π

)︃
− | Īq| sin

(︃
ϑ + sω0t +∠ Īq +

2
3

π

)︃
+| Īd| cos

(︃
ϑ − sω0t −∠ Īd +

2
3

π

)︃
− | Īq| sin

(︃
ϑ − sω0t −∠ Īq +

2
3

π

)︃]︃
Given the expression of ϑ in (6.23) it results that the system of current has
two components:

• the fundamental component has the same frequency as the voltage
system (ω0) and its RMS value is given by:

Iavg =
1

2
√

3
| Īd + ȷ Īq| (6.38)

• the second component fluctuates at a frequency of (1 − 2s)ω0 and its
RMS value is given by:

Ipul =
1

2
√

3
| Īd − ȷ Īq| (6.39)

All these expressions are used in IEEE Standard 1255 [55] for the calculation
of the starting performance.

6.1.5 Per-unit reduction

The synchronous machine starting model can be expressed in per-unit us-
ing the base quantities provided in appendix C. This allows to furtherly
simplify the structure of the equations written above.

The stator feeding voltage is assumed to have a pu-value equal to v, i.e.
the RMS value of the stator voltage is vUn. The phasors of phase voltage on
the dq reference frame are: ⃓⃓⃓⃓

ūd
ūq

⃓⃓⃓⃓
=

⃓⃓⃓⃓
1
−ȷ

⃓⃓⃓⃓√
3v (6.40)
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The two-axis circuits are formally identical to figure 6.2, substituting the
physical values with their corresponding pu values. The operational impedances
are given by:

z̄d(s) =ȷxs +
1

ȷxad +
1

rkd

s
+ ȷxkd

+
1

rf

s
+ ȷxf

(6.41a)

z̄q(s) =ȷxs +
1

ȷxaq +
1

rkq

s
+ ȷxkq

(6.41b)

The axis currents are, therefore:

īd =
ūd

rs + z̄d(s)
īq =

ūq

rs + z̄q(s)
(6.42)

and the torque and line current components are, finally:

T̂avg =
1
6

Sn

Pn
Im
{︂

īdz̄d ī∗q − ī∗dz̄q īq
}︂

(6.43)

T̂pul =
1
6

Sn

Pn
|īd| |z̄d − z̄q| |īq| (6.44)

iavg =
1

2
√

3
|īd + ȷīq| (6.45)

ipul =
1

2
√

3
|īd − ȷīq| (6.46)

6.2 model identification from stand-still tests

6.2.1 Stationary dq model at stand-still

If the rotor is not moving then the model presented in 6.1.3 is not valid. In
this case, assuming the stator being fed with a generic three-phase voltage
system at angular frequency ω the stator voltages on the dq reference frame
are: ⃓⃓⃓⃓

Ud(t)
Uq(t)

⃓⃓⃓⃓
= Re

{︃⃓⃓⃓⃓
Ūd,max(t)

Ūq,max

⃓⃓⃓⃓
eȷ(ωt−ϑ0)

}︃
(6.47)

where Ūd,max, Ūq,max depend on the voltage system and ϑ0 is the rotor elec-
tric angular position, that is assumed fixed. It can be noticed that the volt-
ages pulsate on the rotor model with the same frequency as the stator model;
thus the voltage phasors can be defined as usual:⃓⃓⃓⃓

Ūd(t)
Ūq

⃓⃓⃓⃓
=

⃓⃓⃓⃓
Ūd,max(t)

Ūq,max

⃓⃓⃓⃓
e−ȷϑ0

and, since ϑ̇ = 0 the stand-still model directly follows from (6.16) and (6.17),
using the phasor notation:

Ū = [R]Ī + ȷω[L]Ī (6.48)
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(a) Direct axis

(b) Quadrature axis

Figure 6.3: Synchronous machine circuits for still-rotor condition

Using the fact that the matrix of the reactances is defined with respect to the
machine rated frequency ω0 then (6.48) can be rewritten as:

Ū =

(︃
[R] + ȷ

ω

ω0
[X ]

)︃
Ī (6.49)

The matrix [X ] is formally identical to the one introduced in (6.30), whereas
[R] is equal to the matrix in (6.16), not the one in (6.30).

It is worth noticing that, if the feeding frequency at stand-still is equal to
the slip frequency, i.e. ω = sω0 then (6.49) becomes:

Ū = ([R] + ȷs[X ]) Ī

and the rotor equations are formally identical to (6.27c), (6.27d) and (6.27e)
in the same slip conditions. This fact can be used to identify the rotor param-
eters at slip s through a series of suitable tests; after the relations between
Xad, Rkd, Xkd, Rf, Xf, Xaq Rkq, Xkq and s are derived at stand-still, these
parameters can be used in the moving-rotor model according to (6.30). This
fact is also highlighted in figure 6.3; the parameters in these circuits are
identical to the corresponding parameters in figure 6.2.
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The operational impedances are defined as:

Z̄d(s) = ȷsXs +
1

1
ȷsXad

+
1

Rkd + ȷsXkd
+

1
Rf + ȷsXf

(6.50a)

Z̄d(s) = ȷsXs +
1

1
ȷsXaq

+
1

Rkq + ȷsXkq

(6.50b)

and the total axis admittances are introduced:

Ȳd(s) =
1

Rs + Z̄d(s)
Ȳq(s) =

1
Rs + Z̄q(s)

(6.51)

so the current components on the dq reference frame are simply given by:

Īd = Ȳd(s)Ūd Īq = Ȳq(s)Ūq (6.52)

6.2.2 Axis admittance identification

The axis admittances in (6.51) can be practically determined through two
stand-still rotor tests:

• a locked-rotor test with the machine fed by a symmetric three-phase
voltage system;

• a test with the machine fed by a single-phase voltage between one
phase and the parallel of the other two.

Actually one test could be enough to identify both axes if the rotor position
ϑ0 is known; this situation is not always possible for large machines, because
of the difficulty in the rotor handling; this section shows how the axis admit-
tances (and, thus, the operational impedances) can be calculated from the
combination of the two tests results, without the need of determining the
rotor angle. An alternative to these tests is reported in IEEE Standard 115

[56] but this requires performing burdensome tests (like sudden short-circuit
test) or multiple ones.

Stand-still test with three-phase supply

The stator is fed with a positive-sequence symmetric three-phase voltage
system of amplitude Umax (phase voltage). This excitation, clearly, produces
a rotating air-gap field, so the rotor must be mechanically blocked to keep it
still. According to (6.10) the voltage phasor on the dq reference frame in this
condition are: ⃓⃓⃓⃓

⃓Ū(3ϕ)
d

Ū(3ϕ)
q

⃓⃓⃓⃓
⃓ =

√︃
3
2

Umax

⃓⃓⃓⃓
1
−ȷ

⃓⃓⃓⃓
eȷϑ0 (6.53)

This allows to determine the current dq components according to (6.52):

Ī(3ϕ)
d = ȲdŪ(3ϕ)

d Ī(3ϕ)
q = ȲqŪ(3ϕ)

q



92 two-axis model for start-up

and the current sequence component on the stator reference frame are calcu-
lated according to (6.12). We have:

Ī(3ϕ)
1 =

1√
6

(︂
Ī(3ϕ)
d + ȷ Ī(3ϕ)

q

)︂
eȷϑ0 =

1
2
(Ȳd + Ȳq)Umax

Ī(3ϕ)
2 =

1√
6

(︂
Ī(3ϕ)
d − ȷ Ī(3ϕ)

q

)︂
e−ȷϑ0 =

1
2
(Ȳd − Ȳq)Umaxe−ȷ2ϑ0

The common mode admittance and the differential mode admittance are intro-
duced:

ȲC =
1
2
(︁
Ȳd + Ȳq

)︁
Ȳ∆ =

1
2
(︁
Ȳd − Ȳq

)︁
(6.54)

so the stator current sequence components are given by:

Ī(3ϕ)
1 = ȲCUmax Ī(3ϕ)

2 = Ȳ∆Umaxeȷ2ϑ0 (6.55)

It can be noticed that, from the current measurements, the common mode
admittance can always be determined, whereas the differential mode one
requires the prior determination of the rotor angle ϑ0.

Stand-still test with single-phase supply

The machine is supplied between phase U and phases V-W (connected
together) with a single-phase voltage of amplitude Vmax. This configuration
produces a pulsating air-gap along the phase U axis, so the rotor is naturally
at stand-still. The line-voltage system can be decomposed into its positive
and negative sequence component, according to (6.9):⃓⃓⃓⃓

⃓⃓⃓⃓
⃓
V̄(1ϕ)

UV

V̄(1ϕ)
VW

V̄(1ϕ)
WU

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓⃓ Vmax

0
−Vmax

⃓⃓⃓⃓
⃓⃓ →

⃓⃓⃓⃓
⃓⃓V̄(1ϕ)

1

V̄(1ϕ)
2

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓⃓ (1 − ω̌2)

3
Vmax

(1 − ω̌)

3
Vmax

⃓⃓⃓⃓
⃓⃓⃓ (6.56)

The phase voltage sequence components are obtained considering that, by
definition:

V̄1 = (1 − ω̌2)Ū1 V̄2 = (1 − ω̌)Ū2

so:
Ū(1ϕ)

1 = Ū(1ϕ)
2 =

1
3

Vmax (6.57)

and thus the dq components of phase voltage are obtained, according to
(6.10):⃓⃓⃓⃓

⃓⃓Ū
(1ϕ)
d

Ū(1ϕ)
q

⃓⃓⃓⃓
⃓⃓ =

√︃
3
2

[︄
e−ȷϑ0 eȷϑ0

−ȷe−ȷϑ0 ȷeȷϑ0

]︄ ⃓⃓⃓⃓
⃓⃓Ū

(1ϕ)
1

Ū(1ϕ)
2

⃓⃓⃓⃓
⃓⃓ =

√︃
2
3

Vmax

⃓⃓⃓⃓
⃓⃓ cos(ϑ0)

− sin(ϑ0)

⃓⃓⃓⃓
⃓⃓ (6.58)

The final expression in (6.58) has been obtained making use of the following
identities:

cos α =
eȷα + e−ȷα

2
sin α =

eȷα − e−ȷα

2ȷ
(6.59)

The dq components of current are obtained according to (6.52):

Ī(1ϕ)
d = ȲdŪ(1ϕ)

d Ī(1ϕ)
q = ȲqŪ(1ϕ)

q
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and so the current sequence components on the stator reference frame are
calculated from (6.13)

Ī(1ϕ)
1 =

1
3

Vmax
(︁
Ȳd cos ϑ0 − ȷȲq sin ϑ0

)︁
eȷϑ0

Ī(1ϕ)
2 =

1
3

Vmax
(︁
Ȳd cos ϑ0 + ȷȲq sin ϑ0

)︁
e−ȷϑ0

(6.60)

From (6.54) it is obtained:

Ȳd = ȲC + Ȳ∆ Ȳq = ȲC − Ȳ∆ (6.61)

so (6.60) becomes:

Ī(1ϕ)
1 =

1
3

Vmax

(︂
ȲC + Ȳ∆eȷ2ϑ0

)︂
Ī(1ϕ)
2 =

1
3

Vmax

(︂
ȲC + Ȳ∆e−ȷ2ϑ0

)︂ (6.62)

where the identities in (6.59) have been used again.

Admittance determination from tests

The common mode admittance can be directly determined from the three-
phase test, according to (6.55):

ȲC =
Ī(3ϕ)
1

U(3ϕ)
max

(6.63)

where Ī(3ϕ)
1 is the positive-sequence current phasor measured when the ma-

chine is supplied with a three phase voltage system, having phase voltage
peak equal to U(3ϕ)

max .
Rearranging the expression in (6.62) it can be written:

Ȳ∆eȷ2ϑ0 =
3 Ī(1ϕ)

1

V(1ϕ)
max

− ȲC Ȳ∆e−ȷ2ϑ0 =
3 Ī(1ϕ)

2

V(1ϕ)
max

− ȲC

and then, mutually multiplying these expression the rotor position depen-
dency is eliminated, obtaining the differential mode admittance:

Ȳ∆ =

⌜⃓⃓⎷[︄3 Ī(1ϕ)
1

V(1ϕ)
max

− ȲC

]︄ [︄
3 Ī(1ϕ)

2

V(1ϕ)
max

− ȲC

]︄
(6.64)

Here Ī(1ϕ)
1 and Ī(1ϕ)

2 are, respectively, the positive and negative sequence
component of the current measured when the machine is supplied between
one phase terminal and the parallel connection of the remaining two with a
sinusoidal voltage of peak amplitude equal to V(1ϕ)

max .
Once the common and differential mode admittance are determined ac-

cordingly to (6.63) and (6.64) the axis admittances are calculated through
(6.61) and, finally, the operational impedances are determined accordingly
to (6.51).





7 S TA R T I N G M O D E L C A LC U L AT I O N

This chapter presents a FE-based method for the calculation of the syn-
chronous motor starting circuit described in chapter 6. Particular focus is
given to the case of solid rotor DOL SMs presented in chapter 5 and the
calculation of their rotor equivalent cage parameters, because the analytical
methods commonly found in the literature [40–42] are often heuristic and
experience-based. Numerical methods, on the other hand, introduce an ex-
cessive computational burden [43–46], because the rotor eddy-current and
the core saturation must be taken into account [57].

Despite what is commonly made in most of the literature FE-based meth-
ods, which focus on the complete starting simulation [46], the procedure
herein described intends to calculate the starting circuit parameters, using a
set of FEAs that reproduce the stand-still rotor tests described in section 6.2.
More in detail, since the rotor angular position is known in this case, there
is no need to perform the whole procedure presented in section 6.2.2 and
the equivalent dq cage parameters can be identified through a simple three-
phase excited model or a pair of single-phase excited models (one per axis).
However, the single-phase excited models present an additional symmetry
with respect to the three-phase excited one, so they can be further simplified,
realizing a more efficient calculation procedure based on a half-pole model
(whereas the three-phase excited model requires at least an entire pole ge-
ometry to be included in the problem domain). The equivalence of these two
modeling strategy is discussed in section 7.1, whereas section 7.2 focuses on
the precautions that have to be taken to simulate this complex problem with
the simplest possible geometry. Finally, section 7.3 will verify the validity of
the half-pole model strategy on a simple case (locked-rotor cage parameter
calculation). The complete start-up simulation will be discussed in chapter 8.

7.1 method outline

As pointed out in the previous chapter the SM start-up can be calculated
through the two-axes circuit in figure 6.2, so the problem of starting perfor-
mance calculation is reduced to determining the circuit parameters. Most of
these parameters (Rs, Xs, Xad, Xaq, Rf and Xf) can be analytically calculate
through literature methods [58, 59], so this section is focused on the deter-
mination of the rotor cage parameters (Rkd, Xkd, Rkq and Xkq) by means of
FEM.

The equivalent dq cage parameters can be calculated through a TH sim-
ulation at stand-still and open field winding, which allows to determine
the operational impedances corresponding to the circuit from figure 6.3 (ex-
cluding the field-winding branch). The simulation frequency is s f0, with s
the slip being investigated and f0 the machine rated frequency. The cage
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parameters variation during start-up is determined iterating the calculation
procedure for different values of slip.

The practical calculation of operational impedances depends on the model
excitation. The FE model is current-excited, as done for the IM case in sec-
tion 3.1.3. Two current system can be adopted:

• a symmetric three-phase current system, that produce a rotating MMF
field wave (see also section B.2 in appendix B);

• a single-phase current system between one phase terminal and the par-
allel connection of the others, that produce a pulsating MMF wave in
the direction of the first phase axis (see also section B.3 in appendix B).

In both cases the operational impedances calculation depends on the stand-
still current-excited model, which is slightly different from the one presented
in section 6.2.2 (that is voltage-excited).

7.1.1 Three-phase excited model

If the three-phase current system is chosen as model excitation than, as-
suming a maximum value of current equal to Imax then, accordingly to (6.10)
the dq components of current are:⃓⃓⃓⃓

Īd
Īq

⃓⃓⃓⃓
=

√︃
3
2

⃓⃓⃓⃓
1
−ȷ

⃓⃓⃓⃓
Imaxe−ȷϑ0

and thus the dq voltage components are obtained:

Ūd = (Rs + Z̄d) Īd Ūq = (Rs + Z̄q) Īq

and the sequence components of stator phase voltage are calculated as per
(6.13):

Ū1 =

[︃
Rs +

Z̄d + Z̄q

2

]︃
Imax Ū2 =

[︃
Z̄d − Z̄q

2
eȷ2ϑ0

]︃
Imax

and, finally, the U phase voltage is:

Ū = Ū1 + Ū2 =

[︃
Rs + Z̄d

1 + e−ȷ2ϑ0

2
+ Z̄q

1 − e−ȷ2ϑ0

2

]︃
Imax

This is the general expression for the phase voltage. However, since the rotor
position is known in the FE model definition then it is useful assume ϑ0 = 0
and obtain:

Rs + Z̄d =
Ū

Imax

⃓⃓⃓⃓
ϑ0=0

(7.1)

whereas choosing ϑ0 = π/2 leads to:

Rs + Z̄q =
Ū

Imax

⃓⃓⃓⃓
ϑ0=

π
2

(7.2)

Equations (7.1) and (7.2) show that the calculation of operational impedances
can be made through two three-phase current-fed TH FEAs, one with the ro-
tor aligned to phase U, the other one with rotor electrically orthogonal to
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Figure 7.1: Flux-density complex distribution for a three-phase (rotating) system

phase U. Since all the parameters that define the operational impedances are
known, except the cage parameters, then from the operational impedances
the cage impedances are calculated as well. This procedure can be simplified
observing that:

• the stator parameter Rs and Xs are known, so the stator geometry can
be excluded from the FE model definition and the phase voltage Ū can
be calculated from the air-gap flux-density distribution;

• the temporal phase shift in a three-phase system corresponds to a spa-
tial angular shift (see (B.26) in appendix B);

• the flux density distribution in a TH model is complex-valued.

The fact of excluding the stator geometry from the FE model will be dis-
cussed in section 7.2; for now is enough to notice that from this simplification
the operational impedances given by equations (7.1) and (7.2) become:

Z̄′
d =

1
1

ȷsXad
+

1
Rkd + ȷsXkd

=
Ū

Imax

⃓⃓⃓⃓
ϑ0=0

(7.3a)

Z̄′
q =

1
1

ȷsXaq
+

1
Rkq + ȷsXkq

=
Ū

Imax

⃓⃓⃓⃓
ϑ0=

π
2

(7.3b)

so the cage parameters are simply given by:

Rkd + ȷsXkd =

(︃
1

Z̄′
d
− 1

ȷsXad

)︃−1

(7.4a)

Rkq + ȷsXkq =

(︄
1

Z̄′
q
− 1

ȷsXaq

)︄−1

(7.4b)

The complex flux-density distribution is equivalent to two orthogonal
(real) distributions, as shown in figure 7.1. As said before, in a rotating
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MMF system, this orthogonality can be intended as temporal (i.e. the two
distributions occur after a time shift of a quarter of period, that is the usual
interpretation) or, equivalentely, it can be assumed that they occur at the
same time, but they are placed along orthogonal axes (in terms of electric
angles). So, using this idea, a single model with the pole (direct) axis parallel
to the first phase axis can be used to identify both axes impedances:

1. the real part of complex flux-density distribution is associated with the
direct axis;

2. the imaginary part of complex flux-density distribution is associated
with the quadrature axis.

More in detail, given the complex air-gap flux-density distribution its fun-
damental B̄g is obtained from the fundamental waves of real and imaginary
part; assuming that the peak values of these fundamental are, respectively,
Bg,Re and Bg,Im and they occur at an electric angle equal to αB,Re and αB,Im,
respectively, then it can be written:

B̄g(α) =
[︁
Bg,Re cos

(︁
Nppα − αB,Re

)︁]︁
+ ȷ
[︁
Bg,Im cos

(︁
Nppα − αB,Im

)︁]︁
(7.5)

assuming α as mechanical angle and α = 0 on the phase U axis. Now,
considering that for a spatial flux-density distribution like Bmax cos(Nppα −
φ0) the total flux-linkage phasor is:

Ψ̄ = kwNtph
2
π

τpℓgapBmaxeȷφ0

then, letting

KΨ =
2
π

kwNtphτpℓgap (7.6)

the phase voltages associated with the two axes are obtained from the FE
model solution according to expression (7.5):

Ū
⃓⃓⃓⃓
ϑ0=0

= ȷω0KΨBg,ReeȷαB,Re (7.7a)

Ū
⃓⃓⃓⃓
ϑ0=

π
2

= ȷω0KΨBg,ImeȷαB,Im (7.7b)

and so the operational impedances from the three-phase current excited
model are calculated as:

Z̄′
d =

ȷω0KΨBg,ReeȷαB,Re

Imax
(7.8a)

Z̄′
q =

ȷω0KΨBg,ImeȷαB,Im

Imax
(7.8b)

and finally the cage impedances are calculated according to (7.4).



7.1 method outline 99

7.1.2 Single-phase excited model

The model excited by means of a single-phase system of currents is sub-
jected to a pulsating magnetic field in the direction of the input phase1. Sup-
plying the machine with a maximum current Imax entering the U terminal
and assuming the current equally split between phases V and W then the
positive and negative sequence of current are obtained:⃓⃓⃓⃓

⃓⃓ ĪU

ĪV

ĪW

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓ 1
−1/2
−1/2

⃓⃓⃓⃓
⃓⃓ Imax −→ Ī1 = Ī2 =

1
2

Imax

then from (6.10) the dq currents are obtained:⃓⃓⃓⃓
Īd
Īq

⃓⃓⃓⃓
=

√︃
3
2

[︃
e−ȷϑ0 eȷϑ0

−ȷe−ȷϑ0 ȷeȷϑ0

]︃ ⃓⃓⃓⃓
Ī1

Ī2

⃓⃓⃓⃓
=

√︃
3
2

⃓⃓⃓⃓
cos ϑ0

− sin ϑ0

⃓⃓⃓⃓
Imax

and the corresponding phase voltage:

Ūd = (Rs + Z̄d) Īd Ūq =
(︁

Rs + Z̄q
)︁

Īq

so from (6.13) the sequence component of the stator phase voltage are ob-
tained:

Ū1 =
1
2

Imax

[︃
Rs +

Z̄d + Z̄q

2
+

Z̄d + Z̄q

2
eȷ2ϑ0

]︃
Ū2 =

1
2

Imax

[︃
Rs +

Z̄d + Z̄q

2
+

Z̄d + Z̄q

2
e−ȷ2ϑ0

]︃
and, finally, the phase U voltage is given by:

Ū = Ū1 + Ū2 = Imax

[︃
Rs +

Z̄d + Z̄q

2
+

Z̄d − Z̄q

2
cos (2ϑ0)

]︃
The axis impedances are determined by suitably choosing the rotor axis an-
gle ϑ0, like in the three phase case:

1. the choice ϑ0 = 0 identifies the direct axis:

Rs + Z̄d =
Ū

Imax

⃓⃓⃓⃓
ϑ0=0

2. the choice ϑ0 = π/2 identifies the quadrature axis:

Rs + Z̄q =
Ū

Imax

⃓⃓⃓⃓
ϑ0=

π
2

As for the three-phase case, the model can be simplified removing the stator,
so the actual cage parameters are calculated accordingly to (7.3) and (7.4) as
well.

In this case the equivalence between spatial angular displacement and
time phase shift is not applicable (see (B.32) in appendix B) so two distinct
models, with orthogonal axis configuration, must be adopted; however, in
section 7.1.3 it will be shown that these models can be further reduced with
respect to the three phase case, obtaining an overall improvement of the
computational cost.

1 Once again, a single phase system is realized by supplying the machine between one phase
terminal, considered as input terminal, and the parallel connection of the remaining two
phase terminals, i.e. the output terminal of the single phase circuit
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(a) Direct axis

(b) Quadrature axis

Figure 7.2: Flux-density complex distribution for a single-phase (pulsating) system
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The flux-density distribution in the single-phase excited models is still
complex and both real and imaginary air-gap distributions have their fun-
damental aligned with the input phase axis, as shown in figure 7.2; the
fundamental for the two axes can be expressed as:

B̄g,d(α) = [Bd,Re + ȷBd,Im] cos
(︁

Nppα
)︁

(7.9a)

B̄g,q(α) =
[︁
Bq,Re + ȷBq,Im

]︁
cos

(︂
Nppα − π

2

)︂
(7.9b)

so the flux linkages are computed as:

Ψ̄d =ȷω0KΨ (Bd,Re + ȷBd,Im)

Ψ̄q =ȷω0KΨ
(︁

Bq,Re + ȷBq,Im
)︁

with KΨ given by (7.6). The axis impedances from the reduced single-phase
excited model are finally given by:

Z̄′
d =

ȷω0KΨ (Bd,Re + ȷBd,Im)

Imax
(7.10a)

Z̄′
q =

ȷω0KΨ
(︁

Bq,Re + ȷBq,Im
)︁

Imax
(7.10b)

and, again, the cage impedances are calculated as per (7.4).

7.1.3 Model comparison

Observing figures 7.1 and 7.2 it can be noticed that the flux-density dis-
tribution in the three-phase excited model is not symmetric with respect to
the rotor pole axis; in the case of single-phase excited model, instead, when
the phase U axis is aligned with either the direct or the quadrature rotor
axis, the flux-density distribution is symmetric with respect to the rotor pole
axis. This fact implies that the single-phase excited models can be simplified,
including just one half of the pole geometry in the model definition and
suitably choosing the boundary conditions on the pole and inter-pole axes,
in order to guarantee the solution symmetry. This fact will be further dis-
cussed in section 7.2. The symmetry makes the single-phase excited model
more cost-efficient than the three-phase one, although the former requires
two models to be solved. In fact, since the computation time for a FEA solu-
tion is approximately proportional to the square of the number of nodes in
the FE model and the half-pole model has, approximately, half of the nodes
of a full-pole model, than the proper choice of two half-pole single-phase ex-
cited models would lead to a computational cost of about 50 % compared to
the standard three-phase model. This justifies the introduction of the single-
phase excitation strategy, as pointed out in figure 7.3. The two modeling
strategies are also summarized and compared in table 7.1.

7.2 model set-up

7.2.1 Excitation and boundary conditions

Figure 7.4 show a sketch of the stator-less FE models adopted for the
identification of cage axes parameters. In particular, both the three-phase
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Figure 7.3: Logic simplification of synchronous machine FE modeling for cage parameters
calculation

Table 7.1: Comparison between three-phase excited and single-phase excited FE models

Excitation Three-phase Single-phase

Axis d q d q

Field Rotating Pulsating

F̄(α) Fmaxe−ȷNppα Fmax cos(Nppα) Fmax sin(Nppα)

Re {B̄(α)} B1 cos(Nppα − α1) B1 cos(Nppα) B1 sin(Nppα)

Im {B̄(α)} B2 cos(Nppα − α2) B2 cos(Nppα) B2 sin(Nppα)

Ψ̄ KΨB1e−ȷα1 KΨB2e−ȷα2 KΨ [B1 + ȷB2] KΨ [B1 + ȷB2]
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(a) Full-pole model (b) Half-pole model

Figure 7.4: FE models for cage parameters calculation

excited model (7.4a) and the single-phase excited model (7.4b) are shown.
These model share some similarities:

• on the shaft and bore boundaries a Neumann BC is assumed, i.e. the
flux-lines are orthogonal to these contours, because they are an inter-
face with regions at infinite permeability;

• the model excitation is provided through a suitable distribution of
current points along the bore circumference, which realizes the stator
MMF fundamental corresponding to a given stator current. The stator
MMF is rotating, according to (B.23), if the full pole model is adopted,
whereas it is pulsating, as in (B.32), in the case of half-pole model. In
both cases, if the stator is supplied with a peak current equal to Imax,
the MMF fundamental peak value is given by:

Fmax =
6
π

kwNtph

Np
Imax (7.11)

so the rotating MMF spatial phasor is given by:

F̄3ϕ(α) = Fmaxe−ȷNppα (7.12)

whereas the pulsating MMF spatial phasor is:

F̄1ϕ(α) = Fmax cos(Nppα − φ0) (7.13)

with φ0 = 0 if the stator axis is aligned to pole axis (for direct axis
parameters calculation) and φ0 = π/2 if the stator axis is orthogonal
to pole axis (for quadrature axis parameters calculation).

The MMF distribution is realized through a discrete set of current points.
Assuming N equally-spaced points then the current in any point is given by:

Iν =
∂F(αν)

∂α
dα with ν = 1, 2, . . . , N
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Table 7.2: Current point distribution expressions for different models

Three-phase Single-phase Single-phase

Full pole Full pole Half pole

ν 1, 2, . . . , 2N 1, 2, . . . , 2N 1, 2, . . . , N

Fmax
6
π

kwNtph

Np
Imax

F(α) Fmaxe−ȷNppα Fmax cos(−ȷNppα − φ0) Fmax cos(−ȷNppα − φ0)

αν
2ν − 2N − 1

2N
π

Np

2ν − 2N − 1
2N

π

Np

2ν − 2N − 1
2N

π

Np

Iν,max
3
N

kwNtph

Np
Imax

Iν −ȷIν,maxe−ȷNppαν Iν,max sin(Nppαν − φ0) Iν,max sin(Nppαν − φ0)

with dα the angular distance between two adjacent points, that are placed
at angles αν. The actual expression for the current point distribution is ex-
plicited in table 7.2 for all the possible modeling strategies discussed in sec-
tion 7.1 (three or single-phase excitation, full or half pole). It is worth notic-
ing that, in order to have the same resolution for the models with full pole
geometry is necessary double the points with respect to the half pole model.
The rotor pole axis is assumed as reference direction for the αν angles.

The main differnce between the single-pole model and the half-pole one
regards the boundary conditions to be associated with the pole and inter-
pole axes:

1. in the full-pole model an anti-periodic BC is imposed on both the inter-
pole axes and no conditions are specified for the pole-axis;

2. in the single pole model the conditions on pole and inter-pole axes
depend on the axis that is being considered:

• for the d axis, as it can be seen in figure 7.2a, the flux lines are
parallel to pole axis and orthogonal to the inter-pole one, so a
Dirichlet BC must be chosen for the former axis, whereas a Neu-
mann BC is assumed for the latter;

• for the q axis the flux-lines distribution are parallel to inter-pole
axis and orthogonal to the pole one, so the boundary conditions
are switched with respect to the previous case.

7.2.2 Materials properties correction

The materials properties in the model have to be adjusted for considering
the different regions axial length, as done for the induction motor study in
table 3.1; futhermore, the pole conductivity has to be modified in order to
take into account two additional effects:

• the rotor surface grooving (see chapter 5);
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Table 7.3: Literature conductivity correction factors for finite length effects

Source Expression µr Kσ,ℓ Kσ,ℓKσ,G

Russell [61]
(︂

1 − 1
ζ

tanh ζ
1+tanh ζ

)︂2
any 0.700 0.213

O’Kelly [62]
(︂

1 + τ
ℓr,tot

)︂−2
any 0.436 0.133

Gibbs [63]
(︂

1 + 1
ζ

)︂−2
any 0.567 0.173

Yee [64]

{︄
aℓr,tot

[︂
1+coth

(︂
πℓr,tot

2τp

)︂]︂
−2

aℓr,tot

[︂
1+coth

(︂
πℓr,tot

2τp

)︂]︂
}︄2

any 0.700 0.213

Fu [65]
(︂

1 + τp
ℓr,tot

)︂−2
(︃

1+λ2gavgµrδ

1+a2gavgµrδ

)︃2

1 0.437 0.133

5 0.441 0.134

10 0.441 0.134

50 0.482 0.147

100 0.514 0.157

500 0.614 0.187

1000 0.648 0.197

• the finite length of the solid core.

Both effect are calculated using conductivity correction factor provided by
the literature. The model core conductivity is finally given by:

σ′ = Kσ,GKσ,ℓσ (7.14)

with σ being the actual core conductivity (corrected accordingly to table 3.1)
and Kσ,G, Kσ,ℓ are the conductivity correction factors accounting for the sur-
face grooving and the finite-length effects, respectively.

The groove correction factors for d and q axis are given by [60]:

Kσ,G,d =

[︄
1 +

0.526γpsτp + NG(2hG + ℓG)

ℓr,tot

]︄−1

(7.15a)

Kσ,G,q =

[︄
1 +

2(hps + hpb) + τ′
p + NG(2hG + ℓG)

ℓr,tot

]︄−1

(7.15b)

(7.15c)

As total correction factor the average of the two values in (7.15) is assumed.
For the salient-pole machine examined in chapter 8 we have:

Kσ,G,d = 0.316 Kσ,G,q = 0.293 Kσ,G = 0.305
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Several finite-length correction factor are available in literature [66]; they
are examined and collected in table 7.3, assuming the following definitions:

a =
π

τp
ζ =

πℓr,tot

2τp

λ = a

√︄
1 +

(︃
τp

ℓr,tot

)︃2

δ =

√︃
σµrµ0ω0

2

Table 7.3 also reports the total conductivity correction factors (calculated
with different methods) for the reference salient-pole machine examined in
chapter 8. It can be noticed that the total pole conductivity must be reduced
to about 20 % of the physical value, so hereinafter this correction factor will
be considered for all the models.

7.3 model equivalence check

In order to verify the simplification procedure described in figure 7.3 the
dq axis cage parameters for the machine analyzed in chapter 8 are calculated
using four different TH-FE strategies:

1. a single standard model, with the stator geometry included;

2. a single three-phase rotor-focused model, with a full pole geometry;

3. a pair of single-phase rotor-focused models, with full pole geometry;

4. a pair of single-phase rotor-focused models, with half pole geometry;

All these models are current-excited. The Locked-Rotor Current (LRC) ob-
tained from a test on machine from chapter 8 has been considered as source
current for the models. The test was performed at 25 % of the machine rated
voltage and the measured current was close to the rated one.

As a further validation of the proposed methods, the parameters obtained
from FEM are used to compute the Locked-Rotor Torque (LRT) and LRC
through (6.43) and (6.45) respectively; these results are compared with the
experimental data.

Figure 7.5 and table 7.4 show the outcome of the four calculation meth-
ods. From figure 7.5 it can be noticed that all the calculated parameters are
comparable and lead to LRT and LRC values close to the experimental ones.
The torque error from the half-pole model method is higher than the other
methods, but the current error is the least. Table 7.4 also reports the compu-
tation statistics. For the single-phase excited methods two models need to be
solved; in order to make a better comparison with the full pole models the
number of nodes and elements reported in table 7.4 correspond to a single
model, but the computation time consider the total amount needed for the
two models, as they are solved subsequentely. It can be noticed that, even
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Figure 7.5: Locked-rotor parameters calculated with different methods

Table 7.4: Locked rotor test calculation results and statistics

Standard model Full-pole, 3ϕ Full-pole, 1ϕ Half-pole, 1ϕ

rkd 0.108 pu 0.107 pu 0.113 pu 0.109 pu

xkd 0.129 pu 0.128 pu 0.143 pu 0.138 pu

rkq 0.103 pu 0.102 pu 0.116 pu 0.112 pu

xkq 0.101 pu 0.101 pu 0.115 pu 0.112 pu

LRT 0.070 pu 0.070 pu 0.067 pu 0.068 pu

LRC 1.008 pu 1.009 pu 0.969 pu 0.981 pu

εLRT −2.4 % −3.1 % −6.5 % −5.8 %

εLRC 2.5 % 2.6 % −1.4 % −0.2 %

Nodes 8784 6552 6552(a) 3138(a)

Elements 17 300 12 664 12 664(a) 6063(a)

Computation time
23 s 19 s 24 s(b) 9 s(b)

100 % 83 % 104 %(b) 39 %(b)

(a) For a single model
(b) For the two models
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though there are twice the models, the computation time is less than 40 %
with respect to a standard model and about 50 % if compared to a stator-less
three-phase model. Clearly, if the two half-pole models are solved simul-
taneously (i.e. parallel computing is employed) the time saving obtained
performing the half-pole method is about 80 % with respect to the standard
model computation time.
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In this chapter the half-pole method to compute equivalent cage parame-
ters presented in chapter 7 is applied to characterize the whole start-up of
a 4-pole synchronous motor with solid salient-poles. The four cage parame-
ters (resistance and reactance for the direct and quadrature axes) at different
frequencies (i.e. at different rotor speeds) are evaluated, using this method,
in section 8.1 The rotor field winding AC resistance is evaluated as well, by
means of a suitable set of TH-FEAs. The problem of dealing with the calcu-
lation of these parameters at a given voltage using a current-excited model
is solved considering a iterative mthod, similarly to what has been done for
induction motors in section 3.1.3. The machine starting torque and current
are then calculated (section 8.2) according to the two-axis model presented
in chapter 6; two approaches have been considered:

• the cage parameter are used to determine line current, average torque
and torque pulsation at different speed values through the quasi-steady-
state approach in section 6.1.3;

• the cage paramtere vs speed characteristic is embedded in a lumped-
parameter time-domain model of the synchronous motor, based on the
standard two-axis theory from section 6.1.2

The outcomes of these two calculation approaches are finally compared with
the experimental data and with the results obtained from a transient FEA as
well (section 8.3).

8.1 start-up rotor parameter calculation

The calculation of the dq cage parameters for different speed values has
been presented in chapter 7; it is worth noticing that this calculation method
uses the stator current as input parameter; however, this value is usually ex-
pected as a results of the start-up calculation, whereas the voltage is assumed
as input variable. Thus an iterative calculation procedure must be adopted,
which assumes a first guess for the stator current, uses it to estimate the
rotor parameters and, through the two-axis circuit solution, evaluates the
voltage; the result is compared with the actual desired stator voltage Uref
and, if the difference is above a certain tolerance threshold, the input current
is modified and the procedure is repeated until the voltage convergence is
obtained.

The overall procedure is summarized in figure 8.1. The calculation of
the cage parameters (Rkd, Xkd, Rkq, Xkq) has been extensely covered in the
previous chapter, so in the following the remaining part of the flow chart
will be explained.

109
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Figure 8.1: Calculation procedure for DOL synchronous machine dq circuit evaluation at
speed n and stator voltage Uref
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8.1.1 Field winding resistance calculation

The AC field winding resistance is evaluated by means of a suitable set of
TH FEAs. The FE model set-up is similar to the model for the d-axis cage
identification discussed in section 7.2.1; in particular it has the same BCs on
the shaft, pole and inter-pole boundaries and the same physical properties
corrections. The main differences are the following:

• the field winding elementary conductor geometry was not explicitly
drawn in the cage calculation model, but clearly it has to be included
in this one, since we are interested in the winding AC resistance calcu-
lation;

• the new model excitation is not provided by the current-points distri-
bution along the bore boundary, even if the Neumann condition is still
assumed on this line; instead, a proper current value supplies the field
winding and realizes the model excitation.

The field winding AC resistance is obtained considering the total joule
loss on the elementary conductors and it is defined as the lumped resistance
value that realizes the same power dissipation when it is supplied with the
total winding current. The winding loss is evaluated from the FEA results,
taking into account the fact that half of a pole is actually modeled, so:

Pjr,AC = 2Npℓrtu

∫︂∫︂
ρJ2dS

where the double integral is extended to all the wire sections included in the
model. The resistance value is

Rf,AC =
Pjr,AC

I2
f

(8.1)

being If the RMS-value of the model excitation current (referred to the stator,
so the calculated resistance is stator-referred as well).

It can be noticed that, actually, the field winding current is not known
a priori, since it has to be obtained from the dq circuit solution, which, in
turn, depends on the field winding AC resistance. Thus the proper value
of current that has to be adopted in the model for taking into account the
saturation effects should be determined through a non-linear iterative so-
lution, as proposed per the cage parameters. This would complicate the
overall procedure and increase the total computation time. However, such
non-linearity can be bypassed defining a suitable look-up table prior to the
main procedure solution.

The look-up table construction starts with an exploration grid of speed
and field winding current values, at which the model is solved and the AC
resistance is calculated accordingly to (8.1); the air-gap flux-density funda-
mental (Bgap) is evaluated at each node of the grid as well. The exploration
grid should be constructed assuming a certain number of speed steps be-
tween zero and the rated speed value, whereas the current values should
be chosen between the rated one and 6-8 times the latter. This assumption
ensures that, most likely, the actual field current trajectory at start-up is in-
cluded in the exploration grid of the look-up table.
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Figure 8.2: Field winding resistance vs Speed look-up table at different flux-density working
points

Since, for any speed value, Bgap depends monotonically on the field wind-
ing current then the AC resistance surface determined from the exploration
grid (which is speed and current dependent) can be re-defined as a function
of speed and flux-density fundamental. Clearly the speed-Bgap matrix can
be made more regular interpolating among the previously calculated points.
A new look up table for the field winding resistance is therefore obtained,
which maps any given speed-flux-density pair into a certain resistance value.
Such look up table for the reference synchronous motor is drawn in figure 8.2
as a family of resistance-vs-speed plots parametrized with respect to the Bgap

values.
This look-up table is used, in the start-up calculation process, to prop-

erly take into account the effect of saturation along direct axis on the field
winding resistance; for any speed value being investigated the flux-density
fundamental obtained from the d-cage model solution is used to determine
the corresponding field winding resistance value, according to fig. 8.2.

8.1.2 Static parameters

Some of the parameters from the dq circuits in figure 6.2 can be assumed as
static, i.e. they do not depend on the actual speed value. These parameters
are:

• the stator parameters Rs and Xs;

• the magnetization reactances Xad and Xaq;
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Table 8.1: Static dq parameters for the reference DOL machine

Parameter Symbol Value [pu]

Stator resistance rs 0.0029

Stator leakage reactance xs 0.1494

Direct-axis magnetizing reactance xad 2.2655

Quadrature-axis magnetizing reactance xaq 1.0868

Field winding leakage reactance xf 0.2347

• the field winding leakage reactance.

Their values can be calculated through well known literature methods [58,
59, 67]. The static parameters for the reference SM are collected in table 8.1.

8.1.3 Iterative calculation

As said before the starting parameter identification is an iterative pro-
cedure, which cycles on different values of current until the actual stator
voltage is obtained. For any speed value being explored, the given current
value I is used to compute the equivalent cage parameters according to the
procedure presented in section 7.1.2, with the half-pole models; from the
d-axis model the flux-density fundamental is obtained as well and, thus, the
field winding resistance is evaluated as explained in section 8.1.1. Combin-
ing these results with the static parameters from section 8.1.2 the operational
impedances are calculated according to (6.50) and then the stator voltage is
obtained:

Ūd = (Rs + Zd)I Ūq = (Rs + Zq)I (8.2)

U =
1

2
√

3
|Ūd + ȷŪq| (8.3)

This value is compared with the actual desired reference voltage (for in-
stance, the rated voltage) and if the difference is above a chosen tolerance
threshold, the current value is adjusted through a quasi-Newton algorithm;
Broyden method [30] can be employed in this case as well, to reduce the
number of simulation that are performed. The above procedure is repeated
until the convergence is obtained.

This calculation performed on the reference SM at rated voltage has given
the results collected in table 8.2.

8.2 start-up performance calculation

Two methods can be adopted to predict the synchronous machine start-up
performance:

1. the quasi-stationary dq-model from section 6.1.3 is solved for a se-
quence of speed values from zero to rated speed, like presented in
[55];
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Table 8.2: Rotor cage and field winding parameters for start-up at rated voltage

Speed rkd xkd rf rkq xkq
[pu] [pu] [pu] [pu] [pu] [pu]

0.000 0.0698 0.0896 0.00465 0.0614 0.0515

0.150 0.0657 0.0935 0.00412 0.0572 0.0560

0.300 0.0605 0.1002 0.00351 0.0520 0.0618

0.450 0.0551 0.1073 0.00290 0.0478 0.0707

0.600 0.0490 0.1198 0.00225 0.0420 0.0835

0.750 0.0417 0.1417 0.00157 0.0350 0.1072

0.900 0.0317 0.2034 0.00104 0.0258 0.1883

0.925 0.0294 0.2264 0.00098 0.0235 0.2275

0.950 0.0268 0.2545 0.00095 0.0208 0.3011

0.975 0.0234 0.2376 0.00091 0.0175 0.5154

2. the standard model from section 6.1.2 is solved in the time domain,
considering the circuit parameters as a function of the speed.

Both of these approaches require the preliminary identification of the ro-
tor parameters at start up, using the numerical procedure described in sec-
tion 8.1, that has to be performed for a proper discrete set of different speed
values, from zero to rated speed. The quasi-stationary model has been ex-
tensively covered in section 6.1.3, so just the time-domain simulation will be
quickly covered in the following.

Figure 8.3 shows the schematic representation of the complete start-up
block-diagram. The machine is modeled by means of a Lumped Parame-
ter (LP) circuit, whose parameters are considered as a function of the slip
(see fig. 8.3c). The mechanical equation in (6.18) has to be included in the
machine model as well. In order to take into account the supply voltage
drop during the start-up the grid equivalent reactance has to be added to
the stator rectance in both the quasi-stationary model and the time-domain
simulation.

8.3 results

8.3.1 Reference solid salient pole machine

The machine used for the method validation is a 17.5 MW-11 kV-1500 rpm
synchronous motor, with four solid salient poles, shown in figure 8.4. Ta-
ble 8.3 lists the motor characteristic data. The machine is designed to drive
a centrifugal compressor for Oil&Gas applications and its cooling system is
a built-on heat exchanger mounted on the top of the motor, using ambient
air as cooling medium. The machine has undergone an acceptance no-load
starting test at full voltage [56]. The machine starting has also been simu-
lated through a complete time-stepping FE model.
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(a) Global model

(b) Machine electro-magnetic model

(c) Circuit parameters

Figure 8.3: Block diagram of the synchronous machine at start-up
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Figure 8.4: Synchronous motor with DOL-starting capability (courtesy of Nidec-ASI, Mon-
falcone, Italy)

Table 8.3: Synchronous motor characteristic data

Quantity Value

Rated voltage 11 kV

Rated current 1046 A

Rated power 17 500 kW

Rated speed 1500 rpm

Rated frequency 50 Hz

Rated torque 111.5 kN m

Rated power factor 0.9 (lag)

Shaft height 1120 mm

Gap diameter 1180 mm

Axial length 1800 mm

Total mass 80 000 kg

Cooling method IC616(a)

Mounting arrangement IM1005(b)

Degree of protection IP55(c)

Thermal class F(d)

(a) see [18]
(b) see [68]
(c) see [69]
(d) see [31]
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8.3.2 Results comparison

Figures 8.5, 8.6 and 8.7, respectively, show the comparison between cur-
rent, voltage and torque diagrams obtained from the two time-domain sim-
ulations (lumped-parameter and finite-element) and from the experimental
test. The torque diagrams are obtained with different approaches, depend-
ing on the corresponding methods:

• the LP-simulation diagram is calculated from the dq model, according
to (6.21);

• the FE-simulation diagram is evaluated applying virtual work method to
the solved model [10]

• the experimental torque diagram is indirectly determined through the
input power method, as suggested by IEEE Std.1255 [55]:

T =
1

Ω0
∑

x=U,V,W

(︁
Ux Ix − Rs I2

x
)︁

being Ux and Ix the instantaneous values of phase voltage and line
current for the phase x.

In all the transient plots the speed diagram is shown as well, in order to
visually identify when the starting transient is over. It can be noticed that,
apart from a slight starting time over-estimation from the FE method, the
calculation data is in accordance with the experimental results.

A more precise comparison can be made through the starting diagrams
shown in figure 8.8; this figure includes the Current-vs-Speed, Voltage-vs-
Speed Average Torque-vs-Speed and Torque Pulsation-vs-Speed diagrams
obtained from the previous sources of data, plus the IEEE Std. 1255 (quasi-
stationary dq model) method, which does not consider the time depencency,
so it could not had been inclued in the plots from figures 8.5, 8.6 and 8.7.

It can be noticed that the three calculation method accuracy is compara-
ble, as regards the current and voltage prediction (see fig. 8.8a and fig. 8.8b),
whereas from fig. 8.8c it can be noticed that the best torque-prediction accu-
racy is obtained employing the half-pole model-based identification routine
discussed in section 8.1, applied either to the IEEE Std.1255 method or the
LP-simulation.

All the calculation methods are not accurate as regards the low-speed
torque pulsation prediction, as it can be observed in fig. 8.8d, whereas the
prediction accuracy is almost the same for the speed values above 40 % of
the rated speed.

Finally, a few considerations about the computational cost are given next:

• the time-steeping simulation has taken ≈ 20 h to be solved;

• the rotor equivalent cage parameters have been calculated solving the
iterative procedure described in figure 8.1 for a set of speed-voltage
values; the cage impedance array used for the IEEE Std.1255 method
application has been obtained through a 2D interpolation of the table
of calculated values, at the actual speed and voltage values recorded
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Figure 8.5: Current traces obtained from LP simulation, FE simulation and test
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Figure 8.6: Voltage traces obtained from LP simulation, FE simulation and test
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Figure 8.7: Torque traces obtained from LP simulation, FE simulation and test
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Table 8.4: Calculation times for dq half pole models

Speed [pu]
Voltage [pu]

0.70 0.85 1.00

0.000 28 s 26 s 28 s

0.150 17 s 17 s 19 s

0.300 18 s 16 s 17 s

0.450 23 s 25 s 26 s

0.600 24 s 22 s 21 s

0.750 21 s 20 s 19 s

0.900 16 s 18 s 17 s

0.925 15 s 14 s 15 s

0.950 14 s 13 s 13 s

0.975 12 s 12 s 11 s

at start-up; similarly it has been done for the LP simulation. The time
needed to solve each d-q model pair for the cage identification is re-
ported in table 8.4; the total computation time is less than 10 min;

• the field winding AC resistance has been computed separately, before
the cage parameters calculation, using an explorative speed-current
matrix made of 24 nodes, as described in section 8.1.1. The total com-
putation time is around 40 min;

• the lumped parameter simulation is carried out in less than 1 min

Thus the total computation cost of the new proposed methods, whether
through the circuit-based or the LP-simulation, are below 1 h, i.e. less than
5 % if compared to the standard FE-based approach.
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(a) Current (b) Voltage

(c) Average torque (d) Torque pulsation

Figure 8.8: Starting diagrams for synchronous machine



C O N C L U S I O N S

In this PhD dissertation some aspects about the calculation of eddy-current
effects in medium-voltage electric machines has been examined. Particular
focus has been put on the definition of innovative calculation procedures,
based on the limited use of finite-element method and their application to
simplified or reduced models. The results of numerical simulations have
been used to properly compute the lumped-parameters included in the ma-
chines equivalent circuits.

Out of the various investigations carried out throughout the PhD study
course, two applications have been specifically detailed as follows.

• The effects of shaft eddy currents in two-pole induction motors have
been investigated in the first part of this dissertation. It has been shown
how the magnetic flux rejection from the shaft, caused by eddy cur-
rents, results in a worse measured power factor value than expected
employig traditional literature methods. A new approach for the IM
equivalent circuit calculation has been introduced; this method exploits
a set of reduced shaft-focused FE models to properly evaluate the mo-
tor magnetizing reactance, accounting for the eddy current related sat-
uration effects.

• the second part of the thesis has been focused on the study of solid-
rotor eddy currents used for the DOL starting of large synchronous
motors. The starting performance calculation from the two-axis equiv-
alent circuit theory has been described. It has been shown that the
equivalent rotor cage parameters can be calculated through FEM and,
by properly defining the model boundary conditions and excitations,
the analysis can be limited to half of a rotor pole.

In both cases the proposed calculation results have been compared with
data coming from standard FEM-based calculations and with experimental
measurements as well. The accuracy of the new methods has been proved
and their computational burden has been assessed against conventional cal-
culation procedures. It has been shown that, for both the IM and the SM
applications, the new proposed methods reduce the computational time sig-
nificantly without a loss in the accuracy of results.
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A E N D -W I N D I N G L E A K A G E
C A LC U L AT I O N

Reference [21] details the method to compute the end-winding reactances
through Neumann integrals. The method is applied to multi-phase stator
windings in [22] whereas the case of synchronous machines field winding is
analyzed in [70]. The computation method is here detailed for the sake of
completeness.

a.1 method outline

To take into account the rotor core effect the mirror images method has
to be adopted (figure A.1). Therefore the mutual inductance between an
observer coil (Γ0) and a generic source coil (Γν) must include the contribu-
tion of the coil image (Γ′

ν) and the coil infinite extension (Γ(∞)
ν ). It is worth

noticing that, for simmetry reasons, the characterization of a generic coil ge-
ometry allows to identify all the other coils, their images and all the infinite
extensions by means of simple geometric transformations.

Each coil is discretized into N segments, numbered from 1 to N. Assum-
ing an infinitely-permeable magnetic core the mutual inductance between
the observer coil and the ν-th source coil is given by:

M0,ν =
µ0

4π

N

∑
i=1

[︄
N

∑
j=1

N
(︂
S
(0)
i ,S(ν)

j

)︂
−N

(︂
S
(0)
i ,S ′(ν)

1

)︂
+

N−1

∑
j=2

N
(︂
S
(0)
i ,S ′(ν)

j

)︂
−N

(︂
S
(0)
i ,S ′(ν)

N

)︂
+2I

(︂
S
(0)
i ,S(ν)

∞

)︂]︄
(A.1)

where N (S, s) and I (S, s∞) are the Neumann integrals between two finite-
segments (S, s) and between a finite-segment and a pair of infinite-segments
(S, s∞) respectively, given by:

N (S, s) =
∫︂ F

P

∫︂ f

p

d⃗L · d⃗ℓ

dist
(︂

d⃗L, d⃗ℓ
)︂ (A.2)

I (S, s∞) =
∫︂ F

P

∫︂ f

∞

d⃗L · d⃗ℓ

dist
(︂

d⃗L, d⃗ℓ
)︂ +

∫︂ F

P

∫︂ ∞

p

d⃗L · d⃗ℓ

dist
(︂

d⃗L, d⃗ℓ
)︂ (A.3)

The detailed calculation of these integral is presented in section A.3, ac-
cordingly to the coil geometry model given in section A.2. This allows to
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Figure A.1: Image method applied to end-coils mutual inductance computation
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characterize the full matrix of inductances, whose generic element is the mu-
tual inductance between a pair of coils from the winding. Once this task
is done the phase end-winding inductance is calculated, distinguishing be-
tween the case of a multi-phase winding (stator winding, for instance) or a
single phase winding (like rotor field winding).

a.1.1 End-winding inductance for a multi-phase winding

It is assumed a double-layer winding, so the winding is composed of Z
coils1 with Ntc turns each. The coils are numbered from 1 to Z and the
mutual inductance between the first coil and the j-th coil has been calculated
through (A.1) and it is equal to M̂j, with j = 1, 2, . . . , Z. Thanks to the
winding circular symmetry the full matrix of inductances is defined as:

Mi,j = M̂|i−j|

for any i, j = 1, 2, . . . , Z.
The winding is subdivided into Np poles with m phases each. There are

Npc circuits per phase. The number of coils per phase in a single pole is
given by:

q =
Z

Np m

The generic i-th coil of the k-th phase in the u-th pole is thus given by index
i + (k − 1)q + (u − 1)mq with i = 1, . . . , q and k = 1, . . . , m and u = 1, . . . , Np.

It is firstly assumed that all the phases of the same pole are wound in the
same directions, whereas two coils belonging to adjacent poles are opposite.
With this assumption we considered the i-th coil of the k-th phase in the u-th
pole. Its flux-linkage produced by a given current flowing in the j-th coil of
the h-th phase in the v-th pole is given by:

Ψki,u,hj,v =(−1)u−v Ntc Mi+(k−1)q+(u−1)mq,j+(h−1)q+(v−1)mq Ntc
I

Npc

=(−1)u−v N2
tc

Npc
M̂|i−j+(k−h)q+(u−v)mq| I

The term (−1)u−v accounts for the fact that two coils from evenly-spaced
poles have the same orientation, but it is opposite if the pole are oddly-
spaced. The term N2

tc/Npc is explained by considering that the observer
coil is formed by Ntc coils that link the same flux and the actual amount of
current flowing in the source coil is Ntc I/Npc, with I assumed as the phase
current.

The flux linkage in the observer coil due to the whole h-th phase being
fed is obtained by adding the contributions of all the possible source coils of
this phase.

Ψki,u,h =
q

∑
j=1

Np

∑
v=1

(−1)u−v N2
tc

Npc
M̂|i−j+(k−h)q+(u−v)mq| I

1 Z is also the number of slots.
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Similarly the flux-linkage in the whole k-th phase due to the h-th phase
being fed is obtained by summing all the contributions from every possible
observer coil in the former phase. Bear in mind that the total contribution
has to be divided by Ncp to take into account the presence of multiple circuits
per phase. The k-to-h phase end-winding inductance is finally given by:

˜︁Lk,h = 2
(︃

Ntc

Npc

)︃2 q

∑
i,j=1

Np

∑
u,v=1

(−1)u−vM̂|i−j+(k−h)q+(u−v)mq| (A.4)

where the term 2 accounts for the fact that there are two coil ends. The
matrix of the inductance is defined as well

˜︁L = [Lk,h]k=1,...,m
h=1,...,m

To obtain the matrix of the leakage inductances for the actual phases of the
winding we introduce a mapping matrix (P) which permutes the fictitious
phases of a pole into the actual system of phases. For instance, in a three-
phase system, the actual phase sequence in a pole is +U,-W,+V, whereas the
fictitious system of phases is given by +U,+V,+W, so the mapping matrix is
defined as:

P =

⎡⎣1 0 0
0 0 −1
0 1 0

⎤⎦ so that

⃓⃓⃓⃓
⃓⃓+U
−W
+V

⃓⃓⃓⃓
⃓⃓ =

⎡⎣1 0 0
0 0 −1
0 1 0

⎤⎦ ⃓⃓⃓⃓⃓⃓+U
+V
+W

⃓⃓⃓⃓
⃓⃓

It is worth noticing that the mapping matrix is anti-simmetric and its inverse
is equal to its transpose. This is valid for any symmetric phase arrangment
[22]. The matrix P applied to any array of fictitious phase quantityes rear-
range it to the actual array of phase quantities. Thus it can be written:

˜︁Ψ = ˜︁L ˜︁I
P ˜︁Ψ = P ˜︁LPT P ˜︁I
Ψ =

(︂
P ˜︁LPT

)︂
I

so the matrix of leakage inductances is defined as

L = P ˜︁LPT (A.5)

For a three-phase winding it results:

LU,U = LV,V = LW,W = L

LU,V = LV,W = LW,V = −L/2

so the end-winding glux leakage for a phase is:

ΨU = LIU − 1
2

L(IV + IW)

so, considering that IV + IW = −IU the equivalent leakage inductance for a
phase is finally defined:

Ls,end =
3
2

L (A.6)
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a.1.2 End-winding inductance for a single-phase winding

In this case the coil arrangement is complicated, so it is better to directly
calculate the whole matrix of mutual inductances accordingly to (A.1). As-
suming Z coils with Ntc turns each the mutual inductance matrix is given
by:

M =

⎡⎢⎢⎢⎣
M1,1 M1,2 . . . M1,Z

M2,1 M2,2 . . . M2,Z
...

...
. . .

...
MZ,1 MZ,2 . . . MZ,Z

⎤⎥⎥⎥⎦
For symmetry reasons only half of this matrix has to actually be computed,
because Mi,j = Mj,i.

Assuming Np poles, the number of coils per pole is Q = Z/Np. The i-th
coil in the u-th pole is identified by index i + u − 1. The flux-linkage of the
i-th coil of the u-th pole when the j-th coil of the v-th pole is fed by a given
current I is:

Ψui ,vj = (−1)u−v Ntc Mu+i−1,v+j−1 N2
tc I

The terms in this expression have the same justification of the multi-phase
case. It is assumed that all the coils are connected in series, i.e. Npc = 1. By
summing all the contributions of any possible combination of observer and
source coils the total leakage inductance is finally obtained:

Lend = 2N2
tc

Np

∑
u,v=1

Q

∑
i,j=1

(−1)u−vMu+i−1,v+j−1 (A.7)

a.2 coil geometry model

The mutual inductance between two end-coils is calculated by means of
the Neumann integrals in (A.1). These integrals are calculated along the
average line of the end coils (see figure A.1) so this part of the machine has
to be geometrically identified precisely. Two geometries are considered:

1. diamond-shaped coil, adopted in stator double-layer windings (sec-
tion A.2.1);

2. rectangular coils, adopted in synchronous machines field winding (sec-
tion A.2.2);

a.2.1 Stator-winding geometry

Figure A.2 shows a detail of the end-coil geometry. The coil is divided
into five elementary lines:

• two straight lines (Σ1 and Σ2). These are the closest elements to the
active core. Each line has length ℓ;

• two cylindrical helixes (ε1 and ε2). Each elix has height h, angular
width α and radius R and r respectively;
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Figure A.2: Detail of a stator end-coil geometry

• a semi-circumference (Ω) in the eye part. The circumference diameter
is equal to d.

Each of these lines (except for the two straight lines) are divided into a
certain number of elementary segments. If each helix is divided into nh
segments and the eye line is divided into n0 segments then the end-coil
average line is defined by N = 2nh + n0 + 2 segments2, denoted by Sk, with
k = 1, . . . , N. Each segment is identified by its endpoints Pk and Fk

3. It is
assumed that each segment is oriented from P to F. It is worth noticing that
the first end-point of any segment (except the first one) is the final end-point
of the previous one. So the end-coil geometry is completely characterized
once the coordinates of all the points Pk is known.

The coil is placed in a three-dimensional orthogonal reference frame Oxyz,
as shown in figure A.2. The z-axis is the machine axis and the xy-plane is one
of the core-end faces. Furthermore the x-axis is chosen to intersect the first
straight part of the coil. with these assumptions the coil reference points
are obtained through simple geometric considerations. Table A.1 collects
the reference points for the coil shown in figure A.2. In this table k is the
numbering of the whole coil line, whereas i denote the numbering of the
elementary line. For the eye-part expression the following quantities are
assumed:

ravg =
R + r

2

rx =
d
2

cos (α)

ry =
d
2

sin (α)

2 To ensure a simmetric segmenting the number N should be odd, i.e. n0 should be odd.
3 The notayion P, F is used to refer to the geometric objects, whereas P ,F denote the arrays

of the coordinates of the points
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Table A.1: Characteristic points of a stator end-coil

k Line i
Pk

x y z

1 Σ1 1 R 0 0

2, . . . , nh + 1 ε1 1, . . . , nh R cos
(︂

i−1
nh

α
)︂

R sin
(︂

i−1
nh

α
)︂

ℓ+ i−1
nh

h

nh + 2, . . .
Ω 1, . . . , n0

ravg cos (α) + ravg sin (α) + ℓ+ h+

N − nh − 2 +rx cos
(︂

i−1
n0

π
)︂

+ry cos
(︂

i−1
n0

π
)︂

+ d
2 sin

(︂
i−1
n0

π
)︂

N − nh − 1, . . . , N − 1 ε2 1, . . . , nh r cos
(︂

nh+i−1
nh

α
)︂

r sin
(︂

nh+i−1
nh

α
)︂

ℓ+ nh−i+1
nh

h

N Σ2 1 r cos(2α) r sin(2α) ℓ

The points in table A.1 provide the starting endpoints of the elementary
segments. The final endpoints for any k = 1, . . . , N are given by:

Fk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pk+1 for k < N⃓⃓⃓⃓
⃓⃓⃓⃓R cos(2α)

R sin(2α)

0

⃓⃓⃓⃓
⃓⃓⃓⃓ for k = N

Furthermore if this coil is assumed as reference for a winding with Z coils,
the rest of the winding is simply obtained through a geometric rotation.
Thus, denoting the array of the coordinates of the endpoints for the k-th
segment in the ν-th coil with P

(ν)
k and F

(ν)
k respectively, the rotation matrix

is defined:

Rν =

⎡⎢⎢⎢⎢⎣
cos

(︃
(ν − 1)

2π

Z

)︃
− sin

(︃
(ν − 1)

2π

Z

)︃
0

sin
(︃
(ν − 1)

2π

Z

)︃
cos

(︃
(ν − 1)

2π

Z

)︃
0

0 0 1

⎤⎥⎥⎥⎥⎦
and finally, for any ν = 1, . . . , Z and k = 1, . . . , N it results:

P
(ν)
k = RνP

(1)
k F

(ν)
k = RνF

(1)
k

Similarly, the coil image (figure A.1) is obtained through a flipping matrix,
defined as:

F =

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦
so that the end-points of the k-th segment in the ν-th coil image are given
by:

P ′(ν)
k = FP

(ν)
k F ′(ν)

k = FF
(ν)
k
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Figure A.3: Detail of a rotor end-coil geometry

Finally, it is worth noticing that the infinte extention of the ν-th coil image is
identified by the two points:

P
(ν)
∞ = FP

(ν)
N F

(ν)
∞ = FF

(ν)
1

and the orientation of the infinite segments is accordingly to −e⃗z and e⃗z

respectively, where e⃗z is the versor of the z axis.

a.2.2 Rotor-winding geometry

The coil geometry here considered is shown in figure A.3. It is composed
as follows:

• two straight parts parallel to the machine axis, denoted by Σ1 and Σ2.
Each segment has length ℓ;

• one straight segment orthogonal to the machine axis, denoted by τ and
with length w;

• the coil corners are round and have radius r. Each line is denoted by
α1 and α2.

Furthermore the coil plane is placed at a distance d from the machine axis.
The coil winding is composed of Np poles with Nc coils each, i.e. there are
Np groups of Nc coils like the one in figure A.3, whose axes are placed with
a central symmetry. The planes of coils within the same pole are parallel,
placed at different distances d or with different dimensions.

As done for the stator case a three-dimensional reference frame Oxyz is in-
troduced (see figure A.3). The z-axis is the machine axis and x-axis is the coil
axis. The coil is also symmetric with respect to plane xz. The coil average
line is subdivided into elementary segments. Actually, since the only non-
straight parts are the corners α1 and α2, it is sufficient to approximate these
quarters of circumference with a sequence of na segments each, so the total
coil is made from N = 2na + 3 segments. Again, the coil geometry is iden-
tified if the starting end-point Pk of every segment Sk is defined. Table A.2
collects the characteristic points of the coil for any k = 1, . . . , N.
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Table A.2: Characteristic points of a rotor end-coil

k Line i
Pk

x y z

1 Σ1 1 d −w/2 − r 0

2, . . . , na + 1 α1 1, . . . , na d −w/2 + r cos
(︂

2na−i+1
2na

π
)︂

ℓ+ r sin
(︂

2na−i+1
2na

π
)︂

na + 2 τ 1 d −w/2 ℓ

N − na − 1, . . . , N − 1 α2 1, . . . , na d w/2 + r cos
(︂

na−i+1
2na

π
)︂

ℓ+ r sin
(︂

na−i+1
2na

π
)︂

N Σ2 1 d w/2 + r ℓ

The final endpoints of the segments are given as well:

Fk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pk+1 for k < N⃓⃓⃓⃓
⃓⃓⃓⃓ d

w/2 + r

0

⃓⃓⃓⃓
⃓⃓⃓⃓ for k = N

All the coils in the first pole are identified through this approach. Remem-
ber that there are Nc coils in Np poles. The kth segment endpoints of the

ν-th coil in the p-th pole are denoted as P(ν,p)
k and F(ν,p)

k . Their coordinates
are obtained from the first-pole coils through a proper rotation matrix:

Rp =

⎡⎢⎢⎢⎢⎣
cos

(︃
(p − 1)

2π

Np

)︃
− sin

(︃
(p − 1)

2π

Np

)︃
0

sin
(︃
(p − 1)

2π

Np

)︃
cos

(︃
(p − 1)

2π

Np

)︃
0

0 0 1

⎤⎥⎥⎥⎥⎦
so that:

P
(ν,p)
k = RpP

(ν,1)
k F

(ν,p)
k = RpF

(ν,1)
k

for any k = 1, . . . , N and ν = 1, . . . , Nc and p = 1, . . . , Np. As regards the
calculation of the coil images and their infinite extension the considerations
made in the stator-winding case are still valid.

a.3 neumann integrals calculation

To properly compute the Neumann integrals in (A.2) and (A.3) three cases
have to be considered

1. the two segments are both finite and they do not intersect (section A.3.1);
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(a) Parallel segments

(b) Generic segments

Figure A.4: Reference nomenclature for the calculation of Neumann integral between two
non-intesecting finite segments

2. the two segments are both finite and they overlap, i.e. the self-inductance
of a segment is being computed (section A.3.2);

3. one segment is finite and the other is a pair of infinite parallel segments
with opposite orientation. The finite segment do not intersect any of
the infinite segments (section A.3.3).

a.3.1 Neumann integral between finite segments

The solution of this case is taken from [21]. The pair of segments S and s

is identified through the pair of endpoints of each segment, i.e. S ↔ P, F
and s ↔ p, f (see figure A.4). The lenght of each segment respectively is
given by:

Λ = ∥F −P ∥ λ = ∥f − p∥
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and the unit vectors are also given by:

V⃗ =
F −P

Λ
v⃗ =

f − p

λ

These vectors identify two straight lines passing through the segments. The
angle between the line is obtained from the dot product of the vectors:

cos φ = V⃗ · v⃗

Three sub-cases must be distinguished:

1. cos φ = 0, i.e. V⃗ ⊥ v⃗; in this case the Neumann integral is always equal
to zero

S ⊥ s =⇒ N (S, s) = 0

2. cos φ = ±1, i.e. V⃗ ∥ v⃗; in this case the projections of points p and f on
the straight line identified by S are determined (figure A.4a):

p⟨S⟩ = P +
[︂
(p−P ) · V⃗

]︂
V⃗

f ⟨S⟩ = P +
[︂
(f −P ) · V⃗

]︂
V⃗

and the Neumann integral is computed:

N (S, s) =∥P − p∥+ ∥F − f∥ − ∥P − f∥ − ∥F − p∥

+ Λ ln
∥F − p∥+

(︂
F − p⟨S⟩

)︂
· V⃗

∥F − f∥+
(︁
F − f ⟨S⟩)︁ · V⃗

+
[︂(︂

P − p⟨S⟩
)︂
· V⃗
]︂ ∥F − p∥+

(︂
F − p⟨S⟩

)︂
· V⃗

∥P − p∥+
(︁
P − p⟨S⟩)︁ · V⃗

−
[︂(︂

P − f ⟨S⟩
)︂
· V⃗
]︂ ∥F − f∥+

(︂
F − f ⟨S⟩

)︂
· V⃗

∥P − f∥+
(︁
P − f ⟨S⟩)︁ · V⃗

(A.8)

Some of the terms in (A.8) may not be defined if the two segments lay
on the same line, so this special case will be insighted later;

3. finally, if 0 < |cos φ| < 1 the two segments are in a generic position,
so the solution of Neumann integrals require to determine the com-
mon perpendicular to segments S and s and its intersections with the
straight lines passing through each of these segments, denoted as O
and o respectively (figure A.4b). It can be noticed that:

• the perpendicular direction is given by:

n⃗ = V⃗ × v⃗

and, thanks to the properties of the vector product, it results
∥⃗n∥ = |sin φ| =

√︁
1 − cos2 φ;

• the points O and o lie on the lines passing through S and s re-
spectively, so it can be written:

O = P + αV⃗

o = p+ βv⃗
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for a proper α, β pair. It also results:

O− o = (P − p) + αV⃗ − βv⃗

• Since O−o lies on the perpendicular to both S and s it will result:

(O− o) · V⃗ = (P − p) · V⃗ + α − β cos φ = 0

(O− o) · v⃗ = (P − p) · v⃗ + α cos φ − β = 0

and:

[︃
1 − cos φ

cosφ −1

]︃ ⃓⃓⃓⃓
α

β

⃓⃓⃓⃓
= −

⃓⃓⃓⃓
⃓(P − p) · V⃗
(P − p) · V⃗

⃓⃓⃓⃓
⃓

• Solving the previous equation the values for α and β are obtained

α =
1

|sin φ|2 (P − p) ·
[︂
v⃗ cos φ − V⃗

]︂
β =

1
|sin φ|2 (P − p) ·

[︂
v⃗ − V⃗ cos φ

]︂

and, finally:

O = P +
[︂
(p−P ) ·

(︂
V⃗ − v⃗ cos φ

)︂]︂ V⃗
1 − cos2 φ

o = p+
[︂
(P − p) ·

(︂
v⃗ − V⃗ cos φ

)︂]︂ v⃗
1 − cos2 φ

At this point the Neumann integral is given by:

N (S, s) = N1 cos φ −N2 ∥O− o∥ cot φ (A.9)
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(a) Equal directions (b) Opposite directions

Figure A.5: Calculation of Neumann integral for two aligned and not overlapping finite seg-
ments

with:

N1 =
[︂
(F −O) · V⃗

]︂
ln

∥F − p∥+ ∥F − f∥+ λ

∥F − p∥+ ∥F − f∥ − λ

−
[︂
(P −O) · V⃗

]︂
ln

∥P − p∥+ ∥P − f∥+ λ

∥P − p∥+ ∥P − f∥ − λ

+
[︂
(f − o) · v⃗

]︂
ln

∥f −P ∥+ ∥f −F ∥+ Λ
∥f −P ∥+ ∥f −F ∥ − Λ

−
[︂
(p− o) · v⃗

]︂
ln

∥p−P ∥+ ∥p−F ∥+ Λ
∥p−P ∥+ ∥p−F ∥ − Λ

N2 = arctan

[︄
∥O− o∥
∥F − f∥ cot φ +

[︂(︁
f − o

)︁
· v⃗
]︂ [︂(︁

F −O
)︁
· V⃗
]︂

∥O− o∥ ∥F − f∥ sin φ

]︄

+ arctan

[︄
∥O− o∥
∥P − p∥ cot φ +

[︂(︁
p− o

)︁
· v⃗
]︂ [︂(︁

P −O
)︁
· V⃗
]︂

∥O− o∥ ∥P − p∥ sin φ

]︄

− arctan

[︄
∥O− o∥
∥P − f∥ cot φ +

[︂(︁
f − o

)︁
· v⃗
]︂ [︂(︁

P −O
)︁
· V⃗
]︂

∥O− o∥ ∥P − f∥

]︄

− arctan

[︄
∥O− o∥
∥F − p∥ cot φ +

[︂(︁
p− o

)︁
· v⃗
]︂ [︂(︁

F −O
)︁
· V⃗
]︂

∥O− o∥ ∥F − p∥

]︄

Special case - Parallel segments lying on the same line

Figure A.5 show a special case for the computation of Neumann integral
for two parallel finite segments, i.e. the case in which the two segments are



140 end-winding leakage calculation

lying on the same straight line. In this case the projections of the endpoints
second segments are coinciding with the endpoints itself:

p⟨S⟩ ≡ p f ⟨S⟩ ≡ f

From figure A.5 it can also be noticed that most of the denominators in (A.8)
are equal to zero, so this formula is not applicable. The Neumann integral
must be calculated by direct applying the definition given in (A.2). Two
cases may occur:

• the two segments are oriented in the same direction (figure A.5a);

• the two segments are oriented in opposite directions (figure A.5b);

In both cases it is defined the distance between the starting endpoint of the
second segment and the final end-point of the first one:

d = (p−F ) · V⃗ = ∥p−F ∥

It is worth noticing that, in order to ensure the non-overlapping of the two
segments, it results d ≥ 0 in the case of equally-oriented segments and
d ≥ λ > 0 for reversely-oriented segments.

The parametric equations of the two segments are given by:

Q ∈ PF =⇒ Q =P + xV⃗ with x ∈ [0, Λ]

q ∈ p f =⇒ q = P + (Λ + d + κy)V⃗ with y ∈ [0, λ], κ = V⃗ · v⃗

and, since the Neumann integral is given by:

N
(︂

PF, p f
)︂
=
∫︂ F

P

∫︂ f

p

dQ · dq
∥Q− q∥

the following quantities are calculated:

dQ = V⃗dx

dq = κV⃗dy

∥Q− q∥ = |Λ + d + κy − x|

It is worth noticing that the hypotesis on the bounds of d guarantees that the
argument of the absolute value in the ∥Q− q∥ definition is always positive.
The Neumann integral is calculated by double integration:

N
(︂

PF, p f
)︂
=
∫︂ Λ

0

∫︂ λ

0

κ dydx
Λ + d − x + κy

=
∫︂ Λ

0

[︄∫︂ λ

0

κ dy
Λ + d − x + κy

]︄
dx

=
∫︂ Λ

0

[︄
ln (Λ + d + κλ − x)− ln (Λ + d − x)

]︄
dx

= (Λ + κλ + d) ln
Λ + κλ + d

κλ + d

− (Λ + d) ln
Λ + d

d

+Λ ln
κλ + d

d
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Figure A.6: Computation of the self inductance associated with a finite straight segment

where the following elementary integrals have been used:∫︂ a

0

κ du
K + κu

= ln
K + κa

K∫︂ b

0
ln (K − v) dv = K ln

K
K − b

+ b ln (K − b)− b

The Neumann integral expression can be rewritten using the usual notations
for segments. It results:

Λ + κλ + d =∥f −P ∥
κλ + d =∥f −F ∥
Λ + d =∥p−P ∥

d =∥p−F ∥

and, finally:

N (S, s) = ∥f −P ∥ ln
∥f −P ∥
∥f −F ∥ − ∥p−P ∥ ln

∥p−P ∥
∥p−F ∥ + Λ ln

∥f −F ∥
∥p−F ∥ (A.10)

a.3.2 Self-inductance of a finite segment

In this case neither the expressions in (A.8) nor in (A.10) are applicable. A
proper Neumann function S is introduced, so that:

N (S,S) = S (S)

for any segment S. The expression for S depends on the whole coil volume
associated with S and it is given in [22]:

S (S) = ℓ

[︄
2 ln (2ℓ)−

(︃
1 − h2

6w2 − w2

6h2

)︃
ln
(︁
h2 + w2)︁+ 11

6

−4
3

h
w

arctan
(︂w

h

)︂
− 4

3
w
h

arctan
(︃

h
w

)︃
− w2

3h2 ln w − h2

3w2 ln h

]︄
where w, h and ℓ are, respectively, the width, the height and the length of
the coil segment associated with S (see also A.6).

The expression for S can be furtherly simplified if the width to height
ratio ξ is defined:

ξ =
w
h
< 1
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With some algebraic passages the expression of S can be transformed into:

S (S) = ℓ

[︄
2 ln

(︃
2ℓ
h

)︃
− 1

3
ξ2 ln ξ +

11
6

−
(︃

1 − 1
6ξ2 − 1

6
ξ2
)︃

ln
(︁
1 + ξ2)︁

−4
3

(︃
1
ξ

arctan ξ + ξ arctan
1
ξ

)︃]︄

and, considering the Taylor series expantion of trascendental functions:

ln
(︁
1 + ξ2)︁ = +∞

∑
n=1

(−1)n+1

n
ξ2n = ξ2 − 1

2
ξ4 +

1
3

ξ6 + . . .

arctan (ξ) =
+∞

∑
n=1

(−1)n+1

2n − 1
ξ2n−1 = ξ − 1

3
ξ3 +

1
5

ξ5 + . . .

arctan
(︃

1
ξ

)︃
=

π

2
+

+∞

∑
n=1

(−1)n

2n − 1
ξ2n−1 =

π

2
− ξ +

1
3

ξ3 − 1
5

ξ5 + . . .

the expression of Neumann integral for the self-inductance becomes:

S (S) = ℓ

[︃
2 ln

2ℓ
h

− K(ξ) +
2
3

]︃
(A.11)

with:

K(ξ) = 0.333ξ2 ln ξ + 0.083ξ6 − 0.011ξ4 − 0.694ξ2 + 2.094ξ

a.3.3 Neumann integral between infinite segments

The solution of this case is taken from [21] as well. The finite segment S
is identified through the pair of endpoints P and F , which give the lenght
of the segment and the unit vector:

Λ = ∥F −P ∥

V⃗ =
F −P

Λ

As regards the pair of infinite segments s∞ it is identified through the finite
endpoints p, f and the reference unit vector v⃗. It is assumed that the first
segment is oriented from p to infinity, accordingly to v⃗, whereas the second
is oriented from infinity to f , i.e. accordingly to −v⃗ (figure A.7).

The angle between vectors is defined as usual

cos φ = V⃗ · v⃗

and three cases are possible:

1. cos φ = 0, i.e. V⃗ ⊥ v⃗ and the Neumann integral is equal to zero:

S ⊥ s∞ =⇒ I (S, s∞) = 0
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(a) Parallel segments

(b) Generic segments

Figure A.7: Reference nomenclature for the calculation of Neumann integral between a seg-
ment and a pair of parallel infinite segments
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2. cos φ = ±1, i.e. V⃗ ∥ v⃗. The projections of the infinite segment end-
points on segment S are determined (figure A.7a):

p⟨S⟩ = P +
[︂
(p−P ) · V⃗

]︂
V⃗

f ⟨S⟩ = P +
[︂
(f −P ) · V⃗

]︂
V⃗

and the Neumann integral is given by:

I (S, s∞) =∥P − p∥+ ∥F − f∥ − ∥P − f∥ − ∥F − p∥

+ Λ ln
∥F − p∥+

(︂
F − p⟨S⟩

)︂
· V⃗

∥F − f∥+
(︁
F − f ⟨S⟩)︁ · V⃗

+
[︂(︂

P − p⟨S⟩
)︂
· V⃗
]︂ ∥F − p∥+

(︂
F − p⟨S⟩

)︂
· V⃗

∥P − p∥+
(︁
P − p⟨S⟩)︁ · V⃗

−
[︂(︂

P − f ⟨S⟩
)︂
· V⃗
]︂ ∥F − f∥+

(︂
F − f ⟨S⟩

)︂
· V⃗

∥P − f∥+
(︁
P − f ⟨S⟩)︁ · V⃗

(A.12)

3. if 0 < |cos φ| < 1 the two common perpendiculars between the finite
segment S and each of the infinite segments of the pair s∞ have to be
determined. The procedure is analogous to the finite segments case
and the intersection between the perpendiculars and S and s∞ are
determined (figure A.7b):

O1 =P +
[︂
(p−P ) ·

(︂
V⃗ − v⃗ cos φ

)︂]︂ V⃗
1 − cos2 φ

O2 =P +
[︂
(f −P ) ·

(︂
V⃗ − v⃗ cos φ

)︂]︂ V⃗
1 − cos2 φ

o1 =P +
[︂
(P − p) ·

(︂
v⃗ − V⃗ cos φ

)︂]︂ v⃗
1 − cos2 φ

o2 =P +
[︂
(P − f ) ·

(︂
v⃗ − V⃗ cos φ

)︂]︂ v⃗
1 − cos2 φ

The Neumann integral is given by:

I (S, s∞) = I1 cos φ − I2,1∥O1 − o1∥ cot φ + I2,2∥O2 − o2∥ cot φ

(A.13)
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being:

I1 =
[︂
(P −O1) · V⃗

]︂
ln

∥P − p∥ −
[︂
(P −O1) · V⃗

]︂
cos φ + (p− o1) · v⃗

∥P − f∥ −
[︂
(P −O2) · V⃗

]︂
cos φ + (f − o2) · v⃗

+
[︂
(F −O1) · V⃗

]︂
ln

∥F − f∥ −
[︂
(F −O2) · V⃗

]︂
cos φ + (f − o2) · v⃗

∥F − p∥ −
[︂
(F −O1) · V⃗

]︂
cos φ + (p− o1) · v⃗

+
[︂
(O1 −O2) · V⃗

]︂
ln

∥F − f∥ −
[︂
(F −O2) · V⃗

]︂
cos φ + (f − o2) · v⃗

∥P − f∥ −
[︂
(P −O2) · V⃗

]︂
cos φ + (f − o2) · v⃗

I2,1 = arctan

[︄
(F −O1) · V⃗
∥O1 − o1∥

sin φ

]︄
− arctan

[︄
(P −O1) · V⃗
∥O1 − o1∥

sin φ

]︄

+ arctan

[︄
∥O1 − o1∥
∥P − p∥ cot φ +

[︂
(p− o1) · v⃗

]︂[︂
(P − o1) · V⃗

]︂
∥O1 − o1∥ ∥P − p∥ sin φ

]︄

− arctan

[︄
∥O1 − o1∥
∥F − p∥ cot φ +

[︂
(p− o1) · v⃗

]︂[︂
(F − o1) · V⃗

]︂
∥O1 − o1∥ ∥F − p∥ sin φ

]︄

I2,2 = arctan

[︄
(F −O2) · V⃗
∥O2 − o2∥

sin φ

]︄
− arctan

[︄
(P −O2) · V⃗
∥O2 − o2∥

sin φ

]︄

+ arctan

[︄
∥O2 − o2∥
∥P − f∥ cot φ +

[︂
(f − o2) · v⃗

]︂[︂
(P − o2) · V⃗

]︂
∥O2 − o2∥ ∥P − f∥ sin φ

]︄

− arctan

[︄
∥O2 − o2∥
∥F − f∥ cot φ +

[︂
(f − o2) · v⃗

]︂[︂
(F − o2) · V⃗

]︂
∥O2 − o2∥ ∥F − f∥ sin φ

]︄





B M M F A N D F L U X- L I N K A G E
C A LC U L AT I O N

The MMF distribution of an electric machine winding is important, be-
cause it links the winding current, the air-gap flux density distribution and
the flux-linkage. This appendix details the calculation of the MMF distri-
bution for a distributed double-layer three-phase winding. The winding
function is determined (section B.1) and applied to determine the MMF dis-
tribution and flux-linkage for two notable cases:

• a three-phase system of currents, which produces a rotating MMF
wave (B.2);

• a single-phase system of currents, which produces a pulsating MMF
wave (B.3).

b.1 winding function expression

b.1.1 Winding structure

The winding is made of 2Z active coilsides distributed in Z slots equally-
spaced along a circumference. Each slot contains two coil-sides and each
coilside is made of Ntc conductors. The winding is also subdivided into 2p
poles and each pole is subdivided into three phase belts, one per phase. The
number of coilsides per each layer in a phase belt is:

q =
Z
6p

thus the number of coils per pole-pair per phase for two layer is 2q.
The actual coilsides of a given coil belong to different layers, for manufac-

turing reasons. Furthermore the coil pitch is usually shorter than the pole
pitch and the coil-to-pole pitch ratio is r. However a winding of this kind
is magnetically equivalent to two independent single-layer full-pitch wind-
ings, having their axes shifted of an angle equal to pitch shortening. The
half-width of this (mechanical) angle is:

ζ =
1
2
(1 − r)3q

2π

Z
= (1 − r)

π

2p

so if a double-layer winding phase has its axis at a given electric angle α the
two single-layer phases are placed at α ± pζ.

Each phase belt in a pole-pair is made of q coils shifted by a mechanical
angle ε given by:

ε =
2π

Z
=

π

3pq
so a phase whose axis is at electrical angle ξ is actually made by coils whose
axes are placed between ξ − p(q − 1)ε/2 and ξ + p(q − 1)ε/2 and shifted by

147
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an electrical angle equal to pε. Considering the expression for ε given above,
the coil axes limits are, in terms of electrical angle, ξ ∓ (q − 1)/qπ/6, and
the coil shift is π/(3q).

b.1.2 Winding function expression

The MMF associated with a generic full-pitch turn having its axis at elec-
tric angle α0 is obtained through the multiplication of the turn current by a
proper function given by:

ŵ(α, α0) =

⎧⎪⎨⎪⎩
1
2

if α ∈
[︂
α0 + (4k − 1)

π

2
, α0 + (4k + 1)

π

2

]︂
, k ∈ Z

−1
2

otherwise
(B.1)

The angles in (B.1) are electric angles. Z is the set of integer numbers. This
expression can be expressed as its Fourier series expansion, obtaining:

w(α, α0) =
+∞

∑
h=1

2
hπ

sin
(︂

h
π

2

)︂
cos (h(α − α0)) (B.2)

The term sin(h π
2 ) is always zero for even harmonics, whereas becomes al-

ternatively 1 and −1 for odd harmonics. The expression in (B.2) can be
rewritten as:

w(α, α0) =
+∞

∑
k=0

2
(4k + 1)π

cos ((4k + 1)(α − α0))

−
+∞

∑
k=1

2
(4k − 1)π

cos ((4k − 1)(α − α0))

The total MMF of a phase is obtained by summing all the contributions of
the turns in the two layers. Each coil is made of Ntc turns and if the phase
has Npc parallel circuits then the turn current is i/Npc, being i the total phase
current. The MMF for a layer with its axis placed at electric angle ξ is:

F̂(α, ξ, i) =
q−1

∑
n=0

Ntci
Npc

w
(︃

α, ξ − q − 1
q

π

6
+ n

π

3q

)︃
(B.3)

Considering the expression for w given in (B.2) then the h-th harmonic of F̂
becomes:

F̂h(α, ξ, i) = 2
hπ

Ntci
Npc

sin
(︁
h π

2

)︁
∑

q−1
n=0 cos

(︂
hα − hξ + h q−1

q
π
6 − hn π

3q

)︂
(B.4)

Considering that:

cos
(︃

hα − hξ + h
q − 1

q
π

6
− hn

π

3q

)︃
=Re

{︃
eȷh
(︂

α−ξ+ q−1
q

π
6 −n π

3q

)︂}︃
=Re

{︃
eȷh
(︂

α−ξ+ q−1
q

π
6

)︂ (︂
e−ȷh π

3q
)︂n
}︃
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and
N−1

∑
n=0

xn =
1 − xN

1 − x

then

q−1

∑
n=0

(︂
e−ȷh π

3q
)︂n

=
1 − e−ȷh π

3

1 − e−ȷh π
3q

=
e−ȷh π

6

(︂
eȷh π

6 − e−ȷh π
6

)︂
e−ȷh π

6q
(︂

eȷh π
6q − e−ȷh π

6q
)︂

=e−ȷh q−1
q

π
6

sin
(︁
h π

6

)︁
sin
(︂

h π
6q

)︂
and, finally:

q−1

∑
n=0

cos
(︃

hα − hξ + h
q − 1

q
π

6
− hn

π

3q

)︃
=

sin
(︂

h
π

6

)︂
sin
(︃

h
π

6q

)︃ cos (h(α − ξ))

The distribution factor for the h-th harmonic is defined as:

kd,h =
sin
(︂

h
π

6

)︂
q sin

(︃
h

π

6q

)︃ (B.5)

and the h-th harmonic of the MMF for a single layer becomes:

F̂h (α, ξ, i) =
2

hπ
q kd,h

Ntci
Npc

sin
(︂

h
π

2

)︂
cos (h(α − ξ)) (B.6)

Letting

f̂h(i) =
2

hπ
q kd,h

Ntci
Npc

then the total MMF for a single layer is:

F̂(α, ξ, i) =
+∞

∑
h=1

f̂h(i) sin
(︂

h
π

2

)︂
cos (h(α − ξ)) (B.7)

The MMF of the phase is obtained combining the contributions in (B.7) for
the two layers. Remembering that for a phase with axis in α0 the two layers
have their axes in α0 ∓ (1 − r)π/2 the h-th harmonic for the phase MMF is
given:

F(α, α0, i) =F̂
(︂

α, α0 − (1 − r)
π

2
, i
)︂
+ F̂

(︂
α, α0 + (1 − r)

π

2
, i
)︂

=
+∞

∑
h=1

f̂h(i) sin
(︃

hπ

2

)︃
cos

(︂
h(α − α0) + (1 − r)h

π

2

)︂
+

+∞

∑
h=1

f̂h(i) sin
(︃

hπ

2

)︃
cos

(︂
h(α − α0)− (1 − r)h

π

2

)︂ (B.8)
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Using the angle sum trigonometric identities:

cos(x + y) = cos x cos y − sin x sin y

cos(x − y) = cos x cos y + sin x sin y

cos(x + y) + cos(x − y) = 2 cos x cos y

then

F(α, α0, i) =
+∞

∑
h=1

2 f̂h(i) sin
(︃

hπ

2

)︃
cos (h(α − α0)) cos

(︂
(1 − r)h

π

2

)︂
Using the angle sum identity again we obtain

cos
(︂
(1 − r)h

π

2

)︂
= cos

(︂
h

π

2

)︂
cos

(︂
r h

π

2

)︂
+ sin

(︂
h

π

2

)︂
sin
(︂

r h
π

2

)︂
The terms sin(hπ/2) and cos(hπ/2) from this equation combine with the
term sin(hπ/2) from (B.8). In particular:

sin
(︂

h
π

2

)︂
cos

(︂
h

π

2

)︂
=

1
2

sin (hπ) = 0 ∀h

sin
(︂

h
π

2

)︂
sin
(︂

h
π

2

)︂
= sin2

(︂
h

π

2

)︂
=

{︄
1 if h is odd

0 if h is even

The pitch factor for the h-th harmonic is defined:

kp,h = sin
(︂

r h
π

2

)︂
(B.9)

and the expression for the phase MMF is finally obtained

F(α, α0, i) = ∑
h=2k+1

k∈N

4
hπ

kd,h kp,h
q Ntc

Npc
i cos (h(α − α0)) (B.10)

The expression in (B.10) can be furtherly transformed considering that:

q Ntc

Npc
=

Z Ntc

3 2p Npc
=

N
2p

where N is the number of turns per phase. Furthermore the winding factor
for the h-th harmonic is defined:

kw,h = kd,h kp,h = sin
(︂

rh
π

2

)︂ sin
(︂

h
π

6

)︂
q sin

(︃
h
q

π

6

)︃ (B.11)

With these assumption the phase MMF becomes

F(α, α0, i) = W(α, α0)i (B.12)

where the phase winding function has been introduced

W(α, α0) = ∑
h=2k+1

k∈N

4
hπ

kw,h N
2p

cos (h(α − α0)) (B.13)
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b.1.3 Flux-linkage expression

Let consider a certain air-gap flux-density spatial wave. Without losing of
generality we can consider this wave harmonically-dependending from the
spatial coordinate, i.e.

Bκ(α) = Bκ cos(κα − ϕκ)

with α an electrical angle and κ a positive integer giving the wave harmonic
order, i.e. the number of periods in a full pole-pair pitch. Bκ and ϕκ are
proper expressions not depending from α. The flux-density expression can
be also expressed using the complex notation:

Bκ(α) = Re
{︁

B̃κ eȷκα
}︁

where B̃κ = Bκ e−ȷϕκ is the spatial phasor of flux-density.
The flux linkage of a turn with axis in α0 is given by integration of the

elementary flux along the turn angular span, whose limits are α0 ∓ π/2:

ψ̄κ

(︁
α0, B̃κ

)︁
=
∫︂ α0+

π
2

α0− π
2

B̃κeȷκαRℓdα

=
Rℓ
ȷκ

B̃κ

[︂
eȷκ(α0+

π
2 ) − eȷκ(α0− π

2 )
]︂

=
2Rℓ

κ
B̃κeȷκα0

eȷκ π
2 − e−ȷκ π

2

2ȷ

=
2Rℓ

κ
sin
(︂

κ
π

2

)︂
B̃κeȷκα0

(B.14)

where R and ℓ are the air-gap average radius and length, respectively.
The flux-linkage of the coils in a layer is obtained by adding all the turn

contributions from (B.14). As before, we consider the layer axis placed at elec-
tric angle ξ; the corresponding turns axes cover the span ξ ∓ (q − 1)/q π/6
and are equally shifted by an angle equal to π/(3q):

Ψ̂κ

(︁
ξ, B̃κ

)︁
=

q−1

∑
n=0

Ntc ψ̄κ

(︃
ξ − q − 1

q
π

6
+ n

π

3q
, B̃κ

)︃

=
2
κ

B̃κRℓNtc sin
(︂

κ
π

2

)︂ q−1

∑
n=0

eȷκ
(︂

ξ−κ
q−1

q
π
6 +n π

3q

)︂

=
2
κ

B̃κRℓNtc sin
(︂

κ
π

2

)︂
eȷκξeȷκ

q−1
q

π
6

q−1

∑
n=0

(︂
eȷκ π

3q
)︂n

=
2
κ

B̃κRℓkd,κ Ntc sin
(︂

κ
π

2

)︂
eȷκξ

(B.15)

where the distribution factor from (B.5) has been used.
Finally, the phase flux linkage is obtained by summing the contribution

from the two layers. Bear in mind that the expression in (B.15) assumes that
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all the coils are connected in series but, actually, the phase winding has Npc

parallel circuits, so the phase flux-linkage must be divided by this quantity:

Ψ̄κ(α0, B̃κ) =
Ψ̂κ

(︁
α0 − (1 − r)π

2 , B̃κ

)︁
+ Ψ̂κ

(︁
α0 + (1 − r)π

2 , B̃κ

)︁
Npc

=
2
κ

B̃κ R ℓ kd,κ
q Ntc

Npc
sin
(︂

κ
π

2

)︂
eȷκα0

[︂
e−ȷκ(1−r) π

2 + eȷκ(1−r) π
2

]︂
=

4
κ

B̃κ R ℓ kd,κ
q Ntc

Npc
sin
(︂

κ
π

2

)︂
cos

(︂
κ(1 − r)

π

2

)︂
eȷκα0

=
4
κ

B̃κ R ℓ kd,κ kp,κ
q Ntc

Npc
sin2

(︂
κ

π

2

)︂
eȷκα0

(B.16)

where α0 is the phase-axis electric angle and the definition of pitch factor
from (B.9) has been used again. It is worth noticing that, because of the term
sin2 (︁κ π

2

)︁
, the flux-linkage is zero for all the even harmonics, similarly to

what has been shown for the MMF.
An alternative expression for Ψ̄κ could be obtained if it is considered that

the term B̃κ represent a spatial sine-wave. The flux-per-pole of this spatial
wave is given by:

Φκ =
2
π
|B̃κ| τκ ℓ

where |B̃κ| is the peak of the flux-density spatial wave and τκ is the pole-pitch
length for the flux-density wave. Since κ is the number of wave periods
in a machine pole-pair pitch, the wave pole-pitch and the actual machine
pole-pitch are bonded by the equation τp = κτκ. As regards the argument
of complex B̃κ it represents the position at which the wave peak actually
occurs. Thus, if a turn has its axis aligned with this angle, it will experience
the maximum flux-linkage. Therefore it is legit considering the following
complex expression of the κ-th flux-density wave flux per pole:

Φ̃κ =
2
π

B̃κ τκ ℓ

At this point we can observe that:

B̃κ R ℓ =
4π

4π
B̃κ R ℓ =

1
4

2
π

B̃κ 2pκτκℓ =
2pκ

4
Φ̃κ

where the fact that, clerarly, 2πR = 2p κ τκ has been used. Finally, remem-
bering that it holds:

q Ntc

Npc
=

N
2p

kp,κkd,κ = kw,κ = sin
(︂

κr
π

2

)︂ sin
(︁
κ π

6

)︁
q sin

(︂
κ
q

π
6

)︂
expression (B.16) can be transformed into:

Ψ̄κ(α0, Φ̃κ) = kw,κ N Φ̃κeȷκα0 (B.17)

or, switching back to the real notation:

Ψκ(α0) = kw,κ N |Φ̃κ| cos
(︁
κα0 + arg

(︁
Φ̃κ

)︁)︁
(B.18)



b.2 rotating system of mmf and flux linkage 153

b.2 rotating system of mmf and flux linkage

A three-phase symmetric system of currents is given by:⎧⎪⎪⎨⎪⎪⎩
iU(t) =

√
2 I cos (ωt)

iV(t) =
√

2 I cos
(︁
ωt − 2

3 π
)︁

iW(t) =
√

2 I cos
(︁
ωt + 2

3 π
)︁ (B.19)

being I the RMS value of phase current and ω the angular frequency. The
phase axis are placed at electric angles:⎧⎪⎪⎨⎪⎪⎩

αU = 0

αV = 2
3 π

αW = − 2
3 π

(B.20)

The total three-phase winding MMF is obtained summing the phase MMF
from (B.12):

F (α, t) = W(α, αU)iU(t) +W(α, αV)iV(t) +W(α, αW)iW(t) (B.21)

and, accordingly to (B.13), (B.19) and (B.20), we obtain :

F (α, t) = ∑
h=1,3,5,1...

4
√

2
hπ

kw,hN
2p

I
[︃

cos(hα) cos(ωt)

+ cos(hα − h
2
3

π) cos(ωt − 2
3

π)

+ cos(hα + h
2
3

π) cos(ωt +
2
3

π)

]︃ (B.22)

Applying the angle sum trigonometric identities the terms inside the sum-
matory in (B.22) become:

cos(hα) cos(ωt) =
1
2

cos(α − ωt) +
1
2

cos(α + ωt)

cos(hα − h
2
3

π) cos(ωt − 2
3

π) =
1
2

cos
(︃

α − ωt − (h − 1)
2
3

π

)︃
+

1
2

cos
(︃

α + ωt − (h + 1)
2
3

π

)︃
cos(hα + h

2
3

π) cos(ωt +
2
3

π) =
1
2

cos
(︃

α − ωt + (h − 1)
2
3

π

)︃
+

1
2

cos
(︃

α + ωt + (h + 1)
2
3

π

)︃
and, applying again the trigonometric identities, expression (B.22) becomes

F (α, t) = ∑
h=1,3,5,1...

4
√

2
hπ

kw,hN
2p

I
{︃ [︃

1
2
+ cos

(︃
(h − 1)

2
3

π

)︃]︃
cos (hα − ωt)

+

[︃
1
2
+ cos

(︃
(h + 1)

2
3

π

)︃]︃
cos (hα + ωt)

}︃
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Now, considering that:

cos
(︃
(h − 1)

2
3

π

)︃
=− 1

2
cos

(︃
h

2
3

π

)︃
+

√
3

2
sin
(︃

h
2
3

π

)︃
cos

(︃
(h + 1)

2
3

π

)︃
=− 1

2
cos

(︃
h

2
3

π

)︃
−

√
3

2
sin
(︃

h
2
3

π

)︃

and, for k ∈ N:

cos
(︃

h
2
3

π

)︃
=

⎧⎪⎪⎨⎪⎪⎩
− 1

2 if h = 6k + 1 = 1, 7, 13, . . .

1 if h = 6k + 3 = 3, 9, 15, . . .

− 1
2 if h = 6k + 5 = 5, 11, 17, . . .

sin
(︃

h
2
3

π

)︃
=

⎧⎪⎪⎨⎪⎪⎩
√

3
2 if h = 6k + 1 = 1, 7, 13, . . .

0 if h = 6k + 3 = 3, 9, 15, . . .

−
√

3
2 if h = 6k + 5 = 5, 11, 17, . . .

then the expression for the winding MMF becomes:

F (α, t) = ∑
h=6k+1

k∈N

6
√

2
hπ

kw,hN
2p

I cos(ωt − α)

+ ∑
h=6k−1

k∈N\{0}

6
√

2
hπ

kw,hN
2p

I cos(ωt + α)

(B.23)

The three-phase MMF peak is 3/2 times the single-phase MMF peak. The
MMF wave has only odd harmonics that are not multiples of 3. Furthermore
the harmonics are alternatively counter-rotating, i.e. the (6k + 1)-th harmon-
ics rotate Counter-Clock-Wise (CCW), whereas the (6k − 1)-th harmonics
rotate Clock-Wise (CW).

The air-gap flux-density spatial wave is given by:

B(α, t) = µ0
F (α, t)

g
(B.24)

where g is the air-gap length. Considering the expression for F given in
(B.23) the peak value of the h-th harmonic of the flux-density spatial wave is
given:

Bh = µ0
6
√

2
hπ

kw,hN
2p

I
g

(B.25)

and the expression for the flux-density total distribution becomes:

B(α, t) = ∑
h=6k+1

Bh cos (hα − ωt) + ∑
h=6k−1

Bh cos (hα + ωt) (B.26)

The flux per pole associated with the h-th harmonic is

Φh =
2
π

Bh
τp

h
ℓ (B.27)
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and the flux-phasor is given by:

Φ̃h =

{︄
Φhe−ȷωt if h = 6k + 1

Φheȷωt if h = 6k − 1

so the complex flux linkages for the three phases are:⎧⎪⎪⎨⎪⎪⎩
Ψ̄U(t) = ∑h=6k+1 kw,h N Φhe−ȷωt + ∑h=6k−1 kw,h N Φheȷωt

Ψ̄V(t) = ∑h=6k+1 kw,h N Φhe−ȷ(ωt+h 2
3 π) + ∑h=6k−1 kw,h N Φheȷ(ωt+h 2

3 π)

Ψ̄W(t) = ∑h=6k+1 kw,h N Φhe−ȷ(ωt−h 2
3 π) + ∑h=6k−1 kw,h N Φheȷ(ωt−h 2

3 π)

It is worth noticing that, since the actual expression for flux-linkages is the
real part of these complex value, each term can be substituted with its con-
jugate, if this is convenient. Furthermore it can be observed that:

h
2
3

π =

{︄
4kπ + 2

3 π ≡ 2
3 π if h = 6k + 1

4kπ − 2
3 π ≡ − 2

3 π if h = 6k − 1

so the phase flux-linkages are:⎧⎪⎪⎨⎪⎪⎩
Ψ̄U(t) = ∑h=6k+1 kw,h N Φheȷωt + ∑h=6k−1 kw,h N Φheȷωt

Ψ̄V(t) = ∑h=6k+1 kw,h N Φheȷ(ωt− 2
3 π) + ∑h=6k−1 kw,h N Φheȷ(ωt− 2

3 π)

Ψ̄W(t) = ∑h=6k+1 kw,h N Φheȷ(ωt+ 2
3 π) + ∑h=6k−1 kw,h N Φheȷ(ωt+ 2

3 π)

and, finally: ⎧⎪⎪⎨⎪⎪⎩
ΨU(t) = ∑h=6k±1 kw,h N Φh cos (ωt)
ΨV(t) = ∑h=6k±1 kw,h N Φh cos

(︁
ωt − 2

3 π
)︁

ΨW(t) = ∑h=6k±1 kw,h N Φh cos
(︁
ωt + 2

3 π
)︁ (B.28)

b.2.1 Extention to a generic three-phase system

It is well-known that a generic (non symmetric) three-phase system of
currents (with the same frequency) can be studied as the superposition of
three symmetric systems [52]:

• zero-sequence

• positive sequence (or sequence 1)

• negative sequence (or sequence 2)

Thus, given a generic system of currents ⟨IUVW⟩ it is assumed that:

⟨IUVW⟩ =

⃓⃓⃓⃓
⃓⃓ ĪU

ĪV

ĪW

⃓⃓⃓⃓
⃓⃓ = Ī0

⃓⃓⃓⃓
⃓⃓11
1

⃓⃓⃓⃓
⃓⃓+ Ī1

⃓⃓⃓⃓
⃓⃓ 1
ω̌2

ω̌

⃓⃓⃓⃓
⃓⃓+ Ī2

⃓⃓⃓⃓
⃓⃓ 1

ω̌

ω̌2

⃓⃓⃓⃓
⃓⃓ (B.29)

where ω̌ is the sequence-shift operator, defined as:

ω̌ = eȷ 2π
3 so that ω̌n =

⎧⎪⎪⎨⎪⎪⎩
1 if n = 3k

ω̌ if n = 3k + 1

ω̌∗ if n = 3k + 2
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and Ī0, Ī1 and Ī2 are the phasors of the sequence currents, for whose it results:

Ī0 =
√

2I0eȷϕ0 Ī1 =
√

2I1eȷϕ1 Ī2 =
√

2I2eȷϕ2

If the system is linear the MMF and the flux linkages produced by an arbi-
trary system of currents can be determined superposing the effects of each
symmetric system acting singularly. The case examined above for a symmet-
ric three phase system is actually the positive sequence system. Proceeding
in a similar way, the expression of the winding MMF for the three sequences
can be calculated:

F0(α, t) = ∑
h=6k+3

12
√

2
hπ

kw,hN
2p

I0 cos(hα) cos(ωt + ϕ0)

F1(α, t) = ∑
h=6k+1

6
√

2
hπ

kw,hN
2p

I1 cos(ωt + ϕ1 − hα)

+ ∑
h=6k−1

6
√

2
hπ

kw,hN
2p

I1 cos(ωt + ϕ1 + hα)

F2(α, t) = ∑
h=6k+1

6
√

2
hπ

kw,hN
2p

I2 cos(ωt + ϕ2 + hα)

+ ∑
h=6k−1

6
√

2
hπ

kw,hN
2p

I2 cos(ωt + ϕ2 − hα)

The flux-density spatial harmonics for the three sequences are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B(0)
h = µ0

12
√

2
hπ

kw,hN
2p

I0

g

B(1)
h = µ0

6
√

2
hπ

kw,hN
2p

I1

g

B(2)
h = µ0

6
√

2
hπ

kw,hN
2p

I2

g

and the corresponding fluxes per pole are:
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and, finally, the flux-linkage systems:
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b.3 pulsating system of mmf and flux-linkage

A pulsating system of MMF can be obtained by feeding the three-phase
winding between one phase (say, U) and the parallel of the remaining two
(V-W). It is assumed that the current of the first phase is equally splitted
between the remaining two. Therefore the current system is given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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(B.30)

The phase angles are the same as the three-phase case, given in (B.20). The
winding MMF is given by:

F (α, t) = ∑
h=1,3,5,...
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(B.31)

and, considering that:
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then (B.31) becomes
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As regards the flux linkage the flux-density harmonics and the correspond-
ing fluxes per pole are defined as per (B.26) and (B.27) respectively. The flux
phasor is real and is given by:

Φ̃h = Φh cos(ωt)

so, accordingly to (B.18) the instantaneous values of the flux-linkages for the
phases placed at angles as per (B.20) are given by⎧⎪⎪⎨⎪⎪⎩

ΨU(t) = ∑h=6k±1 kw,h N Φh cos(ωt)

ΨV(t) = ∑h=6k±1 kw,h N Φh cos
(︁
h 2

3 π
)︁

cos(ωt)

ΨW(t) = ∑h=6k±1 kw,h N Φh cos
(︁
−h 2

3 π
)︁

cos(ωt)

and, considering that for h = 6k ± 1 it results:
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the pulsating system of flux-linkages is finally obtained:⃓⃓⃓⃓
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C P E R - U N I T B A S E Q U A N T I T I E S

This appendix recaps the main concepts about the per-unit expression of
the equations for electrical machine analysis. A generic physical quantity Q
is expressed in per-unit (short: pu) of a certain (arbitrary) base value Qbase by
simply relativizing the former with respect to the latter:

q =
Q

Qbase

Vice-versa, given a certain pu value q the corresponding actual value in phys-
ical units is simply:

Q = q Qbase

Although the base choice is completely arbitrary, it is useful to properly
assume some base quantities depending on some other, which values are
still arbitrary. The following is a set of base quantities commonly adopted
for the study of three-phase rotating electrical machines:

Quantity Base for. . . Definition

Ubase Phase voltages Un

Vbase Line voltages
√

3Ubase
1

Ibase Line currents In

Sbase Electric powers 3Ubase Ibase

Zbase Impedances, reactances, resistances Ubase/Ibase

fbase Electric frequencies fn

ωbase Angular frequencies 2π fbase

Lbase Inductances Zbase/ωbase
2

Ψbase Fluxes, flux linkages Ubase/ωbase

Pbase Mechanical powers Pn
3

Ωbase Angular speeds ωbaseNpp

Tbase Torques Pbase/Ωbase

Jbase Moments of inertia Tbasetstart/Ωbase
4

1 This choice guarantees that, for any winding, the pu value of phase and line voltage is the
same.

2 With this definition the pu value of reactances and inductances is the same, since usually the
reactance is defined at the rated frequency.

3 This choice implicitly assumes that the machine is a motor, so the rated power actually is
the mechanical output. A good choice for generators could be the rated power of the prime
mover.

4 tstart is the motor starting time.
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The proper definition of the base system preserves the formal structure of
most of the equations written for physical units when the pu notation is em-
ployed. On the other hand, the relativization of such equations simplifies
their structure (for instance, the factors 3 and

√
3 are cancelled when switch-

ing from the physical to the pu notation) and levels up the numeric value of
the quantities to a quite small range.
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