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Abstract: We show that a linear term coupling the atoms of an ultracold binary mixture provides a
simple method to induce an effective and tunable population imbalance between them. This term
is easily realized by Rabi coupling between different hyperfine levels of the same atomic species.
The resulting effective imbalance holds for one-particle states dressed by the Rabi coupling and
obtained by diagonalizing the mixing matrix of the Rabi term. This way of controlling the chemical
potentials applies to both bosonic and fermionic atoms and it also allows for spatially- and
temporally-dependent imbalances. As a first application, we show that, in the case of two attractive
fermionic hyperfine levels with equal chemical potentials coupled by the Rabi pulse, the same
superfluid properties of an imbalanced binary mixture are recovered. We finally discuss the properties
of m-species mixtures in the presence of SU(m)-invariant interactions.

Keywords: quantum gases; multicomponent mixtures; rf-fields; Rabi coupling; imbalanced mixtures

1. Introduction

The average density of particles is a central parameter in ultracold experiments [1,2], and in
general for condensed matter phenomena. Indeed, most physical systems acquire different features
when the interaction energy is varied by changing the number of particles N. This fact arises already
at the single-particle level, determining for instance the shape of the Fermi surfaces, in turn related,
for example, to conductance or to the critical properties of Bose condensates [3]. The phenomenon is
even more pronounced once interactions are included as, for instance, has been shown for superfluidity
in fermion mixtures [4]. In the presence of a density imbalance between the pairing species, new types
of superfluid phases, different from the standard BCS/BEC ones, can appear [4–12]. Other notable
examples are the quantum Hall effect [13], where the filling deeply affects the nature of the ground
state, or the transition superfluid–Mott insulator in the Bose–Hubbard model [2].

In recent years, the experimental capability of controlling and measuring local particle densities
has greatly improved due to single-site addressing [14,15]. However, typically in ultracold experiments
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one controls the density and not the chemical potential µ. In order to go from the canonical description
to the grand-canonical one, one needs to exploit the relation between N and µ, generally a non-trivial
task. Moreover, standard experiments with imbalanced mixtures are not always straightforward
to realize, since often the phases separate or become unstable [2]. Therefore, designing alternative
methods to tune imbalances effectively appears a very interesting task. This can be even more relevant
if the chemical potential can be tuned in a space- or time-dependent way, which is not easy to realize
controlling the atomic populations. For instance, this possibility may be crucial for the synthesis of
unconventional superfluid pairings with nonzero momenta or for the creation of space–time defects.

In this paper, we provide a different method to induce and to control effective population
imbalances in experiments involving atoms of a binary mixture linearly coupled between them,
a major example being different hyperfine levels equally populated coupled by a Rabi rf-field.
The obtained imbalances hold for dressed one-particle states, obtained diagonalizing the Rabi term
that couples the hyperfine levels pairwise. The method works both for bosonic and fermionic atoms.
The Rabi coupling in fermionic and bosonic mixtures is well studied for a variety of applications
(see e.g., [16–21]) and widely used in ultracold atoms experiments [2,22,23]. We therefore think that
it would be straightforward to perform an experiment along the lines discussed in this paper for
realizing an effective imbalance between different hyperfine levels of ultracold mixtures.

In the presence of two-body interactions for the mixture, we argue that, under general conditions,
the dynamics can be equally described in terms of the original states or of the dressed states, as the
scattering processes do not destroy the coherence of the dressed states. A particularly interesting situation
is when the two-body interactions do not depend on the involved hyperfine species in the mixture.
This is the case of alkaline earth-like atoms, such as 87Sr [24,25] or 173Yb [26,27]. These atomic species
provide instances of SU(m)-invariant mixtures (with m = 10 and 6, respectively). Quite recently, similar
mixtures have been found important for the simulation of multispecies (anti-)ferromagnetism [28–31],
synthetic dimensions and effective quantum Hall systems [32], and two-flavor symmetry locking [33].
We note also that SU(m) invariance may hold approximately also for atomic species such as 87Rb
or 40K [34,35].

The discussion above suggests that our method provides a new method for efficiently probing the
physics of interacting imbalanced mixtures. As a first application, we focus on an attractive two-species
fermionic mixture, showing that its superfluid properties under Rabi coupling are the same as those
of an imbalanced mixture in the absence of a Rabi term. This example is particularly interesting
in view of the rich phenomenology of the imbalanced Fermi gases as imbalance and interaction
vary, also including FFLO physics (see e.g., [4,5] and references therein). Moreover, we argue that
this mapping allows for engineering spatially- and temporally-dependent imbalances. They can be
realized, for instance, by driving the intensity of the radio-frequency or of the Raman laser pulse which
can induce Rabi oscillation, as recently done in a Floquet spin-orbit coupling experiment [36].

The paper is organized as follows. After a general survey on the proposed method (Section 2) in
the presence of two-body interactions, we discuss the application of the Rabi coupling on an atomic
mixture of two hyperfine species in a realistic experimental setup, and its generalization to N-species
mixtures (Section 3). As a first example, we study a BCS/BEC superfluid in a mixture of two balanced
hyperfine species coupled by a Rabi pulse (Section 4), finding agreement, even at the mean-field level,
with the known literature on the two-species imbalanced fermionic superfluids in the absence of the
Rabi coupling. In Section 5 we reconsider the same problem in the continuous space, discussing the
effect of the Rabi coupling on the renormalization of the mean-field self-consistency equations for the
nontrivial order parameters. In Section 6 we address further applications, involving the possibility of
tuning the effective population imbalances in time and space, showing their experimental feasibility.
Finally, in Section 7 we collect and discuss the main results, as well as possible future developments.
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2. Two-Species Mixtures Coupled by Rabi Coupling

In this section we describe a general lattice setup where a mixture of two bosonic or fermionic
hyperfine species (labeled by σ = {↑ , ↓}) are coupled by a Rabi term. When not stated otherwise, these
two species are supposed to have the same filling: n↑ = n↓, with nσ ≡ Nσ

V , Nσ being the number of
fermions of the species σ on the lattice and V the number of sites of the lattice.

A Rabi term can be induced by microwave or radio-frequency techniques, or by two-photon
Raman transitions induced by two opportunely detuned laser beams [22,23]. The latter technique also
allows for a spatial dependence of the Rabi frequency, as described in Section 6.

For simplicity, we will consider a three-dimensional cubic lattice, but, as discussed in the following,
no significant changes arise in the continuum space or in lower dimensions. The atoms can hop between
nearest neighbor sites with hopping energy t (t > 0) and interact via a contact attractive potential
with magnitude U. The Rabi coupling flips the spin-σ orientations of the atoms, with frequency Ω(t, r)
which can be a complex value and may depend on time and position. We consider a real valued Ω(t, r)
of a factorized form in time and space, Ω(t, r) = Ω f (t)g(r). While by microwave or radio-frequency
pulses a non-constant g(r) is hard to obtain, by back-reflecting on a mirror the lasers inducing the
Raman transitions, one can achieve a sinusoidal profile g(r) ∝ cos(r · q), where q is the difference
between the wave-vectors of the two lasers.

In the discussion below we omit the space and time dependences, for which consequences will be
discussed at the end of the paper, in Section 6.

2.1. Fermions

We focus first on fermions. Thus, the Hamiltonian describing the system that we are interested in is

H = −t ∑
<i,j>,σ

c†
iσcjσ + Ω ∑

i

(
eiϕ c†

i↑ ci↓ + e−iϕ c†
i↓ ci↑

)
−U ∑

i
ni↑ni↓ , (1)

where niσ = c†
iσciσ are the number operators, and φ a generic phase.

Here we describe the system in the canonical ensemble, as for a single experimental realization,
where the number of the atoms is fixed. The Hamiltonian (1) can be mapped by the unitary transformation

ai± =
e−i ϕ

2 ci↑ ± ei ϕ
2 ci↓√

2
. (2)

to the following Hamiltonian

HROT = −t ∑
<i,j>,α

a†
iαajα + Ω ∑

i
(ni+ − ni−)−U ∑

i
ni+ni− , (3)

where α = ± and ni± = a†
i±ai±. We find that the original Rabi coupling ∝ Ω is mapped to an

energy imbalance h = 2 Ω, as for a Zeeman term. Even more importantly, the interaction ∝ U
transforms covariantly under the same transformation [37], allowing us to probe the Hubbard physics
on imbalanced Hamiltonians also (an example will be given subsequently). We finally mention
that, due to the Rabi coupling, an imbalance at Ω = 0 does not produce any qualitative difference,
as compared to the balanced case, once Ω is switched on (see e.g., [38]).

The Zeeman term can be also interpreted as a chemical potential term. Indeed, as we will describe
in Section 4, although the total number of particles N+ + N− = N↑ + N↓ ≡ N remains constant in
the present canonical scheme, the number N± is not fixed but can fluctuate, and therefore N± can be
considered as quantum averages. In particular, we will discuss the behaviour of the average difference
(N+ − N−) as a function of U and Ω, non vanishing in a normal state.

The calculations above are also valid in the grand canonical ensemble, introducing a chemical
potential µ and then letting N↑ (ni,↑) and N↓ (ni,↓) fluctuate, which is then fixed only in the average.



Condens. Matter 2018, 3, 14 4 of 15

In real experiments the µ-term in (4) can be ascribed to the average occupation numbers for different
experimental realizations. The resulting Hamiltonian reads:

H = −t ∑
<i,j>,σ

c†
iσcjσ + Ω ∑

i

(
c†

i↑ ci↓ + c†
i↓ ci↑

)
−U ∑

i
ni↑ni↓ − µ ∑

i,σ
c†

iσciσ , (4)

and the transformation (2) yields:

HROT = −t ∑
<i,j>,α

a†
iαajα −

(
µ−Ω

)
∑

i
ni+ −

(
µ + Ω

)
∑

i
ni− −U ∑

i
ni+ni−

= −t ∑
<i,j>,α

a†
iαajα − µ ∑

i

(
ni+ + ni−

)
+ Ω ∑

i

(
ni+ − ni−

)
−U ∑

i
ni+ni− . (5)

We find that the Rabi term in the old basis {↑, ↓} becomes, after the transformation in (2), an
imbalance term δµ = 2 Ω for the chemical potentials of the new species a±.

2.2. Bosons

For a bosonic system, three Hubbard interactions are possible: the intra-species interactions U↑↑
and U↓↓, and the inter-species interaction U↑↓, so that we get

H = −t ∑
<i,j>,σ

c†
iσcjσ + Ω ∑

i

(
eiϕ c†

i↑ ci↓ + e−iϕ c†
i↓ ci↑

)
−∑

i

(
U↑↑ n2

i↑ +U↓↓ n2
i↓ +U↑↓ ni↑ni↓

)
. (6)

The interacting term of this Hamiltonian transforms covariantly under the rotation in Equation (2)
iff U↑↑ = U↓↓ = U↑↓/2, which is the case for alkaline earth atoms [28,29]. In this case, with these
relations for the interaction strengths, applying Equation (2), Equation (6) maps to

HROT = −t ∑
<i,j>,α

a†
iαajα + Ω ∑

i
(ni+ − ni−)−

U↑↓
2 ∑

i
(ni+ + ni−)

2 . (7)

2.3. Trap Effects

In current ultracold atoms experiments, both for bosons and fermions, a typical ingredient is the
external trapping potential of the form

∑
i

V(ri) (ni↑ + ni↓) , (8)

where V(ri) =
m
2 ω2|ri|2 and ri is the vector distance of the lattice site at position i from the center of

the trap. We assume the trapping frequency ω and the mass m equal for both the species {↑, ↓}, as in
most of the experiments involving different hyperfine levels of the same atom. It is straightforward to
show that also the potential in (8) transforms covariantly under the rotation in Equation (2):

∑
i

V(ri) (ni+ + ni−) , (9)

and then all the previous discussions are not spoiled by the presence of this term.
In the light of the above consideration, we expect that the properties of balanced mixtures (both in

the canonical and in the grandcanonical ensemble) under the Rabi coupling and possibly of two-body
interactions (provided that the interactions do not to spoil the rotated states (2)) are equal to the physics
of imbalanced interacting mixtures. This will be further studied in Section 4, considering the superfluid
properties of the Hamiltonian (Equation (3)).
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2.4. Comments on the Experimental Implementation

In this subsection, we comment on the limits of tunability of the Rabi coupling, also in relation to
the other parameters, such as the typical hopping amplitude {t} and the strengths of the interaction
{Ui}. Indeed our method, to be effective, requires the Rabi coupling to be tunable over a range of
energies at least comparable with the smallest energy scales between the hopping amplitude and the
interactions. This condition is easily fulfilled for constant (or smoothly varying) Ω. Indeed, it is possible
to achieve Ω ∼ t within the validity of the tight-binding approximation. This favourable situation can
change if the Rabi frequency depends on the position or on the time. Roughly speaking, the allowed
dependence should fulfill the adiabatic theorem. In Section 6.2, we quantitatively discuss the limits
imposed by the presence of a sinusoidal behavior for Ω induced by Raman lasers. In particular we
will show that the related momentum transfer does not considerably limit further the range of allowed
values for Ω. Thus, it turns out that there are neither conceptual nor technical limitations in the use of
the Rabi coupling technique. Nowadays intensities Ω ∼ kHz are realistic, which are of the same order
of magnitude of the Fermi energies in typical experiments, both in the continuous space and on the
lattice. We conclude that unbalancing an attractive two-species hyperfine mixture by Rabi coupling
allows us to investigate (at least) both the BCS and BEC limits of the superfluid regime for ultracold
fermionic mixtures.

2.5. Further Generalizations

In principle, spin-dependent hopping tσ can be added to (4), for instance exploiting superlattice
configurations (see, e.g., [2] and references therein). Interestingly, if we apply the transformation in (2)
to the resulting Hamiltonian, we obtain:

Ht , ROT = −
t↑ + t↓

2 ∑
<i,j>,α

a†
iαajα −

t↑ − t↓
2 ∑

<i,j>

(
a†

i+aj− + a†
i−aj+

)
−
(
µ−Ω

)
∑

i
ni+ −

(
µ + Ω

)
∑

i
ni− −U ∑

i
ni+ni− , (10)

We find that, in the rotated frame, in addition to the spin-dependent chemical potential,
a spin-orbit-like coupling term appears. Therefore, this scheme can be used to simulate a spin-orbit
coupling, at least in one-dimensional lattices. If we proceed further with the diagonalization, we end up
with the Hamiltonian

H(diag)
t , ROT = ∑k

[
λ+(k) a†

k+ak+ + λ−(k) a†
k−ak− −Unk+nk−

]
, (11)

with
λ±(k) = εk − µ±

√
δε2

k + Ω2 , (12)

where εk ≡
εk↑+εk↓

2 and δεk ≡
εk↑−εk↓

2 , posing εk↑ = −t↑∑s=x,y,z cos ks, εk↓ = −t↓∑s=x,y,z cos ks.

3. Generalization to N Species

The model described in the previous section can be easily extended to a N−mixture (N = 2M) of
bosonic or fermionic atoms in several ways, for instance by coupling the various hyperfine species
pairwise. The non-interacting grand canonical Hamiltonian with possible imbalances in the densities
(with different chemical potentials) and in the hopping amplitudes reads in this case:

H{µl},{tl} = − ∑
<i,j>,l

t2lc†
i,2lcj,2l − ∑

<i,j>,l
t2l+1c†

i,2l+1cj,2l+1

−∑
i,l

(
µ2l c†

i 2lci,2l + µ2l+1 c†
i 2l+1ci,2l+1

)
+ ∑

i,l
Ωl

(
c†

i,2l ci,2l+1 + c†
i,2l+1 ci,2l

)
, (13)
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where l = 1, . . . , M labels the pairs of hyperfine species coupled by the Rabi coupling.
This Hamiltonian, after the unitary transformation

a(l)i± =
ci,2l ± ci,2l+1√

2
, (14)

becomes

H{µl},{tl}ROT = − ∑
<i,j>,α,l

t2l + t2l+1
2

a(l)†iα a(l)jα − ∑
<i,j>,l

t2l − t2l+1
2

(
a(l)†i+ a(l)j− + a(l)†i− a(l)j+

)
(15)

−∑
i,l

[(
µ2l + µ2l+1

2
−Ωl

)
n(l)

i+ +

(
µ2l + µ2l+1

2
+ Ωl

)
n(l)

i−

]
−∑

i,l

µ2l − µ2l+1
2

(
a(l)†i+ a(l)i− + a(l)†i− a(l)i+

)
.

Possible density–density interactions have the same form also in the dressed basis (14), provided
that the interactions involve only the hyperfine species pairwise 2l-(2l + 1):

M

∑
l=1

∑
i,j

Vl(i− j)
(

ni,2l + ni,2l+1

)(
nj,2l + nj,2l+1

)
(16)

(ni,α = c†
i,αci,α).

In this case, the transformation (14) yields

M

∑
l=1

∑
i,j

Vl(i− j)
(

n(l)
i+ + n(l)

i−

)(
n(l)

j+ + n(l)
j−

)
, (17)

where n(l)
i± = a†(l)

i± a(l)i± .
Another case, even more interesting from the experimental point of view, occurs when the

interactions pair all the hyperfine species in the mixtures, with the same strength and the same space
dependence (as for alkaline earth-like atoms [28–30,32], see also the Introduction):

∑
i,j

V(i− j)
2M

∑
s,s′=1

ni,s nj,s′ = ∑
i,j

V(i− j)

(
2M

∑
s=1

ni,s

)(
2M

∑
s′=1

nj,s′

)
. (18)

This interaction still transforms covariantly under (14):

∑
i,j

V(i− j)
M

∑
l,l′=1

(
n(l)

i+ + n(l)
i−

)(
n(l′)

j+ + n(l′)
j−

)
. (19)

In these cases, the dynamics can be described easily in terms of dressed states as well, since the
scattering processes related to the interactions do not spoil them.

A clarification of the latter point can be obtained considering the example of two species, ↑ and ↓
(labeled by the momentum), scattering in the s-wave channel. Due to the Pauli principle, the low-energy
scattering, supposedly elastic, can occur only in the channel

1√
2

[
↑ + ↓√

2
⊗ ↑ − ↓√

2
− ↑ − ↓√

2
⊗ ↑ + ↓√

2

]
(k) =

↑↓ − ↓↑√
2

(k)→ eiφk
↑↓ − ↓↑√

2
(k) , (20)

with φk being the momentum depending scattering phase. We find that eiφk globally multiplies the
final scattering state, without spoiling the relative coherence of the states ↑↓ and ↓↑. This is an effect of
the linearity of the scattering matrix [39] and it immediately holds if N = 2. The phase eiφk is nothing
but the phase resulting from the scattering at Ω = 0 of ↑ and ↓ particles, with momentum k in the spin
singlet state.
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In the general case, with N ≥ 2, the conditions that we imposed above on the interactions assure
that every scattering process changes the initial state |l〉±|l+1〉√

2
just by multiplying it by a pure phase

eiφlk , as for the case reported in Equation (20).

4. Two-Species Superfluidity in the Presence of Rabi Coupling

In this section, we exemplify the effect of an imbalance induced by Rabi coupling, focusing on a
two-species fermionic mixture and studying the properties of its superfluid phase. We consider the
Hamiltonian in (4):

H = −t ∑
<i,j>,σ

c†
iσcjσ − µ ∑

i,σ
c†

iσciσ + Ω ∑
i

(
c†

i↑ ci↓ + c†
i↓ ci↑

)
−U ∑

i
ni↑ni↓ . (21)

As discussed in Section 2, we explicitly include the chemical potential term. In the following,
this Hamiltonian and similar ones with an Hubbard interaction will be denoted as “full” Hamiltonians,
in contrast to the mean field quadratic Hamiltonians.

In the presence of a nonzero superfluid gap ∆ (to be verified a posteriori), the corresponding
(mean field) BCS-projected Hamiltonian is:

H = −t ∑
<i,j>,σ

c†
iσcjσ −

(
µ +

Un
2

)
∑
i,σ

c†
iσciσ + (Ω + γ)∑

i

(
c†

i↑ci↓ + c†
i↓ci↑

)
− ∆ ∑

i

(
c†

i↑c
†
i↓ + ci↓ci↑

)
. (22)

In Equation (22) we assumed the presence of a further bilinear order parameter, also coming from
the Wick decomposition of the Hubbard interaction term in Equation (21):

γ = −U〈c†
i↑ci↓〉 = −U〈c†

i↓ci↑〉 , (23)

due to the presence of the Rabi coupling. Moreover, we fix (Ω + γ) > 0, up to a phase redefinition of
the ciσ operators. Going to momentum space, the Hamiltonian (22) can be easily diagonalized, finding
the eigenvalues:

λ
(±)
k = Ek ± (Ω + γ) , (24)

where Ek =
√

ξ2
k + ∆2 and

ξk = εk − µ̃ , εk = −2t ∑
l=x,y,z

cos kl , µ̃ = µ +
UN
2V

. (25)

The Bogoliubov coefficients turn out to be the same as in the purely (Ω = 0) BCS case. However,
we find that, introducing the Rabi term, the quasiparticle excitation spectrum is split into two bands,
shifted by ±(Ω + γ) with respect to the usual BCS case. Correspondingly, the minimum of the
excitation spectrum is

∆G = ∆− |Ω + γ| . (26)

The ground-state energy reads:

ESUP =
V ∆2

U
+

1
2 ∑

k

[ (
ξk − λ(+)(k)

)
+
(

ξk − λ(−)(k)
) ]

+ ∑
k∈D̄

λ(−)(k) , (27)

where D is a domain in the first Brillouin zone defined as

D =
{

k ∈ 1stBZ : Ek > Ω + γ
}

(28)
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and its complementary domain as

D̄ =
{

k ∈ 1stBZ : Ek < Ω + γ
}

. (29)

The explicit calculation of the self-consistent equations for the order parameters ∆, γ, and µ is
performed by setting to 0 the derivatives of ESUP + µN + γ δN, δN ≡ (N− − N+), with regards to ∆,
γ and µ, respectively.

The introduction of the quantity γ δN stems from the Wick decomposition of the Hubbard
interaction in (21), similar to the first term in ESUP [40]. The final result is:

1 =
U
2V ∑

k∈D

1
Ek

, (30)

δN = − ∑
k∈D̄

1 , (31)

n =
1
V ∑

k

(
1− ξk

Ek

)
+

1
V ∑

k∈D̄

ξk
Ek

= 1− 1
V ∑

k∈D

ξk
Ek

. (32)

From (31), we conclude that γ ≤ 0, with γ = 0 (as well as D̄ = 0) iff Ω = 0; moreover in (32) an
additional term is present, compared to the Ω = 0 case.

We observe that the domain D, as well as its complementary D̄, differs from the definition
given implicitly in [5], where the contribution of the imbalance δN has been neglected in the Hartree
terms −UN− ∑i a†

i+ai+ −UN+ ∑i a†
i−ai−. In this case, it holds that D =

{
k ∈ 1stBZ : Ek > Ω + γ

}
and Equation (31) is simplified. This aspect will be discussed in Section 5, where we will infer that,
if U = 0, the parameter δN equals the imbalance of two fermionic species with chemical potentials
µ± ≡ µ±Ω. The same identification holds for the ground-state energy (27).

4.1. Comparison at Mean-Field Level

The mean field ground-state energy (27), resulting from the full Hamiltonian (21), equals the same
quantity for a imbalanced mixture under an onsite attraction [5], as described by the Hamiltonian (5).
Indeed, we found that the Hamiltonian (21) maps exactly to (5) under the transformation in (2);
for this reason the spectra and the phenomenologies at these two full Hamiltonians must be the same.
However, one can ask whether the equivalence exactly established is valid also at mean-field level.

In the following we show, as may be expected, that the equivalence is valid as well for the
corresponding Hamiltonians obtained in mean-field approximations, i.e., that the previous result holds
at the mean-field level (where the self-consistency conditions have to be enforced).

The mean-field Hamiltonian from (5) reads:

HROT = −t ∑
<i,j>,α

a†
iαajα −

(
µ−Ω

)
∑

i
a†

i+ai+ −
(
µ + Ω

)
∑

i
a†

i−ai−

−UN−∑
i

a†
i+ai+ −UN+ ∑

i
a†

i−ai− + ∆ ∑
i

(
ai+ai− + h.c.

)
+ µ N + Θ δN , (33)

Similar to the previous subsection, the self-consistent equations for ∆, N, δ N can be found deriving
ESUP + µN + Ω δN with respect to ∆, Θ, and µ [5]. The results are the same as in Equations (30)–(32).

We can check at this point the mean-field Hamiltonian obtained from (22) by the transformation in (2)

HROT = −t ∑
<i,j>,α

a†
iαajα −

(
µ−Ω− γ

)
∑

i
a†

i+ai+ −
(
µ + Ω + γ

)
∑

i
a†

i−ai−

− U
2

N ∑
i

(
a†

i+ai+ + a†
i−ai−

)
+ ∆ ∑

i

(
ai+ai− + h.c.

)
+ µ N + (Ω + γ) δN , (34)
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coincides with the mean-field Hamiltonian (33). Interestingly, this comparison sheds light on the
physical meaning of the parameter γ, yielding indeed:

γ =
U
2

δN . (35)

Summing up, we found that the relation in (35) for the mean-field parameter γ is imposed by the
request of equality between the mean-field Hamiltonians in (33) and (34), a fact physically motivated,
but not trivially implied, by the equivalence of the full Hamiltonians in (21) and (5).

4.2. Disscusions

Since the Hamiltonians in Equations (5) and (33) have been studied extensively in various papers
devoted to imbalanced fermionic mixtures [4,41], both at zero and at finite temperatures, we do not
further study their properties, and refer to the pertinent literature. For our purposes, indeed, the main
point we want to stress here is the equivalence of these Hamiltonians in the presence of Rabi couplings
with those describing imbalanced Fermi mixtures. In the experiments, one performs measurements on
the fermionic species c’s; from the obtained findings for the quantities 〈c†c〉 and 〈c†c†〉, and via the
relation between the c’s and the a’s, one can then reconstruct the phase diagram of the (a-)imbalanced
mixture. The resulting main feature, based on the available results, is the appearance, both on the
BCS and BEC sides, of a coexistence of normal and superfluid phases for suitable effective imbalances
δµ = 2Ω. Moreover, unconventional forms of superconductivity, such as FFLO, are conjectured
(for an extended review, see [6]). By the definition of γ, we expect that γ = 0 in a superfluid phase,
where N+ = N−.

5. The Continuous Case

In this section we deal with the analogous equation (1) in the continuum space. In this situation,
most of the features are qualitatively equal to the lattice case, and then we detail only the formulation
and discussion of the equations for γ, µ, and ∆. In particular, we discuss the removal of the infinities
encountered during their solution. We again assume work in three dimensions. The Hamiltonian is:

H(cont) =
1
V ∑

σ

∫
dr c†

σ(r)
(
− h̄2 ∇2

2m
− µ

)
cσ(r)

+
Ω
V

∫
dr
(

c†
↑(r)c↓(r) + c†

↓(r)c↑(r)
)
− U

V

∫
dr n↑(r) n↓(r) , (36)

with V denoting in this section the volume. The eigenstates of (36) in the absence of the interaction
term Hi = −U

V
∫

dr n↑(r) n↓(r) are superpositions of plane waves with momentum k, of the form
a±(k) =

c↑±c↓√
2
(k), as in (2). These states are assumed to be asymptotical in the scattering evolution [34],

and the interaction to arise between them without coherence-spoiling effects. Since here N = 2 in
the notation of Section 3, this requirement is automatically fulfilled (see the discussion therein).
The Hamiltonian transformed by (2) reads:

H(cont)
ROT = − h̄2

V ∑
α=±

∫
dr a†

α(r)
∇2

2m
aα(r) −

(
µ−Ω

)
V

∫
dr a†

+(r)a+(r)

−
(
µ + Ω

)
V

a†
−(r)a−(r)−

U
V

∫
dr n+(r) n−(r) . (37)
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Gap Equations

We consider the zero-temperature self-consistency equations for γ, µ, and ∆. These equations
have the same functional form as in the lattice case:

1 =
U
2

V
(2πh̄)3

∫
D

dk
1

Ek
(38)

γ = −U
2

V
(2πh̄)3

∫
D̄

dk 1 (39)

n = 1− 1
(2πh̄)3

∫
D

dk
ξk
Ek

, (40)

similarly, the domains D and D̄ are the same as in Section 4. Indeed, no assumption has been made
about the precise form of εk in the derivation of the equations for γ, µ, and ∆. Clearly, D and D̄ now
take values into the infinite set of all the possible three-dimensional momenta, and not any longer
in the first Brillouin zone. In order to derive (38)–(40) we also used the fact that ∑k → V

(2πh̄)3

∫
dk,

passing to the continuum limit.
In the absence of Rabi coupling, Equation (38) is known to be divergent and need regularization

by the introduction of the scattering lengths a [4]. Let us study what happens to (38)–(40) in the
presence of a Rabi term. To do this, it is useful to reconsider their derivation in the presence of a finite
range potential U(r), generalizing the equation in Section 4 (where a δ(r) interaction has been assumed
instead). The result is:

∆k′ =
1
2

1
(2πh̄)3

∫
D

dk
Ũ(k, k′)√

ξ2
k + ∆2

k

∆k , (41)

γk′ = −
1
2

1
(2πh̄)3

∫
D̄

dk Ũ(k, k′) , (42)

n = 1− 1
(2πh̄)3

∫
D

dk
ξk
Ek

, (43)

where Ũ(k, k′) = Ũ(k− k′) denotes the Fourier transform of U(r), Ũ(q) =
∫

dr eiq·r U(r). We insert
into these equations the scattering amplitude (for the moment not restricted to the l = 0 contribution)
f (k, k′), via the formula [39,42]:

f (k, k′) =
m

4πh̄2 Ũ(k, k′) +
1

(2πh̄)3

∫
dq

Ũ(k′, q) f (k, q)(
εk − εq − i0+

) . (44)

The solution of this equation can be obtained by iteration on f (p, p′) [39] in the second term to
the right side:

f (k, k′) =
m

4πh̄2

[
Ũ(k, k′) +

1
(2πh̄)3

∫
dq

Ũ(k′, q) Ũ(k, q)(
εk − εq − i0+

) + . . .

]
, (45)

the approximation keeping only the first term of (45) quoted as the (first) Born approximation [39].
Multiplying now both of the terms in (44) for dk′, performing this integration, and exploiting (44),
we obtain:

∆k′ =
1
2

4πh̄2

m
1

(2πh̄)3

( ∫
D

dk
f (k, k′)√
ξ2

k + ∆2
k

−
∫

dk
f (k, k′)
εk − εk′

)
∆k . (46)
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Let us restrict now the scattering in the low-energy limit, where k, k′ → 0: in this regime ∆k,k′ → ∆
and f (k, k′)→ −a (a being the scattering length in s-wave, supposed negative) [39], so that we obtain:

1 = −1
2

4πh̄2a
m

1
(2πh̄)3

( ∫
D

dk
1√

ξ2
k + ∆2

k

−
∫

dk
1
εk

)
. (47)

This equation is the renormalized version of (38). Note that the integration on the second term in
the right part of (47) is onto all the possible momenta, independent on the range of integration D of
the first term, as in the absence of the Rabi term. The result is expected in the light of the mapping
of (4) on (5): the effective imbalance in the last Hamiltonian does not affect the interaction.

We deal now with (42): this is finite since D̄ is finite. Using the Born approximation f(k, k′) ≈ m
4πh̄2 Ũ(k, k′),

one gets:

γ = −2πh̄2a
m

1
(2πh̄)3

∫
D̄

dk . (48)

We stress that this approximation, well motivated here, is instead a source of divergencies if used
in (38) and (41). Different approximations in (38) and (39) for the scattering amplitudes are possible
since the two equations are decoupled: the latter one can be solved once the former and (40) have
been solved at the same time (see the end of this subsection). Finally we observe that (40) is finite and
independent on Ũ(k, k′), and thus it does not require any further handling prior to being solved.

We consider now the explicit solution of (47), (48) and (40): we already showed that ∆ and γ

cannot be non-vanishing at the same time, for this reason we consider separately the super-conductive
(γ = 0, ∆ 6= 0) and normal state regimes (γ 6= 0, ∆ = 0). Notice that in the case of coexistence of
superfluid and normal state, as for suitable imbalanced fermionic mixtures (see [6] and references
therein), the two cases can be discussed separately.

In the superconductive regime,D involves all the possible momenta and D̄ = 0, and one has:

m
4πh̄2a

= −1
2

1
(2πh̄)3

∫
dk

 1√
ξ2

k +∆2
− 1

εk

 (49)

n = 1− 1
(2πh̄)3

∫
D

dk
ξk
Ek

, (50)

i.e., the usual equations describing the BEC/BCS crossover (see [43,44] and references therein, as well
as, for example, [45] for the two-dimensional case).

As occurs for (41) and (43), the parameter γ does not appear in (49) and (50). For this reason, in the
normal state, (48) can be solved independently, putting inside it the value µ̃ obtained for each pair
of external parameters (a, Ω), from the solution of (50) with ∆ = 0. Here D̄ = {k : |ξk| < Ω + γ} ={

k : | |k|
2

2m − µ̃| < Ω + γ
}

. The set D̄ can be rewritten as D̄ =
{
{µ̃ < k2

2m < µ̃ + Ω + γ} ∨ {µ̃ −

(Ω + γ) < k2

2m < µ̃}
}

, so that a straightforward integration of (48) leads to:

γ = −4
√

2 π

3 h3 UVm
3
2

[
(µ̃ + Ω + γ)

3
2 − (µ̃−Ω− γ)

3
2

]
. (51)

This equation can be solved numerically or analytically after some algebra, however the explicit
solution is not very enlightening. A considerable simplification, together with a deeper insight,
can be achieved neglecting the Hartree terms from the interaction ∝ a. In this way, exploiting (35),
we also obtain:

δN = −8
√

2 π

3 h3 Vm
3
2

[
(µ + Ω)

3
2 − (µ−Ω)

3
2

]
. (52)
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By direct inspection, it easy to check that (52) is equal to the imbalance between two free Fermi
gases with chemical potential µ± ≡ µ±Ω. This result, valid also in the presence of a lattice, clarifies
even further the meaning of δN and γ.

6. Further Applications

Various applications and extensions of the Hamiltonian (1) are interesting and experimentally
feasible. In the past sections, we described two examples, based on imbalances in the initial densities of
two hyperfine species in the considered mixture or in their hopping terms. In this section, we describe
two possible further applications of the Rabi coupling, also feasible in present experiments.

6.1. Time Modulation

An interesting set of possible applications of the Rabi coupling applied to atomic mixtures opens
when a time dependence on the time τ is considered in Equation (1). The resulting Hamiltonian can be
mapped by the transformation in (2) to:

HROT(τ) = −t ∑
<i,j>,α

a†
iαajα −∑

i

[(
µ−Ω(τ)

)
ni+ +

(
µ + Ω(τ)

)
ni−
]
− U ∑

i
ni+ni− . (53)

This Hamiltonian can be realized in the present experiments by varying in time the intensity of
the lasers inducing the Raman transitions at the basis of the Rabi coupling. The allowed profile of
variation is controllable in experiments, as well as the rate of variation. It can be changed from scales
much larger to those much smaller than any intrinsic timescale of the experiment [46]. In this way,
different situations, including quenches or adiabatic evolutions, can be probed.

Note at the end that such a type of imbalance cannot be achieved easily without Rabi coupling
acting on the numbers of atoms for each hyperfine species of the mixture, since these numbers are not
easily controllable in time.

6.2. Spatial Modulations

Another interesting extension is the study of the space-dependence of the Rabi coupling Ω(i) in
Equation (1). Again, in our knowledge such a type of imbalance cannot be achieved following other

techniques. Experimentally feasible spatial dependences Ω(i) are (1) Gaussian: Ω(r, r0) = Ω e−
|r−r0|2

σ2 ,
with σ ≈ 10–100 µm and then of the order of 10–100 lattice sites for a typical lattice; and (2) sinusoidal
along a direction: Ω(r) = Ω sin kR · r, where kR can be tuned varying the angle between the lasers
inducing the Rabi coupling, with its maximum magnitude being |kR|(max) = 2π

λR
(λR is the wavelength

of the lasers). In this interesting case, we obtain, via the transformation in (2), a spatially-modulated
chemical potential:

HROT(τ) = −t ∑
<i,j>,α

a†
iαajα −∑

i

[(
µ−Ω cos~φ · ri

)
ni+ +

(
µ + Ω cos φ · ri

)
ni−
]
− U ∑

i
ni+ni− . (54)

It would particularly interesting to study the effect of a generic modulation ~φ on a superfluid phase.
As addressed at the end of Section 2, since the Rabi coupling with spatial dependence also

transfers momentum δp to the atoms, in the presence of an optical lattice, its intensity is limited
by the requirement that excited Wannier functions are not populated significantly [46]. The Rabi
transition width involving different Wannier states reads Ωi,j ∝ 〈wi(r)|ei(δp)·r|wj(r)〉, being wm(r) the
m-th Wannier function at each site [1]. Considering just the first two Wannier functions, w0(r) and
w1(r), the probability P0,1 of transition between them by a two-photon Raman transition giving rise

to the Rabi coupling is P0,1 =
(

Ω√
Ω2+E2

g

)2
, Eg being the energy difference between the two Wannier

states. Imposing this quantity as much less than 1, we obtain Ω � Eg. For a deep optical lattice

potential, where the confinement on the lattice is approximately harmonic, Eg ∼ 2ER
( V0

ER

) 1
2 [1], so that
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Ω
ER

. 2
( V0

ER

) 1
2 . V0 is the maximum intensity of the confining lattice potential and ER = h̄2k2

2m the recoil
energy, k = 2π

λ being in turn the wave vector of the laser light creating the lattice and m the mass of the
atoms. The lower bound for the ratio V0

ER
, such that the tight-binding approximation holds, is V0

ER
∼ 5.

The scattering amplitude t for a n-dimensional hyper cubic lattice in the regime
(

V0
ER

)
� 1 can be

estimated as [1]

t ≈ 4√
π

ER

( V0

ER

) 3
4

exp
[
− 2
( V0

ER

) 3
4
]

. (55)

From this formula, with V0
ER

& 5, we also obtain t
ER

. 0.08 and Ω
t . 23.2

(
V0
ER

) 1
2
. We find that basically

the ratio Ω
t is only limited by the achievable intensity for V0 before reaching appreciable heating

regimes. As written at the end of Section 2, the reachable intensities by present laser techniques
can be of the same order of the Fermi energies in typical experiments, both in continuous space and
on a lattice. Thus, we conclude that our method is effective in a very wide range of intensities for
Rabi coupling.

7. Conclusions

We have shown that Rabi coupling applied to an atomic mixture of different hyperfine levels gives a
simple method to design and control effective population imbalances. These effective imbalances hold
for dressed one-particle states obtained diagonalizing the mixing matrix related to the Rabi coupling.
The method works equally for bosonic and fermionic atoms.

The presented way of controlling the chemical potential opens up the possibility of very effectively
probing the physics of interacting imbalanced mixtures. Indeed, as shown explicitly for a balanced and
interacting two-species fermionic mixture, the superfluid properties in the presence of Rabi coupling
are the same as those for an imbalanced mixture in the absence of the Rabi term. It would be very
interesting to have spin-dependent tunneling, in order to create spin-orbit-like couplings, a case we
plan to study in future work.

Notably, the proposed method can be also exploited to engineer spatially and/or temporally-
dependent effective population imbalances, generally not achievable in the present ultracold atoms
experiments. We hope that the discussion presented in this paper will stimulate the design of new
experiments in the near future.
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