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Abstract. We study the structure of the set of the positive regular solutions of the one-
dimensional quasilinear Neumann problem involving the curvature operator

−
(
u′/
√

1 + (u′)2
)′

= λa(x)f(u), u′(0) = 0, u′(1) = 0.

Here λ ∈ R is a parameter, a ∈ L1(0, 1) changes sign, and f ∈ C(R). We focus on the case
where the slope of f at 0, f ′(0), is finite and non-zero, and the potential of f is superlinear
at infinity, but also the two limiting cases where f ′(0) = 0, or f ′(0) = +∞, are discussed.
We investigate, in some special configurations, the possible development of singularities and
the corresponding appearance in this problem of bounded variation solutions.

1. Introduction

The main goal of this paper is analyzing the positive regular solutions of the quasilinear Neumann
problem  −

(
u′√

1 + (u′)2

)′
= λa(x)f(u), 0 < x < 1,

u′(0) = u′(1) = 0,

(1.1)

where λ ∈ R is a parameter, a ∈ L1(0, 1), and f ∈ C(R). By a regular solution we mean a function
u ∈W 2,1(0, 1) which satisfies the equation a.e. in (0, 1) and the Neumann conditions u′(0) = u′(1) = 0.
We also assume that the weight a changes sign, f vanishes at 0 and is strictly increasing, and the
potential of f ,

F (u) :=

∫ u

0

f(s) ds, (1.2)

is superlinear at infinity. As we shall see, under these assumptions on f , the existence of a positive
solution of (1.1) entails that the sign of a must change. This research is also motivated by the large
amount of studies devoted to the existence of positive solutions for semilinear elliptic problems with
indefinite nonlinearities, that started nearly three decades ago with [6, 1, 2, 8, 7, 3] and since then
have had a tremendous development in several different directions.
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This problem is a special one-dimensional counterpart of the elliptic problem
−div

(
∇u√

1 + |∇u|2

)
= h(x, u), in Ω,

− ∇u · ν√
1 + |∇u|2

= σ, on ∂Ω,

(1.3)

which plays a relevant role in the mathematical analysis of various physical or geometrical issues, such
as when describing capillarity phenomena for incompressible fluids, or modeling reaction-diffusion
processes where the flux response to an increase of gradients slows down and ultimately approaches
saturation at large gradients, or studying prescribed mean curvature problems for cartesian graphs in
the Euclidean space; significant references related to these topics include [34, 51, 9, 16, 25, 21, 29, 27,
24, 30, 31, 28, 33, 13].

It is a well established fact that introducing the mean curvature operator

− 1

N
div
(
∇u/

√
1 + |∇u|2

)
determines a deep impact on the morphology of the solution patterns of elliptic problems, the most
notable of which is the possibility of discontinuous equilibrium states [33, 10, 11, 45, 13, 47, 18,
17]. Accordingly, the space of bounded variation solutions is usually considered as an appropriate
framework where settling problem (1.3), and hence a suitable notion of solution, involving a variational
inequality, has been introduced and systematically used in, e.g., [44, 35, 45, 46, 47, 48, 49, 18, 41]. It
was also noticed in [46] that, by virtue of the results in [5], such definition, when referred to (1.1), can
be reformulated as follows: a function u ∈ BV (0, 1) is a bounded variation (BV, for short) solution
of (1.1) if ∫ 1

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dx+

∫ 1

0

sgn

(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s =

∫ 1

0

a f(u)φdx,

for all φ ∈ BV (0, 1) such that |Dφ|s is absolutely continuous with respect to |Du|s. Here, for any
given v ∈ BV (0, 1),

Dv = (Dv)adx+ (Dv)s

is the Lebesgue-Nikodym decomposition of the measure Dv, the distributional derivative of v, in its
absolutely continuous part (Dv)adx, with density function (Dv)a, and its singular part, (Dv)s, with
respect to the Lebesgue measure in R. If |Dv| denotes the absolute variation of Dv,

|Dv| = |Dv|adx+ |Dv|s

is the Lebesgue-Nikodym decomposition of |Dv|; in addition, Dv
|Dv| stands for the density function

of Dv with respect to its absolute variation |Dv|. We refer to [4] for additional information about
bounded variation functions.

In strong contrast with the semilinear case, no result can be found in the available literature
concerning the existence of positive solutions of (1.3) in the presence of indefinite superlinear nonlin-
earities. Therefore, in our recent paper [41] we began this study, starting from the simplest prototype
problem (1.1), and providing several existence and multiplicity results in the frame of bounded vari-
ation solutions, under various configurations at 0 and at infinity of the potential F of f . By using
variational methods, in [41] we proved among others the following theorem.

Theorem 1.1. Assume that

• a ∈ L1(0, 1) is such that
∫ 1

0
a dx < 0 and a(x) > 0 a.e. on an interval K ⊂ [0, 1],

• the function a changes sign finitely many times in (0, 1), in the sense that there is a decom-
position

[0, 1] =

k⋃
i=1

[αi, βi], with αi < βi = αi+1 < βi+1, for i = 1, . . . , k − 1,



BIFURCATION OF POSITIVE SOLUTIONS FOR A QUASILINEAR PROBLEM 3

such that

(−1)ia(x) ≥ 0 a.e. in (αi, βi), for i = 1, . . . , k,

or

(−1)ia(x) ≤ 0 a.e. in (αi, βi), for i = 1, . . . , k.

• f ∈ C1(R) is such that f(0) = 0 and f ′(u) > 0 for u ≥ 0,

• there exist q > 1 and h > 0 such that

lim
u→+∞

F (u)

uq
= h,

• there exists ϑ > 1 such that

lim
u→+∞

ϑF (u)− f(u)u

u
= 0,

• there exists

lim
u→0

F (u)

u2
= 1,

with F defined in (1.2).
Then, there is λ∗ > 0 such that, for all λ ∈ (0, λ∗), there exists a bounded variation solution u of

(1.1), with ess inf u > 0. This function u is such that

u ∈W 2,1
loc (α, β) ∩W 1,1(α, β)

for each interval (α, β) ⊂ (0, 1) where the function a has a constant sign. Moreover, u ∈ W 2,1
loc [0, β),

with u′(0) = 0, if α = 0, while u ∈ W 2,1
loc (α, 1], with u′(1) = 0, if β = 1. In addition, for every pair

of adjacent intervals, (α, β), (β, γ) ⊂ (0, 1) with a(x) ≥ 0 a.e. in (α, β) and a(x) ≤ 0 a.e. in (β, γ)
(respectively, a(x) ≤ 0 a.e. in (α, β) and a(x) ≥ 0 a.e. in (β, γ)), either

u ∈W 2,1
loc (α, γ),

or

u(β−) ≥ u(β+) and u′(β−) = −∞ = u′(β+)

(respectively, u(β−) ≤ u(β+) and u′(β−) = +∞ = u′(β+)),

where u′(β−), u′(β+) are, respectively, the left and the right Dini derivatives of u at β. Finally, u
satisfies the equation in (1.1) a.e. in [0, 1].

This kind of bounded variation solutions, which are piecewise regular, but possibly discontinuous,
will be in the sequel referred to as singular solutions of (1.1). However Theorem 1.1, yielding only the
existence of positive singular solutions, which in some cases are the only solutions one may expect,
leaves completely open the question of ascertaining the existence of positive regular solutions. In this
paper we mainly address this issue: in order to fill this gap, we provide several information about
the structure of the set of the positive regular solutions of (1.1) and we investigate the development
of singularities and the inherent formation of bounded variation solutions, so establishing a direct
connection between the existence results obtained in this work and those in [41], in particular with
Theorem 1.1.

Let us now introduce the precise assumptions that will be used throughout most of this paper. In
many circumstances, we will suppose that

(Ha) a ∈ L∞(0, 1) changes sign in [0, 1],

and sometimes we will also assume that

(Hf) f ∈ C1(R) satisfies f(0) = 0, f ′(0) = 1 > 0, f ′(u) > 0 for all u > 0.
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The condition (Hf) can be relaxed up to assume f ′(0) > 0 by inter-exchanging λ by µ := λf ′(0) in
(1.1). According to it, the associated potential F satisfies

lim
u→0

F (u)

u2
= lim
u→0

F ′(u)

2u
= lim
u→0

f(u)− f(0)

2u
=

1

2
.

Hence, F is quadratic at 0. Most of the results of this paper under condition (Hf) will be obtained
when, in addition, there exist q > 1 and h > 0 such that

lim
u→+∞

f(u)

uq−1
= qh. (1.4)

This implies that F is superlinear at infinity, i.e., there exists q > 1 and h > 0 such that

lim
u→+∞

F (u)

uq
= h, (1.5)

as

lim
u→+∞

F (u)

uq
= lim
u→+∞

f(u)

quq−1
= h.

The most paradigmatic example satisfying (Hf) and (1.4) is obviously f(u) = u.
Subsequently, we will describe some of the main findings of this paper concerning the existence of

positive regular solutions for problem (1.1). According to Lemma 2.1, when a and f satisfy (Ha) and

(Hf), necessarily
∫ 1

0
a dx < 0 if (1.1) possesses a positive regular solution for some λ > 0. Actually,

by Theorem 3.1, under these conditions, there exist λ0 > 0, to be characterized in Section 2, and an
unbounded component, C+

λ0
, of the set of positive regular solutions of (1.1) in [0,+∞)× C1[0, 1] such

that (λ0, 0) ∈ C̄+
λ0

. If, in addition, f satisfies (1.4) and there exist r, s ∈ (0, 1) such that ess inf [r,s] a =

ω > 0, then, by Theorem 6.1, (1.1) cannot admit a positive regular solution for sufficiently large λ ≥ λ0.
Thus, under these circumstances, the λ-projection of the component C+

λ0
is a bounded interval, J . An

extremely challenging problem that has been partially solved in this paper is to ascertain whether or
not 0 ∈ J̄ . So far, the main available result is Theorem 7.1 in Section 7, where it has been established
that λ∗ = inf J > 0 under the additional hypothesis that a−1(0) ∩ (0, 1) = {z} and that there exist
q ∈ (1, 2] and h > 0 such that

lim
u→+∞

f ′(u)

uq−2
= q(q − 1)h. (1.6)

Note that (1.6) implies (1.4) with q ∈ (1, 2]. Actually, according to Theorem 7.1, the problem (1.1)
cannot admit a positive regular solution under these conditions for sufficiently small λ > 0. In
particular, this occurs for the special — but extremely important — case when f(u) = u. As a
byproduct, (1.1) possesses at least two components of positive regular solutions: C+

λ0
and {(0, κ) : κ >

0}. Finally, at least for the choice f(u) = u, where standard phase plane techniques can be applied,
our results in Section 8 establish that C+

λ0
must accumulate at some continuous singular solution of

(1.1) whenever the component becomes unbounded in (λ, u) ∈ R×C1[0, 1]. As according to Theorem
1.1, the problem (1.1) admits a bounded variation solution for sufficiently small λ > 0, we conjecture
the validity of the bifurcation diagram sketched in Figure 1 under the previous general assumptions.

Figure 1 represents positive solutions, (λ, u), both regular and singular, plotting the norm ‖u‖C[0,1]

in ordinates versus the value of λ in abscissas. The set of positive solutions consists, at least, of a
curve of positive regular solutions emanating from u = 0 at λ = λ0 globally defined for all value of the
parameter λ in the interval (λ∗, λ0), which have been plotted by using a continuous line; each point
of this line representing a solution of (1.1), (λ, u). Actually, this curve represents the component C+

λ0
.

Much like in the case when f(u) = u, we conjecture that, under the previous general assumptions,
there is a value of λ, λ∗ > 0, where the regular solutions of C+

λ0
loose their a priori bounds in

R × C1[0, 1] accumulating to some positive continuous singular solution, (λ∗, u∗). For smaller values
of λ, the problem (1.1) possesses a further component of singular bounded variation solutions, C+

BV,
whose λ-projection should contain the entire interval (0, λ∗), in complete agreement with Theorem
1.1, and such that (λ∗, u∗) ∈ C+

BV. This component of singular solutions has been represented with a
dashed line in Figure 1.
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Figure 1. Bifurcation diagram when F is quadratic at zero and superlinear at infinity.

More generally, we conjecture that, as soon as the weight a satisfies (Ha), with
∫ 1

0
a dx < 0, and the

function f satisfies (Hf) and (1.6), there is a component, C+, of the set of positive bounded variation
solutions of (1.1) such that (λ0, 0) ∈ C̄+ and (0,+∞) ∈ C̄+. Moreover,

C+ = C+
λ0
∪ C+

BV.

Furthermore, (λ, u) ∈ C+
λ0

if (λ, u) ∈ C+ with λ sufficiently close to λ0, whereas (λ, u) ∈ C+
BV for

sufficiently small λ > 0.
Naturally, much like to semilinear elliptic problems of superlinear indefinite type, (1.1) might admit

more than two components within the appropriate ranges of values of the parameters involved in the
setting of this problem (see, e.g., [42], [43] and [39]). But this analysis remained outside the general
scope of this paper.

Lastly, this paper analyzes how changes the global bifurcation diagram sketched in Figure 1 when,
instead of being quadratic at zero, the associated potential, F , is assumed to be either subquadratic,
or superquadratic. Our analysis strongly suggests that, under condition (1.5), if there exists p ∈ (1, 2)
and L > 0 such that

lim
u→0+

F (u)

up
= L, (1.7)

then the component C+ of Figure 1 together with the bounded segment

{(λ, 0) : λ ∈ (0, λ0]}
perturb, as p < 2 separates away from 2, into the component sketched in the first plot of Figure 2,
while if (1.7) holds with p > 2, then the component C+ together with the unbounded segment

{(λ, 0) : λ ≥ λ0}
perturb, as p > 2 separates away from 2, into the component sketched in the second plot of Figure 2.
As an immediate consequence, when F is subquadratic at zero (1.1) possesses two regular solutions
for λ < λ∗ sufficiently large, while it admits a regular solution and a discontinuous singular solution
for sufficiently small λ > 0. When, instead, F is assumed to be superquadratic at zero, then (1.1)
admits a positive solution for each λ > 0, which is regular if λ > λ∗ and discontinuous if λ < λ∗.

The distribution of this paper is the following. Section 2 analyzes the linearized stability of u = 0 as

a steady state solution of the parabolic counterpart of (1.1) and shows that
∫ 1

0
a dx < 0 is necessary
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Figure 2. Bifurcation diagrams when F is superlinear at infinity. The left picture
represents the diagram when the potential F is subquadratic at zero, while the right
one plots an admissible global bifurcation diagram when F is superquadratic at zero.

for the existence of a positive regular solution of (1.1) if λ > 0. Although in [41] it was already

established that
∫ 1

0
a dx < 0 is necessary for the existence of a bounded variation solution, and regular

solutions are bounded variation solutions, the proof of this result for regular solutions is free of the
technical difficulties we had to overcome in [41]. So, we shall give it. The main result of Section 2

establishes that under condition
∫ 1

0
a dx < 0 there exists λ0 > 0 such that u = 0 is linearly stable if

λ ∈ [0, λ0) and linearly unstable if λ > λ0.
Section 3 shows the existence of a component, C+

λ0
, of the set of positive regular solutions of (1.1)

bifurcating from u = 0 at λ = λ0, the value of the parameter where the stability of u = 0 is lost.
Moreover, it establishes that C+

λ0
is unbounded in [0,+∞)× C1[0, 1]. As we are not imposing f to be

of class C2 in this section, the local bifurcation theorem of M. G. Crandall and P. H. Rabinowitz [19]
cannot be applied to get the local result. As the global unilateral theorems of P. H. Rabinowitz [50]
are wrong as stated (see E. N. Dancer [20]), we must invoke to the unilateral theorem [36, Theorem
6.4.3] to get the main theorem given here. As we are imposing Neumann boundary conditions,
(1.1) possesses another component of (positive) regular solutions, C+

0 ; the one containing all constant
solutions, (λ, u) = (0, κ) with κ > 0. One of the main goals of this paper consists in establishing that
C+

0 and C+
λ0

are separated away from each other, as illustrated in Figure 1.

Section 4 uses the local bifurcation theorem of M. G. Crandall and P. H. Rabinowitz [19] to show
that in a neighborhood of (λ0, 0) the component C+

λ0
is a smooth curve if f ∈ C2(R). Moreover,

it ascertains the nature of the local bifurcation to positive regular solutions at λ0 according to the
sign of f ′′(0) establishing that it is transcritical if f ′′(0) 6= 0, namely, supercritical if f ′′(0) < 0 and
subcritical if f ′′(0) > 0, and a subcritical pitchfork bifurcation if f ′′(0) = 0, as it occurs in the most
paradigmatic case when f(u) = u. This suggests the existence of at least two positive regular solutions
when f ′′(0) > 0 and λ > λ0.

Section 5 discusses very shortly the formation of singularities along the curves of positive regular
solutions of problem (1.1). Essentially, it shows how, as soon as the solutions remain bounded, the
singularities do arise through a blowing-up phenomenon of u′ at some of the nodes of the weight
function a.

Section 6 shows that, under condition (1.4) with q ∈ (1, 2], i.e., for superlinear and subquadratic
potentials at infinity, (1.1) cannot admit a positive regular solution for sufficiently large λ > 0 provided
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a(x) > 0 a.e. on an interval K ⊂ [0, 1]. Assuming, in addition, that f ∈ C2(R) satisfies (1.6) with
q ∈ (1, 2] and there exists z > 0 such that either a(x) > 0 for all x ∈ (0, z) and a(x) < 0 for all
x ∈ (z, 1), or a(x) < 0 for all x ∈ (0, z) and a(x) > 0 for all x ∈ (z, 1), the main result of Section 7
establishes that (1.1) cannot admit a positive regular solution for sufficiently small λ > 0. Therefore,
under the assumptions of Theorem 1.1, the existing bounded variation solution guaranteed by that
theorem must be singular for sufficiently small λ > 0, which seems to be a very sharp result.

Section 8 focuses attention into the most paradigmatic case when f(u) = u for a special choice
of the function a, step-wise constant, satisfying the assumptions of the main theorem of Section 7.
By using some elementary phase plane techniques the existence of regular and continuous singular
solutions can be established showing in addition that there exists a λ∗ > 0 where the regular solutions
must become singular at z, the point where the function a changes sign. When, λ < λ∗ the problem
possesses at least one bounded variation solution, (λ, u), such that

u(z−) > u(z+), u′(z−) = u′(z+) = −∞.
All these features suggest the validity of the global bifurcation diagram sketched in Figure 1, at least
for superlinear and either quadratic, or subquadratic, potentials at infinity.

Finally, Sections 9 and 10 analyze the case when, instead of being quadratic at zero, as in the
previous sections, the underlying potential, F , is subquadratic and superquadratic, respectively. The
main result of Section 9, Theorem 9.1, establishes that if F is subquadratic at zero, then (1.1) possesses
at least one regular solution for sufficiently small positive λ, as illustrated in the left picture of Figure
2. The proof here is variational and relies on the introduction of an auxiliary truncated problem
in which the degenerate part of the curvature operator is replaced by a uniformly elliptic operator.
Suitable estimates imply that the minimizers of the modified problem are in fact solutions of the
original one, provided that λ > 0 is taken small enough. The main result of Section 10, Theorem 10.1,
shows instead that if F is superquadratic at zero, then (1.1) possesses at least one regular solution
for sufficiently large λ, as illustrated in the right picture of Figure 2. Here the proof is topological:
by a natural change of variables, the given problem can be interpreted, for λ large enough, as a
small perturbation of another, simpler, problem, where the curvature operator is again replaced by
a uniformly elliptic operator. Since the coincidence degree of the modified operator equation can be
computed explicitly and is non-zero, the Rouché property of the degree yields the solvability of the
original problem. Theorems 9.1 and 10.1, establishing the existence of regular solutions, complement
in various directions the results obtained in [41]. We finally notice that the solutions obtained here
should perturb from u = 0 as p→ 2, however, we will establish this structural property elsewhere.

Throughout this paper it should be noted that, due to the notion of regular solution adopted here,
(1.1) can be equivalently expressed in the form{

−u′′ = λa(x)f(u)g(u′), 0 < x < 1,
u′(0) = u′(1) = 0,

(1.8)

(see, e.g., [14, 15]), where

g(ξ) := (1 + ξ2)
3
2 , ξ ∈ R. (1.9)

Obviously,

g(0) = 1, g′(0) = 0, g′(ξ) > 0 for all ξ > 0 and g(1) = 2
√

2.

Moreover, for every r < s and V ∈ L∞(r, s), we denote by

σ[−D2 + V (x);N , (r, s)], where D2 := d2

dx2 ,

the lowest eigenvalue of the linear Neumann eigenvalue problem{
−u′′ + V (x)u = τu, r < x < s,
u′(r) = u′(s) = 0.

Similarly, σ[−D2 +V (x);D, (r, s)] stands for the lowest eigenvalue of the Dirichlet eigenvalue problem{
−u′′ + V (x)u = τu, r < x < s,
u(r) = u(s) = 0.
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If u is a regular positive solution of (1.1), i.e., (1.8) holds, then u must be the principal eigenfunction
associated with

σ[−D2 − λa(x) f(u)
u g(u′);N , (0, 1)] = 0

and therefore,

u(x) > 0 for all x ∈ [0, 1]. (1.10)

Lastly, note that

Q(u) := f(u)
u , u > 0,

admits a continuous extension to u = 0 by setting Q(0) := 1.

Lastly, given two arbitrary Banach spaces, U , V , and a linear continuous operator, T : U → V , we
denote by N [T ] the null space or kernel of T , kerT , and by R[T ] the range or image of T , imT .

2. Linearized stability of u = 0. A simple necessary condition for the existence of
positive solutions

This section analyzes the linearized stability of u = 0 as a steady-state of the parabolic problem
∂u

∂t
−

(
u′√

1 + (u′)2

)′
= λa(x)f(u), 0 < x < 1, t > 0,

u′(t, 0) = u′(t, 1) = 0, t > 0,
u(·, 0) = u0 in (0, 1).

(2.1)

Since f ′(0) = 1, and u ∼ 0 in C1[0, 1] if and only if u ∼ 0 and u′ ∼ 0 in C[0, 1], it is evident that

u′√
1 + (u′)2

∼ u′ in C1[0, 1] for u ∼ 0

and therefore, the linearized stability of u = 0 is determined by the sign of the principal eigenvalue

Σ(λ) := σ[−D2 − λa(x);N , (0, 1)], λ ∈ R, (2.2)

much like the linearized stability of u = 0 as a steady-state of the parabolic problem ut − uxx = λa(x)f(u)g(u′), 0 < x < 1, t > 0,
u′(t, 0) = u′(t, 1) = 0, t > 0,
u(·, 0) = u0 in (0, 1),

(2.3)

because f(0) = 0 and f ′(0) = g(0) = 1.
Precisely, (λ, u) = (λ, 0) is linearly stable if and only if Σ(λ) > 0, while it is linearly unstable if

Σ(λ) < 0. In any circumstances, Σ(0) = 0. The next result provides us with the structure of Σ(λ)

according to the sign of
∫ 1

0
a dx. It is a refinement of a classical result of K. J. Brown and S. S. Lin

[12]. As the version given here sharpens the former ones, a short self-contained proof is given.

Theorem 2.1. For every a ∈ L∞(0, 1), Σ(λ) is a real analytic function of λ ∈ R which is concave,
in the sense that Σ′′(λ) ≤ 0 for all λ ∈ R. Moreover, if a changes sign in (0, 1), then

lim
λ→±∞

Σ(λ) = −∞. (2.4)

Actually, in such case, there exists a unique λm ∈ R such that

sign Σ′(λ) = sign (λm − λ) for all λ ∈ R. (2.5)

Furthermore, we have

signλm = −sign

∫ 1

0

a dx.

Therefore, whenever
∫ 1

0
a dx 6= 0, there exists a (unique) λ0 ∈ R \ {0} such that Σ(λ0) = 0 and

λ0

∫ 1

0

a dx < 0.
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Proof. The first part of the result is a direct consequence of Theorems 9.1 and 9.4 of [37]. The second
one is a direct consequence of the identity

Σ̇(0) = −
∫ 1

0

a dx, (2.6)

where · stands for d
dλ . Indeed, according to a classical perturbation result of T. Kato [32] (see Lemma

2.1.1 of [36]), Σ(λ) admits a principal eigenfunction ϕλ > 0 such that ϕ0 := ϕ(0) = 1. Note that 1 is
a principal eigenfunction of Σ(0). In particular, we have

−ϕ′′λ − λa(x)ϕλ = Σ(λ)ϕλ for all λ ∈ R,

and differentiating with respect to λ yields

−ϕ̇′′λ − a(x)ϕλ − λa(x)ϕ̇λ = Σ̇(λ)ϕλ + Σ(λ)ϕ̇λ for all λ ∈ R.

Thus, particularizing at λ = 0, we find that

−ϕ̇′′0 − a(x)ϕ0 = Σ̇(0)ϕ0

and hence

Σ̇(0) = −ϕ̇′′0 − a,
because ϕ0 = 1. Therefore, integrating in (0, 1) yields

Σ̇(0) =

∫ 1

0

ϕ̇′′0 dx−
∫ 1

0

a dx = −
∫ 1

0

a dx,

because

ϕ̇′0(0) = ϕ̇′0(1) = 0.

The remaining assertions of the statement are easy consequences of the identity (2.6). �

Figure 3 shows the three possibilities according to the sign of
∫ 1

0
a dx. It helps to visualize the proof

of the last assertions of the theorem.

Figure 3. All admissible graphs of Σ(λ) according to the sign of
∫ 1

0
a dx.

According to the linearized stability principle, in case
∫ 1

0
a dx < 0, (λ, 0) is linearly stable if and

only if λ ∈ (0, λ0), while in case
∫ 1

0
a dx > 0 this occurs if and only if λ ∈ (λ0, 0); at least when it is

regarded as a steady state solution of the semilinear parabolic problem (2.3).
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Throughout the rest of this paper, without lost of generality, we will assume that∫ 1

0

a dx < 0. (2.7)

The next result provides us with a simple necessary condition for the existence of positive solutions
of (1.1) under condition (2.7). According to it, throughout the remaining we will assume that λ ≥ 0.

Lemma 2.1. Suppose f and a satisfy (Hf), (Ha) and (2.7). Then, λ ≥ 0 if (1.1) admits a positive
solution. Moreover, the solution must be constant in [0, 1] if λ = 0.

Proof. Suppose (λ, u) is a positive solution of (1.1), then u(x) > 0 for all x ∈ [0, 1] and hence

λa(x) = −

(
u′(x)√

1 + (u′(x))2

)′
1

f(u(x))

= −

(
1

f(u(x))

u′(x)√
1 + (u′(x))2

)′
+

(
1

f(u(x))

)′
u′(x)√

1 + (u′(x))2
.

(2.8)

Thus, since u′(0) = u′(1) = 0 and f satisfies (Hf), we get

λ

∫ 1

0

a dx =

∫ 1

0

(
1

f(u(x))

)′
u′(x)√

1 + (u′(x))2
dx

= −
∫ 1

0

f ′(u(x))

f2(u(x))

(u′(x))2√
1 + (u′(x))2

dx ≤ 0.

Therefore, by (2.7), we necessarily have λ ≥ 0.
Suppose λ = 0. Then, since u(x) > 0 for all x ∈ [0, 1] and hence f ′(u(x)) > 0, we find from∫ 1

0

f ′(u(x))

f2(u(x))

(u′(x))2√
1 + (u′(x))2

dx = 0

that u′(x) = 0 for all x ∈ [0, 1]. Therefore, we conclude u(x) = u(0) for all x ∈ [0, 1], which ends the
proof. �

3. Global bifurcation of positive solutions from u = 0

Throughout this section, for any positive integer k, CkN [0, 1] stands for the Banach space of the
functions u : [0, 1]→ R of class Ck such that u′(0) = u′(1) = 0 equipped with the norm

‖u‖Ck[0,1] :=

k∑
j=0

‖Dju‖∞, Dj = dj

dxj , 0 ≤ j ≤ k,

and P stands for the cone of non-negative functions of C1
N [0, 1], i.e., P is the positive cone of C1

N [0, 1]
regarded as an ordered Banach space with respect to the usual ordering. The interior of the cone P ,
intP , consists of the functions u ∈ C1

N [0, 1] such that u(x) > 0 for all x ∈ [0, 1]. According to (1.8),
any positive regular solution, (λ, u), of (1.1) satisfies u ∈ intP .

The following result establishes the existence of a component of regular positive solutions of (1.8)
bifurcating from the line (λ, u) = (λ, 0) at λ = λ0. By a component it is meant a closed and connected
subset that it is maximal for the inclusion.

Theorem 3.1. Suppose f ∈ C1(R) satisfies f ′(0) = 1, a ∈ L∞(0, 1) changes sign in (0, 1) and∫ 1

0
a < 0. Let λ0 > 0 be the unique real number such that Σ(λ0) = 0, whose existence and uniqueness

was established by Theorem 2.1. Then, there exists an unbounded component

C+
λ0
⊂ [0,+∞)× intP

of the set of positive regular solutions of (1.1) such that (λ0, 0) ∈ C̄+
λ0

and

(λ, 0) ∈ C̄+
λ0

with λ 6= 0 =⇒ λ = λ0. (3.1)
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Proof. Note that (λ, u) is a positive solution of (1.1), or (1.8), if and only if

u = (−D2 + 1)−1[u+ λaf(u)g(u′)]

where

(−D2 + 1)−1 : L∞(0, 1)→W 2,∞
N (0, 1)

stands for the resolvent operator of −D2 + 1 in (0, 1) under Neumann boundary conditions and

W 2,∞
N (0, 1) := {u ∈W 2,∞(0, 1) : u′(0) = u′(1) = 0}.

As the imbedding

W 2,∞
N (0, 1) ↪→ C1

N [0, 1] := {u ∈ C1[0, 1] : u′(0) = u′(1) = 0}.
is compact, introducing the compact operator K(λ, ·) : C1

N [0, 1]→ C1
N [0, 1] defined by

K(λ, u) := (−D2 + 1)−1[u+ λaf(u)g(u′)], λ ∈ R, u ∈ C1
N [0, 1],

the problem (1.8) can be expressed as the fixed point equation

u = K(λ, u), λ ∈ R, u ∈ C1
N [0, 1]. (3.2)

Equivalently, setting

F(λ, u) := u−K(λ, u), (λ, u) ∈ R× C1
N [0, 1],

the solutions of (1.8) can be regarded as the zeroes of the operator F, i.e., the solutions of the equation

F(λ, u) = 0.

The operator F(λ, u) is of class C1 and it is a compact perturbation of the identity map. Thus, it is
Fredholm of index zero. Moreover, F(λ, 0) = 0 for all λ ∈ R and its linearization at (λ, 0) is given by

L(λ)u := DuF(λ, 0)u = u− (−D2 + 1)−1[(1 + λa)u], u ∈ C1
N [0, 1],

for all λ ∈ R, because f(0) = g′(0) = 0. Let ϕ > 0 denote any solution of{
−ϕ′′ = λ0a(x)ϕ in (0, 1),
ϕ′(0) = ϕ′(1) = 0.

(3.3)

By the maximum principle, ϕ(x) > 0 for all x ∈ [0, 1]. Moreover, ϕ is unique up to a multiplicative
constant and

N [L(λ0)] = span[ϕ].

We claim that

L′(λ0)ϕ = −(−D2 + 1)−1(aϕ) /∈ R[L(λ0)]. (3.4)

On the contrary, suppose there is u ∈ C1
N [0, 1] such that

L(λ0)u = −(−D2 + 1)−1(aϕ).

Then, u ∈W 2,∞
N (0, 1), since a ∈ L∞(0, 1), and hence

−u′′ − λ0au = −aϕ in (0, 1), u′(0) = u′(1) = 0. (3.5)

Multiplying (3.5) by ϕ and integrating by parts in (0, 1), (3.3) implies∫ 1

0

aϕ2 = 0. (3.6)

On the other hand, multiplying (3.3) by ϕ and integrating in [0, 1] yields

λ0

∫ 1

0

aϕ2 = −
∫ 1

0

ϕϕ′′ =

∫ 1

0

(ϕ′)2 > 0 (3.7)

and therefore, since λ0 > 0, we find that
∫ 1

0
aϕ2

0 > 0, which contradicts (3.6) and shows (3.4). Note
that ϕ cannot be constant because λ0 > 0 and a 6= 0. Therefore, the transversality condition of M.
G. Crandall and P. H. Rabinowitz [19] holds, i.e.,

L′(λ0) (N [L(λ0))⊕R[L(λ0)] = C1
N [0, 1], (3.8)
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though the main bifurcation theorem of [19] cannot be applied unless f ∈ C2(R). But this is far from
important here. Indeed, thanks to (3.8), the algebraic multiplicity of J. Esquinas and J. López-Gómez
[22] satisfies

χ[L(λ);λ0] = 1

(see Chapter 4 of [40] if necessary). Thus, owing to [36, Theorem 5.6.2], or [40, Prop. 12.3.1], the
local index of u = 0 as a fixed point of K(λ, ·) changes as λ crosses λ0. Consequently, according to
the unilateral bifurcation theorem of J. López-Gómez [36, Theorem 6.4.3], it becomes apparent that
either C+

λ0
is unbounded in [0,+∞)×C1

N [0, 1], or there is λ1 ∈ [0,+∞) \ {λ0} such that (λ1, 0) ∈ C̄+
λ0

.

Note that the unilateral theorems of P. H. Rabinowitz [50] cannot be used to get this global result
because they were wrong as stated (see the counterexample constructed by E. N. Dancer [20]).

To establish (3.1), let (λn, un), n ≥ 1, be a sequence of positive solutions of (1.8) such that

lim
n→+∞

λn = λ and lim
n→+∞

‖un‖C1[0,1] = 0 for some λ 6= 0. (3.9)

Then, setting
vn := un

‖un‖∞ , n ≥ 1,

we have that

vn = (−D2 + 1)−1
[
vn + λa f(un)

‖un‖∞ g(u′n)
]

+ (λn − λ)(−D2 + 1)−1
[
a f(un)
‖un‖∞ g(u′n)

]
(3.10)

for all n ≥ 1. According to (3.9), we get

lim
n→+∞

g(u′n) = 1, lim
n→+∞

f(un)
‖un‖∞ = f ′(0) = 1

and hence

lim
n→+∞

(
(λn − λ)(−D2 + 1)−1[a f(un)

‖un‖∞ g(u′n)]
)

= 0.

Moreover, ‖vn‖∞ = 1 for all n ≥ 1. Thus, since

(−D2 + 1)−1 : L∞(0, 1)→ C1
N [0, 1]

is compact and the sequence

vn + λa f(un)
‖un‖∞ g(u′n), n ≥ 1,

is bounded, there exists a subsequence of vn, relabeled by n, such that limn→+∞ vn = ψ for some
ψ ≥ 0, ‖ψ‖∞ = 1. Thus, letting n→ +∞ in (3.10) yields

ψ = (−D2 + 1)[ψ + λaψ],

or, equivalently,
−ψ′′ = λaψ in (0, 1), ψ′(0) = ψ′(1) = 0.

Therefore, since λ 6= 0, from Theorem 2.1 we may conclude that λ = λ0.
It remains to prove that C+

λ0
is unbounded. This is a direct consequence from [36, Theorem 6.4.3]

and (3.1) if (0, 0) /∈ C̄+
λ0

. If (0, 0) ∈ C̄+
λ0

, then (λ, u) = (0, κ) ∈ C+
λ0

for all constant κ > 0 and therefore,

C+
λ0

is unbounded. This ends the proof. �

Similarly, the next result establishes the existence of a component of positive solutions of (3.1),
C+

0 , with (0, 0) ∈ C̄+
0 .

Theorem 3.2. Suppose f ∈ C1(R) satisfies f ′(0) = 1, a ∈ L∞(0, 1) changes sign in (0, 1) and∫ 1

0
a dx < 0. Then, there exists an unbounded component of the set of positive solutions of (1.8),

C+
0 ⊂ [0,+∞)× intP,

such that
{(λ, u) = (0, κ) : κ > 0} ⊂ C+

0 .

Moreover,
(λ, 0) ∈ C̄+

0 with λ 6= 0 =⇒ λ = λ0 (3.11)

and consequently, should this occur, C+
0 = C+

λ0
. Otherwise, C+

0 ∩ C+
λ0

= ∅.
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Proof. We will maintain the notations introduced in the proof of Theorem 3.1. Now,

N [L(0)] = span [1]

and

L′(0)1 = −(−D2 + 1)−1a /∈ R[L(0)]. (3.12)

On the contrary, suppose

L(0)u = −(−D2 + 1)−1a

for some u ∈ C1
N [0, 1]. Then, u ∈ W 2,p(0, 1) for all p > 1, u′(0) = u′(1) = 0, and u′′ = a in (0, 1).

Thus, integrating in (0, 1) yields
∫ 1

0
a dx = 0, which contradicts

∫ 1

0
a dx < 0. Consequently, also in this

case the transversality condition of M. G. Crandall and P. H. Rabinowitz [19] holds. Thus, arguing as
in the proof of Theorem 3.1, the existence of a (global) component, C+

0 , of the set of positive solutions
of (1.1) in [0,+∞) × intP with (0, 0) ∈ C+

0 holds. Since all positive constants κ > 0 provide us
with solutions of (1.8) at λ = 0, necessarily (λ, u) = (0, κ) ∈ C+

0 for all κ > 0. In particular, C+
0 is

unbounded. As the proof of (3.11) can be easily adapted from the proof of (3.1), we omit the technical
details here. Finally, if (λ0, 0) ∈ C̄+

0 , then (λ0, 0) ∈ C̄+
0 ∩ C̄+

λ0
and therefore, C+

0 = C+
λ0

. This ends the
proof. �

Hereafter, we will denote by Pλ the λ-projection operator defined by

Pλ(λ, u) := λ.

Figure 4 shows three admissible bifurcation diagrams of positive solutions of (1.1) when
∫ 1

0
a dx < 0.

In the first one,

Pλ(C+
λ0

) = (0, λ0) and C+
0 ∩ C+

λ0
= ∅.

Consequently, the solutions along C+
λ0

must become unbounded as λ→ 0+. In the second one,

Pλ(C+
λ0

) = (λ∗, λ0)

for some λ∗ ∈ (0, λ0). The third picture represents a case where C+
λ0

= C+
0 . Much of this paper is

devoted to ascertain whether or not each of these situations can occur. Actually, one of the main open
problems addressed in this paper is getting the intervals Pλ(C+

0 ) and Pλ(C+
λ0

). Based on the results
in the forthcoming sections, we conjecture that the second diagram occurs if the associated potential,
F , is superlinear at infinity.

4. Local solution curves at (0, 0) and (λ0, 0) when f ∈ C2(R)

When f ∈ C2(R), thanks to the uniqueness obtained from the local bifurcation theorem of M. G.
Crandall and P. H. Rabinowitz [19], one can complement Theorems 3.1 and 3.2 with the next result
of a local nature, which will be extremely useful later.

Theorem 4.1. Suppose f ∈ Cr(R), r ≥ 2, satisfies f ′(0) = 1 and a ∈ L∞(Ω) changes sign and∫ 1

0
a < 0. Then, in a neighborhood of (λ, u) = (0, 0), C+

0 consists of the curve (0, κ), κ > 0.
Similarly, setting

V :=

{
v ∈ C1

N [0, 1] :

∫ 1

0

v(x)ϕ(x) dx = 0

}
,

where ϕ > 0 is any principal eigenfunction associated with (3.3), there exist ε > 0 and two maps of
class Cr−1,

λ : (−ε, ε)→ R, v : (−ε, ε)→ V,

such that

(a) λ(0) = λ0 and v(0) = 0;
(b) (λ(s), s(ϕ+ v(s))) solves (1.1) for all s ∈ (−ε, ε);
(c) besides (λ, 0), (λ(s), s(ϕ+v(s))) are the unique solutions of (1.1) in a neighborhood of (λ0, 0).
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Figure 4. Three possible bifurcation diagrams for regular solutions in case∫ 1

0
a dx < 0. We are plotting the parameter λ, in abscissas, versus ‖u‖C1[0,1], in

ordinates.

Note that V satisfies

span [ϕ]⊕ V = C1
N [0, 1]

and that ε > 0 can be shortened, if necessary, so that

(λ(s), s(ϕ+ v(s))) ∈ C+
λ0

for all s ∈ (0, ε).

The next result provides us with the bifurcation direction of the bifurcated curve (λ(s), s(ϕ + v(s)),
s ∼ 0, in all possible cases. In the most classical case when f(u) = u it establishes that the local
bifurcation from u = 0 at λ = λ0 is always subcritical, independently of the nature of the weight
function a. Subsequently, when these derivatives do make sense, we will set

λ1 := λ′(0), v1 := v′(0), λ2 :=
λ′′(0)

2
, v2 :=

v′′(0)

2
.

Then,

λ(s) = λ0 + sλ1 + s2λ2 + o(s2), v(s) = sv1 + s2v2 + o(s2), as s→ 0,

and [
1 + s2(ϕ′ + sv′1 + o(s))2

] 3
2 = 1 +

3

2
(ϕ′)2s2 + o(s2) as s→ 0.

Theorem 4.2. Under the general assumptions of Theorem 4.1, we have that

λ1 = −1

2
f ′′(0)λ0

∫ 1

0
aϕ3 dx∫ 1

0
aϕ2 dx

. (4.1)

Thus, the bifurcation at λ0 is transcritical if f ′′(0) 6= 0. In particular, the bifurcation to positive
solutions is supercritical, λ1 > 0, if f ′′(0) < 0 and subcritical, λ1 < 0, if f ′′(0) > 0.

Suppose, in addition, that r ≥ 3 and f ′′(0) = 0. Then, λ1 = 0 and

λ2 = −3

2
λ0

∫ 1

0
aϕ2(ϕ′)2 dx∫ 1

0
aϕ2 dx

< 0. (4.2)

Therefore, the bifurcation at λ0 is a genuine subcritical pitchfork bifurcation if f ′′(0) = 0.
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Proof. Throughout this proof, the notations introduced in the proof of Theorem 4.1 are kept and we
set

u(s) = s(ϕ+ v(s)) for all s ∈ (−ε, ε).
The component C+

λ0
is the maximal closed and connected subset of [0,+∞)× intP containing the arc

of curve (λ(s), u(s)), 0 ≤ s < ε.
Substituting (λ, u) by (λ(s), u(s)) in (1.8) and dividing by s, we find that

−(ϕ+ sv1 + o(s))′′ = (λ0 + sλ1 + o(s))a(x)(ϕ+ sv1 + o(s))

·
[
1 +

f ′′(0)

2
s(ϕ+ sv1 + o(s)) + o(s)

][
1 +

3

2
(ϕ′)2s2 + o(s2)

]
for sufficiently small s. Particularizing at s = 0, it becomes apparent that

−ϕ′′ = λ0aϕ, (4.3)

which is true by the definition of λ0 and ϕ. Identifying terms of order s yields

−v′′1 = λ0av1 + λ0
f ′′(0)

2
aϕ2 + λ1aϕ.

Multiplying this equation by ϕ and integrating by parts in (0, 1), we find from (4.3) that

1

2
λ0f

′′(0)

∫ 1

0

aϕ3 dx+ λ1

∫ 1

0

aϕ2 dx = 0. (4.4)

On the other hand, multiplying (4.3) by ϕ and integrating in (0, 1), we find that

λ0

∫ 1

0

aϕ2 dx = −
∫ 1

0

ϕ′′ϕdx =

∫ 1

0

(ϕ′)2 dx > 0

and hence, (4.1) holds by eliminating λ1 in (4.4). Note that multiplying (4.3) by ϕ2 and integrating
in (0, 1) yields

λ0

∫ 1

0

aϕ3 dx = −
∫ 1

0

ϕ′′ϕ2 dx =

∫ 1

0

ϕ′(ϕ2)′ dx = 2

∫ 1

0

ϕ(ϕ′)2 dx > 0.

Therefore, since λ0 > 0, it follows from (4.1) that

signλ1 = −sign f ′′(0).

Subsequently, we suppose r ≥ 3 and f ′′(0) = 0. Then, λ1 = 0 and hence,

−v′′1 = λ0av1.

Thus, there exists α ∈ R such that v1 = αϕ. Therefore, since v1 ∈ V , we find that α = 0, which
implies v1 = 0. Consequently, substituting (λ(s), u(s)) in (1.8) and dividing by s yields

−(ϕ+ s2v2 + o(s))′′ = (λ0 + s2λ2 + o(s2))a(x)(ϕ+ s2v2 + o(s2))

·
[
1 +

f ′′(0)

2
s(ϕ+ s2v2 + o(s2)) + o(s)

][
1 +

3

2
(ϕ′)2s2 + o(s2)

]
.

Consequently, identifying terms of order s2, we obtain that

−v′′2 = λ0av2 +
3

2
λ0aϕ(ϕ′)2 + λ2aϕ. (4.5)

Thus, multiplying (4.5) by ϕ and integrating by parts in (0, 1) gives

3

2
λ0

∫ 1

0

aϕ2(ϕ′)2 dx+ λ2

∫ 1

0

aϕ2 dx = 0

and hence, since
∫ 1

0
aϕ2 > 0, the identity (4.2) holds.

It remains to show that λ2 < 0. Indeed, integrating in (0, 1) the identity

(ϕ2)′[(ϕ′)2]′ =
[
(ϕ2)′(ϕ′)2

]′ − (ϕ2)′′(ϕ′)2
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it becomes apparent that∫ 1

0

(ϕ2)′[(ϕ′)2]′ dx = −
∫ 1

0

(ϕ2)′′(ϕ′)2 dx

= −
∫ 1

0

(ϕ′′ϕ+ 2ϕ′ϕ′ + ϕϕ′′) (ϕ′)2 dx

= −2

∫ 1

0

(
ϕ′′ϕ+ (ϕ′)2

)
(ϕ′)2 dx

= −2

∫ 1

0

ϕϕ′′(ϕ′)2 dx− 2

∫ 1

0

(ϕ′)4 dx

and hence, since −ϕ′′ = λ0aϕ, we obtain that∫ 1

0

(ϕ2)′[(ϕ′)2]′ dx = 2λ0

∫ 1

0

aϕ2(ϕ′)2 dx− 2

∫ 1

0

(ϕ′)4 dx. (4.6)

On the other hand,

(ϕ2)′[(ϕ′)2]′ = 4ϕϕ′ϕ′ϕ′′ = −4λ0aϕ
2(ϕ′)2

and so, substituting in (4.6), yields

6λ0

∫ 1

0

aϕ2(ϕ′)2 dx = 2

∫ 1

0

(ϕ′)4 dx.

As λ0 > 0 and a 6= 0, we already know that ϕ cannot be constant and hence,

λ0

∫ 1

0

aϕ2(ϕ′)2 dx > 0.

Thus,
∫ 1

0
aϕ2(ϕ′)2 dx > 0. Moreover, due to (3.7),

∫ 1

0
aϕ2 dx > 0. Consequently, λ2 < 0. This ends

the proof. �

5. On the development of singularities

Throughout this section we will assume that

(HC) a ∈ C[0, 1], a−1(0) ∩ (0, 1) = {zj : 1 ≤ j ≤ N} for some integer N ≥ 1 and

a(x)


> 0 if x ∈ (0, z1) ∪

⋃
3≤2j+1≤N (z2j , z2j+1),

< 0 if x ∈
⋃

0≤2j≤N−2(z2j+1, z2(j+1)).

Although these requirements can be relaxed substantially, they are sufficiently general for our purposes
in this section.

Suppose
∫ 1

0
a dx < 0 and let (λ, u) be a positive regular solution of (1.1) with λ > 0. In each

component, I+, of a−1((0,+∞)) we have that

u′′(x)− λa(x)f(u(x))g(u′(x)) < 0

for all x ∈ I+ and hence, u is strictly concave. Similarly, in each component, I−, of a−1((−∞, 0))
we have that u′′(x) > 0 for all x ∈ I− and hence, u is strictly convex. In particular, the convexity
properties of the solutions change at the nodes, zj , 1 ≤ j ≤ N , of a. This entails that u possesses a
unique critical point in each nodal interval (zj , zj+1); naturally, x = 0 is the unique critical point in
[0, z1) and x = 1 the unique one in (zN , 1]. Consequently, the shape of u is strongly reminiscent of
the one of a.

Now, let 0 < α < β be such that (1.1) possesses a positive solution, (λ, uλ), for all λ ∈ (α, β], and
consider, for every λ ∈ (α, β], the function

ϕλ(x) :=
−u′λ(x)√

1 + (u′λ(x))2
, x ∈ [0, 1]. (5.1)
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By construction,

ϕλ(0) = ϕλ(1) = 0 and ϕλ(x) ∈ (−1, 1) for all x ∈ (0, 1).

Moreover, according to (1.1),

ϕ′λ(x) = λa(x)f(uλ(x))

{
> 0 if a(x) > 0,
< 0 if a(x) < 0.

Thus, the interior critical points of ϕλ are the nodes, zj , 1 ≤ j ≤ N , of the weight function a. Precisely,
under assumption (HC), z1 is a local maximum of ϕλ, while z2 is a local minimum, and so on.

Suppose there exists ε > 0 such that

|ϕλ(x)| ≤ 1− ε for all (x, λ) ∈ [0, 1]× (α, β]. (5.2)

Then, there exists a constant C > 0 such that

|u′λ(x)| ≤ C for all (x, λ) ∈ [0, 1]× (α, β]. (5.3)

Thus, by a standard compactness argument, it is easily seen that

uα := lim
λ→α+

uλ (5.4)

provides us with a non-negative regular solution of (1.1) for λ = α if {uλ}λ∈(α,β] is bounded. Moreover,
by Theorem 3.1, uα > 0 if α 6= λ0. On the contrary, when (5.2) fails, necessarily

lim sup
λ→α+

‖ϕλ‖C[0,1] = 1

and hence,

lim sup
λ→α+

‖u′λ(x)‖C[0,1] = +∞. (5.5)

Since the critical points of ϕλ are the nodes of a for all λ ∈ (α, β], it becomes apparent that there
exists j ∈ {1, ..., N} such that

lim sup
λ→α+

|ϕλ(zj)| = 1.

Equivalently,

lim sup
λ→α+

|u′λ(zj)| = +∞.

Therefore, along any solution curve of (1.1), the singularities can only arise at the nodes of a, by a
blow-up of the derivative, u′λ, as λ approximates α, provided such an α exists.

Although the example of Section 8 strongly suggests that the curves of regular solutions of (1.1)
can actually be continued by paths consisting of bounded variation solutions of (1.1), as discussed
by the authors in [41], it remains an open problem to ascertain whether or not this is a general
phenomenology for the class of problems dealt with in this paper.

6. Nonexistence for F superlinear at +∞ and λ large

The main result of this section can be stated as follows. Note that all the assumptions hold for the
most classical case when f(u) = u.

Theorem 6.1. Suppose f and a satisfy (Hf), (Ha),
∫ 1

0
a dx < 0, and there exist r, s ∈ (0, 1) such that

ess inf
[r,s]

a = ω > 0. (6.1)

Assume, in addition, that (1.4) holds for some q ∈ (1, 2] and h > 0. Then, (1.1) cannot admit a
positive regular solution for sufficiently large λ > 0.
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Proof. We will argue by contradiction. Suppose there is a sequence, (λn, un), n ≥ 1, of positive
solutions of (1.1) such that

lim
n→+∞

λn = +∞.

Then, integrating the differential equation in [r, s] yields

λn

∫ s

r

a(x)f(un(x)) dx =
u′n(r)√

1 + (u′n(r))2
− u′n(s)√

1 + (u′n(s))2
≤ 1 + 1 = 2.

Thus,

0 ≤ ω
∫ s

r

f(un(x)) dx ≤ 2

λn

for all n ≥ 1 and hence, letting n→ +∞ yields

lim
n→+∞

‖f(un)‖L1(r,s) = 0.

In particular, there exists a subsequence of {f(un)}n≥1, still denoted by {f(un)}n≥1, such that

lim
n→+∞

f(un(x)) = 0 a.e. in [r, s].

Therefore, since f−1(0) ∩ [0,+∞] = {0}, we find that

lim
n→+∞

un(x) = 0 a.e. in [r, s]. (6.2)

Subsequently, we consider the auxiliary function Q defined by

Q(u) :=

{
f(u)
u if u 6= 0,

1 if u = 0.
(6.3)

Q ∈ C(R) because f ∈ C1(R). Moreover, by (1.4), there exist u0 > 0 and a constant C > 0 such that

f(u)

uq−1
≤ C for all u ≥ u0. (6.4)

As we are assuming that 0 < q − 1 ≤ 1, for every u ≥ u0 we have that

Q(u) =
f(u)

u
=
f(u)

uq−1

1

u2−q ≤
C

u2−q
0

.

Hence, Q is globally bounded in [0,+∞). Consequently, {Q(un)}n≥1 is dominated in L1(r, s) by large
constants.

By definition, for every n ≥ 1 and a.e. x ∈ [r, s],

−u′′n(x) = λna(x)f(un(x))[1 + (u′n(x))2]
3
2

> λna(x)f(un(x)) = λna(x)Q(un(x))un(x). (6.5)

Thus, since un(r) > 0 and un(s) > 0, un provides us with a strict positive supersolution in [r, s] of
the second order operator

Ln := −D2 − λna(x)Q(un(x))

subject to homogeneous Dirichlet boundary conditions, D. Consequently, thanks to [38, Theorem 2.1]
(see [37, Theorem 7.10]), it is apparent that it satisfies the strong maximum principle, or, equivalently,
its principal eigenvalue must be positive. Thus, we get

Σn := σ[−D2 − λna(x)Q(un(x)),D, (r, s)] > 0 for all n ≥ 1. (6.6)

By the variational characterization of Σn, we also have that

Σn = inf
ψ∈H1

0 (r,s)

ψ>0,
∫ s
r
ψ2=1

{∫ s

r

(ψ′)2 dx− λn
∫ s

r

a(x)Q(un(x))ψ(x) dx

}
> 0 (6.7)
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for all n ≥ 1. Actually, the infimum is reached at any principal eigenfunction, ϕn > 0, associated to
Σn. By (6.2) and (6.3), we obtain

lim
n→+∞

Q(un(x)) = 1 a.e. in [r, s].

Therefore, sinceQ(un) is dominated in L1(r, s) by the large positive constants, the theorem of Lebesgue
establishes that

lim
n→+∞

∫ s

r

a(x)Q(un(x))ψ(x) dx =

∫ s

r

a(x)ψ(x) dx > 0 (6.8)

for all ψ ∈ H1
0 (r, s) such that ψ > 0 in (r, s) and

∫ s
r
ψ2 dx = 1. Consequently, since limn→+∞ λn =

+∞,

lim
n→+∞

(∫ s

r

(ψ′)2 dx− λn
∫ s

r

a(x)Q(un(x))ψ(x) dx

)
= −∞,

which contradicts (6.7), and ends the proof. �

Remark 6.1. The result stated in Theorem 6.1 is still valid for the singular (bounded variation)
solutions whose existence is guaranteed by Theorem 1.1, provided that condition (6.1) holds. This
follows from an inspection of the above proof, observing that, from (6.5) on, the interval [r, s] should
be replaced by a subinterval [r′, s′] with r < r′ < s′ < s, in order to guarantee that un ∈ W 2,1(r′, s′)
for all n ≥ 1. Then the remainder of the proof, until the conclusion, should be modified accordingly,
replacing [r, s] with [r′, s′] everywhere.

Remark 6.2. When q > 2 the argument of the previous proof fails, because 2 − q < 0 and, in such
case, Q(u) is not bounded above. However, if we would be able to establish

lim
n→+∞

un(x) = 0 uniformly in [r, s], (6.9)

then we would get the same result with a rather direct argument. Indeed, in such case,

lim
n→+∞

f(un)

un
= 1 uniformly in [r, s],

and hence, for sufficiently large n, say n ≥ n0,

−u′′n(x) > λna(x)f(un(x)) > λn
2 a(x), x ∈ [r, s],

which implies

σ[−D2 − λn
2 a(x),D, (r, s)] > 0, n ≥ n0,

though,

lim
n→+∞

σ[−D2 − λn
2 a(x),D, (r, s)] = −∞,

which concludes the proof.

7. Nonexistence for F superlinear at +∞ and λ > 0 small

The main theorem of this section establishes the non-existence of a regular positive solutions of (1.1)
for sufficiently small λ > 0 under the assumptions of Theorem 6.1 for a special, but significant, class
of weight functions a. Note that, thanks to Theorem 1.1, the problem possesses a singular (bounded
variation) solution for such range of λ’s.

Theorem 7.1. Suppose f ∈ C2(R) satisfies (Hf), a ∈ L∞(0, 1),
∫ 1

0
a dx < 0, and there exists z ∈ (0, 1)

such that a(x) > 0 for all x ∈ (0, z) and a(x) < 0 for all x ∈ (z, 1). Assume, in addition, that there
exist q ∈ (1, 2] and h > 0 such that (1.6) holds. Then, (1.1) cannot admit a positive regular solution
for sufficiently small λ > 0.

Naturally, a result similar to Theorem 7.1 holds if a(x) < 0 in (0, z) and a(x) > 0 in (z, 1).
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Theorem 7.1 measures how sharp are Theorems 1.1 and 3.1, establishing that the solution provided
by Theorem 1.1 must be singular for sufficiently small λ > 0. Note that (1.6) implies

lim
u→+∞

f(u)

uq−1
= qh and lim

u→+∞

F (u)

uq
= h.

Hence f and F satisfy (1.4) and (1.5), respectively, with 1 < q ≤ 2. Moreover, since q ∈ (1, 2], there
exists a constant C > 0 such that

|f ′(u)| ≤ C for all u ∈ [0,+∞). (7.1)

The proof of Theorem 7.1 follows after a series of lemmas of technical nature. Under the assumptions
imposed to a, we have that

u′′(x) = −λa(x)f(u(x))g(u′(x))

{
< 0 if x ∈ (0, z),
> 0 if x ∈ (z, 1).

Thus, u′ is decreasing in (0, z) and increasing in (z, 1). In particular, since u′(0) = u′(1) = 0, we find
that u′(x) < 0 for all x ∈ (0, 1). Therefore,

u is strictly decreasing in (0, 1). (7.2)

Actually, this is why we have chosen a with this so special nodal configuration. The proof of Theorem
7.1 will proceed by contradiction assuming that

(H) problem (1.1) possesses a sequence of positive regular solutions, {(λn, un)}n≥1, such that

lim
n→+∞

λn = 0.

Lemma 7.1. Suppose (H). Then, under the same assumptions of Theorem 7.1,

lim
n→+∞

un(0) = +∞. (7.3)

Proof. On the contrary, suppose that there exists a constant C > 0 such that, along some subse-
quence, relabeled by n,

0 < un(0) ≤ C, n ≥ 1. (7.4)

Then, integrating (1.1) in (0, z), we find from (Hf), (7.2) and (7.4) that

−u′n(z)√
1 + (u′n(z))2

= λn

∫ z

0

a(x)f(un(x)) dx ≤ λnf(C)

∫ z

0

a(x) dx.

On the other hand, by (H), there exists an integer, n0 ∈ N, such that

λn <
1

2f(C)
∫ z

0
a(x) dx

, n ≥ n0.

Hence,
−u′n(z)√

1 + (u′n(z))2
<

1

2
for all n ≥ n0. (7.5)

This estimate entails the existence of a constant C1 > 0 such that

‖u′n‖L∞(0,1) ≤ C1 for all n ≥ n0. (7.6)

Therefore, {un : n ≥ n0} is bounded and equicontinuous in C[0, 1] and hence, by the Ascoli–Arzelá
theorem, along some subsequence, again labeled by n, we find that

lim
n→+∞

un = uω in C[0, 1] (7.7)

for some uω ∈ C[0, 1].
On the other hand, it follows from the definition of (λn, un) that

−u′′n = λnaf(un)g(u′n), n ≥ 1,

and, since

‖af(un)g(u′n)‖L∞(0,1) ≤ ‖a‖L∞(0,1)f(C)g(C1),
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the function
Vn(x) := λna(x)f(un(x))g(u′n(x)), n ≥ 1, x ∈ [0, 1],

satisfies
−u′′n(x) = Vn(x) for all x ∈ [0, 1] and lim

n→+∞
‖Vn‖L∞(0,1) = 0.

Consequently,

un(x) = un(0)−
∫ x

0

∫ s

0

Vn(σ) dσ ds, n ≥ 1. (7.8)

Since Vn → 0 uniformly in [0, 1], letting n→ +∞ in (7.8) yields

lim
n→+∞

un(x) = uω(0) for all x ∈ [0, 1].

In particular, uω must be constant.
On the other hand, integrating the differential equation of (1.1) in the interval (0, 1) provides us

with the identity ∫ 1

0

af(un) dx = 0, n ≥ 1. (7.9)

Thus, letting n→ +∞ in (7.9) yields

0 =

∫ 1

0

af(uω) dx = f(uω(0))

∫ 1

0

a dx,

which implies f(uω(0)) = 0. Therefore, by (Hf), uω = 0. Consequently, (λ, u) = (0, 0) is a bifurcation
point to positive solutions of the form (λn, un), n ≥ 1, with λn > 0. This contradicts Theorem 4.1
and ends the proof. �

Lemma 7.2. Suppose (H). Then, under the same assumptions of Theorem 7.1,

lim
n→+∞

un(z) = +∞. (7.10)

Consequently, thanks to (7.2),

lim
n→+∞

un = +∞ uniformly in [0, z]. (7.11)

Proof. On the contrary, suppose that there exists a constant C > 0 such that, along some subsequence
relabeled by n,

0 < un(z) ≤ C, n ≥ 1. (7.12)

Then, by (7.2) and (7.9),∫ z

0

a(x)f(un(x)) dx = −
∫ 1

z

a(x)f(un(x)) dx

≤ −f(un(z))

∫ 1

z

a(x) dx ≤ −f(C)

∫ 1

z

a(x) dx.

Thus, there exists a constant C̃ > 0 such that∫ z

0

a(x)f(un(x)) dx ≤ C̃, n ≥ 1,

and hence,
−u′n(z)√

1 + (u′n(z))2
= λn

∫ z

0

a(x)f(un(x)) dx ≤ C̃λn, n ≥ 1.

Therefore, we have

|u′n(z)| ≤ λnC̃√
1− λ2

nC̃
2

for sufficiently large n ≥ 1, and, consequently,

lim
n→+∞

u′n(z) = 0,
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which entails
lim

n→+∞
‖u′n‖L∞(0,1) = 0, (7.13)

because the minimum of u′n is reached at z (see Section 5, if necessary). Since

un(0) = un(z)−
∫ z

0

u′n(x) dx,

(7.12) and (7.13) imply that {un(0)}n≥1 is bounded, which is impossible by Lemma 7.1. The proof is
complete. �

Lemma 7.3. Suppose (H). Then, under the same assumptions of Theorem 7.1,

lim
n→+∞

u′n(z) = −∞. (7.14)

Proof. On the contrary, suppose that along some subsequence, relabeled by n,

|u′n(z)| ≤ C, n ≥ 1. (7.15)

Then, since the minimum of u′n is reached at z, we have that

−u′n(z) = ‖u′n‖L∞(0,1) ≤ C, n ≥ 1. (7.16)

In particular, the sequence

vn :=
un

‖un‖L∞(0,1)
, n ≥ 1,

satisfies ‖vn‖L∞(0,1) = 1 for all n ≥ 1 and, owing to (7.15) and (7.16),

‖v′n‖L∞(0,1) =
‖u′n‖L∞(0,1)

‖un‖L∞(0,1)
=
−u′n(z)

un(0)
≤ C

un(0)

for all n ≥ 1. Thus, thanks to Lemma 7.1,

lim
n→+∞

‖v′n‖L∞(0,1) = 0.

Thus, thanks to the Ascoli–Arzelá theorem, we can assume, without lost of generality, that there
exists vω ∈ C[0, 1] such that

lim
n→+∞

vn = vω in C[0, 1].

Letting n→ +∞ in the relation

vn(x)− vn(0) =

∫ x

0

v′n(t) dt, x ∈ [0, 1],

we conclude that vω is constant and, as vn(0) = 1 for all n ≥ 1,

vω = 1 in [0, 1].

Consequently, we find that

lim
n→+∞

vn = lim
n→+∞

un
‖un‖L∞(0,1)

= lim
n→+∞

un
un(0)

= 1 uniformly in [0, 1]. (7.17)

Finally, from (7.9) it is easily seen that∫ z

0

a(x)f(un(x)) dx = −
∫ 1

z

a(x)f(un(x)) dx, n ≥ 1,

and hence, ∫ z

0

a(x)
f(un(x))

uq−1
n (0)

dx = −
∫ 1

z

a(x)
f(un(x))

uq−1
n (0)

dx, n ≥ 1. (7.18)

Consequently, letting n → +∞ in (7.18), from (1.4) —which follows from (1.6)— and (7.17), it
becomes apparent that

qh

∫ z

0

a dx = −qh
∫ 1

z

a dx,

which contradicts
∫ 1

0
a < 0 and ends the proof. �
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Lemma 7.4. Suppose (H). Then, under the same assumptions of Theorem 7.1,

f(un(1)) <
−u′n(z)√

1 + (u′n(z))2

1

λn
∫ 1

z
(−a) dx

< f(un(z)) <
−u′n(z)√

1 + (u′n(z))2

1

λn
∫ z

0
a dx

< f(un(0))

(7.19)

for all n ≥ 1.

Proof. Arguing as in the proof of Lemma 2.1, it becomes apparent that

λn

∫ z

0

a dx =
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

+

∫ z

0

(
1

f(un(x))

)′
u′n(x)√

1 + (u′n(x))2
dx.

Moreover,

u′n(x)√
1 + (u′n(x))2

>
u′n(z)√

1 + (u′n(z))2
for all x ∈ [0, z),

because (
u′n(x)√

1 + (u′n(x))2

)′
= −λna(x)f(un(x))

{
< 0 if x ∈ (0, z),
> 0 if x ∈ (z, 1).

Thus, since x 7→ f(un(x)) is decreasing for all n ≥ 1, we find that

λn

∫ z

0

a dx >
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

+
u′n(z)√

1 + (u′n(z))2

∫ z

0

(
1

f(un(x))

)′
dx

=
u′n(z)√

1 + (u′n(z))2

[
− 1

f(un(z))
+

1

f(un(z))
− 1

f(un(0))

]
=

−u′n(z)√
1 + (u′n(z))2

1

f(un(0))
,

which provides us with the last estimate of (7.19). Moreover,

λn

∫ z

0

a dx <
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

,

which provides us with the third one.
Similarly, integrating in the interval (z, 1) yields

λn

∫ 1

z

a dx =
1

f(un(z))

u′n(z)√
1 + (u′n(z))2

+

∫ 1

z

(
1

f(un(x))

)′
u′n(x)√

1 + (u′n(x))2
dx.

Hence, we have

λn

∫ 1

z

(−a) dx =
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

+

∫ 1

z

(
1

f(un(x))

)′ −u′n(x)√
1 + (u′n(x))2

dx

>
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

,



24 J. LÓPEZ-GÓMEZ, P. OMARI, AND S. RIVETTI

which establishes the second estimate of (7.19). Finally, we get

λn

∫ 1

z

(−a) dx =
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

+

∫ 1

z

(
1

f(un(x))

)′ −u′n(x)√
1 + (u′n(x))2

dx

<
1

f(un(z))

−u′n(z)√
1 + (u′n(z))2

+
−u′n(z)√

1 + (u′n(z))2

∫ 1

z

(
1

f(un(x))

)′
dx

=
−u′n(z)√

1 + (u′n(z))2

[
1

f(un(z))
+

1

f(un(1))
− 1

f(un(z))

]
=

−u′n(z)√
1 + (u′n(z))2

1

f(un(1))
,

which provides us with the first estimate of (7.19). The proof is complete. �

Corollary 7.1. Suppose (H). Then, under the same assumptions of Theorem 7.1,

lim sup
n→+∞

[λnf(un(1))] ≤
(
−
∫ 1

z

a dx

)−1

≤ lim inf
n→+∞

[λnf(un(z))] ≤ lim sup
n→+∞

[λnf(un(z))]

≤
(∫ z

0

a dx

)−1

≤ lim inf
n→+∞

[λnf(un(0))].

(7.20)

Proof. It follows easily from Lemma 7.3 multiplying (7.19) by λn and letting n→ +∞ in the resulting
inequalities. �

As a direct consequence from (7.19), the following estimates hold

f(un(0))− f(un(1)) >
1

λn

−u′n(z)√
1 + (u′n(z))2

(
1∫ z

0
a dx

− 1∫ 1

z
(−a) dx

)

=
1

λn

−u′n(z)√
1 + (u′n(z))2

−
∫ 1

0
a dx∫ z

0
a dx

∫ 1

z
(−a) dx

and, letting n→ +∞, Lemma 7.3 implies that

lim
n→+∞

[f(un(0))− f(un(1))] = +∞.

Consequently, by (1.6), the maximal oscillation of un in the interval [0, 1] blows-up as n→ +∞.

Proof of Theorem 7.1. Suppose (H) and consider the sequence

vn(x) = λnf(un(x)), x ∈ [0, 1], n ≥ 1. (7.21)

Then, according to Corollary 7.1,(
−
∫ 1

z

a dx

)−1

≤ lim inf
n→+∞

vn(z) ≤ lim sup
n→+∞

vn(z) ≤
(∫ z

0

a dx

)−1

. (7.22)

In particular, the sequence {vn}n≥1 is uniformly bounded in the interval [z, 1].
Moreover, differentiating with respect to x,

v′n(x) = λnf
′(un(x))u′n(x) ≤ 0, x ∈ [0, 1], n ≥ 1,

and hence, for every x ∈ [0, 1] and n ≥ 1,

−

 v′n(x)
λnf ′(un(x))√

1 +
(

v′n(x)
λnf ′(un(x))

)2


′

= a(x)vn(x).
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Equivalently,

−

(
v′n(x)√

(λnf ′(un(x)))2 + (v′n(x))2

)′
= a(x)vn(x) (7.23)

for all x ∈ [0, 1] and n ≥ 1.
Let y ∈ [z, 1] be. Integrating in [y, 1] the identity (7.23) yields

v′n(y)√
(λnf ′(un(y)))2 + (v′n(y))2

=

∫ 1

y

a(σ)vn(σ) dσ. (7.24)

Therefore, thanks to (7.1), letting n → +∞ in the identity (7.24) and taking into account that
limn→+∞ λn = 0 reveal that

lim
n→+∞

∫ 1

y

a(σ)vn(σ) dσ = −1 for all y ∈ [z, 1), (7.25)

because v′n(y) < 0 for all y ∈ [z, 1) and n ≥ 1.
As the sequence {vn}n≥1 is bounded in L∞(z, 1), there exists a subsequence, still labeled as {vn}n≥1,

which converges in the weak* topology to some v̄ ∈ L∞(z, 1). Hence, for any given y ∈ [z, 1),

lim
n→+∞

∫ 1

y

a(σ)vn(σ) dσ =

∫ 1

y

a(σ)v̄(σ) dσ.

This implies that ∫ 1

y

a(σ)v̄(σ) dσ = −1 for all y ∈ [z, 1). (7.26)

Therefore, differentiating (7.26), we get v̄ = 0 a.e. in [z, 1], which contradicts (7.22) and ends the
proof. �

8. A paradigmatic example

Throughout this section we will assume that the function a is given by

a(x) :=

{
A if 0 ≤ x < z,
−B if z < x ≤ 1,

(8.1)

for some z ∈ (0, 1) and some constants, A > 0 and B > 0 such that∫ 1

0

a dx = zA− (1− z)B < 0, (8.2)

and that f(u) = u for all u ≥ 0. Thus, we are dealing with the problem{
−u′′ = λa(x)u[1 + (u′)2]

3
2 , 0 < x < 1,

u′(0) = u′(1) = 0,
(8.3)

Multiplying the differential equation of (8.3) by u′ yields

−u′u′′[1 + (u′)2]−
3
2 = λauu′,

which can be written down as (
1√

1 + v2

)′
= λauv, v ≡ u′. (8.4)

According to Theorem 3.1, the set of positive solutions of (8.3) possesses a component, C+
λ0

, such that

(λ0, 0) ∈ C̄+
λ0

and

(λ, 0) ∈ C̄+
λ0

with λ 6= 0 =⇒ λ = λ0.
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Moreover, by Theorem 7.1, the problem (8.3) cannot admit a positive regular solution, (λ, u), for
sufficiently small λ > 0, and, thanks to Theorem 6.1, it cannot admit a positive solution for sufficiently
large λ > λ0 neither. Therefore,

Pλ(C+
λ0

) is a compact subinterval of (0,+∞).

Our main goal in this section is describing analytically all the positive solutions of (8.3) with λ > 0 to
show that the regular solutions of this problem do indeed develop singularities at z as the parameter
λ reaches some critical value, λ∗ > 0.

Suppose λ > 0 and (λ, u) is a positive solution of (8.3). As we are working under the general
assumptions of Theorem 7.1, u(x) is strictly decreasing in (0, 1). In particular,

u0 := u(0) > uz := u(z) > u1 := u(1).

Moreover, v(z) = u′(z) ∈ (−∞, 0). Thus, setting

w ≡ w(z) := 1− 1√
1 + v2(z)

, (8.5)

it is apparent that v(z) runs in (−∞, 0) if and only if w(z) ∈ (0, 1). Moreover, v(z) = 0 if w(z) = 0,
while v(z) = −∞ if w(z) = 1. Throughout most of this section we will consider v(z), or equivalently
w(z), as a parameter ranging in (−∞, 0). In such case, w(z) ranges in (0, 1). Singular bounded
variation solutions, as discussed by the authors in [41] will arise when v(z) = −∞, i.e., w(z) = 1.

8.1. Analysis in the interval (0, z). In the interval (0, z), a ≡ A and (8.4) becomes(
1√

1 + v2
− λA

2
u2

)′
= 0.

Thus, since v(0) = u′(0) = 0,

1√
1 + v2(x)

− λA

2
u2(x) = 1− λA

2
u2

0 =
1√

1 + v2(z)
− λA

2
u2
z

for all x ∈ [0, z]. Hence,

1√
1 + v2(x)

= 1− λA

2

(
u2

0 − u2(x)
)

for all x ∈ [0, z].

Moreover, using (8.5),
λA

2
u2
z =

λA

2
u2

0 − w. (8.6)

Consequently, since v = u′ < 0,

v(x) = −

√[
1− λA

2

(
u2

0 − u2(x)
)]−2

− 1, x ∈ [0, z], (8.7)

and therefore, performing the changes of variables u = u(x) and u = u0θ yields

z = −
∫ uz

u0

du√[
1− λA

2 (u2
0 − u2)

]−2 − 1
=

∫ 1

uz
u0

u0 dθ√[
1− λA

2 u
2
0(1− θ2)

]−2 − 1
. (8.8)

Subsequently, we will set

γ :=
λA

2
u2

0. (8.9)

Owing to (8.6), we have that

u2
z

u2
0

= 1− w

γ
> 0.

So, γ > w and (8.8) can be expressed as

z = u0I(γ,w), (8.10)
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where

I(γ,w) :=

∫ 1

√
1−wγ

dθ√
[1− γ(1− θ2)]−2 − 1

, γ > w, 0 ≤ w ≤ 1. (8.11)

Note that

C := lim
(γ,w)→(1,1)

I(γ,w) = I(1, 1) =

∫ 1

0

dθ√
θ−4 − 1

= 0.59907 · · · < 1

is the constant defined in [14, Eq. (1.7)]. By using the change of variable

t = γ(1− θ2),

√
1− w

γ
≤ θ ≤ 1,

I(γ,w) can be written as

I(γ,w) =
1

2γ

∫ w

0

1− t
√

2− t
√
t
√

1− t
γ

dt =
1

2
√
γ

∫ w

0

1− t√
2− t

√
t
√
γ − t

dt. (8.12)

Obviously, I(γ,w) is a decreasing function of γ such that

lim
γ→+∞

(γI(γ,w)) =
1

2

∫ w

0

1− t√
2− t

√
t
dt =

1

2

√
2w − w2, (8.13)

because ∫ w

0

1− t√
2− t

√
t
dt =

1

2

∫ w

0

(2− 2t)(2t− t2)−
1
2 =

[√
2t− t2

]t=w
t=0

=
√

2w − w2.

8.2. Analysis in the interval (z, 1). In the interval (z, 1), a ≡ −B and (8.4) becomes(
1√

1 + v2
+
λB

2
u2

)′
= 0.

Thus, since v(1) = u′(1) = 0,

1√
1 + v2(x)

+
λB

2
u2(x) =

1√
1 + v2(z)

+
λB

2
u2
z = 1 +

λB

2
u2

1 (8.14)

for all x ∈ [z, 1]. Hence, we get

1√
1 + v2(x)

= 1− λB

2

(
u2(x)− u2

1

)
for all x ∈ [z, 1],

and using (8.5) yields
λB

2
u2
z =

λB

2
u2

1 + w. (8.15)

Consequently, since v = u′ < 0,

v(x) = −

√[
1− λB

2

(
u2(x)− u2

1

)]−2

− 1, x ∈ [z, 1], (8.16)

and therefore, performing the changes of variables u = u(x) and u = u1θ shows that

1− z = −
∫ u1

uz

du√[
1− λB

2 (u2 − u2
1)
]−2 − 1

=

∫ uz
u1

1

u1 dθ√[
1− λB

2 u2
1(θ2 − 1)

]−2 − 1
. (8.17)

Subsequently, we set

η :=
λB

2
u2

1 > 0. (8.18)

Then, it follows from (8.15) that
u2
z

u2
1

= 1 +
w

η
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and hence, (8.17) can be expressed as

1− z = u1J(η, w), (8.19)

where

J(η, w) :=

∫ √1+w
η

1

dθ√
[1− η(θ2 − 1))]−2 − 1

. (8.20)

Note that, performing the change of variable

t = η(θ2 − 1), 1 ≤ θ ≤
√

1 +
w

η
,

it becomes apparent that

J(η, w) =
1

2η

∫ w

0

1− t
√

2− t
√
t
√

1 + t
η

dt =
1

2
√
η

∫ w

0

1− t√
2− t

√
t
√
η + t

dt. (8.21)

Obviously, J(η, w) is decreasing in η. Moreover, since∫ w

0

1− t
t
√

2− t
dt = +∞, w ∈ (0, 1],

we find that

lim
η→0+

(√
ηJ(η, w)

)
= +∞, w ∈ (0, 1]. (8.22)

Lastly,

lim
η→+∞

(ηJ(η, w)) =
1

2

∫ w

0

1− t√
2− t

√
t
dt =

1

2

√
2w − w2. (8.23)

8.3. Existence of regular and singular positive solutions in (0, 1). As a by-product of the
previous analysis, by well known properties of the integral curves of (8.3), the next result holds.

Lemma 8.1. The problem (8.3) admits a positive regular solution (λ, u) with λ > 0 if, and only if,
there exists w ∈ (0, 1) such that

z

u0
= I(γ,w), γ =

λA

2
u2

0,
1− z
u1

= J(η, w), η =
λB

2
u2

1, (8.24)

where u0 = u(0) and u1 = u(1). Moreover, in such case,

v(z) = u′(z) = −
√

(1− w)−2 − 1 (8.25)

and
u2
z

u2
0

= 1− w

γ
,

u2
z

u2
1

= 1 +
w

η
, (8.26)

where uz = u(z). Equivalently, (8.3) admits a positive regular solution (λ, u) with λ > 0 and u′(z) =
v(z) ∈ (−∞, 0) if, and only if, (8.24) holds for some u0 > 0, u1 > 0, and w given by

w = 1− 1√
1 + (v(z))2

, (8.27)

Should this be the case, then u(0) = u0, u(1) = u1 and (8.26) holds with uz = u(z).

The previous analysis can be repeated almost mutatis mutandis up to characterize the existence
of continuous singular solutions of (8.3), i.e., solutions (λ, u) such that u ∈ C1[0, z) ∩ C1(z, 1] ∩ C[0, 1]
and v(z) = u′(z) = −∞. Naturally, in such case w = 1 and hence, the next result holds.

Lemma 8.2. The problem (8.3) admits a positive continuous singular solution (λ, u) with λ > 0 if,
and only if,

z

u0
= I(γ, 1), γ =

λA

2
u2

0,
1− z
u1

= J(η, 1), η =
λB

2
u2

1, (8.28)



BIFURCATION OF POSITIVE SOLUTIONS FOR A QUASILINEAR PROBLEM 29

where u0 = u(0) and u1 = u(1). Moreover, in such case,

u2
z

u2
0

= 1− 1

γ
,

u2
z

u2
1

= 1 +
1

η
, (8.29)

where uz = u(z).

Suppose (8.3) possesses a positive regular solution, (λ, u) with λ > 0. Then, according to Lemma
8.1, it follows from (8.24) that

u0 =

√
2γ

λA
, u1 =

√
2η

λB
. (8.30)

Thus, substituting (8.30) into the first and third identities of (8.24) yields

z
√
λA√
2γ

= I(γ,w),
(1− z)

√
λB√

2η
= J(η, w), (8.31)

where

w = 1− 1√
1 + (u′(z))2

∈ (0, 1).

Moreover, (8.26) holds. So,

u2
0

(
1− w

γ

)
= u2

1

(
1 +

w

η

)
and, thanks to (8.24),

2γ

λA

(
1− w

γ

)
=

2η

λB

(
1 +

w

η

)
.

Thus, simplifying and reordering this identity yields

γ =
A

B
(η + w) + w. (8.32)

Now, eliminating λ in each of the identities (8.31), it becomes apparent that
√

2ηJ(η, w)

(1− z)
√
B

=
√
λ =

√
2γI(γ,w)

z
√
A

. (8.33)

In particular, invoking to (8.32), we find that

√
ηJ(η, w)

(1− z)
√
B

=

√
A
B (η + w) + w · I(AB (η + w) + w,w)

z
√
A

. (8.34)

Therefore, setting

G(η, w) :=

√
ηJ(η, w)

(1− z)
√
B
−

√
A
B (η + w) + w · I(AB (η + w) + w,w)

z
√
A

(8.35)

for every η > 0 and w ∈ (0, 1), the following consequence from Lemma 8.1 holds

Corollary 8.1. The problem (8.3) admits a positive regular solution, (λ, u) with λ > 0, if, and only
if, there exist η > 0 and w ∈ (0, 1) such that G(η, w) = 0. Moreover, in such case, λ satisfies (8.33),
u0 and u1 are given by (8.30), with γ given by (8.32), uz = u(z) satisfies (8.29), and u′(z) is given
by (8.25).

Actually, the positive solutions of (8.33), with v(z) = u′(z) fixed, are in one-to-one correspondence
with the zeroes of the map G(·, w), where

w = 1− 1√
1 + (u′(z))2

∈ (0, 1).

Similarly, as a direct consequence from Lemma 8.2 the next result holds:
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Corollary 8.2. The problem (8.3) admits a positive continuous singular solution, (λ, u), with λ > 0,
if, and only if, there exists η > 0 such that G(η, 1) = 0. Moreover, in such case,

λ =

(√
2ηJ(η, 1)

(1− z)
√
B

)2

,

u0 and u1 are given by (8.30), with γ = A
B (η + 1) + 1, and uz is given by (8.29).

The next result establishes the existence of (positive) regular and singular solutions of (8.3) within
the appropriate ranges of values of the parameters involved in its formulation.

Proposition 8.1. For every v ∈ [−∞, 0), the problem (8.3) admits, at least, one positive solution,
(λ, u), with λ > 0 and such that u′(z) = v. Moreover, these solutions are in one-to-one correspondence
with the zeroes of the map G(·, w), where

w = 1− 1√
1 + v2

∈ (0, 1].

Proof. Let v ∈ [−∞, 0) be and consider w = 1− 1√
1+v2

. Since

lim
η→0

√
A
B (η + w) + w · I(AB (η + w) + w,w)

z
√
A

=

√(
A
B + 1

)
w · I(

(
A
B + 1

)
w,w)

z
√
A

< +∞,

letting η → 0 in (8.35) it follows from (8.22) that

lim
η→0

G(η, w) = +∞. (8.36)

Moreover, multiplying (8.35) by 2
√
η yields

2
√
ηG(η, w) :=

2ηJ(η, w)

(1− z)
√
B
−

2
√
η
√

A
B (η + w) + w · I(AB (η + w) + w,w)

z
√
A

(8.37)

for all η > 0. Thus, thanks to (8.23), we have that

lim
η→+∞

(
2ηJ(η, w)

)
=
√

2w − w2.

Similarly, thanks to (8.23), it becomes apparent that

lim
η→+∞

(
2
√
η

√
A

B
(η + w) + w · I(AB (η + w) + w,w)

)

= lim
η→+∞

√
A
B (η2 + ηw) + ηw

A
B (η + w) + w

lim
η→+∞

(
2

(
A

B
(η + w) + w

)
I(AB (η + w) + w,w)

)
=

√
B

A

√
2w − w2.

Consequently, letting η → +∞ in (8.37) yields

lim
η→+∞

(2
√
ηG(η, w)) =

(
1

(1− z)
√
B
−
√
B

zA

)√
2w − w2

=
zA−B(1− z)
A
√
Bz(1− z)

√
2w − w2 =

∫ 1

0
a dx

A
√
Bz(1− z)

√
2w − w2 < 0,

(8.38)

because of (8.2). Thus, G(η, w) < 0 for sufficiently large η > 0 and therefore, by (8.36), there
exists η > 0 such that G(η, w) = 0. The remaining assertions of the proposition are a by-product of
Corollaries 8.1 and 8.2. �
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Remark 8.1. For every w ∈ (0, 1], the map G(·, w) is real analytic in η > 0. Therefore, since
G(η, w) > 0 for sufficiently small η > 0 and G(η, w) < 0 for sufficiently large η > 0, the number of
zeros of G(·, w), counting them according to their orders, must be odd. Therefore, generically, for
every v ∈ [−∞, 0), the problem (8.3) possesses an odd number of positive solutions. Actually, they
must arise, or shrink to disappear, by pairs.

According to Proposition 8.1, (8.3) possesses a positive continuous singular solution, (λ, u), with
λ > 0, i.e., a solution with u′(z) = −∞. The next result complements the analysis already done in
Section 5 by establishing that any unbounded sequence of positive regular solutions must approach
some positive singular solution.

Theorem 8.1. Let {(λn, un)}n≥1 be a sequence of positive regular solutions of (8.3), with λn > 0,
such that

lim
n→+∞

‖un‖C1[0,1] = +∞. (8.39)

Then, one can extract a subsequence, {(λnm , unm)}m≥1, and a positive continuous singular solution
of (8.3), (λ∗, u∗), with λ∗ > 0, such that

lim
m→+∞

(λnm , unm) = (λ∗, u∗) in R× C[0, 1]. (8.40)

Remark 8.2. As the component C+
λ0

is unbounded in R× C1[0, 1] and, thanks to Theorems 6.1 and

7.1, there exists 0 < α ≤ β such that Pλ(C+
λ0

) = [α, β], according to Theorem 8.1, the problem (8.3)

possesses a positive singular solution, (λ∗, u∗), with λ∗ ∈ [α, β], such that (λ∗, u∗) is a limit point of
C+
λ0

in R× C[0, 1].

Proof. For every n ≥ 1, we have that

‖un‖C1[0,1] = ‖un‖C[0,1] + ‖u′n‖C[0,1] = un(0)− u′n(z).

Thanks to Theorem 7.1, there exists α > 0 such that λn ≥ α for all n ≥ 1. Suppose that, along some
subsequence, {unm}m≥1,

lim
m→+∞

unm(0) = +∞. (8.41)

Then,

γnm :=
λnmA

2
u2
nm(0) ≥ αA

2
u2
nm(0)→ +∞ as m→ +∞.

Note that, since

wn := 1− 1√
1 + (u′n(z))2

∈ (0, 1], n ≥ 1,

setting

ηn := B
A (γn − wn)− wn, n ≥ 1,

we also have that

lim
m→+∞

ηnm = +∞.

Moreover, by compactness, along some subsequence, relabeled by nm,

lim
m→+∞

wnm = w∗ ∈ [0, 1].

By Corollary 8.1, G(ηnm , wnm) = 0 for all n ≥ 1 and hence, based on (8.12), (8.21) and (8.38), it
becomes apparent that

0 = lim
m→+∞

(2
√
ηnmG(ηnm , wnm)) =

∫ 1

0
a dx

A
√
Bz(1− z)

√
2w∗ − (w∗)2.

Thus, w∗ = 0 and consequently,

lim
m→+∞

u′nm(z) = 0.

So, since

−u′n(z) = ‖u′n‖C[0,1], n ≥ 1,
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we find that
lim

m→+∞
‖u′nm‖C[0,1] = 0. (8.42)

Hence, for every ε > 0, there exists m0 = m0(ε) ∈ N such that

‖u′nm‖C[0,1] ≤ ε for all m ≥ m0.

Consequently, for every x ∈ [0, 1] and m ≥ m0,

|unm(x)− unm(0)| ≤ ε|x| ≤ ε
and therefore, (8.41) yields

lim
m→+∞

unm = +∞ uniformly in [0, 1]. (8.43)

Actually, thanks to Theorem 6.1 and 7.1, without lost of generality, we may assume that

lim
m→+∞

λnm = λ∗ > 0. (8.44)

Setting

vm :=
unm

‖unm‖C[0,1]
, m ≥ 1,

and dividing by ‖unm‖C[0,1] the differential equation satisfied by (λnm , unm), m ≥ 1, it is apparent
that

−v′′m = λnmavm
[
1 + (u′nm)2

] 3
2 , m ≥ 1. (8.45)

Combining (8.42) and (8.44) with a standard compactness argument and letting m → +∞ in (8.45)
shows that there exist a subsequence of {vm}m≥1, labeled again by m, and a function ϕ ∈ C1[0, 1] ∩
C2[0, z) ∩ C2(z, 1] such that

lim
m→+∞

vm = ϕ in C1[0, 1] (8.46)

and
−ϕ′′ = λ∗aϕ, ϕ′(0) = ϕ′(1) = 0, ϕ ≥ 0, ‖ϕ‖C[0,1] = 1.

By Theorem 2.1, λ∗ = λ0 and ϕ must be a principal eigenfunction associated with Σ(λ0). Moreover,
according to (8.46),

lim
m→+∞

u′nm
‖unm‖C[0,1]

= ϕ′.

Thus, (8.42) and (8.43) imply that ϕ′ = 0 and hence, ϕ = 1 in [0, 1], which entails λ0a = 0, a
contradiction. Therefore, there exists a constant C > 0 such that

‖un‖C[0,1] = un(0) ≤ C for all n ≥ 1, (8.47)

whereas
lim

n→+∞
‖u′n‖C[0,1] = − lim

n→+∞
u′n(z) = +∞. (8.48)

According to Theorems 6.1 and 7.1, we can extract a subsequence, relabeled by n, such that

lim
n→+∞

λn = λ∗ and lim
n→+∞

un(0) = u∗0 (8.49)

for some λ∗ > 0 and u∗0 ≥ 0. Should u∗ be equal zero, the sequence (λn, un), n ≥ 1, would bifurcate
from zero and, according to Theorem 4.1, we should also have

lim
n→+∞

‖u′n‖C[0,1] = 0,

which contradicts (8.48). Thus, u∗0 > 0. Moreover, by (8.48),

lim
n→+∞

wn = lim
n→+∞

(
1− 1√

1 + (u′n(z))2

)
= 1.

Similarly,

lim
n→+∞

γn = lim
n→+∞

λn
2
A(un(0))2 =

λ∗

2
A(u∗0)2 and lim

n→+∞
ηn = η∗ :=

B

A
(γ∗ − 1)− 1.
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Finally, letting n → +∞ in G(ηn, wn) = 0, n ≥ 1, yields G(η∗, 1) = 0 and therefore, Corollary 8.2
ends the proof. It should be noted that, along some subsequence, we also have that

u∗z := lim
n→+∞

un(z)

is well defined. �

8.4. Existence of singular discontinuous solutions. As a byproduct of the analysis already done
in the previous subsections, the following result holds.

Corollary 8.3. The pair (λ, u), with λ > 0, solves the singular boundary value problem −u
′′ = λau[1 + (u′)2]

3
2 in (0, z),

u′(0) = 0, u(0) = u0 > 0,
u′(z) = −∞, u(z) = uz,− > 0,

(8.50)

if, and only if,

z = u0I(γ, 1), γ =
λA

2
u2

0, uz,− = u0

√
1− γ−1. (8.51)

Similarly, (λ, u), with λ > 0, solves the singular problem −u
′′ = λau[1 + (u′)2]

3
2 in (z, 1),

u′(z) = −∞, u(z) = uz,+ > 0,
u(1) = u1 > 0, u′(1) = 0,

(8.52)

if, and only if,

1− z = u1J(η, 1), η =
λB

2
u2

1, uz,+ = u1

√
1 + η−1. (8.53)

According to the analysis already done in Section 8.1, we have that γ 7→ I(γ, 1) is decreasing and
that

C := I(1, 1) =

∫ 1

0

dθ√
θ−4 − 1

= 0.59907 . . . , lim
γ→+∞

(γI(γ, 1)) = 1
2 . (8.54)

Thus, the problem (8.50) possesses a solution if, and only if, u0 >
z
C . Note that if u0 = z

C , then (8.51)
implies I(γ, 1) = C and hence,

γ = 1, λ =
2γ

Au2
0

=
2C2

Az2
, uz,− = 0.

Thus, (8.50) admits a singular solution with u(z) = 0 if u0 = z
C . Moreover, by the monotonicity of

I(γ, 1), the singular solution is unique for every u0 ≥ z
C and

γ = γ(u0) := I−1( z
u0
, 1). (8.55)

Hence,

λ = λ(u0) :=
2γ(u0)

Au2
0

. (8.56)

In addition, by the properties of I(γ, 1), we have that

lim
u0→+∞

γ(u0) = +∞.

Thus, it follows from (8.54) that

lim
u0→+∞

(γ(u0)I(γ(u0), 1)) = 1
2 .

Equivalently,

lim
u0→+∞

γ(u0)z

u0
= 1

2 . (8.57)

Therefore, from (8.56) and (8.57) it becomes apparent that

lim
u0→+∞

(u0λ(u0)) = lim
u0→+∞

2γ(u0)

Au0
=

1

zA
.
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In other words,

λ(u0) ∼ 1

zAu0
as u0 → +∞. (8.58)

In particular,

lim
u0→+∞

λ(u0) = 0

and so, (8.50) possesses a positive solution for all

λ ∈
(

0, 2C2

z2A

)
.

If we allow uz,− = 0, then (8.50) also has a positive solution, with u(z) = 0, for λ = 2C2

z2A . As a
byproduct, thanks to Theorem 3.2,

λ0 ≤
2C2

z2A
.

Naturally, according to Theorem 7.1, the problem (8.52) cannot admit a solution with uz,+ = uz,−
for sufficiently small λ > 0.

Similarly, by the results of Section 8.2, the map η 7→ J(η, 1) is decreasing and, thanks to (8.22) and
(8.23), we have that

lim
η→0+

J(η, 1) = +∞, lim
η→+∞

(ηJ(η, 1)) = 1
2 . (8.59)

Thus, the singular problem (8.52) admits a unique solution for every u1 > 0. Moreover,

η = η(u1) := J−1( 1−z
u1
, 1) (8.60)

and hence, by (8.53),

λ = λ(u1) :=
2η(u1)

Bu2
1

. (8.61)

By the properties of J(η, 1), it follows from (8.60) that

lim
u1→+∞

η(u1) = +∞.

Consequently, by (8.59),

lim
u1→+∞

(η(u1)J(η(u1), 1)) = 1
2 .

Equivalently,

lim
u1→+∞

η(u1)(1− z)
u1

= 1
2 . (8.62)

Therefore, it follows from (8.61) and (8.62) that

lim
u1→+∞

(u1λ(u1)) = lim
u1→+∞

2η(u1)

Bu1
=

1

(1− z)B
.

In other words,

λ(u1) ∼ 1

(1− z)Bu1
as u1 → +∞. (8.63)

As we are assuming that ∫ 1

0

a dx = zA− (1− z)B < 0,

we have that
1

(1− z)B
<

1

zA
.

On the other hand, by (8.58) and (8.63), we may infer that

1

zAu0
∼ λ(u0) = λ(u1) ∼ 1

(1− z)Bu1
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for sufficiently large u0 and u1. Therefore, if (8.50) and (8.52) possesses a positive solution for
sufficiently small λ > 0, then u0 > u1. Moreover, since

u2
z,−(u0)

u2
0

= 1− γ−1(u0),
u2
z,+(u1)

u2
1

= 1− η−1(u1),

it becomes apparent that

lim
u0→+∞

u2
z,−(u0)

u2
0

= 1, lim
u1→+∞

u2
z,+(u1)

u2
1

= 1.

Consequently, since u0 > u1, any solution of (8.50) and (8.52) must satisfy

uz,−(u0) > uz,+(u1) (8.64)

for sufficiently small λ > 0. Actually, this analysis establishes the non-existence of a positive regular
solution of (8.3) for the choice (8.1) for sufficiently small λ > 0, as well as the existence of a singular
discontinuous solution satisfying (8.64). Naturally, these positive singular solutions are bounded
variation solutions as discussed in Section 1: a proof of this simple fact is given below.

Lemma 8.3. Let u : [0, 1]→ R solve the singular problems (8.50) and (8.51). Then, u is a bounded
variation solution of (1.1).

Proof. Note that u ∈ W 1,1(0, z) ∩W 2,1
loc [0, z), u ∈ W 1,1(z, 1) ∩W 2,1

loc (z, 1], and, in particular, u ∈
BV (0, 1). Pick a test function φ ∈ BV (0, 1) such that |Dφ|s � |Du|s. Clearly, φ ∈ W 1,1(0, z) and
φ ∈W 1,1(z, 1). Rewrite the equations in (8.50) and (8.51), respectively, in the form

−

(
u′√

1 + (u′)2

)′
= λa(x)u, 0 < x < z, −

(
u′√

1 + (u′)2

)′
= λa(x)u, z < x < 1,

Multiply by φ both equations and integrate by parts on (0, z) and (z, 1), respectively. Using the
conditions satisfied by u′ at the points 0, z, 1, namely u′(0) = u′(1) = 0 and u′(z−) = u′(z+) = −+∞,
we find∫ 1

0

a uφ dx =

∫ z

0

u′ φ′√
1 + (u′)2

dx+

∫ 1

z

u′ φ′√
1 + (u′)2

dx−

[
u′ φ√

1 + (u′)2

]z
0

−

[
u′ φ√

1 + (u′)2

]1

z

=

∫ 1

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dx+ φ(z−)− φ(z+)

=

∫ 1

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dx+ sgn
(
u(z−)− u(z+)

)(
φ(z−)− φ(z+)

)
=

∫ 1

0

(Du)a (Dφ)a√
1 + |(Du)a|2

dx+

∫ 1

0

sgn

(
Du

|Du|

)
Dφ

|Dφ|
|Dφ|s,

according to the notations introduced in Section 1. �

We conjecture that this behavior of the bounded variation solutions of problem (1.1) is not specific

of the choice (8.1), but also holds for every a ∈ L∞(0, 1) changing sign in (0, 1) such that
∫ 1

0
a dx < 0

and any function f satisfying (Hf). This is suggested by the results in [41] too.

9. The case where F is subquadratic at zero

The next result establishes the existence of a positive regular solution of (1.1), for sufficiently small
λ > 0, if F is sub-quadratic at zero.

Theorem 9.1. Assume that

• a ∈ L1(0, 1) is such that
∫ 1

0
a dx < 0 and a(x) > 0 a.e. on an interval K ⊂ [0, 1],

• f ∈ C0[0,+∞) is such that f(u) ≥ 0 for u ≥ 0,
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• there exist p ∈ (1, 2) and L > 0 such that

lim
u→0+

F (u)

up
= L, (9.1)

with F (u) =
∫ u

0
f(s) ds. Then, there exists λ∗ > 0 such that, for every λ ∈ (0, λ∗), (1.1) has a positive

solution u ∈W 2,1(0, 1). Moreover, these solutions, uλ, can be chosen to satisfy

lim
λ→0+

‖uλ‖C1[0,1] = 0. (9.2)

Proof. Without loss of generality, we can suppose that there exists δ ∈ (0, 1) such that f(s) > 0
for all s ∈ (0, δ), because otherwise (1.1) admits, for every λ > 0, a sequence of constants positive
solutions {un}n≥1, with limn→+∞ un = 0. Hence, in this case, λ∗ = +∞. Choosing, for each λ > 0,
a solution un such that 0 < un < λ, we conclude that (9.2) holds as well. Note also that f(0) = 0,
because of (9.1). The rest of the proof is divided into three steps.

Step 1. A modified problem. Let us define two functions ϕ, h : R→ R, by setting

ϕ(s) :=


s√

1 + s2
if |s| ≤ 1,

ϕ(−1) + ϕ′(−1)(s+ 1) if s < −1,

ϕ(1) + ϕ′(1)(s− 1) if s > 1,

h(s) :=


0 if s < 0 or s > 1,

f(s) if 0 ≤ s ≤ δ,

f(δ)
1− s
1− δ

if δ < s ≤ 1,

and consider, for each λ > 0, the modified problem− (ϕ(u′))
′

= λa(x)h(u) in (0, 1),

u′(0) = 0, u′(1) = 0.
(9.3)

Subsequently, we will find a positive solution u = uλ of (9.3) as a global minimizer of the functional
Iλ : H1(0, 1)→ R defined by

Iλ(v) =

∫ 1

0

Φ(v′) dx− λ
∫ 1

0

aH(v) dx,

where

Φ(s) :=

∫ s

0

ϕ(t) dt, H(s) :=

∫ s

0

h(t) dt.

Note that Φ is even, convex and has quadratic growth at infinity, in the sense that

lim
|s|→+∞

Φ(s)

s2
> 0,

H is bounded, and both functions are increasing for s > 0.

Step 2. Solving the modified problem. Let λ > 0 be given. The functional Iλ is bounded from
below in H1(0, 1). Indeed, by the properties of the functions Φ, h,H, we have that

Iλ(v) =

∫ 1

0

Φ(v′) dx− λ
∫ 1

0

aH(v) dx ≥ −λ‖a‖L1(0,1)H(1).

Moreover, for every u ∈ H1(0, 1), the function

v = min{max{u, 0}, 1} ∈ H1(0, 1)
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reduces Iλ, in the sense that Iλ(v) ≤ Iλ(u). Indeed, using again the properties of Φ, h,H, we find

Iλ(u) =

∫ 1

0

Φ(u′) dx− λ
∫ 1

0

aH(u) dx

=

∫
{u<0}

Φ(u′) dx+

∫
{0≤u≤1}

Φ(u′) dx+

∫
{u>1}

Φ(u′) dx

− λ
∫
{u<0}

aH(u) dx− λ
∫
{0≤u≤1}

aH(u) dx− λ
∫
{u>1}

aH(u) dx

≥
∫
{u<0}

Φ(0) dx+

∫
{0≤u≤1}

Φ(v′) dx+

∫
{u>1}

Φ(0) dx

− λ
∫
{u<0}

aH(0) dx− λ
∫
{0≤u≤1}

aH(v) dx− λ
∫
{u>1}

aH(1) dx

=

∫ 1

0

Φ(v′) dx− λ
∫ 1

0

aH(v) dx = Iλ(v).

Therefore, if {un}n≥1 is a minimizing sequence of Iλ and we set

vn = min{max{un, 0}, 1}, n ≥ 1,

then the sequence {vn}n≥1 is a minimizing sequence that is bounded in L∞(0, 1). Further, as

sup
n≥1
|Iλ(vn)| < +∞

and H is bounded, we infer that

sup
n≥1

∫ 1

0

Φ(v′n) dx < +∞,

and, as Φ is asymptotically quadratic,

sup
n≥1
‖v′n‖L2(0,1) < +∞.

Therefore, we conclude that
sup
n≥1
‖vn‖H1(0,1) < +∞.

Accordingly, there exists a subsequence of {vn}n≥1, which converges, weakly in H1(0, 1) and strongly
in L∞(0, 1), to some function u = uλ ∈ H1(0, 1), satisfying

0 ≤ uλ(x) ≤ 1 in (0, 1).

Since Iλ is weakly lower semicontinuous in H1(0, 1), uλ is a global minimizer of Iλ in H1(0, 1). As
Iλ is of class C1, uλ is a critical point of Iλ and hence a solution of (9.3).

Finally, we prove that uλ is non-trivial. It suffices to show that Iλ(uλ) < 0. As there is an interval
K ⊂ (0, 1) such that a(x) > 0 a.e. in K, we can pick a function z ∈ C1[0, 1], with supp z ⊂ K, such
that z(x) = 1 in an interval K0 ⊂ K. Since H(s) ≥ 0 for all s ∈ R and H(0) = 0, we infer from the
properties of Φ, H and (9.1) that, for sufficiently small t > 0,

Iλ(tz) =

∫ 1

0

Φ(tz′) dx−
∫
K0

aF (t) dx−
∫
K\K0

aF (t z) dx

≤
∫ 1

0

t2 (z′)2

1 +
√

1 + t2 (z′)2
dx+

1

2n

∫ 1

0

t2(z′)2 dx− F (t)

∫
K0

a dx

≤ tp
(
t2−p

∫ 1

0

(z′)2 dx − F (t)

tp

∫
K0

a dx

)
< 0,

because 2− p > 0. This implies that

Iλ(uλ) = min
v∈H1(0,1)

Iλ(v) < 0.

Therefore, uλ is a positive solution of (9.3).
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Step 3. Existence of classical positive solutions of (1.1) for small λ. For each λ > 0, uλ
satisfies the equation

−u′′λ = λ
a(x)h(uλ)

ϕ′(u′λ)
a.e. in (0, 1).

Since h is bounded and ϕ′ is bounded away from 0, there exists a constant C > 0 such that

‖u′′λ‖L1 ≤ λC
and hence,

‖u′λ‖∞ ≤ λC and ‖wλ‖∞ ≤ λC, (9.4)

where the splitting uλ = wλ + rλ, with rλ =
∫ 1

0
uλ dx ∈ [0, 1], is used.

Let us prove that

lim
λ→0+

rλ = 0. (9.5)

To this end we argue by contradiction. Suppose there is a sequence, {λn}n≥1, with limn→+∞ λn = 0
such that, setting

rn := rλn , un := uλn , wn := wλn , n ≥ 1,

we have that

lim
n→+∞

rn = r̄ > 0.

As limn→+∞ λn = 0, (9.4) implies that

lim
n→+∞

‖u′n‖∞ = 0, lim
n→+∞

‖wn‖∞ = 0.

Thus,

lim
n→+∞

h(rn + wn) = h(r̄) and lim
n→+∞

H(rn + wn) = H(r̄) uniformly in [0, 1].

Therefore, letting n→ +∞ in the relation∫ 1

0

a h(un) dx = 0, n ≥ 1,

yields
∫ 1

0
a h(r̄) dx = 0 and, since

∫ 1

0
a dx < 0, we find that h(r̄) = 0, which entails r̄ = 1. On the

other hand, we already know that

0 > Iλn(un) ≥ −λn
∫ 1

0

aH(rn + wn) dx, n ≥ 1,

and hence ∫ 1

0

aH(rn + wn) dx > 0, n ≥ 1.

Letting n→ +∞ finally shows that ∫ 1

0

aH(1) dx ≥ 0,

which is impossible, because
∫ 1

0
a dx < 0 and H(1) > 0. Therefore, (9.5) holds and consequently

lim
λ→0+

‖uλ‖C1[0,1] = 0.

Accordingly, there exists λ∗ > 0 such that uλ is a solution of (1.1) for all λ ∈ (0, λ∗), because any
solution, u, of (9.3) satisfying 0 ≤ u ≤ 1 solves (1.1). �

Theorem 9.1 complements Theorems 1.2 and 1.6 of [41] from two different perspectives. First, it
establishes the existence of a positive regular solution of (1.1), for sufficiently small λ > 0, provided
the potential F is sub-quadratic at zero, and this independently of its growth at infinity. Secondly,
when, in addition, F is superlinear at infinity, in the sense that (1.5) holds, and there further exists
ϑ > 1 such that

lim
u→+∞

ϑF (u)− f(u)u

u
= 0,
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then it establishes that the second positive bounded variation solution, u2, constructed in Theorem 1.6
of [41] can be taken to be regular. As in this case, rather naturally, the global bifurcation diagram of
positive bounded variation solutions of (1.1) should be a perturbation of the global bifurcation diagram
sketched in Figure 1, at least for p = 2− ε with sufficiently small ε > 0, we conjecture that the global
bifurcation diagram of the bounded variation solutions of (1.1) in the setting of Theorem 1.6 of [41]
looks like shows the first plot of Figure 2. The branch of minimal solutions, {u2(λ) : λ ∈ (0, λ∗)},
consisting of regular solutions, should perturb from u = 0 as ε perturbs from 0. Consequently,

lim
ε→0+

λ∗(ε) = λ0.

The upper branch of the bifurcation diagram, {u1(λ) : λ ∈ (0, λ∗)}, should approximate the component
C+ of bounded variation solutions of Figure 1 as ε → 0+, so that there is a continuous transition
between both global bifurcation diagrams as ε→ 0+.

A simple condition on f guaranteeing (9.1) is

lim
u→0+

f(u)

up−1
= pL. (9.6)

In such case, since p ∈ (1, 2), we have that

lim
u→0+

f(u)

u
= +∞.

Thus, the quotient function, Q(u), defined by (6.3) is unbounded at u = 0 and the proof of Theorem
6.1 cannot be adapted to treat subquadratic potentials at zero. Consequently, it remains an open
question to ascertain whether or not (1.1) admits a positive solution, either regular, or singular, for
sufficiently large λ > 0.

10. The case where F is superquadratic at zero

The next result basically establishes the existence of a positive regular solution of (1.1), for sufficiently
large λ > 0, if F is superquadratic at zero.

Theorem 10.1. Assume that

• a ∈ L1(0, 1) satisfies
∫ 1

0
a dx < 0 and it admits a decomposition

[0, 1] =

k⋃
i=1

[αi, βi], with αi < βi = αi+1 < βi+1, for i = 1, . . . , k − 1,

such that

(−1)ia(x) ≥ 0 a.e. in (αi, βi), a 6≡ 0 in (αi, βi), for i = 1, . . . , k,

or

(−1)ia(x) ≤ 0 a.e. in (αi, βi), a 6≡ 0 in (αi, βi), for i = 1, . . . , k,

• f ∈ C0[0,+∞) satisfies f(u) ≥ 0 for u ≥ 0,

• there exist p > 1 and L > 0 such that

lim
u→0+

f(u)

up
= L. (10.1)

Then, there exists λ∗ > 0 such that, for every λ > λ∗, the problem (1.1) admits at least one strictly
positive solution u ∈W 2,1(0, 1). Moreover, these solutions, uλ, can be chosen to satisfy

lim
λ→+∞

‖uλ‖C1[0,1] = 0. (10.2)
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Proof. The proof, which is divided into two steps, has a topological nature and combines a clever
result recently obtained in [23], with the invariance property of the coincidence degree under small
perturbations, that is, the Rouché theorem. For a thorough treatment of the coincidence degree theory
we refer to [26].

Step 1. An auxiliary problem. Let us consider the semilinear problem−v
′′ = La(x)vp in (0, 1),

v′(0) = 0, v′(1) = 0,
(10.3)

where p > 1 and L > 0 come from (10.1). By our assumptions on the weight a, all hypotheses of [23,
Theorem 3.1] are met. Let us set, for a.e. x ∈ [0, 1] and every s ≥ 0,

f(x, s) := La(x)sp.

As in the proof of [23, Theorem 3.1], there are constants, r,R, with 0 < r < R, for which conditions
(Hr) and (HR) of [23, Theorem 2.1] hold. Subsequently, we consider the open bounded subset of
C1[0, 1]

Ω := {v ∈ C1[0, 1] : r < ‖v‖∞ < R, ‖v′‖∞ < S},
where S > ‖a‖L1Rp. We also define the function

f̃(x, s) :=

{
f(x, s) if s ≥ 0,

−s if s < 0,

for a.e. x ∈ [0, 1] and every s ∈ R, and the operators

L : dom L := W 2,1
N (0, 1)→ L1(0, 1), Lv := −v′′,

N : C1[0, 1]→ L1(0, 1), N (v) := f̃(·, v),

Π : L1(0, 1)→ R, Πw :=
∫ 1

0
w(x) dx.

Clearly, L is a Fredholm operator of index zero such that

N [L] = R[Π] = R, R[L] = N [Π].

Moreover, the operator K : L1(0, 1)→ C1[0, 1], which sends any function w ∈ L1(0, 1) onto the unique
solution v ∈ dom L ∩N [Π] of the equation

Lv = w −Πw

is compact. Furthermore, according to the terminology in [26], the operator N is L-compact in Ω.
Therefore, as in the proof of Theorem 2.1 in [23], we infer that

Lv 6= N (v) for all v ∈ dom L ∩ ∂Ω (10.4)

and

DL(L −N ,Ω) = −1, (10.5)

where DL(L−N ,Ω) denotes the coincidence degree of L and N in Ω. By (10.4), since K is continuous,
it follows from [26, Lemma III.5] that

inf
v∈ dom L∩ ∂Ω

‖Lv −N (v)‖L1 > 0. (10.6)

Step 2. Existence of classical solutions of problem (1.1) for large λ. Recall that a function
u ∈ W 2,1(0, 1) is a solution of (1.1) if and only if u satisfies (1.8). Moreover, introducing the change

of variable v := λ
1
p−1u, with λ > 0, in (1.8) it turns out that (1.1) can be equivalently written as−v

′′ = La(x)vp + a(x)gλ(v, v′) in (0, 1),

v′(0) = 0, v′(1) = 0,
(10.7)
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where

gλ(s, ξ) :=
[
λ

p
p−1 f

(
λ−

1
p−1 s

)
− Lsp

](
1 + λ−

2
p−1 ξ2

)3/2
+ Lsp

[(
1 + λ−

2
p−1 ξ2

)3/2 − 1
]
,

for every s ≥ 0, ξ ∈ R and λ > 0. Since

gλ(s, ξ) = sp

[
f
(
λ−

1
p−1 s

)(
λ−

1
p−1 s

)p − L
](

1 + λ−
2
p−1 ξ2

)3/2

+ Lsp
[(

1 + λ−
2
p−1 ξ2

)3/2 − 1
]
,

it follows from (10.1) that

lim
λ→+∞

gλ(s, ξ) = 0

uniformly on all compact subsets of (s, ξ) ∈ R+ × R. Thus, introducing the function

h̃λ(x, s, ξ) :=

La(x)sp + a(x)gλ(s, ξ) if s ≥ 0,

−s if s < 0,

for a.e. x ∈ [0, 1] and every s, ξ ∈ R, λ > 0, the corresponding superposition operator

Nλ : C1[0, 1]→ L1(0, 1), Nλ(v) = h̃λ(·, v, v′),

is L-compact in Ω. Hence, the properties of gλ and the definition of h̃λ imply that

lim
λ→+∞

sup
v∈Ω

‖Nλ(v)−N (v)‖L1 = 0. (10.8)

Since (10.6), (10.8) and (10.5) hold and the operator K is continuous, [26, Lemma III.5] yields the
existence of λ∗ > 0 such that

DL(L −Nλ,Ω) = DL(L −N ,Ω) = −1

for all λ > λ∗. Therefore, by [26, Theorem III.3], the problem−v
′′ = h̃λ(x, v, v′) in (0, 1),

v′(0) = 0, v′(1) = 0,

has at least one solution vλ ∈ dom L ∩ Ω. As vλ 6= 0, the definition of h̃λ and the strong maximum
principle, e.g., in the form of [23, Lemma 6.1], imply that min vλ > 0. Therefore vλ satisfies (10.7).

Finally, setting uλ = λ−
1
p−1 vλ, for every λ > λ∗, we conclude that uλ is a solution of (1.1) such that

uλ ∈W 2,1(0, 1), minuλ > 0, and (10.2) hold. �

Since (10.1) implies that

lim
u→0+

F (u)

up+1
=

L

p+ 1
(10.9)

with p + 1 > 2, Theorem 10.1 complements Theorem 1.1 of [41] by providing some sufficient con-
ditions so that the bounded variation solutions constructed therein can indeed be regular solutions
for sufficiently large λ > 0. When, in addition, (1.5) holds, i.e., F is superlinear at infinity, then,
thanks to Theorem 7.1, one can give some general sufficient conditions so that (1.1) cannot admit a
regular solution for sufficiently small λ > 0. From this perspective, Theorem 10.1 is optimal. Rather
naturally, at least for p + 1 = 2 + ε with sufficiently small ε > 0, the global bifurcation diagram of
the bounded variation solutions of (1.1) should be a perturbation of the global bifurcation diagram
sketched in Figure 1. Based on this, we conjecture that the global bifurcation diagram of the bounded
variation solutions of (1.1) in the setting of Theorem 1.1 of [41] looks like the second plot of Figure 2
shows.
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11. Conclusions, conjectures and open questions

In this paper we have studied regular and singular (bounded variation) solutions of the quasilinear
Neumann problem (1.1), where a ∈ L∞(0, 1) changes sign in (0, 1) and f(u) is an increasing function
of class C1 such that the associated potential, F (u) :=

∫ u
0
f ds, is superlinear at infinity, though many

of the results remain valid for a ∈ L1(0, 1). Most of the attention in this paper has been focused on
the special case where the potential F (u) is quadratic at zero; however Sections 9 and 10 also cover
the cases where F (u) is either subquadratic, or superquadratic, at zero, respectively.

According to one of our previous results in [41], reported here as Theorem 1.1, when a ∈ L1(0, 1)

satisfies
∫ 1

0
a dx < 0 and F is quadratic at zero and superlinear at infinity, there exists a value of the

parameter λ, λ∗ > 0, such that, for every λ ∈ (0, λ∗), the problem (1.1) possesses a bounded variation
solution, u, such that on each subinterval, (α, γ), where the weight function a changes its sign exactly
once, at some β ∈ (α, γ), either u is regular in the entire interval (α, γ), or it develops a singularity at
β, in the sense that, either

u(β−) ≥ u(β+) and u′(β−) = −∞ = u′(β+) (11.1)

(if a(x) ≥ 0 in (α, β) and a(x) ≤ 0 in (β, γ)), or

u(β−) ≤ u(β+) and u′(β−) = +∞ = u′(β+) (11.2)

(if a(x) ≤ 0 in (α, β) and a(x) ≥ 0 in (β, γ)). However, this result does not ascertain whether or not
this property should hold for any other bounded variation solution of (1.1), or whether u(β−) > u(β−)
should occur in (11.1), or u(β−) < u(β+) in (11.2), neither whether or not (1.1) should possess some
regular solution.

Being the resolution of these problems important challenges also from the point of view of their
applications in fluid dynamics and reaction diffusion processes, in this paper we have combined a
variety of technical tools from calculus of variations, global bifurcation theory, topological degree
and the theory of autonomous planar dynamical systems, in order to study the existence and the
hidden structure of the regular solutions of (1.1), as well as their relationships with the bounded
variation solutions provided by Theorem 1.1; very specially, in trying to realize the mechanisms for
the generation of jump singularities from the λ-paths of regular solutions of (1.1).

According to Lemma 2.1, the condition
∫ 1

0
a dx < 0 has been shown to be necessary for the existence

of a regular positive solution of (1.1) for some λ > 0. Thus, throughout this paper we have always

assumed that
∫ 1

0
a dx < 0.

Thanks to Theorem 3.1, there are λ0 > 0 and a non-trivial (connected) component, C+
λ0

, of the

set of regular positive solutions of (1.1) such that (λ0, 0) ∈ C̄+
λ0

. Since we are working under non-flux

boundary conditions, for every κ > 0, (λ, u) = (0, κ) is a (trivial) regular positive solution of (1.1); the
trivial solutions might belong, or not, to the component C+

λ0
. By Theorem 4.2, (λ0, 0) is a subcritical

pitchfork bifurcation point if f ′′(0) = 0, and a transcritical bifurcation point if f ′′(0) 6= 0: supercritical
if f ′′(0) < 0 and subcritical if f ′′(0) > 0.

If, in addition, F (u) is quadratic or subquadratic at infinity and there are r, s ∈ (0, 1) such that
inf [r,s] a > 0, then, by Theorem 6.1, problem (1.1) cannot admit a regular positive solution, nor
actually a bounded variation solution, for sufficiently large λ > 0. More precisely, Theorem 6.1
establishes that if

lim
u→∞

f(u)

uq−1
= qh (11.3)

for some q ∈ (1, 2] and h > 0, then

Λ(q) ≡ sup {λ > 0 : (1.1) has a bounded variation solution } < +∞. (11.4)

Although the assumption that inf [r,s] a > 0 on some [r, s] holds for any continuous function a, and so it
does not look so much restrictive, it remains an open problem to ascertain whether or not Λ(q) < +∞
when q > 2. Nevertheless, under the assumptions of Theorem 6.1, the λ-projection of the component
C+
λ0

must be a compact interval [α(q), ω(q)], for some 0 ≤ α(q) ≤ λ0 and λ0 ≤ ω(q) ≤ Λ(q). It is
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still open to know whether or not (1.1) can admit a singular bounded variation solution for some
λ ∈ [α(q), ω(q)], or whether or not (1.1) can possess another non-trivial component of regular positive
solutions, besides C+

λ0
.

If, in addition, f ∈ C2(R) and

lim
u→∞

f ′(u)

uq−2
= q(q − 1)h, (11.5)

for some q ∈ (1, 2] and h > 0, and there exists z ∈ (0, 1) such that a(x) > 0 for all x ∈ (0, z) and
a(x) < 0 for all x ∈ (z, 1), then, by Theorem 7.1, problem (1.1) cannot admit a regular positive
solution for sufficiently small λ > 0. As a by-product, we find that α(q) > 0 and

{(0, κ) : κ > 0} ∩ C+
λ0

= ∅.
Therefore, one can extract the following important consequences.

• The problem (1.1) possesses at least two components of regular positive solutions. Namely,
C+
λ0

and C+
0 = {(0, κ) : κ > 0}.

• For each λ ∈ (0, α(q)), every bounded variation solution of (1.1) must possess some singularity.
Moreover, owing to Theorem 1.1, there exists at least one bounded variation solution, u, such
that

u(z−) ≥ u(z+) and u′(z−) = −∞ = u′(z+). (11.6)

Note that (11.5) implies (11.3). Moreover, the nodal assumptions on the weight a in the statement
of Theorem 7.1 imply min[ε,z−ε] a > 0 for sufficiently small ε > 0. So, the hypotheses of Theorem
6.1 hold true under the assumptions of Theorem 7.1. We conjecture that, in such case, (11.6) holds
for every bounded variation solution, u. Actually, u(z−) > u(z+) should occur if λ < α(q), while for
λ = λ∗ := α(q) the problem (1.1) should admit a bounded variation solution, u∗ ∈ C[0, 1], such that

(u∗)′(z−) = −∞ = (u∗)′(z+) and (u∗, λ∗) ∈ C̄+
λ0
,

as illustrated by Figure 1.
These conjectures are strongly supported by the analysis of Section 8, where the special, but

pivotal case, when f(u) = u (for which q = 2) has been exhaustively studied for a particular choice
of the weight a that enabled us to use planar phase techniques. In this particular example the global
bifurcation diagram of bounded variation solutions looks like shows Figure 1. The component of
regular positive solutions C+

λ0
, which bifurcates from (λ, 0) at λ = λ0, looses the a priori bounds in

C1[0, 1] at λ∗ = α(2) ∈ (0, λ0), where it links a curve of singular bounded variation solutions, C+
BV,

bifurcating from infinity at λ = 0. We conjecture that, actually, this is always the global bifurcation
diagram under, at least, the assumptions of Theorem 7.1. Naturally, if a would have a more intricate
nodal behavior, then the regular positive solutions will not be decreasing in (0, 1) and hence, the proof
of Theorem 7.1, based on such monotonicity, might be substantially harder. In spite of these technical
troubles, we still conjecture the validity of the theorem. However, it remains an open question to
ascertain whether or not the assumption that q ∈ (1, 2] is relevant for the validity of these results.

More generally, the analysis of this paper is suggesting the existence of a (rather abstract) unilateral
global bifurcation theorem in the context of bounded variation solutions, where regular solutions
developing singularities, but having a regular epigraph, should not be considered as singular anymore,
but actually should be regarded as regular as classical solutions are. Moreover, the solutions on the
component of bounded variation solutions should be regular when their L∞-norms are sufficiently
small, while, according to the analysis of Section 5, they should develop jump singularities, on some
or several of the internal nodes of the weight a, if their L∞-norms are sufficiently large. The results
of this paper suggest this occurs at least if q ∈ (1, 2] but it seems a real challenge to ascertain if this
phenomenology also occurs for q ≥ 2.

As it happens with the simplest algebraic examples exhibiting some imperfect bifurcation phe-
nomenology, like

x2 − y2 = ε,

where the bifurcation from (x, y) = (0, 0) is broken down as ε perturbs away from ε = 0, when, instead
of quadratic, the growth of F (u) at zero becomes subquadratic or superquadratic, the bifurcation of
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C+
λ0

from (λ, u) = (λ0, 0) is lost and, according to the nature of the growth of F at zero, either

(λ, u) = (λ, 0), 0 < λ < λ0, or (λ, u) = (λ, 0), λ > λ0, perturbs into a curve of the global bifurcation
diagram of regular positive solutions of (1.1) (see Figure 2). As those solutions have small L∞-norm,
they should perturb into regular positive solutions. Although these imperfect bifurcations are indeed
confirmed by the (global) Theorems 9.1 and 10.1, the technical details of this perturbation analysis
will appear elsewhere, as it escapes from the general scope imposed to this paper.
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[21] M. Emmer, Esistenza, unicità e regolarità nelle superfici di equilibrio nei capillari, Ann. Univ. Ferrara
18 (1973), 79–94.
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