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Abstract

We report two experiments on the role of mid-level processes in image segmentation and

completion. In the primed matching task of Experiment 1, a cue!prime sequence was

presented before the imperative stimulus consisting of target shapes with positive versus

negative contour curvature polarity and one versus two axes of mirror symmetry. Priming

shapes were included in two composite occlusion displays with the same T-junction information

and different geometric features supporting a distinct balance between completion and mosaic

solutions. A cue, either congruent or incongruent with targets, preceded the presentation of the

composite priming display. Matching performance was affected by primes in the expected

direction, while cue congruency participated only in a marginally significant three-way

interaction, and prime duration had no effect. In Experiment 2, the cue!prime sequence was

replaced by a fixation cross to control for the priming effect obtained in Experiment 1. The study

confirmed that contour connectability and curvature polarity are effective structural factors

capable of competing with symmetry in mid-level image segmentation and completion processes.
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Introduction

Amodal completion refers to the phenomenal presence of object parts lacking the property
that characterizes the relevant sensory modality (e.g., color for vision) as well as to processes
that allegedly support their formation (Gerbino, 2017). While the importance of amodal
phenomena for perceptual science is broadly recognized, underlying processes are more
controversial (van Lier & Gerbino, 2015). In vision, perceptual organization goes beyond
image segmentation—that is, the unification-segregation of input elements—to include at
least the extrapolation of such elements and often their completion in well-formed wholes.
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In this study, we used a primed matching paradigm to understand how image segmentation
and completion are impacted by three mid-level factors: connectability of T-stems, contour
curvature polarity (CCP), and mirror symmetry.

Following Fantoni and Gerbino (2013), we use the generic term ‘‘connectability’’ to refer
to simplicity of the smooth connection of two contour segments, avoiding specific relatability
assumptions (Kellman, 2003; Kellman & Shipley, 1991). We just assume that connectability
of symmetric segments monotonically decreases as they depart from collinearity (Fulvio,
Singh, & Maloney, 2014).

CCP specifies the local concavity-convexity of the border between adjacent regions. Its role
in two-dimensional (2D) shape perception has been reviewed by Bertamini and Wagemans
(2013). Strong evidence is available about CCP as a factor in figure/ground articulation
(Kanizsa & Gerbino, 1976) and contour interpolation (Fantoni, Bertamini, & Gerbino,
2005). In the present study, CCP covaried with connectability. This is common in natural
situations, since occlusion of a rectilinear contour typically generates a locally concave
region and a pair of strongly connectable T-stems, while occlusion of a discontinuous
contour typically generates a locally convex region and a pair of weakly connectable T-stems.

Mirror symmetry is a prominent factor in 2D shape processing (Bertamini, Silvanto,
Norcia, Makin, & Wagemans, 2018). Here, we studied symmetry with respect to one
versus two axes and contrasted vertical or horizontal versus 45� oblique orientations, given
the well-known dependence of perceived symmetry on orientation (Mach, 1885/1897). In our
displays, the tendency toward maximum symmetry favored the mosaic solution, while in
previous research it favored the completion solution (van Lier, Leeuwenberg, & van der
Helm, 1995).

Amodal Completion: Phenomena and Processes

Michotte and Burke (1951/1962) introduced the phenomenological notion of donneé amodal
(amodal datum) to characterize the ‘‘invisible’’ parts that contribute to the experience of
object form despite the absence of local color, taken as the modal property of vision.1 They
discussed two instances of amodal presence: (a) the tunnel effect (i.e., the experience of fluid
motion filling in the spatiotemporal interval between disappearance and reappearance of a
translating object; Burke, 1952/1962); (b) the experience of solid volume of an opaque three-
dimensional object (opposed to the content of the optic array). Both instances involve
occlusion: the first by a static screen that covers the central portion of a moving object
trajectory and the second by the front surface that makes the rest of the object optically
unaccessible. Michotte, Thinès, and Crabbé (1964) extended amodal presence to conditions
without occlusion (à découvert), exemplified by two phenomena: (a) the curious feeling that
the three-dimensional space bounded by a rotating cubic wireframe, though perfectly
transparent and immaterial, is captured by the cube and moves with it and (b) the illusory
mantle of stereokinetic or stereoscopic lampshades induced by eccentric circular outlines
(either rotating or binocularly disparate).

According to the Michotte’s school (Wagemans, van Lier, & Scholl, 2006), most instances
of visual occlusion, in which an opaque screen interposed between the distal stimulus and the
observer leads to the proximal stimulus fragmentation, correspond to perceived objects
composed of modal stimulus counterparts and amodal complements. Modal complements
not based on local stimulation occur too, but only in the limiting conditions of the
Rosenbach (1902) phenomenon (Glynn, 1954/1962), now called ‘‘visual phantoms’’
(Kitaoka, Gyoba, Kawabata, & Sakurai, 2001; Kitaoka, Gyoba, Sakurai, & Kawabata,
2001; Maguire & Brown, 1987; Tynan & Sekuler, 1976). However, occlusion is just the
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most common ecological event associated with amodal presence, which can also occur
without occlusion. In other words, stimulus occlusion is neither necessary nor sufficient for
amodal perception, though they are strongly correlated.

According to its proponents (Burke, 1952/1962; Glynn, 1954/1962; Kanizsa, 1954; Kanizsa,
1955/1987; Michotte & Burke, 1951/1962; Michotte et al., 1964), amodal presence is genuinely
perceptual (rather thanhypothesized or imagined) anddepends on the same ‘‘complex systemof
excitations’’ (Burke, 1952/1962) that determinesmodal stimulus counterparts.Metaphorically,
amodal data are a ‘‘bridge’’ (Burke, 1952/1962; Michotte & Burke, 1951/1962), that is, a
construction that unifies otherwise disconnected segments.

Two amodal phenomena are particularly interesting: the Michotte triangle (because of the
conflict with the distal stimulus) and the Bregman–Kanizsa effect (because of the conflict with
the proximal stimulus).

Michotte triangle. In Figure 1, based on Michotte et al. (1964), occlusion of the central region
makes each outline pattern appear as a regular isosceles triangle, against the hypothesis that
sensory gaps are overcome by observer’s knowledge based upon the immediate memory of
the distal object. A real-life large-sized case of amodal completion in contrast with knowledge
of the distal stimulus has been recently studied by Ekroll, Mertens, and Wagemans (2018).

Bregman–Kanizsa effect. Following Nakayama, Shimojo, and Silverman (1989), this is a
common label for the identification gain following amodal completion, compared with a
condition in which input fragments are perceived as such. For instance, Kanizsa (1979,
Figure 1.1a vs. 1.2b) compared a collection of fragments barely recognizable as pieces of a
cubic structure to the same pattern with added T-junctions in which a partially occluded
cubic structure becomes salient. Bregman (1981) discussed a pair of pictures where the same
fragments are either perceived as such or as the visible parts of easily recognizable amodally
completed letters. Figure 2 shows an extreme case of the Bregman–Kanizsa effect in
which—like in Kanizsa and Gerbino (1982, p. 177)—amodal completion creates different
objects. The same gray squares are present in a, b, and c, but are perceived as such only in a,
where they are bounded by closed contours meeting at L-junctions, while they are unified in
totally different ways in b and c, depending on the arrangement of T-junctions and
independently of observer’s knowledge of overlearned letters.

The Bregman–Kanizsa effect has been measured using different paradigms (Chen, Liu,
Chen, & Fang, 2009; Gerbino, 1981; Johnson & Olshausen, 2005; Murray, Sekuler, &

Figure 1. Cover the central part of any pattern (or of all patterns simultaneously). Each will look as a

complete isosceles triangle. The left pattern was published by Michotte et al. (1964, Figure 7, p. 19).
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Bennett, 2001). Its strength elucidates why ‘‘recognition from partial information,’’ as used in
most computational literature (Bajcsy & Tidhar, 1977; Tang & Kreiman, 2011, 2017), is an
inadequate characterization of what happens in perceived occlusion, which benefits from
completion processes not activated in the absence of occlusion information.

Kellman (2000; Carrigan, Palmer, & Kellman, 2016) discussed recognition from partial
information as a convenient label for global processes involved in the identification of
partially occluded shapes, distinguishable from contour interpolation constrained only by
relatability (Kellman, 2003; Kellman & Shipley, 1991), a formalization of the Gestalt
principle of good continuation (Wertheimer, 1923). In Experiment 1 by Carrigan et al.
(2016), observers localized an amodal contour more precisely when the suggested
completion of a partially occluded shape corresponded to a local interpolation than to a
globally symmetric supplementation. However, in the absence of a control condition without
occluder, the reported difference in precision might be attributed to a general ability to
estimate position from spatial cues such as alignment or equidistance from reference
points and directions, rather than to amodal completion behind occluders.

Carrigan et al. (2016) interpreted results from their three experiments as evidence that local
and global processes involved in the perception of partially occluded 2D shapes are
qualitatively different: Only local interpolation would support precise spatial
discriminations, while completion based on global processes would be vague and
undetermined. Unfortunately, their process dichotomy collapses symmetry and familiarity
into a single category (the so-called high-level global processes), while they are heterogeneous
factors. The first depends on stimulus-based determinants of local interpolation (contour
orientations and positions), whereas the second depends on observer’s specific experience.

(a) 

(b) 

(c) 

Figure 2. Different objects can emerge in the Bregman–Kanizsa effect. The same gray fragments are

available in a, b, and c. But a is perceived as a constellation of squares consistent with input regions, while in b

and c (thanks to T-junctions) the gray fragments become the modal parts of alternative wholes, supporting

spontaneous letter recognition.
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Furthermore, the degree of determinateness of amodal parts—already discussed by Michotte
et al. (1964, p. 18)—may be orthogonal to the type of completion process.

Different dichotomies have been utilized in the amodal completion literature. For instance,
phenomenological demonstrations (Kanizsa, 1979, 1985) focused mainly on situations in
which perceived shapes are consistent with good continuation of local contours, against
expectations based on global regularity. Fantoni and Gerbino (2003) modeled contour
interpolation of T-stems as a unification process governed by two basic factors, good
continuation and minimal path, with their relative strength modulated by more complex
structural factors such as symmetry and CCP. Yun, Hazenberg, and van Lier (2018)
contrasted stimulus-based structural factors of different complexity with memory-based
knowledge. Further studies based on a dichotomic approach are reviewed in the next
section on objective paradigms.

Another dichotomy refers to the distinction between amodal continuation and amodal
completion (Anderson, 2007; Gillam, 2003; Minguzzi, 1987). Amodal completion would lie at
the interface between perception and cognition in the sense of including both perceptual
(amodal continuation) and cognitive (recognition from partial information) components,
which in most daily occurrences converge (Kanizsa, 1985). Few (often artefactual) cases of
divergence do exist in which the perceptual component prevails, leaving observers surprised
by the content of their own phenomenal experience. A paradigmatic effect, in this respect, is
the ‘‘horse illusion’’ (Kanizsa, 1970, 1979) in which the front and back parts of two horses are
unified into an unlikely long horse, against veridicality. The effect works also for scooters
(Kanizsa & Gerbino, 1982) and fruits (Hazenberg & van Lier, 2016).

In principle, the amodal continuation of T-stems could explain both the Michotte triangle
and the Bregman–Kanizsa effect, even when the perceived shape of the occluded portion is
quite undeterminate. However, other structural factors can affect amodal continuation and
therefore amodal completion. They are more complex than good continuation of T-stems
(the most elementary factor at the contour level), but qualitatively different from global
regularity and familiarity, which refer to visual order and memory-based expectations,
respectively.

Objective Paradigms

Functional effects of amodal completion have been evaluated using objective paradigms such
as shape matching, shape discrimination, primed matching, visual search, and others (see
reviews by Sekuler & Murray, 2001; Yun et al., 2018). Such studies contributed operational
definitions of amodal completion, by measuring its facilitatory or inhibitory effects on the
observers’ performance. In the following review, we selected the literature directly relevant to
this study, on the basis of two criteria: the paradigm (unprimed/primed shape matching/
discrimination) and the focus on structural factors of form organization.2

Gerbino (1981) utilized a partial report procedure and found that complete block letters
were better discriminated from truncated than retinally identical partially occluded letters
(despite the lack of partial-over-whole-report superiority, the hallmark of iconic memory). In
his study, amodal completion increased the perceptual similarity between partially occluded
and intact letters, inhibiting discrimination with respect to a control condition in which the
same letter fragments were available in the absence of occlusion information. Gerbino and
Salmaso (1987) used a category matching task and found that complete targets were matched
faster to partially occluded than (retinally identical) truncated comparison shapes; by
increasing the perceptual similarity between partially occluded and intact polygons,
amodal completion facilitated the category match. Their results were corroborated by
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Shore and Enns (1997), whose parametric study revealed an important monotonic effect of
the proportion of occluded area: Amodally completed shapes were equivalent to complete
shapes only when such proportion was small, while the time required to match or identify
shapes increased as a direct function of the amount of occlusion. Shore and Enns (1997)
measured both facilitatory and inhibitory effects of amodal completion: On the one hand, the
complete-completed match was facilitated with respect to the complete-truncated match, as
in other objective implementations of the Bregman–Kanizsa effect (Bruno & Gerbino, 1987;
Gerbino, 1989; Gerbino & Salmaso, 1987); on the other hand, when instructions required
observers to adopt a proximal mode of perception, the classification of partially occluded
shapes as incomplete suffered from a ‘‘perceptual intrusion’’ due to response inhibition by
amodal completion (a Stroop-like effect dependent on the obligatory nature of form
integration).

Following Palmer and Sekuler (1988; Sekuler & Palmer, 1992), several studies utilized a
primed matching paradigm including a variable-duration prime (complete, amodally
completed, or truncated) presented before complete or truncated target pairs, often with
the goal of supporting a two-stage model in which the completion solution becomes
dominant only after an early mosaic stage. This model has also been tested in a shape
discrimination task (Murray et al., 2001). Apart from issues related to the time course of
amodal completion, the primed matching paradigm has been used to evaluate the relative
strength of local versus global factors.

Sekuler, Palmer, and Flynn (1994) provided evidence that global symmetry can prevail
over local good continuation: After discounting a prime-independent symmetry superiority,
they found that the effect of a partially occluded prime was more similar to the one by a high-
symmetry prime (inconsistent with good continuation) than by a low-symmetry prime
(consistent with good continuation).

Van Lier et al. (1995) studied priming as the result of a competition between local
completion, global completion, and mosaic solutions. Differently from Sekuler et al.
(1994), who considered global completions involving convex protrusions, they considered
global completions involving concavities, while local completions were convex in both
studies. Both Sekuler et al. (1994) and van Lier et al. (1995) labeled as global the solution
with maximum symmetry, while the local solution was, typically, not asymmetric but less
symmetric (involving one axis of symmetry instead of two or three). According to van Lier
et al. (1995), occlusion configurations can evoke both local and global completions,
consistently with similar conclusions by other authors about the parallel context-dependent
instantiation of mosaic and completion solutions (Bruno, Bertamini, & Domini, 1997; Bruno
& Gerbino, 1987; Gerbino, 1989; Gerbino & Salmaso, 1987; Rauschenberger, Peterson,
Mosca, & Bruno, 2004).

Plomp and van Leeuwen (2006) introduced a complex two-prime paradigm, to evaluate
the possible effect of a single prime on a composite prime and, consequently, on target
matching. They obtained evidence that single primes can facilitate local completions,
global completions, as well as mosaic interpretations of the composite prime, but only
when the latter was presented briefly (50 vs. 500ms).

Emmanouil and Ro (2014) focused on the effect of an unconsciously completed prime on
target discrimination. The prime was presented so briefly that its identification—in a control
session—was at chance. In their first experiment, observers should discriminate between a full
disk and a pacman, after one of four possible primes: disk, pacman, occluded disk, and
neutral (misaligned disk portions equivalent to the visible portions of the occluded disk).
The pacman prime was combined with an outline rectangle in a complex way: On one side, a
pair of T-junctions supported the amodal continuation of the outline rectangle behind the
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protruding convex portion of the pacman; on the other side, pacman and rectangle contours
joined at locally ambiguous fork junctions, while the local concavity of the pacman
supported its amodal continuation behind the adjacent rectangle portion. Not surprisingly,
the pacman prime did not produce the expected facilitation on response speed for pacman
targets, with respect to the neutral prime. However, the overall response speed pattern was
consistent with priming by unconsciously completed shapes.

Experiment 1

Consistently with the basic assumption that amodally completed primes can facilitate the
processing of similar shapes, the main goal of Experiment 1 was to test whether composite
priming (P) displays that favor either completion or mosaic solutions can affect the
simultaneous matching of 2D targets (T) corresponding to such solutions.

Figure 3 shows the two P displays and the four T shapes (two for each P display) used in
Experiment 1. The composite P displays were selected to keep under control several structural
factors known to affect the contour interpolation path and the strength of amodal completion
of 2D shapes. In both cases, the prime (i.e., the stimulus expected to affect target matching)
was the gray region on the left of the black region intended as an occluding surface.
Hourglass and hexagon regions were derived from a unit square by means of the
truncation of two right-angle isosceles triangles (hypotenuse¼ ax; with a¼ [

ffiffiffi

2
p

/ (1 +
ffiffiffi

2
p

)], and x¼ side of the unit square). Consequently, all hexagon sides had an equal
length, the two primes had an equal area, and the hypothetical completion regions
bounded by straight T-stem extrapolations had an equal area too. In both P displays, the
good-continuation completion would correspond to a nominal surface increment of about
9%. The amount of support ratio at the contour level—that is, the ratio of input length to
total length (always according to good continuation only)—differed for hourglass-to-pacman
and hexagon-to-pentagon cases (0.41 vs. 0.59, respectively). This difference was intended to

pacman hourglass HC-concave 

LC-convex pentagon hexagon 

composite 
P display 

completion T 
(S1) 

mosaic T 
(S2) 

Figure 3. Composite priming (P) displays and targets (T) in Experiment 1. Gray regions of P displays

differed with respect to contour connectability and CCP. Amodal completion was equally supported by

T-junctions and (a) strengthened by high connectability (HC) and mosaic concavity in the hourglassþ diamond

display or (b) weakened by low connectability (LC) and mosaic convexity in the hexagonþ rectangle display.

Targets were labeled ‘‘completion T’’ and ‘‘mosaic T’’ with reference to competing solutions of the

segmentation of the respective P display. Completion Ts had one symmetry axis (S1), while mosaic Ts had

two (S2).
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compensate, at least partially, the weaker tendency to completion in the hexagonþ rectangle
display expected on the basis of the main factors involved in the segmentation of the two
composite P displays, which were the following:

(i) Local T-junction information: Both composite P displays contained two 45� T-junctions
that, taken separately, conveyed the same information about the amodal continuation of
a gray surface behind a black occluder, on top of a white background. Hence, with
respect to local T-junction information, the two composite P displays were equivalent.

(ii) Connectability of T-stems: This is a higher level property compared with the mere
presence and number of independent T-junctions. In the hourglassþ diamond display,
the interpolation was collinear, leading to a high connectability (HC) condition; while in
the hexagonþ rectangle display, extrapolations of the two T-stems met at a 90� angle,
leading to a low connectability (LC) condition, perceptually solved as an amodal
rounded angle (Fantoni & Gerbino, 2003; Gerbino, 2017; Gerbino & Fantoni, 2006).
Hence, with respect to connectability of T-stems, the amodal continuation of gray-on-
white borders behind the black occluder was stronger in the hourglassþ diamond
display than in the hexagonþ rectangle display.

(iii) CCP: The priming region was concave in the hourglassþ diamond display and convex in
the hexagonþ rectangle display. Hence, with respect to CCP, concavity avoidance (i.e.,
the tendency to maximize convexity and eliminate concavities) supported the completion
solution in the hourglassþdiamond display, while it was neutral in the
hexagonþ rectangle display, where completion and mosaic solutions were both convex.

(iv) Mirror symmetry: In both cases, amodal continuation behind the black occluder
entailed the loss of mirror symmetry with respect to the vertical axis and only allowed
for the maintenance of symmetry relative to the horizontal axis. Hence, with respect to
mirror symmetry, the two primes were equivalent.

To summarize, the composite P displays differed with respect to connectability and CCP,
while they were equivalent with respect to local T-junction information and mirror symmetry.
In one case, amodal completion of the hourglass into a pacman behind an occluding diamond
(by elimination of one of the two local gulfs) entailed a loss of regularity but a gain in
convexity and contour smoothness; in the other case, amodal completion of a hexagon
into a pentagon behind a rectangle entailed a loss of regularity but no gain in convexity
and only a partial gain in contour smoothness (one discontinuity in the pentagonal contour
instead of two in the hexagonal contour). Hence, the relative prevalence of the completion
over mosaic solution was expected to be higher in the HC-concave display than in the
LC-convex display.

Participants were required to perform a same-different discrimination of 2D target shapes
corresponding to completion or mosaic solutions of composite P displays. Completion targets
(pacman and pentagon) were polygons with only one axis of mirror symmetry (S1), while
mosaic targets (hourglass and hexagon) were polygons with two axes of mirror symmetry
(S2), as indicated in the upper row of Figure 3. Like in Sekuler et al. (1994), though with
other shapes, target symmetry covaried with the segmentation solution: In both studies, the
low symmetry solution corresponded to completion according to good continuation, whereas
the high symmetry solution corresponded to a completion with a convex protrusion in Sekuler
et al. (1994) and to the mosaic solution in the present experiment.

Figure 4 shows the whole set of composite P displays and T-pairs used in positive and
negative trials of our simultaneous matching task. The HC-concave hourglassþ diamond P
display was followed by one out of four fully balanced T-pairs: two pacmen or two
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hourglasses in positive trials (correct response same) and one pacman and one hourglass in
negative trials (correct response different). The LC-convex hexagonþ rectangle P display was
followed by one out of four fully balanced T pairs: two pentagons or two hexagons in positive
trials and one pacman and one hourglass in negative trials.

Composite P displays were always presented in the orientation shown in the upper row of
Figure 4, while the two targets were presented either unrotated (middle row) or rotated 45�

counterclockwise (bottom row).
In general, we expected to find a symmetry superiority for matching hourglasses over

pacmen and hexagons over pentagons (i.e., a relative difference between speed and
accuracy of same-different responses to S2- and S1-targets), as a simple consequence of
higher shape regularity, independent of priming (Bertamini et al., 2018; Garner, 1974;
Sekuler et al., 1994).

Given the experimental conditions, priming was conceptualized as a prime-dependent
modulation of symmetry superiority. Since the HC-concave P display (because of the
higher relative prevalence of completion over mosaic) should act against symmetry and
facilitate pacmen more than hourglasses, while the LC-convex P display (because of the
lower relative prevalence of completion over mosaic) should act consistently with
symmetry and facilitate hexagons more than pentagons; in the unrotated condition, the
amount of symmetry superiority was expected to be smaller for hourglasses over pacmen
than hexagons over pentagons.

In the rotated condition, if priming does not generalize to target shapes presented in a
conflicting orientation because of a loss of prime-target perceived similarity, the difference
between symmetry superiorities in the two priming conditions (HC-concave vs. LC-convex
displays) should be reduced or absent. Collinearity with the cardinal axes of visual space
made different target features salient in unrotated versus rotated orientations: for example,

composite 
priming display 

positive 

negative

unrotated

positive

negative 

rotated

Figure 4. Composite P displays and T-pairs used in positive and negative trials. The 8 T-pairs presented after

the hourglassþ diamond display are shown on the left; the 8 T-pairs presented after the hexagonþ rectangle

display on the right. Note that each subset of target pairs (concave on the left vs. convex on the right) was

preceded by it own prime (HC-concave vs. LC-convex, respectively).
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the long sides of the pentagon, which were oblique in the unrotated-target condition, became
vertical or horizontal in the rotated-target condition.

The design of Experiment 1 included two further manipulations, aimed at evaluating
whether the shape of a preprime cue and prime duration could possibly affect prime
segmentation, as revealed by the amount of symmetry superiority in the simultaneous
matching task. As found by Plomp and van Leeuwen (2006), a single shape, briefly
presented before the composite P display, might cue its segmentation. For each P display,
the completion cue was identical to the completion T (S1) and the mosaic cue to the mosaic T
(S2). The second effect was related to the duration of the P display. Following Plomp and van
Leeuwen (2006), we selected two durations (50 and 500ms) to replicate the possible
prevalence of mosaic over completion solutions at short exposures.

Methods

Participants and ethical approval. Twenty-five undergraduates (17 females; mean age 23.2 years)
voluntarily took part in the study. All had normal or corrected-to-normal vision. Methods and
procedures were approved by the Ethical Committee of the University of Trieste (n. 84c/2017),
and verbal informed consent at recruitment was obtained by the experimenter (the first author).

We decided to rely on a sample of 25 participants following the results of a sensitivity
analysis (G*Power 3.1; Faul, Erdfelder, Lang, & Buchner, 2007) focused on an interaction in
a repeated measure two-way design representative of the expected priming effect: that is, a
difference between symmetry superiorities for concave versus convex shapes larger in the
unrotated than rotated condition. Given a 0.5 correlation among repeated measures, a err
prob¼ 0.05, power (1�b err prob)¼ 0.8, and N¼ 25, the minimum detectable effect size
corresponded to Cohen’s f¼ 0.292 (�2p¼ 0.078).

Apparatus, stimuli, and procedure. An Intel� CoreTM i7 laptop running SuperLab 4.0 (www.
cedrus.com) was used for presenting stimuli on a 15.6-in. color screen monitor and collecting
responses from the computer keyboard. Participants were seated approximately 57 cm from
the computer screen in a dimly illuminated room. Cue, prime, and target regions appeared
mid gray (28 cd/m2), while diamond and rectangle of composite P displays appeared black
(5 cd/m2) and the background white (85 cd/m2). A trial is exemplified in Figure 5. The side of
the unit square from which cue, prime, and target regions were cut out measured 70mm on
screen. Target pairs subtended a maximum extent of 20� horizontally and 10� vertically.

After a practice block (16 trials), participants completed two experimental blocks
(128 trials each), separated by short breaks. Instructions required to press quickly and
accurately one of two keys to signal whether the two targets were same or different.
Feedback regarding accuracy was given during the practice block but not during
experimental blocks. Half participants were asked to use their dominant hand for the same
key and the other half for the different key.

The whole experimental set included 256 trials, presented in a fully randomized sequence
different for every participant: 128 positive trials—4 repetitions�Rotation (unrotated,
rotated)�CCP (concave, convex)�Symmetry (1, 2)�Cue (congruent, incongruent)�
Exposure (50ms, 500ms)—and 128 negative trials—8 repetitions�Rotation�CCP�
Cue�Exposure. To familiarize participants with stimuli and task, the practice block
included eight positive and eight negative trials, randomly extracted from the respective
subsets, anew for each participant. A session lasted about 30min. The experimenter (AP)
delivered instructions and sat in the experimental room during the whole session, monitoring
task execution without looking at the screen where stimuli were displayed.
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Data analysis. Given the small number of repetitions in each cell of the five-factor within-
subject design underlying the set of positive trials, data were analyzed in two steps.

(1) First, we ran an LME analysis of speed of correct responses in positive trials (Hits) on the
whole within-subject design, with five dichotomous factors—Rotation (unrotated,
rotated), CCP (concave, convex), Symmetry (S1, S2), Cue (congruent, incongruent),
Exposure (50ms, 500ms)—and Subject as a random factor. A total of 2,925 Hit speed
values entered the LME analysis, out of the total of 3,200 positive trials resulting from
the product of 25 Participants� 128 Positive Trials. Response speed was computed as the
inverse of response time (i.e., 1/RT; with RT in seconds). As discussed by Whelan (2008),
such a transformation tends to normalize the asymmetric distribution of raw RTs. In our
paradigm, response time included observation time, given that target presentation was
terminated by response keypress. We did not compute d0 values for the five-factor design,
given that p(Hit) values would be based on a too small number of trials (max¼ 4) and for
two participants there were no correct responses in some cells of the five-factor design.

(2) The outcome of the first step of data analysis allowed us to disregard two factors (Cue
and Exposure) and focus on the main goal of the experiment; that is, on the effect of the
composite P display on simultaneous matching. This was done by computing individual
values for speed, d0 and k¼ d0/ˇRT (with RT in s) for every participant in each condition
of the Rotation�CCP�Symmetry design. For the rationale behind this synthetic index,
see Fantoni, Gerbino, and Kellman (2008). Individual speed estimates were computed by
taking the trimean (Tukey, 1977) of 1/RT values for hits, out of 16 positive trials per
condition. Individual d0 values were obtained from p(Hit) out of 16 positive trials and
p(FA) out of 32 negative trials, applying the conventional 1/(2 n) correction to extreme
proportions. To highlight the expected priming effect, we ran a contrast analysis of
symmetry superiority using the relative difference (per cent Michelson contrast) of
each performance index as a score: M¼ 100� [(S2�S1) / (S2þ S1)]. To test the
priming effect, we ran a planned contrast between (convex–concave) symmetry
superiority differences in unrotated (Du) versus rotated (Dr) conditions:

Du ¼ Mconvex �Mconcave½ �unrotated;

Dr ¼ Mconvex �Mconcave½ �rotated:

composite  
P display 

cue 

T pair 

until response 

1000 ms

50 ms

50 ms

625 ms

2000 ms

Figure 5. Example of a positive trial in Experiment 1, with rotated convex S1-targets presented after the

LC-convex P display preceded by a completion cue (hence, geometrically congruent with both targets).

Timing was the same in all trials, with the only exception of composite P display duration (either 50 or

500 ms).
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Differences between means and against zero were tested using a two-tailed Student’s t test.
To evaluate all possible effects in the three-way design, we also ran separate three-way
analyses of variance (ANOVAs) on speed, d0 and k data. For simplicity, only k-based
results are reported in the main text, while speed- and d0-based results are reported in the
Appendix.

Results

LME analysis of response speed in the five-factor design. We used R packages to perform an LME
analysis with Rotation, CCP, Symmetry, Cue, and Exposure as fixed effects and Subjects as
random factor using the Satterthwaite approximation for degrees of freedom. The outcome
was clear-cut. Neither the main effects of Cue and Exposure nor interactions involving these
two factors were significant,3 with only the Rotation�CCP�Cue interaction just above
significance, F(1, 2869.5)¼ 3.84, p¼ .0501, �2p¼ 0.001. As expected, response speed was
strongly influenced by target Symmetry, independent of other factors, F(1, 2872.6)¼
212.27, p< .001, �2p¼ 0.069. The main effect of CCP and all two-way interactions
involving Rotation, CCP, and Symmetry factors were significant, while the main effect of
Rotation was above significance.4 More importantly—being consistent with the expected
priming effect—also the Rotation�CCP� Symmetry interaction was significant, F(1,
2869.7)¼ 4.28, p< .05, �2p¼ 0.001.

The left graph in Figure 6 shows mean response speeds in the reduced
Rotation�CCP� Symmetry design. The two patterns of four means in unrotated versus
rotated conditions differed in the expected direction. Response speed in the rotated baseline
condition was affected only by Symmetry, while in the unrotated condition, the symmetry
superiority for concave targets (hourglass over pacman) was smaller than the one for convex
targets (hexagon over pentagon).

To understand the meaning of the marginally significant Rotation�CCP�Cue
interaction (right graph of Figure 6), we tested the robustness of the strong Rotation�
CCP interaction across the two levels of Cue congruency. We ran two separate analyses
of the four-way design with Rotation, CCP, Symmetry, and Exposure as fixed effects and
Subjects as random factor, one for the congruent Cue condition and the other for the
incongruent Cue condition. In both cases, the Rotation�CCP interaction remained highly
significant, congruent Cue: F(1, 1612.7)¼ 12.38, p< .001, �2p¼ 0.008; incongruent Cue:
F(1, 1236.3)¼ 33.15, p< .001, �2p¼ 0.026, with a similar pattern of the four means, as
shown in the right graph of Figure 6. The LME-estimated response speed gain due to
concavity was indeed significant for unrotated but not rotated displays, in both
incongruent (unrotated¼ 0.1192ms, �2¼ 27.004, p< .001; rotated¼ 0.0074ms, �2¼ 0.111,
p¼ .739) and congruent (unrotated¼� 0.165ms, �2¼ 43.720, p< .001; rotated¼� 0.0366ms,
�2¼ 2.221, p¼ .136) Cue conditions. Such results indicate that the Rotation�CCP interaction
was robust across cue variations. However, cue congruency accounted for a residual small
modulation of the crossover between Rotation�CCP conditions, with response speed to
concave displays always larger for unrotated than rotated displays but significantly in the
incongruent Cue condition (LME-estimated difference¼�0.0786, �2¼ 10.365, p¼ .0013),
while not in the congruent Cue condition (LME-estimated difference¼�0.0340,
�2¼ 2.819, p¼ .0932). Conversely, response speed for convex displays was significantly
larger for rotated than unrotated displays in both Cue conditions (LME-estimated
difference for the congruent Cue¼ 0.1232, �2¼ 24.035, p< .001; LME-estimated difference
for the incongruent Cue¼ 0.0778, �2¼ 10.105, p¼ .0015).
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Test of the priming effect within the reduced three-way design. Given the outcome of the LME
analysis, we computed individual speed trimeans, d0 and k values for the
Rotation�CCP� Symmetry design. The positive correlation between the speed and d0

group means for the eight conditions of the three-way design was significant, r¼ .944;
t(6)¼ 7.017, p< .001. The individual correlation was negative for only three participants
out of 25. The prevalence of a positive speed-d0 correlation supported the choice of k as a
valid index of overall matching performance.

Mean k values for the three-way design are shown in Figure 7 and the derived symmetry
superiority M values for the Rotation�CCP design are shown in Figure 8. The expected
priming effect was supported by the significance of the planned contrast between the k-based
symmetry superiority difference for unrotated (Du) versus rotated (Dr) target pairs, 16.25
versus �0.07%; t(24)¼ 3.90, p< .001, Hedges’s g¼ 0.96.

Consistently with the main effect of Symmetry in the LME analysis, all four k-based
symmetry superiority means in Figure 8 were larger than zero, t(24)> 3.53, p< .002,
Cohen’s d> 0.71. A two-way ANOVA showed the significance of all effects, Rotation: F(1,
24)¼ 7.75, p< .02, �2p¼ 0.244; CCP: F(1, 24)¼ 10.80, p< .005, �2p¼ 0.310; Rotation�CCP
interaction: F(1, 24)¼ 15.20, p< .001, �2p¼ 0.388. In the unrotated condition, symmetry
superiority was larger for convex (hexagons over pentagons) than concave (hourglasses
over pacmen) targets, 21.50 versus 5.25%: t(24)¼ 4.010, p< .001, Hedges’s g¼ 1.03.
Symmetry superiority for convex targets was significantly larger in the unrotated versus

S1 S2 

unrotated rotated unrotated rotated 

congruent 
cue 

incongruent 
cue 

1/
R

T
 

1/
R

T
 

prime 
HC-concave LC-convex 

concave convex 

target shape 
concave convex 

HC-concave LC-convex 

prime 
HC-concave LC-convex 

target shape 
HC-concave LC-convex 

Experiment 1 (with prime) 

pe
nt

ag
on

 

pa
cm

an

ho
ur

gl
as

s 

pe
nt

ag
on

 

he
xa

go
n 

pa
cm

an

ho
ur

gl
as

s 

he
xa

go
n 

concave convex concave convex 
pa

cm
an

ho
ur

gl
as

s 

pe
nt

ag
on

 

he
xa

go
n 

pa
cm

an

ho
ur

gl
as

s 

pe
nt

ag
on

 

he
xa

go
n 

Figure 6. Mean values of 1/RT (� 1 SEM) for correct same responses (Hits) in Experiment 1. The left graph

shows data for the Rotation�CCP� Symmetry design; the right graph for the Rotation�CCP�Cue

design.
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rotated condition, 21.50 versus 7.72%: t(24)¼ 3.874, p< .002, Hedges’s g¼ 0.81, while the
one for concave targets was not significantly smaller in the unrotated versus rotated
condition, 5.25 versus 7.79%: t(24)¼ 1.395, p¼ .176. The two means in the rotated
condition did not differ (7.79 vs. 7.72%: t< 1).

In the earlier analyses the basic score was the relative difference between performance on
the two levels of Symmetry. To fully explore the data pattern, we also ran a three-way
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Figure 8. Mean values (� 1 SEM) of k-based symmetry superiority in Experiment 1. Symmetry superiority

was larger than zero in each of the four conditions of the reduced Rotation�CCP design. The expected

priming effect consisted in the presence of a larger symmetry superiority for the convex (hexagons over

pentagons) than concave (hourglasses over pacmen) pair in the unrotated condition not obtained in the

rotated condition.
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Figure 7. Mean k values (� 1 SEM) in the within-subject Rotation�CCP� Symmetry design of Experiment

1 after pooling data from different cue and prime duration trials.
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ANOVA on absolute k values (Figure 7). Apart from the main effect of Rotation,
F(1, 24)¼ 1.98, p¼ .173, all effects were significant, CCP: F(1, 24)¼ 8.12, p< .01,
�2p¼ 0.026; Symmetry: F(1, 24)¼ 57.30, p< .001; �2p¼ 0.705; Rotation�CCP:
F(1, 24)¼ 24.90, p< .001, �2p¼ 0.509; Rotation� Symmetry: F(1, 24)¼ 7.76, p< .02,
�2p¼ 0.244; CCP� Symmetry: F(1, 24)¼ 10.10, p< .005, �2p¼ 0.296; Rotation�CCP�
Symmetry: F(1, 24)¼ 13.60, p< .002, �2p¼ 0.362.

Discussion

Experiment 1 confirmed the importance of symmetry in the simultaneous matching of 2D
shapes: Independent of various experimental manipulations, same responses were faster and
more accurate for S2- than S1-targets, supporting the adoption of symmetry superiority as an
appropriate dependent measure.

Results were quite informative about the effect of the composite prime display (the main
goal of our study), considering that S1- and S2-targets corresponded to completion
and mosaic solutions of the composite P display segmentation, the first favored in
the hourglassþ diamond display (concave condition) and the second in the hexagonþ
rectangle display (convex condition), respectively. The difference between convex and
concave conditions was dependent on target rotation. As expected, in the unrotated
condition (targets oriented as the prime), the geometric mid-level features of the prime
(HC-concave vs. LC-convex) affected the amount of symmetry superiority, which turned
out to be weaker for hourglass over pacman than hexagon over pentagon. Symmetry
superiority for convex versus concave targets did not differ in the rotated condition,
suggesting that priming—at least in the conditions of our experiment—was not orientation
invariant. We interpret this lack of orientation invariance as a consequence of a loss of
perceptual prime-target similarity reducible to Mach’s square/diamond phenomenon (i.e.,
to the dependence of perceived form on collinearity of its structural elements with the
cardinal axes of visual space).

However, this interpretation poses a problem for the evaluation of the hypothetical
components of the overall priming effect measured in the unrotated condition, assuming
that it should, depending on the P display, either inhibit maximum symmetry (when the P
display was HC-concave) or facilitate it (when the P display was LC-convex). If the rotated
condition was simply a no-priming condition (with symmetry superiority unaffected by
rotation per se), then both components of priming should be significant: the hexagon over
pentagon symmetry superiority, attributable to the LC-convex P display, should be larger in
the unrotated than rotated condition, as found; but on the same grounds, the hourglass over
pacman symmetry superiority, attributable to the HC-concave P display, should be smaller in
the unrotated than rotated condition. In Experiment 1, this second difference, though in the
expected direction, did not reach significance.

We attributed such pattern of results to a possible intrinsic priming-independent effect of
rotation on symmetry superiority, affecting both target pairs (hourglass over pacman and
hexagon over pentagon). In other words, the relatively low symmetry superiority in the
rotated condition could simply reflect the reduced salience of mirror symmetry along
oblique axes, making this condition only a partially appropriate control for simultaneous
matching in the unrotated condition. Experiment 2, in which the same targets were not
preceded by a prime, could provide evidence relevant to this point.

From the statistical point of view, Experiment 1 provided us with inconclusive evidence
about cue congruency and prime duration. However, specific interpretations can be suggested
for the lack of significance in the two cases.
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As regards cue congruency, the analysis of response speed for the full five-way design
indicates that the presentation of the 50-ms cue before the prime might weakly modulate the
performance superiority for concave over convex unrotated targets (larger in the incongruent
than congruent cue condition, as shown in the right graph of Figure 6). This marginally
significant effect of cue congruency, if combined with evidence of prime effectiveness, is
consistent with the dominance of autochthonous structural factors over immediate memory
in image segmentation, which is the meaning of the Michotte triangle demonstration (Figure 1).

As regards prime duration, the lack of difference between 50- and 500-ms primes is
attributable to the long blank ISI between prime offset and target pair onset (1,000ms).
Even in the context of a two-stage model of amodal completion—criticized by Bruno et al.
(1997) and Rauschenberger et al. (2004), among others—shape processing cannot be blocked
at the hypothetical mosaic stage if prime availability is not terminated by backward masking.
Plomp and van Leeuwen (2006) did find a differential effect of composite prime duration
(50 vs. 500ms), but their paradigm—though lacking an after-prime mask—included more
levels of congruency between targets and preceding shapes, making a direct comparison with
our experiment difficult.

Experiment 2

To evaluate whether symmetry superiorities found in Experiment 1 (Figure 8) could be
partially attributed to matching difficulty intrinsic to various targets, we ran Experiment 2,
which paralleled Experiment 1 in all respects, except for the absence of the cue!prime
sequence and the reduction of the intertrial interval.

As a consequence of prime removal, we expected the disappearance of the significant
Rotation�CCP interaction found in Experiment 1 (Figure 8). A replication of such
interaction would be incompatible with our interpretation of Experiment 1 and, in
particular, would undermine the attribution of the (convex–concave) symmetry superiority
difference in the unrotated condition to priming.

Methods

Participants. Twenty volunteers (eight females; mean age 27.0 years) took part in the study.
For details of the ethical approval, see Experiment 1. All participants had normal or
corrected-to-normal vision.

As for Experiment 1, we decided to rely on a sample of 20 participants following the
results of a sensitivity analysis (G*Power 3.1; Faul et al., 2007) focused on an interaction in a
repeated measure two-way design. Given a 0.5 correlation among repeated measures, a err
prob¼ 0.05, power (1�b err prob)¼ 0.8, and N¼ 20, the minimum detectable effect size
corresponded to Cohen’s f¼ 0.331 (�2p¼ 0.099).

Apparatus, stimuli, and procedure. Apparatus and procedure were identical to those in
Experiment 1. As regards stimuli: The cue!prime sequence was substituted by a central
fixation cross lasting either 100 or 550ms, to parallel the within-trial timing of Experiment 1
in which the cue lasted 50ms and the prime either 50 or 500ms; to compensate for stimulus
simplification, the duration of the blank intertrial interval was 1,000ms (instead of 2,000ms
in Experiment 1).

Hence, the 128 positive trials included 16 repetitions for each combination of the
Rotation�CCP� Symmetry design, while the 128 negative trials included 32 repetitions
of the Rotation�CCP design.
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Data analysis. As in Experiment 1, we computed speed, d0 and k values. Only the output of k-
based analyses is reported in the main text, while speed- and d0-based analyses are reported in
the Appendix.

Results

The speed-d0 correlation between the two sets of eight group means from the three-way design
was positive but not significant, r¼ .520; t(6)¼ 1.489, p¼ .187. The individual correlation was
negative for eight participants out of 20. Likely, the larger proportion of participants with a
speed-d0 tradeoff in Experiment 2 (�2¼ 4.72, p< .05) contributed to the substantial decrease
in the positive correlation between group means, with respect to Experiment 1. Therefore,
conclusions from k-based analyses should be integrated by an evaluation of the output of
separate analyses of speed- and d0-based analyses reported in the Appendix.

Mean k values for the Rotation�CCP�Symmetry design of Experiment 2 are shown in
Figure 9. As in Experiment 1, the main effects of Symmetry, F(1,19)¼ 17.10, p< .001,
�2p¼ 0.474, and CCP, F(1,19)¼ 7.64, p< .02, �2p¼ 0.287, were significant, while the main
effect of Rotation was not (F< 1). But differently from Experiment 1, only the
Rotation� Symmetry interaction was significant, F(1,19)¼ 32.40, p< .001, �2p¼ 0.630;
Rotation�CCP: F(1,19)¼ 2.92, p¼ .104; CCP�Symmetry: F< 1; Rotation�CCP�
Symmetry: F(1,19)¼ 1.47, p¼ .240. The absence of a significant three-way interaction was
consistent with the idea that symmetry superiority, within each Rotation condition, was equal
for concave and concave targets, contrary to Experiment 1.

To control for such an interpretation, we also ran a two-way ANOVA on k-based
symmetry superiority scores (Figure 10). The main effect of Rotation was significant,
F(1, 19)¼ 24.30, p< .001, �2p¼ 0.561, while the main effect of CCP (F< 1) and the
interaction, F(1, 19)¼ 2.01, p¼ .172, were not. Mean symmetry superiorities for concave
and convex targets were both significantly larger than zero in the unrotated condition,
concave 9.6%: t(19)¼ 4.45, p< .001, Cohen’s d¼ 0.996; convex 12.9%: t(19)¼ 3.23,
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Figure 9. Mean k values (�1 SEM) in the within-subjects Rotation�CCP� Symmetry design of

Experiment 2. Evidence of the overall effect of priming was not replicated (see Figure 7 for comparison).
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p< .001, Cohen’s d¼ 0.89, whereas in the rotated condition, the mean symmetry superiority
was larger than zero for concave 4.7%: t(19)¼ 3.11, p< .01, Cohen’s d¼ 0.6954; convex
3.9%: t(19)¼ 1.52, p¼ .145.

Symmetry superiority was larger in the unrotated than rotated condition, suggesting that
this aspect of the data pattern, found also in Experiment 1, was independent of priming and
related to the intrinsic role of orientation on perceived form.

Conclusions

Taken together, the two experiments provided evidence that the composite priming displays
affected the simultaneous matching of 2D polygonal shapes, consistently with mid-level factors
favoring either completion (for the hourglassþ diamond prime) or mosaic (for the
hexagonþ rectangle prime) solutions. Within the design of Experiment 1, priming was
operationalized as a modulation of symmetry superiority; that is, as a change in the intrinsic
relative difficulty of matching hourglasses over pacmen and hexagons over pentagons.

In the unrotated condition of Experiment 1, we obtained a small symmetry superiority for
concave targets (hourglasses over pacmen, presented after a composite priming display in
which amodal completion was favored by HC and concavity avoidance) and a large
symmetry superiority for convex targets (hexagons over pentagons, presented after a
composite priming display in which the mosaic solution was favored by LC and
convexity). This difference between concave and convex targets was not obtained in the
rotated condition of Experiment 1 when priming was ineffective because of the
misorientation-dependent loss of prime-target similarity.

Experiment 2 provided another control for the critical role of the prime. In the absence of
the prime (Experiment 2), the symmetry superiorities for concave versus convex targets did
not differ in either rotation condition (Figure 10), supporting the idea that the difference
found in the unrotated condition of Experiment 1 (Figure 8) should be attributed—at least
partially, if not totally—to prime presentation. The validity of Experiment 2 as a control for
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Experiment 1 should be supported by experiments with prime presentation as a design factor,
allowing for a direct test of its effect.

The aforementioned conclusion refers to analyses conducted on k values and derived
scores. However, the analyses of speed and d 0 data reported in the Appendix revealed an
important difference between Experiments 1 and 2. In Experiment 1, where speed and d 0

measures were highly correlated, evidence of the expected priming effect was found within
each data distribution. On the other hand, in Experiment 2, where the positive correlation
between the two measures was not significant and a larger proportion of participants
exhibited a speed-d 0 tradeoff, the planned comparison between symmetry superiority
differences was significant for d 0-based scores but not for speed-based scores, though the
direction of the two effects was consistent. Also, this aspect of our data requires further
research.

As regards amodal completion processes, our study supports the role of mid-level factors
as determinants of the segmentation of 2D composite P displays and of amodal continuation
strength, beyond local T-junction information. Results from our two experiments are
compatible with the hypothesis that in Experiment 1 the two occlusion displays produced
opposite priming effects on the respective targets. The different balance of completion versus
mosaic solutions produced by the conjoint action of connectability and CCP modulated the
intrinsic symmetry superiority found in matching targets with versus without a vertical axis of
symmetry.

Establishing the relative contribution of connectability and CCP to the segmentation and
amodal completion of occlusion patterns was beyond the scope of this study. As a first step,
we were interested in demonstrating the relevance of the combination of such factors, often
associated in occlusion optics, while keeping T-junction information constant.

In Experiment 1 we tried to evaluate two other possible effects, besides priming by the
composite priming display presented immediately before the imperative stimulus. One effect
should depend on cueing the segmentation of the composite P display by a shape
corresponding to either a completion or mosaic solution (hence, identical to either S1- or
S2-targets in the matching task). The other effect should depend on prime duration, under the
assumption that completion prevails over the mosaic solution as the exposure duration
increases.

Neither cue congruency by itself nor its interaction with target rotation had any effect of
matching speed. The marginal interaction between cue congruency, target rotation, and CCP
obtained in the five-way ANOVA on response speeds in Experiment 1—suggesting the
possibility that the cue is effective when unrotated targets are concave, but not
convex—requires further research. However, the weak or null effect of cue congruency is
open to at least two interpretations. Suppose that the cue affects the segmentation of the
composite prime but does not directly prime the to-be-matched targets; then, cue
ineffectiveness could mean that a change of the completion over mosaic balance of
segmentation solutions is irrelevant, because they are both active, independent of their
relative strength. On the contrary, suppose that the cue does not affect the segmentation
of the composite prime; then, cue ineffectiveness runs counter a possible direct priming action
by the cue on to-be-matched targets.

As regards prime duration, no effect was found. This result could follow from the
substantial irrelevance of the difference between 50- and 500-ms exposures in the absence
of backward masking. The structural simplicity of prime displays, combined with their
repetition over the experimental session, made them equally available independent of
exposure duration, obscuring the possible time course of amodal completion.
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Notes

1. Earlier labels for the same concept are ‘‘representation without color’’ (Koffka, 1935, p. 178) and
‘‘invisibly present’’ (unsichtbar vorhanden, Metzger, 1936/2006, Chapter 8).

2. For knowledge-based completion priming, see Yun et al. (2018).
3. Cue: F< 1; Exposure: F(1, 2869.5)¼ 2.07, p¼ .150; Cue�Rotation: F< 1; Cue�CCP: F< 1; Cue�

Symmetry: F(1, 2872.2.5)¼ 1.61, p< .20; Cue�Exposure: F< 1; Exposure�Rotation: F(1,

2869.5)¼ 1.70, p¼ .193; Exposure�CCP: F< 1; Exposure� Symmetry: F(1, 2869.5)¼ 1.83,
p¼ .176; Rotation� Symmetry�Cue: F< 1; Rotation�Cue�Exposure: F(1, 2869.5)¼ 1.489,
p¼ .222; Rotation�CCP�Exposure: F(1, 2869.5)¼ 2.69, p¼ .101; Rotation� Symmetry�
Exposure: F< 1.

4. CCP: F(1, 2872.3)¼ 29.05, p< .001, �2p¼ 0.010; Rotation: F(1, 2869.6)¼ 3.44, p¼ .064;
Rotation�CCP: F(1, 2869.7)¼ 44.14, p< .001, �2p¼ 0.015; Rotation� Symmetry: F(1, 2869.6)¼
6.09, p< .02, �2p¼ 0.002; CCP� Symmetry: F(1, 2872.3)¼ 14.75, p< .001, �2p¼ 0.005.
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pp. 422–432, by A. Michotte et collaborateurs, Eds., 1962, Louvain, Belgium: Publications
Universitaires).

Hazenberg, S. J., & van Lier, R. (2016). Disentangling effects of structure and knowledge in perceiving
partly occluded shapes: An ERP study. Vision Research, 126, 109–119.

Peta et al. 21



Johnson, J. S., & Olshausen, B. A. (2005). The recognition of partially visible natural objects in the

presence and absence of their occluders. Vision Research, 45, 3262–3276.
Kanizsa, G. (1954). Linee virtuali e margini fenomenici in assenza di discontinuità di stimolazione
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Michotte, A., & Burke, L. (1951). Une nouvelle énigme de la psychologie de la perception: Le ‘‘donnée

amodal’’ dans l’experience sensorielle. In Actes du XIII Congrés Internationale de Psychologie (pp.

179–180). Rome: V. Ferri. (Reprinted in Causalité, permanence et réalité phénoménales, pp. 347–371,
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Appendix

Response speed in Experiment 1

We ran a 3-way repeated-measures ANOVA on the Rotation � CCP � Symmetry design, using the

trimean of correct same response speeds as the individual performance score. The pattern of 8 group

means was almost indistinguishable from the one in left graph of Figure 6 (therefore, we do not report it

here) and the same was true for the significance of differences, with respect to the output of the LMER

analysis of the 5-factor design. Apart from the main effect of Rotation [F(1, 24) ¼ 2.24, p ¼ 0.148], all
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other effects were significant [CCP: F(1, 24) ¼ 23.50, p < 0.001, �2p ¼ 0.495; Symmetry: F(1, 24) ¼ 54.30,

p < 0.001, �2p ¼ 0.693; Rotation � CCP: F(1, 24) ¼ 61.80, p < 0.001, �2p ¼ 0.720; Rotation � Symmetry:

F(1, 24) ¼ 7.06, p< 0.001, �2p ¼ 0.227; CCP � Symmetry: F(1, 24) ¼ 7.68, p < 0.02, �2p ¼ 0.242; Rotation

� CCP � Symmetry: F(1, 24)¼ 4.81, p < 0.05, �2p ¼ 0.167].

To better understand the determinants of response speed, we ran two separate ANOVAs for

unrotated vs. rotated conditions, expecting a main effect of Symmetry in both conditions and a CCP �

Symmetry interaction in the unrotated condition only. In the unrotated condition each main effect

[CCP: F(1, 24) ¼ 94.60, p < 0.001, �2p ¼ 0.798; Symmetry: F(1, 24) ¼ 70.50, p < 0.001, �2p ¼ 0.746], as

well as the CCP � Symmetry interaction [F(1,24) ¼ 8.84, p < 0.01, �2p ¼ 0.269], were significant; while in

the rotated condition only the main effect of Symmetry was significant [F(1, 24) ¼ 23.30, p < 0.001,

�2p ¼0.493; CCP and 2-way interaction: F < 1].

The pattern of response speeds is summarized in Figure A.1, which displays the amount of

symmetry superiority in the four conditions of the Rotation � CCP design. The symmetry

superiority was larger than zero in each of the four conditions (p < 0.01). A 2-way ANOVA showed

the significance of all effects [Rotation: F(1, 24) ¼ 8.13, p < 0.01, �2p ¼ 0.253; CCP: F(1, 24) ¼ 10.20, p <

0.005, �2p ¼ 0.298; Rotation � CCP interaction: F(1, 24) ¼ 6.95, p < 0.02, �2p ¼ 0.225]. The mean

symmetry superiority for unrotated convex targets (hexagons vs. pentagons) was larger than the mean

symmetry superiority for unrotated concave targets (hourglasses vs. pacmen) [11.36 vs. 4.28%: t(24)¼

3.486, p < 0.002, Hedges’s g ¼ 0.945]. The two means in the rotated condition did not differ [4.10 vs.

5.49%: t(24)¼ 1.062, p ¼ 0.299]. As apparent in Figure A.1, the planned contrast between Du and Dr for

response speed was significant [7.08 vs. 1.40%; t(24) ¼ 2.64, p < 0.02, Hedges’s g ¼ 0.634].

To evaluate the facilitatory and inhibitory components of the overall priming effect we compared

mean speeds in unrotated vs. rotated conditions within each CCP level. The mean symmetry superiority

for convex targets (hexagons vs. pentagons) was larger in the unrotated than rotated condition [11.36
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Figure A.1. Experiment 1. Mean values (� 1 sem) of speed-based symmetry superiority in the reduced

Rotation � CCP design. Symmetry superiority was larger than zero in each condition. The expected priming

effect consisted in the large difference between symmetry superiorities for convex (hexagons over

pentagons) vs. concave (hourglasses over pacmen) targets in the unrotated condition, unparalleled in the

rotated condition.
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vs. 5.49%: t(24)¼ 3.306, p < 0.005, Hedges’s g ¼ 0.713], supporting the facilitatory component of

priming. Mean symmetry superiorities for concave targets (hourglasses vs. pacmen) in unrotated vs.

rotated conditions did not differ [4.29 vs. 4.10%: t < 1], against the possible inhibitory component of

priming.
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Figure A.2. Experiment 1. Mean d0 values (� 1 sem) in the reduced within-subjects Rotation � CCP �

Symmetry design.
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Figure A.3. Experiment 1. Mean values (� 1 sem) of d0-based symmetry superiority in the reduced Rotation

� CCP design. Symmetry superiority was larger than zero in each condition.
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d0 in Experiment 1

The same analysis was run on d0 values. Recall that this parameter could not be computed for the full 5-

factor design, where the number of repeated trials in each cell was too low to obtain reliable estimates of

p(Hit) and p(FA). In the reduced Rotation � CCP � Symmetry design the lowest number of Hits was 1

out of 16 positive trials per cell, while the highest number of FAs was 9 out of 32 negative trials per cell.

After the correction for extreme proportions, the 200 d0 values (8 conditions � 25 participants) ranged

from 0.620 to 4.017 (mean¼ 3.277; median¼ 3.397).

The pattern of mean d0 values (Figure A.2) was remarkably similar to the one for response speed

in Figure 6. The Rotation � CCP � Symmetry within-subjects ANOVA and subsequent CCP �

Symmetry ANOVAs for unrotated vs. rotated conditions replicated the outcome of the same

analyses on response speeds. With the exception of the main effect of Rotation [F(1, 24) ¼ 1.54, p ¼

0.227], all other effects were significant in the 3-way ANOVA [CCP: F(1, 24) ¼ 4.42, p< 0.05, �2p ¼

0.156; Symmetry: F(1, 24) ¼ 34.00, p < 0.001, �2p ¼ 0.586; Rotation � CCP: F(1, 24) ¼ 13.90, p < 0.002,

�2p ¼ 0.367; Rotation � Symmetry: F(1, 24) ¼ 4.59, p < 0.05, �2p ¼ 0.161; CCP � Symmetry: F(1, 24) ¼

6.58, p < 0.02, �2p ¼ 0.215; Rotation � CCP � Symmetry: F(1, 24) ¼ 8.78, p < 0.01, �2p ¼ 0.268]. In the

unrotated condition both the main effects [CCP: F(1, 24) ¼ 16.70, p < 0.001, �2p ¼ 0.410; Symmetry:

F(1, 24) ¼ 27.50, p < 0.001, �2p ¼ 0.534] and the CCP � Symmetry interaction [F(1,24) ¼ 11.40, p <

0.01, �2p ¼ 0.322] were significant; while in the rotated condition only the main effect of Symmetry was

significant [F(1, 24) ¼ 21.10, p < 0.001, �2p ¼ 0.468; CCP: F(1, 24) ¼ 1.81, p ¼ 0.191; CCP � Symmetry:

F < 1].

Figure A.3 displays the amount of d0-based symmetry superiority in the four conditions of the

Rotation � CCP design. Symmetry superiority was larger than zero in each of the four conditions (p<

0.02 in the unrotated-concave conditions; p< 0.01 in the other three conditions). A 2-way ANOVA

showed the significance of all effects [Rotation: F(1, 24) ¼ 5.53, p < 0.05, �2p ¼ 0.187; CCP: F(1, 24) ¼

7.25, p < 0.02, �2p ¼ 0.232; Rotation � CCP interaction: F(1, 24) ¼ 10.40, p < 0.005, �2p ¼ 0.302]. The

mean symmetry superiority for unrotated convex targets (hexagons vs. pentagons) was larger than the

mean symmetry superiority for unrotated concave targets (hourglasses vs. pacmen) [16.40 vs. 3.13%:

t(24)¼ 3.437, p < 0.005, Hedges’s g ¼ 0.879]. The two means in the rotated condition did not differ [5.76

vs. 5.00%: t < 1]. As apparent in Figure A.3, the planned contrast between d0-based Du and Dr was also

significant [Du ¼ 13.27% vs. Dr ¼ -0.76%; t(24) ¼ 3.22, p < 0.005, Hedges’s g ¼ 0.848].

To evaluate the facilitatory and inhibitory components of the overall priming effect we compared

d0 values in unrotated vs. rotated conditions within each CCP level. The d0-based mean symmetry

superiority for convex targets (hexagon vs. pentagon) was larger in the unrotated than rotated

condition [16.40 vs. 5.00%: t(24)¼ 3.160, p < 0.005, Hedges’s g ¼ 0.691]. Mean symmetry

superiorities for concave targets (hourglasses vs. pacmen) in unrotated vs. rotated conditions did not

differ [3.13 vs. 5.76%: t(24)¼ 1.43, p ¼ 0.166], against the possible inhibitory component of priming.

Response speed in Experiment 2

Figure A.4 shows mean response speeds in the 8 conditions of the Rotation � CCP � Symmetry design

of Experiment 2. The main effect of Symmetry was significant [F(1, 19) ¼ 95.40, p < 0.001, �2p ¼ 0.834],

while the other two main effects were not [Rotation: F(1, 19) ¼ 3.47, p ¼ 0.078; CCP: F(1, 19) ¼ 1.23, p

¼ 0.281]. All 2-way interaction were significant [Rotation � CCP: F(1, 19) ¼ 51.90, p < 0.001, �2p ¼

0.732; Rotation � Symmetry: F(1, 19) ¼ 59.40, p < 0.001, �2p ¼ 0.758; CCP � Symmetry: F(1, 19) ¼

6.72, p < 0.02, �2p ¼ 0.261], while the Rotation � CCP � Symmetry interaction did not reach

significance [F(1, 19) ¼ 3.15, p ¼ 0.092].

Then, we evaluated the speed-based symmetry superiority in the Rotation � CCP design (Figure

A.5). The outcome of the 2-way ANOVA differed from the one for Experiment 1, despite some
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Figure A.5. Experiment 2. Mean values (� 1 sem) of speed-based symmetry superiority in the reduced

Rotation � CCP design.
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similarities between the two patterns of means (see Figure A.1 for comparison). Both main effects were

significant [Rotation: F(1, 19) ¼ 53.80, p < 0.001, �2p ¼ 0.739; CCP: F(1, 19) ¼ 6.24, p < 0.05, �2p ¼

0.230], but the Rotation � CCP interaction was not [F(1, 19) ¼ 3.62, p ¼ 0.072], paralleling the lack of

significance of the Rotation � CCP � Symmetry interaction on response speed.
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Figure A.7. Experiment 2. Mean amounts of d0-based symmetry superiority in the reduced Rotation � CCP

design.
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partially similar to the one for response speed in Experiment 2, shown in Figure A.5.
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d0 in Experiment 2

Differently from Experiment 1, in Experiment 2 the pattern of mean d0 values (Figure A.6) did not

parallel the one for response speed (Figure A.4). The 3-way ANOVA on d0 values showed the

significance of the main effects of CCP [F(1, 19) ¼ 17.10, p < 0.001, �2p ¼ 0.474] and Symmetry [F(1,

19) ¼ 6.61, p < 0.02, �2p ¼ 0.258], and of the Rotation � Symmetry interaction [F(1,19) ¼ 5.16, p < 0.05,

�2p ¼ 0.214], while the main effect of Rotation [F(1,19) ¼ 1.48, p < 0.238], the other 2-way interactions [F

< 1] and the 3-way interaction [F < 1] were not.

In Experiment 2 the pattern of d0-based symmetry superiorities in the Rotation � CCP design

(Figure A.7) differed from the one for response speed (Figure A.5). Only the main effect of Rotation

was significant [F(1,19) ¼ 5.40, p < 0.05, �2p ¼ 0.221], while the main effect of CCP and the 2-way

interaction were not [F < 1].
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