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A complete framework for the synthesis
of powered floor systems

Stefano Seriani, Eric Medvet, Sergio Carrato, and Paolo Gallina

Abstract—One of the most pressing issues in the field of
mobile robotics is that of power delivery. By being fundamentally
unattached to the environment, these systems often employ
batteries. However, this can have some limitations related to cost,
battery life etc.; a promising approach is that of powered floors,
where a specially designed contact array is connected to the robot,
and slides on a surface in which conducting bands are laid out,
providing a continuous and uninterrupted electrical connection.
In this paper, we provide a complete framework for the analysis
and synthesis of these systems, to be used in the field of mobile
robotics. We study the problem both in terms of feasibility and
in quantitative terms; in particular, we illustrate a methodology
related to n-sided polygons which takes into account a fuzzy
representation of the bands, useful to analyze tolerances in the
bands boundaries or in the position of the individual brushes.
We support the theoretical framework with both numerical and
experimental campaigns, and compare the results with existing
state-of-the art solutions. Finally, we discuss possible further
developments.

Index Terms—Powered floor, wheeled robots, industrial robots,
mechanism design.

I. INTRODUCTION

The task of delivering electrical power to mobile robots
or, more generally, to mobile systems, continues to challenge
many aspects of the world of transportation, automation and
logistics. The vast majority of electrical mobility traditionally
relies on batteries, including road transportation, industrial
logistics, and mobile robots [1]. Perhaps the most endemic
solution that does not involve the use of energy storage is
that of the electrified railroad system, which employs sliding
contacts mounted on pantographs, closing the circuit with
aerial cable conductors [2], [3]. Alternative, less common
solutions are conductors embedded in the road, e.g., the
Ansaldo-Breda project TramWave [4].

In the field of robotics, in recent years, the industry has
seen incremental adoption of Autonomous Ground Vehicles
(AGVs) mainly as a means of internal logistics. However, these
systems rely almost completely on batteries for their energetic
requirements, causing severe downtime due to charge time [5],
[6]. For this reason, continuous charging methodologies and
direct power delivery have been proposed [7]. The most
common approach found in mobile robots literature is that
of wireless energy delivery through the use of resonating
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coils [8], [9]. The same concept is found in the field of
electrical road transportation [10], [11], [12], [13]. Several
surveys are available on the recent advancements in the field
of wireless power transfer [14], [15], [16]. In particular, Jang
et al. discuss on the current state-of-the-art of these systems,
highlighting the efficiency as an advantage, while costs of the
infrastructure can prove high.

Other approaches rely on the logistics of power delivery,
rather than the technology itself; this is the case of coordinated
charging [17] and of energy logistics models [18]. Yet another
mean to transfer energy to mobile robots is that of tethers [19],
[20].

A common way of delivering energy to mobile robots is
by means of sliding-contacts [21], [22]. This is the focus
of the present paper. In general, this type of power delivery
system allows for relative motion in a single direction, as
is the case with slip-rings. However, some examples have
been proposed that allow for bi-dimensional relative motion;
in 2002, Watson et al. [23] apply a methodology—originally
invented by C. Shannon at the AT&T Bell Laboratories in
1950—for continuous power delivery to small mobile swarm
robots: this was based on sliding contacts. A more recent
example is the Droplets platform [24]. That of swarm robotics
is a field which shows remarkable affinity with the concept
of powered floor [25], [26], [27]. Similarly, powered floors
may be beneficial to evolutionary robotics, since they allow
researchers and practitioners to run experiments for long times
involving real robots, without interruptions for charging and
physical obstacles impeding access to the robots [28], [29].

Powered floors based on sliding contacts are a flexible and
inexpensive solution to provide continuous power to mobile
robots; wireless power transfer systems, on the other hand,
generally require costly infrastructure (i.e., the array of coils
for the transmitter needs to be placed to cover the entire floor)
and produce very high values of stray magnetic fields [14].
Ultimately, the application is key in the correct determination
of the more suitable type of powered floor.

All other solutions (e.g., batteries, tethers, etc.) mentioned
up to this point tend to severely hinder the freedom of
movement of the vehicles, and are thus ill-suited either for
continuous operation or in cluttered environments.

In this paper, we focus on a systematic study of the alternat-
ing bands sliding-contact based powered floor introduced by
C. Shannon in the 1950s [23]; to the best of our knowledge,
this is not available in current state-of-the-art. We provide
a comprehensive framework for contacts patterns based on
regular polygons of n sides. We demonstrate that triangle- and
rectangle-shaped patterns cannot always guarantee contact,
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and that Shannon’s pattern itself has several limitations.
In Section II a comprehensive analysis of the concept of

powered floor or powered surface is presented, along with
the main factors that will be taken in considerations in the
rest of the article; in Section III we present the mathematical
framework which constitutes the backbone of the method-
ology; in Section IV we outline the methodology that can
be used to design and analyze n-gon based powered floors;
in Section V we present a full numerical and experimental
campaign to both validate the methodology itself and to
validate an octagon-based prototype; finally, in Section VI we
present our concluding remarks.

II. THE POWERED FLOOR

Starting from the work of Shannon in the 1950s [23], the
concept of powered floor has had limited development through
the years. The idea revolves around using supernumerary, i.e.,
more than 2, sliding contacts, organized in a rigid contact
array, that interacts with a floor made of alternating polarity
bands, along with the electronics to switch between the bands
in order to provide a constant source of power. We can define
the contact array geometry as the spatial arrangement of the
brushes with respect to a common frame of reference. The
most common geometries for these constructs are the 3-contact
equilateral triangle [24] and Shannon’s 4-contact array. These
can be seen in Fig. 1a, b and Fig. 1e, f respectively. The
same figure shows a square configuration as well, for reference
(Fig. 1c, d). The band geometry can be defined as the ratio
between the width of the conducting bands and that of the
insulator bands between them. In this respect, to achieve
functionality, the geometry of the contact array and that of
the bands need to be compatible.

It should be noted at this point that, in this work, we focus
on patterns of arrays based on regular polygons; however,
the mathematical framework which is highlighted in III and
the related methodology are general and can be applied with
minimal modifications to arrays of arbitrary geometry. For
example, [30] describes a method for the automatic design
of arrays of contacts based on evolutionary computation and
built on a simplified version of the framework presented in
this paper.

The most important aspect of the powered floor is consis-
tent power delivery, i.e., power should be delivered with no
interruptions. This problem is dependent on the geometry of
the contact array and of the polarity bands. If we define a
metric µ for the size of the components, then µB and µC are
the sizes of the bands and contact-array respectively (e.g., the
width of the bands, and the radius of the circular hull of all
contact points). Note that the width of the insulator band is
assumed constant. We can then state the problem as follows:
“The powered floor-contact array pair is functional if there is at
least one combination of µB and µC that guarantees a closed
circuit, whatever the orientation and position of the contact-
array with respect to the bands”. In the following sections,
these two quantities will be defined in terms of a mutual ratio,
in order to keep a dimensionless approach.

In Fig. 1b and d we show that some configurations (i.e.,
orientation and position relative to the floor) of the equilateral

triangle and square produce non-closed circuits. This is true
for whatever scale ratio µC/µB ; in the case of the triangle,
the reason being that if two points are on the insulation band,
the only other point is not sufficient to close any circuit; in the
case of the square, because of the inherent parallelism of its
sides, if two points are on the insulation band the other two
points will always be on the same polarity band, thus unable
to provide a closed circuit. Note that this reasoning extends
to parallelograms in general. In this case the conditions laid

0 x

y

−+−0 x

y

−+−

d)c)

0 x

y

−+− 0 x

y

−+−

b)a)

0 x

y

−+−0 x

y

−+−

e) f)

g) h)

Positive contact Negative contact Insulated contact

Fig. 1: Contact geometries. In a) a 3-brush geometry arranged
as a regular triangle is shown to be connected both to the
negative and positive poles. In b) the same geometry is shown
but at a slightly different angle, showing only contact with
the negative band. In c) a square brush geometry is shown
that closes the circuit, whereas in d) the same is shifted by a
slight amount, showing incomplete contact. In e) and in f) an
embodiment of Shannon’s design is illustrated, respectively in
a complete contact configuration and one that is incomplete. In
g) a set of constant size inadequate configurations are shown
of Shannon’s geometry, while in f) the same is done with thin
insulation bands and varying µC dimension.
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down in the problem statement are not met, hence triangle and
parallelogram geometries do not provide consistent electrical
contact.

In Fig. 1f we show a special case of Shannon’s geometry
that does not provide a closed circuit in at least one configu-
ration. Similarly, in 1g a collection of orientations is shown to
provide non adequate connection; finally, in h) an illustration
is shown of several configurations of µB and µC that produce
non-adequate electrical contact. To best describe this, zero-
width insulation bands are used. Consequently, non-functional
configurations such as these can be avoided by selecting a
proper µC/µB scale ratio.

While it can be shown that Shannon’s geometry behaves
adequately when the insulator bands are thin, we note that it
falls short where these are wider. In fact, in this paper we
illustrate how pentagons and higher polygons provide best
results when insulator bands are very wide. A hint of this lies
in the reasoning that a higher number of contact points has a
higher probability of being in contact with both polarity bands.
An example is shown in Fig. 2, where a pentagon is shown in
a functional (a) and non-functional (b) configurations, which
differ by their µC/µB ratio; finally, a prototype is illustrated
(c) of an 8-contact point system.

III. MATHEMATICAL FRAMEWORK

The geometry of the contact points and of the polarity
bands deeply influences the performance of the powered floor
and of the delivery system in general, i.e., the functionality
and robustness of the system. Hence, in order to provide
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Fig. 2: Contact geometry. In a) a 5-brush geometry is shown.
In b) the same is shown at a slightly different scale. In c) our
prototype 8-brush geometry is shown.

the means for a quantitative approach to the problem, we
propose a general framework for the computation of the
performance. More in detail, two methodologies are proposed:
one discrete, based on set-theory, which assumes there is a
clear boundary between conductor and insulation bands; one
continuous, which assumes a continuous and differentiable
transition between conduction and insulation states. The for-
mer methodology is computationally faster, while the latter,
although much slower, provides more insight in the robustness
of contact close to the boundaries of the conduction bands.

A. Discrete model

The scheme of Fig. 3 is useful to derive the mathematical
framework of the contact problem. The rectangles represent
the planar conducting bands whose width is w (light grey
color in figure): positive voltage bands are interdigitated with
negative ones. They are separated by non-conducting narrow
stripes whose width is v (dark grey color in figure). Ω is the
geometric center of the robot, 〈x, y〉 is the inertial reference
frame, 〈x′, y′〉 is the frame linked to the robot, while ϑ is the
angular orientation of the robot. The robot is provided with
n sliding contacts Q1, ..., Qn, named “pins” in the following,
that power the battery charging circuit. φi and ri are the polar
coordinates of i-th pin with respect to the robot reference
frame. The sliding contacts are placed on a circumference,
thus ri is constant. Thanks to the continuity of the conducting
bands along the y direction, what it is relevant to the problem
is the x-coordinate xi of each pin, namely:

xi(xΩ, ϑ, ri, φi) = xΩ + ri sin(ϑ+ φi) (1)

Let’s assume that the origin of the inertial frame is located in
the middle of the negative voltage band. Therefore an interval
of coordinates x that bounds the negative voltage region is
given by the set:

Z−l =
{
x ∈ R : 2l(v + w)− w

2
< x < 2l(v + w) +

w

2

}
(2)

where l is an index that sequentially numerates the stripes.
Without loss of generality, we assume that l = 0 refers to the
negative voltage stripe including the inertial reference frame

Fig. 3: Definition of the geometry of the system; in a) the
positive and negative bands are shown in light grey, whereas
dark-grey indicates the insulating material; in b) the i contact
points are shown, indicated by the letter Q and the index i.
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origin. Likewise, an interval of coordinates x that bounds the
positive voltage region is given by the set:

Z+
l ={x ∈ R :

2l(v + w) +
w

2
+ v < x < 2l(v + w) +

3

4
w + v}

(3)

Note that the integer l can also take negative values.
Combining all the sets, it is possible define the non-connected
set of values x that defines the negative voltage area and the
positive voltage one, respectively

Z− =
⋃
l

Z−l and Z+ =
⋃
l

Z+
l (4)

In order to define when a pin is in contact with a positive
or a negative conductor, let’s define the functions:

f−i = f− (xΩ, ϑ, ri, φi) =

{
1 if xi ∈ Z−

0 otherwise
(5)

f+
i = f+ (xΩ, ϑ, ri, φi) =

{
1 if xi ∈ Z+

0 otherwise
(6)

Therefore, when the i-th pin is powered by a negative
voltage, the Boolean value of f−i is 1 (true), otherwise 0
(false). Likewise, when the i-th pin is powered by a positive
voltage, the Boolean value of f+

i is true. Note that f−i f
+
i = 0

for all i. Given the robot geometric parameters ri, φi, and for
a given robot position {xΩ, ϑ}, the power supply module is
powered when there exists a pin i for which f−i = 1 and, at
the same time, there exists another pin j (with j 6= i) for which
f+
j = 1. Mathematically, this is expressed by the function:

F̃ (xΩ, ϑ, r,φ) =

{
1 if ∃i : f+

i = 1 ∧ ∃j : f−j = 1

0 otherwise
(7)

where r = {r1, . . . , rn} and φ = {φ1, . . . , φn}. A value F̃ =
1 guarantees power supply for a given pose of the robot on
the floor. In order for the robot to reach every point of the
working space without losing power supply, it is necessary
that F̃ = 1 on the entire (xΩ, ϑ) space. Therefore, we can
define the function,

F (r,φ) = min
xΩ,ϑ

F̃ (xΩ, ϑ, r,φ) (8)

At this point, we can say that the system is functional if the
following is verified:

F (r,φ) = 1 (9)

However, the function F only provides information about
whether the contact occurs or not, but it does not provide any
information about the quality of the contact. As an alternative,
a different, more descriptive index function can be introduced.
Indeed, since each pin-band contact is characterized by an
intrinsic resistance that limits the maximum current, it is
desirable to describe the performance in terms of the minimum
number of connected contacts.

Moreover, by considering that, whatever the geometry
(r,φ) and the floor parameters w and v, there will necessarily
be at least one configuration (xΩ, ϑ) for which at least two pins
will be in contact with an insulation band (e.g., see Fig. 2b),

the maximum possible number of pins in contact (with either
conductive band) will be n− 2.

The function, called Contact Quality index (CQI), can be
defined as follows:

F̄ (r,φ) = min
xΩ,ϑ

2
∑
i f

+
i

n− 2
= min
xΩ,ϑ

2
∑
i f
−
i

n− 2
(10)

The rightmost equivalence in Eq. 10 can be demonstrated
by noting that there is an inherent symmetry due to the fact
that each contact can accept positive or negative polarity
indifferently; indeed, every configuration determined by xΩ

has an analogue at xΩ + w + v, but with the polarity flipped
for each pin. For example, if the worst configuration for a
8-contact array has pin 1 on a positive band, pins 2 to 6 on
negative bands and pins 7, 8 on the insulator, a configuration
necessarily exists which has pin 1 on a negative band, and 2
to 6 on positive bands, and the same 7, 8 pins on the insulator.
We can see that the CQI will be always ≤ 1; hence:

F̄ (r,φ) ∈ [0, 1] (11)

Finally, the best possible contact configuration occurs when,
in the worst robot position and orientation (xΩ, ϑ) case,
assuming the pins are even-numbered, the number of pins in
contact with positive voltage bands is equal to the number of
pins in contact with the negative voltage bands and the pins
on insulator bands are exactly two. In case the pins are odd-
numbered, the best configuration would be that which shows 2
pins on the insulator bands, while the rest are distributed on the
positive and negative bands, with a difference of 1. Within the
same 8-pin example: there always exist at least one position
and orientation (xΩ, ϑ) where 2 pins are in contact with an
insulator band (there is always a line that passes through
two points in a plane); the remaining 6 points are distributed
on the polarized bands, three by three. This “best solution”
circumstance is expressed when the CQI index approaches 1:

F̄ (r,φ) = 1 (12)

B. Continuous model

In order to more accurately characterize the power deliv-
ery with respect to the interaction between the robot and
the powered floor, we present yet another complete model
that includes a fuzzy representation of the conducting bands.
This approach has two advantages: it allows to characterize
possible irregularities in the bands boundaries, thus providing
an approach to the modeling of the possible errors, and it does
not involve binary operators or Boolean logic, which can be
hard to cope with when using certain numerical optimization
methods.

Taking over from the geometrical representation that was
described in Fig. 3 and in Section III-A, we can describe the
interaction of the individual pin Qi with a specific band as a
C∞ function p+ : R 7→]0, 1[, as shown in Fig. 4a.

To this intent, we propose the function p+(s) =
ς(Λ, ξa(s))ς(Λ, ξb(s)), where ξa(s) = −s−w/2 and ξb(s) =
s − w/2. Note that, in order to define the function p+, we
introduced the variable s ∈ R. The function ς ∈ C∞ is
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a sigmoid, in this case represented by the logistic curve, as
follows:

ς(Λ, ξ) =
1

1 + eΛξ
. (13)

The resulting formulation is as follows:

p+(s) =
1

(1 + eΛξa(s))(1 + eΛξb(s))
(14)

The function p+(s) is designed to be symmetrical with
respect to s = 0 and presents the following characteristics:

p+(0) −→ 1 (15)

p+(w/2) −→ 1

2
(16)

p+(w) −→ 0 (17)

An instance of this function is visible in Fig. 4a. The
parameter Λ influences the rate of change, or “hardness” of
the polarity functions.

If we call δs the distance from the nominal edge of the
band and δp+ the deviation from zero of the polarity at the
distance δs, then we can express Eq. 13 as:

Λ =
1

δs
ln

(
1

δp+
− 1

)
(18)

This allows to define the desired indeterminacy ε(δs) = δp+

of the bands boundary, and thus assign an adequate value Λ to
represent it. The same considerations apply to p−(s) as well.
For example, in order to have 99% of p+ at 1 mm from the
nominal boundary, we would need to assign the value Λ '
4595.

Having defined a monopole band, we can now define a
corresponding array. This is done by operating on the variable
s. Indeed, we can consider the array of bands p+

a and p−a as
two C∞ functions themselves, by arguing that:

p+
a (x) =

N∑
k=−N

p+ (x+ 2k(w + v)) (19)

p−a (x) =

N∑
k=−N

p− (x+ (2k + 1)(w + v)) (20)

A formally correct representation would call for N = ∞;
however, in order to compute the problem numerically, and
considering the property of Eq. 17, N can be set as a small
finite number, depending on the values of Λ. At this point, the
arrays of positive and negative pole bands are defined formally.
By looking at Fig. 3 and Fig. 4b, one can see that the points
Qi travel around the surface, each being defined as Qi =
〈xQi , yQi〉T . We can thus calculate the polarity value of each
point, by applying Eq. 19, which yields p+

a (xQi
) and p−a (xQi

)
for all n points Qi, thus, from Eq. 1 we can define the Side
Polarity functions:

P+(r,φ, xΩ, ϑ) =

n∑
i=1

p+
a (xQi) (21)

P−(r,φ, xΩ, ϑ) =
n∑
i=1

p−a (xQi
) (22)

The positive Side Polarity function P+ can be seen as a
measure of the quantity of points that are in contact with the
positive bands; by contrast, P− shows the quantity related
to the negative bands. In fact, in mathematical terms, each
point Qi is connected to each existing band, however far. On
the other hand, since each band is defined as a rather steep
sigmoid, the share to the value P+ tends to be negligible for
distant bands.

Based on these considerations, if we define Pth ∈ ]0, 1] as a
threshold for the P+ and P− functions, then it can be easily
seen that the working condition can be written as follows:

P+(r,φ, xΩ, ϑ) ≥ Pth ∧ P−(r,φ, xΩ, ϑ) ≥ Pth (23)

or, equivalently:

P (r,φ, xΩ, ϑ) = min (P+, P−) ≥ Pth (24)

where P denotes the Total Polarity value of the contact pins
on the robot. For example, Pth = 0.5 leads to similar results
to those of the Boolean model described in Section III-A.

Since it stands that P+ and P− ∈ C∞, and thus P ∈ C∞,
henceforth, since P+ and P− ∈ ]0, n], it can be stated that
P provides a smooth measure of the robustness of contact
between the powered floor and the contact pins on the robot.
Unfortunately, the Total Polarity does not include information
on the quality of contact. Therefore, we can define the function
Π as a measure of the number of positive and negative contacts
as follows:

Π(r,φ, xΩ, ϑ) =
2P (r,φ, xΩ, ϑ)

n− 2
(25)

which shows perfect balance when Π ≈ 1.
Once we have defined the functions P (r,φ, xΩ, ϑ) and

Π(r,φ, xΩ, ϑ), which are in terms of geometry (r and φ) and
configuration (xΩ and ϑ), we can proceed to the computation
of the associated indices, as done in Eq. 9 and 10, thus having:

F ∗ (r,φ) = min
xΩ,ϑ

P (r,φ, xΩ, ϑ) (26)

F̄ ∗ (r,φ) = min
xΩ,ϑ

Π(r,φ, xΩ, ϑ) (27)

A critical comparison can be seen in Fig. 5, where plots of
F , F̄ , F ∗ and F̄ ∗ are shown for a specific geometry (regular
octahedron) of varying radius, where the two pairs of plots
give remarkably similar results. It can be seen that the the
continuous method gives more information with respect to
the discrete. Furthermore, the binary nature of the discrete
method is shown, which is to be expected from the definition
of F̃ , in 7. Moreover, it is apparent that the continuous method
conveys intermediate information related to the interaction of
the contact points with the bands boundaries.

IV. METHODOLOGY FOR REGULAR POLYGONS

The mathematical framework described in III can be used
to implement a methodology aimed at the design of powered
floors where the pins are constrained on the vertices of a
regular n-gon. In the following paragraphs the main aspects of
the methodology will be illustrated, and a practical case study
will be described that takes advantage of the methodology.
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Fig. 4: Definition of the polarity functions. In a), the general positive polarity function p+ is shown against the variable s,
highlighting the smooth transition between conducting and insulating bands; in b) the polarity array functions p+

a and p−a are
shown for the conductor bands of the system, along with the projections on the x-axis of two pins Qi and Qi+1; in c) a
representation of the fuzzy band-boundary model is shown for a positive polarity p+, along with the other main quantities at
play.

A. Methodology

The models described in III, both the discrete and continu-
ous, are general in the sense that they allow for any possible
geometry of the contact pins or brushes with respect to the
conductor and insulator bands. This geometry is described
by the (r,φ) polar coordinates of points Qi. However, by
constraining the points Qi to a circumference of radius R as
visible in Fig. 3a, a methodology can be described to design
the powered floor.

For the n-gon of radius R, the expressions for the working

Fig. 5: Performance analysis as a function of the contact pin-
array (a regular octahedron) dimension. Comparison between
the performance, in terms of polarity functions and polarity
balance, with the discrete and continuous methodologies,
shown respectively on the top two plots and the bottom two.
The parameters used for this analysis are described in detail
in Sec. IV-B.

condition and CQI can be written as follows:

F (r,φ) = f (R,n,w, v) (28)
F̄ (r,φ) = f̄ (R,n,w, v) (29)

the same being true for F ∗ and F̄ ∗. Each entity is thus 4-
dimensional; in principle the problem of finding a solution
is that of a maximization of the functions over their domain.
However, since this is not within the scope of this work, we
will limit the description of a methodology which relies on
the graphical analysis of plots.

First, however, we can reduce the domain of the function
thanks to the use non-dimensional variables, for example
relative to the conductor band width w. Thus, we can define
the variables Rw = R

w and vw = v
w , which gives:

F (r,φ) = f (Rw, n, vw) (30)
F̄ (r,φ) = f̄ (Rw, n, vw) (31)

At this point the design process requires to start by defining
one parameter among R, w, and v, e.g., w = w̃. Then, finite
intervals should be determined for the remaining variables, in
the example R, v, and n, as follows:

Rw ∈
[
Rinf

w̃
,
Rsup

w̃

]
⊂ R+ (32)

vw ∈
[vinf

w̃
,
vsup

w̃

]
⊂ R+ (33)

n ∈ [ninf, nsup] ⊂ N (34)

The functions F , F̃ , F ∗ and F̃ ∗ can be computed for each
discrete point 〈Rw, vw, n〉, thus producing a response surface
RSRw,vw,n for the working condition function and for the
CQI in the discrete and continuous case. Since the variable
n is discrete, it is more informative to illustrate RSRw,vw,n

as separate plots RSRw,vw(n) with n ∈ [ninf, nsup]. In Fig. 6,
the plots can be seen as computed using the discrete method
defined in III-A; the continuous method was not used due
to the much slower computation; indeed, the computation of
the 12 100 × 100 plots took approximately 36 h hours on a
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8 × 2.80 GHz, 16 GB RAM computer, while the continuous
methods would have required about seven days on the same
machine.

B. Case study

To show how to use this mathematical framework in prac-
tice, let’s consider a real case study; the prototype will be
based on these values. A mobile robot should move on a sur-
face provided with interdigitated electrodes whose geometrical
parameters are w = 25 mm and v = 3.5 mm. The two main
design issues are (1) how many vertices n should the polygon
have and (2) what should be its radius R?

Ideally, the pins should be located at the vertices of a regular
octagon due to the structure of the robot, which includes 8
distance sensors around its perimeter. In general, the results
illustrated in Fig. 6 suggest that good feasibility envelopes
start with n = 7, which is adequate to meet the geometry of
the robot. We can thus refer to the plots of Fig. 5, which are
relative to a regular octagon; in particular the top plot shows
two complete feasibility windows, the first of which between
R = 20.8 mm and R = 34.2 mm. The second plot confirms
the values (R = 20.6 mm and R = 33.8 mm) and provides
assurance regarding robustness of contact with values around
F ∗ = 2 in the interval R = [22.8, 32.7]mm. It is interesting to
note that the polarity balance for this last interval is between
F̄ ∗ = 0.5 and 0.7, which indicates good (albeit not perfect)
polarity balance. A hardness value of Λ = 4595 was used,

Fig. 6: Response surfaces RSRw,vw(n) of the values of
function F for values of n ∈ [4, 16], Rw ∈ [0.50, 3.00] and
vw ∈ [0.10, 3.00]. Yellow indicates feasible configurations.
The values of the axes are the same for all plots, and are shown
only in case n = 16 for clarity; the discretization applied to
each variable was 1

100 of the relevant interval.

Fig. 7: Relation between the maximum admissible insulation
band width v (shown as relative to the conductor bands w)
and the number of vertices of the regular polygons used for
the contact pins patterns. The result of Shannon’s pattern is
shown as a red asterisk, for reference. In a) a complete plot is
shown for values from n = 4 to 100, whereas in b) only the
portion between n = 4 and 25 is shown, for a better visual
comparison to Shannon’s pattern.

which assumes an expected deviation of the function F ∗ of
1% at 1 mm from the nominal border of the conductor bands.
The value of N is set to 10, which covers the workspace
needed for this analysis.

C. Analysis on the feasibility envelopes

One aspect which is worth considering is that of the relation
between the maximum admissible width v of the insulation
band compared to that of the conductor bands w. This is
especially important due to the fact that a conducting surface
such as that used in existing powered floors tends to be covered
almost entirely by conducting elements, which proves costly
and hard to manufacture and maintain. These generally have
an insulator-conductor ratio v

w which tends to be very low.
Referring to Fig. 7, one can appreciate the relation between

the ratio v
w and the number of vertices of the polygon in the

contact pins pattern which was described in this work. Each
data-point represents, for a specific number of vertices n, the
maximum v

w ratio which produces a feasible configuration,
i.e., one where the system is guaranteed to be functional.

This clearly shows that Shannon’s pattern—here used as
reference—is adequate for a maximum insulation band ratio of
v
w = 0.24; on the other hand, by employing regular polygons
of 5 or more vertices produces much higher ratios, resulting
in larger insulation bands. Furthermore, this shows that values
of v

w ≈ 1 are feasible with as little as 10 contacts.
Finally, it should be noted that large v

w are especially
desirable since, as a rough general estimate, the probability
of a short-circuit between two subsequent bands decreases
proportionally to the distance v between the bands. Also, large
ratios allow for comparatively less conductive material to be
positioned on the ground, relative to the size of the contact
array, which translates in a less expensive system.

D. Characterization of non fully functional configuration

The analysis described in Sec. IV-A determines whether a
set configuration guarantees contact at all times, i.e. is “fully
functional”. Here, we focus on configurations which are not
fully functional, by providing a measure of the probability
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that contact does indeed occur. In order to perform this kind
of analysis, one can employ a Monte Carlo method. A sample
h can be defined as a pair of random values of xΩ and ϑ:

th = 〈xΩ, ϑ〉 (35)

where the random generated values are bounded according to
the geometry of the system, specifically: xΩ = [0, w+ v[ and
ϑ = [0, 2π[.

At this point, one can apply Eq. 7 and find F̃h. The ratio
between these and the total number of samples N can be
defined as follows:

η =
∑
h

F̃h
N
. (36)

For a sufficiently high number N of samples, the ratio η
approaches a value which corresponds to the probability λ of
a configuration th = 〈xΩ, ϑ〉 in which there is contact with
both positive and negative bands. It goes without saying that
the higher λ is, the better.

In the following Section, an experimental and numerical
approach will be carried out to implement this type of mea-
surement.

V. PROTOTYPE AND EXPERIMENTAL VALIDATION

As an example of application of the methodology presented
in Section III, we present a prototype of powered floor and
brushes which we applied to a commercial small robot (Elisa-
31) tailored to swarm and evolutionary robotics experimenta-
tion.

It has to be noted that, being this paper focused on the
geometrical aspects of powered floor system design, rather
than on the technical ones, we do not consider many factors,
such as e.g. efficiency [31], [32], [33], dynamic response [34],
[35], wear [36], [37], [38], which of course are very important
in real implementations of the design. These factors, moreover,
strongly depend on the application, as we may expect that
contact technology used e.g. for passengers carrying vehicles
will be different from that used for small robots such as the
one we discuss in the following.

In Fig. 8, a 3D diagram is shown of the system concept
along with some pictures of the actual prototype. As contact
pins we used small M1.5 screws with rounded heads, mounted
on a polymeric 3D printed flexible support; this is attached via
a floating joint to the robot, in order to give both the robot and
the contact pins system acceptable adherence to the surface
of the powered floor. The powered floor itself consists in a
planar sheet of plastic on top of which strips of conducting
copper tape are arranged according to the specifications which
are given in Section IV-B. Considering these parameters, and
using Eq. 26, the value for the radius of the contact array was
selected at r = 32 mm, while the number of contact points was
determined to be n = 8, thus defining a regular octagon. The
plots in Fig. 5 show that these values are within the feasibility
envelope. The other considerations highlighted in Sec. IV-B

1http://www.gctronic.com/doc/index.php/Elisa-3

apply. In fact, we found that alternating the contact point and
the sensor produced the best results, leaving the area in front
of the IR sensor free.

A. Power supply circuit

In order to implement our power supply system in the robot,
we added a set of diodes in a configuration which reminds
of the 3-phase or 6-phase bridge systems commonly used
in 50 Hz and 60 Hz power rectifier units; the output of the
rectifier is simply connected to the USB power input of the
robot. In Fig. 9a the circuit diagram in the case of 8 sliding
contacts is shown.

B. Contact resistance measurements

The quality of contact between the brushes and the conduct-
ing bands is a critical issue; it impacts the transfer of power
to the robot, both in terms of power losses and in terms of
intermittent delivery. Wear of the bands and/or of the brushes
can negatively affect both of these aspects. Although there are
several options to keep these problems at bay, all mitigation
efforts tend to affect power management and could degrade
the overall performance.

A set of measurements has been performed in order to evalu-
ate the resistance of pairs of contacts in series, i.e., considering
the case of one contact on a positive band and a contact on the
negative one; we shall refer to this resistance in the following
as “total resistance”. This is the most unfavourable situation;
indeed, when two or more contacts are working on the same
band or on bands with the same polarity, current is of course
distributed and the overall resistance decreases.

Measures have been acquired according to the diagram
reported in Fig. 9b. We bypassed the circuit between two
contacts, set a current I and measured the voltage drop V
across the two bands touched by the contacts, so that we
get R = V/I . The advantage of this solution with respect to
measuring the resistance of a single contact using a multimeter
is that bench instrumentation can be used, even with a moving
robot. A 120 mA current source (this is the order of magnitude
of the average current absorbed by the robot) has been
realized using a voltage source (Vdc) and a 100 Ω 2 W series
resistance (R1). It might seem that a current generator could
perform better than a voltage generator with a series resistance;
however, common bench power supplies normally have far
from ideal time domain response while operating as current
source, while as voltage generator they can provide very stable
voltages. The resistance R1, being non-infinite, introduces an
error, which however is small as the value of R1 is much
larger than the contact resistances (a few ohms). Two 1N4728
3.3 V 1 W Zener diodes have been added in order to protect
the input of the acquisition system (a digitizing oscilloscope)
in the case of missing or very poor contact; otherwise, with
no voltage drop on R1, the full Vdc voltage would reach the
oscilloscope.

When the robot is still, measured total resistance is around
1 Ω–2 Ω. The standard deviation is small, roughly 0.05 Ω–
0.07 Ω, but if the robot is re-positioned the measures values
may change, as it can be seen in Fig. 10a.
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Fig. 8: Conceptual diagram of the powered floor, robot and pictures of the implemented prototype. In a) the main components
of the robot and the brushes system are shown; in b) a detailed cut-section of the assembly illustrates the interaction between
the polarized bands and the brushes. In c) the experimental implementation is shown.

Fig. 9: Electrical diagrams of the prototype and measurement
system. In a) the schematic diagram of the rectifier circuit is
shown, while in b) the diagram of the resistance measurement
circuit is illustrated.

It is more interesting to examine the total resistance during
robot motion. In Fig. 10b an example is shown which has been
obtained while moving the robot so that no change in bands
occur during the test; sampling frequency is 1.25 MS s−1. It
may be noticed that larger values and larger variations are
obtained; indeed, measured values are around 3 Ω–5 Ω with
a standard deviation of 0.4 Ω–0.7 Ω. This is not surprising,
however, as contacts have been realized using common screws
which slide on copper tape: both oxidation and wear can
worsen the quality of the contact. It must also be added
however that, as the robot is equipped with a regulated power
supply and a battery, possible variation in the supply voltage
do not have a significant effect on the performances of the
system.

C. Contact statistical analysis results

It is useful to have a probabilistic measure of the likelihood
that loss of contact happens for a set configuration. Following
the methodology laid out in Sec. IV-D, two experiments, one

Fig. 10: Experimental results. In a) a measurement of temporal
variations of the total contact resistance is shown: the robot
is briefly displaced each 2 s. It may be noticed that during
displacement the resistance increases significantly; in one case
the contact is almost lost and there is the intervention of the
diode protection. In b) temporal variations of the total contact
resistance during robot motion are shown.

numerical and one physical, were designed and performed.
The number n of contacts selected for the polygons in these
experimental campaign are 3, 4, 6, and 8.

The numerical experiment is based on a Monte Carlo
random approach to generate the pairs th. In Fig. 11 the
accuracy in the determination of an estimate of η is shown
in relation to the number of samples N . This analysis was
performed by generating 100 populations of an increasing
number N of samples of η using Eq. 36. As expected, the
plots in Fig. 11b in particular show that the standard deviation
dramatically decreases for larger values of N . Indeed, for a
value of N = 104 samples, ση = 0.0044, calculated for a
3-gon configuration.

The physical experiment consisted in the replication on a
smaller scale of the Monte Carlo simulation. The robot was
commanded to position itself in a set of 100 different positions
with a 3-, 4-, 6- and 8-sided regular polygons contact arrays.
The control sequence consists in a straight drive of random
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Fig. 11: Monte Carlo simulation. Influence of the number of
samples N on the accuracy of the estimation of η. A plot of
the standard deviation of the populations of 100 elements is
shown for each number of sample N .

TABLE I: Determination of η using the numerical (ηnum), with
N = 104, and experimental (ηexp), N = 102, methodologies.

n ηnum ηexp |ηnum − ηexp|

3 0.5169 0.5300 0.0131
4 0.8186 0.8300 0.0114
6 0.9642 0.9800 0.0158
8 1.0000 1.0000 0.0000

length between 0 and 50 mm, followed by a stand-still rotation
of a random quantity between 0 and 2π. This process repeats
100 times for each contact array. At the end of each rotation,
the system acquires the polarity of each pin and stores it in
a log file. These measurements allow the computation of the
quantity F̃ , as defined in Eq. 7. At this point, it is possible to
calculate the value of η from experimental data.

The results of the numerical simulation using the Monte
Carlo method and the experimental results are shown in
Table I; it may be noticed that they show very good similarity.
The value of η for an 8-gon is 1.00, signifying that, as
expected, this configuration provides contact at all times,
i.e., the probability of a functional pose is 100%. On the
other hand, as the number of vertices decreases, so does the
probability of a functional pose, which is fully compatible and,
in fact, supports the results shown in Fig. 6.

VI. CONCLUSION

In the field of mobile robotics, the topic of power delivery
is especially important, given the rapid propagation of the
technology and the intrinsic limitations of batteries.

In this paper, we followed-up on the concept of powered-
floors, consisting in a surface of interdigitated conducting
bands and a contact array of specific shape on the mobile
system. We presented a complete framework for the analysis
and design of these systems, introducing two methodologies
(one discrete, one continuous) to simulate the interaction be-
tween the floor and the contact array. The continuous method
provides a way to account for uncertainties and positioning
errors of the contact points relative to the bands. In this
work we consider contact arrays of the shape of regular
polygons, but the methodology can be extended to arbitrary
distributions of contact points. Performance was measured

thanks to two quantities: a functionality condition F (discrete)
and F ∗ (continuous) and a Contact Quality index (CQI and
Continuous CQI, i.e., CCQI).

In the paper, we showed a comprehensive analysis on
the functionality envelopes given by F for n ∈ [4, 16]. In
fact, starting from n = 5 vertices, it is always possible
to find a regular polygon that provides a reliable power-
delivery connection. Furthermore, we illustrated the relation
between n and the insulator band/conductive band ratio v/w
and we compared our regular polygons with the configuration
first introduced by C. Shannon in 1950; we find that, for
n ≥ 8, regular polygons consistently outperform his non-
regular n = 4 solution.

Finally, a prototype of an octagon shaped contact array
and powered floor was designed, and was applied to a com-
mercially available Elisa-3 robot. As expected, the associated
experimental campaign showed that the power delivery system
does indeed provide electrical continuity between the floor and
the contact array at all times.

Going forward, more in-depth analysis should be performed
on non-polygonal distribution of the contact arrays. Further-
more, the interactions between the brushes and the bands
should be investigated beyond the resistance measurements
which have been presented in this paper.
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izazovi i trendovi],” Automatika, vol. 56, no. 3, pp. 367–378, 2015.

[17] M. Rappaport and C. Bettstetter, “Coordinated recharging of mobile
robots during exploration,” vol. 2017-September, 2017, pp. 6809–6816.

[18] S. Nakamura, S. Hashimoto, and H. Hashimoto, “Preliminary devel-
opment of an energy logistics as a new wireless power transmission
method,” in IECON 2013 - 39th Annual Conference of the IEEE
Industrial Electronics Society, Nov 2013, pp. 7843–7848.

[19] S. Seriani, P. Gallina, and A. Wedler, Dynamics of a tethered rover on
rough terrain, ser. Mechanisms and Machine Science, 2017, vol. 47.

[20] ——, “A modular cable robot for inspection and light manipulation on
celestial bodies,” Acta Astronautica, vol. 123, pp. 145–153, 2016.

[21] D. Poljanec, M. Kalin, and L. Kumar, “Influence of contact parame-
ters on the tribological behaviour of various graphite/graphite sliding
electrical contacts,” Wear, vol. 406-407, pp. 75–83, 2018.

[22] M. Grandin and U. Wiklund, “Wear and electrical performance of a
slip-ring system with silver-graphite in continuous sliding against pvd
coated wires,” Wear, vol. 348-349, pp. 138–147, 2016.

[23] R. Watson, S. Ficici, and J. Pollack, “Embodied evolution: Distributing
an evolutionary algorithm in a population of robots,” Robotics and
Autonomous Systems, vol. 39, no. 1, pp. 1–18, 2002.

[24] J. Klingner, A. Kanakia, N. Farrow, D. Reishus, and N. Correll,
“A stick-slip omnidirectional powertrain for low-cost swarm robotics:
Mechanism, calibration, and control,” 2014, pp. 846–851.

[25] F. Arvin, S. Watson, A. Turgut, J. Espinosa, T. Krajnı́k, and B. Lennox,
“Perpetual robot swarm: Long-term autonomy of mobile robots using
on-the-fly inductive charging,” Journal of Intelligent and Robotic Sys-
tems: Theory and Applications, pp. 1–18, 2017.

[26] S. Martel, M. Sherwood, C. Helm, W. G. de Quevedo, T. Fofonoff,
R. Dyer, J. Bevilacqua, J. Kaufman, O. Roushdy, and I. Hunter,
“Three-legged wireless miniature robots for mass-scale operations at
the sub-atomic scale,” in Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No.01CH37164), vol. 4,
2001, pp. 3423–3428.

[27] S. Seriani, L. Scalera, A. Gasparetto, and P. Gallina, A new family of
magnetic adhesion based wall-climbing robots, ser. Mechanisms and
Machine Science, 2019, vol. 68.

[28] S. Koos, J.-B. Mouret, and S. Doncieux, “The transferability approach:
Crossing the reality gap in evolutionary robotics,” IEEE Transactions
on Evolutionary Computation, vol. 17, no. 1, pp. 122–145, 2013.

[29] J. C. Bongard, “Evolutionary robotics,” Communications of the ACM,
vol. 56, no. 8, pp. 74–83, 2013.

[30] E. Medvet, S. Seriani, A. Bartoli, and P. Gallina, “Design of powered
floor systems for mobile robots with differential evolution,” in Inter-
national Conference on the Applications of Evolutionary Computation
(Part of EvoStar). Springer, 2019, pp. 19–32.

[31] T. Ueno, K. Kadono, and N. Morita, “Influence of surface roughness on
contact voltage drop of electrical sliding contacts,” in Electrical Contacts
- 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical
Contacts, Sep. 2007, pp. 200–204.

[32] T. G. Engel, J. M. Neri, and M. J. Veracka, “The velocity and efficiency
limiting effects of magnetic diffusion in railgun sliding contacts,” in 2008
14th Symposium on Electromagnetic Launch Technology, June 2008, pp.
1–5.

[33] F. Guo, W. Jia, Z. Chen, Z. Wang, F. Yin, Y. Liu, and Y. Xue,
“Experimental research on current-carrying and friction characteristics
of sliding electrical contact,” in 2010 Proceedings of the 56th IEEE
Holm Conference on Electrical Contacts, Oct 2010, pp. 1–6.

[34] Q. Zhang, J. Li, R. Cao, P. Liu, and S. Li, “Simulation and test research
of copper-aluminum sliding pair dynamic contact performance,” in 2012
16th International Symposium on Electromagnetic Launch Technology,
May 2012, pp. 1–4.

[35] S. A. Romanishina, D. Y. Katyuk, V. S. Deeva, and S. M. Slobodyan,
“Dynamics layer of the sliding contact collector elements,” in 2015
IEEE 35th International Conference on Electronics and Nanotechnology
(ELNANO), April 2015, pp. 116–118.

[36] Chen Zhonghua, Hui Lichuan, Wang Tiejun, and Guo Fengyi, “Modeling
study of the amount of wear in sliding electric contact,” in 26th
International Conference on Electrical Contacts (ICEC 2012), May
2012, pp. 146–150.

[37] K. Mashimo, H. Nishikubo, Y. Ishimaru, Y. Okuno, and S. Kawata,
“Prediction of wear volume on sliding contacts using cellular automata,”
in 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm), Oct
2015, pp. 408–413.

[38] Z. Chen, G. Sun, G. Shi, and L. Hui, “Study on friction and wear of
sliding electrical contact of pantograph-catenary system under fluctuat-
ing compressive load,” in 2018 IEEE Holm Conference on Electrical
Contacts, Oct 2018, pp. 399–405.

Sergio Carrato graduated in Electronic Engineering
at the University of Trieste; he then worked at
Ansaldo Componenti and at Sincrotrone Trieste, in
the field of electronic instrumentation for applied
physics, and received the Ph.D. in Signal Processing
from the University of Trieste. Later he joined
the Department of Electronics of the same Univer-
sity, where he is currently associate professor of
Electronic Devices. His research interests include
electronics and signal processing, and, in particular,
image and video processing, also for forensic appli-

cations, and the development of advanced instrumentation for experimental
physics laboratories.

Paolo Gallina Paolo Gallina is currently associate
professor of Applied Mechanics at the Department
of Engineering and Architecture, University of Tri-
este, Trieste (Italy). He was visiting professor at the
Ohio University in 2000/1. In 2002 he implemented
a hands-on Mechatronics Laboratory for students in
Engineering. In 2003 he implemented a Robotics
Laboratory where he carries out his main research in
robotics. He was head of the Council for Students in
Mechanical Engineering Degree from 2004 to 2008.
He is head of the Council for Students in Industrial

Engineering. He is the Director of the Master in Robotics at the University of
Trieste. His interests are in vibrations, human-machine interfaces and robotics.

Eric Medvet received the degree in Electronic En-
gineering cum laude in 2004 and the PhD degree in
Computer Engineering in 2008, both from the Uni-
versity of Trieste, Italy. He is currently an Assistant
Professor in Computer Engineering at the Depart-
ment of Engineering and Architecture of University
of Trieste, Italy, where he leads the Evolutionary
Robotics and Artificial Life lab (ERALlab) and is the
co-head of the Machine Learning Lab. His research
interests include Genetic Programming and Machine
Learning applications.

Stefano Seriani born in Trieste (Italy) in 1986,
received his B.E. (2010) and his M.Sc in mechanical
engineering (2012) from the University of Trieste,
Italy. He received his PhD in April 2016 at the
University of Trieste, Italy. In 2016 he was research
fellow at the Institute of Robotics and Mechatronics
of the German space agency (DLR). He is now
research fellow at University of Trieste. His research
interests include space robotics, applied mechanics,
and computer-vision.


