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Room temperature test of the continuous spontaneous localization model using a levitated
micro-oscillator
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The continuous spontaneous localization (CSL) model predicts a tiny break of energy conservation via a
weak stochastic force acting on physical systems, which triggers the collapse of the wave function. Mechanical
oscillators are a natural way to test such a force; in particular, a levitated micromechanical oscillator has been
recently proposed to be an ideal system. We report a proof-of-principle experiment with a micro-oscillator
generated by a microsphere diamagnetically levitated in a magnetogravitational trap under high vacuum. Due
to the ultralow mechanical dissipation, the oscillator provides a new upper bound on the CSL collapse rate,
which gives an improvement of two orders of magnitude over the previous bounds in the same frequency
range, and partially reaches the enhanced collapse rate suggested by Adler. Although being performed at
room temperature, our experiment has already exhibited advantages over those operating at low temperatures.
Our results experimentally show the potential for a magnetogravitational levitated mechanical oscillator as a
promising method for testing the collapse model. Further improvements in cryogenic experiments are discussed.
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I. INTRODUCTION

The perceived absence of macroscopic quantum superpo-
sition has attracted the physicists’ interests since the birth of
quantum mechanics. Different interpretations and reformu-
lations of quantum mechanics [1-7] have been proposed to
comprehensively handle such an issue, however, most of them
do not provide direct experimental testability.

A phenomenological and experimentally verifiable [8—15]
approach is proposed by collapse models [16]. They introduce
nonlinear and stochastic terms in the Schrédinger equation,
which induce a spontaneous collapse of the wave function.
Such a collapse is stronger the larger is the system. The
origin of the noise remains an open question, and often in the
literature it has been linked to gravity [17-19]. In this paper,
we focus on the continuous spontaneous localization (CSL)
model, one of the most studied in the literature.
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CSL is characterized by two phenomenological parame-
ters: the collapse rate A and its correlation length rc. The
latter can be also understood as the minimum superposition
separation necessary to trigger a collapse. The theoretically
suggested values for these parameters are A >~ 1071% s~! and
rc = 107" m by Ghirardi et al. [8,10], while larger values
were considered by Adler, A ~ 10782 g—1 gt rc=10""m,
and A ~ 107%%2 s~! at rc = 107° m [20].

The CSL modifications to standard quantum mechanics
cause primarily a loss of coherence, which has been studied
using cold atoms [21], molecular interferometers [22-27],
and phonon motion in diamonds [28,29]. These compose the
first class of experiments, namely, the interferometric ones.
Collapse models also predict a stochastic force noise acting on
the system, whether it is in a quantum or classical state. This
opens the way for noninterferometric experiments [11,12,15],
which have already constrained significantly the parameter
space of the CSL model. To this class belong experiments with
ultracold atoms [30,31], bulk solid matter [32-34], planetary
temperature observations [35-37], spontaneous x-ray emis-
sions [38—40], and optomechanical systems [41-49]. Many
more proposals were analyzed [50-57].

Noninterferometric experiments test the collapse mech-
anism at different frequencies, ranging from mHz [43,44]
to 10" Hz [39]. Since the CSL noise is originally as-
sumed to be white, the bound on the collapse parameters is
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independent from the frequency at which the collapse mech-
anism is probed. However, this is not the case for col-
ored extensions of the model, where the noise is no longer
white and is typically characterized by a frequency cutoff
[20,58-60].

Recently, several studies [26,31,33,61] were performed in
this direction, indicating the urgency of testing the CSL noise
at different frequencies to probe its spectrum. Optomechanics
provides the optimal platform for this scope, since frequencies
range from sub-mHz to kHz or even higher [62]. Among them,
the gravitational wave detectors AURIGA, Advanced LIGO,
and LISA Pathfinder, due to their large test mass, succeeded in
setting strong bounds on collapse parameters [45,46,51,63] at
frequencies less than 1 kHz [41], tens of Hz [42], and sub-Hz
[43,44], respectively. Among them, LISA Pathfinder gives the
strongest upper bound on A [44,51]. Also, microscale solid-
state force sensors such as nanocantilevers provided precise
testing of the collapse noise [47,48] at frequencies above kHz.
In this case, the relative large damping rates are balanced by
operating at millikelvin temperatures.

Levitated micro- or nanomechanical oscillators are ideal
for potentially testing collapse models due to their low damp-
ing rates. Although they recently attracted considerable theo-
retical interest [52,63—-66], an experimental demonstration of
their ability for such a purpose has not yet been performed.

Here, we report a proof-of-principle test of CSL based on
a magnetically levitated micromechanical oscillator at room
temperature. The levitation is realized with a specially de-
signed magnetogravitational trap where a test particle of mass
of 4.7 pg (~2.8x10'? amu) is stably levitated for some days
in high vacuum. We observed a damping rate y /27 of the
order of 30 uHz at a resonant frequency of the order of 10 Hz.
This underlines the noiseless character of magnetogravita-
tional traps, that can actually provide a sensitive instrument
for collapse model testing. As we will discuss below, for
rc = 1077 m, we estimate the upper bound A = 10764 s~!
on the collapse rate at 95% confidence level, excluding part
of the range of values of the CSL parameters suggested by
Adler [20]. This is a significant improvement with respect
to the bound obtained from the gravitational-wave detector
Advanced LIGO which operates at the same frequency range
[42,45] and proves that magnetogravitational levitation is a
strong competitive platform for testing the limits of quantum
mechanics.

II. THEORETICAL MODEL

According to the mass-proportional CSL model [11], the
collapse of the wave function leads to a spontaneous diffusion
process, which is described by the Lindblad term [13-15],

LesLps ()] = —nil%i, [Ri, ps (@11, ey

where p;(¢) is the density operator describing the center of
mass motion, i = x, y, z labels the direction of motion, and
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is the CSL diffusion constant, which depends on the geometry
of the object. Here, my is the atomic mass unit, k = |k| with
k = (k, ky, k;), and [i,(K) is the Fourier transform of the mass

density ji,(r), ie., fis(k) = [dr®e®Tpu (r). In this experi-
ment, the system is a sphere of radius R and mass m, for which
we have fi,(k) = 3m[sin(kR) — kR cos(kR)]/(kR)*. By sub-
stituting fi;(k), we obtain a single diffusion constant indepen-
dently from the direction of motion,

6r4km2 2 /42 R2 _R2/r2
1 T L
The CSL-induced center of mass diffusion can be effectively
described by a stochastic force fcsp(f) with zero mean and
correlation (fesp(?)fesL(s)) = Scsp. 8(f — s), where Scsp =
1?1 is the CSL force spectral density.

We describe the dynamics of our mechanical system as
a damped harmonic oscillator subject to environmental and,
potentially, CSL noises. Dropping the label i, the motion in
one direction of the center of mass of our system reads

mi + myx + kx = fn(t) + fosL (@), 4)

with y /27 the damping rate, and k = mw] the spring

constant. The first term on the right-hand side represents
the thermal Brownian force noise, whose correlations read
(fn(®) fin(s)) = Smd( — s), where Sy, = 2y mkg Ty the corre-
sponding power spectral density, which is fully characterized
by the environmental temperature Ti,, [67]. For a system in
thermal equilibrium, the additional presence of the collapse
force fcsp(¢) leads to an increase of the temperature of the
system [15]. The effective temperature is thus oy = Topy +
TcsL, where Tesp, the CSL induced temperature contribution,
satisfies the relation 2ymkgTcsy, = hzn. Here, one assumes
that fi,(¢r) and fcsp(f) are independent. Figure 1(a) shows
an intuitive picture of the thermal equilibrium dynamics of
the magnetogravitationally levitated microsphere used in this
experiment.

It is clear that any other source of noise, such as, for exam-
ple, that due to the measurement back-action, also contributes
to the total noise [68]. In Appendix A we discuss different
possible noise processes involved in the experiment; however,
we take a conservative approach and consider all nonthermal
noise as potential CSL noise in setting the upper bound.

The total power spectral density is defined as Sy =
2ymkg T, which is calculated from the measured 7. By
subtracting the thermal Brownian contribution Sy, we ob-
tain the power spectral density of all additional force noises
8Stotal = Stotal — Sth- Therefore, §Siora = 2ymkgST provides
the estimation of the upper bound of the CSL force as /i*n <
8Stotal, With 8T = T — Tepy denoting the rise of the effective
temperature. Note that, apart from a barely tunable material
density ~m/R? [cf. Eq. (3)], the ability to test CSL is limited
only by the accuracy in determining the thermal Brownian
noise. Different methods for such noise signal sensing have
been developed for similar purposes [68—71].

III. EXPERIMENT DESCRIPTION AND RESULTS

The levitation of diamagnetic systems using magnetograv-
itational forces has been already performed with either a
superconductor [72] or permanent magnets [73]. The mag-
netogravitational trap used in our experiment was generated
by a set of micromachined NdFeB magnets with octagonal
bilayer geometry as shown in Fig. 1(b). In Appendix B,
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FIG. 1. Basic concept of the experiment and setup. (a) Scheme
of the oscillator dynamics. A microsphere trapped in a magne-
togravitational potential (black curve) is subject to Brownian motion
with an effective temperature 7. In absence of the CSL collapse
force fcsi, the thermal Brownian force fy, leads to an effective Tug
which is equal to the environment temperature 7i,,. When fcsp is
added, the effective temperature will rise by Tsp.. The smaller the
oscillator damping rate y /27, the higher is the effective temperature.
(b) Experiment setup. A diamagnetic microsphere is levitated in a
magnetogravitational trap generated by a set of permanent magnets
(red and blue indicating the N and S poles—see Appendix B for
details). A laser is focused on the microsphere and an objective
is used to collect the scattered light. An electrode is placed near
the microsphere and an electric field is applied to determine the
charge state of the microsphere. The whole setup is placed in a
vacuum chamber, whose temperature is controlled (see Appendix
B for details). (c) Optical image of the microsphere. The micro-
sphere used in our experiment with a radius of 1 um (the scale bar
being 5 um).

we report details about the trap design. The oscillator is
a microsphere of polyethylene glycol, whose magnetic sus-
ceptibility is —9.1x107® and its density is 1.1x10% kg/m?.
The microsphere is generated using a home-built nebulizer.
A 633-nm laser is focused on the droplet with a power less
than 50 ©W, and the scattered light from the microsphere is
collected with an objective. The position of the microsphere
is tracked with a CCD camera, and its motion is recorded
in the time domain with a photon detector. To isolate the
trap from external vibrations, the trap is mounted on a heavy
copper frame, which is suspended in a vacuum chamber by
means of springs. Because the environmental temperature
fluctuations contribute to the measurement uncertainty of the
effective temperature of the oscillator, a double layer vacuum
chamber and a proportional-integral-derivative (PID) temper-
ature controller are used to maintain a stable environmental
temperature. In this way, we achieved fluctuations smaller
than 100 mK with an environmental temperature set to 298 K
over the whole duration of the experiment (~103-10° s).

We observed that for electrically charged particles, the
dissipation in the experiment is higher than with no charge.
This can lead to a strong instability of the particles’ mo-
tion, which makes them eventually escape from the trap.
To avoid this, the charge on the microsphere is eliminated
by using ultraviolet light. Subsequently, the charge state is

checked via a microelectrode made of a 40-pum-diam gold
wire placed near the trapping center. By applying a voltage
~50 V, microspheres with a radius of less than 2 um can be
easily pulled out of the trap if the net charge is nonzero (see
Appendix C for further details). Even after having removed
the charges, at room temperature, microspheres with a radius
smaller than 500 nm are found to escape the trap due to
the thermal fluctuation and the limited depth of the trap (see
Appendix B for details). The remaining particles were left
in the trap in high vacuum for several days. If the particle
did not evaporate during this time, it eventually reached the
equilibrium thermal distribution, which was observed to be
stable within the measurement error.

For microspheres of radius close to 1 um, the direct optical
image failed to provide a reliable estimation of the size of
the system, and we determined it through the following two
methods. In the first method, we made use of the relation
between the microsphere oscillation damping rate due to
the background gas collisions and the pressure, which reads
y = (16/m)(P/vRp) (holding for high pressures) [74], with
P and v the pressure and the mean speed of the background
gas, respectively. In this part of the experiment, the pressure
was set to P ~ 1073 mbar, so that the damping was fully
dominated by the background gas; v can be inferred from the
environmental temperature, and by measuring y one obtains
an estimate for R.

The second method simply relied on the equipartition the-
orem. We measured the oscillator displacement distribution,
which follows a Gaussian distribution P(x) o exp (—x?/202),
thus determining its standard deviation o. The latter is related
to the size of the particle through the energy equipartition
theorem, 470 uR3w] = 3kpTeny, With wy the resonant fre-
quency of the oscillator. The results from the two methods
are compatible. The microsphere used in the experiments,
whose results are described below, has radius R = 1.0 pum,
corresponding to 4.7 pg and with a corresponding potential
energy which is thousands of times larger than the thermal
energy kgT .

After successfully capturing the microsphere and elim-
inating its charge, we proceeded to measure the effective
temperature T associated with the center of mass motion
of the particle. As a first step, we set a medium vacuum
(Pytv ~ 10™* mbar), and measured the position distribution
of the microsphere in the x-y plane. A typical example of
the measured data in a run of few minutes is plotted in
Fig. 2. The distribution has an elliptical shape due to the
asymmetry of the trap. The distribution can be fitted with
a two-dimensional Gaussian distribution, whose long (axis
1) and short (axis 2) standard deviations are denoted by
o) and o, respectively. The energy equipartition theorem,
which implies o1/0, = w;/w,, is well satisfied within the
measurement error, where w; = 12.9 Hz and w, = 9.3 Hz are
the corresponding resonance frequencies (see Appendix D
for details on the displacement power spectral density). The
effective temperature is then calculated as Tor = maw?o?/kp
(equally, mcu%oz2 /kg). Since at a medium vacuum, the ther-
mal Brownian noise from the background gas fully dom-
inates the other noise, we assume that Sy = S and we
use this relation to calibrate the environmental tempera-
ture as Teny = Tofe. Without loss of generality, we make
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DL_ The decay time 7 is determined for each curve by the best fit. A total
0.5- averaged time, typically 50 times longer than t, was carried out for
’ each curve to achieve a good signal-to-noise ratio. (b) Dependence
of the damping rate y /2w = 1/(277) on the pressure, where t is
obtained from (a). The gray line is a linear fit, where the vertical
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40 0 40 imprecision of the vacuum chamber, respectively. The shaded gray
. ds to the 95% confidence band.
Axis 2 (um) area correspon

FIG. 2. Measurements of the distribution in position of the mi-
crosphere. (a) Typical position distribution in the x-y plane. The data
were measured under medium vacuum for a few minutes. Axis 1
(short) and axis 2 (long) of the distribution correspond to the modes
with resonance frequencies w; = 12.9 Hz and w, = 9.3 Hz, respec-
tively. (b) and (c) Displacement distributions along axis 1 and axis 2,
respectively. Data are fitted with a Gaussian distribution (blue curve),
from which the effective temperature is determined.

use of mode 1 (w;/2mw ~ 12.9 Hz) for the subsequent
measurement.

Next, we determine the dissipation constant y, which is an-
other key factor for determining the thermal Bronwnian force
noise strength. First, we note that, for P < 107> mbar, the
measured power spectral density S,(w) shows a strong asym-
metric character, deviating substantially from a Lorentzian
shape, and is considerably broadened compared to that es-
timated from the background gas. Such a feature is known

[75] and is due to the nonlinearity of the trap. Therefore, to
estimate y, we follow the prescription of Ref. [76] and make
use of the energy autocorrelation defined as (X2(¢)X?%(0)),
with X (¢) the amplitude of the oscillation. This method is
insensitive to the nonlinearity of the trap (see Appendix D for
details). The measured autocorrelation curve is then fitted to
the exponentially decaying function exp(—¢/t), from which
we obtain the damping rate y = 1/t. Figure 3(a) shows
the measured energy autocorrelation for different values of
the pressure. In particular, at the highest vacuum Pyy ~ 4 x
10~7 mbar, the measured decay time T &~ 4700 s corresponds
to a damping rate y /2w ~ 34 pHz. We also find that the
damping rate decreases linearly as the pressure decreases,
which shows that the background gas remains the dominant
dissipative channel in the experiment, as shown in Fig. 3(b).
Combining the measured effective damping rate y /2w and
temperature T., we estimate a force sensitivity of the oscil-
lator in high vacuum as /St = 9.6% 10720 N/\/E. This
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TABLE 1. Upper bounds on the CSL collapse rate A. §T is defined as the temperature increase 87 = Tof — Tony, With Tog and To,, the
effective temperature of the oscillator measured at high vacuum and the environment temperature, respectively. «/8S,o is the measured
additional force noise beyond the thermal force. o5 and o g5 are the corresponding standard deviations at 95% confidence level. Finally,
the upper bounds on A at 95% confidence level are the calculated for rc = 1077 m and rc = 107 m.

Excess temperature Excess noise

Upper bound on the collapse rate

8T OsT A/ SSmml Um A (VC = 1077 Hl) A (}’C = 1076 m)
6.5 K 40K 1.3x107%° N/+/Hz 3.3x107% N/+/Hz 10764 g1 10774 7!

value is comparable to that obtained from optical trapping
[77].

By comparing the power spectral densities at medium and
high vacuum we find the upper bound on the collapse rate
A; the main results are summarized in Table 1. For medium
vacuum, the background gas is coupled to the system, thus
maintaining the temperature of the system at equilibrium
with the environmental one. On the contrary, in the high
vacuum condition, the gas decouples, and thus any potential
CSL contribution is not dissipated, thus imposing an effective
temperature which is higher than 7.,,. To bound the CSL
effect we proceed as follows. The power spectral density of
nonthermal forces is estimated via 8Si = 2mykgdT, where
y is measured at high vacuum, §T = To — Tepny, With Togr
being calculated from the standard deviation of the position
distribution o at high vacuum and with T,,, measured at
medium vacuum. We obtain the upper bound /8 Sio < 3.3 %
10-2° N/+/Hz at the 95% confidence level (see Appendix E
for details about measurements of T.¢ and error estimation).
Accordingly, the bound on 1 is calculated through Eq. (3).

Figure 4(a) compares the excluded values of A at different
frequencies for rc = 10~/ m. In particular, our experiment
improves by more than two orders of magnitude the bound
posed by Advanced LIGO [42,45] at the same frequency.

The upper bound provided by this experiment also partially
excludes the range of values of collapse rate suggested by
Adler for rc = 1077 m [20], and almost entirely excludes
it for rc = 107% m. We also estimated the performances of
this experiment by using parameters that are more favor-
able for CSL testing and which are potentially achievable
with our experiment by working at cryogenic condition and
for 108 mbar pressure: R = 0.3 um, y/2x = 10~% Hz, and
8T = 10 mK. A negative result would imply A < 10719 57!
for rc = 1077 m, which would fully rule out Adler’s sugges-
tion. The comparison of our experimental upper bound and the
hypothetical upper bound with the strongest bounds reported
in the literature are shown in Fig. 4(b), together with the
theoretical values for the collapse parameters.

IV. SUMMARY AND DISCUSSION

Levitated oscillators have been recently proposed as suit-
able systems for collapse model testing [52,63—-66]. Here,
we demonstrated that an experiment based on a magne-
togravitational levitated micro-oscillator can place important
bounds on the collapse parameters although operating at room
temperature. We obtained a new upper bound, which is a
significant improvement over previous results in the same
frequency range and it partially probes Adler’s theoretical
proposal. The system reported here shows a great potential,

which would be fully expressed at cryogenic temperatures,
where an improvement of several orders of magnitude in
bounding the collapse noise is expected.

The performance of the current experiment at room tem-
perature is mainly limited by three factors, which eventually
could be improved significantly at lower temperatures. First,
the effective temperature measurement precision is worse than
tens of degrees Kelvin but is expected to reach mK under
cryogenic conditions. Differently from other kinds of levitated
micro-oscillators, such as electrical [78], optical [74,77,79],
and magnetic levitation [80-82], our magnetogravitational
trap is fully passive with no energy inputs. Thus, it is nat-
urally suitable for low temperature conditions. (In principle,
lasers generate an addition force noise. However, the laser
intensity is weak at room temperature. Its impact at cryogenic
temperatures is still to be evaluated.) Second, the minimum
radius of the microsphere in this experiment is currently
limited by the thermal energy, thus, at low temperature, a
much smaller microsphere could be stably trapped and lead
to higher precision in detection. The third potential of im-
provement is dissipation, which is observed to be constrained
by the pressure. Room temperature experiments show that a
higher vacuum does not lead to a significantly improvement
in dissipation [73], since eventually other dissipative channels
will contribute at lower pressures. However, it is yet to be
explored whether dissipation can decrease at a much lower
temperature environment. This work opens a new door for the
precise study of collapse models and may provide promising
avenues towards breakthrough discoveries in the future.

Note added in proof. Recently, we became aware of similar
independent work by Pontin et al. [49].
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FIG. 4. Exclusion plot of the CSL parameters. (a) Upper bounds
on the CSL collapse rate A from mechanical-based experiments,
for rc = 1077 m. Red line: Upper bound given by our experiment
at the 95% confidence level. Blue and green regions, and purple
lines: Exclusion regions obtained from LISA Pathfinder [43-46,51],
Advanced LIGO [42,/45], and millikelvin cantilever experiments
[47,48], respectively. The yellow region is the range proposed by
Adler for A [20]. The claret region is the value proposed by Ghirardi,
Rimini, and Weber (GRW) [8] and it works as a lower theoretical
bound. (b) Upper bounds in the A-r¢ plane given by our experiment,
compared with the best experimental upper bounds reported so far
as well as proposed theoretical lower bounds. The purple solid line
and corresponding shaded region: Upper bound and exclusion region
given by our experiment. Purple dotted line: Upper bound estimated
with parameters R = 0.3 um, y /27 = 107° Hz, and 6T = 10 mK.
At rc = 1077 m, values of the collapse rate A obtained by this ex-
periment and its future possible improvement are marked by a purple
solid dot (A = 107%* s7!) and a purple open dot (A = 107! s71),
respectively. The blue, green, claret, red, pink, and orange dashed
lines represent the upper bounds given by LIGO, cantilever, LISA,
cold atoms [31], bulk heating [33], and x-ray emission [39,40],
respectively. Dark bars: The theoretical values suggested by Adler.
Black dot and gray region: The GRW value and the theoretical lower
bound [26,27].

APPENDIX A: CALCULATION
OF FLUCTUATION DYNAMICS

The system was modeled by a classical mechanical oscil-
lator with the motion described by the Langevin equations,
which, in vectorial form, read

mx 4+ mx + Kx 4 o(x>) = £, (1) + fes, (1) + faga (1), (A1)

where x = (x, y, z), m is the mass of the oscillator, and T’
is the damping rate diagonal matrix with elements y;; (i
corresponding to x, y, and z). When the background gas
damping dominates, y;; are isotropic: y; = y. Similarly, K
is the diagonal matrix of the effective spring constants with
element k; = mwl2 and w; is the resonance frequency of the
oscillator along the ith axis. o(x?) includes the higher-order
terms beyond the linear oscillator, such as Duffing nonlinear-
ity o;x} and nonlinear couplings between different motions
as ﬂ,-’_,«xixJz-, etc. [83]. The right-hand side of the equation is
a sum of force noises. They include the thermal fluctuations
fn(2), possibly the CSL induced stochastic force fcsp (f), and
all the additional contributions, e.g., those due to the optical
measurements, mechanical vibrations, etc.

Considering the motion in a single direction and dropping
the direction label i, we estimate the three contributions to the
noise in the system. The first one, the thermal force noise, was
estimated by using the fluctuation dissipation theorem which
gives the relation (fin(¢)fin(0)) = 2my kg Teny (1), where Ty
is environmental temperature. Equivalently, its strength can be
described by the power spectral density Sy, (w) = 2my kg Teny.
The second contribution, fcs, has been described in the main
text. Within the third contribution, f,q4q, the optical force noise
is the dominant one. It can be written as fop () = fin(t) +
Jsc(t). The first term fin(¢) is the classical optical force due to
intensity fluctuations, including both those from the intensity
fluctuation 8/(¢) and the position fluctuation of the light posi-
tion X, (1) relative to the center of the magnetogravitational
trap. The illumination light intensity fluctuation induced force
can be expressed as —a'V&[x¢]81(t)/4 and the light spot po-
sition fluctuation induced force as —a'IV(VE(Xp) - 6Xopi (£)),
with X, the trapping position, &(Xq) the normalized light field
distribution function, and I the average intensity of the illumi-
nation light. The second term f;.(¢) is the stochastic force due
to photon scattering. An additional contribution to f,q4q is the
parametric noise that is generated from the illumination light
intensity, which leads to a fluctuation of the spring constant k
via optical force, and is proportional to §1(¢) [84].

We solved the Fokker-Planck equation for the probability
density to obtain the statistical behavior of the system. To this
end, the Langevin equations of motion in a single direction
are written as

mx + myx + mwgx + mwgl (Ox = fiow (1), (A2)

where the parametric fluctuation ¢(¢#) was approximately
taken as a white noise satisfying (¢ (#)¢(0)) = ¢d(¢).
Jrotat®) = fun(®) + fesL(t) + fope(?) is the total force noise
and it was also assumed to be white, (fiowi(?)fiotal(0)) =
2mykpT6(t), with Tog the effective temperature. It is noted
that fioa (f) and ¢ (¢) are not strictly independent, because both
contain the contribution from the illumination light intensity
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fluctuation §1(¢). However, such a contribution in fi(?) is
small, and so we took the total force noise and the parametric
noise as approximately independent. Given this, we write the
Langevin equations of motion as follows [85],

dx = Lar,
m

dp = (—mo§x — yp)dt + /2myksTuzdX + mwjsxdy,
(A3)

with dX and dY two independent random variables with a
Gaussian distribution. Setting the energy of the oscillator as
e = p?/2m + kx*/2, with a high quality factor Q = wy/y,
the Langevin equations of motion leads to the Fokker-Planck
equation for the probability density P(e, t) which reads

dP(e,t) d
——— = ——[(—ye + vkpTes)P (e, 1)]
ot de
82 1 2 2.2
+—8€2 vkpTere + Jv0sE P(e,t)|. (A4)

For a stationary probability distribution dP(e,t)/0t = 0, and
Eq. (A4)is

_2(r+ofs?)
i’ 2y
2y kg Tegr

P(x*) =

i < (A5)

v ke Tesr

This distribution was measured experimentally. It is noted
that, for the limiting case ¢ — 0, the expression in Eq. (A5)
approaches the Gaussian distribution.

APPENDIX B: DESIGN OF THE
MAGNETOGRAVITATIONAL TRAP

The potential energy density of a small diamagnetic micro-
sphere in a magnetogravitational trap under an illumination
light field can be written as [86]

Ux) = —ZLMOWB(XN2 + mgz + aZIVS(x) +U,. (BI)

Here, the first term is the diamagnetic potential, with y and
v the magnetic susceptibility and volume of the microsphere;
the second term is the gravitational potential, with m the mass
of the microsphere and z is taken opposite to the direction of
gravity; the third term is the optical gradient force, with o’ the
real component of the polarizability, / the light field intensity
proportional to the light power, and & (x) the normalized light
field distribution function. The conditions that a diamagnetic
microsphere can be stably trapped in the equilibrium position
X are

F(xo) = —VU(x0) =0, (B2)

V -F(x¢) <0, (B3)

with F(x) the total force of the potential. Near the equilibrium
position Xy, the potential can be approximately expressed in
quadratic form with respect to the displacement x from X

2 N
as UXx+x9)~ X 335_;’;‘?)x,~x,- (i, j = x,y, z), which can be
i0Aj !

put into a diagonalized form as the sum of three independent

o N
% 15 152 =
> =
2 £
0.5T 3 10 1015
&
— 5 0.51
X 00 05 10 15 20

z (mm)

FIG. 5. Design of the magnetogravitational trap. (a) Schematic
diagram of the trap. It consists of two layers of magnets with
opposite magnetization; the arrows point in the direction of the north
magnetic pole. (b) Image of the central portion of the trap used
in this experiment with an area of about 1 mm x 1 mm. (¢) and
(e) Geometry and simulated magnetic field strength |B| of the trap
in x-y and z-x planes (the scale bar equals 200 pum). The gray
point shows the position where the microsphere is trapped. The
microsphere is made of polyethylene glycol material with density
u = 1.1x10% kg/m? and a magnetic susceptibility y = —9.1x 1075,
(d) and (f) Calculated magnetogravitational potential energy density
(left axes) as a function of the x and z coordinates, respectively. On
the right axes, we report the corresponding energy (divided by kg T¢ny)
for a microsphere of diameter 2 pm.

harmonic oscillators,

1
Ux+x0) ~ ) ki, (B4)

where k; with i = x, y, z are the effective spring constants,
leading to the characteristic frequencies of the oscillators w; =
ki/m. The constant term Uy is dropped for convenience. The
optical field will also generate an effective potential via the
optical force, however, such an effect is much smaller than
U (x) and can be neglected. Hence, in the trap design, only
the magnetic and the gravitational energies were taken into
account. The potential function was calculated using a finite
element simulation and the result is plotted in Fig. 5.

APPENDIX C: EXPERIMENTAL SETUP
AND MICROSPHERE GENERATION

The experimental apparatus is shown in Fig. 6(a): The
magnetogravitational trap is held in a vacuum system by
specially designed springs, with the temperature of the inner
chamber monitored and controlled to be slightly above room
temperature, and the pressure controlled by a turbomolecular
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FIG. 6. Experimental setup. (a) A double layered vacuum cham-
ber is used for temperature control. The environmental temperature
of the inner chamber is maintained constant by PID feedback, and is
kept slightly higher than room temperature by using a heater in the
outer chamber. Ultraviolet light is used to eliminate the charge on
the microsphere and an electrode in the trap in used to test the charge
by applying a voltage. A 633-nm laser is applied to the microsphere,
and the scattered light is collected by a CCD camera; the position
and motion of the microsphere is recorded by a photon detector.
The set of magnets forming the trap is mounted on a heavy copper
frame, which is suspended via springs to isolate external vibrations.
(b) Image of the copper frame with the vibration isolation system
consisting of a two-stage spring-mass based suspension.

pump of tunable rotation speed. A CCD camera was used
to detect the position of the microsphere, the magnification
M of the detection optics being calibrated by a standard
microstructure so that the displacement in the x-y plane of the
microsphere is x = x'/ M, where X’ is the displacement of the
microsphere image read out by the CCD camera. In this way,
the thermal distribution was obtained.

A photodetector was used to detect the position-dependent
scattering light intensity I, which is proportional to the illu-
mination light I as I o« I&(X + Xg). Since the thermal motion
is much bigger than the wavelength, such a detection scheme
is efficient. The power spectral density in the position Sy (w)
is then calculated from the output photon detector voltage,
Sy (w) «x Sy (w), with Sy(w) the power spectral density of
the output voltage. For high quality factor oscillators, the
detection nonlinearity does not influence the results.

In order to eliminate the influence of the external vibration,
the whole experimental setup is first mounted on an optical
table with air legs, and a two-stage spring-mass based sus-
pension is used to further isolate the vibrations, as shown
in Fig. 6(b). The resonance frequency of the first stage (the
second stage) in the x-y plane is about 1.5 Hz (4 Hz), and the
mass of the first stage is designed to be much heavier than
the mass of the second one. We used a very thin wire with a
diameter about 40 um to apply the electric field which was
used to pull the microsphere, and the wire was mechanically
bounded on the first and then second stage before going to the
trap, so that vibrations transmitted through the wire to the trap
were effectively suppressed.

The microsphere used in our experiment is a small
polyethylene glycol 400 droplet. To generate such a droplet
with a desirable diameter, we first mixed polyethylene glycol
400 with dibutyl sebacate (DBS) and ethanol in a propor-
tion of 1:27:1000 (volume ratio). Subsequently, droplets of
the suspension were sprayed into the trap using a home-
built piezoatomizer at atmospheric pressure. Ethanol rapidly
evaporated after some seconds and a droplet with a typical
diameter of 3—7 um was obtained. Next, a moderated voltage
of about a few tens of V was applied while the displacement
of the droplet was monitored, and an ionizing radiation source
(americium-241) was brought near the droplet. After exposing
the droplet to the radiation for a few seconds, the charge on
it changed randomly. Once a positively charged droplet was
obtained, the pressure was gradually decreased to 10~® mbar
for 1 day, and then DBS fully evaporated and the diameter
of the microsphere no longer changed. Next, an ultraviolet
light was used to slowly eliminate the positive charge until
the droplet became fully neutralized. This was determined as
follows: For a microsphere with only a few electron charges,
jumps in the voltage-displacement response became clear,
and eventually the responses dropped to zero when the net
charge went to zero by applying a voltage larger than 50 V.
We also observed that the charge state was stable in vacuum
(P < 10™* mbar) for a very long time (tens of days or even
longer).

APPENDIX D: INFLUENCE OF NONLINEARITY
ON MEASUREMENT RESULTS

The nonlinear term in Eq. (Al) becomes important for
a motion with large amplitude. For simplicity, we consider
the term ax® but temporarily we omit the coupling terms
Bi.jx?x;; the oscillator then becomes a Duffing oscillator with
the following equation of motion [83],

mi + myx + kx + ax® = fiou (1), D1)
where « is the Duffing constant. One of the important effects
of nonlinearity is a frequency shift and broadening that are
proportional to the thermal fluctuation akgTe [87]. When
such a nonlinear thermal broadening becomes larger than
the damping rate y, the power spectral density shows a
non-Lorentz character [75]. Hence, in the thermal nonlinear
regime, the damping rate y /2w cannot be obtained by mea-
suring the full width at half maximum based on the power
spectral density, which is commonly used with a harmonic
oscillator. Instead, we notice that the change of energy over
time is still the same as that of a harmonic oscillator. This is
because the reduction of energy in the damping process results
from the dissipation via the kinetic energy p>/2m, while the
nonlinearity only modifies the potential energy and preserves
energy conservation [76]. Therefore, we extract y from the
energy autocorrelation as described below.

From Eq. (D1), we first write equations of motion for
position and momentum, without the fluctuation fio, (¢), i.e.,

dx = Lar,
m

dp = (—kx — ax® — y p)d. (D2)
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Then the change of the total energy of the oscillator follows
(D3)

Next, we consider a short period during which the dissipation
is negligible so the motion of the system can be written as

kX2(1)

x(t) = X(t)[cos(wt) + cos(3wt) + 0(K2X4(t)):|.

(D4)

Here, X (¢) is a vibrational amplitude that is slowly varying,
« = 3a/8mw}, and  is an amplitude-dependent oscillation
frequency which shifts from the resonance frequency wy as

o = wo(1 + kX2(1)). (D5)

As X (t) goes to zero, we have x(t) ~ X (t)cos(wt), as ex-
pected.

Then, we define the average kinetic energy Ex and average
potential energy V as

1T,
Ex = — / —mx*(t)dt, (D6)
T Jo 2
V= ! / L ne? 2() + ! 4@t) |de (D7)
=7 A 2ma)ox 4ax s

with T much shorter than 1/y but much longer than 1/w,

which can be satisfied for a system with a large quality factor

0 = w/y. By averaging Eq. (D3) as de/dt = —2yEg, we
obtain the differential equation for X 2(1),

dX?(t) .

dt

Dropping terms of order x2X*(¢) or higher, we obtain the
solution of Eq. (D8),

X%0)—1
Xz(t) K — L =1,
X2(0)
Asymptotically, X (t) decays and Eq. (D9) can be expanded as

follows,

X2(t) = X2(0)e "' [1 —kX*(0)e " — 1)+ 1.

—yX2O[1 — kX2(t) + O X4 (1))].

(D8)

D9)

(D10)
Next, we define the autocorrelation function of X2(¢) as:
G2 (1) = (X*()X*(0)), (D11)
which according to Eq. (D10) becomes
Gy2(1) = (X*(0)e V' [1 —kX2(0)e " — 1) +---]. (D12)

In the experiment, X?(¢) is directly measured from the power
spectral density Sy(w) by following standard procedures
[88,89], as X2(¢t) = S,(w)b, where b is the sampling band-
width satisfying y < b <« wy. We also define the following
normalized autocorrelation,

(X2 (0)X3(0))
(X*0)
which is used to estimate the damping rate y /27.

In our system, nonlinearities come not only from the term
ax3, but also from the coupling of the motion along different

Ry2(t) = (D13)

(a) (b)
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=} 3
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FIG. 7. Power spectral density (PSD) of the displacement Sy (w)
under high vacuum. (a) and (b) Measured data of two different oscil-
lation modes corresponding to the resonance frequencies w, /2w ~
9.3 Hz and w, /2 ~ 12.9 Hz; the full width at half maximum of the
peak turns out to be much larger than y /27 and asymmetric, which
can be explained by the nonlinearity of the trap. (c) and (d) Numeri-
cal simulations of (a) and (b) by introducing a nonlinearity, where the
nonlinear coefficients are adjusted so that simulation and experiment
agree with each other.

axes, as ;. jxix?. We calculated numerically the effects based
on two-mode coupling from the equations of motion,

mxy, + myx; + mw%xl + alx? + ,Bx%xl = fi1(t),

miy + myx; + moixy + a3 + pxixy = fo(t).  (D14)

Here, modes 1 and 2 correspond to the motions in the x-y
plane, while the motion along the z axis is neglected, and f; ()
and f>(¢) are independent white noise with a power spectral
density S » equal to that of the thermal Brownian noise mea-
sured experimentally. The values m, y, and w, , are directly
obtained from the experiment. The nonlinearity coefficients
a1 and B are tuned so that the full width at half maximum
and the shape of the power spectral density S,(w) obtained
from the numerical simulation and from the experiments agree
with each other, as shown in Fig. 7. The corresponding val-
ues are a; = —6.4 kg/m?s?, ap = —2.1 kg/m?s?, and B =
6.4 kg/m?s2. Ry:(t) is numerically calculated for medium
and high vacuum and the results are shown in Fig. 8. The data
are fitted to the exponential decay exp(—f/t), producing the
damping rates y = 1/t, which agree well with the values used
in numerical simulations (see Table II).

APPENDIX E: ERROR ESTIMATION

In order to estimate the error on the effective temperature
Tt from the measured position distribution, the displacement
distributions of the oscillation mode 1 (12.9 Hz) under high
vacuum (HV) and medium vacuum (MV) were recorded
[Figs. 9(a) and 9(b)]. The results are fitted to a Gaussian
distribution to give the standard deviation oV (oMY), from
which the effective temperatures 7%V (TMV) are obtained.
For a given measurement time fne,, the standard deviation
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FIG. 8. Influence of the nonlinearity on the autocorrelation of
the oscillator energy defined as (X2(¢)X?(0)) [normalized as per
Eq. (D13)]. (a) and (b) Numerically simulated autocorrelation (light
thick curves) under high vacuum (with y /27 = 0.0004 Hz) when
the nonlinearity is excluded and included, respectively. The curves
are fitted with the exponential decay exp(—¢/t) (thin curves); the
resulting damping rates y turn out to be almost the same as the
input ones (see Table II for the values). (c) and (d) Medium vacuum
counterparts of (a) and (b), with a larger damping rate y /27 =
0.4 Hz. The recovered damping rates with and without nonlinearity
both agree well with the input values.

or,, of the measured effective temperature can be derived
by following the procedure in Refs. [90,91]. The results for
medium vacuum (MV) and high vacuum (HV) are plotted
in Figs. 9(c) and 9(d), respectively, as functions of fye,.
Theoretically, the relative standard deviation of the effective
temperature as a function of the measurement time fye,
satisfies the relation [91]

Oy (fmea) _ 2 (E1)
Teff Y mea '

and is plotted in Figs. 9(c) and 9(d) as straight lines. The
measured data agree very well with the theory. Finally, the
uncertainty oy, of the effective temperature is estimated using
Eq. (E1) by taking fineq = fioral, the total measurement time.
In particular, the total data acquisition time at high vacuum
is 9.5%x10° s (about 11 days), which can be further extended
to reduce the uncertainty, but this was not done for practical

TABLE II. Comparison of the damping rates. Input y is the input
value of damping rate used in the simulation, fitted y (nonlinear) is
the result of the simulation with nonlinearity added into the equation
of motion, and fitted y (linear) that from the result of simulation
without nonlinearity. The first row corresponds to medium vacuum,
while the second row to high vacuum.

Fitted y Fitted y
Input y (Hz) (nonlinear) (Hz) (linear) (Hz)
Puv 0.4 0.39 0.38
Py 0.0004 0.00037 0.00038
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FIG. 9. (a) Probability distribution of the displacement, mea-
sured in medium vacuum (P & 1x10~* mbar), and its fitting with
a Gaussian distribution function of standard deviation o. (b) Same as
(a) but measured in high vacuum (P ~ 5x10~7 mbar). (c) Standard
deviation of the relative effective temperature o7, (fmea)/Terr as a
function of acquisition time #,, at medium vacuum. The total mea-
surement time is about 7.5x 10* s. The curve shows the theoretical
value according to Eq. (E1). (d) Same as (c) but measured at high
vacuum. The total measurement time is about 9.5x 10 s.

reasons. The effective temperature measured in a medium vac-
uum is taken as the environmental temperature T;I}/fw = Teny
and the temperature difference is 67 = T}F — T}, To esti-
mate the upper bound on §7 with the standard methods [92],
THY and T}V are treated as independent and both following
Gaussian distributions, with their corresponding standard de-
viations o7,; obtained from the measured data [Figs. 9(c) and
9(d)]. The threshold o5y defined by the 95% confidence level
(8T < osr) is given in Table III. We note that the measured
effective temperature does not coincide with the temperature
(298 K) measured by the thermometer in the vacuum chamber.
While such a bias is due to the uncertainty in measuring the
absolute displacement of the oscillator, there is an uncertainty
of less than a few percent in determining the magnification
M of the detection optics, so is in the microsphere’s abso-
lute displacement is given by x = x’/M. This uncertainty
is constant during the whole experimental process and only

TABLE III. Measured effective temperature of the oscillator.
THY is the effective temperature of the oscillator measured at high
vacuum and TMY that at medium vacuum. 7)Y = T, is used for
the estimation of the environment temperature. 67 is defined as the
temperature increase 8T = THY — T, oy, opuv, and osr are the

corresponding upper bounds at a 95% confidence level.

High vacuum Medium vacuum Difference
TeI;IfV o7y TCIXCIV oM 8T Ost
2979 K 162K 2914K 41K 6.5K 40K
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brings about a small error (a few percent) on the final result.
Since the power spectral density of additional force noise is
defined as 8 Sy = 2mykgdT, we estimate its upper bound as

8Siotal < 2mykgosr. Finally, we obtain the upper bounds on
the CSL collapse rate A from Eq. (3) by using the upper bound
on the CSL collapse strength 5 given by /iy < 2mykgosr.
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