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Abstract

This paper investigates the topological structure of the set of the positive solutions of the one-
dimensional quasilinear indefinite Neumann problem

−
(
u′/
√

1 + u′2
)′

= λa(x)f(u) in (0, 1), u′(0) = 0, u′(1) = 0,

where λ ∈ R is a parameter, a ∈ L∞(0, 1) changes sign, and f ∈ C1(R) is positive in (0,+∞). The
attention is focused on the case f(0) = 0 and f ′(0) = 1, where we can prove, likely for the first time
in the literature, a bifurcation result for this problem in the space of bounded variation functions.
Namely, the existence of global connected components of the set of the positive solutions, emanating
from the line of the trivial solutions at the two principal eigenvalues of the linearized problem around
0 is established. The solutions in these components are regular, as long as they are small, while they
may develop jump singularities at the nodes of the weight function a, as they become larger, thus
showing the possible coexistence along the same component of regular and singular solutions.
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1 Introduction

In this paper we study the topological structure of the set of the positive bounded variation solutions of
the quasilinear Neumann problem−

(
u′√

1 + u′2

)′
= λa(x)f(u) in (0, 1),

u′(0) = 0, u′(1) = 0,

(1.1)

where λ ∈ R is a parameter, a ∈ L∞(0, 1) changes sign, f ∈ C1(R) satisfies f(s) s > 0 for all s 6= 0 and
f ′(0) = 1. Problem (1.1) is a particular version of

−div

(
∇u√

1 + |∇u|2

)
= g(x, u) in Ω,

− ∇u · ν√
1 + |∇u|2

= σ on ∂Ω,

(1.2)

where Ω is a bounded regular domain in RN , with outward pointing normal ν, and g : Ω × R → R and
σ : ∂Ω→ R are given functions. This model plays a central role in the mathematical analysis of a number
of geometrical and physical issues, such as prescribed mean curvature problems for cartesian surfaces in
the Euclidean space [53, 12, 37, 54, 26, 32, 29, 31, 30], capillarity phenomena for incompressible fluids
[20, 27, 28, 34, 35], and reaction-diffusion processes where the flux features saturation at high regimes
[52, 36, 15].

Although there is a large amount of literature devoted to the existence of positive solutions for
semilinear elliptic problems with indefinite nonlinearities [1, 2, 8, 9, 3, 33, 40, 45], no results were available
for the problem (1.2), even in the one-dimensional case (1.1), before [43, 44, 42], where we began the
analysis of the effects of spatial heterogeneities in the simplest prototype problem (1.1). Even if part of
our discussion in this paper has been influenced by some results in the context of semilinear equations, it

must be stressed that the specific structure of the mean curvature operator, u 7→ −div
(
∇u/

√
1 + |∇u|2

)
,

makes the analysis in this paper much more delicate and sophisticated, as (1.1) may determine spatial
patterns which exhibit sharp transitions between adjacent profiles, up to the formation of discontinuities
[36, 24, 10, 11, 48, 15, 16, 50, 23, 21, 22]. This special feature explains why the existence intervals of
regular positive solutions of [47, 18, 19] are smaller than those given in the former references when dealing
with bounded variation solutions. It is a well-agreed fact that the space of bounded variation functions is
the most appropriate setting for discussing these topics. The precise notion of bounded variation solution
of (1.1) used in this paper has been basically introduced in [5, 6] and, for the sake of completeness, will
be shortly revisited in Section 2.

In [43] we discussed the existence and the multiplicity of positive bounded variation solutions of (1.1)
under various representative configurations of the behavior at zero and at infinity of the function f . The
solutions of [43] can be singular, for as they may exhibit jump discontinuities at the nodal points of the
weight function a, while they are regular, at least of class C1, on each open interval where the weight
function a has a constant sign. Instead, in [44, 42] we investigated the existence and the non-existence of
positive regular solutions. Some of the most intriguing findings of [43, 44, 42] can be synthesized by saying
that the solutions of (1.1) obtained in [43] are regular as long as they are small, in a sense to be precise
later, whereas they develop singularities as they become sufficiently large. This is in complete agreement
with the peculiar structure of the mean curvature operator, which combines the regularizing features of
the 2-laplacian, when ∇u is sufficiently small, with the severe sharpening effects of the 1-laplacian, when
∇u becomes larger.
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A natural question arising at the light of these novelties is the problem of ascertaining whether or
not these regular and singular solutions can be obtained, simultaneously, by establishing the existence of
connected components of bounded variation solutions bifurcating from (λ, u) = (λ, 0), which stem regular
from (λ, 0) and develop singularities as their sizes increase; thus establishing the coexistence along the
same component of both regular and singular solutions, as synoptically illustrated by the two bifurcation
diagrams in Figure 1. Although this phenomenology has been already documented by the special example
of [44, Section 8], by means of a rather sophisticated phase plane analysis, solving this problem in our
general setting still was a challenge.

‖u‖∞

λ0
•

λ

regular solutions

singular solutions

‖u‖∞

λ0
•

λ

regular solutions

singular solutions

Figure 1: Global bifurcation diagrams emanating from the positive principal eigenvalue λ0, according to the
nature of the potential

∫ s

0
f(t) dt of f : superlinear at infinity (on the left), or sublinear at infinity (on the right).

The main aim of this work is establishing the existence of two connected components, C>0 and C+
λ0

, of
the closure of the set of positive bounded variation solutions of problem (1.1),

S> = {(λ, u) ∈ [0,+∞) × BV (0, 1) : u > 0 is a solution of (1.1)} ∪ {(0, 0), (λ0, 0)}, (1.3)

emanating from the line {(λ, 0) : λ ∈ R} of the trivial solutions, at the two principal eigenvalues λ = 0
and λ = λ0 of the linearization of (1.1) at u = 0,{

−u′′ = λa(x)u in (0, 1),

u′(0) = u′(1) = 0.
(1.4)

Precisely, our main global bifurcation theorem can be stated as follows.

Theorem 1.1. Assume that f ∈ C1(R) satisfies f(s)s > 0 for all s 6= 0, f ′(0) = 1, and, for some
constants κ > 0 and p > 2, |f ′(s)| ≤ κ (|s|p−2 + 1) for all s ∈ R. Moreover, suppose that a satisfies∫ 1

0
a(x) dx < 0 and there is z ∈ (0, 1) such that a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1). Then,

there exist two subsets of S>, C>0 and C>λ0
, such that

• C>0 and C>λ0
are maximal in S> with respect to the inclusion, are connected with respect to the

topology of the strict convergence in BV (0, 1)1, and are unbounded in R× Lp(0, 1);

1See [4, Definition 3.14]
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• (0, 0) ∈ C>0 and (λ0, 0) ∈ C>λ0
;

• {(0, r) : r ∈ [0,+∞)} ⊆ C>0 ;

• if (λ, u) ∈ C>0 ∪ C>λ0
and u 6= 0, then ess inf u > 0;

• if (λ, 0) ∈ C>0 ∪ C>λ0
for some λ > 0, then λ = λ0;

• either C>0 ∩ C>λ0
= ∅, or (λ0, 0) ∈ C+

0 and (0, 0) ∈ C>λ0
and, in such case, C>0 = C>λ0

;

• there exists a neighborhood U of (0, 0) in R×Lp(0, 1) such that C>0 ∩U consists of regular solutions
of (1.1);

• there exists a neighborhood V of (λ0, 0) in R×Lp(0, 1) such that C>λ0
∩V consists of regular solutions

of (1.1).

Theorem 1.1 appears to be the first global bifurcation result for a quasilinear elliptic problem driven
by the mean curvature operator in the setting of bounded variation functions. The absence in the
existing literature of any previous result in this direction might be attributable to the fact that mean
curvature problems are fraught with a number of serious technical difficulties which do not arise when
dealing with other non-degenerate quasilinear problems. As a consequence, our proof of Theorem 1.1
is extremely delicate, even though the problem (1.1) is one-dimensional. The main technical difficulties
coming from the eventual lack of regularity of the solutions of (1.1) as they grow, which does not allow
us to work neither in spaces of differentiable functions, nor in Sobolev spaces. Instead, this lack of
regularity forces us to work in the frame of the Lebesgue spaces Lp, where the cone of positive functions
has empty interior and most of the global path-following techniques in bifurcation theory fail. Thus,
to get most of the conclusions of Theorem 1.1, a number of highly non-trivial technical issues must be
previously overcome. Among them count the reformulation of (1.1) as a suitable fixed point equation, the
proof of the differentiability of the associated underlying operator, the search for the most appropriate
global bifurcation setting, as well as solving the tricky problem of the preservation of the positivity of
the solutions along both components, for as in the Lp context a positive solution, a priori, could be
approximated by changing sign solutions. Naturally, none of these rather pathological situations cannot
arise when dealing with classical regular problems, like those considered in [41].

The structure of this paper is organized as follows. Section 2 introduces the three notions of solutions,
with increasing generality, that we are going to use in this work: strong, weak, and of bounded variation.
Then, it discusses their reciprocal relations, providing some useful variational characterizations. The
contents of Section 2 are slightly inspired by [6]. Naturally, once reformulated (1.1) as a variational
inequality in the space of bounded variation functions, one might be tempted to invoke to the available
bifurcation results for variational inequalities as described, e.g., in [39]. However, since in our opinion
no apparent advantage seems to come from this alternative approach, in this paper we have preferred to
adopt a different, more classical, treatment of this problem based on the fact that it can be equivalently
written as a fixed point equation for a completely continuous operator, where one can apply the abstract
unilateral theorems of [41, Chapter 6].

Section 3 is devoted to the study of the regularity of the bounded variation solutions of (1.1). It
begins by characterizing the existence of the strong solutions of the problem−

(
u′√

1 + u′2

)′
= h(x) in (0, 1),

u′(0) = 0, u′(1) = 0,

(1.5)
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where h ∈ L1(0, 1) is given. As a by-product, any bounded variation solution of (1.5) must be strong
if ‖h‖L1 < 1. Then, Section 3 analyzes the fine regularity properties of the bounded variation solutions
of (1.5), by establishing that the only singularities that they can exhibit are jumps, which, necessarily,
must be located at the interior points where h(x) changes sign. Thus, when the set of nodal points of h is
discrete, the presence of a Cantor part in the distributional derivative of the bounded variation solutions
of (1.5) is ruled out. In other words, the solutions are special functions of bounded variation, as defined
in [4, Ch. 4].

In Section 4 we introduce the auxiliary problem−
(

u′√
1 + u′2

)′
+ k(u) = h(x) in (0, 1),

u′(0) = 0, u′(1) = 0,

(1.6)

where k : R→ R is a function of class C1, strictly increasing and odd, which satisfies

k′(0) = 1, lim
|s|→+∞

k′(s)

|s|p−2
= 1,

for some p ≥ 2 and h ∈ Lq(0, 1), with q = p
p−1 . Under these circumstances, we can establish that the

associated solution operator P : Lq(0, 1) → Lp(0, 1), which maps h onto the unique bounded variation
solution u = Ph of (1.6), is completely continuous and Fréchet differentiable at h = 0. In addition, we
show that the derivative at 0 of P is given by the linear operator P1 : Lq(0, 1) → Lp(0, 1) which sends
any function h onto the unique solution u = P1h ∈W 2,q(0, 1) of the linear problem{

−u′′ + u = h(x) in (0, 1),

u′(0) = 0, u′(1) = 0.

The proof of the differentiability of P at 0 is far from being obvious and strongly relies on the previous
regularity results delivered in Section 2.

Having all these conclusions in hand, in the subsequent Section 5 one can reformulate the problem
(1.1) as an abstract operator equation

N (λ, u) = 0,

in the space Lp(0, 1), provided that there are constants κ > 0 and p > 2 such that

|f ′(s)| ≤ κ(|s|p−2 + 1) for all s ∈ R.

Precisely, the operator N : R× Lp(0, 1)→ Lp(0, 1) is defined by

N (λ, u) = P (k(u) + λaf(u))− u,

with k as above. Thus, it is a compact perturbation of the identity. Moreover, it can be expressed in the
form

N (λ, u) = L(λ)u+R(λ, u),

where
L(λ) = P1

(
(1 + λa)I

)
− I,

with I the identity map, is the Fréchet derivative DuN (λ, 0) of N (λ, u), with respect to u, at u = 0, and

lim
‖u‖p→0

‖R(λ, u)‖p
‖u‖p

= 0 uniformly in λ ∈ J,
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for any compact subinterval J of R. Hence, it is not difficult to verify that we are within the functional
setting suited for applying the abstract unilateral bifurcation theorem [41, Theorem 6.4.3], at both prin-
cipal eigenvalues, 0 and λ0, of the weighted eigenvalue problem (1.4). By [41, Theorem 6.4.3] there exist
two connected components of the set of the solutions of (1.1) emanating from 0 and λ0, respectively.
The remainder of the proof is then basically devoted to prove that each of these components contains an
unbounded subcomponent, consisting of positive solutions, which are regular near the bifurcation points.
This is achieved through an elegant topological argument combined with some sophisticated, very deli-
cate, convergence results for sequences of bounded variation solutions of (1.1), where the special nodal
structure of the function a plays a crucial role.

We conclude Section 5 by providing, under an additional regularity condition on f , some further infor-
mation about the fine structure of the components of positive solutions near their respective bifurcation
points from (λ, 0).

Finally, Section 6 ends the paper with a short list of open questions and conjectures.

2 Notions of solution

Throughout this section we consider the boundary value problem−
(

u′√
1 + u′2

)′
= h(x, u) in (0, 1),

u′(0) = 0, u′(1) = 0,

(2.1)

where h : (0, 1)× R→ R satisfies the Carathéodory conditions:

• h(·, s) is measurable for all s ∈ R,

• h(x, ·) ∈ C0(R;R) for a.e. x ∈ (0, 1),

• for each r > 0 there exists hr ∈ L1(0, 1) such that |h(x, s)| ≤ hr(x) for a.e. x ∈ (0, 1) and all
s ∈ (−r, r).

We also set
ψ(s) =

s√
1 + s2

for all s ∈ R. (2.2)

Definition 2.1 (Strong solution). A strong solution of problem (2.1) is a function u ∈W 2,1(0, 1) which
satisfies the differential equation in (2.1) a.e. in (0, 1) and the Neumann boundary conditions.

Remark 2.1 Any strong solution u clearly satisfies the differential equation

− u′′ = h(x, u)
(
1 + u′

2)3/2
a.e. in (0, 1). (2.3)

Moreover, integrating in (0, 1) the differential equation in (2.1), we find∫ 1

0

h(x, u) dx = 0 (2.4)

for any strong solution of (2.1).



7

Definition 2.2 (Weak solution). A weak solution of problem (2.1) is a function u ∈W 1,1(0, 1) such that∫ 1

0

u′φ′√
1 + u′2

dx =

∫ 1

0

h(x, u)φdx (2.5)

for all φ ∈W 1,1(0, 1).

Remark 2.2 By making the choice φ = 1 as test function, it follows that (2.4) also holds for every weak
solution u of (2.1). For these solutions, we infer from (2.2) and (2.5) that∫ 1

0

ψ(u′)φ′ dx =

∫ 1

0

h(x, u)φdx

for all φ ∈W 1,1(0, 1). Thus it follows that ψ(u′) ∈W 1,1(0, 1) and

− (ψ(u′))
′

= h(·, u) a.e. in (0, 1). (2.6)

Hence, we have

ψ(u′(x)) = −
∫ x

0

h(t, u) dt in (0, 1)

and therefore, taking into account (2.4),

ψ(u′(0)) = ψ(u′(1)) = 0,

which, in turn, implies
u′(0) = u′(1) = 0. (2.7)

In particular, since ψ(u′) ∈ C0[0, 1], we see that

u′ : [0, 1]→ [−∞,+∞]

is continuous. Actually, the condition ψ(u′) ∈ W 1,1(0, 1) implies that u′ ∈ W 1,1(0, 1) if and only if
‖ψ(u′)‖∞ < 1. Therefore, as the derivative u′ of a weak solution u might develop singularities, we
conclude that, in general, a weak solution is not necessarily a strong solution. Nevertheless, it is clear
that if a weak solution u of (1.1) lies in C1[0, 1], then it is strong. Of course, the converse is always true:
any strong solution is a weak one.

The next variational characterization of the weak solutions of (2.1) can be easily derived by using the
convexity of the length integral.

Lemma 2.1. Assume that h : (0, 1) × R → R satisfies the Carathéodory conditions. A function u ∈
W 1,1(0, 1) is a weak solution of (2.1) if and only if it satisfies the variational inequality∫ 1

0

√
1 + v′2 dx ≥

∫ 1

0

√
1 + u′2 dx+

∫ 1

0

h(x, u)(v − u) dx,

for all v ∈ W 1,1(0, 1), or, equivalently, it is a global minimizer in W 1,1(0, 1) of the associated convex
functional

Iu(v) =

∫ 1

0

√
1 + v′2 dx−

∫ 1

0

h(x, u)v dx.

The next notion of solution is more sophisticated. It basically goes back to [6, 7] and it has been
extensively used and discussed later (see, e.g., [46, 48, 49, 50, 51, 43]).
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Definition 2.3 (Bounded variation solution). A bounded variation solution of problem (2.1) is a function
u ∈ BV (0, 1) such that ∫ 1

0

DuaDφa√
1 + (Dua)2

dx+

∫ 1

0

Dus

|Dus|
Dsφ =

∫ 1

0

h(x, u)φdx (2.8)

for all φ ∈ BV (0, 1) such that |Dφs| is absolutely continuous with respect to |Dus|.

Remark 2.3 By taking φ = 1 as test function, it follows that (2.4) also holds for every bounded variation
solution u of (2.1).

In Definition 2.3, as well as throughout the rest of this paper, the following notations are used for
every v ∈ BV (0, 1) (we refer to, e.g., [4, 17] for any required additional details):

• Dv = Dvadx + Dvs is the Lebesgue–Nikodym decomposition of the Radon measure Dv in its
absolutely continuous part Dvadx, with density function Dva, and its singular part Dvs, with
respect to the Lebesgue measure dx in R.

• |Dv|, |Dva| and |Dvs| stand for the absolute variations of the measures Dv, Dva and Dvs, respec-
tively; thus, the Lebesgue–Nikodym decomposition of |Dv| is given by

|Dv| = |Dv|adx+ |Dv|s = |Dva|dx+ |Dvs|.

• Dv
|Dv| and Dvs

|Dvs| denote the density functions of Dv and Dvs, respectively, with respect to their

absolute variations |Dv| and |Dvs|.

• Dvs = Dvj + Dvc stands for the decomposition of the singular part Dvs of Dv in its jump part
Dvj and its Cantor part Dvc.

The identities
Dv = Dvadx+Dvs, Dvs = Dvj +Dvc,

induce the decompositions
v = va + vs = va + vj + vc,

with

va(x) = v(0) +

∫ x

0

Dva, vj(x) =

∫ x

0

Dvj , vc(x) =

∫ x

0

Dvc,

vs(x) =

∫ x

0

Dvs = vj(x) + vc(x),

for a.e. x ∈ (0, 1). Throughout this paper, for any given v ∈ BV (0, 1), we set∫ 1

0

√
1 + |Dv|2 =

∫ 1

0

√
1 + |Dva|2 dx+

∫ 1

0

|Dvs|, (2.9)

or, equivalently,∫ 1

0

√
1 + |Dv|2 = sup

{∫ 1

0

(vw1
′ + w2) : w1, w2 ∈ C1

0 (0, 1), ‖w2
1 + w2

2‖∞ ≤ 1

}
.



9

Remark 2.4 It is natural to interpret

∫ 1

0

√
1 + |Dv|2 as the length of the graph of the bounded variation

function v. From its definition we immediately conclude the lower semicontinuity of the length functional
with respect to the L1-convergence in the space BV (0, 1) (see, e.g., [26]).

The next result, complementing Lemma 2.1, is a direct consequence of [6].

Lemma 2.2. Assume that h : (0, 1) × R → R satisfies the Carathéodory conditions. A function u ∈
BV (0, 1) is a bounded variation solution of (2.1) if and only if it satisfies the variational inequality∫ 1

0

√
1 + |Dv|2 ≥

∫ 1

0

√
1 + |Du|2 +

∫ 1

0

h(x, u)(v − u) dx (2.10)

for all v ∈ BV (0, 1), or, equivalently, it is a global minimizer in BV (0, 1) of the associated convex
functional

Iu(v) =

∫ 1

0

√
1 + |Dv|2 −

∫ 1

0

h(x, u)v dx.

The next result is a simple, but useful, consequence of Definitions 2.2 and 2.3.

Lemma 2.3. Assume that h : (0, 1) × R → R satisfies the Carathéodory conditions. Suppose u is a
bounded variation solution of (2.1). Then, the function v = ua ∈W 1,1(0, 1) is a weak solution of−

(
v′√

1 + v′2

)′
= h(x, u) in (0, 1),

v′(0) = 0, v′(1) = 0.

(2.11)

In particular, ψ(v′) ∈W 1,1(0, 1) and it satisfies

− (ψ(v′))
′

= h(·, u) a.e. in (0, 1), v′(0) = v′(1) = 0. (2.12)

Moreover, u is a weak solution of (2.1) if and only if it is a bounded variation solution of (2.1) satisfying
Dus = 0.

Proof. Recall that a function w ∈W 1,1(0, 1) if and only if w ∈ BV (0, 1) and satisfies Dsw = 0. Therefore,
let u be a bounded variation solution of (2.1) and set v = ua ∈ W 1,1(0, 1). Particularizing (2.8) at any
φ ∈W 1,1(0, 1) yields ∫ 1

0

v′φ′√
1 + v′2

dx =

∫ 1

0

h(x, u)φdx.

Hence, v is a weak solution of (2.11). The fact that ψ(v′) ∈ W 1,1(0, 1), as well as (2.12) holds, follows
from the arguments given in Remark 2.2. This shows in particular that, if Dus = 0, then u = ua is a
weak solution of (2.1). The converse implication follows by noting again that, if u is a weak solution, then
Dus = 0. Hence, all test functions φ ∈ BV (0, 1) must satisfy Dsφ = 0, i.e., they belongs to W 1,1(0, 1),
and thus (2.5) holds.

Definition 2.4 (Positive solution). A strong, or weak, or bounded variation, solution of problem (2.1) is
respectively said to be non-negative if ess inf u ≥ 0, positive if ess inf u ≥ 0 and ess supu > 0, and strictly
positive if ess inf u > 0.

Throughout the rest of this paper, for any function u ∈ L1(0, 1), we write u ≥ 0 if ess inf u ≥ 0, u > 0
if ess inf u ≥ 0 and ess supu > 0, and u� 0 if ess inf u > 0.
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3 Regularity of the bounded variation solutions

This section analyzes the regularity of the bounded variation solutions of the problem−
(

u′√
1 + u′2

)′
= h(x) in (0, 1),

u′(0) = 0, u′(1) = 0,

(3.1)

where h ∈ L1(0, 1). The next result establishes some necessary conditions for the existence of a bounded
variation solution of (3.1). Hereafter, by a Caccioppoli subset B of (0, 1) it is meant a Borel set B such
that χB ∈ BV (0, 1), where χB stands for the characteristic function of B.

Lemma 3.1. Assume h ∈ L1(0, 1). Suppose that problem (3.1) has a bounded variation solution u.
Then, for every Caccioppoli set B ⊆ (0, 1),∣∣∣ ∫ 1

0

hχB dx
∣∣∣ ≤ ∫ 1

0

|DχB | (3.2)

holds; in particular,

∫ 1

0

h dx = 0.

Proof. Let u be a bounded variation solution of (2.1). Then, for every φ ∈ BV (0, 1) such that |Dφs| is
absolutely continuous with respect to |Dus|,∫ 1

0

DuaDφa√
1 + (Dua)2

dx+

∫ 1

0

Dus

|Dus|
Dsφ =

∫ 1

0

hφ dx. (3.3)

Choosing φ = 1 yields
∫ 1

0
h = 0. To establish (3.2), let B ⊆ (0, 1) be a Caccioppoli set. Then, set

v = u± χB ∈ BV (0, 1) and substitute it in (2.10). We find that

±
∫ 1

0

hχB dx ≤
∫ 1

0

√
1 + |D(u± χB)|2 −

∫ 1

0

√
1 + |Du|2 ≤

∫ 1

0

|DχB |,

where the last inequality easily follows from (2.9). Indeed, we have∫ 1

0

√
1 + |D(u± χB)|2 =

∫ 1

0

√
1 + |Dua ±DχaB |2 +

∫ 1

0

|Dus ±DχsB |

≤
∫ 1

0

√
1 + |Dua|2 +

∫ 1

0

|Dus|+
∫ 1

0

|DχsB |

=

∫ 1

0

√
1 + |Du|2 +

∫ 1

0

|DχB |,

which ends the proof.

The next result complements Lemma 3.1 in a special case of interest.

Lemma 3.2. Assume h ∈ L1(0, 1). Let u ∈W 1,1(0, 1) be a weak solution of (3.1), which is not a strong
solution of (3.1). Then, there exists an interval B = (0, z) such that∣∣∣∣∫ 1

0

hχB dx

∣∣∣∣ = 1 =

∫ 1

0

|DχB |.
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Proof. As u′ /∈ W 1,1(0, 1), Remark 2.2 implies that ‖ψ(u′)‖∞ = 1 and, as ψ(u′) ∈ C0[0, 1], there exists
z ∈ (0, 1) such that |ψ(u′(z))| = 1. Therefore, integrating the differential equation −(ψ(u′))′ = h in
B = (0, z) yields∫ z

0

h dx =

∫ 1

0

hχB dx = −ψ(u′(z)) + ψ(u′(0)) = −ψ(u′(z)) = ±1 = ±
∫ 1

0

|DχB |,

which ends the proof.

Thanks to Lemmas 3.1 and 3.2, the next result is very natural: it characterizes the existence of strong
solutions for (3.1).

Proposition 3.3. Assume h ∈ L1(0, 1). Then, problem (3.1) has a strong solution if and only if

(h1) there exists a constant κ ∈ (0, 1) such that∣∣∣ ∫ 1

0

hχB dx
∣∣∣ ≤ κ∫ 1

0

|DχB |

for every Caccioppoli set B ⊆ (0, 1).

Proof. The proof is divided into three steps:

Step 1. If problem (3.1) has a strong solution, then (h1) holds. Let u be a strong solution of (3.1).
Take a Caccioppoli set B ⊆ (0, 1) and multiply the equation in (3.1) by χB . Using [5, Theorem 1.9 and
Corollary 1.6], we get ∣∣∣ ∫ 1

0

hχB dx
∣∣∣ =

∣∣∣ ∫ 1

0

ψ(u′)DχB

∣∣∣ ≤ ‖ψ(u′)‖∞
∫ 1

0

|DχB |.

The conclusion follows by setting κ = ‖ψ(u′)‖∞ < 1.

Step 2. If (h1) holds, then (3.1) has a bounded variation solution. Set

W =
{
w ∈ BV (0, 1) :

∫ 1

0

w dx = 0
}
.

By the Poincaré inequality (see, e.g., [4, Remark 3.50]), W is a Banach space if we endow it with the
norm

‖w‖W =

∫ 1

0

|Dw|.

According to Lemma 2.2, the bounded variation solutions of (3.1) are the global minimizers in BV (0, 1)
of the convex functional I : BV (0, 1)→ R defined by

I(v) =

∫ 1

0

√
1 + |Dv|2 −

∫ 1

0

hv dx.

It is a classical fact (see, e.g., [26]) that I is lower semicontinuous with respect to the L1-convergence in
BV (0, 1). Let denote by IW its restriction to W. We claim that, for every w ∈ W,

IW(w) ≥ (1− κ)

∫ 1

0

|Dw|. (3.4)
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To prove (3.4) we proceed as follows. Fix w ∈ W and, for each t ∈ R, consider the super-level set

Et = {x ∈ (0, 1) : w(x) > t} ;

Et is a Caccioppoli set for a.e. t ∈ (0, 1) (see, e.g., [4, Theorem 3.40]). Then, the representation formula

w(x) =

∫ +∞

−∞
ϕEt

(x) dt (3.5)

holds for a.e. x ∈ (0, 1), where ϕEt
∈ BV (0, 1) is the function defined by

ϕEt
(x) =

{
χEt

(x) if t > 0,

χEt(x)− 1 = −χ(0,1)\Et
(x) if t ≤ 0.

The proof of (3.5) is elementary. Obviously, for every x ∈ (0, 1), we have∫ +∞

−∞
ϕEt(x) dt =

∫ +∞

0

ϕEt(x) dt+

∫ 0

−∞
ϕEt(x) dt

=

∫ +∞

0

χEt(x) dt−
∫ 0

−∞
χ(0,1)\Et

(x) dt.

(3.6)

Suppose w(x) ≥ 0. Then, we get∫ +∞

0

χEt(x) dt =

∫ w(x)

0

dt = w(x),

∫ 0

−∞
χ(0,1)\Et

(x) dt = 0.

Similarly, when w(x) ≤ 0, we find∫ +∞

0

χEt
(x) dt = 0,

∫ 0

−∞
χ(0,1)\Et

(x) dt =

∫ 0

w(x)

dt = −w(x).

Thus, in any circumstances, substituting these identities into (3.6), the identity (3.5) holds. Similarly,
the next co-area formula holds

|Dw(x)| =
∫ +∞

−∞
|DϕEt

| dt (3.7)

(see, e.g., [4, Theorem 3.40]). Hence, by Fubini theorem, it follows from (3.5) that∫ 1

0

hw dx =

∫ 1

0

h

∫ +∞

−∞
ϕEt

(x) dt dx

= −
∫ 0

−∞

(∫
(0,1)\Et

h dx
)
dt+

∫ +∞

0

(∫
Et

h dx
)
dt.

So, by (h1) and (3.7), we obtain∫ 1

0

hw dx ≤ κ
(∫ 0

−∞

∫ 1

0

|Dχ(0,1)\Et
| dt+

∫ +∞

0

∫ 1

0

|DχEt
| dt

)
= κ

(∫ +∞

−∞

∫ 1

0

|DϕEt
| dx dt

)
= κ

∫ 1

0

|Dw|.
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Therefore, we infer

I(w) =

∫ 1

0

√
1 + |Dw|2 −

∫ 1

0

hw dx ≥
∫ 1

0

|Dw| − κ
∫ 1

0

|Dw| = (1− κ)

∫ 1

0

|Dw|,

which provides us with (3.4). This condition entails that IW is bounded from below and coercive. Since
IW is lower semicontinuous with respect to the L1-convergence in W, IW has a global minimizer u ∈ W.

As, for every v ∈ BV (Ω), we have I(v) = IW(w), where w = v−
∫ 1

0
v dx ∈ W, we can conclude that u is

a minimizer of I in BV (0, 1). Therefore, it is a bounded variation solution of (3.1).

Step 3. If condition (h1) holds, then any bounded variation solution of (3.1) is a strong solution. Let u
be a bounded variation solution of (3.1), consider the decomposition u = ua + us and take φ = us as a
test function in (2.8). Then, proceeding exactly as in Step 1, we find∫ 1

0

|Dsu| =
∫ 1

0

Dsu

|Dsu|
Dsu =

∫ 1

0

hus dx ≤ κ
∫ 1

0

|Dsu|,

which implies that Dsu = 0. Thus, we have u ∈ W 1,1(0, 1) and, by Lemma 2.3, it is a weak solution of
(3.1). For each z ∈ (0, 1), integrating (2.6) in B = (0, z), and using (2.7) and (h1), we obtain

|ψ(u′(z))| =
∣∣∣ ∫ z

0

(ψ(u′))′ dx
∣∣∣ =

∣∣∣ ∫ 1

0

hχB dx
∣∣∣ ≤ κ∫ 1

0

|DχB | = κ < 1.

This entails ‖ψ(u′)‖∞ < 1 and hence, by Remark 2.2, it is clear that u is a strong solution of (3.1). This
ends the proof.

The next result provides us with a very simple sufficient condition for (h1).

Lemma 3.4. Assume h ∈ L1(0, 1). Suppose that h satisfies

∫ 1

0

h dx = 0 and ‖h‖1 < 1. Then, (h1)

holds.

Proof. Let us set κ = ‖h‖1 < 1. Take any Caccioppoli set B ⊆ (0, 1). In case B = (0, 1), up to a set of

measure zero, we have
∫ 1

0
|DχB | = 0 and hence∣∣∣ ∫ 1

0

h dx
∣∣∣ = 0 = κ

∫ 1

0

|DχB |.

Otherwise, from [4, Proposition 3.52], we infer that either
∫ 1

0
|DχB | ≥ 2, or, up to a set of measure zero,

B = [a, b] ⊆ [0, 1], with a = 0 or b = 1. In case
∫ 1

0
|DχB | ≥ 2, we get∣∣∣ ∫ 1

0

hχB dx
∣∣∣ ≤ κ ≤ κ∫ 1

0

|DχB |.

In case either a = 0 and b < 1, or a > 0 and b = 1, we find
∫ 1

0
|DχB | = 1 and hence∣∣∣ ∫

B

h dx
∣∣∣ =

∣∣∣ ∫ 1

0

hχB dx
∣∣∣ ≤ ∫ 1

0

|h| dx = κ = κ

∫ 1

0

|DχB |.

Therefore, the inequality in (h1) is anyhow satisfied.

The following simple regularity result holds.
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Corollary 3.5. Assume that h ∈ L1(0, 1). Suppose that ‖h‖1 < 1. Then, any bounded variation solution
of (3.1) is a strong solution.

Proof. Let u be a bounded variation solution of (3.1). From (3.3), taking φ = 1, we infer
∫ 1

0
h dx = 0.

Hence, by Lemma 3.4, h satisfies (h1). Step 3 in the proof of Proposition 3.3 yields the conclusion.

We can go further in the study of the regularity properties of the bounded variation solutions of (3.1),
by establishing that the only singularities that they can exhibit are jumps at the interior points where h
changes sign.

Proposition 3.6. Assume h ∈ L1(0, 1). Let u be a bounded variation solution of (3.1).

(a) Let (α, β) ⊂ (0, 1) be an interval such that h(x) ≥ 0 a.e. in (α, β) (respectively, h(x) ≤ 0 a.e. in
(α, β)). Then, u is concave (respectively, convex) in (α, β), and its restriction to (α, β) satisfies

u|(α,β) ∈W 2,1
loc (α, β) ∩W 1,1(α, β)

and

−

(
u′√

1 + u′2

)′
= h(x) a.e. in (α, β).

Moreover, u ∈W 2,1
loc [0, β) and u′(0) = 0 if α = 0, while u ∈W 2,1

loc (α, 1] and u′(1) = 0 if β = 1.

(b) Let (α, β), (β, γ) be any pair of adjacent subintervals of (0, 1) such that h(x) ≥ 0 a.e. in (α, β) and
h(x) ≤ 0 a.e. in (β, γ) (respectively, h(x) ≤ 0 a.e. in (α, β) and h(x) ≥ 0 a.e. in (β, γ)). Then,
either u ∈W 2,1

loc (α, γ), or

u(β−) ≥ u(β+) and u′(β−) = −∞ = u′(β+)

(respectively, u(β−) ≤ u(β+) and u′(β−) = +∞ = u′(β+)), where u′(β−) and u′(β+) are the left
and the right Dini derivatives of u at β, respectively.

Proof. Let u be a bounded variation solution of (3.1) and consider the decomposition

u = ua + uj + uc.

First, we prove Part (a). Let (α, β) be an interval such that h(x) ≥ 0 a.e. in (α, β). The proof is divided
into three steps.

Step 1. ua|(α,β) ∈W 2,1
loc (α, β) and it is concave in (α, β).

Set v = ua ∈W 1,1(0, 1). By Lemma 2.3, we already know that ψ(v′) ∈W 1,1(0, 1) and

− (ψ(v′))
′

= h a.e. in (0, 1). (3.8)

As h(x) ≥ 0 a.e. in (α, β), ψ(v′) is decreasing in (α, β). Since, in addition, ψ(v′) is continuous and
v′ ∈ L1(0, 1), we must have

|ψ(v′(x))| < 1 for all x ∈ (α, β). (3.9)

This implies that
v′|(α,β) = ψ−1(ψ(v′)|(α,β)) ∈W 1,1

loc (α, β)

and it is decreasing in (α, β), i.e., v|(α,β) ∈W 2,1
loc (α, β) and it is concave on (α, β).
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Step 2. uj |(α,β) = 0.
Assume that there exists a jump point z ∈ (α, β) of u. Set

φ(x) = H(z − x) in (0, 1),

where H stands for the Heaviside function. Clearly, we have

Dφ = Dφs = −δz,

where δz is the Dirac measure concentrated at z. Since |Dφs| = δz is absolutely continuous with respect
to |Dus| and its unique atom is z, it follows from (3.3) that∫ z

0

h dx =

∫ 1

0

hφ dx =

∫ 1

0

Dus

|Dus|
Dφs

= −
∫ 1

0

Dus

|Dus|
δz = −

∫ 1

0

Dus

|Dus|
(z) δz = − Dus

|Dus|
(z).

On the other hand, by the polar decomposition of measures (see, e.g., [4, Corollary 1.29]), we have

Dus

|Dus|
(x) ∈ {−1, 1} for all x ∈ (0, 1).

Thus, we see that
∫ z
0
h dx ∈ {−1, 1}. Hence, integrating (3.8) in (0, z) yields

−ψ(v′(z)) =

∫ z

0

h dx ∈ {−1, 1},

which contradicts (3.9). Therefore, we conclude that uj = 0 on (α, β).

Step 3. uc|(α,β) = 0.
From the two previous steps, we already know that u = ua+uc in (α, β). In particular, u can be extended
by continuity onto [α, β]. Let us prove that u is concave in [α, β]. On the contrary, assume that there
exists an interval [γ, δ] ⊆ [α, β] such that

u(x) < u(γ) + u(δ)−u(γ)
δ−γ (x− γ) in (γ, δ).

Let us define v ∈ BV (0, 1) by setting

v(x) =

{
u(γ) + u(δ)−u(γ)

δ−γ (x− γ) in [γ, δ],

u(x) elsewhere.

It is clear that ∫ 1

0

√
1 + |Dv|2 <

∫ 1

0

√
1 + |Du|2

and, since v(x) > u(x) in (γ, δ), ∫ 1

0

hv dx ≥
∫ 1

0

hu dx.

Thus, we get ∫ 1

0

√
1 + |Dv|2 −

∫ 1

0

hv dx <

∫ 1

0

√
1 + |Du|2 −

∫ 1

0

hu dx,
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which contradicts the fact that u is a global minimizer of the functional

I(v) =

∫ 1

0

√
1 + |Dv|2 −

∫ 1

0

hv dx.

Therefore, u being concave in (α, β), it is locally Lipschitz in (α, β) and hence, uc|(α,β) = 0. As we have
just proved that u = ua in (α, β), the conclusions follow from Step 1 and Lemma 2.3.

Next we prove Part (b). Let (α, β), (β, γ) be a pair of adjacent subintervals of (0, 1) such that h(x) ≥ 0
a.e. in (α, β) and h(x) ≤ 0 a.e. in (β, γ).

Set v = ua ∈ W 1,1(0, 1). As v is concave in (α, β) and convex in (β, γ), two possibilities may occur:
either ψ(v′(β)) ∈ (−1, 1), or ψ(v′(β)) = −1. In the former case, by the proof of Part (a), we have that

|ψ(v′)(x)| < 1 for all x ∈ (α, γ)

and hence v|(α,γ) ∈ W 2,1
loc (α, γ). In the latter case, either u is continuous at β, or β is a jump point. Let

us show that u(β−) ≥ u(β+). Indeed, like in Step 2, we set φ(x) = H(β − x) in (0, 1), where H is the
Heaviside function. We have that Dφ = −δβ , where δβ is the Dirac measure concentrated at β. Thus, it
follows from (3.3) that

− Dus

|Dus|
(β) = −

∫ 1

0

Dus

|Dus|
(β) δβ =

∫ β

0

h dx.

On the other hand, integrating (3.8) in (0, β), we find

1 = −ψ(v′(β)) =

∫ β

0

h dx.

Therefore, we conclude that Dus

|Dus| (β) = −1 and thus both

u(β−) ≥ u(β+) and u′(β−) = −∞ = u′(β+),

which ends the proof.

Hence we get the following result; hereafter by SBV (0, 1) we mean the space of all special functions
of bounded variation, that is, of all bounded variation functions with vanishing Cantor part, as discussed
in [4, Chapter 4].

Corollary 3.7. Assume h ∈ L1(0, 1) and

(h2) there exists a decomposition

[0, 1] =

k⋃
i=1

[αi, βi], with αi < βi = αi+1 < βi+1, for i = 1, . . . , k − 1,

such that either
(−1)ih(x) ≥ 0 a.e. in (αi, βi), for i = 1, . . . , k,

or
(−1)ih(x) ≤ 0 a.e. in (αi, βi), for i = 1, . . . , k.

Let u be a bounded variation solution of (3.1). Then, u ∈ SBV (0, 1), i.e., u is a special function of
bounded variation, whose jumps may occur at the points αi, with i ∈ {2, . . . , k}, at most. In addition, all
conclusions of Proposition 3.6 hold on each interval, as well as on each pair of adjacent intervals of the
decomposition.
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The following uniqueness/non-uniqueness result can be of interest.

Lemma 3.8. The problem (3.1) has at most one weak solution u such that∫ 1

0

u dx = 0. (3.10)

Moreover, if u is a bounded variation solution with us 6= 0, then ua + tus is a bounded variation solution
of (3.1) for any t ∈ [0, 1].

Proof. Suppose
∫ 1

0
h dx = 0 and u1, u2 are weak solutions of (3.1) such that∫ 1

0

u1 dx =

∫ 1

0

u2 dx = 0. (3.11)

As, for every φ ∈W 1,1(0, 1),∫ 1

0

ψ(u′1(x))φ′(x) dx =

∫ 1

0

h(x)φ(x) dx =

∫ 1

0

ψ(u′2(x))φ′(x) dx,

we have
ψ(u′1) = ψ(u′2) a.e. in (0, 1)

and hence u′1 = u′2 a.e. in (0, 1). So, u1 = u2 + C for some constant C and, due to (3.11), C = 0, which
implies u1 = u2 and shows the uniqueness of the weak solution.

By Lemma 2.2, the bounded variation solutions of (3.1) are the global minimizers in BV (0, 1) of the
convex functional

I(v) =

∫ 1

0

√
1 + |Dv|2 −

∫ 1

0

h(x)v dx.

If u = ua+us, us 6= 0, is a global minimizer, by Lemma 2.3, ua must be another global minimizer. Thus,
by convexity, we find that for every t ∈ [0, 1] and v ∈ BV (0, 1),

I(tu+ (1− t)ua) ≤ tI(u) + (1− t)I(ua) ≤ tI(v) + (1− t)I(v) = I(v).

Therefore, tu + (1 − t)ua = ua + tus provides us with a bounded variation solution of (3.1) for all
t ∈ [0, 1].

Remark 3.1 It is easy to exhibit functions h with
∫ 1

0
h dx = 0, like, e.g., h(x) = 1

2 sign(x− 1
2 ), for which

problem (3.1) admits two, and therefore infinitely many, bounded variation solutions, which can all be
taken to satisfy (3.10) as well.

4 Fixed point reformulation

We start introducing the following assumption: the functions satisfying such conditions will be used in
the sequel to define a class of suitable auxiliary problems.

(k1) k : R → R is a function of class C1, strictly increasing and odd, which satisfies k′(0) = 1 and, for
some p ≥ 2,

lim
|s|→+∞

k′(s)

|s|p−2
= 1. (4.1)



18

The following conclusions are elementary.

Lemma 4.1. Assume (k1). Then, there exist constants µ, ν > 0 such that, for all s ∈ R,

|k′(s)| ≤ µ(|s|p−2 + 1), (4.2)

|k(s)| ≤ µ(|s|p−1 + 1), (4.3)

ν|s| ≤ k(s) sign(s), (4.4)

νs2 ≤ K(s) ≤ µ(|s|p + 1), (4.5)

where K(s) =
∫ s
0
k(t) dt is the potential of k.

Proof. By (4.1), for every µ > 1 there exists s0 > 0 such that

|k′(s)| ≤ µ|s|p−2 if |s| ≥ s0

and hence, for all s ∈ R,
|k′(s)| ≤ µ|s|p−2 + max

|s|≤s0
|k′(s)|.

Thus, possibly taking a larger µ, we conclude that estimate (4.2) holds true for all s ∈ R.
Next, pick s > 0. Integrating (4.2) and using k(0) = 0 yield

− µ

p− 1
sp−1 − µs ≤ k(s) ≤ µ

p− 1
sp−1 + µs.

Hence, as the function k is odd, we get, for all s ∈ R,

|k(s)| ≤ µ

p− 1
|s|p−1 + µ|s|.

Since p ≥ 2, possibly taking a taking a larger µ, we conclude that also estimate (4.3) holds true for all
s ∈ R.

As k′(0) = 1, for every ν ∈ (0, 1) there exists s0 > 0 such that

k′(s) ≥ ν if |s| ≤ s0.

Integrating this inequality and using k(0) = 0, we obtain

k(s) ≥ νs if 0 < s ≤ s0

and hence, as k is odd,
k(s) sign(s) ≥ ν|s| if |s| ≤ s0.

On the other hand, by (4.1), there exists s1 ≥ 1 such that

k′(s) ≥ ν|s|p−2 ≥ ν if |s| ≥ s1,

because p ≥ 2. Integrating this inequality yields

k(s) ≥ νs+ k(s1)− νs1 if s ≥ s1.

As k(s1) > 0, we can reduce ν > 0 in such a way that

k(s) ≥ νs if s ≥ s1
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and hence, as k is odd,
k(s) sign(s) ≥ ν|s| if |s| ≥ s1.

Since k is increasing, possibly further reducing ν > 0, we conclude that estimate (4.4) holds true for all
s ∈ R.

The lower estimate in (4.5) follows from (4.4) by integration. Whereas, the upper estimate can be
obtained arguing as done for deriving (4.3) from (4.2).

Next we introduce the following auxiliary problem.

Proposition 4.2. Fix p ≥ 2, set q = p
p−1 , and assume (k1). Then, for each h ∈ Lq(0, 1), the problem−

(
u′√

1 + u′2

)′
+ k(u) = h(x) in (0, 1),

u′(0) = 0, u′(1) = 0,

(4.6)

has a unique bounded variation solution.

Proof. Let us endow BV (0, 1) with the norm

‖v‖BV = ‖v‖p +

∫ 1

0

|Dv|,

and consider the functional J : BV (0, 1)→ R defined by

J (v) =

∫ 1

0

√
1 + |Dv|2 +

∫ 1

0

K(v)−
∫ 1

0

hv dx. (4.7)

The proof will be divided into three steps.

Step 1. J is lower semicontinuous with respect to the Lp-convergence in BV (0, 1). Indeed, take a
sequence (vn)n in BV (0, 1) and v ∈ BV (0, 1) such that

lim
n→+∞

vn = v in Lp(0, 1).

Owing to the upper estimate in (4.5), we infer from [25, Theorem 2.8] that

lim
n→+∞

∫ 1

0

(K(vn)− hvn) dx =

∫ 1

0

(K(v)− hv) dx.

Moreover, by Remark 2.4, we have

lim inf
n→+∞

∫ 1

0

√
1 + |Dvn|2 ≥

∫ 1

0

√
1 + |Dv|2.

Thus, we get
lim inf
n→+∞

J (vn) ≥ J (v),

which ends the proof of Step 1.

Step 2. J is coercive and bounded from below in BV (0, 1). By the upper estimate in (4.5), there are
constants c1, c2 > 0 such that, for every v ∈ BV (0, 1),

J (v) ≥
∫ 1

0

|Dv|+ c1‖v‖pp − ‖h‖q‖v‖p − c2. (4.8)
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On the other hand, there exists a constant c3 > 0 such that

c1|s|p − ‖h‖q|s| − c2 ≥ c1|s| − c3 for all s ∈ R

and thus

J (v) ≥
∫ 1

0

|Dv|+ c1‖v‖p − c3 ≥ min{1, c1}‖v‖BV − c3

Therefore, J is coercive and bounded from below in BV (0, 1).

Step 3. Problem (4.6) has a unique bounded variation solution. From Steps 1 and 2 we conclude that
J has a global minimizer u ∈ BV (0, 1), which is a bounded variation solution of (4.6). In order to prove
it is unique, suppose that u1, u2 are bounded variation solutions of (4.6). From (2.10) we get∫ 1

0

√
1 + |Du1|2 −

∫ 1

0

√
1 + |Du2|2 ≥

∫ 1

0

(h− k(u2))(u1 − u2) dx

and ∫ 1

0

√
1 + |Du2|2 −

∫ 1

0

√
1 + |Du1|2 ≥

∫ 1

0

(h− k(u1))(u2 − u1) dx.

Summing up we obtain

0 ≥
∫ 1

0

(k(u1)− k(u2))(u1 − u2) dx.

The strict monotonicity of the function k yields u1 = u2.

Subsequently, we denote by P : Lq(0, 1)→ Lp(0, 1), with p ≥ 2 and q = p
p−1 , the operator sending any

function h ∈ Lq(0, 1) onto the unique bounded variation solution u = Ph of (4.6). Note that P(0) = 0.

Proposition 4.3. Fix p ≥ 2, set q = p
p−1 , and assume (k1). Then, the operator P : Lq(0, 1)→ Lp(0, 1)

is completely continuous.

Proof. This proof is divided into two steps.

Step 1. P is compact. Let (hn)n be a bounded sequence in Lq(0, 1) and, for every n ≥ 1, set un = Phn.
Since un is the global minimizer of the functional Jn : BV (0, 1)→ R defined by

Jn(v) =

∫ 1

0

√
1 + |Dv|2 +

∫ 1

0

K(v)−
∫ 1

0

hnv dx,

we have that Jn(un) ≤ Jn(0) = 1. Thus, it follows from (4.8) that∫ 1

0

|Dun|+ c1‖un‖pp − ‖hn‖q‖un‖p − c2 ≤ J (un) ≤ 1.

Therefore, the boundedness in Lq(0, 1) of (hn)n implies the boundedness in BV (0, 1) of (un)n. The
compact embedding of BV (0, 1) into Lp(0, 1) yields the conclusion.

Step 2. P is continuous. Let (hn)n be a sequence converging in Lq(0, 1) to some h ∈ Lq(0, 1) and
set un = Phn. Pick any subsequence (hnk

)k of (hn)n. The boundedness of (hn)n in Lq(0, 1) and
the compactness of P yields the existence of a further subsequence (hnkj

)j of (hnk
)k such that (unkj

)j
converges in Lp(0, 1) to some u ∈ Lp(0, 1). As in the previous step, the next estimate holds∫ 1

0

|Dunkj
|+ c1‖unkj

‖pp − ‖hnkj
‖q‖unkj

‖p − c2 ≤ J (unkj
) ≤ 1
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and it implies that (unkj
)j is bounded in BV (0, 1). Thus, by [4, Theorem 3.23], u ∈ BV (0, 1). Moreover,

as J is lower semicontinuous with respect to the Lp-convergence in BV (0, 1), we find

J (u) =

∫ 1

0

√
1 + |Du|2 +

∫ 1

0

K(u)−
∫ 1

0

hu dx

≤ lim inf
j→+∞

∫ 1

0

√
1 + |Dunkj

|2 + lim
j→+∞

∫ 1

0

K(unkj
)− lim

j→+∞

∫ 1

0

hnkj
unkj

dx

= lim inf
j→+∞

(∫ 1

0

√
1 + |Dunkj

|2 +

∫ 1

0

K(unkj
)−

∫ 1

0

hnkj
unkj

dx

)
.

Therefore, since, by construction, unkj
provides us with the global minimizer in BV (0, 1) of the functional

Jnkj
it becomes apparent that, for every v ∈ BV (0, 1),

J (u) ≤ lim inf
j→+∞

(∫ 1

0

√
1 + |Dv|2 +

∫ 1

0

K(v)−
∫ 1

0

hnkj
v dx

)
=

∫ 1

0

√
1 + |Dv|2 +

∫ 1

0

K(v)−
∫ 1

0

hv dx = J (v).

Consequently, u is the unique bounded variation solution of (4.6), that is, u = P(h). Since u does not
depend on the sequence (unkj

)j , we conclude that the whole sequence (un)n converges to u in Lp(0, 1).

This ends the proof.

Fix p, q ≥ 1 and denote by P1 : Lq(0, 1) → Lp(0, 1) the linear operator which sends any function h
onto the unique solution u = P1h ∈W 2,q(0, 1) of the linear problem{

−u′′ + u = h(x) in (0, 1),

u′(0) = 0, u′(1) = 0.
(4.9)

The compact imbedding of W 2,q(0, 1) into Lp(0, 1) implies that P1 is a compact linear operator.

Proposition 4.4. Fix p ≥ 2, set q = p
p−1 , and assume (k1). Then, the operator P : Lq(0, 1)→ Lp(0, 1)

is Fréchet differentiable at 0, with derivative P ′(0) = P1.

Proof. We aim to show that, for any sequence (hn)n, with hn → 0 in Lq(0, 1),

‖hn‖−1q (P(hn)− P(0)− P1(hn))→ 0 in Lp(0, 1) as n→ +∞.

Since P(0) = 0, this amounts to prove that, for any sequence (vn)n in Lq(0, 1), with ‖vn‖q = 1, and for
any sequence (sn)n in (0,+∞), with sn → 0, there holds

s−1n P(snvn)− P1(vn)→ 0 in Lp(0, 1) as n→ +∞. (4.10)

It suffices to establish that, for all subsequences (vnk
)k of (vn)n and (snk

)k of (sn)n, we can find further
subsequences (vnkj

)j of (vnk
)k and (snkj

)j of (snk
)k such that

s−1nkj
P(snkj

vnkj
)− P1(vnkj

)→ 0 in Lp(0, 1) as j → +∞. (4.11)

Let (vnk
)k be a subsequence of (vn)n and (snk

)k be a subsequence of (sn)n. Since (vnk
)k is bounded

in Lq(0, 1), there exist a subsequence (vnkj
)j of (vnk

)k and v ∈ Lq(0, 1) such that vnkj
→ v weakly in
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Lq(0, 1). Let (snkj
)j be the corresponding subsequence of (snk

)k. In there sequel, for convenience, we

simply write vj for vnkj
and sj for snkj

.

By the continuity of P1, we have that P1(vj) → P1(v) weakly in Lp(0, 1). Moreover, since P1 is
compact and (vj)j is bounded in Lq(0, 1), (P1(vj))j is relatively compact in Lp(0, 1). Thus, along some
subsequence, relabeled by j, we have that P1(vj)→ w in Lp(0, 1) for some w ∈ Lp(0, 1). Necessarily, by
the uniqueness of the limit, w = P1(v) and hence

P1(vj)→ P1(v) in Lp(0, 1) as j → +∞.

Consequently, (4.11) reduces to establishing

s−1j P(sjvj)→ P1(v) in Lp(0, 1) as j → +∞. (4.12)

Setting, for all j ≥ 1,
uj = s−1j P(sjvj),

it is clear that sjuj = P(sjvj) ∈ BV (0, 1) is the unique bounded variation solution of−
(

u′√
1 + u′2

)′
+ k(u) = sjvj in (0, 1),

u′(0) = 0, u′(1) = 0,

(4.13)

Since sjvj → 0 in Lq(0, 1), the continuity of P implies that

sjuj = P(sjvj)→ 0 in Lp(0, 1) as j → +∞.

According to estimate (4.3), it follows from [25, Theorem 2.3] that

k(sjuj)→ 0 in Lq(0, 1) as j → +∞

and hence
sjvj − k(sjuj)→ 0 in Lq(0, 1) as j → +∞. (4.14)

Therefore, as q > 1, Corollary 3.5 implies that sjuj is a strong solution of (4.13) for all large j.
Next, we show that (uj)j is bounded in W 1,1(0, 1). Fix any x ∈ (0, 1]. Integrating over (0, x) the

equation in (4.13) yields

ψ(sju
′
j(x)) =

−sju′j(x)√
1 + s2ju

′
j(x)

2
=

∫ x

0

(sjvj − k(sjuj)) dx, (4.15)

the function ψ being defined in (2.2). Thus, as ψ is odd and increasing, we get from (4.14)

ψ(‖sju′j‖∞) = ‖ψ(sju
′
j)‖∞ ≤ ‖sjvj − k(sjuj)‖1 → 0 as j → +∞

and hence
‖sju′j‖∞ → 0 as j → +∞. (4.16)

Multiplying the differential equation in (4.13) by sjuj and integrating in (0, 1), we find∫ 1

0

s2ju
′
j
2√

1 + s2ju
′
j
2
dx+

∫ 1

0

k(sjuj)sjuj dx =

∫ 1

0

s2jvjuj dx. (4.17)



23

We want to estimate the three terms in (4.17). As the function q(ξ) = ξ2(1 + ξ2)−
1
2 is convex if |ξ| <

√
2,

thanks to (4.16), Jensen inequality applies, for all large j, and yields

s2j‖u′j‖21√
1 + s2j‖u′j‖21

≤
∫ 1

0

s2ju
′
j
2√

1 + s2ju
′
j
2
dx. (4.18)

Condition (4.4) implies in particular that, for all j ≥ 1,∫ 1

0

k(sjuj)sjuj dx ≥ 0. (4.19)

By Hölder inequality, we have ∫ 1

0

s2jvjuj dx ≤ s2j‖vj‖q‖uj‖p = s2j‖uj‖p, (4.20)

because, by construction, ‖vj‖q = 1. Thus, substituting (4.18), (4.19) and (4.20) in (4.17) and dividing
by s2j , we conclude that, for all large j,

‖u′j‖21√
1 + s2j‖u′j‖21

≤ ‖uj‖p. (4.21)

Since by (4.16)
‖sju′j‖1 → 0 as j → +∞,

from (4.21) we infer, for all large j,

‖u′j‖21 ≤
√

2‖uj‖p. (4.22)

Let us set, for every j ≥ 1,

rj =

∫ 1

0

uj dx and wj = uj − rj .

From (4.22), using the Poincaré-Wirtinger inequality (see, e.g., [13, page 233]),

‖wj‖p ≤ ‖w′j‖1 = ‖u′j‖1 (4.23)

we obtain, for all large j,

‖u′j‖21 ≤
√

2(‖wj‖1 + |rj |) ≤
√

2(‖w′j‖1 + |rj |) =
√

2(‖u′j‖1 + |rj |).

Hence, for any given ε ∈ (0, 1), there is cε > 0 such that

‖u′j‖1 ≤ ε|rj |+ cε for all j ≥ 1. (4.24)

Therefore, for proving that (uj)j is bounded in W 1,1(0, 1), thanks to the Poincaré inequality (4.23), we
only need to show that the sequence (rj)j is bounded. The proof of this fact proceeds by contradiction.
Thus, suppose that some subsequence of (rj)j , still labeled by j, satisfies

lim
j→+∞

rj = +∞; (4.25)

the argument is similar in case
lim

j→+∞
rj = −∞.
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Then, by (4.24), we have, for all large j,

uj(x) = rj + wj(x) ≥ rj − ‖wj‖∞ ≥ rj − ‖w′j‖1 = rj − ‖u′j‖1 ≥ (1− ε)rj

and hence, it follows from (4.25) that

lim
j→+∞

uj(x) = +∞ uniformly in [0, 1].

Integrating in [0, 1] the differential equation in (4.13) yields

1 = ‖vj‖q ≥
∫ 1

0

vj dx =

∫ 1

0

(sjuj)
−1k(sjuj)uj dx.

Thus, owing to the estimate (4.4), we find that

1 ≥ ν
∫ 1

0

uj dx→ +∞ as j → +∞,

which is a contradiction. Therefore, we conclude that (uj)j is bounded in W 1,1(0, 1), as claimed above.
From [4, Proposition 3.13, Theorem 3.23], we infer the existence of u ∈ BV (0, 1) such that, possibly

passing to a subsequence, uj → u in L1(0, 1) and u′j → Du weakly* in the sense of measures, i.e.,

lim
j→+∞

∫ 1

0

φu′j dx =

∫ 1

0

φDu for all φ ∈ C0[0, 1] with φ(0) = φ(1) = 0. (4.26)

Dividing the identity (4.15) by sj yields

u′j(x)√
1 + s2ju

′
j(x)

2
=

∫ x

0

(
s−1j k(sjuj)− vj

)
dx.

for all x ∈ [0, 1] and j ≥ 1. Since sj‖uj‖∞ → 0 as j → +∞, the conditions k(0) = 0 and k′(0) = 1 imply
that

(sjuj(x))−1k(sjuj(x))→ 1 uniformly in [0, 1] as j → +∞ (4.27)

and hence ∫ 1

0

∣∣(sj‖uj‖∞)−1k(sjuj)
∣∣ dx ≤ ∫ 1

0

∣∣(sjuj)−1k(sjuj)
∣∣ dx ≤ 2,

for all large j. This estimate, together with the fact that ‖vj‖q = 1, finally yields the existence of a
constant C > 0 such that

|u′j(x)| ≤ C
√

1 + s2ju
′
j(x)

2
,

for all x ∈ [0, 1] and all large j. As sj → 0, we can conclude that (u′j)j is bounded in L∞(0, 1). Therefore,
possibly passing to a further subsequence, still denoted by (uj)j , there exists z ∈ L∞(0, 1) such that
u′j → z weakly* in L∞(0, 1), i.e.

lim
j→+∞

∫ 1

0

φu′j dx =

∫ 1

0

φ z dx for all φ ∈ L1(0, 1).

According to (4.26), this implies that Du = z dx and thus u ∈W 1,∞(0, 1).
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Pick any φ ∈W 1,1(0, 1) and observe that

φ′√
1 + s2ju

′
j
2
→ φ′ in L1(0, 1) as j → +∞. (4.28)

Note that, according to the weak formulation of (4.12), we have that∫ 1

0

u′j
φ′√

1 + s2ju
′
j
2
dx =

∫ 1

0

(
− s−1j k(sjuj) + vj

)
φdx.

Thus, letting j → +∞ in this identity and using the boundedness of (u′j)j in L∞(0, 1), we infer from
(4.27) and (4.28) that ∫ 1

0

u′φ′ dx =

∫ 1

0

(−u+ v)φdx.

In other words, u is the unique solution of{
−u′′ + u = v(x) in (0, 1),

u′(0) = 0, u′(1) = 0,

or, equivalently, u = P1(v). Finally, the compact embedding of W 1,1(0, 1) into Lp(0, 1) allows us to
conclude that, possibly along some subsequence,

uj = s−1j P(sjvj)→ P1(v) in Lp(0, 1) as j → +∞.

Therefore, (4.12), and hence (4.10), is proven and the proof completed.

Hereafter, we suppose that

(h2) h : (0, 1) × R → R is a Carathéodory function, having a Carathéodory partial derivative ∂h
∂s :

(0, 1)× R→ R, such that there exist constants r > 1 and a > 0 and a function b ∈ L
r+1
r−1 (0, 1), for

which h(·, 0) ∈ L r+1
r (0, 1) and∣∣∣∂h
∂s

(x, s)
∣∣∣ ≤ a|s|r−1 + b(x) for a.e. x ∈ (0, 1) and every s ∈ R. (4.29)

Remark 4.1 Integrating (4.29) and using assumption (h2), we see that h satisfies, for a.e. x ∈ (0, 1)
and every s ∈ R,

|h(x, s)| ≤ a
r |s|

r + |b(x)||s|+ |h(x, 0)|.

As the Young inequality implies that

|b(x)||s| ≤ 1
r |s|

r + r−1
r |b(x)|

r
r−1 ,

we conclude that

|h(x, s)| ≤ a+1
r |s|

r + r−1
r |b(x)|

r
r−1 + |h(x, 0)| for a.e. x ∈ (0, 1) and every s ∈ R, (4.30)

where r−1
r |b|

r
r−1 + |h(·, 0)| ∈ L r+1

r (0, 1).



26

Set p = r + 1 and let k be a function satisfying (k1). Let S denote the operator defined by

S(u) = k(u) + h(·, u),

for u ∈ Lp(0, 1). Then, the following result holds (see, e.g., [25, Chapter 2]).

Proposition 4.5. Assume (k1) and (h2). Then, the operator S maps Lp(0, 1) into Lq(0, 1), with q =
p
p−1 , is continuous, and maps bounded sets into bounded sets. Moreover, it is continuously Fréchet
differentiable, with derivative

S ′ : Lp(0, 1)→ L(Lp(0, 1), Lq(0, 1))

defined by

S ′(u)[v] = k′(u)v +
∂h

∂s
(·, u)v for all u, v ∈ Lp(0, 1).

By Propositions 4.3 and 4.5, the operator

M = PS : Lp(0, 1)→ Lp(0, 1)

is well defined. Moreover, by construction, the fixed points of M are precisely the bounded variation
solutions of (2.1). Combining Propositions 4.3 and 4.5 yields the following result.

Proposition 4.6. Assume (k1) and (h2). Then, the operator M : Lp → Lp is completely continuous
and Fréchet differentiable at 0, with derivative M′(0) = P1S ′(0), that is,

M′(0)[v] = P1

(
v +

∂h

∂s
(·, 0)v

)
for all v ∈ Lp(0, 1).

For our purposes in the next section, it should be noted that, assuming

(a1) a ∈ L∞(0, 1) satisfies
∫ 1

0
a dx < 0 and a(x) > 0 a.e. on a set of positive measure,

then the eigenvalue problem {
−u′′ = λa(x)u in (0, 1),

u′(0) = u′(1) = 0,
(4.31)

has a discrete spectrum Σ, with exactly two principal eigenvalues: λ = 0, with principal eigenfunction 1,
and λ = λ0 > 0, with principal eigenfunction ϕ0 � 0, normalized so that ‖ϕ0‖p = 1, for some p ≥ 1. A
proof of these statements is given in [14]) (see also [44, Section 2]).

5 Global bifurcation

In this section we analyze the topological structure of the set of the positive solutions of (1.1). A pair
(λ, u) is said to be a positive (resp. strictly positive) solution of (1.1) if u is a positive (resp. strictly
positive) solution of (1.1) for some λ > 0. Of course, in each of these cases, u can be either a strong, or
a weak, or a bounded variation solution of (1.1); accordingly, (λ, u) is also referred to as a strong, or a
weak, or a bounded variation solution of (1.1).

Throughout this section, we assume that

(f1) f ∈ C1(R) satisfies f(0) = 0, f ′(0) = 1, f(s)s > 0 for s 6= 0, and, for some constants p > 2 and
κ > 0,

|f ′(s)| ≤ κ(|s|p−2 + 1) for all s ∈ R.
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The functional setting

Assume (f1) and set r = p − 1 > 1. Let k be any function satisfying (k1) for such p, and consider the
operator N : R× Lp(0, 1)→ Lp(0, 1) given by

N (λ, u) = P (k(u) + λaf(u))− u, (5.1)

where P is defined in Section 4. Thus, (λ, u) is a bounded variation solution of (1.1) if and only if

N (λ, u) = 0. (5.2)

Setting h = λaf and using the notations introduced in the last part of Section 4, we have

N =M−I = PS − I.

Here and in the sequel I stands for the identity operator in the space under consideration. From Propo-
sitions 4.3, 4.4 and 4.6 it becomes apparent that I +N = M is completely continuous and that it can
be expressed in the form

N (λ, u) = L(λ)u+R(λ, u), (5.3)

where
L(λ) = DuN (λ, 0) = P1

(
(1 + λa)I

)
− I, (5.4)

because k′(0) = f ′(0) = 1. Here, DuN (λ, 0) stands for the Fréchet derivative of N (λ, u), with respect to
u, at u = 0. Of course,

R(λ, ·) = N (λ, ·)− L(λ) (5.5)

is a family of compact operators, continuously depending on λ, such that

lim
‖u‖p→0

‖R(λ, u)‖p
‖u‖p

= 0 uniformly in λ ∈ J, (5.6)

for any compact subinterval J of R. Since L(λ) is a compact perturbation of the identity, it is a Fredholm
operator of index zero.

Hereafter, for any given linear operator T , we denote by N [T ] the null space of T , and by R[T ] the
range of T . The partial differentiation ∂

∂λ , with respect to λ, will be simply indicated by ′. The next
result provides us with some fundamental properties of L(λ) at λ0, the positive principal eigenvalue of
the weighted eigenvalue problem (4.31).

Proposition 5.1. Under assumption (a1), the following properties hold:

(a) N [L(λ0)] = span [ϕ0],

(b) N [L(λ0)]⊕R[L(λ0)] = Lp(0, 1),

(c) L′(λ0) (N [L(λ0)])⊕R[L(λ0)] = Lp(0, 1).

Proof. Part (a) follows from the fact that L(λ0)ϕ = 0 if and only if

P1

(
(1 + λ0a)ϕ

)
= ϕ,

that is, ϕ satisfies (4.31) for λ = λ0. Since L(λ0) is a Fredholm operator of index zero, it follows from
Part (a) that

codimR[L(λ0)] = 1 (5.7)
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Hence, in order to prove Part (b) it suffices to show that ϕ0 /∈ R[L(λ0)]. On the contrary, assume
that ϕ0 ∈ R[L(λ0)]. Then, there is u ∈ Lp(0, 1) such that

u− P1 ((1 + λ0a)u) = ϕ0,

i.e.,
P1 ((1 + λ0a)u) = u− ϕ0.

This equation is equivalent to the problem{
−(u− ϕ0)′′ + (u− ϕ0) = u+ λ0au in (0, 1),
u′(0) = u′(1) = 0.

that is, by rearranging terms, {
−u′′ − λ0au = −ϕ′′0 + ϕ0 in (0, 1),
u′(0) = u′(1) = 0.

Multiplying the differential equation by ϕ0, integrating by parts and taking into account (4.31) with
λ = λ0, we find

0 =

∫ 1

0

(−u′′ − λ0au)ϕ0 dx =

∫ 1

0

(−ϕ′′0 + ϕ0)ϕ0 dx =

∫ 1

0

(
(ϕ′0)2 + ϕ0

2
)
dx > 0.

This contradiction ends the proof of Part (b).
Similarly, by (5.7), in order to prove Part (c), it suffices to show that

L′(λ0)ϕ0 /∈ R[L(λ0)].

Suppose, on the contrary, that L′(λ0)(ϕ0) ∈ R[L(λ0)]. Then, differentiating (5.4) with respect to λ yields

L′(λ0) = P1(aI)

and hence, there exists u ∈ Lp(0, 1) such that

L(λ0)u = P1

(
(1 + λ0a)u

)
− u = λ0L′(λ0)ϕ0 = P1(λ0aϕ0)

and thus
P1(u+ λ0au− λ0aϕ0) = u.

Theefore, u satisfies {
−u′′ − λ0au = −λ0aϕ0 in (0, 1),
u′(0) = u′(1) = 0.

Multiplying the differential equation by ϕ0 and integrating by parts, it follows from (4.31) that

0 =

∫ 1

0

(−u′′ − λ0au)ϕ0 dx = −
∫ 1

0

λ0aϕ
2
0 dx =

∫ 1

0

ϕ′′0ϕ0 = −
∫ 1

0

(ϕ′0)2 dx < 0,

which is impossible. This completes the proof of Part (c).

Similarly, the next result holds.

Proposition 5.2. Under assumption (a1), the following properties hold:
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(a) N [L(0)] = span [1],

(b) N [L(0)]⊕R[L(0)] = Lp(0, 1),

(c) L′(0)
(
N [L(0)]

)
⊕R[L(0)] = Lp(0, 1).

Proof. By (5.4), we see that L(0)ϕ = 0 if and only if P1(ϕ) = ϕ, that is, ϕ satisfies (4.31) for λ = 0.
Hence, ϕ is a constant, thus proving Part (a). Moreover, since L(0) is a Fredholm operator of index zero,
we have that

codimR[L(0)] = 1. (5.8)

In order to prove Part (b), it suffices to show that 1 /∈ R[L(0)]. On the contrary, assume that there
exists u ∈ Lp(0, 1) such that L(0)u = 1. Then, by (5.4), we have P1(u) = u+ 1, i.e.,{

−(u+ 1)′′ + (u+ 1) = u in (0, 1)
u′(0) = u′(1) = 0.

Rearranging terms we get {
−u′′ + 1 = 0 in (0, 1)
u′(0) = u′(1) = 0,

which is impossible, as

0 =

∫ 1

0

u′′ = 1.

This ends the proof of Part (b).
Due to (5.8), to prove Part (c) we just show that

L′(0)1 = P1(a) /∈ R[L(0)].

On the contrary, assume that L(0)u = P1(a) for some u ∈ Lp(0, 1). By (5.4), we get

P1(u)− u = P1(a),

that is, P1(u− a) = u. Hence we obtain{
−u′′ = −a in (0, 1)
u′(0) = u′(1) = 0,

which is impossible, as

0 =

∫ 1

0

u′′ =

∫ 1

0

a < 0.

This concludes the proof.

Preliminary properties of the solution set

Conditions (a1) and (f1) are always assumed in this subsection. We start introducing a few definitions.

Definition 5.1 (Nontrivial solution). We say that (λ, u) ∈ R× Lp(0, 1) is a nontrivial solution of (5.2)
if either u 6= 0, or u = 0 and λ ∈ Σ, where Σ denotes the spectrum of (4.31).
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Then, we set

S = {(λ, u) ∈ R× Lp(0, 1) : (λ, u) is a nontrivial solution of (5.2)}
= {(λ, u) ∈ R×

(
Lp(0, 1) \ {0}

)
: N (λ, u) = 0} ∪ {(λ, 0) : λ ∈ Σ}

and

S> = {(λ, u) ∈ S : λ ≥ 0, u > 0} ∪ {(0, 0), (λ0, 0)}, (5.9)

where 0 and λ0 are the two principal eigenvalues of (4.31). We endow S and S> with the topology of
R×Lp(0, 1). Since, (λ, u) ∈ R×Lp(0, 1) is a solution of equation (5.2) if and only if (λ, u) ∈ R×BV (0, 1)
is a bounded variation solution of problem (1.1), S and S> are also subsets of BV (0, 1) and, in particular,
of L∞(0, 1).

Definition 5.2 (Connected component). By a connected component of S (respectively, of S>), we mean
a closed and connected subset of S (respectively, of S>) that is maximal for the inclusion.

We want to show that the solutions of (5.2) can bifurcate in R × Lp(0, 1) from the line of trivial

solutions R × {0} only at (λ̂, 0), with λ̂ ∈ Σ. Hence, the bifurcation points of the bounded variation
solutions of (1.1) are precisely the bifurcation points of the strong solutions of (1.1). This basically
follows from Corollary 3.5, which shows that the bounded variation solutions that are small in L1(0, 1),
are actually strong solutions. Since Σ is a closed subset of R, this eventually implies that both S and S>

are closed in R× Lp(0, 1).

Lemma 5.3. Assume (a1) and (f1). Then, any sequence
(
(λn, un)

)
n

in S, with un 6= 0 for all n ≥ 1,

for which there exists λ̂ ∈ R such that

lim
n→+∞

(λn, un) = (λ̂, 0) in R× Lp(0, 1),

satisfies

λ̂ ∈ Σ and lim
n→+∞

un
‖un‖p

= ϕ̂ in C1[0, 1],

where ϕ̂ is an eigenfunction of (4.31) associated to λ̂.

Proof. Let us set, for every n ≥ 1,

vn =
un
‖un‖p

.

Since (vn)n is bounded, for any subsequence of (vn)n we can find a further subsequence, still labeled by
n, which converges weakly in Lp(0, 1) to some v ∈ Lp(0, 1). From (5.2)–(5.6) and the compactness of P1,
dividing by ‖un‖p, we find

vn = P1(vn + λnavn) +
R(λn, un)

‖un‖p
→ P1(v + λ̂av) in Lp(0, 1) as n→ +∞

and hence
v = P1(v + λ̂av),

with ‖v‖p = 1. Thus, λ̂ ∈ Σ and v = ϕ̂ is an eigenfunction of (4.31) associated with λ̂.
On the other hand, as un is, for every n ≥ 1, a bounded variation solution of (1.1) such that

λnaf(un)→ 0 in Lp(0, 1) as n→ +∞,
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Corollary 3.5 implies that un is a strong solution of (1.1), for sufficiently large n. Thus, integrating the
differential equation of (1.1) in (0, z) yields

− ψ(u′n(z)) = λn

∫ z

0

af(un) dx→ 0 as n→ +∞, (5.10)

where ψ is the function defined in (2.2). Since

−ψ(u′n(z)) = ‖ψ(u′n)‖∞,

we find, from (5.10) and (2.2), that ‖u′n‖∞ → 0 and hence ‖un‖C1 → 0, as n→ +∞. Let us set

g(s) =

{
f(s)
s if s 6= 0,

f ′(0) if s = 0.

Since f ′(0) = 1, from (2.3) we obtain that

−v′′n = λna
f(un)

‖un‖p
(
1 + (u′n)2

) 3
2 = λnag(un)vn

(
1 + (u′n)2

) 3
2 → λ̂av in Lp(0, 1),

as n → +∞. In particular, (vn)n is bounded in W 2,p(0, 1). As any subsequence of (vn)n contains a
further subsequence converging in C1[0, 1] to v, the proof is completed.

The following conclusions are immediate consequences of Lemma 5.3.

Corollary 5.4. Assume (a1) and (f1). Then, any sequence
(
(λn, un)

)
n

in S, with un 6= 0 for all n ≥ 1,
such that

lim
n→+∞

(λn, un) = (λ0, 0) in R× Lp(0, 1)

satisfies

lim
n→+∞

un
‖un‖p

= ϕ0, or lim
n→+∞

un
‖un‖Lp

= −ϕ0, in C1[0, 1],

where λ0 and ϕ0 are, respectively, the principal positive eigenvalue and the associated positive normalized
eigenfunction of (4.31).

Corollary 5.5. Assume (a1) and (f1). Then, any sequence
(
(λn, un)

)
n

in S, with un 6= 0 for all n ≥ 1,
such that

lim
n→+∞

(λn, un) = (0, 0) in R× Lp(0, 1)

satisfies

lim
n→+∞

un
‖un‖p

= 1, or lim
n→+∞

un
‖un‖Lp

= −1, in C1[0, 1].

Corollary 5.6. Assume (a1) and (f1). Then, any sequence
(
(λn, un)

)
n

in S>, such that un 6= 0, for all
n ≥ 1, and

lim
n→+∞

(λn, un) = (λ̂, 0) in R× Lp(0, 1),

satisfies that either

λ̂ = λ0 and lim
n→+∞

un
‖un‖p

= ϕ0 in C1[0, 1],

or
λ̂ = 0 and lim

n→+∞

un
‖un‖p

= 1 in C1[0, 1].
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Taking into account that Σ is a closed subset of R, from these results we can prove that S and S> are
closed subsets of R× Lp(0, 1).

Proposition 5.7. Assume (a1) and (f1). Then, both S and S> are closed and locally compact subsets of
R× Lp(0, 1).

Proof. By Lemma 5.4 the solutions of (5.2) can bifurcate in R×Lp(0, 1) from the trivial line R×{0} only

at (λ̂, 0), with λ̂ ∈ Σ. Since, by the continuity of N , the set of solutions of (5.2) is closed R × Lp(0, 1),
we conclude that S is closed in R× Lp(0, 1).

Similarly, by Corollary 5.6, the solutions of (5.2), with u > 0, can bifurcate in R× Lp(0, 1) from the
trivial line R×{0} only at (0, 0), or at (λ0, 0). Since the set of the solutions of (5.2), with u ≥ 0, is closed
R× Lp(0, 1), we conclude that S> is closed in R× Lp(0, 1).

The local compactness of S and S> follows from the complete continuity of I +N .

We conclude this subsection with some technical results, which might have their own interest. First,
we establish the following convergence-in-length result.

Lemma 5.8. Assume (a1) and (f1). Then, any sequence ((λn, un))n in S, converging to (λ, u) ∈ S in
R× Lp(0, 1), satisfies

lim
n→+∞

∫ 1

0

√
1 + |Dun|2 =

∫ 1

0

√
1 + |Du|2. (5.11)

Proof. From (2.10) we have that, for every n ≥ 1,∫ 1

0

√
1 + |Dun|2 ≤

∫ 1

0

√
1 + |Dv|2 −

∫ 1

0

λnaf(un)(v − un) dx

for all v ∈ BV (0, 1). Thus, taking v = u and letting n → +∞, as the sequence (f(un))n is bounded in
Lq(0, 1), we infer that

lim sup
n→+∞

∫ 1

0

√
1 + |Dun|2 ≤

∫ 1

0

√
1 + |Du|2 − lim

n→+∞

∫ 1

0

λnaf(un)(u− un) dx

=

∫ 1

0

√
1 + |Du|2.

On the other hand, the lower semicontinuity of the length functional with respect to the L1-convergence
in BV (0, 1) yields

lim inf
n→+∞

∫ 1

0

√
1 + |Dun|2 ≥

∫ 1

0

√
1 + |Du|2.

Therefore, (5.11) holds.

From Lemma 5.8 and [6, Fact 3.1] we infer the next strict convergence result, which is a pivotal tech-
nical tool for proving our main bifurcation theorem. For a discussion of the notion of strict convergence in
BV (0, 1), the reader is sent to [4, p. 125]. Here, we just recall that the topology of the strict convergence
is induced by the metric

d(u, v) = ‖u− v‖L1 +
∣∣∣ ∫ 1

0

|Du| −
∫ 1

0

|Dv|
∣∣∣, for all u, v ∈ BV (0, 1),

and that BV (0, 1), endowed with this metric, is continuously embedded into Lp(0, 1) for all p ∈ [1,∞].
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Corollary 5.9. Assume (a1) and (f1). Then, any sequence ((λn, un))n in S, converging to (λ, u) ∈ S in
R× Lp(0, 1), satisfies

lim
n→+∞

un = u in L1(0, 1) and lim
n→+∞

∫ 1

0

|Dun| =
∫ 1

0

|Du|, (5.12)

i.e., (un)n converges strictly to u in BV (0, 1).

Remark 5.1 Proposition (5.7) and Corollary 5.9 imply, in particular, that both S and S> are closed
and locally compact subsets of R × BV (0, 1), when BV (0, 1) is endowed with the topology of the strict
convergence.

Finally, the following simple fact holds true.

Lemma 5.10. Let (un)n be a sequence in L∞(0, 1) which converges to u ∈ L∞(0, 1) a.e. in [0, 1]. Then,
we have

lim sup
n→+∞

(ess inf un) ≤ ess inf u and lim inf
n→+∞

(ess supun) ≥ ess supu. (5.13)

Proof. We will prove the first inequality. Assume, by contradiction, that there exists k ∈ R such that

lim sup
n→+∞

(ess inf un) > k > ess inf u. (5.14)

Let E be a set of positive measure such that u(x) < k in E and let (unj
)j be a subsequence of (un)n such

that
lim

j→+∞
(ess inf unj ) = lim sup

n→+∞
(ess inf un).

Lastly, let F be a set of measure zero such that, for every x ∈ [0, 1] \ F ,

unj
(x) ≥ ess inf unj

and lim
j→+∞

unj
(x) = u(x).

Pick x ∈ E \ F . By the definition of E, we have u(x) < k. Thus, by the definition of F , we get

lim sup
n→+∞

(ess inf un) = lim
j→+∞

(ess inf unj
) ≤ lim

j→+∞
unj

(x) = u(x) < k,

which contradicts (5.14) and ends the proof of the first estimate of (5.13). As the second one can be
proven similarly, we omit the technical details of its proof.

The bifurcation theorems

In order to state the main global bifurcation result of this paper we assume that, besides (a1), the weight
function a also satisfies

(a2) there is z ∈ (0, 1) such that either a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1), or a(x) < 0
a.e. in (0, z) and a(x) > 0 a.e. in (z, 1).

Thanks to assumption (a2) the one-signed bounded variation solutions of (1.1) enjoy the special
properties listed in the next result.

Proposition 5.11. Assume (f1) and suppose that a ∈ L∞(0, 1) satisfies a(x) > 0 a.e. in (0, z) and
a(x) < 0 a.e. in (z, 1). Let (λ, u) be a bounded variation solution of (1.1) with either u > 0, or u < 0.
Then, one of the following three alternatives holds:
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• λ = 0 and then u is constant;

• λu > 0 and then u� 0 if λ > 0, or u� 0 if λ < 0; moreover, regardless its sign, u is decreasing in
[0, 1], concave in [0, z), convex in (z, 1], and either u ∈ W 2,1(0, 1), or u ∈ W 2,1

loc [0, z) ∩W 1,1(0, z),

u ∈W 2,1
loc (z, 1] ∩W 1,1(z, 1), u′(z−) = −∞ = u′(z+).

• λu < 0 and then u� 0 if λ < 0, or u� 0 if λ > 0; moreover, regardless its sign, u is increasing in
[0, 1], convex in [0, z), concave in (z, 1], and either u ∈ W 2,1(0, 1), or u ∈ W 2,1

loc [0, z) ∩W 1,1(0, z),

u ∈W 2,1
loc (z, 1] ∩W 1,1(z, 1), u′(z−) = +∞ = u′(z+).

In all cases, u satisfies

−

(
u′(x)√

1 + (u′(x))2

)′
= λ a(x)f(u(x)) a.e. in (0, 1) and u′(0) = u′(1) = 0. (5.15)

If, in addition, we assume (a1) and

(f2) f is increasing in R,

then the third alternative cannot occur.

Proof. Let us suppose that λu > 0. Condition (f1) yields λf(u) > 0. Hence, setting h = λ af(u),
Proposition 3.6 and Corollary 3.7 imply that u is concave in [0, z), convex in (z, 1], and, moreover,
either u ∈ W 2,1(0, 1), or u ∈ W 2,1

loc [0, z) ∩W 1,1(0, z), u ∈ W 2,1
loc (z, 1] ∩W 1,1(z, 1), u(z−) ≥ u(z+), and

u′(z−) = −∞ = u′(z+). In any case u satisfies (5.15). In particular, we have that u is decreasing in [0, 1].
Similarly, we show that if λu < 0, then u is increasing in [0, 1], convex in [0, z), and concave in (z, 1]. In

addition, either u ∈W 2,1(0, 1), or u ∈W 2,1
loc [0, z)∩W 1,1(0, z), u ∈W 2,1

loc (z, 1]∩W 1,1(z, 1), u(z−) ≤ u(z+),
u′(z−) = +∞ = u′(z+), and anyhow u satisfies (5.15).

Next, let us suppose that λ > 0 and u > 0. we want to show that u� 0. Assume, by contradiction,
that

u > 0 and ess inf u = 0.

Since u is decreasing in [0, 1] and continuous in [0, z) ∪ (z, 1], we see that

0 = ess inf u = minu = u(1).

As, in addition, u′(1) = 0, the uniqueness of solution for the Cauchy problem−
(

u′√
1 + u′2

)′
= λa(x)f(u)

u(1) = 0, u′(1) = 0,

guaranteed by (f1), entails that either u = 0 in [0, 1], if u is continuous in [0, 1], or u = 0 in (z, 1], if
u is discontinuous at z. The first case cannot occur, because we are assuming that u > 0. Thus, u is
discontinuous at z and vanishes on (z, 1], which is impossible, because u′(z+) = −∞. Therefore, we
conclude that u� 0.

Similarly, we can prove that if λ < 0 and u < 0, then u� 0, or if λ > 0 and u < 0, then u� 0, or if
λ < 0 and u > 0, then u� 0.

Finally, let us further suppose that (a1) and (f2) hold. We want to show that if (λ, u) is a bounded
variation solution of (1.1), with u > 0, then λ ≥ 0. Suppose, by contradiction, that λ < 0. We know that
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u is increasing in [0, 1] and u� 0. From the differential equation in (5.15), using (f1), we get

λa(x) = −

(
u′(x)√

1 + (u′(x))2

)′
1

f(u(x))

= −

(
1

f(u(x))

u′(x)√
1 + (u′(x))2

)′
+

(
1

f(u(x))

)′
u′(x)√

1 + (u′(x))2
a.e. in (0, 1).

Integrating in (0, z) and in (z, 1), respectively, using the condition u′(0) = u′(1) = 0 and u′(z−) =
u′(z+) = +∞, and summing up, we find that

λ

∫ 1

0

a dx = − 1

f(u(z−))
+

1

f(u(z+))
+

∫ 1

0

(
1

f(u(x))

)′
u′(x)√

1 + (u′(x))2
dx

=
f(u(z−))− f(u(z+))

f(u(z−))f(u(z+))
−
∫ 1

0

f ′(u(x))

f2(u(x))

(u′(x))2√
1 + (u′(x))2

dx ≤ 0,

because u(z−) ≤ u(z+) and (f2) holds. Therefore, as λ < 0 and, by (a1),
∫ 1

0
a dx < 0, we get a

contradiction.
Similarly, we show that if (λ, u) is a bounded variation solution of (1.1), with u < 0, then λ ≤ 0.
This allows us to conclude that, for one-signed bounded variation solutions (λ, u) of (1.1), the alter-

native λ = 0 or λu > 0 must holds.

The following symmetric counterpart of Proposition 5.11 holds.

Proposition 5.12. Assume (f1) and suppose that a ∈ L∞(0, 1) satisfies a(x) < 0 a.e. in (0, z) and
a(x) > 0 a.e. in (z, 1). Let (λ, u) be a bounded variation solution of (1.1), with either u > 0, or u < 0.
Then, the following three alternatives hold:

• λ = 0 and then u is constant;

• λu > 0 and then u� 0 if λ > 0, or u� 0 if λ < 0; moreover, regardless its sign, u is increasing in
[0, 1], convex in [0, z), concave in (z, 1], and either u ∈ W 2,1(0, 1), or u ∈ W 2,1

loc [0, z) ∩W 1,1(0, z),

u ∈W 2,1
loc (z, 1] ∩W 1,1(z, 1), and u′(z−) = +∞ = u′(z+);

• λu < 0 and then u� 0 if λ < 0, or u� 0 if λ > 0; moreover, regardless its sign, u is decreasing in
[0, 1], concave in [0, z), convex in (z, 1], and either u ∈ W 2,1(0, 1), or u ∈ W 2,1

loc [0, z) ∩W 1,1(0, z),

u ∈W 2,1
loc (z, 1] ∩W 1,1(z, 1), and u′(z−) = −∞ = u′(z+).

In all cases, u satisfies (5.15). If, in addition, we assume (a1) and (f2), then the third alternative cannot
occur.

Remark 5.2 Proposition 5.11 implies that if (λ, u) ∈ S> and u 6= 0, then u� 0.

Our main global bifurcation result establishes the existence of two unbounded connected components
C>0 and C>λ0

of the set S> of the positive solutions of (1.1), as defined in (5.9), bifurcating from (λ, 0) at
λ = 0 and λ = λ0, respectively.

Theorem 5.13. Assume (f1), (a1) and (a2). Then, there exist two connected components C>0 and C>λ0

of S> such that:

• C>0 and C>λ0
are unbounded in R× Lp(0, 1);
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• C>0 and C>λ0
are closed and connected subsets of BV (0, 1), endowed with the topology of the strict

convergence;

• (0, 0) ∈ C>0 and (λ0, 0) ∈ C>λ0
;

• {(0, r) : r ≥ 0} ⊆ C>0 ;

• if (λ, u) ∈ C>0 ∪ C>λ0
and u 6= 0, then u� 0;

• if (λ, 0) ∈ C>0 ∪ C>λ0
for some λ > 0, then λ = λ0;

• either C>0 ∩ C>λ0
= ∅, or (λ0, 0) ∈ C>0 and (0, 0) ∈ C>λ0

and, in such case, C>0 = C>λ0
;

• there exists a neighborhood U of (0, 0) in R×Lp(0, 1) such that C>0 ∩U consists of strong solutions
of (1.1);

• there exists a neighborhood V of (λ0, 0) in R×Lp(0, 1) such that C>λ0
∩V consists of strong solutions

of (1.1).

Proof. We suppose here that the first alternative holds in (a2), that is, we assume that there is z ∈ (0, 1)
such that a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1). The argument in the other case follows
similar patterns.

The proof is divided into two parts.

Part 1. Bifurcation from (λ0, 0): existence and properties of C>λ0
.

We are going to apply the unilateral global bifurcation theorem [41, Theorem 6.4.3] to the equation (5.2)
in Lp(0, 1), with p > 2. Following [41, Chapter 6] we introduce the closed subspace

Y =
{
y ∈ Lp(0, 1) :

∫ 1

0

yϕ0 dx = 0
}
,

and, for every ε > 0 and η ∈ (0, 1), we consider the open wedges

Q+
ε,η(λ0) =

{
(λ, u) ∈ R× Lp(0, 1) : |λ− λ0| < ε,

∫ 1

0

uϕ0 dx > η‖u‖p
}
,

Q−ε,η(λ0) =
{

(λ, u) ∈ R× Lp(0, 1) : |λ− λ0| < ε,

∫ 1

0

uϕ0 dx < −η‖u‖p
}
.

Thanks to Proposition 5.1, we infer from [41, Lemma 6.4.1] that, for every ε > 0 and η ∈ (0, 1), there
exists a neighborhood V of (λ0, 0) in R× Lp(0, 1) such that

(S ∩ V ) \ {(λ0, 0)} ⊂ Q+
ε,η(λ0) ∪Q−ε,η(λ0).

Due to (a1) and (f1), by possibly reducing the size of V , we can also suppose that

‖λaf(u)‖1 < 1 for all (λ, u) ∈ S ∩ V.

Thus, by Corollary 3.5, S ∩ V consists of strong solutions of (1.1).
Let us fix ε > 0 and η ∈ (0, 1). By Proposition 5.1 and [41, Theorem 5.6.2], all the assumptions

of [41, Theorem 6.4.3] hold true with reference to λ0. Thus, there is a connected component Cλ0 of
S \ (Q−ε,η(λ0) ∩ V ), with (λ0, 0) ∈ Cλ0 , such that one of the following non-excluding options holds:

(A1) Cλ0
is unbounded in R× Lp(0, 1),
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or

(A2) there exists λ̂ ∈ Σ \ {λ0} such that (λ̂, 0) ∈ Cλ0
,

or

(A3) there exists (λ, y) ∈ Cλ0 ∩
(
R× (Y \ {0})

)
, i.e., y 6= 0 and

∫ 1

0
yϕ0 dx = 0.

If Cλ0
∩((−∞, 0)×Lp(0, 1)) 6= ∅, then by connectedness there exists u ∈ Lp(0, 1) such that (0, u) ∈ Cλ0

.
Since u must be constant and Cλ0

is a maximal connected subset of S \ (Q−ε,η(λ0) ∩ V ), Cλ0
contains the

vertical line {(0, r) : r ∈ R} and hence Cλ0
∩ ([0,+∞)× Lp(0, 1)) is unbounded. Accordingly, if we set

C+
λ0

= Cλ0
∩ ([0,+∞)× Lp(0, 1)) ,

we see that, in any case, C+
λ0

is a maximal connected subset of S ∩ ([0,+∞)× Lp(0, 1)), satisfying either
(A1), or (A2), or (A3).

Let us also observe that, by Corollary 5.4, possibly shortening V , we have that u� 0 for all (λ, u) ∈
(C+
λ0
∩ V ) \ {(λ0, 0)}; however, we cannot guarantee that C+

λ0
does not contain any negative, or sign-

changing, solution. The remainder of the proof of this part is devoted to showing that an unbounded
component C>λ0

of C+
λ0

, constituted by positive solutions, actually exists.

Let us define C>λ0
as the component of S> such that (λ0, 0) ∈ C>λ0

. Proposition 5.11 and the subsequent

Remark 5.2 guarantee that u� 0 for all (λ, u) ∈ C>λ0
with u 6= 0. We know that

C>λ0
= C+

λ0
in V, (5.16)

since u� 0 for all (λ, u) ∈ C+
λ0
∩V with u 6= 0. Moreover, by construction, we have C>λ0

⊆ C+
λ0

. Actually,
the following result holds.

Claim. C>λ0
is unbounded in R× Lp(0, 1).

To prove this claim, we distinguish two cases, according to either (0, 0) ∈ C>λ0
, or (0, 0) 6∈ C>λ0

.

In case (0, 0) ∈ C>λ0
, C>λ0

is unbounded in R × Lp(0, 1), because, being a component, it must contain
the whole vertical half-line {(0, r) : r ∈ [0,+∞)}.

In case (0, 0) 6∈ C>λ0
, we will show that

C+
λ0

= C>λ0
. (5.17)

Consequently, as the component C+
λ0

= C>λ0
cannot satisfy alternatives (A2) and (A3) above, C>λ0

must
satisfy (A1), i.e., it is unbounded in R× Lp(0, 1).

In order to prove (5.17), we suppose on the contrary that C>λ0
is a proper subset of C+

λ0
. Being

components, C+
λ0

is connected and C>λ0
is closed; hence, there exist a sequence ((λn, un))n in C+

λ0
\ C>λ0

and a solution (λω, uω) ∈ C>λ0
such that

lim
n→+∞

(λn, un) = (λω, uω) in R× Lp(0, 1).

As (λω, uω) ∈ S>, the definition of S> implies that one of the following three cases occurs: either
(λω, uω) = (0, 0), or (λω, uω) = (λ0, 0), or u > 0.

The first case, (λω, uω) = (0, 0), is immediately ruled out because we are supposing (0, 0) 6∈ C>λ0
.

The second case, (λω, uω) = (λ0, 0), cannot occur, because otherwise

(λn, un) ∈ (C+
λ0
\ C>λ0

) ∩ V, for all large n,

which is impossible by (5.16).
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Thus, uω > 0 must hold, and actually, due to Proposition 5.11, uω � 0. If in a neighborhood
of (λω, uω) the component C+

λ0
consisted of solutions of the form (λ, v) with v > 0, C>λ0

would not
be maximal for the inclusion in S> and hence, could not be a component. Therefore, without loss of
generality, we can assume that, for every n ≥ 1, either un ≤ 0, or un changes sign.

On the other hand, since un → uω in Lp(0, 1), there is a subsequence, relabeled by n, such that
un(x) → uω(x) a.e. in [0, 1]. If there existed a subsequence of ((λn, un))n, still labeled by n, such that
un ≤ 0 for all n, it would necessarily follow that u ≤ 0. Therefore, since u � 0, un must change sign
for all large n. Thus, by Corollary 5.9 and Lemma 5.10, possibly along some subsequence, we find that
(5.12) and (5.13) hold. As u� 0, we also have, by Proposition 5.11, that u is decreasing. Hence, we find

ess supu− ess inf u =

∫ 1

0

|Du| = lim
n→+∞

∫ 1

0

|Dun|

≥ lim inf
n→+∞

(ess supun − ess inf un)

≥ lim inf
n→+∞

(ess supun)− lim sup
n→+∞

(ess inf un)

≥ lim inf
n→+∞

(ess supun) ≥ ess supu,

which is impossible because ess inf u > 0. This contradiction shows that C+
λ0

= C>λ0
. The proof of our

claim is therefore complete.
Therefore, we have proved that, in all circumstances, C>λ0

is a connected component of S>, unbounded

in R × Lp(0, 1), as claimed by Theorem 5.13. Actually, a slightly stronger conclusion holds: C>λ0
is a

connected subset of BV (0, 1), endowed with the topology of the strict convergence. Indeed, otherwise
we could partition C>λ0

into two disjoint subsets, closed in R × BV (0, 1) with respect to the topology
of the strict convergence. Since, by Corollary 5.9, these sets should be closed in R × Lp(0, 1) as well, a
contradiction would follow.

Part 2. Bifurcation from (0, 0): existence and properties of C>0 .
The proof of Part 1 can be adapted, with some simplifications, to construct C>0 . Therefore we will omit
some details of such construction, not to be repetitive. Indeed, in this case we can define C>0 as the
component of S> such that (0, 0) ∈ C>0 . Since S> contains the vertical half-line {(0, r) : r ∈ [0,+∞)},
we see that C>0 is unbounded in R × Lp(0, 1). Next, Proposition 5.11 and Remark 5.2 guarantee that if
(λ, u) ∈ C>0 and u 6= 0, then u � 0. Further, Lemma 5.3 implies that if (λ, 0) ∈ C>0 for some λ > 0,
then λ = λ0, because λ0 is the only positive eigenvalue of (4.31) with positive eigenfunctions. Finally,
Corollary 3.5 shows that there exists a neighborhood U of (0, 0) in R×Lp(0, 1) such that C>0 ∩U consists
of strong solutions. Exactly as in Part 1, we also see that C>λ0

is a connected subset of BV (0, 1), endowed
with the topology of the strict convergence.

Finally, the maximality and the connectedness of both C>0 and C>λ0
yield the following alternative:

either C>0 ∩ C>λ0
= ∅, or (λ0, 0) ∈ C>0 and (0, 0) ∈ C>λ0

and, in such case, C>0 = C>λ0
. This ends the proof of

Theorem 5.13.

We conclude this section, and this paper, remarking that, under an additional regularity condition
on f , some further information can be obtained about the fine structure of the connected components
C>0 and C+

λ0
near their respective bifurcation points from the trivial line. More precisely, the next result

follows easily by combining Corollary 3.5 with Theorem 5.13 and the analysis already done in [44, Section
4]. As they can be easily reproduced, the technical details of its proof are omitted here.

Theorem 5.14. Assume (a1), (f1), and

(f3) there are ` ≥ 2 and η > 0 such that f ∈ C`(−η, η).
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Then, there exists a neighborhood U of (0, 0) in R×Lp(0, 1) such that if (λ, u) ∈ U is a bounded variation
solution of (1.1), then either u = 0, or λ = 0 and u = r for some r ∈ R \ {0}. In particular, there is
r0 > 0 such that C>0 ∩ U consist of {(0, r) : r ∈ [0, r0)}.

Furthermore, there exist a neighborhood V of (λ0, 0) in R × Lp(0, 1), ε > 0 and two maps of class
C`−1,

λ : (−ε, ε)→ R, z : (−ε, ε)→ Z,

where

Z =
{
z ∈ C1[0, 1] : z′(0) = z′(1) = 0,

∫ 1

0

z ϕ0 dx = 0
}

is endowed with the topology of R× C1[0, 1], such that

• λ(0) = λ0 and z(0) = 0;

•
(
λ(s), s(ϕ0 + z(s))

)
is a strong solution of (1.1) for all s ∈ (−ε, ε);

• if (λ, u) ∈ V is a bounded variation solution of (1.1), then either u = 0, or λ = λ(s) and u =
s(ϕ0 + z(s)) for some s ∈ (−ε, ε); in particular, C>λ0

∩ V is precisely the curve
(
λ(s), s(ϕ0 + z(s))

)
with s ∈ [0, ε).

Finally, the bifurcation at λ0 is transcritical if f ′′(0) 6= 0; in particular, the bifurcation of positive solutions
is supercritical if f ′′(0) < 0 and subcritical if f ′′(0) > 0. Suppose, further, that ` ≥ 3 in (f3). Then, a
subcritical pitchfork bifurcation occurs at λ0 if f ′′(0) = 0.

6 Conclusions, conjectures and open questions

In this paper the topological structure of the set of positive solutions of the one-dimensional quasilinear
indefinite Neumann problem (1.1) has been analyzed in the special case when f(0) = 0 and f ′(0) = 1.
For the first time in the literature, a unilateral bifurcation theorem in the space of bounded variation
functions has been established for an elliptic problem driven by the mean curvature operator. According
to it, there exist two global connected components of the set of positive solutions emanating from the
line of the trivial solutions at the two principal eigenvalues of the linearized problem around 0.

As already predicted by the analysis carried out in [44, Section 8], the solutions on these components
are regular as long as they are sufficiently small, while they may develop jump singularities at the nodes
of the weight function, a, as they become sufficiently large. Thus, we have established, in the general
setting of this paper, the existence of components consisting, simultaneously, of regular and singular
solutions, which might be a breakthrough in “global bifurcation theory”as applied to study more general
quasilinear equations and systems. However, a number of important questions still remain open that fall
outside the general scope of this paper, but deserve some further effort to gain insight into the problem
of ascertaining the fine structure of the bounded variation solutions of (1.1). A very relevant one consists
in clarifying the hidden relationships between the regular and the singular solutions of (1.1), with special
attention towards the problem of understanding the precise mechanisms generating the formation of jump
singularities along the λ-paths of regular solutions. We have a strong heuristic evidence that the local
regularity of the weight function a at its nodes should play a significant role to describe the transition
from regular to singular solutions, i.e., in explaining the underlying formation of singularities on the small
regular solutions.

Nevertheless, in some particular, but pivotal, examples we already know that the global bifurcation
diagram of bounded variation solutions looks like shows Figure 1. Namely, when the associated poten-
tial F (s) =

∫ s
0
f(t) dt of f is superlinear at infinity, then the component of positive bounded variation

solutions C>λ0
bifurcating from (λ, 0) at λ = λ0 looses the a priori bounds in C1[0, 1] at some λ∗ > 0,
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where the solutions become singular and fill in a subcontinuum consisting of singular bounded variation
solutions bifurcating from infinity at λ = 0. Instead, when the potential F is sublinear at infinity, then
the component C>λ0

remains separated away from the vertical line R×{0} and looses the a priori bounds

in C1[0, 1] at some λ∗ > 0, where it links another unbounded subcontinuum of singular bounded vari-
ation solutions whose λ-projection contains (λ∗,+∞). We conjecture that, actually, these are the only
admissible global bifurcation diagrams under the assumptions of Theorem 5.13, at least, topologically,
in the sense that the underlying global bifurcation diagrams should be homeomorphic to those shown by
Figure 1, though the number of solutions of (1.1) for a fixed value of λ on the component C>λ0

might be
arbitrarily large according, e.g., to the number of interior nodes and the relative size of the weight a on
each of the nodal subintervals.

For simplicity, here we have restricted ourselves to deal with the simplest situation when the function
a possesses a single interior node z, and thus the positive solutions of (1.1) are monotone. As our proof
of Theorem 5.13 relies, on a pivotal basis, on this special feature, getting a proof of this theorem in
the general case when a has an intricate nodal behavior might be a real challenge plenty of technical
difficulties. Nevertheless, in spite of these technical troubles, we still conjecture the validity of Theorem
5.13, at least, under the assumptions imposed to the weight a in Corollary 3.7. The validity of Theorem
5.13 in more general settings remains therefore an open problem here.

A further challenge, of a rather different vein, consists in describing the precise asymptotic profile of
the bounded variation solutions of (1.1) as λ→ 0, or λ→ +∞, according to the behavior of the associated
potential F at infinity. In some particular cases of interest, we already know that the derivatives of the
solutions of (1.1) approximate, asymptotically, the profile of the solution of the problem−

(
v√

1 + v2

)′
= b(x) in (0, 1),

v(0) = 0, v(1) = 0,

where

b(x) =


a(x)∫ z

0
a(t) dt

in (0, z),

−a(x)∫ 1

z
a(t) dt

in (z, 1),

and z is the unique interior node of the function a. This feature should be relevant to establish in various
cases the non-existence of positive regular solutions of (1.1); however this analysis, being outside the
scope of this paper, is postponed here and will be carried out elsewhere.
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