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Abstract

This paper deals with the quasilinear elliptic problem

−div
(
∇u/

√
1 + |∇u|2

)
+ a(x)u = b(x)/

√
1 + |∇u|2 in B, u = 0 on ∂B,

where B is an open ball in RN , with N ≥ 2, and a, b ∈ C1(B) are given
radially symmetric functions, with a(x) ≥ 0 in B. This class of anisotropic
prescribed mean curvature equations appears in the description of the ge-
ometry of the human cornea, as well as in the modeling theory of capillarity
phenomena for compressible fluids. Unlike all previous works published on
these subjects, existence and uniqueness of solutions of the above problem
are here analyzed in the case where the coefficients a, b are not necessarily
constant and no sign condition is assumed on b.
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1 Introduction

In this paper we aim to analyze existence and uniqueness of classical solutions
of the anisotropic prescribed mean curvature problem

−div
( ∇u√

1 + |∇u|2

)
+ a(x)u =

b(x)√
1 + |∇u|2

, in B,

u = 0, on ∂B,

(1.1)

where B = B(0, R) is the open ball of center 0 and radius R in RN , with N ≥ 2,
and a : B → [0,+∞[ and b : B → R are continuously differentiable radially
symmetric functions, i.e., a(x) = a(|x|, 0, . . . , 0) and b(x) = b(|x|, 0, . . . , 0) for
all x ∈ B. For a radially symmetric function w : B → R, with a slight abuse of
notation, we will sometimes write, for x ∈ B, w(|x|) in place of w(x).

The equation in (1.1), where a, b are positive constants, has been introduced
for modeling capillarity phenomena for compressible fluids, or for describing
the geometry of the human cornea, when they are respectively supplemented
with non-homogeneous conormal boundary conditions [13, 14, 4, 15, 3], or with
homogeneous Dirichlet boundary conditions [20, 21, 22, 9, 24, 25, 23, 26, 10, 11].
We refer to these papers for the derivation of the models, further discussions
on the subject, and an additional bibliography.

Concerning the Dirichlet problem (1.1), we recall that, according to [20],
the surface of the human cornea is modeled as a membrane, whose shape is
described by the graph of the function u and is determined by balancing all
forces acting over, that is, surface tension, elasticity, and intra-ocular pressure.
The relevant physical parameters are incorporated into the coefficients a and b,
which respectively measure the relative importance of the elasticity and of the
intra-ocular pressure versus the surface tension.

In [22] it has been pointed out the interest of studying also the case where
the coefficients are non-constant functions, in order to provide a better fitting
of the model with the experimental data. This actually appears more relevant
for the coefficient b, rather than for a; however, in this work we allow both a
and b to be non-constant functions. We further stress that in our results we let
a to vanish and we impose no sign condition on b.

We notice that confining the consideration of problem (1.1) to spherical
domains is justified by the fact that the surface of the cornea may be approxi-
mately, although not exactly, modeled as a surface of revolution.
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Our existence and uniqueness result for problem (1.1) then reads as follows.

Theorem 1.1. Let B = B(0, R) be the open ball of center 0 and radius R in
RN , with N ≥ 2. Suppose that a, b ∈ C1(B) are radially symmetric functions,
with a(x) ≥ 0 in B. Then, there exists a unique solution u ∈ C2(B) of (1.1),
which is radially symmetric. In addition, if b(x) ≥ 0 in B and b 6= 0, then

u(x) > 0 in B and ∇u(x) · x < 0 on ∂B.

The proof of Theorem 1.1 consists of two parts. First, in Section 2, we prove
a uniqueness result for the more general problem

−div
( ∇u√

1 + |∇u|2

)
+ a(x)u =

b(x)√
1 + |∇u|2

, in Ω,

u = 0, on ∂Ω,

(1.2)

where Ω is any bounded domain Ω in RN , with a Lipschitz boundary ∂Ω, and
a : Ω→ [0,+∞[ and b : Ω→ R are arbitrary continuous functions. This result
for (1.2) relies on a rather general comparison principle for the solutions of
(1.2), which has an independent interest.

Next, in Section 3, by further requiring that the coefficients a, b are con-
tinuously differentiable and radially symmetric, we establish the existence of a
classical radial solution of (1.1). This is achieved by solving the one-dimensional
singular problem−

( rN−1 v′√
1 + v′2

)′
+ rN−1a(r)v =

rN−1b(r)√
1 + v′2

, in ]0, R[,

v′(0) = 0, v(R) = 0,

(1.3)

where r = |x|. The radial solution we find is therefore the unique solution of
(1.1).

In general, the study of mean curvature problems requires much care be-
cause it is fraught with a number of technical difficulties, the main one being
the possible occurrence of gradient blow-up phenomena, even in simple one-
dimensional situations (see, e.g., [7, 19] and the references therein). However,
for problem (1.1), we are able to show that an a priori bound for the gradi-
ent of its possible (radially symmetric) solutions can be obtained by a direct,
but delicate, argument which exploits the special structure of the equation, the
regularity of the coefficients and the geometry of the domain. These estimates
eventually enable us to use a simple continuation method based on the implicit
function theorem to prove the solvability of (1.3) and hence of (1.1).

We finally mention that extending Theorem 1.1 to the general setting of
problem (1.2) remains an open question. Indeed, in the light of the conclusions
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achieved in [11], we know that, for non-convex domains, singular solutions pos-
sibly not attaining the Dirichlet boundary conditions may occur even in the
case of constant coefficients. On the other hand, the method, developed in [10]
to deal with (1.2) in case the coefficients a, b are positive constants, fails when
b is not constant. In this respect a brief discussion is produced in Section 4.

2 Uniqueness of solutions

The proof of the uniqueness of the solution of problem (1.2) is based on the
following comparison lemma, whose proof is partially inspired from [8, 2].

Lemma 2.1. Let Ω be a bounded domain in RN , with N ≥ 2, having a Lipschitz
boundary ∂Ω, and let a, b ∈ L∞(Ω) be given functions, with ess inf a ≥ 0.
Assume that u1, u2 ∈W 1,∞(Ω) are such that∫

Ω

∇u1 · ∇φ√
1 + |∇u1|2

dx+

∫
Ω
au1φdx−

∫
Ω

bφ√
1 + |∇u1|2

dx

≤
∫

Ω

∇u2 · ∇φ√
1 + |∇u2|2

dx+

∫
Ω
au2φdx−

∫
Ω

bφ√
1 + |∇u2|2

dx (2.1)

for all φ ∈W 1,∞
0 (Ω), with φ(x) ≥ 0 in Ω, and

u1(x) ≤ u2(x) on ∂Ω. (2.2)

Then, u1, u2 satisfy
u1(x) ≤ u2(x) in Ω. (2.3)

Proof. Set u = u1 − u2. We want to prove that u(x) ≤ 0 in Ω. For any given
c ∈ R, define

Ωc = {x ∈ Ω | u(x) = c}

and
I = {c ∈ R | meas (Ωc) > 0}.

Setting
I1 = {c ∈ R | meas (Ωc) > 1}

and, for n ≥ 2,

In = {c ∈ R | 1

n
< meas (Ωc) ≤

1

n− 1
},

we can write

I =

+∞⋃
n=1

In.
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As meas (Ω) is finite, each In is finite and, thus, I is at most countable. The
Stampacchia theorem implies that, for any c ∈ R, ∇u(x) = 0 a.e. in Ωc and,
hence,

∇u(x) = 0 a.e. in
⋃
c∈I

Ωc.

We also set
O = Ω \

⋃
c∈I

Ωc.

For every k ≥ 0, define

φk = (u− k)+ ∈W 1,∞
0 (Ω)

and
Ek = {x ∈ O | u(x) ≥ k}.

Then, pick φ = φk as a test function in (2.1).
Let us define a function f : [0, 1]→ R, by

f(s) =

∫
Ω

∇(u2 + su) · ∇φk√
1 + |∇(u2 + su)|2

dx,

where, to simplify the notation, we omit the indication of the dependence of f
on k. Observe that, by the definition of φk, we have ∇u · ∇φk = |∇φk|2. Then,
the mean value theorem yields the existence of θ ∈ ]0, 1[ such that∫

Ω

(
∇u1√

1 + |∇u1|2
− ∇u2√

1 + |∇u2|2

)
· ∇φk dx = f(1)− f(0) = f ′(θ)

=

∫
Ω

∇u · ∇φk√
1 + |∇(u2 + θu)|2

dx−
∫

Ω

(∇(u2 + θu) · ∇u) (∇(u2 + θu) · ∇φk)

(1 + |∇(u2 + θu)|2)
3
2

dx

=

∫
Ω

|∇φk|2√
1 + |∇(u2 + θu)|2

dx−
∫

Ω

(∇(u2 + θu) · ∇φk)2

(1 + |∇(u2 + θu)|2)
3
2

dx

≥
∫

Ω

|∇φk|2√
1 + |∇(u2 + θu)|2

dx−
∫

Ω

|∇(u2 + θu)|2|∇φk|2

(1 + |∇(u2 + θu)|2)
3
2

dx

≥
∫

Ω

|∇φk|2

(1 + |∇(u2 + θu)|2)
3
2

dx

≥ 1

(1 + (‖∇u1‖∞ + ‖∇u2‖∞)2)
3
2

∫
Ω
|∇φk|2 dx. (2.4)

November 8, 2018



6

Incidentally, we notice that this estimate might alternatively be deduced from
the strong convexity, on all compact convex subsets of RN , of the function
g : RN → R defined by g(ξ) =

√
1 + |ξ|2.

On the other hand, we have∫
Ω
auφk dx ≥

∫
Ω
a|φk|2 dx ≥ 0 (2.5)

and ∫
Ω
b

(
1√

1 + |∇u1|2
− 1√

1 + |∇u2|2

)
φk dx

=

∫
Ω

b
(
|∇u2|2 − |∇u1|2

)
φk√

1 + |∇u1|2
√

1 + |∇u2|2
(√

1 + |∇u1|2 +
√

1 + |∇u2|2
) dx

≤ ‖b‖∞
∫

Ω

∣∣|∇u2| − |∇u1|
∣∣φk dx

≤ ‖b‖∞
∫

Ω

∣∣∇u∣∣φk dx = ‖b‖∞
∫

Ω

∣∣∇φk∣∣φk dx. (2.6)

Setting

M = ‖b‖−1
∞ (1 + (‖∇u1‖∞ + ‖∇u2‖∞)2)−

3
2 ,

from (2.1), (2.4), (2.5) and (2.6), we get

M

∫
Ω
|∇φk|2 dx ≤

∫
Ω

∣∣∇φk∣∣φk dx
=

∫
O

∣∣∇φk∣∣φk dx =

∫
O
χEk

∣∣∇φk∣∣φk dx. (2.7)

We first supposeN ≥ 3. Using the Hölder inequality and the Sobolev imbedding
theorem, we obtain from (2.7)

M‖∇φk‖2L2(Ω) ≤
∫
O
χEk

∣∣∇φk∣∣φk dx
≤ ‖χEk

‖LN (O)‖∇φk‖L2(Ω)‖φk‖
L

2N
N−2 (Ω)

≤ C ‖χEk
‖LN (O)‖∇φk‖2L2(Ω),

where C = C(N,Ω) is the imbedding constant of H1
0 (Ω) into L

2N
N−2 (Ω). If
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N = 2, we fix p > 2 and, arguing as above, we find

M‖∇φk‖2L2(Ω) ≤
∫
O
χEk

∣∣∇φk∣∣φk dx
≤ ‖χEk

‖Lp(O)‖∇φk‖L2(Ω)‖φk‖
L

2p
p−2 (Ω)

≤ C ‖χEk
‖Lp(O)‖∇φk‖2L2(Ω),

where C = C(p,N,Ω), with N = 2, is the imbedding constant of H1
0 (Ω) into

L
2p
p−2 (Ω). Thus, we conclude that, for each N ≥ 2, there is p = pN ≥ N such

that
M‖∇φk‖L2(Ω) ≤ C ‖χEk

‖Lp(O)‖∇φk‖L2(Ω) (2.8)

holds for all k.
In order to show that u(x) ≤ 0 in Ω, we assume by contradiction that

u+ 6= 0. The definition of the set O implies that

0 = meas (E‖u+‖∞) = meas ({x ∈ O | u(x) ≥ ‖u+‖∞})
= meas ({x ∈ O | u(x) ≥ k for all k < ‖u+‖∞})

= meas

( ⋂
k<‖u+‖∞

Ek

)
= lim

k→‖u+‖−∞
meas (Ek).

Therefore, we can pick k0 ∈ ]0, ‖u+‖∞[ such that

‖χEk0
‖Lp(O) = meas (Ek0)

1
p ≤ 1

2

M

C
.

Using (2.8), we have

‖∇φk0‖L2(Ω) ≤ 1
2‖∇φk0‖L2(Ω)

and hence
‖∇(u− k0)+‖L2(Ω) = 0.

This implies that
u(x) ≤ k0 < ‖u+‖∞ in Ω,

which is impossible.

Remark 2.1 From the proof of Lemma 2.1 it follows that a more general
version of the above stated comparison principle holds true. Namely, suppose
that h : Ω×R×RN → R satisfies the L1-Carathéodory conditions and, for any
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given r > 0, there is cr ∈ Lploc(Ω), with p ≥ N , if N ≥ 3, and p > 2, if N = 1
or N = 2, such that, for a.e. x ∈ Ω, for all s1, s2 ∈ R, with −r ≤ s1 ≤ s2 ≤ r,
and all ξ1, ξ2 ∈ RN , with |ξ1|, |ξ2| ≤ r,

h(x, s1, ξ1)− h(x, s2, ξ2) ≤ cr(x) |ξ1 − ξ2|.

If u1, u2 ∈W 1,∞(Ω) are such that∫
Ω

∇u1 · ∇φ√
1 + |∇u1|2

dx+

∫
Ω
h(x, u1,∇u1)φdx

≤
∫

Ω

∇u2 · ∇φ√
1 + |∇u2|2

dx+

∫
Ω
h(x, u2,∇u2)φdx

for all φ ∈ W 1,∞
0 (Ω), with φ(x) ≥ 0 in Ω, and (2.2) holds, then, u1, u2 satisfy

(2.3).
To prove this conclusion, we follow that same patterns of the proof of Lemma

2.1. We pick r = max{‖ui‖∞, ‖∇ui‖∞ | i = 1, 2} and we first show that there
is a constant M > 0 such that

M

∫
Ω
|∇φk|2 dx ≤

∫
O
crχEk

∣∣∇φk∣∣φk dx
and then that there is a constant C > 0 such that

M‖∇φk‖L2(Ω) ≤ C ‖crχEk
‖Lp(O)‖∇φk‖L2(Ω).

As
lim

k→‖u+‖−∞
meas (Ek) = 0,

we get
lim

k→‖u+‖−∞
‖crχEk

‖Lp(O) = 0.

Thus, we can conclude as in the proof of Lemma 2.1.
This statement extends various classical comparison principles previously

obtained in the literature (see, e.g., [16, Section 10.1]).

The following general uniqueness result is a direct consequence of Lemma
2.1.

Theorem 2.2. Let Ω be a bounded domain in RN , with N ≥ 2, having a
Lipschitz boundary ∂Ω, and let a, b ∈ L∞(Ω) be given functions, with ess inf a ≥
0. Then, problem (1.2) has at most one weak solution u ∈W 1,∞

0 (Ω).
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3 Existence of solutions

In this section we prove the existence of solutions of problem (1.3) and, hence,
of problem (1.1). Throughout we assume N ≥ 2. We begin with an elementary
regularity result.

Lemma 3.1. Let a, b ∈ C0([0, R]) ∩ C1(]0, R[) be given. Then, any solution
v ∈ C1([0, R])∩C2(]0, R]) of (1.3) belongs to C2([0, R])∩C3(]0, R[) and satisfies
the equation in (1.3) for all r ∈ [0, R].

Proof. Pick r ∈ ]0, R] and integrate the equation in (1.3) between 0 and r. We
get

rN−1v′(r)√
1 + v′(r)2

=

∫ r

0
sN−1

(
a(s)v(s)− b(s)√

1 + v′(s)2

)
ds

and hence

v′(r)

r
=

√
1 + v′(r)2

rN

∫ r

0
sN−1

(
a(s)v(s)− b(s)√

1 + v′(s)2

)
ds.

By applying L’Hospital’s rule, we easily see that there exists

lim
r→0

1

rN

∫ r

0
sN−1

(
a(s)v(s)− b(s)√

1 + v′(s)2

)
ds =

a(0) v(0)− b(0)

N
,

that is, v′′(0) exists and

v′′(0) =
a(0) v(0)− b(0)

N
.

Since we can write the equation in (1.3) in the form

− v′′

(1 + v′2)
3
2

− N − 1

r

v′√
1 + v′2

+ a(r)v =
b(r)√
1 + v′2

, (3.1)

or equivalently

−v′′ − N − 1

r
v′(1 + v′

2
) + a(r)v(1 + v′

2
)
3
2 = b(r)(1 + v′

2
), (3.2)

we conclude that v ∈ C2([0, R]) ∩ C3(]0, R[).

Remark 3.1 Setting, by convention,

v′(r)

r
= v′′(0), if r = 0,

we can also say that v satisfies (3.1) for all r ∈ [0, R].
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Remark 3.2 If v ∈ C2([0, R]) is a solution of (1.3), then the function u : B →
R, defined by u(x) = v(|x|), satisfies, for i, j = 1, . . . , N ,

∂iu(x) = v′(|x|) xi
|x|

in B \ {0}, ∂iu(0) = 0,

∂iju(x) =
(
v′′(|x|)− v

′(|x|)
|x|

)xixj
|x|2

+
v′(|x|)
|x|

δij in B\{0}, ∂iju(0) = δijv
′′(0),

and thus u ∈ C2(B). Further, as

div

(
∇u(x)√

1 + |∇u(x)|2

)
=

v′′(|x|)

(1 + v′(|x|)2)
3
2

+
N − 1

|x|
v′(|x|)√

1 + v′(|x|)2
in B \ {0},

and

div

(
∇u√

1 + |∇u|2

)
(0) = Nv′′(0),

we conclude that u is a solution of (1.1).

The proof of the solvability of problem (1.3) is based on a simple contin-
uation method combining the implicit function theorem with the obtention of
suitable a priori bounds on the solutions. To this end we imbed problem (1.3)
into the one-parameter family−

( rN−1 v′√
1 + v′2

)′
+ rN−1a(r)v = λ

rN−1b(r)√
1 + v′2

, in ]0, R[,

v′(0) = 0, v(R) = 0,

(3.3)

where λ ∈ [0, 1].

The following result provides the desired a priori bound, uniform in λ, on
the possible solutions of (3.3).

Lemma 3.2. Assume a, b ∈ C1([0, R]), with a(r) ≥ 0 in [0, R]. Then, there
exists a constant K > 0 such that any solution v ∈ C2([0, R]) of (3.3), for some
λ ∈ [0, 1], satisfies

‖v‖C2 = max{‖v‖∞, ‖v′‖∞, ‖v′′‖∞} ≤ K. (3.4)

Proof. We prove the following slightly more general conclusion. Given a ∈
C1([0, R]), with

a(r) ≥ 0 in [0, R], (3.5)
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and B1, B2 ∈ [0,+∞[, there exists K ∈ ]0,+∞[ such that, for all b ∈ C0([0, R])∩
C1(]0, R[) satisfying

|b(r)| ≤ B1 in [0, R], (3.6)

and
b′(r) ≤ B2 in ]0, R[, (3.7)

any solution v ∈ C1([0, R])∩C2(]0, R]) of (3.3) belongs to C2([0, R])∩C3(]0, R])
and satisfies (3.4). The former assertion follows from Lemma 3.1, while the
latter one is a consequence of the next three steps.

Step 1. For all r ∈ [0, R], we have

B1

2(N − 1)
(r2 −R2) ≤ v(r) ≤ B1

2(N − 1)
(R2 − r2) (3.8)

and hence there exists K1 ∈ ]0,+∞[ such that |v(r)| ≤ K1 in [0, R]. Define a
function α : [0, R] → R by setting α(r) = B1

2(N−1)(r2 − R2). Let us prove the

former inequality in (3.8). For all r ∈ [0, R], we have

−rN−1α′′(r)− (N − 1)rN−2α′(r)(1 + α′(r)
2
) + rN−1a(r)α(r)(1 + α′(r)

2
)
3
2

≤ −rN−1B1
N

N − 1

≤ rN−1 b(r)√
1 + α′(r)2

.

Hence the functions u1(x) = α(|x|) and u2(x) = v(|x|) satisfy the assumptions
of Lemma 2.1 and therefore we have v(r) ≥ α(r) in [0, R]. Setting β = −α, a
similar computation shows that also the latter inequality in (3.8) holds true.

Step 2. There exists K2 ∈ ]0,+∞[ such that |v′(r)| ≤ K2 in [0, R]. Assume
by contradiction the existence of sequences (bn)n, satisfying, for all n, bn ∈
C0([0, R]) ∩ C1(]0, R[), (3.6) and (3.7), and (vn)n, satisfying, for all n,

−
( rN−1 v′n√

1 + v′n
2

)′
+ rN−1a(r)vn =

rN−1bn(r)√
1 + v′n

2
, in ]0, R[,

v′n(0) = 0, vn(R) = 0,

such that
lim

n→+∞
(max v′n) = +∞. (3.9)

For each n, let rn ∈ [0, R] be such that v′n(rn) = max v′n. Since v′n(0) = 0, and
by (3.8), |v′n(R)| ≤ B1R

N−1 , we have that rn ∈ ]0, R[, for all large n and hence

v′′n(rn) = 0. (3.10)
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Passing to a subsequence, still labeled by (rn)n, we can also suppose the exis-
tence of r ∈ [0, R] such that

lim
n→+∞

rn = r.

As vn ∈ C3(]0, R[), from (3.2), we can compute, for all r ∈ ]0, R[,

v′′′n (r) = a′(r)vn(r)(1 + v′n(r)
2
)
3
2 + a(r)v′n(r)(1 + v′n(r)

2
)
3
2

+ 3a(r)vn(r)v′n(r)v′′n(r)

√
1 + v′n(r)2

− b′n(r)(1 + v′n(r)
2
)− 2bn(r)v′n(r)v′′n(r)

+
N − 1

r2
v′n(r)(1 + v′n(r)

2
)− N − 1

r
v′′n(r)(1 + 3v′n(r)

2
)

and, hence, letting r = rn,

v′′′n (rn)

(1 + v′n(rn)2)
3
2

= a′(rn)vn(rn) + a(rn)v′n(rn)

− b′n(rn)√
1 + v′n(rn)2

+
N − 1

r2
n

v′n(rn)√
1 + v′n(rn)2

. (3.11)

Suppose that r = 0. We first observe that

lim
n→+∞

N − 1

r2
n

v′n(rn)√
1 + v′n(rn)2

= +∞.

From (3.11), by using the continuity of a and a′ at 0, (3.8), (3.7) and (3.9), we
find that

lim
n→+∞

v′′′n (rn)

(1 + v′n(rn)2)
3
2

= +∞. (3.12)

Thus, we conclude that, for all large n,

v′′′n (rn) > 0, (3.13)

which is impossible, as rn is an interior maximum point of v′n.
Suppose that r ∈ ]0, R[. Two cases may occur: either a(r) > 0, or else

a(r) = 0 and then, due to (3.5), a′(r) = 0. In the former case, by using the
continuity of a at r and (3.9), we get

lim
n→+∞

a(rn)v′n(rn) = +∞.
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Thus, by the continuity of a′ at r̄, (3.8) and (3.7), we find again that (3.12) and
(3.13) hold and then a contradiction follows. In the latter case, by using the
continuity of a′ at r, (3.8), (3.7) and (3.9), we infer

lim inf
n→+∞

v′′′n (rn)

(1 + v′n(rn)2)
3
2

≥ N − 1

r2 .

Hence, (3.13) holds, for all large n, yielding a contradiction as before.
Assume that r = R. Again we distinguish two cases: either a(R) > 0, or

a(R) = 0. In the former case, by using the continuity of a and a′ at R, (3.8),
(3.7) and (3.9), we find as above that (3.12) and (3.13) hold and then the desired
contradiction follows. In the latter case, from (3.1), by using (3.10), (3.8) and
(3.6), we get the contradiction

N − 1

R
= lim

n→+∞

N − 1

rn

v′n(rn)√
1 + v′n(rn)2

= lim
n→+∞

(
a(rn)vn(rn)− bn(rn)√

1 + v′n(rn)2

)
= 0.

Therefore, we have shown that there exists K ′ ∈ ]0,+∞[ such that v′(r) ≤
K ′ in [0, R]. In a totally symmetric way we can prove the existence of K ′′ ∈
]0,+∞[ such that v′(r) ≥ −K ′′ in [0, R]. Thus, by setting K2 = max{K ′,K ′′},
the conclusion follows.

Step 3. There exists K3 ∈ ]0,+∞[ such that |v′′(x)| ≤ K3 in [0, R]. As in the
proof of Lemma 3.1, for all r ∈ ]0, R], we have

v′(r)

r
=

√
1 + v′(r)2

rN

∫ r

0
sN−1

(
a(s)v(s)− b(s)√

1 + v′(s)2

)
ds,

and, therefore, from Step 1 and Step 2,

|v′(r)|
r
≤
√

1 +K2
2

rN

∫ r

0
sN−1 (‖a‖∞K1 + ‖b‖∞) ds

=
1

N

√
1 +K2

2 (‖a‖∞K1 + ‖b‖∞) . (3.14)

The desired bound on v′′ is finally deduced from (3.2), by using (3.6), (3.14)
and the conclusions achieved in the previous steps.

An application of the implicit function theorem yields the existence of solu-
tions of (3.3) close to a known solution, in particular, the existence of solutions
for all small values of λ ∈ [0, 1].
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Lemma 3.3. Let a : [0, R] → [0,+∞[ and b : [0, R] → R be continuous func-
tions. Assume that problem (3.3) has a solution v0 for some λ0 ∈ [0, 1[. Then,
there exists δ0 > 0 such that, for all λ ∈ [λ0, λ0 +δ0], problem (3.3) has a unique
solution v ∈ C2([0, R]), which satisfies ‖v − v0‖C2 < δ0.

Proof. Define the Banach space

C2
0 ([0, R]) = {v ∈ C2([0, R]) | v′(0) = 0, v(R) = 0},

endowed with the norm of C2([0, R]), and the operator F : C2
0 ([0, R]) × R →

C0([0, R]) by setting

F(v, λ) = rN−1v′′ + (N − 1)rN−2v′(1 + v′
2
)

− rN−1av(1 + v′
2
)
3
2 + λrN−1b(1 + v′

2
).

It is clear that v ∈ C2
0 ([0, R]) is a solution of (3.3), for some λ ∈ R, if and only

if
F(v, λ) = 0.

Further, it is a standard matter to verify that F is of class C∞, with partial
derivative

∂vF(v, λ)[w] = rN−1w′′ + (N − 1)rN−2(1 + v′
2
)w′ + 2(N − 1)rN−2v′

2
w′

− 3rN−1av
√

1 + v′2v′w′ + 2λrN−1bv′w′ − rN−1a(1 + v′
2
)
3
2w,

for all w ∈ C2
0 ([0, R]).

Claim: ∂vF(v0, λ0)[w] = 0 if and only if w = 0.

Let us define the functions

p0 = (N − 1)
v′0

2

r
+ 2(N − 1)

v′0
2

r
− 3av0

√
1 + v′0

2v′0 + 2λ0bv
′
0

and

q0 = a(1 + v′0
2
)
3
2 .

Observe that p0, q0 ∈ C0([0, R]) and, for w ∈ C2
0 ([0, R]),

∂vF(v0, λ0)[w] = 0

is equivalent to

w′′ +
N − 1

r
w′ + p0(r)w′ − q0(r)w = 0. (3.15)
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For all r ∈ ]0, R], define

P (r) =

∫ r

R

N − 1

s
ds+

∫ r

R
p0(s) ds = ln

( r
R

)N−1
+ P0(r),

with

P0(r) =

∫ r

R
p0(s) ds.

Hence, for w ∈ C2
0 ([0, R]), (3.15) can be written as

(eP (r)w′)′ = eP (r)q0(r)w. (3.16)

Multiplying (3.16) by w and integrating, we get, for all r ∈ ]0, R],

−eP (r)w′(r)w(r)−
∫ R

r
eP (s)w′

2
(s) ds =

∫ R

r
eP (s)q0(s)w2(s) ds, (3.17)

where

eP (r) =
( r
R

)N−1
eP0(r)

is continuous in [0, R]. Hence, passing to the limit in (3.17), we obtain

0 = − lim
r→0

eP (r)w′(r)w(r) =

∫ R

0
eP (r)w′

2
(r) dr +

∫ R

0
eP (r)q0(r)w2(r) dr,

which implies w′ = 0 and hence w = 0.

Let us define the compact operator K : C0([0, R])→ C0([0, R]) by

(Kw) (r) =

∫ r

R

(
e−P (s)

∫ s

0
eP (t)q0(t)w(t) dt

)
ds,

and observe that w ∈ C2
0 ([0, R]) is a solution of (3.15) if and only if it is a fixed

point of K. Then, we can apply the Fredholm alternative [12, Theorem D.5]
and conclude that

∂vF(v0, λ0) : C2
0 ([0, R])→ C0([0, R])

is a linear homeomorphism. Hence, the implicit function theorem [1, p. 38]
yields the existence of a constant δ0 > 0 and a map V : ]λ0 − δ0, λ0 + δ0[ →
C2

0 ([0, R]) of class C∞ such that, for all (v, λ) ∈ C2
0 ([0, R])×R, with ‖v−v0‖C2 <

δ0 and |λ− λ0| < δ0,

F(v, λ) = 0 if and only if v = V (λ).

The conclusions then follow by also using Theorem 2.2, as far as uniqueness is
concerned.
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Now we are in position of proving our main existence result for (1.3).

Theorem 3.4. Assume a, b ∈ C1([0, R]), with a(r) ≥ 0 in [0, R]. Then, there
exists a solution v ∈ C2([0, R]) ∩ C3(]0, R]) of (1.3).

Proof. Define

λ∗ = sup{λ̂ ∈ ]0, 1[ | (3.3) has a solution for each λ ∈ [0, λ̂]}.

As Lemma 3.3 applies for v0 = 0 and λ0 = 0, we infer that λ∗ > 0. Let us show
that (3.3) has a solution for λ = λ∗ too. Let (λn)n be such that λn ∈ ]0, λ∗], for
all n, and

λn → λ∗, as n→ +∞,

and let (vn)n be the corresponding sequence of solutions of (3.3). Lemma 3.2
implies that there is a constant K > 0 such that, for all n,

‖vn‖C2 ≤ K.

The Ascoli-Arzelà theorem yields the existence of a subsequence of (vn)n, still
labeled as (vn)n, and a function v∗ ∈ C1([0, R]) such that

vn → v∗, v′n → v∗′, uniformly in [0, R], as n→ +∞. (3.18)

Passing to the limit, as n→ +∞, on both sides of the integral reformulation of
the equation in (3.3)

sN−1 v′n(s)√
1 + v′n(s)2

=

∫ s

0
rN−1

(
a(r)vn(r)− λn

b(r)√
1 + v′n(r)2

)
dr in ]0, R[,

we get

sN−1 v∗′(s)√
1 + v∗′(s)2

=

∫ s

0
rN−1

(
a(r)v∗(r)− λ∗ b(r)√

1 + v∗′(r)2

)
dr in ]0, R[.

As, by (3.18), v∗′(0) = 0 and v∗(R) = 0, we conclude that v∗ is the solution
of (3.3) for λ = λ∗. Lemma 3.3 would contradict the definition of λ∗, unless
λ∗ = 1. This implies the existence of a solution v of (1.3).

Remark 3.3 If, in addition to the assumptions of Theorem 3.4, we suppose
that b(r) ≥ 0 in [0, R], then the solution v of (1.3) satisfies either v(r) > 0 in
[0, R[ and v′(R) < 0, or else v = 0 and, in this case, b = 0. This assertion follows
by setting u(x) = v(|x|) in B and applying the strong maximum principle and
the Hopf boundary point lemma [16, Section 3.2] to problem (1.1).
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If we further assume that a′(r) ≥ 0 and b′(r) ≤ 0 in ]0, R[, then the solution
v of (1.3) is also decreasing in [0, R]. Indeed, assume, by contradiction, that
max v′ > 0 and let r0 ∈ ]0, R] be such that v′(r0) = max v′. As v′(R) < 0 we
must have r0 ∈ ]0, R[ and then v′′(r0) = 0. The same calculations performed
along Step 2 in the proof of Lemma 3.2 and, in particular, the identity

v′′′(r0)

(1 + v′(r0)2)
3
2

= a′(r0)v(r0) + a(r0)v′(r0)

− b′(r0)√
1 + v′(r0)2

+
N − 1

r2
0

v′(r0)√
1 + v′(r0)2

imply that v′′′(r0) > 0, which is impossible at an interior maximum point of v′.

4 Concluding remarks

As already noticed in the Introduction, extending Theorem 1.1 to the general
setting of problem (1.2) is still an open question. Indeed, it is a well established
fact that the existence of classical solutions of the, possibly non-homogeneous,
Dirichlet problem for the prescribed mean curvature equation

−div
( ∇u√

1 + |∇u|2

)
= NH(x) in Ω, (4.1)

as well as for the capillarity equation

−div
( ∇u√

1 + |∇u|2

)
= −au in Ω, (4.2)

with a a positive coefficient, is intimately related to the geometric properties
of ∂Ω. In this respect J. Serrin established in [27] a fundamental criterion
for the solvability of the Dirichlet problem associated with (4.1) and (4.2).
This relies on a mean convexity assumption on ∂Ω, introduced in [17, 27],
which was proven to be sufficient, and in suitable sense even necessary, for the
existence of classical solutions. Yet, in [27, p. 480] J. Serrin also emphasized
“the delicacy of the situation when any but the simplest equations are treated”.
Notwithstanding, basically applying Serrin’s method, the solvability of problem
(1.2) can be proved under a smallness assumption on the size of the coefficient
b and a version of the mean convexity condition on ∂Ω. Namely, from [18], one
can infer the following result.
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Proposition 4.1. Let Ω be a bounded domain in RN , with N ≥ 2, having a
boundary ∂Ω of class C2,α, for some α ∈ ]0, 1[, with non-negative mean curva-
ture. Suppose that a, b ∈ C1,α(Ω) satisfy

a(x) ≥ 0 and CΩ|b(x)| < 1 in Ω,

where CΩ > 0 is the embedding constant of W 1,1
0 (Ω) into L1(Ω). Then, problem

(1.2) has a unique solution u ∈ C2,α(Ω). In addition, if b(x) ≥ 0 in Ω and
b 6= 0, then

u(x) > 0 in Ω and ∇u(x) · ν(x) < 0 on ∂Ω,

ν(x) being the unit outer normal to Ω at x ∈ ∂Ω.

In [6, Remark (a), p. 342] it was further claimed, yet without an explicit
proof, that using the methods of [5] the mean convexity assumption might be
suitably relaxed, allowing boundary points with negative mean curvature, but
at the expense of requiring severe conditions on the size both of the coefficients
and of the domain.

In view of Theorem 1.1, these results however do not appear satisfactory,
due to the assumed, rather unnatural, smallness restrictions.

On the other hand, it was shown in [11] that singular solutions, which do not
attain the homogeneous Dirichlet conditions at boundary points having nega-
tive mean curvature, may occur, even in the case of constant coefficients. In this
specific frame the problem was rather exhaustively investigated in [10], where
an existence and uniqueness result was proven within a suitable class of general-
ized solutions, without placing any additional condition either on the (positive
constant) coefficients, or on the (Lipschitz) boundary of the domain. Since one
cannot expect to find classical solutions, in [10] an explicit quantitative con-
dition was introduced, which relates the size of the ratio of the coefficients of
the equation with the geometry of the domain and guarantees that the solu-
tion previously obtained attains the homogeneous Dirichlet condition, even at
those boundary points where the Serrin’s mean convexity assumption fails. The
approach, developed in [10] to deal with (1.2), was based on converting, by a
change of variable, the problem into a variational one. Yet, unfortunately, such
method does not work when the coefficient b is not constant, thus leaving open
the question of the solvability of problem (1.2) in a general setting.
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