
Mathematical

and Computational

Applications

Article

Block Preconditioning Matrices for the Newton
Method to Compute the Dominant λ-Modes
Associated with the Neutron Diffusion Equation

Amanda Carreño 1,* , Luca Bergamaschi 2 , Angeles Martinez 3 , Antoni Vidal-Ferrándiz 1 ,
Damian Ginestar 4 and Gumersindo Verdú 1

1 Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de
València, Camino de Vera, s/n, 46022 Valencia, Spain; anvifer2@upvnet.upv.es (A.V.-F.);
gverdu@iqn.upv.es (G.V.)

2 Department of Civil Environmental and Architectural Engineering, University of Padua, Via 8 Febbraio, 2,
35122 Padua, Italy; luca.bergamaschi@unipd.it

3 Department of Mathematics “Tullio Levi-Civita”, University of Padua, Via 8 Febbraio, 2, 35122 Padua, Italy;
acalomar@math.unipd.it

4 Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera,
s/n, 46022 Valencia, Spain; dginesta@mat.upv.es

* Correspondence: amcarsan@iqn.upv.es

Received: 30 November 2018; Accepted: 10 January 2019; Published: 15 January 2019
����������
�������

Abstract: In nuclear engineering, the λ-modes associated with the neutron diffusion equation are
applied to study the criticality of reactors and to develop modal methods for the transient analysis.
The differential eigenvalue problem that needs to be solved is discretized using a finite element
method, obtaining a generalized algebraic eigenvalue problem whose associated matrices are large
and sparse. Then, efficient methods are needed to solve this problem. In this work, we used a
block generalized Newton method implemented with a matrix-free technique that does not store all
matrices explicitly. This technique reduces mainly the computational memory and, in some cases,
when the assembly of the matrices is an expensive task, the computational time. The main problem
is that the block Newton method requires solving linear systems, which need to be preconditioned.
The construction of preconditioners such as ILU or ICC based on a fully-assembled matrix is not
efficient in terms of the memory with the matrix-free implementation. As an alternative, several block
preconditioners are studied that only save a few block matrices in comparison with the full problem.
To test the performance of these methodologies, different reactor problems are studied.

Keywords: block preconditioner; generalized eigenvalue problem; neutron diffusion equation;
modified block Newton method

1. Introduction

The neutron transport equation is a balance equation that describes the behavior of the neutrons
inside the reactor core. This equation for three-dimensional problems is an equation defined in a
phase space of dimension seven, and this makes the problem very difficult to solve. Thus, some
approximations are considered such as the multigroup neutron diffusion equation by relying on the
assumption that the neutron current is proportional to the gradient of the neutron flux by means of a
diffusion coefficient.

Given a configuration of a nuclear reactor core, its criticality can be forced by dividing the
production operator in the neutron diffusion equation by a positive number, λ, obtaining a neutron

Math. Comput. Appl. 2019, 24, 9; doi:10.3390/mca24010009 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0003-2302-1157
https://orcid.org/0000-0001-8273-9674
https://orcid.org/0000-0003-4826-1114
https://orcid.org/0000-0001-5449-7356
https://orcid.org/0000-0003-1243-6648
https://orcid.org/0000-0001-5098-080X
http://www.mdpi.com/2297-8747/24/1/9?type=check_update&version=1
http://dx.doi.org/10.3390/mca24010009
http://www.mdpi.com/journal/mca

Math. Comput. Appl. 2019, 24, 9 2 of 14

balance equation: the λ-modes problem. For the two energy groups approximation and without
considering up-scattering, this equation can be written as [1]:(

−~∇(D1~∇) + Σa1 + Σ12 0
−Σ12 −~∇(D2~∇) + Σa2

)(
φ1

φ2

)
=

1
λ

(
νΣ f 1 νΣ f 2

0 0

)(
φ1

φ2

)
, (1)

where φ1 and φ2 denote the fast and thermal flux, respectively. The macroscopic cross-sections Dg, Σag,
and νΣ f g, with g = 1, 2, and Σ1,2, are values that depend on the position.

The largest eigenvalue in magnitude, called the k-effective (or multiplication factor), indicates a
measure of the criticality of the reactor, and its corresponding eigenfunction describes the steady-state
neutron distribution in the reactor core. Next, dominant eigenvalues and their corresponding
eigenfunctions are useful to develop modal methods for the transient analysis.

To make a spatial discretization of Problem (1), a high order continuous Galerkin finite element
method is used, leading to a generalized algebraic eigenvalue problem of the form:(

L11 0
L21 L22

)(
φ̃1

φ̃2

)
=

1
λ

(
M11 M12

0 0

)(
φ̃1

φ̃2

)
, (2)

where the matrix elements are given by:

Lij =
Nt

∑
e=1

(
D1

∫
Ωe

~∇N1i · ~∇N1j dV − D1

∫
Γe

N1i~∇N1j d~S + D2

∫
Ωe

~∇N2i · ~∇N2j dV

− D2

∫
Γe

N2i~∇N2j dV + (Σa1 + Σ12)
∫

Ωe
N1i N1j dV + Σa2

∫
Ωe

N2i N2j dV

− Σ12

∫
Ωe

N2i N1j dV

)
,

Mij =
Nt

∑
e=1

(
νΣ f 1

∫
Ωe

N1i N1j dV + νΣ f 2

∫
Ωe

N1i N2j dV

)
,

where Ni is the prescribed shape function for the ith node. The vector φ̃ =
(
φ̃1, φ̃2

)T is the algebraic
vector of the finite weights corresponding to the neutron flux in terms of the shape functions. The shape
functions used in this work are Lagrange polynomials. The subdomains Ωe (e = 1, . . . , Nt) denote
the cells in which the reactor domain is divided and where the cross-sections are assumed to be
constant. Similarly, Γe is the corresponding subdomain surface, which is part of the reactor boundary.
More details on the finite element discretization can be found in [2]. For the implementation of the
finite element method, the open source finite elements library Deal.II [3] has been used.

In this work, a matrix-free strategy for the blocks of the matrix M and for the non-diagonal blocks
of L is developed. In this way, matrix-vector products are computed on the fly in a cell-based interface.
For instance, we can consider that a finite element Galerkin approximation that leads to the matrix
M1,1 takes a vector u as input and computes the integrals of the operator multiplied by trial functions,
and the output vector is v. The operation can be expressed as a sum of Nt cell-based operations,

v = M1,1u =
Nt

∑
e=1

PT
e Me

1,1Peu, (3)

where Pe denotes the matrix that defines the location of cell-related degrees of freedom in the global
vector and Me

1,1 denotes the submatrix of M1,1 on finite element e. This sum is optimized through
sum-factorization. Details about the implementation are explained in [4]. This strategy greatly reduces
the memory used by the matrix elements.

Math. Comput. Appl. 2019, 24, 9 3 of 14

Calculation of the dominant lambda mode has traditionally utilized the classical power iteration
method, which although robust, converges slowly for dominance ratios near one, as occurs in some
practical problems. Thus, acceleration techniques are needed to improve the convergence of the power
iteration method. Some approaches in diffusion theory are, for instance, Chebyshev iteration [5] and
Wielandt shift [6]. Alternative approaches to the power iteration method have been studied in an
attempt to improve upon the performance of accelerated power iteration methods [7,8]. The subspace
iteration method [9], the Implicit Restarted Arnoldi method (IRAM) [10], the Jacobi–Davidson [11],
and the Krylov–Schur method [2] implemented in the SLEPclibrary [12] have been used to compute
the largest or several dominant eigenvalues for the neutron diffusion equation and their corresponding
eigenfunctions. More recently, other Krylov methods have been used to compute these modes for other
approximations of the neutron transport equation [7,13]. Usually, applying these kinds of methods
requires either transforming the generalized problem (2) into an ordinary eigenvalue problem or
applying a shift and invert technique. In both cases, in the solution process, it is necessary to solve
numerous linear systems. These systems are not well-conditioned, and they need to be preconditioned.
Thus, the time and computational memory needed to compute several eigenvalues become very high.

One alternative is to use a method that does not require solving any linear system, such as the
generalized Davidson, used for neutron transport calculations in [14]. Other methods are the block
Newton methods that have been shown to be very efficient in the computation of several eigenvalues
in neutron diffusion theory. These methods either do not need to solve as many linear systems as the
Krylov methods or avoid solving any linear system with some hybridization. One of these Newton
methods is the modified block Newton method, which has been considered for the ordinary eigenvalue
problem associated with Problem (2) [15] or directly for the generalized eigenproblem (2) [16].
One advantage of these block methods is that several eigenvectors can be approximated simultaneously,
and as a consequence, the convergence behavior improves. The convergence of the eigensolvers
usually depends on the eigenvalue separation, and if there are clustered or multiple eigenvalues,
the methods may have problems finding all the eigenvalues. In practical situations of reactor analysis,
the dominance ratio corresponding to the dominant eigenvalues is often near unity, resulting in a slow
convergence. In the block methods, this convergence only depends on the separation of the group
of target eigenvalues from the rest of the spectrum. Another advantage is that these methods do not
require solving as many linear systems as the previous methods. However, these linear systems still
need to be preconditioned. Another of this kind of Newton method is the Jacobian-free Newton–Krylov
methods that have been studied with traditional methods such as the power iteration used as the
preconditioner [17,18] or with a more sophisticated Schwarz preconditioner [19]. In this work, we use
the Modified Generalized Block Newton Method (MGBNM) presented in [16], and we propose several
ways to precondition the linear systems that need to be solved in this method in an efficient way.

The structure of the rest of the paper is as follows. In Section 2, the modified generalized block
Newton method is described. In Section 3, the different preconditioners for the MGBNM are presented.
The performance of the preconditioners is presented in Section 4 for two different benchmark problems.
Finally, Section 5 synthesizes the main conclusions of this work.

2. The Modified Generalized Block Newton Method

This method was presented by Lösche in 1998 [20] for ordinary eigenvalue problems, and an
extension to generalized eigenvalue problems was studied in [16]. Given the partial generalized
eigenvalue problem (2) written as:

MX = LXΛ, (4)

where X ∈ Rn×q is a matrix with q eigenvectors and Λ ∈ Rq×q is a diagonal matrix with the q
eigenvalues associated, we suppose that the eigenvectors can be factorized as X = ZS, where Z is

Math. Comput. Appl. 2019, 24, 9 4 of 14

an orthogonal matrix. Moreover, the biorthogonality condition WTZ = I is introduced, where W is a
fixed matrix. Thus, if we denote K = SΛS−1, the problem (4) can be rewritten as:

MX = LXΛ⇔ MZ = LZSΛS−1 ⇔ MZ = LZK.

We construct this projection to ensure that the method converges to independent eigenvectors.
Then, the solution of Problem (4) is obtained by solving the non-linear problem:

F(Z, Λ) :=

(
MZ− LZK
WTZ− Iq

)
=

(
0
0

)
. (5)

By applying Newton’s method, a new iterated solution arises as:

Z(k+1) = Z(k) − ∆Z(k), K(k+1) = K(k) − ∆K(k), (6)

where ∆Z(k) and ∆K(k) are solutions of the system obtained when the equations (6) are substituted
into the equations (5), and these are truncated at the first order terms.

The matrix K(k) is not necessarily a diagonal matrix, and as a result, the system is coupled.
To avoid this problem, the modified generalized block Newton method (MGBNM) needs to apply
the previous two steps. Firstly, the modified Gram–Schmidt process is used to orthonormalize the
matrix Z(k). Then, the Rayleigh–Ritz projection method for the generalized eigenvalue problem [21]
is applied. Thus, ∆Z(k) = (∆z(k)1 , . . . , ∆z(k)q), where ∆z(k)i ∈ Rn and ∆K(k) = (∆k(k)1 , . . . , ∆k(k)q) where

∆k(k)i ∈ R are obtained from the solutions of the linear systems:(
M− λ

(k)
i L LZ(k)

Z(k)T 0

)(
∆z(k)i

−∆k(k)i

)
=

(
Mz(k)i − Lz(k)i λ

(k)
i

0

)
, i = 1, . . . , q.

The solution of these systems is computed by using the Generalized Minimal Residual method
(GMRES) computing the matrix vector products with block matrix multiplications. However, these
systems need to be preconditioned (in each iteration and for each eigenvalue) to reduce the condition
number of the matrix.

3. Preconditioning

The first choice for a preconditioner is assembling the matrix:

A =

(
M− λ

(k)
i L LZ(k)

Z(k)T 0

)
,

and constructing the full preconditioner associated with the matrix. We use the ILUT(0) preconditioner
since A is a non-symmetric matrix. There are no significant differences if the preconditioner obtained
for the matrix associated with the first eigenvalue is used for all eigenvalues in the same iteration
because in the matrix, A only changes the value of λ

(k)
i , and usually, the eigenvalues in reactor problems

are clustered. This preconditioner is denoted by P.
To devise an alternative preconditioner without the necessity of assembling the matrix A, we

write the explicit inverse of A, by using its block structure,

A−1 =

J−1(I − C1(CT
2 C1)

−1CT
2) J−1C1(CT

2 C1)

(CT
2 C1)

−1CT
2 −(CT

2 C1)
−1

 ,

Math. Comput. Appl. 2019, 24, 9 5 of 14

where:
J = M− λiL, C1 = LZ, CT

2 = ZT J−1.

We desire a preconditioner for A by suitably approximating A−1. Let us call PJ a preconditioner
for J. For instance, PJ = (LU)−1, where L, U are the incomplete L and U factors of J. Thus, we can
define, after setting CT

2 = ZTPJ , the preconditioner of A as:

P̂J =

PJ(I − C1(CT
2 C1)

−1CT
2) PJC1(CT

2 C1)

(CT
2 C1)

−1CT
2 −(CT

2 C1)
−1

 .

The previous preconditioner does not need to assemble the entire matrix A, but it needs to
assemble the matrix J to build its ILUpreconditioner. Therefore, the next alternative that we propose is
using a preconditioner of −L instead of J = M− λ1L. This preconditioner works well because in the
discretization process, the L matrix comes from the discretization of the differential matrix that has the
gradient operators and the diffusion terms. In addition, in nuclear calculations, λ1 is near 1.0. Thus,
we can build a preconditioner of −L instead of the matrix J. We denote by P̂L the preconditioner P̂J
where the preconditioner of −L is used to precondition the block J.

Finally, the last alternative is avoiding assembling the matrix L taking advantage of its block
structure. For that purpose, we carry out a similar process as the one used for matrix A. We write the
explicit form of the inverse of L as:

L−1 =

 L−1
11 0

−L−1
22 L21L−1

11 L−1
22

 , (7)

and substitute the inverses of the blocks by preconditioners. Thus, the preconditioner of L has the
following structure:

QL =

 P11 0

−P22L21P11 P22

 ,

where P11, P22 denote a preconditioner of L11 and L22, respectively. The block matrices L11, L22

are symmetric and positive definite. Then, we can use as preconditioner the Incomplete Cholesky
decomposition (IC(0)). However, the main advantage of this preconditioner is that it permits using a
matrix-free implementation that does not require allocating all matrices. We only need to assemble the
blocks L11 and L22 to construct the associated IC(0) preconditioners. The application of P̂J with −QL
to precondition J is called P̂Q.

4. Numerical Results

In this section, the performance of the proposed preconditioners has been tested on two different
problems: a version of the 3D NEACRPreactor [22] and a configuration of the Ringhals reactor [23].
The neutron diffusion equation in both problems has been discretized using the finite element method
presented in Section 1 using Lagrange polynomials of degree three because it is shown in previous
works that this degree is necessary to obtain accurate results in similar reactor problems [2]. The number
of eigenvalues computed was four for each reactor.

The incomplete lower-upper preconditioner with Level 0 of fill (ILU) has been provided by the
PETScpackage [24].

As the modified generalized block Newton method needs an initial approximation of a set of
eigenvectors, a multilevel initialization with two meshes was used to obtain this approximation (for
more details, see [25]).

Math. Comput. Appl. 2019, 24, 9 6 of 14

The stopping criteria for all solvers has been set equal to 10−6 in the global residual error,

εres = max
i=1,...,q

‖Mxi − λiLxi‖2 ,

where λi is the ith eigenvalue and xi its associated eigenvector such that ‖xi‖ = 1.
The modified block Newton method has been implemented using a dynamic tolerance in

the residual error of the solution in the linear systems. The tolerance values have been set to
{10−2, 10−3, 10−5, 10−8, 10−8, . . . }.

The methods have been implemented in C++ based on the data structures provided by the library
Deal.ii [3] and PETSc [24]. The computer used for the computations was an Intel R© CoreTMi7-4790
@3.60 GHz with 32 Gb of RAM running on Ubuntu GNU/Linux 16.04 LTS.

4.1. NEACRP Reactor

The NEACRP benchmark in a near-critical configuration [22] is chosen to compare the proposed
methodology. The reactor core has a radial dimension of 21.606 cm × 21.606 cm per assembly. Axially,
the reactor, with a total height of 427.3 cm, is divided into 18 layers with height (from bottom to
top): 30.0 cm, 7.7 cm, 11.0 cm, 15.0 cm, 30.0 cm (10 layers), 12.8 cm (two layers), 8.0 cm, and 30.0 cm.
Figure 1 shows the reactor geometry and the distribution of the different materials. The cross-sections
of materials are displayed in Table 1. The total number of cells of the reactor domain is 3978. Zero flux
boundary conditions were set. The spatial discretization of the neutron diffusion equation, by using
polynomials of degree three, gave a number of 230,120 degrees of freedom. The mesh built to obtain an
initial guess had 1308 cells, and the computational time needed to obtain this approximation was 24 s.
The four dominant eigenvalues computed are collected in Table 2. This table shows that the spectrum
associated with the problem is clustered with two degenerated eigenvalues. A representation of the
fast flux distribution for each mode is displayed in Figure 2.

2 2 2 2 2

22 2 2

2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2 2 2 2 2

2 2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

6 6 6

6 15 15 6

6

6

6

15

6

6

6

15

6

6

6

6

15

6

6

6

6

6

6

15

6

6

6

61515

6 6 6

11 11

1111

11

11

11

11

10

10

10

10

10

10

10

10

14

14 14

1414 4 14 14

4 4 4 4

14 14 14 14 14

14

14

14

14

4

14 14

4

4

4

14

4 4 4 14

144

14

14

4

14

4

1414

4

14

14 14

4

4

14

4

4

1414

14

7

77

7

99 9 9

9

9

9

9

8 8

8 8 8 8

8 8 8 8

8 8 8 8 8 8

88 8 8

8 8 8 8

888888

8888

8 8 8 8

88

(a) Top view

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 112 12 12 12 12

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4 4 4 4 4 4 45 5 5 5 5 5

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

(b) Profile view

Figure 1. Geometry and distribution of the materials of the NEACRPreactor.

Math. Comput. Appl. 2019, 24, 9 7 of 14

Table 1. Macroscopic cross-section of the NEACRP reactor.

Mat. D1 (cm) D2 (cm) Σa1 (cm−1) Σa2 (cm-1) Σ12 (cm−1) νΣ f 1 (cm−1) νΣ f 2 (cm−1)

1 5.9264 8.2289 × 10−1 2.5979 × 10−4 1.7085 × 10−1 2.7988 × 10−2 0.0000 0.0000
2 1.1276 1.7053 × 10−1 1.1878 × 10−3 1.9770 × 10−1 2.3161 × 10−2 0.0000 0.0000
3 1.1276 1.7053 × 10−1 1.1878 × 10−3 1.9770 × 10−1 2.0081 × 10−2 0.0000 0.0000
4 1.4624 3.9052 × 10−1 8.4767 × 10−3 6.2569 × 10−2 1.9686 × 10−2 5.0150 × 10−3 8.7712 × 10−2

5 1.4637 3.9485 × 10−1 8.8225 × 10−3 6.9978 × 10−2 1.9436 × 10−2 5.6085 × 10−3 1.0424 × 10−1

6 1.4650 3.9851 × 10−1 9.1484 × 10−3 7.6850 × 10−2 1.9196 × 10−2 6.1819 × 10−3 1.1954 × 10−1

7 1.4641 4.0579 × 10−1 9.0869 × 10−3 7.7687 × 10−2 1.8526 × 10−2 5.5830 × 10−3 1.0289 × 10−1

8 1.4642 4.0946 × 10−1 9.1738 × 10−3 8.0302 × 10−2 1.8223 × 10−2 5.5741 × 10−3 1.0232 × 10−1

9 1.4642 4.1314 × 10−1 9.2596 × 10−3 8.2924 × 10−2 1.7920 × 10−2 5.5650 × 10−3 1.0169 × 10−1

10 1.4653 4.0919 × 10−1 9.4097 × 10−3 8.4462 × 10−2 1.8288 × 10−2 6.1564 × 10−3 1.1807 × 10−1

11 1.4655 4.1277 × 10−1 9.4956 × 10−3 8.7030 × 10−2 1.7986 × 10−2 6.1474 × 10−3 1.1744 × 10−1

12 5.5576 8.7013 × 10−1 2.7375 × 10−3 1.9644 × 10−1 2.4796 × 10−2 0.0000 0.0000
13 5.6027 8.6371 × 10−1 2.4169 × 10−3 1.9313 × 10−1 2.5209 × 10−2 0.0000 0.0000
14 1.4389 4.0085 × 10−1 1.0954 × 10−2 8.8157 × 10−2 1.6493 × 10−2 4.9122 × 10−3 8.4889 × 10−2

15 1.4413 4.0665 × 10−1 1.1578 × 10−2 1.0250 × 10−1 1.6054 × 10−2 6.0593 × 10−3 1.1626 × 10−1

Table 2. Eigenvalues for the NEACRP reactor.

Eigenvalue Value

1 1.002
2 0.98862
3 0.985406
4 0.985406

(a) 1st mode (b) 2nd mode

(c) 3rd mode (d) 4th mode

Figure 2. Fast fluxes’ distribution of the NEACRP reactor corresponding to the first four modes.

Math. Comput. Appl. 2019, 24, 9 8 of 14

First, we show the convergence history of the MGBNM to obtain the solution of the eigenvalue
problem. Figure 3 shows the number of iterations against the residual error for the NEACRP reactor.
It is observed that the MGBNM only needed four iterations to reach a residual error equal to 10−6.

0 1 2 3 4
N. iterations

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

R
es

id
ua

l e
rro

r

Figure 3. Convergence history of the Modified Generalized Block Newton Method (MGBNM) for the
NEACRP reactor.

Table 3 collects the average number of iterations obtained by directly applying the ILU
preconditioner of A and the total time that the GMRES method needs to reach the residual error
in the linear systems given in Tol(‖b− Ax‖). The time spent to assemble the matrices and to build
the preconditioner (setup time (s)) is also displayed. These data are presented for each iteration and
in a total sum. This table shows that the number of iterations is not very high, but the time spent to
assemble the matrix and to construct the preconditioner increases the total CPU time considerably. It is
necessary to build in each iteration a new preconditioner for A because the columns related to the
block Z change considerably in each updating.

Table 3. Data for the preconditioner P for the NEACRP reactor. GMRES, Generalized Minimal Residual.

No. It. Tol Mean Its. Setup Time (s) Total Time (s)
MGBNM (‖b− Ax‖) GMRES

1 1× 10−2 4.5 12.0 18.0
2 1× 10−3 9.75 12.0 20.4
3 1× 10−5 20.75 12.0 25.2
4 1× 10−8 37.5 12.0 33.2

Total 72.5 48.0 96.8

Table 4 displays these data related to the block preconditioner proposed P̂J that uses the ILU
preconditioner for approximating the inverse of M − λ1L. It is observed that we only needed to
assemble the matrix M− λ1L once in the first iteration to build the preconditioner. This is because
we only needed a preconditioner of M− λ1L, and the value of λ1 was very similar for all iterations.
The mean of the number of iterations of the GMRES preconditioned with P̂J was larger than in the
previous case, but the total CPU time of using this block preconditioner was reduced by 26 s with
respect to the full preconditioner.

Math. Comput. Appl. 2019, 24, 9 9 of 14

Table 4. Data for the preconditioner P̂J with ILUfor the NEACRP reactor.

No. It. Tol Mean Its Setup Time (s) Total Time (s)
MGBNM (‖b− Ax‖) GMRES

1 1× 10−2 8.25 6.6 12.9
2 1× 10−3 13.25 - 9.5
3 1× 10−5 23.25 - 16.6
4 1× 10−8 41.25 - 30.0

Total 86.0 6.6 70.0

Table 5 shows the data related to the block preconditioner P̂J , but in this case, we have used
the Geometric Multigrid (GMG) preconditioner to approximate the inverse of M− λ1L. The results
show, in comparison with the results of Table 4, that in spite of the total number of iterations and
the setup time being much lower for the GMG, the total computational time is much higher. This is
due to the application of the GMG preconditioner being more expensive than the application of the
ILU preconditioner.

Table 5. Data for the preconditioner P̂J with the Geometric Multigrid (GMG) for the NEACRP reactor.

No. It. Tol Mean Its Setup Time (s) Total Time (s)
MGBNM (‖b− Ax‖) GMRES

1 1× 10−2 6.00 2.5 19.8
2 1× 10−3 9.75 - 30.8
3 1× 10−5 12.75 - 39.4
4 1× 10−8 20.50 - 61.3

Total 49.00 2.5 151.3

The next results were obtained by using the block preconditioner, P̂, but in these cases,
approximating the (M− λ1L)−1 by the ILU preconditioner of−L (P̂L) and by a block preconditioner of
−L (QL̂). The most relevant data to compare the preconditioners considered in this work are exposed
in Table 6. They were the total iterations of the GMRES, the total setup time, the total time to compute
the solution, and the maximum computational memory spent by the matrices. We observe that the
number of iterations increased when worse approximations of the inverse of A were considered, but
the setup time that each preconditioner needs became smaller. Moreover, the maximum CPU memory
was also reduced significantly. In the total CPU times, we observed that the block preconditioner (P̂),
in all of its versions, improved the times obtained by applying the ILU preconditioner of A directly.
Between the possibilities for obtaining a preconditioner of M− λ1L, there were no big differences in
the computational times, but there was an important savings of the computational memory. The best
results were obtained by P̂L̂ if the computational memory consumption was taken into account.

Table 6. Data obtained by using different preconditioners for the NEACRP reactor.

Prec. Its GMRES Time Setup Total Time Max. CPU mem.

PILU 72.5 48.0 s 96.8 s 2062 Mb
P̂J

ILU 86.0 6.6 s 70.0 s 1418 Mb
P̂L

ILU 98.0 4.4 s 73.2 s 787 Mb
P̂Q

ILU 100.25 1.8 s 74.4 s 787 Mb

Table 7 shows the timings and the memory spent in the matrix allocation by using the matrix-free
technique or without using this strategy. The results show that not only the matrix memory consumption
and the time to assemble were reduced, but also the time spent to compute the matrix-vector products.
That implies that the matrix-free strategy reduced the total CPU time by about 30%.

Math. Comput. Appl. 2019, 24, 9 10 of 14

Table 7. Data obtained using different matrix implementations for the NEACRP reactor.

Matrix Time Matvec Time Time Total
Memory Products Assembly Newton Time

Sparse Matrix 787 Mb 27 s 7 s 51 s 74 s
Matrix Free 319 Mb 10 s 4 s 33 s 52 s

Finally, we compared the MGBNM with this methodology against other eigenvalue solvers
commonly used in the neutron diffusion computations (Table 8). We show the results by using
a different number of computed eigenvalues (No. eigs). In particular, we have chosen for this
comparison the generalized Davidson preconditioned with the block Gauss–Seidel preconditioner and
the Krylov–Schur method by previously reducing the generalized eigenvalue problem to an ordinary
eigenvalue problem as in [2]. To use both methods, the library SLEPc has been used [12]. From the
computational times, we can deduce that the MGBNM was twice as fast as the rest of solvers for the
computation of one and two eigenvalues, and it was very competitive at computing four eigenvalues.

Table 8. Computational times for the MGBNM with P̂Q, the generalized Davidson method, and the
Krylov–Schur method for the NEACRP reactor. eigs, eigenvalues.

No. Eigs MGBNM Generalized Davidson Krylov–Schur

1 14 s 28 s 27 s
2 23 s 39 s 37 s
4 53 s 48 s 52 s

4.2. Ringhals Reactor

For a practical application of the preconditioners in a real reactor, we have chosen the configuration
of the Ringhals rector. Particularly, we have chosen the C9 point of the BWRreactor Ringhals I
stability benchmark, which corresponds to a point of operation that degenerated in an out-of-phase
oscillation [23]. It is composed of 27 planes with 728 cells in each plane. A representation with more
detail of its geometry can be observed in Figure 4. The spatial discretization using finite elements of
degree three gave 1,106,180 degrees of freedom. The coarse mesh considered to obtain an initial guess
for the MGBNM had 6709 cells and the problem associated with this mesh a size of 386,768 degrees
of freedom. The computed dominant eigenvalues were 1.00191, 0.995034, 0.992827, and 0.991401.
The corresponding fast fluxes are represented in Figure 5.

Figure 4. Geometry of the Ringhals reactor.

Math. Comput. Appl. 2019, 24, 9 11 of 14

(a) 1st mode (b) 2nd mode

(c) 3rd mode (d) 4th mode

Figure 5. Fast fluxes’ distribution of the Ringhals reactor corresponding to the first four modes.

The convergence history of the MGBNM associated with the Ringhals reactor is represented in
Figure 6. For this reactor, the number of iterations needed to reach the tolerance (10−6) was also equal
to four.

Math. Comput. Appl. 2019, 24, 9 12 of 14

 0 1 2 3 4
N. iterations

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

R
es

id
ua

l e
rro

r

Figure 6. Convergence history of the MGBNM for the Ringhals reactor.

Table 9 collects the average number of iterations for the GMRES method for each iteration of
MGBNM, the time to assemble the matrices and build the preconditioners, the total time of the
MGBNM to reach the tolerance, and the maximum computational memory requested to assemble
the matrices. From this table, similar conclusions as the ones obtained for the previous reactor are
deduced. The number of iterations was not reduced, but the total CPU time and the maximum memory
decreased considerably. For the Ringhals reactor, the most efficient option, in terms of computational
memory, was also to apply the block preconditioner P̂Q. However, as the size of this reactor is much
larger, the differences between the preconditioners for computational memory were much higher.

Table 9. Data obtained using different preconditioners for the Ringhals reactor.

Prec. Its GMRES Time Setup Total Time Max. CPU mem.

P 71.5 155 s 408 s 12.5 Gb
P̂J 81.0 39 s 331 s 9.3 Gb
P̂L 85.2 36 s 348 s 6.2 Gb
P̂Q 88.2 8 s 308 s 3.7 Gb

Finally, in Table 10, we compare the MGBNM with the generalized Davidson method and the
Krylov–Schur method from the SLEPc library as in the previous reactor. The results show that the
MGBNM was more efficient in terms of the computational time to compute one or a set of the lambda
modes than the generalized Davidson and the Krylov–Schur methods.

Table 10. Computational times for the MGBNM with P̂Q, the generalized Davidson method, and the
Krylov–Schur method for the Ringhals reactor.

No. Eigs MGBNM Generalized Davidson Krylov–Schur

1 100 s 264 s 324 s
2 207 s 294 s 471 s
4 308 s 317 s 528 s

5. Conclusions

The modified generalized block Newton method (MGBNM) is an efficient eigenvalue solver that
has been used to compute the dominant λ-modes associated with the neutron diffusion equation.
This problem has been previously discretized by using a high order finite element method. This method

Math. Comput. Appl. 2019, 24, 9 13 of 14

requires solving many linear systems that need to be previously preconditioned. Different block
preconditioners have been studied as an alternative to assemble the full matrix and to construct a
preconditioner in each iteration. The different preconditioners have been tested in a benchmark reactor
problem (NEACRP) and in a realistic reactor problem (Ringhals). The preconditioners proposed in this
work break down the setup cost at the price of a slight increase of the number of iterations. The result is
a significant reduction of the total CPU time needed to reach convergence and the memory occupancy.
Among the implementations studied, it is shown that the best option is the one that uses the block
structure of the L matrix. Moreover, this implementation permits implementing the MGBNM with a
matrix-free technique, thus greatly reducing the memory consumption. The differences increase when
the size of the problem is larger. In comparison with other eigenvalue solvers, such as the generalized
Davidson and the Krylov–Schur methods, the numerical results conclude that the MGBNM with
this strategy of preconditioning is more efficient in some cases and very competitive in the rest.
In future works, the MGBNM with these strategies for the preconditioning will be applied to other
approximations of the neutron transport equations as the SPN equations.

Author Contributions: A.C., L.B., and A.M. developed and investigated the methodology; A.C. and A.V.-F.
implemented and validated the methods; D.G. and G.V. supervised the work. All authors discussed the results
and contributed to the final manuscript.

Acknowledgments: This work has been partially supported by the Spanish Ministerio de Economía y
Competitividad under Projects ENE2014-59442-P, MTM2014-58159-P, and BES-2015-072901.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stacey, W.M. Nuclear Reactor Physics; John Wiley & Sons: Hoboken, NJ, USA, 2018.
2. Vidal-Ferrandiz, A.; Fayez, R.; Ginestar, D.; Verdú, G. Solution of the Lambda modes problem of a nuclear

power reactor using an h–p finite element method. Ann. Nucl. Energy 2014, 72, 338–349. [CrossRef]
3. Bangerth, W.; Hartmann, R.; Kanschat, G. deal.II—A general-purpose object-oriented finite element library.

ACM Trans. Math. Softw. 2007, 33, 24. [CrossRef]
4. Kronbichler, M.; Kormann, K. A generic interface for parallel cell-based finite element operator application.

Comput. Fluids 2012, 63, 135–147. [CrossRef]
5. Hageman, L.A.; Young, D.M. Applied Iterative Methods; Courier Corporation: North Chelmsford, MA,

USA, 2012.
6. Sutton, T.M. Wielandt Iteration as Applied to the Nodal Expansion Method. Nucl. Sci. Eng. 1988, 98, 169–173.

[CrossRef]
7. Warsa, J.S.; Wareing, T.A.; Morel, J.E.; McGhee, J.M.; Lehoucq, R.B. Krylov subspace iterations for

deterministic k-eigenvalue calculations. Nucl. Sci. Eng. 2004, 147, 26–42. [CrossRef]
8. Allen, E.; Berry, R. The inverse power method for calculation of multiplication factors. Ann. Nucl. Energy

2002, 29, 929–935. [CrossRef]
9. Verdú, G.; Ginestar, D.; Vidal, V.; Muñoz-Cobo, J. 3D λ-modes of the neutron-diffusion equation. Ann. Nucl.

Energy 1994, 21, 405–421. [CrossRef]
10. Verdú, G.; Miró, R.; Ginestar, D.; Vidal, V. The implicit restarted Arnoldi method, an efficient alternative to

solve the neutron diffusion equation. Ann. Nucl. Energy 1999, 26, 579–593. [CrossRef]
11. Verdú, G.; Ginestar, D.; Miró, R.; Vidal, V. Using the Jacobi–Davidson method to obtain the dominant

Lambda modes of a nuclear power reactor. Ann. Nucl. Energy 2005, 32, 1274–1296. [CrossRef]
12. Hernandez, V.; Roman, J.E.; Vidal, V. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue

problems. ACM Trans. Math. Softw. 2005, 31, 351–362. [CrossRef]
13. Evans, T.M.; Stafford, A.S.; Slaybaugh, R.N.; Clarno, K.T. Denovo: A new three-dimensional parallel discrete

ordinates code in SCALE. Nucl. Technol. 2010, 171, 171–200. [CrossRef]
14. Hamilton, S.P.; Evans, T.M. Efficient solution of the simplified PN equations. J. Comput. Phys. 2015,

284, 155–170. [CrossRef]
15. González-Pintor, S.; Ginestar, D.; Verdú, G. Updating the Lambda Modes of a nuclear power reactor. Math.

Comput. Model. 2011, 54, 1796–1801. [CrossRef]

http://dx.doi.org/10.1016/j.anucene.2014.05.026
http://dx.doi.org/10.1145/1268776.1268779
http://dx.doi.org/10.1016/j.compfluid.2012.04.012
http://dx.doi.org/10.13182/NSE88-1
http://dx.doi.org/10.13182/NSE04-1
http://dx.doi.org/10.1016/S0306-4549(01)00082-2
http://dx.doi.org/10.1016/0306-4549(94)90041-8
http://dx.doi.org/10.1016/S0306-4549(98)00077-2
http://dx.doi.org/10.1016/j.anucene.2005.03.002
http://dx.doi.org/10.1145/1089014.1089019
http://dx.doi.org/10.13182/NT171-171
http://dx.doi.org/10.1016/j.jcp.2014.12.014
http://dx.doi.org/10.1016/j.mcm.2010.12.013

Math. Comput. Appl. 2019, 24, 9 14 of 14

16. Carreño, A.; Vidal-Ferràndiz, A.; Ginestar, D.; Verdú, G. Spatial modes for the neutron diffusion equation
and their computation. Ann. Nucl. Energy 2017, 110, 1010–1022. [CrossRef]

17. Gill, D.; Azmy, Y. Newton’s method for solving k-eigenvalue problems in neutron diffusion theory. Nucl.
Sci. Eng. 2011, 167, 141–153. [CrossRef]

18. Knoll, D.; Park, H.; Newman, C. Acceleration of k-eigenvalue/criticality calculations using the Jacobian-free
Newton-Krylov method. Nucl. Sci. Eng. 2011, 167, 133–140. [CrossRef]

19. Kong, F.; Wang, Y.; Schunert, S.; Peterson, J.W.; Permann, C.J.; Andrš, D.; Martineau, R.C. A fully coupled
two-level Schwarz preconditioner based on smoothed aggregation for the transient multigroup neutron
diffusion equations. Numer. Linear Algebra Appl. 2018, 25, e2162. [CrossRef]

20. Lösche, R.; Schwetlick, H.; Timmermann, G. A modified block Newton iteration for approximating an
invariant subspace of a symmetric matrix. Linear Algebra Appl. 1998, 275, 381–400. [CrossRef]

21. Saad, Y. Iterative Methods for Sparse Linear Systems; Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 2003.

22. Finnemann, H.; Galati, A. NEACRP 3-D LWR Core Transient Benchmark: Final Specifications. Available
online: https://www.oecd-nea.org/science/docs/1991/neacrp-l-1991-335.pdf (accessed on 13 January 2019).

23. Lefvert, T. OECD/NEA Ringhals 1 Stability Benchmark. Available online: http://www.nea.fr/science/
docs/1996/nsc-doc96-22.pdf (accessed on 13 January 2019).

24. Balay, S.; Abhyankar, S.; Adams, M.; Brune, P.; Buschelman, K.; Dalcin, L.; Gropp, W.; Smith, B.; Karpeyev, D.;
Kaushik, D.; et al. PETSc Users Manual Revision 3.7; Technical Report for Argonne National Lab: Argonne,
IL, USA, 2016.

25. Carreño, A.; Vidal-Ferràndiz, A.; Ginestar, D.; Verdú, G. Block hybrid multilevel method to compute the
dominant λ-modes of the neutron diffusion equation. Ann. Nucl. Energy 2018, 121, 513–524. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.anucene.2017.08.018
http://dx.doi.org/10.13182/NSE09-98
http://dx.doi.org/10.13182/NSE09-89
http://dx.doi.org/10.1002/nla.2162
http://dx.doi.org/10.1016/S0024-3795(97)10018-0
https://www.oecd-nea.org/science/docs/1991/neacrp-l-1991-335.pdf
http://www.nea.fr/science/docs/1996/nsc-doc96-22.pdf
http://www.nea.fr/science/docs/1996/nsc-doc96-22.pdf
http://dx.doi.org/10.1016/j.anucene.2018.08.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Modified Generalized Block Newton Method
	Preconditioning
	Numerical Results
	NEACRP Reactor
	Ringhals Reactor

	Conclusions
	References

