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PREFACE 
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UNCECOMP 2019 is also a Thematic Conference of ECCOMAS, with the objective to reflect the 

recent research progress in the field of analysis and design of engineering systems under 

uncertainty, with emphasis in multiscale simulations. The aim of the conference is to enhance the 

knowledge of researchers in stochastic methods and the associated computational tools for 

obtaining reliable predictions of the behavior of complex systems. The UNCECOMP conference 

series, held in conjunction with the COMPDYN conferences, gives the opportunity to the 

participants to interact with the Computational Dynamics community for their mutual benefit.  

The UNCECOMP 2019 Conference is supported by the National Technical University of Athens 

(NTUA), the Greek Association for Computational Mechanics (GRACM). 
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RELIABILITY-BASED DESIGN OPTIMISATION OF A DUCTED
PROPELLER THROUGH MULTI-FIDELITY LEARNING
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Keywords: Ducted Propeller, Co-Kriging, Reliability-based Design Optimisation, Multi-fidelity
Learning, Gaussian Markov Random Fields, Risk Averseness

Abstract. This paper proposes to apply multi-fidelity learning for reliability-based design op-
timisation of a ducted propeller. Theoretically, the efficiency of a propeller can be increased
by placing the propeller into a duct. The increased efficiency makes the ducted propeller an
appealing option for electrical aviation where optimal electricity consumption is vital. The
electricity consumption is mainly dictated by the required power to reach the required thrust
force. Recent design optimisation techniques such as machine learning can help us to reach
high thrust to power ratios. Due to the expensive computational fluid dynamics simulations
a multi-fidelity learning algorithm is investigated here for the application of ducted propeller
design. The limited number of high-fidelity numerical experiments cannot provide sufficient in-
formation about the landscape of the design field and probability field. Therefore, information
from lower fidelity simulations is fused into the high-fidelity surrogate using the recently pub-
lished recursive co-Kriging technique augmented with Gaussian-Markov Random Fields. At
each level the uncertainty can be modelled via a polynomial chaos expansion which provides
a variable-fidelity quantification technique of the uncertainty. This facilitates the calculation
of risk measures, like conditional Value-at-Risk, for reliability-based design optimisation. The
multi-fidelity surrogate model can be adaptively refined following a similar strategy to the Effi-
cient Global Optimisation using the expected improvement measure. The proposed combination
of techniques provides an efficient manner to conduct reliability-based optimisation on expen-
sive realistic problems using a multi-fidelity learning technique.
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P. Z. Korondi, L. Parussini, M. Marchi and C. Poloni

1 INTRODUCTION

Ducted Propellers are theoretically operating with higher efficiency than open propellers
[1, 2]. This fact makes the ducted propeller a potential candidate for the propulsion of an elec-
trical aircraft where optimal thrust to power ratio is vital. The performance and efficiency of
a ducted propeller can be obtained through models and experiments of various fidelity rang-
ing from cheap analytic formulas to expensive Computational Fluid Dynamics (CFD) simu-
lations. Most of the optimisation procedure require a high number of performance analyses
to find an optimal design particularly when the uncertain nature of the problem is also con-
sidered. This fact makes it difficult to employ high-fidelity performance predictors like CFD
simulations throughout the entire optimisation workflow. One traditional way to tackle this
difficulty is to use surrogate models [11, 12] which can efficiently replace the expensive CFD
simulations. A surrogate model is trained on the available high-fidelity simulations and in the
optimisation workflow this surrogate is used instead of the expensive high-fidelity simulation.
This surrogate-based optimisation is very efficient; however, it is highly dependant on the qual-
ity of the surrogate model. The quality can be increased by increasing the number of training
points. Unfortunately, in case of expensive CFD simulations, the increase of the training data-
set quickly consumes the computational budget. Therefore, multi-fidelity learning techniques
have been invented to fuse information of analyses of different fidelities [8, 9, 10, 13].
The information content of the surrogate at design locations where high-fidelity analyses are not
available can be increased by conducting low-fidelity analyses. At locations where both low-
and high-fidelity analyses are available the degree of trustfulness of our low-fidelity model can
be automatically learned by calculating the cross-correlation of the fidelities.
In this work, the co-Kriging technique [9, 10, 13] is used to construct a multi-fidelity surrogate.
The main drawback of Kriging based techniques is that they require to invert the covariance
matrix of the observation locations which matrix is dense. This numerical issue is commonly
resolved by applying various decomposition techniques [14]. However, this paper investigates
an alternative solution to the issue. Namely, Gaussian-Markov Random Fields (GMRF) are ap-
plied to construct the inverse of the covariance matrix, the so-called precision matrix, directly
[15, 16]. The paper is organised as follows. Section 2 introduces the employed propeller anal-
ysis codes: the Blade Element Momentum Theory for low-fidelity calculations and the Ducted
Fan Design Code for high-fidelity calculations. Section 3 derives the used multi-fidelity learn-
ing technique: GMRF-co-Kriging. Section 4 describes the conditional Value-at-Risk reliability
measure and its application in the in the optimisation workflow. A simple training data-set
strategy based on the expected improvement is presented in Section 5. Some characteristics
of the GMRF-co-Kriging technique is discussed in Section 6; as well, this section presents
the performance of the proposed multi-fidelity learning technique on a simple propeller blade
optimisation problem. Finally, Section 7 concludes the work conducted in this paper.

2 DUCTED PROPELLER

Ducted propeller is a propulsion unit similar to free propellers, but the propeller is placed
inside a duct which increases the mass flow through the propeller. The theoretical calculations
credits this increased mass flow to a reduced slipstream contraction [1, 2]. However, for higher
Mach numbers, the slipstream contraction decreases anyway and the drag induced by the duct
increases. This mitigates the advantages of ducted propellers for high speed aircraft [3].
Remaining in the low speed regime allows to benefit the most from the increased efficiency
of a ducted propeller propulsion unit. Therefore, ducted propellers can be applied to small

601



P. Z. Korondi, L. Parussini, M. Marchi and C. Poloni

Vθ

θ

α

φV Vx

δT

δP
Ω

ch
ord

 li
ne

plane of rotation

a
x

is
 o

f
 r

o
ta

ti
o
n

Figure 1: Blade Element velocities and forces

scale aircraft which operate at lower speeds. The increased propulsion efficiency makes ducted
propellers promising candidates for electrical aircraft where the ratio of thrust and electricity
consumption must be highly optimised.
In this work the performance analysis of the propulsion unit is investigated by two different
solvers. Blade Element Momentum Theory (BEMT) [4, 5, 6] is presented in Section 2.1 and a
potential flow solver, the Ducted Fan Design Code (DFDC) [7] presented in Section 2.2.

2.1 BLADE ELEMENT MOMENTUM THEORY

Blade Element Momentum Theory (BEMT) combines the Blade Element Theory (BET) and
Actuator Disk Theory (ADT) into an iterative solver [4, 5, 6]. In both BET and ADT, the
propeller blade is discretised with a given number of annuli. The effect of the actual blade
elements are averaged over time. Each annulus is characterised by their local velocities and
forces. At each radial station the velocity state is given by Eq.(1):

Vx = V∞(1 + a), (1)
Vθ = ωr(1− b), (2)

V =
√
V 2
x + V 2

θ , (3)

where V∞ is the free stream velocity, Vθ is the angular velocity and V is the local velocity seen
by the blade. r is the radius of the annulus and ω is the angular velocity of the propeller. a
and b denote the induced axial and angular inflow factor respectively. The velocity vectors and
resulting forces are depicted in Figure 1.
By knowing the induced velocities a and b, BET can determine the thrust and power of each
blade element with Eqs. (4), (5):

δT =
1

2
ρV 2c(Cl cos(ϕ)− Cd sin(ϕ))Bdr, (4)

δP =
1

2
ρV 2c(Cd cos(ϕ) + Cl sin(ϕ))rωBdr, (5)

where the ρ is the fluid density, c is the chord length and B is the number of blades. Cl and
Cd are the 2D lift and drag coefficients of the blade element section. The lift Cl(α) and drag
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Cd(α) are functions of the angle-of-attack α. Following the angle orientations in Figure 1, the
angle-of-attack can be calculated by the following equations:

ϕ = tan
Vx
Vθ
, (6)

α = θ − ϕ, (7)

where ϕ is the relative flow angle seen by the blade and θ is the geometrical twist of the blade
element.
The induced velocities, however, are not known and their direct calculation would be a tedious
work. Therefore the thrust and power are alternatively calculated according to the ADT:

δT = ρ4πrV 2
∞a(1 + a)dr, (8)

δP = ρ4πr3V∞b(1 + a)ω2dr, (9)

The Eqs. (4), (5) and (8), (9) are equated respectively in BEMT and the a and b induced
velocity factors are calculated by iteratively minimising the deviation between the two theory.
By considering that V = Vx

sinϕ
= V∞(1+a)

sinϕ
and the blade solidity is σr = Bc

2πr
, the problem to be

solved iteratively can be reduced to Eqs. (10), (11):

a

1 + a
=

σr
4 sin2(ϕ)

(Cl cos(ϕ)− Cd sin(ϕ)), (10)

b

1− b
=

σr
4 sin(ϕ) cos(ϕ)

(Cd cos(ϕ) + Cl sin(ϕ)). (11)

2.2 DUCTED FAN DESIGN CODE

The DFDC software is based on the lifting-line theory of propeller blades and it is tailored
to design axisymmetric ducted propellers. The software includes the loss effects due to non-
uniform loading. Moreover, the effects of the shrouded tip and presence of centre body are also
incorporated in the flow field calculation [7]. The code requires the operational conditions, the
geometrical and aerodynamic properties of the blade elements, and the geometry of the centre
body and duct as an input. The output of DFDC includes the resulting flow conditions and both
the total and spanwise forces acting on the rotor and the duct. The fidelity of the code is higher
than classical BEMT but it is still lower than Navier-Stokes solvers.

3 MULTI-FIDELITY MODEL

3.1 Definitions

A random field (or stochastic field), X(s, ω), s ∈ D ⊂ Rd, ω ∈ Ω is a random function
specified by its finite-dimensional joint distributions

F (y1, . . . , yn; s1, . . . , sn) = P (X(s1) ≤ y1, . . . , X(sn) ≤ yn)

for every finite n and every collection s1, . . . , sn of locations in D. To simplify the notation,
one often writes X(s), removing the dependency on ω from the notation.

A Gaussian random field X(s) is defined by a mean function µ(s) = E(X(s)) and a covari-
ance function ς(s; t) = Cov(X(s);X(t)). It has the property that, for every finite collection of
points s1, . . . , sn,

x ≡ (X(s1), . . . , X(sn))T ∼ N (µ,Σ) ,
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where Σij = ς(si; sj). For existence of a Gaussian field with a prescribed mean and covariance
it is enough to ensure that ς is positive definite. A function ς(s; t) is positive definite if for any
finite set of locations s1, . . . , sn in D, the covariance matrix

Σ =


ς(s1, s1) ς(s1, s2) . . . ς(s1, sn)
ς(s2, s1) ς(s2, s2) . . . ς(s2, sn)

...
... . . . ...

ς(sn, s1) ς(sn, s2) . . . ς(sn, sn)


is non-negative definite: zTΣz ≥ 0 for all real valued vectors z. The inverse of the covariance
matrix Q = Σ−1 is called precision matrix.

A random vector is called a Gaussian Markov random field (GMRF) with respect to a graph
G = (V,E) with mean µ and precision matrix Q > 0, if its density has the form

π(x) = (2π)−n/2 |Q|1/2 exp
(
−1

2
(x− µ)T Q (x− µ)

)
,

where V and E are the set of nodes in the graph, and the set of edges in the graph, respectively.

3.2 Kriging

Denote a real-valued spatial process in d dimensions by z(s) : s ∈ D ⊂ Rd, where s is the
location of the process z(s) and s varies over the index set D.

In Kriging theory, the response z(s) is considered as a realisation of a multivariate Gaussian
process Z(s). Z(s) is assumed to be the sum of a deterministic regression function m(s),
constructed by observed data, and a Gaussian process Y (s), constructed through the residuals:

Z(s) = m(s) + Y (s). (12)

The trend function m(s) is assumed to be m(s) = h(s)β, where h(s) is a set of p covariates
associated with each site s and β is a p-dimensional vector of coefficients. Y (s) is the Gaus-
sian process with zero mean and covariance function Σij = ς(si, sj) = σ2c(si, sj;θ), where
σ2 is a scale parameter, called the process variance, and c is a positive function with param-
eters θ, called the correlation function. Usual covariance functions are Gaussian, Matérn and
exponential (where Gaussian and exponential covariances are particular cases of Matérn family
covariance).

Let us suppose that z(n) are observed values of z(s) at n known locations D̂ = (s1, . . . , sn)T ⊂
D. For many cases, we do not have direct access to the function to be approximated but only
to a noisy version of it. Let us consider this more general noisy case, assuming an independent
Gaussian observation noise with zero mean and variance σ2

ε (s). This is usually referred as the
nugget effect. So, z(n) are realisations of the Gaussian vector Z(n) = Z(D̂) + E(n), where
Z(D̂) is the random process Z(s) at the points D̂ and E(n) = (σε(s1)E1, . . . , σε(sn)En)T is the
white noise with Ei=1,...,n independent and identically distributed with respect to a Gaussian
distribution with zero mean and variance one.

We use the information contained in Z(n) to predict Z(s) considering the joint distribution
of Z(s) and Z(n): (

Z(s)
Z(n)

)
∼ N

((
h(s)β
Hβ

)
,

(
ς(s, s) ςT (s)
ς(s) Σ + σ2

ε I

))
, (13)
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where H = h
(
D̂
)

is the n × p model matrix, Σ is the n × n covariance matrix between the

observation points D̂, ς(s) is the n-dimensional covariance vector between the prediction point
s and the observation points D̂, σ2

ε is considered constant for simplicity.
Then, the conditional distribution

[
Z(s)

∣∣Z(n),β, σ2, σ2
ε ,θ
]

is Gaussian with mean and vari-
ance:

m̂Z(s) = h(s)β + ςT (s)
(
Σ + σ2

ε I
)−1 (

z(n) −Hβ
)
, (14)

ŝ2Z(s) = ς(s, s)− ςT (s)
(
Σ + σ2

ε I
)−1

ς(s). (15)

In order to estimate the parameters (β, σ2, σ2
ε ,θ), the Maximum Likelihood Estimation

(MLE) is a very popular method. The multivariate normal assumption for z(n) leads to the
following likelihood:

f
(
z(n)

∣∣β, σ2, σ2
ε ,θ
)

=
1

(2π)n/2
√
|Σ + σ2

ε I|

exp

(
−1

2

(
z(n) −Hβ

)T (
Σ + σ2

ε I
)−1 (

z(n) −Hβ
))

. (16)

Given:
β̂ =

(
HT

(
Σ + σ2

ε I
)−1

H
)−1

HT
(
Σ + σ2

ε I
)−1

z(n), (17)

which is the MLE of β corresponding to its generalised least squares estimate, the MLEs of σ2,
σ2
ε and hyperparameters θ are identified by minimising:

L
(
σ2, σ2

ε ,θ
)

=
(
z(n) −Hβ̂

)T (
Σ + σ2

ε I
)−1 (

z(n) −Hβ̂
)

+ log
(∣∣(Σ + σ2

ε I
)∣∣) , (18)

which is the opposite of the log-likelihood up to a constant.
When there is no measurement error, the observed values z(n) are free-noise realisations of

the Gaussian vector Z(n) = Z(D̂) and Eqs.(14) and (15) reduce to:

m̂Z(s) = h(s)β + cT (s)C−1
(
z(n) −Hβ

)
, (19)

ŝ2Z(s) = σ2
(
1− cT (s)C−1c(s)

)
, (20)

where C is the n × n correlation matrix between the observation points D̂ and c(s) is the
n-dimensional correlation vector between the prediction point s and the observation points D̂.

For the parameter estimation, the following likelihood:

f
(
z(n)

∣∣β, σ2,θ
)

=
1

(2πσ2)n/2
√
|C|

exp

(
−1

2

(
z(n) −Hβ

)T
C−1

(
z(n) −Hβ

)
σ2

)
(21)

has to be maximised.
Given the MLE of β, β̂ =

(
HTC−1H

)−1
HTC−1z(n), in a free-noise case, a closed form

expression for the estimate of σ2 can be derived:

σ̂2 =
1

n

(
z(n) −Hβ̂

)T
C−1

(
z(n) −Hβ̂

)
. (22)
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The MLE of hyperparameters θ of the correlation function c are identified by minimising the
opposite of the log-likelihood

L (θ) = n log
(
σ̂2
)

+ log (|C|) . (23)

When there is no measurement error, Kriging is an exact interpolator, meaning that if you
predict at a location where data has been collected, the predicted value is the same as the mea-
sured value. However, when measurement errors exist, you want to predict the filtered value,
which does not have the measurement error term. At locations where data has been collected,
the filtered value is not the same as the measured value.

3.3 GMRF

With Gaussian models, such as Kriging, the primary difficulty is dimension, which typically
scales with the number of observations. The basic complexity of Gaussian processes is O(N3)
where N is the number of data points, due to the inversion of an N × N matrix. This is the
reason to introduce GMRF models, assuming that a random variable associated with a region
depends primarily on its neighbours.

A random field is said to be a Markov random field if it satisfies Markov property. A stochas-
tic process has the Markov property if the conditional probability distribution of future states of
the process (conditional on both past and present values) depends only on the present state; that
is, given the present, the future does not depend on the past. A Markov random field extends
this property to two or more dimensions or to random variables defined for an interconnected
network of items.

Let the neighbours Ni of a point si be the points {sj, j ∈ Ni} that are close to si. The random
field X(s) that satisfies

p(Xi|X−i) = p(Xi| {Xj|j ∈ Ni}), (24)

where Xi = X(si) and X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn), is a Markov random field.
A Gaussian random field X(s) ∼ N(µ,Q−1) that satisfies (24) is a GMRF. In that case the

full conditionals are Gaussian with means and precisions:

E(Xi|X−i) = µi −
∑
j:j∼i

βij (xj − µj) , (25)

Prec(Xi|X−i) = V ar(Xi|X−i)−1 = κi > 0, (26)

where βij and κi are parameters satisfying βijκi = βjiκj for all i and j and with precision
matrix Q positive definite:

Qij =

{
κi, i = j
κiβij, i 6= j

. (27)

The joint density function for X(s) is Gaussian and of the form

f(X) = (2π)−n/2 |Q|1/2 exp
(
−1

2
XTQX

)
. (28)

In most cases if the total number of neighbours is O(n), only O(n) of the n × n terms in
Q will be non-zero. So numerical algorithms for sparse matrices can be exploited to construct
GMRF models.
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Given the Gaussian vector X(n) = (X1, . . . , Xn)T containing the values of the random pro-
cess X(s) at the points in the experimental design set D̂ = (s1, . . . , sn)T ⊂ D, considering the
joint distribution of: (

X(s)
X(n)

)
(29)

with mean: (
µ(s)
µ(n)

)
(30)

and precision: (
Q(s, s) Q(s, D̂)

Q(s, D̂)T Q(D̂, D̂)

)
, (31)

the conditional expectation is:

E(X(s)|X(n)) = µ(s)−Q(s, s)−1Q(s, D̂)
(
X(n) − µ(n)

)
(32)

with conditional precision:

Prec(X(s)|X(n)) = Q(s, s). (33)

We are interested in GMRFs where the precision matrix Q is the numerical discretisation of
a diffusion operator. We focus on finite element discretisations.

Gaussian random fields with Matérn covariances

C (‖u‖) = σ2 21−ν

Γ (ν)
(χ ‖u‖)ν Kν (χ ‖u‖) (34)

with ‖u‖ the distance between two points, are solutions to a Stochastic Partial Differential
Equation (SPDE) [19, 20]: (

χ2 −∆
)α/2

X(s) = W (s), (35)

where W (s) is white noise, ∆ =
∑

i
∂2

∂s2i
is the Laplacian operator and α = ν + d/2, the

parameter ν controls the smoothness and the parameter χ controls the range. So, according to
the Whittle characterisation of the Matérn covariance functions, we get a Markovian random
field when α is an integer. The solution can be constructed as a finite basis expansion:

X(s) =
∑
k

ϕk(s)xk, (36)

with a suitable distribution for the weights {xk}. A stochastic weak solution to the SPDE is
given by: 〈

ϕj,
(
χ2 −∆

)α/2
X(s)

〉
= 〈ϕj,W 〉 ∀j. (37)

Replacing X(s) with the finite basis expansion (36) gives:∑
i

〈
ϕj,
(
χ2 −∆

)α/2
ϕi)
〉
xi = 〈ϕj,W 〉 ∀j. (38)

With the opportune choice of basis functions the Gaussian random field X(s) will result into
a GMRF. The piecewise linear basis gives (almost) a GMRF. Indeed, using a piecewise linear
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basis, only neighbouring basis functions overlap. Increased smoothness of the random field
induces a larger neighbourhood in the GMRF representation. The choice of test functions,
in relation to the basis functions, governs the approximation properties of the resulting model
representation. For α = 1 the correct choice is φk = (χ2 −∆)

1/2
ϕk which is the least squares

finite element approximation, for α = 2 the correct choice is φk = ϕk which is the Galerkin
finite element approximation. For α ≥ 3, φk = ϕk if we let α = 2 on the left-hand side of
equation and replace the right -hand side with a field generated by α − 2. So in practice this
generates a recursive Galerkin formulation.

Defining the matrices:

Mij = 〈ϕi, ϕj〉 , (39)
Sij = 〈∇ϕi,∇ϕj〉 , (40)
Kij = χ2Mij + Sij, (41)

then the precision matrix for weights x for α = 1, 2, . . . is:

Q1 = K, (42)
Q2 = KM−1K, (43)
Qα = KM−1Qα−2M

−1K. (44)

M and S are both sparse given the choice of piecewise linear basis, so that K is sparse too. But
M−1 is dense, which makes the precision matrix dense as well, losing the Markov property. The
matrix M is replaced by a diagonal matrix M̃ where M̃ii = 〈ϕi, 1〉 which makes the precision
matrix sparse with a small approximation error.

Although the approach does give a GMRF representation of the Matérn field on the discre-
tised region, it is an approximation of SPDE solution. Using standard results from the finite
element literature, it is also possible to derive rates of convergence results.

3.4 GMRF-Kriging

As in section 3.2, denote a real-valued spatial process in d dimensions by z(s) : s ∈ D ⊂ Rd

where s is the location of the process z(s) and s varies over the index set D.
The response z(s) is considered as a realisation of a linear latent variable model Z(s):

Z(s) = ϕT (s)X + E(s), (45)
X ∼ N(µx,Q

−1
x ), (46)

E(s) ∼ N
(
0, σ2

ε (s)
)
, (47)

where ϕT (s)X is a spatial basis expansion with k basis functions with local (compact) support.
The latent variables X are a GMRF, where Qx is derived from an SPDE construction with
parameters θ [15]. µx is usually zero, but for now let us consider the more general case. E(s)
is white noise, with constant variance σ2

ε for simplicity.
Let us suppose that z(n) are observed values of z(s) at n known locations D̂ = (s1, . . . , sn)T ⊂

D. z(n) are realisations of the random vector Z(n) = ΦTX + E(n), where Φ is the k × n matrix
(ϕ1(D̂), . . . , ϕk(D̂))T containing the values of the basis functions in D̂ and E(n) is the vec-
tor (σεE1, . . . , σεEn)T with Ei=1,...,n independent and identically distributed with respect to a
Gaussian distribution with zero mean and variance one.
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We can write the hierarchical model

X ∼ N(µx,Q
−1
x ), (48)(

Z(n)
∣∣X) ∼ N (ΦX,Q−1ε ) , (49)

where Q−1ε = σ2
ε I is the n× n covariance matrix of observations.

The joint distribution for the observations and the latent variables X is given by:(
X

Z(n)

)
∼ N

((
µx

Φµx

)
,

[
Qx + ΦTQεΦ −ΦTQε

−QεΦ Qε

]−1)
. (50)

The conditional distribution for X given Z(n) is
(
X|Z(n)

)
∼ N

(
mX|Z(n) ,ΣX|Z(n)

)
, with:

mX|Z(n) = µx + Q−1
X|Z(n)Φ

TQε

(
Z(n) −Φµx

)
, (51)

ΣX|Z(n) = Q−1
X|Z(n) , (52)

QX|Z(n) = Qx + ΦTQεΦ. (53)

The variance can be computed as s2
X|Z(n) = diag

(
Q−1

X|Z(n)

)
. Note that the elements of mX|Z(n)

are the basis function coefficients and covariate effect estimates in the Kriging predictor:

m̂Z(s) = ϕ(s)mX|Z(n) (54)

with squared error
ŝ2Z(s) = diag

(
ϕ(s)ΣX|Z(n)ϕT (s)

)
. (55)

The method to estimate it hyper-parameter θ is the MLE.
The likelihood for X given the parameters θ is:

π (X|θ) =
1

(2π)
m+p

2

√
|Qx|

exp

(
−1

2
(X− µx)T Qx (X− µx)

)
(56)

so that the log-likelihood is:

log π (X|θ) = −m+ p

2
log (2π) +

1

2
log |Qx| −

1

2
(X− µx)T Qx (X− µx) . (57)

For known X = x̂, the likelihood for z(n) given the parameters θ is:

π
(
z(n)
∣∣θ) =

π
(
θ| z(n)

)
π (θ)

=
π (X|θ) π

(
z(n)
∣∣θ,X)

π (X|θ, z(n))

∣∣∣∣∣
X=x̂

(58)

so that the log-likelihood is:

log π
(
z(n)
∣∣θ) = log π ( x̂|θ) + log π

(
z(n)
∣∣θ, x̂)− log π ( x̂|θ, z(n)

)
=

−m+ p

2
log (2π) +

1

2
log |Qx| −

1

2
(x̂− µx)T Qx (x̂− µx)

−n
2
log (2π) +

1

2
log |Qε| −

1

2

(
Z(n) −Φx̂

)T
Qε

(
Z(n) −Φx̂

)
+
m+ p

2
log (2π)− 1

2
log

∣∣QX|Z(n)

∣∣+
1

2

(
x̂−mX|Z(n)

)T
QX|Z(n)

(
x̂−mX|Z(n)

)
.

(59)

609



P. Z. Korondi, L. Parussini, M. Marchi and C. Poloni

In practice the likelihood for z(n) given the parameters θ is evaluated for x̂ = mX|Z(n) , so that:

log π
(
z(n)
∣∣θ) = −n

2
log (2π) +

1

2
log |Qx|+

1

2
log |Qε| −

1

2
log

∣∣QX|Z(n)

∣∣
−1

2

(
mX|Z(n) − µx

)T
Qx

(
mX|Z(n) − µx

)
−1

2

(
Z(n) −ΦmX|Z(n)

)T
Qε

(
Z(n) −ΦmX|Z(n)

)
.

(60)

3.5 RECURSIVE CO-KRIGING

Recursive co-Kriging is a recursive framework which exploits multi-fidelity data coming
from sources with different reliability, building l independent Kriging problems [10].

In this case there are l levels of response (zt(s))t=1,...,l sorted by increasing order of fidelity
and modelled by Gaussian processes (Zt(s))t=1,...,l, with s ∈ D. zl(s) is the most accurate and
costly response and (zt(s))t=1,...,l−1 are cheaper versions of it, with z1(s) the least accurate.

An auto-regressive model can be formulated for t = 2, . . . , l:
Zt(s) = ρt−1(s)Zt−1(s) + δt(s),

Zt−1(s)⊥δt(s),
ρt−1(s) = gTt−1(s)βρt−1

,
(61)

where δt(s) is a Gaussian process, with mean fTt (s)βt and covariance function σ2
t ct(s, s

′), inde-
pendent of Zt−1(s), . . . , Z1(s) and ρt−1(s) represents a scale factor between Zt(s) and Zt−1(s).
gt−1(s) and ft(s) are vectors of polynomial basis functions and βρt−1

and βt are the vectors of
coefficients.

The Gaussian process Zt(s) modelling the response at level t is expressed as a function of
the Gaussian process Zt−1(s) conditioned by the values z(t−1) = (z1, . . . , zt−1) at points in the
experimental design sets (Di)i=1,...,t−1.

Considering the joint distribution of δt(s) = Zt(s) − ρt−1(s)Zt−1(s) and δt(Dt) = Z(t) −
ρt−1(Dt)� zt−1(Dt):(

Zt(s)− ρt−1(s)Zt−1(s)
Z(t) − ρt−1(Dt)� zt−1(Dt)

)
∼ N

((
ft(s)βt
Ftβt

)
,

(
ct(s, s) cTt (s)
ct(s) Ct

))
, (62)

we have for t = 2, . . . , l and for s ∈ D:[
Zt(s)

∣∣Z(t) = z(t),βt,βρt−1
, σ2

t

]
∼ N

(
m̂Zt(s), ŝ2Zt

(s)
)
, (63)

where:

m̂Zt(s) = ρt−1(s)m̂Zt−1(s) + fTt (s)βt + cTt (s)C−1t (zt − ρt−1(Dt)� zt−1(Dt)− Ftβt) (64)

and:
ŝ2Zt

(s) = ρ2t−1(s)ŝ2Zt−1
(s) + σ2

t

(
1− cTt (s)C−1t ct(s)

)
. (65)

The notation � represents the Hadamard product. Ct is the correlation matrix and cTt (s) is
the correlation vector. We denote by ρt−1(Dt) the vector containing the values of ρt−1(s) for
s ∈ Dt, zt−1(Dt) the vector containing the known values of Zt(s) at points in Dt and Ft is the
experience matrix containing the values of ft(s)T on Dt .
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The recursive framework of co-Kriging is clearly visible in Eqs.(64,65), where the mean and
the variance of the Gaussian process Zt(s) are functions of mean and variance of the Gaussian
process Zt−1(s) .

The mean µ̂Zt(s) is the surrogate model of the response at level t, 1 ≤ t ≤ l, taking into
account the known values of the t first levels of responses (zi)i=1,...,l. The variance ŝ2Zt

(s)
represents the mean squared error of the surrogate model of the response at level t. The variance
will be zero at known values of the first t levels of responses.

The parameters (θt) are estimated by minimising the opposite of the concentrated restricted
log-likelihoods at each level t:

log(|det(Ct)|) + (nt − pt − qt−1)log(σ̂2
t ) (66)

for t = 1, . . . , l.

3.6 RECURSIVE GMRF-CO-KRIGING

Similarly to the classical recursive co-Kriging there are l levels of response (zt(s))t=1,...,l

sorted by increasing order of fidelity.
An auto-regressive model using GMRF can be formulated for t = 2, . . . , l:

Zt(s) = ϕT (s)Xt + Et(s),
Xt = ρTt−1Xt−1 + δt,

Xt−1⊥δt,
(67)

where δt is a a GMRF with mean µxt and precision matrix Qxt derived from an SPDE con-
struction with parameters θt.

Let us suppose that z
(nt)
t are observed values of zt(s) at nt known locations D̂t ⊂ D. z

(nt)
t

are realisations of the random vector Z
(nt)
t .

We can write the hierarchical model

δt ∼ N(µxt ,Q
−1
xt ), (68)(

Z
(nt)
t

∣∣∣Xt

)
− ρTt−1 �ϕT (D̂t)Xt−1 ∼ N

(
Φtδt,Q

−1
εt

)
, (69)

where Q−1εt = σ2
εtI is the nt × nt covariance matrix of observations.

The joint distribution for the observations and the latent variables Xt is given by:(
Xt − ρTt−1Xt−1(

Z
(nt)
t

∣∣∣Xt

)
− ρTt−1 �ϕT (D̂t)Xt−1

)
∼

N

((
µxt

Φtµxt

)
,

[
Qxt + ΦT

t QεtΦt −ΦT
t Qεt

−QεtΦt Qεt

]−1)
.

(70)

The conditional distribution for Xt given Z
(nt)
t is

(
Xt|Z(nt)

t

)
∼ N

(
m

Xt|Z(nt)
t
,Σ

Xt|Z(nt)
t

)
,

with:

m
Xt|Z(nt)

t
= ρTt−1mXt−1|Z

(nt−1)

t−1

+ µ
Xt|Z(nt)

t
, (71)

Σ
Xt|Z(nt)

t
= ρTt−1ΣXt−1|Z

(nt−1)

t−1

ρt−1 + Q−1
Xt|Z(nt)

t

, (72)

µ
Xt|Z(nt)

t
= µxt + Q−1

Xt|Z(nt)
t

ΦT
t Qεt

(
Z

(nt)
t − ρTt−1 �ϕT (D̂t)mXt−1|Z

(nt−1)

t−1

−Φtµxt

)
, (73)

Q
Xt|Z(nt)

t
= Qxt + ΦT

t QεtΦt. (74)
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Note that the elements of m
Xt|Z(nt)

t
are the basis function coefficients and covariate effect esti-

mates in the co-Kriging predictor at t level:

m̂Zt(s) = ϕ(s)m
Xt|Z(nt)

t
, (75)

with squared error:
ŝ2Zt

(s) = diag
(
ϕ(s)Σ

Xt|Z(nt)
t
ϕT (s)

)
. (76)

The method to estimate the hyper-parameter θt as is the MLE. In practice the likelihood for
z
(nt)
t given the parameters θt is:

log π
(

z
(nt)
t

∣∣∣θt) = −n
2
log (2π) +

1

2
log |Qxt |+

1

2
log |Qεt | −

1

2
log

∣∣∣Q
Xt|Z(nt)

t

∣∣∣
−1

2

(
µ

Xt|Z(nt)
t
− µxt

)T
Qxt

(
µ

Xt|Z(nt)
t
− µxt

)
−1

2

(
Z

(nt)
t − ρTt−1 �ϕT (D̂t)mXt−1|Z

(nt−1)

t−1

−ΦT
t m

Xt|Z(nt)
t

)T
Qεt(

Z
(nt)
t − ρTt−1 �ϕT (D̂t)mXt−1|Z

(nt−1)

t−1

−ΦT
t m

Xt|Z(nt)
t

)
.

(77)

4 RELIABILITY MEASURE FOR DESIGN OPTIMISATION

The design process of a ducted propeller aims to estimate the performance of the propulsion
system in various conditions. During the operation the loading of the blades can vary depend-
ing on the environmental conditions. Stemming from the manufacturing process, material and
geometrical imperfections can cause performance disturbances.
Generally, the uncertainties can be classified into two categories: aleatory and epistemic [21].
Aleatory uncertainty is an inherent property of a natural process. Epistemic uncertainty is the
impreciseness of our models stemming from the lack of knowledge. The latter type of uncer-
tainty is not considered in this work. The aleatory uncertainty is modelled with random variables
characterised by probability distributions. In the design optimisation context, the uncertainty on
system responses due to input random variables and parameters is not known. In this work it is
quantified with the Polynomial Chaos Expansion (PCE) which provides a sound mathematical
tool to efficiently quantify probabilistic uncertainty. The probability space is spanned by a set of
polynomials where the polynomial family depends on the probability distribution of the random
variables [22].

Modelling of the probability space with PCE, it makes computationally affordable to calcu-
late a risk measure for reliability-based optimisation using Monte Carlo sampling techniques. It
is desirable to use risk measures that possess the properties of coherence and regularity to avoid
the dependency on scaling and paradoxes. [23, 24]. Therefore, the conditional Value-at-Risk is
employed here which is indeed a coherent and regular risk measure.

4.1 CONDITIONAL VALUE-AT-RISK

The conditional Value-at-Risk (cVaR) is also called superquantile and given by the Eq. (78):

q̄α(Y ) =
1

1− α

∫ 1

α

qβ(Y )dβ, (78)

where Y is the random response and qα(Y ) = F−1(Y ) is the inverse cumulative distribution
function of Y . The parameter α is the degree of risk averseness and is set to zero when the
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risks are indifferent and expected performance is seeked, while α = 1 measures the worst-case
scenario. The calculation of the cVaR can be generalised as a convex minimisation problem
[23]:

q̄α(Y ) = min
c
c+

1

1− α
E [max(0, Y − c)] . (79)

5 TRAINING DATA-SET UPDATE STRATEGY

The optimisation workflow is constructed similarly to the Efficient Global Optimisation strat-
egy [25]. The Expected Improvement (EI) is calculated for the highest fidelity and new designs
are calculated with the high-fidelity solver at locations where the maximal improvement is ex-
pected.

5.1 EXPECTED IMPROVEMENT

The EI of a location x measures how much improvement can be achieved by evaluating a
new design at that location [26]. The formal representation assumes a minimisation problem of
a function f :

min f(x), (80)

where xεRn. The unknown function f is modelled by a Gaussian Process and the prediction
at x location is denoted Y (x). The current minimum of the function is ymin. An improvement
function can be defined as:

I(x) = max(ymin − Y (x), 0) (81)

The expected value of the improvement is:

EI(x) = E [max(ymin − Y (x), 0)] , (82)

which can be reformulated into its closed form:

EI(x) = (ymin − µ(x))Φ

(
ymin − µ(x)

σ(x)

)
+ σ(x)φ

(
ymin − µ(x)

σ(x)

)
, (83)

where Φ is the cumulative distribution function, φ is the probability density function and erf is
the error function:

Φ(z) =
1

2

[
1 + erf(

z√
2

)

]
(84)

erf(z) =
2√
π

∫ z

0

e−t
2

dt (85)

φ(z) =
1√
2π

exp

(
−z

2

2

)
(86)

6 RESULTS

6.1 ONE-DIMENSIONAL TEST CASE

A simple one-dimensional problem is investigated in this section. The test function for
multi-fidelity surrogates were presented in [13]. The high- and low-fidelity functions are the
following:

fhigh = (6x− 2)2 sin(12x− 4), (87)

flow =
1

2
fhigh + 10(x− 0.5)− 5. (88)
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Figure 2: Multi-fidelity learning compared to single fidelity surrogate

In this case four observation are available at the high-fidelity level Xhigh = {0, 0.4, 0.6, 1}
and eleven at the low-fidelity level Xlow = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The
surrogate built-on variable fidelity data is depicted in Figure 2. The result clearly shows that
single-fidelity learning technique is not able to capture correctly the function landscape due to
the limited number of observation points. The multi-fidelity learning technique is able to fuse
the information from the low fidelity function into the high fidelity approximation and thus pro-
vides an adequate approximation of the true function. The multi-fidelity learning technique with
GMRF is not able to properly learn the function landscape at the domain boundaries because
Neumann boundary conditions with value zero are assumed. This results in a slightly higher
approximation error compared to standard co-Kriging as it can be seen in Table 1.

co-Kr-low GMRF-co-Kr-low co-Kr-high GMRF-co-Kr-high
Mean Absolute Error 0.0389 0.0459 0.0852 0.1255

Table 1: Comparison of co-Kriging and GMRF-co-Kriging

6.2 SIMPLE DUCTED PROPELLER CASE

In this case study a design optimisation of a ducted propeller is considered. The problem is
highly simplified and only two design parameters are considered: namely, the twist at the root
and at the tip, see Figure 3. The geometry of the centre body and the duct is considered to be
constant.The chord length is considered to be constant along the blade but with a zero mean
Gaussian error. Also, the inflow velocity is loaded with a zero mean Gaussian error. These two
uncertainties are considered to represent the manufacturing and environmental uncertainties
respectively. The objective of the design problem is to maximise the expected efficiency (to get
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Figure 3: Design parameters of the propeller: twist at the root and at the tip.

the expected value the α parameter of the cVaR risk measure is set to zero):

max
θroot,θtip

E[η], (89)

where η is the total efficiency of the propeller and it is calculated as follows:

η =
TV∞
P

, (90)

where TV∞ is the useful power and P is the power absorbed.
For the low-fidelity calculations the Blade Element Momentum Theory (BEMT) is used and
the high-fidelity analyses are conducted with the Ducted Fan Design Code (DFDC). Due to the
inexpensiveness of the low-fidelity a full factorial data-set with 121 design are considered at
low-level. Each design is evaluated 10 times and a second order full PCE is built to model the
local probability space of the design. Clearly, DFDC is also an inexpensive solver compared to
CFD but in this simple design scenario the available high-fidelity observation data is assumed
to be limited. Only 4 design point are considered at the high-fidelity level. Similarly to the low-
fidelity, each design point is evaluated 10 times to build a PCE to model the local probability
space.
In this simple scenario the expected value is seeked which is exactly given by the first coefficient
of the PCE. The GMRF-co-Kriging model learns from both the low- and high-fidelity data-set
and constructs a surrogate model combining the information from both fidelities. From the
Gaussian Process variance of the GMRF-co-Kriging model the EI can be calculated for the
entire design space.
At the location of the maximal EI a new design point is evaluated and the GMRF-co-Kriging
model is re-trained. This procedure is repeated until the maximal EI arrives below a threshold
value ε. The optimisation workflow is depicted in Figure 4 and the learning history of the
landscape of the objective space of the optimisation problem is shown in Figure 5.

7 CONCLUSION

Multi-fidelity learning can provide more accurate surrogate models than their single-fidelity
counterparts. It is important to note that multi-fidelity learning is applicable only when the
low-fidelity models carry sufficient information to enhance the model on the highest fidelity. In
the field of aerospace engineering it is evident that many well-calibrated formula are available
for low-fidelity evaluations since aircraft were designed even before the spread of sophisticated
CFD techniques.
Kriging based multi-fidelity learning techniques are suffering from the fact that they require to
invert large ill-conditioned covariance matrices. This drawback can be overcame by exploiting
the link between Gaussian fields and Gaussian Markov random fields. This link allow us to
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Figure 4: The optimisation workflow of the ducted propeller design optimisation

approximate the inverse of the covariance matrix with a sparse precision matrix and the advan-
tages of finite element methods can be leveraged.
Currently, the authors are working on to include high-fidelity CFD simulations into the chain
of fidelity hierarchy and to explore how much computational saving can be realised through
multi-fidelity learning when real-world design problems are considered.
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