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Abstract

Data Assimilation is nowadays a fundamental part in any forecasting geo-
science model.
In the field of marine biogeochemistry, the number and quality of observa-
tional systems (e.g. satellites, bio argo floats, moorings) is constantly im-
proving, but the available information is still far from picturing per se the
true state of the marine ecosystem.
Thus, at forecasting and monitoring purpose, Data Assimilation techniques
are necessary in order to face the problem of the ocean state estimation.
Handling the large dimension of the state vector of the system (order of 106)
remains an issue, and many attempts have been done in literature to reduce
the complexity of the problem, adding hypotheses and approximations in
order to obtain fast Data Assimilation algorithms. The 3D-VAR, a Data
Assimilation method based on the variational approach, is one of these re-
sults and is adopted in the EU Copernicus forecast system MedBFM, which
is responsible for monitoring and forecasting the biogeochemical state of the
Mediterranean Sea.
Aside from variational, the other main Data Assimilation approach is the
Kalman-Filter.
This thesis is focused on biogeochemical marine Data Assimilation, and has
a double purpose.
The first one is to compare the 3D-VAR scheme with the Singular Evolutive
Interpolated Kalman-Filter (SEIK).
From a theoretical point of view, this is realized using a Bayesian framework
to derive differences and similarities as well as strengths and weaknesses of
the two methods. This analysis shows that the main differences are in the
choice of the state estimator (the mode for the variational and the mean
for the Kalman-Filter), and in the Kalman-Filter’s capability of keeping and
transferring the information through the time steps.
A twin experiment has been used to assess the skill performance of the com-
pared schemes. Tests show that the SEIK is one order of magnitude more
precise than the 3D-VAR, in terms of root mean squared distance (RMSD).
The second objective of this work is to develop a novel Data Assimilation
method from the SEIK filter, focusing on the effects of the model error and
its estimation. Various strategies have been implemented at this purpose,
namely a high order sampling technique, a method to take into account
SEIK’s neglected part of the model error as noise-like observation error, a
data-driven maximum likelihood algorithm for model error estimation and,



finally, a computationally cheap ad hoc smoother.
The twin experiment tests prove that the first two modifications change the
behavior of the SEIK filter only in case of large model error, conferring to the
modified SEIK a higher resiliency to divergences. The maximum likelihood
strategy estimations obtained good agreement with the estimated real value,
with better results if used in pair with the modified version of the SEIK.
The smoother further improved the RMSD of the method, with even better
results in case of large model error.



Chapter 1

Introduction

In biogeochemical marine modelling, the estimation of the current state of the
system is a key element in order to successfully simulate the future dynam-
ics. Unfortunately, the available data (from satellites and other measurement
equipments) often offer only an incomplete information by which is not easy
(or impossible) to effortlessly derive a sufficiently good approximation of the
state. The term Data Assimilation (DA) encompasses all those techniques
used to extrapolate, from available data and model, the best estimation of
the present (analysis), past (reanalysis) and future (forecast) states.
Geosciences suffer the very big dimension of the state vector of the system
(order of 106) and handling this difficulty remains an issue, also consider-
ing the computational efficiency required by operational systems to satisfy
performance and provide short-term forecast products to users. Indeed, the
majority of the operations (e.g. products, inversions etc.) involving the co-
variance matrices are too heavy to be computed for operational forecasting
purposes, also considering the increasing horizontal resolution. Various at-
tempts have been made in literature to reduce the complexity of these tasks,
often adding hypotheses to simplify the problem and decrease the computa-
tional cost (e.g. [11]). However, computing power availability has strongly
increased recently, and some of the constraints used in the past can be now
partially revised.
Focusing on marine biogeochemistry and taking as an example the EU Coper-
nicus forecast system MedBFM ([27]), which is responsible for monitoring
and forecasting the biogeochemical state of the Mediterranean Sea, assimi-
lates satellite chlorophyll data through a 3D-VAR method ([44]). The 3D-
VAR is an algorithm based on the variational approach, one of the most
common techniques to manage DA in operational context.
The first objective of this work is to compare the 3D-VAR with the Singu-
lar Evolutive Interpolated Kalman-Filter algorithm (SEIK, [37]), where the

8



CHAPTER 1. INTRODUCTION 9

latter is a method based on a Kalman-Filter, which is the other mainstream
approach to Data Assimilation.
At this purpose, the thesis presents (Chapters 2, 3 and 4) a theoretical part
that uses a Bayesian framework to derive similarities and differences between
the two approaches, and points out some advantages and disadvantages.
A twin-experiment is used to test the skill of the two algorithms on a biogeo-
chemical model coupled with a physical advection-diffusion transport model
(Chapter 6). The experiment is based on a Fasham-like model simulated in a
2D square domain representing the photic zone. Even if not complex as the
cited operational biogeochemical system, the experiment produce complex
dynamics that allows to test the properties of the different DA methods.
The second objective of this work is to develop and test a novel Data Assimi-
lation method from the SEIK algorithm, focusing in particular on effects and
estimation of the model uncertainties. Chapter 5 contains all the strategies
and modifications made to the SEIK, namely a high order sampling method,
a noise-like interpretation of the unconsidered model error and a maximum
likelihood approach to uncertainty estimation. Chapter 6 includes and dis-
cusses the experiment done to test the proposed methods.
Chapter 7 derives and tests an ad hoc smoother.
Chapter 8 presents the implementation of the novel Data Assimilation scheme
in a realistic 3D model, namely the OGSTM-BFM (the computational core of
the MedBFM model system), in order to assess the feasibility of the method
and show an efficient parallelization method. Finally, the conclusive chapter
summarizes the obtained results and proposes some future work ideas.

List of original contributions of this thesis:

• The SEIK filter has been generalised including weights in the sampling.

• A new sampling method has been developed, with a higher order of
convergence in the most relevant PCA components of the error sub-
space.

• A new method to fully take into account model error has been devel-
oped.

• A maximum likelihood strategy to model error estimation has been
presented.

• An ad hoc smoother has been developed

• An efficient parallelization method for the novel filter implementation
has been presented.



Chapter 2

Data Assimilation and
Variational approach

After a briefly presentation of the Data Assimilation problem, this Chapter
is focused on the variational approach solution.
Each variational method is based on the minimization of some error func-
tional.
From a computational point of view, the cheapest (and fastest) scheme is the
3D-VAR.
4D-VAR instead is a more complex alternative, but its functional is based
on the assumption of a model without errors.

2.1 What is Data Assimilation?

Data Assimilation main purpose is the estimation of the state of a dynamical
system (e.g. the concentrations of biogeochemical tracers into the sea), taking
into account the simulations computed by a numerical model and observa-
tions data. Both simulations and data suffer a certain uncertainty, the former
due to, for example, numerical errors, sub-grid processes, unknown bound-
aries and initial conditions or unmodelled events, while the latter caused by
incomplete information, experimental and representativeness (or representa-
tion) errors.
Data Assimilation can try to estimate a state in the present (analysis), past
(reanalysis) and therefore help with future state estimations (forecast). In
prediction-oriented systems, present and future states have a predominant
role, while reanalysis is more interesting for scientific and monitoring pur-
pose.
In order to enter into details of the formalisation of the Data Assimilation

10



CHAPTER 2. DATA ASSIMILATION ANDVARIATIONAL APPROACH11

state estimation problem, it is important to spend a few moment to set up
notations.

2.2 Notations

This thesis follows (with some minor differences) the notations introduced in
[21].
The state vector of the system at time ti is indicated with xi ∈ Xi ∼= RN .
The dimension N of the state vector space Xi takes into account all the
degrees of freedom of the system. If for example 3 concentration variables
(say phytoplankton, zooplankton and nutrients) are modelled inside a cubic
domain of 10× 10× 10 grid points, then N = 3× 10× 10× 10 = 3000.
The index i ∈ {0, . . . , K}, with K a positive integer, enumerate the times
(in chronological order, i.e. ti < tj for i < j) at which an estimation of the
system is desired. Colons between indices, as in the writing xi:j, with i < j,
is a contraction to say (xi, . . . , xj) ∈ Xi × · · · × Xj ∼= RN(j−i+1).
The dynamical system evolves from time ti−1 to ti via the model operator

mi : Xi−1 → Xi,

that represents all the computations made by the numerical model to inte-
grate the system. Parameters, boundary conditions and forcing used by the
model is implicitly included in this function. To some extent,

mi (xi−1) ≈ xi,

where the symbol ≈ is used here because the computed evolution only ap-
proximates the real state at the next time, and a certain uncertainty holds.
The observation datum vector measured at time ti is indicated with yi ∈ Yi ∼=
Rn. Data come from measurements made by various instruments, like satel-
lites, floats, ferrybox, moorings etc. and they are affected by errors. n is the
dimension of the datum vector space and indicates the number of measure-
ments gathered at time ti. Using the previous example, if a satellite measures
the chlorophyll at surface with a 8 × 8 resolution grid while a mooring gets
5 vertical measurements of all the 3 variables, then n = 8× 8 + 3× 5 = 79.
The observation operator

hi : Xi → Yi,

maps the state xi in the theoretical observation numerically computed from
xi. Obviously, due to errors and approximations, in general it is not equal to
the real datum, so

hi (xi) ≈ yi.
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Very often, as in the example above, n� N and each datum carries only an
incomplete information, in the sense that it alone is not enough to go back
from yi to the corresponding state xi, or, mathematically speaking, h is not
invertible.
Comparing real data with simulations,

hi (mi (xi−1)) = yi

rarely holds, due to uncertainties involved with xi−1, mi and hi. Then, a
method to estimate states and errors is needed, namely a Data Assimilation
method.
In the following parts, the best estimation of the state xi taking into account
all the previous data y0:i−1 but before receiving the datum yi, will be indicated
with xfi , where the f is for “forecast”. The estimation after the assimilation
of the datum yi instead, is called “analysis” and indicated with xai . Further,
xri is the “reanalysis” state, or the estimation calculated using all the available
data y0:K . The more general notion of “background” state xbi−1 indicates a
known estimation without specifying if it is from a forecast, an analysis or
obtained in some other way.

2.3 Variational approach

To handle the state estimation problem, the variational approach relay on
least squares techniques.
The strategy is to define a suitable error functional J and minimize it.
A first option is

J (x0:i) :=
∥∥x0 − xb0

∥∥2

B−1
0

+
K∑
i=1

‖xi −mi (xi−1)‖2
Q−1
i

+
K∑
i=0

‖hi (xi)− yi‖2
R−1
i
,

(2.1)
where

‖x‖2
M := xTMx

is the euclidean norm weighted with the symmetric positive-definite matrix
M . The first addend in (2.1) represents the background error in the initial
state x0, the second one is the model error and the third is the error on the
observations. Different matrices have been used to calibrate the significance
of each error and how to choose them is debatable, but using covariance
matrices seems a quite natural option (a probabilistic explanation will be
presented in Section 3.4).
In geoscience, where the dimension N is big, this error functional is hardly
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managed. A possible simplification is obtained neglecting the model error and
substituting in equation (2.1) xi with mi (xi−1) for every i or, equivalently,

xi = mi ◦ · · · ◦m1 (x0) .

The obtained functional JQ=0 now depends only on the initial state x0:

JQ=0 (x0) :=
∥∥x0 − xb0

∥∥2

B−1
0

+
K∑
i=0

‖hi ◦mi ◦ · · · ◦m1 (x0)− yi‖2
R−1
i
. (2.2)

Minimizing JQ=0 is more affordable than working with J , and this method is
quite diffused in geophysical Data Assimilation, with the name of 4D-VAR
(see [7] for a complete overview).
Nevertheless, in biogeochemical sea Data Assimilation, another simplification
of (2.1), namely the 3D-VAR, is often preferred ([44]): instead of the model
error, the background error on the previous state xi−1 is neglected, i.e.

xi−1 = xbi−1,

and the functional J is divided in K + 1 functionals Ji,

Ji (xi) :=
∥∥xi −mi

(
xbi−1

)∥∥2

Q−1
i

+ ‖hi (xi)− yi‖2
R−1
i
, (2.3)

with each Ji depending only on xi. Thus, the analysis state is

xai = argmin
xi∈Xi

Ji (xi) , (2.4)

and it will be used as background state at the next step.
The main advantage of the 3D-VAR is its cheap computational cost. In fact,
the evaluation of mi can be expensive and, while minimizing (2.2) requires
mi many times in each iteration, working with (2.3) is much easier. Further-
more, the minimization process needs the gradient of the error functional
and, in the 4D-VAR case, this implies the use of the adjoint of mi, which can
be a not trivial issue to manage.
In the last years, the vast improvement in information technologies suggests
to push over the computational side, and, while the 4D-VAR seems the nat-
ural (computationally heavier) successor of the 3D-VAR, it is not perfectly
suited for the biogeochemical field. In fact, the no model error assumption
in (2.2) is a quite good approximation in physical contexts, but it can be
debatable in biogeochemical systems: the laws (and equations) behind com-
plex biological populations’ behaviors are not as known as the physical laws
and are often more probabilistic then deterministic. Thus, some uncertainty
on the model should be taken into account.



Chapter 3

Bayesian theory and Kalman
approach

Instead of least squares variational approach presented in the previous sec-
tion, Kalman Filters are the other main method in the field of state estima-
tion. The first “optimal filter”, as Kalman called it in 1960 ([25]), has led to
a ever growing variety of filters that find a broad spectrum of applications in
scientific and engineering modelling (see [14] or [34] for an overview). The
Unscented Filter ([24]), the Ensemble Kalman Filter ([12]) and the Particle
Filter ([32]) are probably the most common examples of such evolution in
filter theory.
In this chapter, a probabilistic framework is provided as a starting point to
derive the Kalman-Filter scheme while preparing a common ground useful to
make the comparison with the 3D-VAR method.
At this purpose, the 3D-VAR it self is derived again, showing that it is based
over some of the Kalman-Filter’s assumptions.
On the other hand, the differences between the two methods are shown as
well. In fact, 3D-VAR uses the mode as estimator, instead of the mean.
Further, the Kalman-Filter passes the covariance information from one time
step to the next, while 3D-VAR neglects it.

3.1 Premises and more notations

Since this chapter is focused on probabilities and Bayesian inference, a few
more definitions are needed to set up the framework. First, let’s define P (Xi)
and P (Yi) such that

P (V ) = {f : V → R such that f is a probability density function over V } .

14
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In the following, using a simple notation, the small p with no other indexes
means “probability of”, the vertical line inside the argument is the symbol
for conditioned probability and the comma is the logical AND operator. So,
for example, “p (xi)” and “p (xi|xi−1, yi)” read as “probability of xi” and
“probability of xi, knowing that xi−1 and yi” respectively.
In this set up, a probabilistic model operator Mi is needed, in order to
consider both the evolution and the related uncertainties:

Mi : Xi−1 → P (Xi) ,

Mi (xi−1) := pMi(xi−1),

pMi(xi−1) (xi) := p (xi|xi−1) . (3.1)

This definition comes from the hypothesis that, given xi−1, no other previous
states matter for xi and for the possible errors. This is also commonly known
as Markov property, and represents the memorylessness of the system (see
[16] for more on Markov processes).
Another common and reasonable assumption is that errors on measurements
at different times are uncorrelated and each datum only depends on the state
of the system in that moment. Then, the probabilistic observation operator
Hi is defined as

Hi : Xi → P (Yi) ,
Hi (xi) := pHi(xi),

pHi(xi) (yi) := p (yi|xi) . (3.2)

Recalling the meaning of forecast and analysis in Section 2.2, the correspond-
ing probabilities pfi , p

a
i ∈ P (Xi) are

pfi (xi) := p (xi|y0:i−1) (3.3)

and
pai (xi) := p (xi|y0:i) . (3.4)

Both of them can be obtained in a sequential manner, known as Bayesian
filter. As suggested by the name, a fundamental prerequisite is the Bayes
Theorem, rewritten here for reader convenience in a very condensed form,
along with a handily corollary:

Theorem 1 (Bayes Theorem). If A,B are two events in a probability space,
then

p (A|B) =
p (B|A) p (A)

p (B)
.

Corollary 2. If A,B,C are three events in a probability space, then

p (A|B,C) =
p (B|A,C) p (A|C)

p (B|C)
.
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3.2 Bayesian Filter

Starting from definition (3.4), pai (xi) can be rewritten as

pai (xi) = p (xi|yi, y0:i−1) =
p (yi|xi, y0:i−1) p (xi|y0:i−1)

p (yi|y0:i−1)
, (3.5)

where the last equality comes from Bayes Theorem (Corollary 2).
Note that the denominator of equation (3.5) does not depend on xi, then it
is a constant number, that can be seen as a normalization factor of the dis-
tribution at the numerator. Using the symbol ∝ to indicate proportionality
relation, equation (3.5) can be written as follows

pai (xi) ∝ p (yi|xi, y0:i−1) p (xi|y0:i−1) . (3.6)

Recalling that the datum yi only depends on the state xi and by definition
(3.2), it holds that

p (yi|xi, y0:i−1) = p (yi|xi) = pHi(xi) (yi) ,

furthermore, by definition (3.3), equation (3.6) becomes

pai (xi) ∝ pHi(xi) (yi) p
f
i (xi) . (3.7)

Now, pfi is obtained by the law of total probability:

Theorem 3 (Law of total probability). Let {Aj} be a family of pairwise
disjoint events. Then, for every event B, it holds that

p (B) =
∑
j

p (B|Aj) p (Aj) .

Using Theorem 3 in definition (3.3),

pfi (xi) =

∫
RN
p (xi|xi−1, y0:i−1) p (xi−1|y0:i−1) dxi−1

and finally, recalling that xi and his uncertainty is fully determined by xi−1

and by definition (3.1)

p (xi|xi−1, y0:i−1) = p (xi|xi−1) = pMi(xi−1) (xi)

and by definition (3.4),

pfi (xi) =

∫
RN
pMi(xi−1) (xi) p

a
i−1 (xi−1) dxi−1. (3.8)
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Summing up equations (3.8) and (3.7), knowing the analysis probability at
time ti−1, it is possible to calculate the forecast and analysis probability at
time ti via Mi and Hi by the sequential relation pfi (xi) =

∫
RN
pMi(xi−1) (xi) p

a
i−1 (xi−1) dxi−1,

pai (xi) ∝ pHi(xi) (yi) p
f
i (xi) .

(3.9)

In spite of his formal elegance, equation (3.9) is impossible to be treated nu-
merically as it is (at least for big N). Then, adding other hypothesis becomes
necessary to reach a more viable expression. In particular, as presented in
the next sections, the Kalman-Filter is obtained by assuming gaussian be-
haviours and linear operators.

3.3 Why gaussians

In order to derive the Kalman-Filter equations (as presented in data assim-
ilation textbooks, e.g. [26]), it is useful to set some definitions and recall a
few proprieties of Gaussian distributions.
Gaussians can be managed very easily, because they are completely defined
by just mean and covariance and they interact “very well” with each other,
as shown by Theorem 5, here presented after a preparatory definition and
lemma.

If x, a ∈ Rd and A is a d× d real symmetric positive-definite matrix, let’s
indicate with N (x; a,A) the normal distribution of variable x, with mean a
and covariance A, namely

N (x; a,A) :=
1√

(2π)d |A|
exp

[
−1

2
(x− a)T A−1 (x− a)

]
,

where |A| denotes the determinant of A.

Lemma 4. Let A,B and M be real matrices of dimensions n × n, m ×m
and m×n respectively. If A,B are symmetric and positive-definite, then the
following equation holds

(Mx− y)T A−1 (Mx− y) + xTB−1x =

=
(
x− CMTA−1y

)T
C−1

(
x− CMTA−1y

)
+ yT

(
A+MBMT

)−1
y, (3.10)

where x ∈ Rn, y ∈ Rm and

C :=
(
MTA−1M +B−1

)−1
. (3.11)
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Proof. First of all note that A,B and C−1 are symmetric positive-definite,
then they are invertible.
Now, due to the symmetry of A,

(Mx− y)T A−1 (Mx− y) = xTMTA−1Mx− 2xTMTA−1y + yTA−1y,

and the left hand side of equation (3.10) becomes

(Mx− y)T A−1 (Mx− y) + xTB−1x =

= xT
(
MTA−1M +B−1

)
x− 2xTMTA−1y + yTA−1y. (3.12)

Using definition (3.11) and completing the square, it holds that

xT
(
MTA−1M +B−1

)
x− 2xTMTA−1y =

= xTC−1x− 2xTC−1CMTA−1y

=
(
x− CMTA−1y

)T
C−1

(
x− CMTA−1y

)
− yTA−1MCMTA−1y.

(3.13)

Substituting equation (3.13) in equation (3.12) we obtain

(Mx− y)T A−1 (Mx− y) + xTB−1x =

=
(
x− CMTA−1y

)T
C−1

(
x− CMTA−1y

)
+yTA−1y−yTA−1MCMTA−1y,

(3.14)

where the last two terms can be rewritten as

yTA−1y − yTA−1MCMTA−1y = yT
(
A−1 − A−1MCMTA−1

)
y. (3.15)

Since(
A−1 − A−1MCMTA−1

) (
A+MBMT

)
=

= Im + A−1MBMT − A−1MCMT − A−1MCMTA−1MBMT

= Im + A−1MBMT − A−1MCB−1BMT − A−1MCMTA−1MBMT

= Im + A−1MBMT − A−1MC
(
MTA−1M +B−1

)
BMT

= Im,

where Im is the identity matrix of dimension m, then equation (3.15) can be
written

yTA−1y − yTA−1MCMTA−1y = yT
(
A+MBMT

)−1
y. (3.16)

and, using equations (3.16) in (3.14), the lemma is proved.
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Theorem 5. Let A,B and M be real matrices of dimensions n× n, m×m
and m× n respectively. If A,B are symmetric positive-definite matrices and
x ∈ Rn, y ∈ Rm, then

N (y;Mx,A)N (x; 0, B) = N
(
y; 0, A+MBMT

)
N
(
x;CMTA−1y, C

)
,

with
C =

(
MTA−1M +B−1

)−1
.

Proof. Omitting the normalization constants and using the proportional sign
∝, it holds that

N (y;Mx,A)N (x; 0, B) ∝ exp

[
−1

2
(y −Mx)T A−1 (y −Mx)− 1

2
xTB−1x

]
.

By Lemma 4, it can be written

N (y;Mx,A)N (x; 0, B) ∝

∝ exp

[
−1

2
yT (A+MBMT )−1y − 1

2

(
x− CMTA−1y

)T
C−1

(
x− CMTA−1y

)]
,

and then

N (y;Mx,A)N (x; 0, B) ∝ N
(
y; 0, A+MBMT

)
N
(
x;CMTA−1y, C

)
.

(3.17)
To check that equality holds, it sufficient to integrate both sides of expression
(3.17) noting that they are already normalized:∫

Rn

∫
Rm
N (y;Mx,A)N (x; 0, B) dydx =

=

∫
Rn
N (x; 0, B)

∫
Rm
N (y;Mx,A) dydx

=

∫
Rn
N (x; 0, B) dx

= 1
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and∫
Rn

∫
Rm
N
(
y; 0, A+MBMT

)
N
(
x;CMTA−1y, C

)
dydx =

=

∫
Rm

∫
Rn
N
(
y; 0, A+MBMT

)
N
(
x;CMTA−1y, C

)
dxdy

=

∫
Rm
N
(
y; 0, A+MBMT

) ∫
Rn
N
(
x;CMTA−1y, C

)
dxdy

=

∫
Rm
N
(
y; 0, A+MBMT

)
dy

= 1

With Theorem 5, that is a powerful tool in order to manage Gaussian’s
interactions, we are ready to derive 3D-VAR and Kalman-Filter equations,
as shown in the next two sections.

3.4 Bayesian derivation of the 3D-VAR

Starting from equation (3.9), rewritten here in an equivalent version but
using a more general notation in order to show the background probability
pbi−1, 

pbi−1 (xi−1) = pai−1 (xi−1)

pfi (xi) =

∫
RN
pMi(xi−1) (xi) p

b
i−1 (xi−1) dxi−1,

pai (xi) ∝ pHi(xi) (yi) p
f
i (xi) ,

(3.18)

we can simplify calculation by adding two assumptions and a (quite strong)
approximation:

• Gaussian model error, or

pMi(xi−1) (xi) = N (xi;mi (xi−1) , Qi) , (3.19)

• Gaussian observation error, or

pHi(xi) (yi) = N (yi;hi (xi) , Ri) , (3.20)

• deterministic background state, that is to say

pbi−1 (xi−1) = δxbi−1
(xi−1) , (3.21)
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where δxbi−1
is the Dirac delta distribution1 centred in xbi−1.

The last point means that there are no doubts on the state of the system at
the previous time ti−1. Obviously, this is a strong approximation in many
fields and in particular in biogeochemical marine systems.
Substituting equations (3.19) and (3.21) in the second line of (3.18), it results

pfi (xi) =

∫
RN
N (xi;mi (xi−1) , Qi) δxbi−1

(xi−1) dxi−1 = N
(
xi;mi

(
xbi−1

)
, Qi

)
.

(3.22)
Using equations (3.20) and (3.22) in the third line of (3.18), it comes out
that

pai (xi) ∝ N (yi;hi (xi) , Ri)N
(
xi;mi

(
xbi−1

)
, Qi

)
. (3.23)

In order to obtain 3D-VAR equation, it is necessary to choose the mode of
pai as the estimation of xai .
In fact we obtain, from equation (3.23),

xai = mode (pai )

= argmax
xi∈RN

pai (xi)

= argmax
xi∈RN

N (yi;hi (xi) , Ri)N
(
xi;mi

(
xbi−1

)
, Qi

)
and finally

xai = argmin
xi∈RN

Ji (xi) , (3.24)

where

Ji (xi) = (yi − hi (xi))T R−1
i (yi − hi (xi)) +

+
(
xi −mi

(
xbi−1

))T
Q−1
i

(
xi −mi

(
xbi−1

))
. (3.25)

Then, by using this analysis state as background in the next time step (ap-
proximating again the background probability to a Dirac delta and neglecting
the uncertainties), i.e.

xbi = xai ,

the procedure is repeatable.
Since Ji in equation (3.25) is the 3D-VAR error functional appearing in equa-
tion (2.3), while equations (3.24) and (2.4) are the same too, then we have

1With a “little” notation abuse, for non-mathematician readers convenience, the Dirac
delta is here treated like a probability density function, while it is a distribution instead
(namely an element of the dual of the space of the test functions).



CHAPTER 3. BAYESIAN THEORY AND KALMAN APPROACH 22

just obtained the 3D-VAR scheme with the Bayesian formalism.
This means that the hypothesis made in this section characterize the 3D-
VAR, that, summarizing

• assumes normal errors on model and observations (with covariance ma-
trices Q and R),

• uses the mode of the analysis probability distribution as estimation of
the analysis state xai

• and then, in the next step, uses xai as new background state, neglecting
any other information carried by pai .

In particular, the second point presents a quite debatable choice, since the
mean is usually a preferred estimator.
The last point instead is the main weakness of the 3D-VAR, representing a
double drawback: the covariance information is not transferred to next time
step and the uncertainty on the background state is neglected, leading to an
overestimation of the confidence of the model prediction. For that reason, in
3D-VAR real implementations (e.g. [11], [44]), the Qi model error covariance
matrix is usually substituted by a much larger matrix B representing the
system variability.

3.5 Derivation of the Kalman-Filter

In this section, the Kalman-Filter equations are obtained.
Compared with 3D-VAR derivation (Section 3.4), the Kalman-Filter over-
comes all the weaknesses of the variational method by adding the hypothesis
of normal background error. On the other hand, the price is the necessity of
linear operators in order to keep the Gaussian behaviour.
Restarting from equation (3.18)

pbi−1 (xi−1) = pai−1 (xi−1)

pfi (xi) =

∫
RN
pMi(xi−1) (xi) p

b
i−1 (xi−1) dxi−1,

pai (xi) ∝ pHi(xi) (yi) p
f
i (xi) ,

(3.26)

Kalman-Filter equations can be obtained from five assumptions:

• Gaussian model error, or

pMi(xi−1) (xi) = N (xi;mi (xi−1) , Qi) , (3.27)
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• Gaussian observation error, or

pHi(xi) (yi) = N (yi;hi (xi) , Ri) , (3.28)

• Gaussian background error, or

pbi−1 (xi−1) = N
(
xi−1;xbi−1, P

b
i−1

)
, (3.29)

• linear model operator mi, then it holds that

mi (xi−1) = mi

(
xbi−1

)
+Mi

(
xi−1 − xbi−1

)
, (3.30)

where Mi is a N ×N real matrix,

• linear observation operator hi, then it holds that

hi (xi) = hi
(
mi

(
xbi−1

))
+Hi

(
xi −mi

(
xbi−1

))
, (3.31)

where Hi is a n×N real matrix.

Now, using equation (3.30) in (3.27), we obtain

pMi(xi−1) (xi) = N
(
xi;mi

(
xbi−1

)
+Mi

(
xi−1 − xbi−1

)
, Qi

)
which becomes, after a simple change of variable,

pMi(xi−1) (xi) = N
(
xi −mi

(
xbi−1

)
;Mi

(
xi−1 − xbi−1

)
, Qi

)
. (3.32)

Analogously, equation (3.29) can be written

pbi−1 (xi−1) = N
(
xi−1 − xbi−1; 0, P b

i−1

)
. (3.33)

By equations (3.32), (3.33) and Theorem 5, it holds

pMi(xi−1) (xi) p
b
i−1 (xi−1) =

= N
(
xi −mi

(
xbi−1

)
;Mi

(
xi−1 − xbi−1

)
, Qi

)
N
(
xi−1 − xbi−1; 0, P b

i−1

)
= N

(
xi −mi

(
xbi−1

)
; 0, P f

i

)
·

· N
(
xi−1 − xbi−1;P p

i−1M
T
i Q

−1
(
xi −mi

(
xbi−1

))
, P p

i−1

)
, (3.34)

where
P f
i := Qi +MiP

b
i−1M

T
i

and

P p
i−1 :=

(
MT

i Q
−1
i Mi +

(
P b
i−1

)−1
)−1

. (3.35)
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Changing variable again, equation (3.34) becomes

pMi(xi−1) (xi) p
b
i−1 (xi−1) = N

(
xi;mi

(
xbi−1

)
, P f

i

)
N
(
xi−1;xpi−1, P

p
i−1

)
,

(3.36)
where

xpi−1 := xbi−1 + P p
i−1M

T
i Q

−1
i

(
xi −mi

(
xbi−1

))
, (3.37)

and putting it inside the second line of equation (3.26) we obtain

pfi (xi) = N
(
xi;mi

(
xbi−1

)
, P f

i

)∫
RN
N
(
xi−1;xpi−1, P

p
i−1

)
dxi−1,

where the last integral is equal to 1 and vanishes.
Then, finally, the obtained forecast probability is a normal distribution such
that

pfi (xi) = N
(
xi;x

f
i , P

f
i

)
, (3.38)

with
xfi := mi

(
xbi−1

)
. (3.39)

Now, to compute analysis probability, a similar procedure can be adopted,
so, using equations (3.28), (3.31), (3.38) and (3.39) it holds that

pHi(xi) (yi) p
f
i (xi) = N

(
yi;hi

(
xfi

)
+Hi

(
xi − xfi

)
, Ri

)
N
(
xi;x

f
i , P

f
i

)
.

(3.40)
Changing variable and using Theorem 5, it becomes

pHi(xi) (yi) p
f
i (xi) =

= N
(
yi − hi

(
xfi

)
;Hi

(
xi − xfi

)
, Ri

)
N
(
xi − xfi ; 0, P f

i

)
= N

(
yi − hi

(
xfi

)
; 0, P l

i

)
N
(
xi − xfi ;P a

i H
T
i R
−1
i

(
yi − hi

(
xfi

))
, P a

i

)
,

(3.41)

where
P l
i := Ri +HiP

f
i H

T
i (3.42)

and

P a
i :=

(
HT
i R
−1
i Hi +

(
P f
i

)−1
)−1

.

Changing variable in equation (3.41) and substituting it in the third line of
equation (3.26), we obtain

pai (xi) ∝ N
(
yi;hi

(
xfi

)
, P l

i

)
N
(
xi;x

f
i + P a

i H
T
i R
−1
i

(
yi − hi

(
xfi

))
, P a

i

)
.

(3.43)



CHAPTER 3. BAYESIAN THEORY AND KALMAN APPROACH 25

Since the first term in the right hand side of the last expression is not de-
pending on xi, then it is just a constant factor and it is not relevant for the
proportional relation. So,

pai (xi) ∝ N
(
xi;x

f
i + P a

i H
T
i R
−1
i

(
yi − hi

(
xfi

))
, P a

i

)
.

Finally, since the right hand side is already normalized, then the equality
holds, and the analysis probability is

pai (xi) = N (xi;x
a
i , P

a
i ) ,

with
xai := xfi + P a

i H
T
i R
−1
i

(
yi − hi

(
xfi

))
.

All together, Kalman-Filter equations are{
pfi (xi) = N

(
xi;x

f
i , P

f
i

)
,

pai (xi) = N (xi;x
a
i , P

a
i ) ,

with {
P f
i = Qi +MiP

b
i−1M

T
i ,

xfi = mi

(
xbi−1

)
,

(3.44)

and  P a
i =

(
HT
i R
−1
i Hi +

(
P f
i

)−1
)−1

,

xai = xfi + P a
i H

T
i R
−1
i

(
yi − hi

(
xfi

))
.

(3.45)

Obviously, in the next time step, the computed analysis mean and covariance
can be used as background, i.e.{

P b
i = P a

i ,
xbi = xai .

Summarizing, the Kalman-Filter:

• starts from the same Gaussianity hypothesis of the 3D-VAR, adding
background normal behaviour,

• needs linear operators,

• uses the mean as estimator,

• does not need any approximation to start the following time step.
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In particular, the last two points mean that the Kalman-Filter is able to fully
track the probability distributions involved at every time step, taking into
account all the previous data without any loss of information.
Due to these features, Kalman-Filter approach seems very appealing com-
pared with 3D-VAR. However, to make it viable in big complex systems, it
is necessary to deal with two problems: hardly manageable huge covariance
matrices and linear operators.
As a side note, it is interesting to observe that xpi−1, P p

i−1 and P l
i , appearing

in equations (3.35), (3.37) and (3.42), have a particular meaning (even if
they are not used in the final Kalman-Filter expressions). The top right “p”
is for “previous”, and is related with propagation of probabilities backward
in time, while “l” is for “likelihood”, and quantifies how well data fit in the
system. These subjects will be developed in details in Sections 5.2, 5.3 and
7.1.
Coming back to Kalman-Filter and summarizing, this method focus on Gaus-
sian probabilities and tracks step by step the mean and the covariance matrix
of the state, taking into account all the previous data without loss of infor-
mation.



Chapter 4

From Kalman to SEIK

In geoscience, when working with forecasts in big complex systems, compu-
tational time is an important factor to take into account. Furthermore, the
models usually are far from linearity.
As seen in Section 3.5, Kalman-Filter assumes linearity, and works with co-
variance matrices of side N , the dimension of the state vector, that can be
of the order of 106 or even more. Matrices like that are near to be computa-
tionally untreatable, even for the most recent HPC systems.
Thus, it is necessary to stretch the Kalman-Filter hypothesis in order to
not exclude non-linear systems, and find a way to make it computationally
feasible. This chapter presents some Kalman-Filter evolution developed in
literature to face these weaknesses.

4.1 Extended Kalman-Filter

Probably the first idea that comes to mind about non-linearity is to try lin-
earising. The Extended Kalman-Filter method ([23]) substitute the linear
assumption of Equations (3.30) and (3.31) with a linear approximation. Sec-
tion 3.5 is already conveniently written to fit with this interpretation, and
there are no differences in the derivation or in the final equations, a part from
the meaning of Mi and Hi, that does no more exactly represent the respective
operators. In fact, if Mi and Hi are considered the Jacobian matrices of mi

and hi in the background and forecast states respectively, equations (3.30)
and (3.31) becomes the first order Taylor expansion of model and observation
operators around xbi−1 and mi

(
xbi−1

)
.

The idea of linearising around the background state (and its evolution) is
an understandable decision as, hopefully, xi−1 should be quite near to its
estimation xbi−1 and the same should hold for xi and mi

(
xbi−1

)
.

27
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However, since we are working with normal distributions, xi−1 can potentially
be at an arbitrary distance from xbi−1, with a bigger or smaller probability
depending on the form of P b

i−1. Then, it can be possible that this linearisa-
tion fails to well approximate the operator.
This subject is better discussed in Section 4.5, and further developed in Sec-
tion 5.1.
The Extended Kalaman-Filter then propose a possible solution to the lin-
earity Kalman-Filter issue. In order to overcome the big dimension problem
instead, a further improvement is needed. The following two sections provide
useful elements to develop the SEIK filter, namely the evolution of the Ex-
tended Kalman-Filter capable of handle the big covariance matrices involved.

4.2 Dimensionality Reduction

The main idea behind the reduction of the dimension of the problem is that,
often, the whole space Xi ∼= RN is much larger than the subset of the sys-
tem states with a realistic meaning. For example, in oceanography, the state
where the whole ocean is at a temperature of 50◦C it is not realistic (at least
in a not apocalyptic scenario) and will never be computed, but it is still
included in Xi, “wasting dimensions”.
The number of the realistic states is often much smaller compared with the
whole space, and, mathematically speaking, they can be mapped, up to a
certain precision, with a manifold of dimension r � N .
Without going too deeply into geometrical details, if a state xi−1 and its
estimation xbi−1 (both of them chosen inside the above r-dimensional mani-
fold) are not too far one from each other, the error vector xi−1− xbi−1 can be
projected bijectively in a r-dimensional euclidean space Rr.
Following this reasoning, the covariance matrix P b

i−1, that “encodes” the
information about which directions are more affected by the error, can be
approximated by a rank r matrix by keeping only the information about the
r more significant directions, or, equivalently, by projecting the error in a
r-dimensional subspace.
At this purpose, next section will present (in a very fast and not detailed
way) the Principal Component Analysis technique, that is the standard way
to “decode” covariance matrices.
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4.3 Principal Component Analysis

Principal Component Analysis (PCA) is a well known classical data analysis
method (see for example [2]). This section includes a brief presentation of
the relevant parts.
Given two independent scalar variables z1 and z2 with Gaussian behaviour,

p (z1) = N
(
z1; a1, σ1

2
)
,

p (z2) = N
(
z2; a2, σ2

2
)
,

their joint probability is obtained by the product of their density functions

p (z1, z2) = N
(
z1; a1, σ1

2
)
N
(
z2; a2, σ2

2
)
.

The previous equation can easily be rewritten in vectorial form:

p (z) = N (z; a,D) ,

where

z =

(
z1

z2

)
,

a =

(
a1

a2

)
,

D =

(
σ1

2 0
0 σ2

2

)
.

Thus, independent variables have a diagonal covariance matrix, and vice
versa.
Starting from a general N×N covariance matrix P , the Principal Component
Analysis method decomposes P in independent components, such that the
first one has the maximum variance, the second one the maximum residual
variance and so on so forth.
This can be obtained by the factorization

P = ΩDΩT

where Ω is an orthogonal matrix and D is a diagonal matrix with decreasing
positive eigenvalues λi into the diagonal. Such decomposition always exists
because P is symmetric and positive-definite.
In this way, using the change of variable

z = ΩTx,
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the following equation holds:

N (x; a, P ) = N
(
x; a,ΩDΩT

)
= N

(
z; ΩTa,D

)
,

and then

N (x; a, P ) = N
(
z1; b1, σ1

2
)
· . . . · N

(
zN ; bN , σN

2
)
, (4.1)

with
σi

2 = λi,∀i ∈ {1, . . . , N}

and

b =

 b1
...
bN

 = ΩTa.

Thus, the columns of Ω represents an orthonormal system of coordinates that
can be used to split the N -dimensional Gaussian distribution associated to
P in N independent scalar normal variables, with decreasing variance.
Now, in order to reduce the dimension of the Gaussian at the left hand side
of equation (4.1), we can forget the uncertainty of the last N − r variables at
the right hand side (the ones with the smallest variance), substituting their
normal distributions with the limit for σi going to 0, namely the Dirac delta
δbi (zi).
That is to say that

N (x; a, P ) ≈ N
(
z̃; b̃, A

)
,

where the N -dimensional Gaussian at the left had side is approximated with
an r-dimensional one via the embedding

Rr −→ RN

z̃ 7−→ x = Lz̃,

with

z̃ =

 z1
...
zr

 ,

b̃ =

 b1
...
br

 ,
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A =


σ1

2 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 σr

2


and L is the N × r matrix made by the first r columns of Ω.
Analogously, it can be written

N (x; a, P ) ≈ N
(
x; a, LALT

)
,

where, forgiving the more permissive notation, the right hand side covariance
matrix is a N ×N singular matrix of rank r.
Thanks to this approximation, most of the costly operation can be pro-
jected and easily executed in the r-dimensional space, as long as r is small
enough. In particular, next section presents how to manage the huge Ex-
tended Kalman-Filter matrices, starting by a decomposition that can be
eventually obtained by the PCA method.

4.4 The SEEK Filter

The Singular Evolutive Extended Kalman-Filter ([38]), or SEEK, responds to
the needing of a computationally feasible version of the Extended Kalman-
Filter. Thus, instead of working with a full rank background covariance
matrix, it uses a singular rank r matrix in the decomposed form

P b
i−1 = Li−1A

b
i−1L

T
i−1, (4.2)

where Abi−1 and Li−1 are a r × r and a N × r full rank matrices, with Abi−1

symmetric positive-definite.
By equation (4.2), the Extended Kalman-filter forecast covariance matrix in
the first line of equations (3.44) becomes

P f
i = Qi +MiLi−1A

b
i−1L

T
i−1M

T
i = Qi + LiA

b
i−1L

T
i , (4.3)

where
Li = MiLi−1.

If Mi is not singular (which is a very weak request in geoscience models,
because processes can usually be integrated backward in time), then Li keeps
the rank of Li−1 and its columns are a system of linearly independent vectors
that generates an r-dimensional subspace called L ⊆ RN .
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Now, to keep working with rank r matrices, it is necessary to approximate
Q.
At this purpose, Pham propose ([38]) to use

Qi ≈ Li
(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
LTi ,

that represents an orthogonal projection sending the model error into the
subspace L, as can be proved by Corollary 9, here presented after some
preparatory results. A reader not interested into mathematical details can
go directly to equation (4.14).

Lemma 6. Let U, V and A be real matrices of dimensions n×m, n× l and
n× n respectively. If A is symmetric and positive-definite and

Ω =

 U V

 (4.4)

is an orthogonal matrix, then the following equation holds

(Ux+ V y)T A−1 (Ux+ V y) =

=
(
x+BUTA−1V y

)T
B−1

(
x+BUTA−1V y

)
+ yT

(
V TAV

)−1
y,

where x ∈ Rm, y ∈ Rl and

B :=
(
UTA−1U

)−1
. (4.5)

Proof. Due to the symmetry of A,

(Ux+ V y)T A−1 (Ux+ V y) = xTUTA−1Ux+ 2xTUTA−1V y+ yTV TA−1V y,
(4.6)

Using definition (4.5) and completing the square, it holds that

xTUTA−1Ux+ 2xTUTA−1V y = xTB−1x+ 2xTB−1BUTA−1V y

=
(
x+BUTA−1V y

)T
B−1

(
x+BUTA−1V y

)
− yTV TA−1UBUTA−1V y.

(4.7)

Using equation (4.6) in (4.7), to complete the proof it is sufficient to prove
that

V TA−1V − V TA−1UBUTA−1V =
(
V TAV

)−1

or, equivalently,

V TA−1V V TAV − V TA−1U
(
UTA−1U

)−1
UTA−1V V TAV = In (4.8)
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From hypothesis (4.4),
UTV = 0 (4.9)

and
In = ΩΩT = UUT + V V T (4.10)

or
V V T = In − UUT . (4.11)

Using equation (4.11), the second term in the left hand side of equation (4.8)
becomes

V TA−1U
(
UTA−1U

)−1
UTA−1V V TAV =

=V TA−1U
(
UTA−1U

)−1
UTA−1AV−

− V TA−1U
(
UTA−1U

)−1
UTA−1UUTAV

=V TA−1U
(
UTA−1U

)−1
UTV−

− V TA−1UUTAV

and finally, by equation (4.9),

V TA−1U
(
UTA−1U

)−1
UTA−1V V TAV = −V TA−1UUTAV. (4.12)

Then, equation (4.8) can be proved using equations (4.12) and (4.10),

V TA−1V V TAV − V TA−1U
(
UTA−1U

)−1
UTA−1V V TAV =

=V TA−1V V TAV + V TA−1UUTAV = V TA−1
(
V V T + UUT

)
AV

=V TV = In,

where last equivalence comes from hypothesis (4.4).

Corollary 7. Let U and V be matrices of dimensions n×m and n× l respec-
tively. Furthermore, let A,P be symmetric positive-definite n × n matrices
such that

ΩTPΩ = In,

where

Ω =

 U V

 .

Then the following equation holds

(Ux+ V y)T A−1 (Ux+ V y) =

=
(
x+BUTA−1V y

)T
B−1

(
x+BUTA−1V y

)
+ yT

(
V TPAPV

)−1
y,
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where x ∈ Rm, y ∈ Rl and

B :=
(
UTA−1U

)−1
.

Proof. Since P is symmetric positive-definite, Silvester’s Theorem ensures
that exists a decomposition

P = CTC,

for some n× n matrix C.
Thus,

U ′ := CU,

V ′ := CV,

and
A′ := CACT

satisfy the hypothesis of Lemma 6, that can be used to obtain the thesis. In
fact

(Ux+ V y)T A−1 (Ux+ V y) =

= (Ux+ V y)T CT
(
CT
)−1

A−1C−1C (Ux+ V y)

= (U ′x+ V ′y)
T
A′
−1

(U ′x+ V ′y)

=
(
x+BU ′

T
A′
−1
V ′y
)T

B−1
(
x+BU ′

T
A′
−1
V ′y
)

+ yT
(
V ′

T
A′V ′

)−1

y

=
(
x+BUTA−1V y

)T
B−1

(
x+BUTA−1V y

)
+ yT

(
V TPAPV

)−1
y,

with

B =
(
U ′

T
A′
−1
U ′
)−1

=
(
UTA−1U

)−1
.

Theorem 8. Let U and V be matrices of dimensions n×m and n× l respec-
tively. Furthermore, let A,P be symmetric positive-definite n × n matrices
such that

ΩTPΩ = In,

where

Ω =

 U V

 .

Then

N (Ux+ V y;Ua+ V b,A) =

= N
(
x; a−BUTA−1V (y − b) , B

)
N
(
y; b, V TPAPV

)
,
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where x, a ∈ Rm, y, b ∈ Rl and

B :=
(
UTA−1U

)−1
.

Proof. It comes easily from Corollary 7.

Corollary 9. The projection of a Gaussian is a Gaussian. Furthermore, if
x, a ∈ Rm and y, b ∈ Rl are real vectors, U and V are matrices of dimensions
n×m and n× l respectively, and A,P are symmetric positive-definite n× n
matrices such that

ΩTPΩ = In,

where

Ω =

 U V

 ,

then the projection of the Gaussian N (Ux+ V y;Ua+ V b,A) into the sub-
space generated by the columns of V , along the direction parallel to the sub-
space generated by the columns of U , is N

(
y; b, V TPAPV

)
.

Proof. Starting from Theorem 8, it is sufficient to integrate over x.

Now we can use Corollary 9 to compute an approximation of Q through
its orthogonal projection into L. To do so, let V be an N × r matrix with
orthonormal columns that are a base for L, thus

Li = V B (4.13)

for some r × r invertible matrix B.
Such base can be completed to become an orthonormal base of RN , and let
U be the matrix containing the missing N − r vectors, so

Ω =

 U V

 ,

with Ω an N ×N orthogonal matrix.
Then, the projection of the model error into L is an r-dimensional Gaussian
with covariance V TQiV and, namely

N
(
z̃; 0, V TQiV

)
,

where z ∈ Rr are the coordinates in the V base.
Coming back in N dimensions by the V matrix, Qi can be approximated as

Qi ≈ V V TQiV V
T = LiB

−1
(
BT
)−1

LTi QiLiB
−1
(
BT
)−1

LTi ,
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where last equality comes from equation (4.13).
Finally, by the orthonormality of the columns of V and again from equation
(4.13), we have

Qi ≈ Li
(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
LTi . (4.14)

Before to continue, note that this approximation is potentially very distant
from the true value of Q, since there are no reasons for the model error to be
mainly included into L. Handling this problem is part of the original work
of this thesis and it will be discussed in details in Section 5.2.
Let’s now proceed by using (4.14) in equation (4.3), obtaining

P f
i ≈ Li

(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
LTi + LiA

b
i−1L

T
i = LiA

f
i L

T
i ,

with
Afi :=

(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
+ Abi−1. (4.15)

Said with a probabilistic notation, it is

pfi (xi) = N
(
xi;x

f
i , P

f
i

)
≈ N

(
z; 0, Afi

)
, (4.16)

where z ∈ Rr are the coordinates in the base Li, i.e.

Rr −→ RN

z 7−→ xi = Liz + xfi .
(4.17)

Now, using the approximation in equation (4.16) and the change of variable
(4.17) in equation (3.40), it becomes

pHi(xi) (yi) p
f
i (xi) = N

(
yi;hi

(
xfi

)
+HiLiz, Ri

)
N
(
z; 0, Afi

)
and, using Theorem 5 as done in Section 3.5, equation (3.43) becomes

pai (xi) ∝ N
(
yi;hi

(
xfi

)
, Ali

)
N
(
z;Aai (HiLi)

T R−1
i

(
yi − hi

(
xfi

))
, Aai

)
,

where
Ali := Ri +HiLiA

f
i (HiLi)

T

and

Aai :=

(
(HiLi)

T R−1
i HiLi +

(
Afi

)−1
)−1

.

After a normalization and using embedding (4.17) to come back to RN , we
have

pai (xi) ≈ N
(
xi;x

f
i + LiA

a
i (HiLi)

T R−1
i

(
yi − hi

(
xfi

))
, LiA

a
iL

T
i

)
.
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Then, summarizing, the SEEK reduces the dimension of the problem, approx-
imating the covariance with a low rank matrices that can be easily managed
in term of a base Li and a reduced dimension covariance Ai.
The final equations are{

pfi (xi) ≈ N
(
xi;x

f
i , LiA

f
i L

T
i

)
,

pai (xi) ≈ N
(
xi;x

a
i , LiA

a
iL

T
i

)
,

with 
Li = MiLi−1,

Afi =
(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
+ Abi−1,

xfi = mi

(
xbi−1

)
,

(4.18)

and  Aai =

(
(HiLi)

T R−1
i HiLi +

(
Afi

)−1
)−1

,

xai = xfi + LiA
a
i (HiLi)

T R−1
i

(
yi − hi

(
xfi

))
.

(4.19)

Hugely reducing the computational cost of the Extended Kalman-Filter, the
SEEK-Filter is able to overcome both the weaknesses of the Kalman-Filter,
namely its linearity and big dimension matrices.
However new problems appeared. First of all, linearisation can lead to big
errors in chaotic systems with high uncertainty, as pointed in Section 4.1.
Secondly, the approximation of the model error by equation (4.14) is far from
sharpness.
Lastly, Mi and Hi, the Jacobian matrices of the operators, are needed at
every step of the algorithm and their computation, in particular of Mi, can
be quite burdening.
The next section propose a solution for the first and the last of the above
SEEK weaknesses. The second one instead will be discussed in details later
in Section 5.2.

4.5 Ensemble Data Assimilation and the SEIK

Filter

Extended Kalman-Filter and SEEK, when used in fast changing chaotic sys-
tems, can lead to big errors and even divergences (see [30]).
A simple example can help to clarify the situation. If the model operator mi

changes slowly around the centre xbi−1 of the linearisation, then the linear ap-
proximation fails only if xi−1 is far from xbi−1. If the variance σ2 of the model
error is small, then the probability of being far from the background state
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decreases exponentially with distance, taking under control the linearisation
error.
On the other hand, in case of higher uncertainty (i.e. big σ2), the probability
of being far enough is not negligible and, if the model has a more chaotic
behaviour and the approximation works well only in a very small region, then
the linearisation error can explode.
In order to avoid similar situations, the Singular Evolutive Interpolated
Kalman-Filter ([37]), or SEIK, instead of approximating the operator mi,
approximate directly the Gaussian distribution with a discrete probability
function. The ensemble of points with non-zero probability can be evolved
via the mi operator without the need of a linearisation.
Before entering into the details of SEIK, it is useful to spend a few words on
the concept of Ensemble Data Assimilation. This topic encompass all those
strategies that use, evolve and operate over a set of system states, instead
of just one, in order to obtain a better estimation of the real state of the
system.
The improvements in information technologies and the development of large
clusters of computers for parallel computation acted as propellent for ensem-
ble methods, that are naturally suited for parallelization. For this reason, a
lot of interest has grown around ensembles in the last decades as well as the
number of algorithms based on them. In particular, both SEEK and SEIK
filters are ensemble methods, and well fit with the modern calculus infras-
tructures.
To understand why SEEK is considered an ensemble filter, it is sufficient to
observe the first line of equation (4.18), i.e.

Li = MiLi−1. (4.20)

The matrices Li−1 and Li contain the base vectors of the error subspace at
time ti−1 and ti respectively. Then equation (4.20) can be rewritten

lji = Mil
j
i−1,∀j ∈ {1, . . . , r} , (4.21)

with

Li−1 =

 l1i−1 · · · lri−1


and

Li =

 l1i · · · lri

 .
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Adding the third line of equation (4.18) to equation (4.21) we obtain

xfi + lji = mi

(
xbi−1

)
+Mil

j
i−1,∀j ∈ {1, . . . , r} ,

that can be written, for every j ∈ {1, . . . , r},

xji = mi

(
xbi−1

)
+Mi

(
xji−1 − xbi−1

)
, (4.22)

where
xji−1 := xbi−1 + lji−1

and
xji := xfi + lji .

This means that
{
x1
i−1, . . . , x

r
i−1

}
is an ensemble of states picked around the

background state (that is to say, into the r-dimensional affine subspace built
around xbi−1 and containing all the possible values of xi−1), that evolve via
the linearisation of mi (as can be seen in equation (4.22)) to obtain the en-
semble {x1

i . . . , x
r
i} of states around the forecast state.

Thus, instead of using equation (4.20), the Li matrix can be built by evolving
a certain ensemble of states

{
x1
i−1, . . . , x

r
i−1

}
.

The SEIK algorithm works in a similar manner but, differently from SEEK,
it uses directly mi, instead of its linear approximation, over an ensemble of
wisely chosen states.
Going deeper into SEIK details, it is important to note that the follow-
ing SEIK presentation is an original reworked and expanded version of the
classical algorithm, that it is included as a particular case (namely by choos-
ing identical weights on the second order exact sampling procedure). The
advantage is that, in this form, the algorithm is already prepared for the
modifications presented in the next chapter.
That said, the starting point is the same as SEEK, namely

P b
i−1 = Li−1A

b
i−1L

T
i−1. (4.23)

Abi−1 is the covariance matrix of the background error (in the reduced r-
dimensional subspace) and, by Sylvester’s Theorem, it can be decomposed
as

Abi−1 = CCT , (4.24)

for some real r × r matrix C.
Then, the equation

Abi−1 = CUTUCT ,

remains true for any r̃ × r matrix U , as long as

UTU = Ir. (4.25)
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Thus, U must have orthonormal columns and r̃ ≥ r. Finally, if

v :=

 v1
...
vr̃

 ∈ Rr̃

and

w :=

 v1
2

...
vr̃

2

 ∈ Rr̃, (4.26)

then
Abi−1 = CUTV −1WV −1UCT , (4.27)

where

V :=


v1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 vr̃

 (4.28)

and

W :=


w1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 wr̃

 .

Equation (4.27) can be used to sample an ensemble of weighted points that
has zero mean and covariance Abi−1 by choosing v and U such that

vTv = 1 (4.29)

and
UTv = 0, (4.30)

or, equivalently,  v U

 = Ω, (4.31)

where Ω is a r̃ × (r + 1) matrix with orthonormal columns.
In fact, if the ensemble is made by the r̃ columns of the r × r̃ matrix C̃,
defined as

C̃ := CUTV −1, (4.32)
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and each ensemble member has is probability weight defined by the coordi-
nates of w (that sums to one due to equations (4.29) and (4.26)), then the
weighted ensemble mean is

C̃w = CUTV −1w = CUTv = 0, (4.33)

where the last equivalences come from equations (4.32), (4.28), (4.26) and
(4.30).
Thus, by equations (4.27) and (4.32), the ensemble covariance is

C̃WC̃T = Abi−1. (4.34)

In order to minimize complexity, the number of ensemble members is mini-
mized, that is to say r̃ = r + 1, as can be seen from equation (4.31), where
Ω becomes a square orthogonal matrix.
This sampling technique is called minimum second order exact sampling
([37]) and this subject will be further developed in Section 5.1.
Now, the obtained ensemble can be embedded into the N -dimensional state
space as usual by Li−1, obtaining the Zi−1 matrix

Zi−1 = Li−1C̃, (4.35)

the columns of which have zero weighted mean (by equations (4.33) and
(4.35)) and covariance P b

i−1 (by equations (4.34) and (4.23)).

Finally, by adding to each column vector zji−1 of Zi−1 the background state
xbi−1, we have an ensemble of weighted states that, having same mean and
covariance, approximates pbi−1.
Then, the evolution of the background probability can be approximated by
the evolution of the ensemble: if Xi is the matrix having the evolved ensemble
members as columns, i.e.

Xi =

 mi

(
xbi−1 + z1

i−1

)
· · · mi

(
xbi−1 + zr+1

i−1

)  ,

the ensemble mean (which is chosen to represent the forecast state) is

xfi = Xiw, (4.36)

while the covariance matrix is

ZiWZT
i , (4.37)
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where, calling 1 the filled-by-ones matrix and by equation (4.36),

Zi := Xi − xfi 11×(r+1) = Xi

(
Ir+1 − w11×(r+1)

)
is the N × (r + 1) matrix with columns spanning the r-dimensional error
subspace in RN (in the general case, while some very unlikely corner cases
can produce a smaller dimension). Since Ziw = 0, the matrix is not full rank,
and the first r columns are sufficient to be a base of the above plane, while
the last one can be expressed as function of the previous ones. If Li is the
new base matrix, then

Li = Zi

 Ir

0 · · · 0

 = XiT, (4.38)

with

T :=

 Ir

0 · · · 0

− w11×r. (4.39)

Noting that Li = ZiT , if T ∗ is left inverse of T , with the same property of
Zi, namely T ∗w = 0, then Zi = LiT

∗. Since(
T TW−1T

)−1
T TW−1T = Ir

and
T TW−1w = 0,

then
T ∗ =

(
T TW−1T

)−1
T TW−1

and
Zi = Li

(
T TW−1T

)−1
T TW−1.

Finally, the covariance of equation (4.37) can be written

ZiWZT
i = Li

(
T TW−1T

)−1
T TW−1T

(
T TW−1T

)−1
LTi = Li

(
T TW−1T

)−1
LTi .

Now it is possible to proceed as done in equations (4.3) and (4.15), obtaining

P f
i = Qi + Li

(
T TW−1T

)−1
LTi (4.40)

and
Afi :=

(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
+
(
T TW−1T

)−1
. (4.41)
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In order to obtain the analysis state and its covariance, SEEK algorithm used
4.19, that involves the Jacobian matrix Hi. In the SEIK scheme instead,
the observation operator hi is interpolated by using the ensemble members.
Thus, the HiLi product in equation (4.19) is replaced by YiT , where Yi is the
matrix obtained by applying hi to the columns of Xi.
Summarizing, SEIK equations read{

pfi (xi) ≈ N
(
xi;x

f
i , LiA

f
i L

T
i

)
,

pai (xi) ≈ N
(
xi;x

a
i , LiA

a
iL

T
i

)
,

with 
Li = XiT,

Afi =
(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
+
(
T TW−1T

)−1
,

xfi = Xiw,

and  Aai =

(
(YiT )T R−1

i YiT +
(
Afi

)−1
)−1

,

xai = xfi + LiA
a
i (YiT )T R−1

i

(
yi − hi

(
xfi

))
,

where Xi and Yi are obtained using mi and hi on the ensemble extracted
from pbi−1 by minimum second order exact sampling.
The use of this sampling technique is the main and most important difference
between SEIK and SEEK.
In fact, as proved by Theorem 12 in the next chapter, this produce a second
order approximation of mi, resulting in a better convergence compared with
SEEK’s linearisations.
Note that, differently from mi, hi is only interpolated by the previously used
ensemble, without a dedicated exact sampling procedure.



Chapter 5

Beyond SEIK

The SEIK filter presented in the previous chapter has the good properties
that we were looking for. In fact it joins the advantages of the Kalman-Filter’s
Bayesian approach, greatly avoiding its weaknesses, namely the linearity and
the big dimension problem. This chapter is dedicated to present the original
work made to further improve the skill of the SEIK filter.
First of all, a new sampling method with a higher order of convergence has
been derived.
This has been achieved through the following steps:

• the second order exact sampling is investigated in deeper details and
extended to higher orders,

• increasing the order of convergence results in a higher number of ensem-
ble members (augmenting the computational cost), thus it is necessary
to avoid this drawback,

• the new sampling strategies is obtained by building a minimum second
order exact sample with the following property: the projection of the
ensemble in the lower dimension subspace spanned by the most relevant
PCA components has a higher order of convergence in that subspace.

Then, particular attention will be paid to the model error subject. Nowa-
days, various techniques, falling under the name of “inflation”, are used to
partially take into account model uncertainties. In contrast, some substantial
modifications to SEEK and SEIK algorithms will be presented, obtaining a
filter that accounts for the whole model error, splitting it at every step into a
relevant and a noise-like components. The former will be taken into account
in the forecast, while the latter will be treated as representativeness error
and used to correct the measurement error.

44
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Figure 5.1: Model error and observations. Red line is the model trajectory.
Black line is the true state. Blu dots are observation.

Figure 5.1 shows how the neglected components of the model error can lead
to a representativeness error. The blue dots represents the observations: even
if they are picked near to the reality (black line), they are still far from the
average behaviour evolved by the model.
Finally, a maximum likelihood approach will be used to estimate the model
error directly from data.

5.1 Higher order exact sampling

This section is dedicated to the second order exact sampling technique, and
its generalization.It will be shown that a 2γ-th order exact sampling is able
to approximate the mean of a distribution up to the 2γ-th order and its
variance up to the γ-th order.
Finally, this will be used to build a minimum second order ensemble with
growing order in the most relevant directions.
Let’s start by defining µ

j1,...,jγ
γ , the centred moment tensor of order γ of a

random variable x ∈ Rn with probability density function p (x):

∀j1, . . . , jγ ∈ {1, . . . , n} , µj1,...,jγγ :=

∫
Rn

(xj1 − x̄j1) · · ·
(
xjγ − x̄jγ

)
p (x) dx,

(5.1)
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with

x =

 x1
...
xn


and

x̄ =

 x̄1
...
x̄n

 = meanx =

∫
Rn
xp (x) dx.

Analogously, if x has a discrete distribution with weights w1, . . . , wr on the
points x1, . . . , xr, then

∀j1, . . . , jγ ∈ {1, . . . , n} , µj1,...,jγγ =
r∑
l=1

(
xlj1 − x̄j1

)
· · ·
(
xljγ − x̄jγ

)
wl, (5.2)

with

xl =

 xl1
...
xln

 ,∀l ∈ {1, . . . , r}

and

x̄ =

 x̄1
...
x̄n

 = meanx =
n∑
l=1

xlwl.

Lemma 10. Let f : Rn −→ R be an operator such that

f (x) =

γ∑
ξ=0

n∑
j1,...,jξ=1

f
j1,...,jξ
ξ (xj1 − x̄j1) · · ·

(
xjξ − x̄jξ

)
, (5.3)

where f
j1,...,jξ
ξ real tensor for every ξ ∈ {1, . . . , γ},

x =

 x1
...
xn

 ,

x̄ =

 x̄1
...
x̄n

 =

∫
Rn
xp (x) dx,
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and p (x) is a probability density function with mean x̄.
Then, the mean f̄ is

f̄ =

∫
Rn
f (x) p (x) dx =

γ∑
ξ=0

n∑
j1,...,jξ=1

f
j1,...,jξ
ξ µ

j1,...,jξ
ξ , (5.4)

where µ
j1,...,jξ
ξ is the centred moment tensor of order ξ of p (x).

Proof. By equation (5.3), the mean f̄ can be written∫
Rn
f (x) p (x) dx =

=

∫
Rn

γ∑
ξ=0

n∑
j1,...,jξ=1

f
j1,...,jξ
ξ (xj1 − x̄j1) · · ·

(
xjξ − x̄jξ

)
p (x) dx

=

γ∑
ξ=0

n∑
j1,...,jξ=1

f
j1,...,jξ
ξ

∫
Rn

(xj1 − x̄j1) · · ·
(
xjξ − x̄jξ

)
p (x) dx

and equation (5.4) is obtained by definition (5.1).

Corollary 11. Let f, g : Rn −→ R be operators such that

f (x) =

γ∑
ξ=0

n∑
j1,...,jξ=1

f
j1,...,jξ
ξ (xj1 − x̄j1) · · ·

(
xjξ − x̄jξ

)
(5.5)

and

g (x) =

γ∑
ξ=0

n∑
j1,...,jξ=1

g
j1,...,jξ
ξ (xj1 − x̄j1) · · ·

(
xjξ − x̄jξ

)
, (5.6)

where f
j1,...,jξ
ξ and g

j1,...,jξ
ξ real tensors for every ξ ∈ {1, . . . , γ},

x =

 x1
...
xn

 ,

x̄ =

 x̄1
...
x̄n

 =

∫
Rn
xp (x) dx,



CHAPTER 5. BEYOND SEIK 48

and p (x) is a probability density function with mean x̄.
Then, the covariance between f and g is∫

Rn

(
f (x)− f̄

)
(g (x)− ḡ) p (x) dx =

=

2γ∑
ξ=0

min{ξ,γ}∑
ξ′=0

n∑
j1,...,jξ=1

f
j1,...,jξ′

ξ′ g
jξ′+1,...,jξ
ξ−ξ′

(
µ
j1,...,jξ
ξ − µj1,...,jξ′ξ′ µ

jξ′+1,...,jξ
ξ−ξ′

)
, (5.7)

where µ
j1,...,jξ
ξ is the centred moment tensor of order ξ of p (x) and f̄ and ḡ

are the means of f and g, i.e.

f̄ =

∫
Rn
f (x) p (x) dx, (5.8)

ḡ =

∫
Rn
g (x) p (x) dx. (5.9)

Proof. By equations (5.8) and (5.9), the covariance between f and g can be
written∫

Rn

(
f (x)− f̄

)
(g (x)− ḡ) p (x) dx =

=

∫
Rn
f (x) g (x) p (x) dx− f̄

∫
Rn
g (x) p (x) dx− ḡ

∫
Rn
f (x) p (x) dx+

+ f̄ ḡ

∫
Rn
p (x) dx

=

∫
Rn
f (x) g (x) p (x) dx− f̄ ḡ.

(5.10)

By equations (5.5) and (5.6), it holds that∫
Rn
f (x) g (x) p (x) dx =

=

∫
Rn

γ∑
ξ=0

γ∑
ξ′=0

n∑
j1,...,jξ=1

n∑
j′1,...,j

′
ξ′=1

f
j1,...,jξ
ξ g

j′1,...,j
′
ξ′

ξ′ ·

· (xj1 − x̄j1) · · ·
(
xjξ − x̄jξ

) (
xj′1 − x̄j′1

)
· · ·
(
xj′

ξ′
− x̄j′

ξ′

)
p (x) dx
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and, by changing indices and using definition (5.1),∫
Rn
f (x) g (x) p (x) dx =

=

2γ∑
ξ=0

min{ξ,γ}∑
ξ′=0

n∑
j1,...,jξ=1

f
j1,...,jξ′

ξ′ g
jξ′+1,...,jξ
ξ−ξ′

∫
Rn

(xj1 − x̄j1) · · ·
(
xjξ − x̄jξ

)
p (x) dx

=

2γ∑
ξ=0

min{ξ,γ}∑
ξ′=0

n∑
j1,...,jξ=1

f
j1,...,jξ′

ξ′ g
jξ′+1,...,jξ
ξ−ξ′ µ

j1,...,jξ
ξ .

(5.11)

Furthermore, by Lemma 10,

f̄ ḡ =

γ∑
ξ=0

γ∑
ξ′=0

n∑
j1,...,jξ=1

n∑
j′1,...,j

′
ξ′=1

f
j1,...,jξ
ξ g

j′1,...,j
′
ξ′

ξ′ µ
j1,...,jξ
ξ µ

j′1,...,j
′
ξ′

ξ′

=

2γ∑
ξ=0

min{ξ,γ}∑
ξ′=0

n∑
j1,...,jξ=1

f
j1,...,jξ′

ξ′ g
jξ′+1,...,jξ
ξ−ξ′ µ

j1,...,jξ′

ξ′ µ
jξ′+1,...,jξ
ξ−ξ′ ,

(5.12)

where the last equality has been obtained by rearranging the indices.
Finally, equation (5.7) can easily be obtained by equations (5.10), (5.11) and
(5.12).

Theorem 12. Let f : Rn −→ Rm be a polynomial operator of degree γ and
let x, x′ ∈ Rn be two random variable with same mean and centred moment
tensors up to the γ-th order.
Then, the random variables f (x) and f (x′) have the same mean.
Furthermore, if x, x′ have the same centred moment tensors up to the 2γ-th
order, then f (x) and f (x′) have the same covariance matrix.

Proof. It comes easily from Lemma 10 and Corollary 11.

Theorem 12 proves that, approximating a probability density function
p (x) with a discrete weighted ensemble having same mean and centred mo-
ment tensors up to a certain order γ is enough to obtain the exact mean of
the γ-th order Taylor expansion of an operator f applied to x (or the exact
covariance of the γ

2
-th order Taylor expansion of f).

This explains why second order exact sampling performs better than a simple
linearisation and, on the other hand, this is a motivation to further exploit
higher moments.
A general way to sample an ensemble with given mean and moments is to
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solve a non-linear system of equations. Looking at equation (4.24), the C
matrix can be intended as a change of variable leading to a standardised
normal distribution with covariance Ir:

Abi−1 = CIrC
T

and the procedure used for the second order exact sampling is a way to
sample points with zero mean and same second order centred moment (i.e.
covariance) of this standardised Gaussian. In fact, equations from (4.25) to
(4.31) imply (

UTV −1
)
w = 0

and (
UTV −1

)
W
(
UTV −1

)T
= Ir.

In order to guarantee higher order convergence, it is sufficient to impose
centred moment equivalence conditions (say up to order γ) using equation
(5.2)

∀ξ ∈ {2, . . . , γ} , j1, . . . , jξ ∈ {1, . . . , r} ,
r̃∑
l=1

zlj1 · · · z
l
jξ
wl = µ

j1,...,jξ
ξ ,

where
zlj = ul,jvl

−1

and ul,j is the element of U in the l-th row and j-th column.
All together, the non-linear system to be solved is

vTv = 1,
UTv = 0,

∀ξ ∈ {2, . . . , γ} , j1, . . . , jξ ∈ {1, . . . , r} ,
r̃∑
l=1

ul,j1 · · ·ul,jξv
2−ξ
l = µ

j1,...,jξ
ξ ,

(5.13)
where the centred moment tensors value are defined by the following lemma.

Lemma 13. Let x ∈ Rn, k ∈ Nn be a vector and a multi-index such that

x =

 x1
...
xn


and

k =

 k1
...
kn

 .
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Then∫
Rn
x1

k1 · · ·xnknN (x; 0, In) dx =

=


0, if any index in k is an odd number;

k1!
√

2
k1 (k1

2
!
) · · · kn!

√
2
kn (kn

2
!
) , otherwise.

Proof. Since, splitting the Gaussian in its unidimensional components,∫
Rn
x1

k1 · · ·xnknN (x; 0, In) dx =
n∏
i=1

∫
Rn
xi
kiN (xi; 0, 1) dxi,

it is sufficient to prove the Lemma in one dimension.
Let k ∈ N be a non negative integer and fk : R −→ R function such that

fk (x) =
1√
2π
xke−

1
2
x2 .

If k is an odd number, fk is an odd function, i.e.

fk (−x) = −fk (x) ,∀x ∈ R,

and its integral is zero.
If k = 0, then f0 is the Gaussian and integrates to 1.
Finally, if k = 2α is an even positive number, then, integrating by parts,∫

R
f2α (x) dx =

∫
R
x2α−1 · 1√

2π
xe−

1
2
x2dx = (2α− 1)

∫
R
f2(α−1) (x) dx,

and, by induction over α,∫
R
f2α (x) dx = 1 · 3 · . . . · (2α− 1) =

(2α)!

2α (α!)
.

However, a trick can be used to reduce the complexity of system (5.13).
Since the mean and all the odd-order moment tensors of a symmetric distri-
bution (as a zero-mean-Gaussian is) are zero (it can be easily proved as done
in Lemma 13), it is sufficient to impose the equivalence on the even moments
and then symmetrise the ensemble. Furthermore, adding 0 ∈ Rr as ensemble
member, it is not necessary to care about the weights summing to one, as all
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the missing weight can be given to the 0 member.
Then, solving the system{
∀ξ ∈ {1, . . . , γ} , j1, . . . , j2ξ ∈ {1, . . . , r} ,

r̃∑
l=1

ul,j1 · · ·ul,j2ξv
2−2ξ
l = µ

j1,...,j2ξ
2ξ ,

(5.14)
and then using Ũ and ṽ in place of U and v, such that

Ũ =



1√
2
U

− 1√
2
U

0 · · · 0


(5.15)

and

ṽ =



1√
2
v

1√
2
v

√
1− vTv


, (5.16)

guarantee zero mean and equivalent moment tensors up to order 2γ + 1.
Given the higher number of constrains, the ensemble size r̃ will be higher
then the r + 1 size used in SEIK. This is an unpleasant effect, since the
computational cost of the method is directly connected with the number of
ensemble members.
To avoid this problem, it will be now presented a strategy to sample an
ensemble with high order in the most relevant PCA directions of the back-
ground probability distribution and with smaller order (but not smaller then
two) in the less relevant ones.
We called this procedure “minimum decreasing (2γ + 1)-th order exact sam-
pling”.
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First of all, let’s choose r even, such that

r = 2α.

Then, a PCA decomposition of P b
i−1 is needed. Since, by equations (4.23)

and (4.24),
P b
i−1 = (Li−1C) (Li−1C)T ,

the fastest way is to use a Singular Value Decomposition algorithm (see [17]
for an example) on the (Li−1C) matrix, obtaining the decomposition

Li−1C = ΣΛΩr,

where Σ is a N × r matrix with orthonormal columns, Λ is a diagonal r × r
matrix with decreasing positive eigenvalues on the diagonal and Ωr is a r× r
orthogonal matrix.
Thus, P b

i−1 can be written

P b
i−1 = L̃i−1IrL̃

T
i−1, (5.17)

where
L̃i−1 = ΣΛ.

Decomposition (5.17) says which change of base is needed to go from the
standardized Gaussian covariance matrix Ir to P b

i−1, transforming it along
orthogonal direction and starting from the most important ones. Then, the
identity matrix can be substituted by the usual minimum second order exact
sampling decomposition

Ir = UTV −1WV −1U (5.18)

built in the following way:

1. first, a solution of system (5.14) is computed once and for all and
stocked into U0 and v0 using β and α in place of r and r̃ respectively,
such that β is the maximum integer for which system (5.14) has a
solution (this is to maximize the number of dimensions approximated
with the highest order sampling).

2. When decomposition (5.18) is needed, U0 is multiplied for a random or-
thogonal matrix Ωβ to add stochasticity (actually applying a randomly
rotation and/or symmetry to the ensemble) and then completed to a
α× α orthogonal matrix Ωα,

Ωα =

 U0Ωβ · · ·

 ,



CHAPTER 5. BEYOND SEIK 54

3. Ũ and v are built using the trick above, equations (5.15) and (5.16),
i.e.

Ũ :=



1√
2

Ωα

− 1√
2

Ωα

0 · · · 0


(5.19)

and

v :=



1√
2
v0

1√
2
v0

√
1− v0Tv0


. (5.20)

Note that v is a normalized (r + 1)-dimensional vector and that Ũ has
dimensions (r + 1)× α.

4. Finally, Ũ is completed by minimum second order exact sampling pro-
cedure to obtain the (r + 1)× r matrix U , namely

U =

 Ũ · · ·

 ,

UTv = 0

and
UTU = Ir.

Thus, the ensemble in the columns of
(
UTV −1

)
, with weights w (obtained

by the squares of the coordinates of v as usual), is second order exact, but, if
projected in its first α coordinates, it is third order exact, while it is (2γ + 1)-
th order exact in its first β coordinates.
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Note that if an odd r = 2α + 1 is needed, then it is sufficient to modify
equation (5.19) adding another line of zeros at the bottom, and equation

(5.20) such that the last two coordinates of v squared sum to 1− v0Tv0.

5.2 Accounting for the model error

Usually, working with the model error covariance matrix Q is difficult, be-
cause quantifying it is quite problematic, and (when not directly neglected)
inflation strategies are preferred. These are methods to increase the covari-
ance matrix of an ensemble in order to take partially into account the model
error.
For example, Pham (in [37] and [38]) propose to substitute equation (4.41),
i.e.

Afi :=
(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
+
(
T TW−1T

)−1
.

with a simpler equation, namely

Afi := ρ
(
T TW−1T

)−1
,

where ρ > 1 is a positive number that increases the uncertainty in a constant
multiplicative way.
However, some processes (as in marine biogeochemistry) have not negligible
errors that should be considered more accurately. Thus, in this section, a
novel strategy to take into account Q matrix effects is presented.
Looking back to approximation (4.14),

Qi ≈ Li
(
LTi Li

)−1
LTi QiLi

(
LTi Li

)−1
LTi ,

it was obtained by an orthogonal projection into the state error subspace
spanned by the columns of Li. This expression for Q can be very far from
reality, since there are no reasons for the model error to be mainly included
in such subspace. Then, instead of projecting the error, the main idea is to
split it into two independent components, one along the columns of Li and
one everywhere else. The former is used to correct the forecast covariance
Afi , since it affects the error subspace. The latter is treated as a noise and
accounted as added observation error.
To achieve this result, it is useful look at Theorem 8: if P is chosen equal to
the inverse of A, the two variable x and y become independent. The following
lemma captures the point.
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Lemma 14. Let L and L′ be matrices of dimensions n × m and n × l re-
spectively. Furthermore, let A be symmetric positive-definite n× n matrices
such that

LTA−1L′ = 0. (5.21)

Then

N (Lx+ L′y;La+ L′b, A) =

= N
(
x; a,

(
LTA−1L

)−1
)
N
(
y; b,

(
L′
T
A−1L′

)−1
)
, (5.22)

where x, a ∈ Rm, y, b ∈ Rl.

Proof. This can be proved by Theorem 8, but here a more direct approach
is preferred.
In fact, by hypothesis (5.21),

(Lx+ L′y − (La+ L′b))
T
A−1 (Lx+ L′y − (La+ L′b)) =

= (L (x− a) + L′ (y − b))T A−1 (L (x− a) + L′ (y − b))
= (x− a)LTA−1L (x− a) + (y − b)L′TA−1L′ (y − b)

and equation (5.22) follows by applying exponentials and normalisation.

In the following part, Lemma 14 is applied starting from the SEEK’s
equations first, because they are easier and useful to understand the method.
The exact sampling strategy is later adopted to obtain a SEIK-like counter-
part, with all the benefits of higher order approximation.
Thus, from SEEK’s equation (4.3), namely

P f
i = Qi + LiA

b
i−1L

T
i , (5.23)

it is possible to complete the columns of Li to a base of RN , storing the
missing vectors in the columns of the N × (N − r) matrix L′, such that

LTi Q
−1
i L′ = 0,

and this can always be done thanks to Gram-Schmidt orthonormalisation
algorithm (obviously, Qi is considered full rank).
Now, by Lemma 14,

Qi =

 Li L′




(
LTi Q

−1
i Li

)−1
0

0
(
L′TQ−1

i L′
)−1




LTi

L′T


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and then
Qi = LiQ

L
i L

T
i + L′QL′L′

T
, (5.24)

where
QL
i =

(
LTi Q

−1
i Li

)−1

and

QL′ =
(
L′
T
Q−1
i L′

)−1

.

The matrix QL
i represent the covariance of the normal distribution obtained

by sectioning the model error Gaussian along the r-dimensional subspace
generated by the columns of Li. On the other hand, QL′ is the covariance
matrix of the residual model error out of that subspace.
Substituting Qi in equation (5.23) with equation (5.24), we obtain

P f
i = LiQ

L
i L

T
i + L′QL′L′

T
+ LiA

b
i−1L

T
i = L′QL′L′

T
+ LiA

f
i L

T
i , (5.25)

where
Afi := Abi−1 +QL

i . (5.26)

Now, to understand what is happening, it is useful to answer the question
“what is the probability to measure yi, given pfi (xi)?”.
Let’s call such probability density function pli (yi), or likelihood probability.
By the law of total probability (Theorem 3) and definition (3.2),

pli (yi) =

∫
RN
p (yi|xi) pfi (xi) =

∫
RN
pHi(xi) (yi) p

f
i (xi)

In the Extended Kalman-Filter (and SEEK) formalism, this equation be-
comes, integrating equation (3.41),

pli (yi) = N
(
yi − hi

(
xfi

)
; 0, P l

i

)
= N

(
yi;hi

(
xfi

)
, P l

i

)
, (5.27)

where
P l
i := Ri +HiP

f
i H

T
i .

The last term in the definition of P l
i represent the covariance of the observa-

tion operator (here linearised) applied to the forecast probability. Replacing
the forecast covariance P f

i by equation (5.25), we have

P l
i = Rl

i +HiLiA
f
i (HiLi)

T , (5.28)

where
Rl
i := Ri +HiL

′QL′L′
T
HT
i . (5.29)
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Thus, Rl
i represents an amplification of the observation error covariance Ri,

caused by the Gaussian noise with covariance QL′ along the unmonitored
(that is to say neglected by the SEEK’s dimensionality-reducing strategy)
subspace spanned by the columns of L′.
This amplification effect can be very strong, in particular when measurements
have low uncertainty and model error is relevant. Not taking it into account
leads to an overestimation of the precision of the observation operator and,
subsequently, to an underestimation of the analysis covariance.
Since L′ dimensions, N × (N − r), can be huge, it is desirable to avoid the
direct calculation. Then, using equation (5.24) in (5.29),

Rl
i = Ri +RQ

i −HiLiQ
L
i (HiLi)

T , (5.30)

where
RQ
i := HiQiH

T
i . (5.31)

The RQ
i matrix has dimensions n×n but, in the most general case, the com-

putational cost of its calculation can be very heavy. However, in most cases,
both Qi and Hi usually have a quite simple form and the matrix product in
equation (5.31) can be highly simplified.
A very simple but common example is when the observation operator repre-
sents some measurements of some system variables in some places. In this
case, Hi is mainly composed by zeros with some sparse ones and QH

i is simply
a sub-matrix of Qi.
Summarizing, to have a SEEK-like algorithm taking into account the noise
effect induced by the model error, it is sufficient to use expression (5.26) for
Afi and substitute Ri with the corrected matrix Rl

i.
Now, to add the exact sampling strategy we proceed as follows.
Starting from SEIK’s forecast covariance equation (4.40), i.e.

P f
i = Qi + Li

(
T TW−1T

)−1
LTi ,

and substituting Qi via equation (5.24), we have

P f
i = LiQ

L
i L

T
i + L′QL′L′

T
+ Li

(
T TW−1T

)−1
LTi = L′QL′L′

T
+ LiA

f
i L

T
i ,

where
Afi :=

(
T TW−1T

)−1
+QL

i .

By Sylvester’s Theorem, QL
i , QL′ and Afi can be factorised as

QL
i = CCT , (5.32)

QL′ = C ′C ′
T

(5.33)
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and
Afi = C ′′C ′′

T
, (5.34)

where C, C ′ and C ′′ are matrices of dimensions r× r, (N − r)× (N − r) and
r × r respectively.
Furthermore, using a Singular Value Decomposition,

LiC
′′ = ΣΛΩr, (5.35)

where Σ is a N × r matrix with orthonormal columns, Λ is a diagonal r × r
matrix with decreasing positive eigenvalues on the diagonal and Ωr is a r× r
orthogonal matrix.
Thus, by equations (5.33) and (5.35), P f

i can be written

P f
i = L′C ′ (L′C ′)

T
+ L̃iL̃

T
i , (5.36)

where
L̃i−1 = ΣΛ. (5.37)

Equation (5.36) is equivalent to

P f
i =

 L̃i L′C ′




Ir 0

0 IN−r




L̃Ti

(L′C ′)T

 (5.38)

and the big matrix in the middle of the right-hand side is the identity matrix
of dimension N .
In order to apply the exact sampling technique, we need to decompose such
matrix but, since we want to preserve the blocks structure, we prefer to work
separately on Ir and IN−r. So we look for factorisations

Ir = UTV −1WV −1U (5.39)

and
IN−r = U ′

T
V ′
−1
W ′V ′

−1
U ′,
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such that

IN =


Ir 0

0 IN−r

 =

=


U 0

0 U ′



T 
V 0

0 V ′



−1
W 0

0 W ′




V 0

0 V ′



−1
U 0

0 U ′


(5.40)

is an exact sampling factorisation.
Note that such factorisation cannot lead to an exact sampling of order higher
then three. In fact, due to the block-structure of the first (or last) matrix
in the right hand side of equation (5.40), any order centred moment tensor
obtained by the ensemble built by this factorisation has zero elements at
positions with indices that are not all smaller then (or equal to) r or not all
bigger then r. Thus, it is impossible to match all the non zero Gaussian’s
forth order moment tensor values, that, by Lemma 13, have the following
property

∀j1, j2 ∈ {1, . . . , N} , µj1,j1,j2,j24 =

{
3, if j1 = j2;

1, otherwise.

Then, the idea is to build U (and the corresponding weights) using a modi-
fied version of the minimum decreasing high order exact sampling algorithm
exposed in Section 5.1 to have a high order exact sampling on the principal
components identified by the columns of L̃i.
U ′ is built by a third order exact sampling instead.
Entering into details, if r = 2α − 1 is an odd number, the algorithm steps
are:

1. Calculate U0, v0, β and Ωα as in the first two points of the minimum
decreasing high order exact sampling algorithm in Section 5.1. Note
that U0, v0 and β are already available as needed to sample the previous
ensemble.
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2. Differently from the third step of the algorithm in Section 5.1, Ũ and
v are defined as

Ũ :=



1√
2

Ωα

− 1√
2

Ωα


and

v :=



1√
2
v0

1√
2
v0


,

with v a (r + 1)-dimensional vector and Ũ matrix with dimensions
(r + 1)× α.

3. The (r + 1)×r matrix U is obtained completing Ũ by minimum second
order exact sampling procedure, namely

U =

 Ũ · · ·

 ,

UTv = 0

and
UTU = Ir.

4. U ′ is any r̃′ × (N − r) third order exact sampling matrix, with square
rooted weights vector ṽ′ ∈ Rr̃′ , where r̃′ is a real number. An easy way
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to build them, with r̃′ = 2 (N − r), is

U ′ =



1√
2

ΩN−r

− 1√
2

ΩN−r


and

ṽ′ =
1

2 (N − r)
12(N−r)×1,

where ΩN−r is a random orthogonal (N − r)× (N − r) matrix.

5. Finally,

v′ :=
√

1− vTv ṽ′.

If r = 2α is an even number, it is sufficient to add a zero row in the bottom
of Ũ and a random positive number in the bottom of v such that vTv < 1.
Now, using this definitions in equation (5.40), the ensemble obtained is second
order exact, increasing to third order everywhere but on the less significant
components stored in the columns of L̃i, and reaching order (2γ + 1) on the
most relevant β components.
Looking at equations (5.38) and (5.40), such ensemble is built, following the
usual procedure, by summing the mean xfi to each column of the matrix

 L̃i L′C ′




U 0

0 U ′



T 
V 0

0 V ′



−1

,

which is equivalent to sum xfi to the columns of both the matrices

L̃iU
TV −1

and
L′C ′U ′

T
V ′
−1
.

Thus, after applying hi to each ensemble member, the n-dimensional vectors
obtained are stocked into the columns of the matrices Yi and Y ′i respectively,
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with corresponding weights w and w′, obtained by squaring the coordinates
of v and v′.
Then, the mean yli of pli can be calculated as

yli = Yiw + Y ′i w
′, (5.41)

while the covariance expression is

P l
i = Ri + YiWY T

i + Y ′iW
′Y ′i

T − yliyli
T
, (5.42)

where W and W ′ are the usual weight diagonal matrices. Now, note that
U and v (and consequently V and W ) do not lead to an exact sampling de-
composition of Ir because, even if equation (5.39) holds, v is not normalised,
falling to match the centred moment tensor of order zero. On the other hand,
it is sufficient to add a zero row at the bottom of U and the root squared
missing weight at the bottom of v, i.e.

Û :=


U

0 · · · 0


and

v̂ :=


v

√
1− vTv

 ,

to have a good exact sampling decomposition

Ir = ÛT V̂ −1Ŵ V̂ −1Û ,

with V̂ and Ŵ obtained from v̂ as usual.
The added ensemble member, corresponding to the zero line, is the mean xfi ,
that, transformed by hi and added as column of Yi, forms the ensemble Ŷi
with weights ŵ, that is to say

Ŷi :=

 Yi y0
i


and

ŵ :=

 w ψ

 ,
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where
y0
i := hi

(
xfi

)
and

ψ := 1− vTv.
Thus, the mean and covariance of the ensemble Ŷi are

yfi := Ŷiŵ = Yiw + ψy0
i (5.43)

and
Rf
i := ŶiŴ Ŷ T

i − y
f
i y

f
i

T
= YiWY T

i + ψy0
i y

0
i
T − yfi y

f
i

T
(5.44)

respectively. By equations (5.41) and (5.43)

yli = yfi + y′i, (5.45)

where
y′i = Y ′i w

′ − ψy0
i ,

and, using equation (5.45) in (5.42)

P l
i = Ri + YiWY T

i + Y ′iW
′Y ′i

T − yfi y
f
i

T − y′iy′i
T − yfi y′i

T − y′iy
f
i

T
. (5.46)

Finally, by equation (5.44), equation (5.46) becomes

P l
i = Rl

i +Rf
i , (5.47)

where
Rl
i := Ri +R′ −

(
yfi y

′
i
T

+ y′iy
f
i

T
)

(5.48)

and
R′ := Y ′iW

′Y ′i
T − ψy0

i y
0
i
T − y′iy′i

T
.

Thanks to Theorem 12, yfi and Rf
i do not depend (up to a certain order) by

the choice of the exact sample ensemble. Then, Ŷi and ŵ can be replaced by
any other (preferably minimum) ensemble matrix and weights.
Calling Y f

i such ensemble, with corresponding matrices and vectors U f , V f ,
W f , vf and wf , then Rf

i can be written

Rf
i = Y f

i T
(
T TW f−1

T
)−1 (

Y f
i T
)T

,

where T as in SEIK’s equation (4.39).
Finally, equation (5.47) becomes

P l
i = Rl

i + Y f
i T
(
T TW f−1

T
)−1 (

Y f
i T
)T

, (5.49)



CHAPTER 5. BEYOND SEIK 65

where
(
Y f
i T
)

represents the action of hi as in the SEIK algorithm, while(
T TW f−1

T
)−1

is the covariance matrix Afi after a convenient change of

base, in fact, by equations (5.34), (5.35) and (5.37),

LiA
f
i L

T
i = LiC

′′C ′′TLTi = L̃iL̃
T
i = Lai

(
T TW f−1

T
)−1

Lai
T ,

with
Lai = L̃iU

fV f−1
T.

Equation (5.49) is the SEIK-like counterpart of equation (5.28), but the use
of the exact sampling method brought some improvements.
In fact, equation (5.45) says that the mean yfi calculated in the r-dimensional
reduced error subspace must be corrected by y′i in order to better approximate
yli.
Moreover, the correction Rl

i to Ri appears more articulated than in SEEK-
like equations: the first two terms at the right hand side of equation (5.48) is
the exact sampling counterpart of equation (5.29), with R′ representing the
action of the function hi (xi)−h0

i on the noise part of the model error; the last
term instead is a further correction that takes into account the covariance
generated by hi between the two independent parts in which equation (5.24)
splits the model error.
However, as happened in equation (5.29), the primed elements in equations
(5.45) and (5.48) are often too heavy to calculate directly, since Y ′ can have
huge dimensions.
Then, the idea is to follow a strategy similar to the one used for equation
(5.30) but again taking advantage from the exact sampling technique in the
following way.
By equations (5.24), (5.32) and (5.33),

Qi = LiCC
TLTi + L′C ′C ′

T
L′
T
,

that is equivalent to

Qi =

 LiC L′C ′




Ir 0

0 IN−r




(LiC)T

(L′C ′)T

 . (5.50)

Equation (5.50) has the same form of equation (5.38), with the only difference
of LiC in place of L̃i. Thus, any calculation done up to equation (5.48) can be



CHAPTER 5. BEYOND SEIK 66

repeated in order to obtain (with third order agreement) the mean yQi and

covariance RQ
i of hi (xi), with xi following the distribution N

(
xi;x

f
i , Qi

)
instead of pfi (xi) = N

(
xi;x

f
i , P

f
i

)
.

Then, as in equations (5.45), (5.47) and (5.48),

yQi = ŷfi + y′i, (5.51)

RQ
i = R̂f

i +R′ −
(
ŷfi y

′
i
T

+ y′iŷ
fT
i

)
, (5.52)

where the primed element has been left unchanged, while ŷfi and R̂f
i , substi-

tuting yfi and Rf
i , are the mean and covariance of hi (xi), with xi following

the distribution N
(
xi;x

f
i , LiC (LiC)T

)
instead of N

(
xi;x

f
i , L̃iL̃

T
i

)
.

Since, by Theorem 12, yQi and RQ
i are not dependent from the ensemble (up

to a certain order), smart ensembles can be chosen in order to simplify the
calculation. There is not a known general not expensive way to compute
them, but in most cases, the simple form of Qi and hi can be exploited in
order to obtain a fast result (a real example is provided in details in Section
6.4).
Thus, by equations (5.51) and (5.52),

y′i = yQi − ŷ
f
i ,

R′ = RQ
i − R̂

f
i + ŷfi y

′
i
T

+ y′iŷ
fT
i ,

and the primed elements are obtained without using large dimensions matri-
ces, like Y ′.
All together, the obtained filter can be summarized as follows (some names
have been changed a little in order to have a clearer summary):

• U0 and v0 (and consequently v, w, V , W and T ) are prepared as
described in the minimum descending γ-th order exact sampling algo-
rithm in Section 5.1, page 53 and equation (4.39).

• At step i, xbi−1 and P b
i−1, in decomposed form

P b
i−1 = Li−1A

b
i−1Li−1

T ,

are received from the previous step, along with the observation yi and
its covariance Ri at time ti.

• Cb is computed (with an SVD or Cholesky decomposition) such that

Abi−1 = CbCbT ,
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the SVD decomposition

Li−1C
b = ΣbΛbΩb

r

T

is prepared, and U b is randomly generated as U in the minimum de-
scending γ-th order exact sampling algorithm.

• The ensemble in the columns of Xb, i.e.

Xb = Li−1C
bΩb

rU
bTV −1 + xbi−111×(r+1), (5.53)

is evolved via mi, leading to Xf .

• The forecast mean, (reduced) covariance and its base are computed as
follows

xfi = Xfw,

Afi =
(
T TW−1T

)−1
+
(
Li

TQ−1
i Li

)−1
,

and
Li = XfT.

• Cf and Ĉf are computed (with an SVD or Cholesky decomposition)
such that

Afi = CfCf T

and (
Li

TQ−1
i Li

)−1
= Ĉf ĈfT ,

the SVD decompositions

LiC
f = ΣfΛfΩf

r

T

and
LiĈ

f = Σ̂f Λ̂f Ω̂fT
r

are prepared, and U f and ÛQ are randomly generated as U in the
minimum descending γ-th order exact sampling algorithm.

• The operator hi is applied to the ensembles in the columns of X̃f and
X̂f , i.e.

X̃f = LiC
fΩf

rU
f TV −1 + xfi 11×(r+1)

and
X̂f = LiĈ

f Ω̂f
r Û

fTV −1 + xfi 11×(r+1),

obtaining Y f and Ŷ f respectively.
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• The mean yQi and covariance RQ
i of hi (xi), with xi following the dis-

tribution N
(
xi;x

f
i , Qi

)
, are computed with some ad hoc method.

• The likelihood mean and observation covariance are calculated as

yli = yfi + y′i

and
Rl
i = Ri +R′ −

(
yfi y

′
i
T

+ y′iy
f
i

T
)
, (5.54)

where
yfi = Y fw,

y′i = yQi − ŷ
f
i ,

R′ = RQ
i − R̂

f
i + ŷfi y

′
i
T

+ y′iŷ
fT
i ,

ŷfi = Ŷ fw

and
R̂f
i = Ŷ fWŶ fT − ŷfi ŷ

fT
i .

• Finally, the analysis mean and covariance (in decomposed form) are
computed as follows

xai = xfi + Lai Ã
a
i

(
Y fT

)T
Rl
i

−1 (
yi − yli

)
and

P a
i = LiA

a
iLi

T , (5.55)

where
Aai = Γfi Ã

a
iΓ

f
i

T
,

Ãai =
((
Y fT

)T
Rl
i

−1
Y fT + T TW−1T

)−1

,

Lai = LiΓ
f
i ,

and
Γfi = CfΩf

rU
f TV −1T.

This method has same asymptotic computational cost of the SEIK algorithm,
but higher order of convergence in the approximations of mi and hi.
Furthermore, it takes into account the noise-like effect caused by the model
error, that is completely neglected by the SEIK filter.
However, the drawback is that it cannot be blindly applied to any situation.
In fact, it necessitates of a case by case analytical study, in order to fasten
the computation of yQi and RQ

i , which is otherwise too expensive.
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5.3 Model error estimation

In order to produce a model error (Qi) estimation, a few remarks are needed.
First of all, since Qi evaluates how much the model system is able to repro-
duce reality, it cannot be estimated by the model itself. Instead, a comparison
with (error-affected) observation can give information about the skill of the
model. Thus, a data driven approach is advisable.
However, data information is rarely enough to estimate Qi if the degrees of
freedom are not drastically reduced by some other reasoning, like no corre-
lation between far places, same variance in certain areas, etc.
Furthermore, some kind of temporal connection between the Qi’s is neces-
sary, in order to relate information from the various observation yi.
The simplest solution is to consider Qi constant in time, diagonal with just
one degree of freedom, i.e.

Qi = Q = q2IN , q ∈ R, (5.56)

but many other option can be considered, taking into account that more
degrees of freedom need more data information.
In biogeochemistry, the form proposed in equation (5.56) is a not bad starting
point. In fact, if the system variables are logarithmic concentrations, then
this quantifies the uncertainty of the model as a percentage error, that it is
more desirable in predator-prey dynamics compared to addictive errors.
That said, the approach presented in this section can be adapted for any
chosen Q form, and it is based on a maximum likelihood strategy.
The probability to observe data y0:i can be written

p (y0:i) = pli (yi) p (y0:i−1) , (5.57)

where
pli (yi) := p (yi|y0:i−1)

is the likelihood probability at time ti.
Thus, substituting i by i− 1 in equation (5.57),

p (y0:i−1) = pli−1 (yi−1) p (y0:i−2) , (5.58)

and, using equation (5.58) into (5.57),

p (y0:i) = pli (yi) p
l
i−1 (yi−1) p (y0:i−2) .

Proceeding in the same way, by induction over i, the following identity is
proved:

p (y0:i) = pl0 (y0) · · · pli (yi) . (5.59)
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Then, for any given Q ∈ Q, where Q is the space of all the considered model
error covariance matrices, it is possible to quantify the probability to observe
a certain data series, and the Q that corresponds to the higher probability
is more likely the best approximation of the real model error.
Thus it is possible to write a function f that relates the coordinates of Q
(that is to say degrees of freedom) to the logarithm of the probability in
equation (5.59). For example, if Q depends on one degree of freedom, like in
the above example (equation (5.56)), the function has the form

f (q) = − ln
(
pl0 (y0)

)
− . . .− ln

(
pli (yi)

)
,

where the right hand side likelihood probabilities are calculated using q.
Now, note that f is a positive function, since probabilities cannot be higher
than 1, and, if f can be computed numerically in a closed domain, then it
is possible to minimize it. If q0 is the point where the minimum is reached,
then the corresponding matrix is the maximum likelihood estimation of the
model error covariance.
How to compute the Gaussian approximation

pli (yi) ≈ N
(
yi; y

l
i, P

l
i

)
is already explained in Section 5.2, where the relevant equations for SEEK
and SEIK are (5.27), (5.28), (5.45) and (5.49).
Then, applying the logarithm and omitting multiplicative and addictive con-
stant factors, the logarithm of the likelihood probability can be stored in the
new si variable at every time step, i.e.

si := ln
∣∣P l

i

∣∣+
(
yi − yli

)T
P l
i

−1 (
yi − yli

)
,

where
∣∣P l

i

∣∣ is the determinant of P l
i .

Summarizing, at the cost of filtering one time all the available data, the sum
S of the si’s, i.e.

S =
K∑
i=0

si,

represents an indicator of the goodness of the Q matrix used. Then, any
numerical minimizer (e.g. MATLAB’s fminbnd) can be used to find the best
available covariance matrix Q.



Chapter 6

Experiments

In this chapter, 3D-VAR, SEIK, and improvements to SEIK introduced in
Chapter 5 are tested with a twin-experiment.
The modelled system represents the photic zone of a closed square marine
system, and it is composed by a biogeochemical seven variables Fasham-like
model coupled with a physical advection-diffusion transport model.
The system variables are phytoplankton, zooplankton, bacteria, detritus and
three nutrients, while the physical components, like water velocity, are con-
sidered as forcing.
The twin experiment consists of a simulated reality, from which error-affected
measurements are taken. Then, the Data Assimilation methods are used to
estimate reality from observations, and the skill performance of the different
methods is evaluated.
The rooted mean square distance indicator is used to compare the skill of
the methods.
The results of the experiments indicates that SEIK is greatly superior to
3D-VAR.
The Standard SEIK and the modified (by Sections 5.1 and 5.2) version in-
stead differ in behaviour: while they are near in RMSD values, the latter
presented a higher resilience to divergences induced by a large model error.
Finally, a second twin experiment has been used to test the model error
estimation procedure described in Section 5.3, successfully obtaining values
near to the true ones. The estimations produced by the modified SEIK are
more accurate then the estimations produced by the standard filter. In all
cases, using the estimated parameter induced a slightly better performance,
if compared with the true model error results.

71
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6.1 The biogeochemical model

The biogeochemical model is a seven variables Fasham-like model ([15]), sim-
ulating reactions in the photic zone between phytoplankton (P ), zooplankton
(Z), bacteria (B), detritus (D) and three nutrients, namely nitrate nitrogen
(Nn), ammonium nitrogen (Nr) and labile dissolved organic nitrogen or DON
(Nd). The biogeochemical model per se has no spatial dimensions.
The equations are:

• Phytoplankton concentration P :

dP

dt
= (1− γ) J (Qn +Qr)P −GP − µPP −mP,

where

– γ is the fraction of total net primary production that is exuded
by the phytoplankton as DON.

– J is the light limited grow rate and it depends on the time t.

– Qn + Qr is the nutrient limiting factor. Qn depends on both Nn

and Nr while Qr only depends on Nr:

Qn =
Nne

−ΨNr

Kn +Nn

,

Qr =
Nr

Kr +Nr

,

with K1 and K2 half saturation constants for nitrate and ammo-
nium uptakes respectively, and Ψ a constant parametrizing the
strength of the ammonium inhibition of nitrate uptake.

– GP represents the loss of population due to zooplankton grazing.

– µP is the specific natural mortality factor.

– m parametrizes the diffusive mixing between the photic zone and
the deep layer.

• Zooplankton concentration Z:

dZ

dt
= βPGP + βBGB + βDGD − µZZ − µ∗ZZ,

where
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– GP , GB, GD, represent the zooplankton grazing on phytoplankton,
bacteria and detritus. They all have the same form, e.g. GP can
be written as

GP = gZ
p′PP

KZ + F
,

with g maximum specific grazing rate, KZ is the half saturation
constant for grazing, F = p′PP + p′BB + p′DD is the total food
and the primed elements are measurements of the zooplankton
preferences for the various food types and they depend from the
availability, i.e.

p′P =
pPP

pPP + pBB + pDD

where pP , pB and pD are zooplankton preferences constants.

– βP , βB and βD are the assimilation efficiencies.

– µZ is the specific natural mortality factor.

– µ∗Z is the zooplankton specific excretion rate.

• Bacteria concentration B:

dB

dt
= Ud + Ur −GB − µ∗BB −mB,

where

– Ud and Ur are the DON and ammonium uptake respectively, and
can be quantified as

Ud =
VBBNd

KB + S +Nd

and

Ur =
VBBS

KB + S +Nd

,

with Vb maximum bacterial uptake rate, KB half saturation coef-
ficient for uptake and

S = min {Nr, ηNd}

the total bacteria nitrogenous substrate, where η is the ammo-
nium/DON uptake ratio.

– µ∗B is the bacterial specific excretion rate.
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• Detritus concentration D:

dD

dt
= (1− βP )GP + (1− βB)GB − βDGD−µDD+µPP −mD−V D,

where

– µD is the specific rate of breakdown of detritus to DON.

– V is the detrital sinking rate.

• Nitrate concentration Nn:

dNn

dt
= −JQnP +m (N0 −Nn) ,

where

– N0 is the nitrate concentration below the photic zone. This de-
pends on time and on space, after the coupling with the transport
model.

• Ammonium concentration Nr:

dNr

dt
= −JQrP − Ur + µ∗BB + (εµ∗Z + (1− Ω)µZ)Z −mNr,

where

– ε is the ammonium rate in zooplankton excretion.

– (1− Ω) is the remineralization of grazed zooplankton by unmod-
elled higher predators.

• DON concentration Nd:

dNd

dt
= γJ (Qn +Qr)P + µDD + (1− ε)µ∗ZZ − Ud −mNd.

Accordingly with [15], the parameters have been set as in Table 6.1.
J and N0 do not appear in the list, since they are not constant. The first one

is dependent on time, and follows a seasonal cycle, the last one is dependent
on both time and space, following a temporal seasonality and rising with a
linear spatial dependency from the left side to the right side of the domain.
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Biogeochemical parameters
γ = 0.05 m = 0.001 d−1

µP = 0.045 d−1 µZ = 0.05 d−1

µ∗Z = 0.10 d−1 µ∗B = 0.05 d−1

µD = 0.05 d−1 Ψ = 1.5 (N mMol)− 1
Kn = 0.5N mMolm−3 Kr = 0.5N mMolm−3

KZ = 1N mMolm−3 KB = 0.5N mMolm−3

βP = 0.75 βB = 0.75
βD = 0.75 pP = 10
pB = 4 pD = 1
g = 1.0 d−1 η = 0.6
VB = 2.0 d−1 V = 0.1md−1

ε = 0.75 Ω = 0.33

Table 6.1: Parameters of the biogeochemical model.

6.2 Coupling with the transport model

The physical model is an advection-diffusion transport model, and it is online
coupled with the biogeochemical model. It works on a 2D square domain, and
simulates the effects of currents and diffusion on the biogeochemical tracers.
The equation is

∂C

∂t
= −v · ∇C + k∆C +

∂Cb
∂t

,

where C represents the concentration of a tracer, v is the water velocity vec-
torial field depending on time and space, k = 500m2 s−1 is the diffusivity

coefficient and
∂Cb
∂t

is the derivative of the tracer obtained from the biogeo-

chemical reactions, solved by the biogeochemical model described in Section
6.1.
The v field is built by a procedure based on random coefficients, that com-
bines sinusoids and second order polynomials in space and time, in order to
obtain a smooth field of vectors with module between 0 and 0.5ms−1 on
average.
All the showed equations has been translated in logarithmic form, as well as
the system states. This can be done easily, in fact, if

x̃ = lnx

and
dx

dt
= f (x) ,
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then
dx̃

dt
=
d (lnx)

dt
=

1

x

dx

dt
=
f (x)

x
=
f (exp (x̃))

exp (x̃)
.

In this way, concentrations are forced to be positive, avoiding some numer-
ical instability problems. Furthermore, applying a Kalman-Filter method
to a logarithmic variable is equivalent to consider log-normal errors on the
non-logarithmic version of the variable, which is something desirable when
operating with prey-predator dynamics. In fact, such systems usually have
cyclical exponential growths and losses that induce errors proportional to the
logarithm of the considered quantity.
From the numerical point of view, the coupled model is discretized with a
finite volume method, using a mesh of 25 cells (5× 5), and its integration is
managed by the ode45 MATLAB solver.
An example of one-year dynamic is reported in Figures 6.1 to 6.8

Figure 6.1: Example of phytoplankton concentration at day 300.
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Figure 6.2: Example of phytoplankton concentration: spatial mean by time.

Figure 6.3: Example of zooplankton concentration: spatial mean by time.
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Figure 6.4: Example of bacteria concentration: spatial mean by time.

Figure 6.5: Example of detritus concentration: spatial mean by time.
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Figure 6.6: Example of nitrate concentration: spatial mean by time.

Figure 6.7: Example of ammonium concentration: spatial mean by time.
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Figure 6.8: Example of DON concentration: spatial mean by time.

6.3 The observation operator

The observation operator simulates a satellite measuring chlorophyll (i.e.
phytoplankton) in the whole domain. Two different observation operators
have been tested: one with an addictive zero-mean error (with standard
deviation of 0.01N mMolm−3) on the measured concentration, and the other
one with a percentage error instead (i.e. standard deviation of 0.1 on the
logarithm of the concentration, namely around 7% on the concentration).

6.4 Data Assimilation

Three Data Assimilation schemes have been used, 3D-VAR, standard SEIK
and modified SEIK (by strategies proposed in Sections 5.1 and 5.2).
At initialisation purpose, monthly means and PCA most relevant covariance
components have been used as starting point for all the algorithms (to pro-
duce the initial state error covariance decomposition in SEIK’s, and to build
the B matrix replacing Qi, as prescribed in [44]). PCA and means computa-
tion has been done based on a total of 200 years of simulation, coming from
a 10-years run for each one of 20 different random forcings (i.e. the velocity
fields described in Section 6.2).
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In both the SEIK-based systems, 3 different reduced error space dimensions
has been tested, namely r = 2, 6 and 12, corresponding to an ensemble size
of 3, 7 and 13 members. These choices come from the necessity to solve a
non linear system in order to use a high order exact sampling (see Section
5.1), and, at those dimensions, the solution is easily found.
In order to apply the modifications in Section 5.2, a cheap computation of
yQ and RQ is needed. This is possible thanks to the simple form of the ob-
servation operator and by choosing a diagonal model error Q.
In fact, since both the observation operators are of the form

h : RN −→ Rn

h

 x1
...
xN

 =

 h1 (xj1)
...

hn (xjn)

 ,

with hi : R −→ R for every i ∈ {1, . . . , n} and {j1, . . . , jn} ⊆ {1, . . . , N},
then, using the ensemble produced by the third order exact U and v

U =



1√
2
IN

− 1√
2
IN


,

v =
1√
2N

 1
...
1

 ,

any ensemble member differs from any other by at most one coordinate.
Thus, the action of h to the whole ensemble can be computed by only calcu-
lating exactly 3n scalar unidimensional functions hi.

6.5 The twin experiment

The twin experiment works in the following way:

• The “reality” is prepared as follows:
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– first, starting from an arbitrary initial state (picked randomly
around January monthly mean), the model operator is used to
evolve the system state to the following day. Then, a zero mean
Gaussian error with covariance Q is added in order to represent
model errors. This sum is referred to as the “real state” of the
system at day 1. Note that the real state ideally includes sub-grid
processes and other not modelled events.

– In order to preserve a realistic evolution, the initial condition for
next day computation is obtained by projecting the real state into
the nearest state that would fit well with the simulated model
dynamics. This means that the portion of the summed error not
proportional to the monthly variability of the system is neglected.
Note that the variability of the system has been evaluated in terms
of principal components of the PCA obtained by the 200-years
simulation used in Section 6.4.

– The model operator is used to evolve the system state to the fol-
lowing day, a zero mean Gaussian error with covariance Q is added
and the whole procedure is repeated until one year of simulation
is computed.

Various different Qs have been tested, in the form

Q = q2IN ,

as in equation (5.56). The values chosen for q are 0.05, 0.15 and 0.25,
representing around 3%, 10% and 20% percentage error, and later re-
ferred to as “small”, “medium” and “large” model error respectively.

• Observations are computed in the following way:

– every 7 days the observation operator is applied to the real state.

– The result is then added to a zero mean Gaussian error with co-
variance R, as explained in Section 6.3, in order to account for the
measurement errors.

• Each Data Assimilation scheme is initialized at time t0 in the same
state, as explained in Section 6.4.

• Each Data Assimilation scheme computes its forecast and analysis for
the whole year.

• The results are compared in order to study the skill of each method.
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6.6 The RMSD metric

Summarizing, a total of 210 one-year experiments have been ran, varying
several elements: 5 different random initial conditions and forcings (as de-
scribed in Sections 6.5 and 6.2 respectively), 2 observation operators (see
Section 6.3) and 3 model errors (represented by a diagonal covariance matrix
as presented in Sections 6.5) for each one of the 3 Data Assimilation schemes.
Furthermore, in the SEIK-based experiments, 3 different ensemble sizes as
been tested, as explained in Section 6.4.
In order to compare them all, the simulations have been grouped by model
error for each Data Assimilation scheme, and the root mean square deviation
(RMSD) between reality and analysis has been chosen as performance met-
ric. The RMSD has been applied to the logarithm of all the concentration
variables of all the experiment in each group. In this way, the RMSD is used
as indicator of the relative error affecting the scheme, and does not need
any normalization. In fact, after the application of the logarithm, differences
represent concentration ratios, and the result does not depend by unities of
measure or magnitudes.

6.7 Results

The obtained results are presented in this section in aggregated form, mainly
averaged by the RMSD indicator, as explained in Section 6.6. Each compar-
ison is discussed separately.

6.7.1 3D-VAR vs SEIK

In all the tests the SEIK filter has a better performance.
Differently from SEIK, all the 3D-VAR runs not set with the lowest model
error produced a divergence, usually during the last part of the year, where
the dynamics are faster. In the low model error settings, the comparison in
terms of RMSD of the two methods shows that the variational method has
10 times the RMSD of the Kalman-Filter.

3D-VAR SEIK
Small model error 0.899 0.080
Medium model error diverged 0.200
Large model error diverged 0.324
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Ensemble size = 3 SEIK Modified SEIK
Small model error 0.082 0.081

Chl-a 0.064 0.064
Others 0.085 0.084

Medium model error 0.213 0.202
Chl-a 0.160 0.160
Others 0.221 0.208

Large model error 0.350 0.321
Chl-a 0.262 0.263
Others 0.363 0.330

Table 6.3: SEIK – modified SEIK with 3 ensemble members: RMSD comparison
by model error magnitude. In each group, the RMSD of the observed variable and
other variables is reported.

Table 6.2: 3D-VAR – SEIK: RMSD comparison by model error magnitude.

6.7.2 SEIK vs modified SEIK

The two schemes are quite similar in term of performances, mainly in case of
small model error or large ensemble size (less then 1% difference of RMSD).
However, in the smaller ensemble size case (Table 6.3), the medium and large
model error settings lead to a performance gain (up to 10% better RMSD)
of the modified SEIK over the classic one.
This behaviour is compatible with the theoretical derivation of the improve-
ments presented in Sections 5.1 and 5.2.
In fact, the better convergence offered by the higher order exact sampling
can help a smaller ensemble with a better approximation of means and co-
variances.
Moreover, a large model error introduce stronger fluctuations that cannot be
managed by the classical SEIK algorithm, which is instead the main purpose
of the modification presented in Section 5.2.
A possible explanation about the fact that these differences does not show
up in bigger ensemble size cases (like in Table 6.5), is that, with a reduced er-
ror space dimension larger then 6, the majority of the variability has already
been taken into account. This reasoning is supported by the graphs in Figure
6.9 , that represent the standard deviations of the first 20 PCA components



CHAPTER 6. EXPERIMENTS 85

Ensemble size = 7 SEIK Modified SEIK
Small model error 0.079 0.079

Chl-a 0.064 0.064
Others 0.097 0.096

Medium model error 0.196 0.197
Chl-a 0.160 0.160
Others 0.201 0.202

Large model error 0.323 0.321
Chl-a 0.261 0.261
Others 0.332 0.330

Table 6.4: SEIK – modified SEIK with 7 ensemble members: RMSD comparison
by model error magnitude. In each group, the RMSD of the observed variable and
other variables is reported.

Ensemble size = 13 SEIK Modified SEIK
Small model error 0.080 0.080

Chl-a 0.063 0.063
Others 0.082 0.082

Medium model error 0.204 0.202
Chl-a 0.159 0.159
Others 0.211 0.208

Large model error 0.329 0.330
Chl-a 0.260 0.260
Others 0.339 0.340

Special case 0.497 0.421
Chl-a 0.287 0.273
Others 0.524 0.441

Table 6.5: SEIK – modified SEIK with 13 ensemble members: RMSD comparison
by model error magnitude. In each group, the RMSD of the observed variable and
other variables is reported. The last 3 lines represent a particular simulation made
at large model error, referred as “special case”.
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Figure 6.9: Standard deviations associated to the first 20 principal components
of the monthly variability of the system, in decimal and logarithmic scale.
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Figure 6.10: Special case RMSD by time. Blue is for classic SEIK, red for
modified SEIK.

of the system, month by month, in decimal and logarithmic scale. From the
pictures is clear that the first 6 components are enough for picturing the
variability of the system up to the 2nd significant digit, i.e. the 99%.
In such a situation, where the vast majority of the fluctuations are already
taken into account, the modifications related to the model error are less or
not relevant at all. In the same way, if the number of ensemble members
is high enough, the higher convergence order of the sampling method of the
modified SEIK is not needed in order to reach the desired precision.
Thus, the modifications to the SEIK algorithm improve the performance of
the filter mainly when the situation is more “difficult”.
Another evidence comes from a particular simulation, made at large model
error, with 13 ensemble members (conditions where usually the two tested
SEIK filters have very similar behaviour), that is referred to as the “special
case” in the following. Even if a single example is not statistically significant
by itself, it deserves to be mentioned in this context. As shown in Figure
6.10, in the special case both filters start loosing the true trajectory, but
the modified version is able to recover faster, scoring a 15% better RMSD
(see Table 6.5). In this example, the deviation from the reality induced by
the large model error is difficultly managed by the SEIK scheme, while the
modified version can better take into account the error effects, as explained
in Section 5.2.
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Figure 6.11: Model error estimation with modified SEIK, true model error is
0.15. One black circle is represented for each iteration, the red cross identifies the
chosen minimum.

Note that Tables 6.3, 6.4 and 6.5 show, for each group, the total RMSD, as
well as its split values from the observed variable (i.e. the chlorophyll) and
from all the other variables. As expected, it is easier to estimate the vari-
able for which we have observations, and both the filters obtain very similar
results. This means that, in the cases where the modified SEIK achieves
a better estimation, the majority of the improvements come from the non-
observed variables.

6.8 Model error estimation

A second twin experiment has been prepared in order to test the maximum
likelihood technique exposed in Section 5.3.
In this case, a total of 10 experiments has been launched, changing 5 different
values of q (namely 0.05, 0.10, 0.15, 0.20, 0.25) and using both the standard
SEIK and the modified version.
The likelihood indicator has been minimized using the MATLAB function
fminbnd, and the solution is found in less than 7 iterations on average. One
iteration implies one-year filtering using all the available data.
An example of one experiment is represented in Figure 6.11.
As shown in Tables 6.6 and 6.7, both methods obtained results comparable
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SEIK experiments
Model Estimation Iterations SEIK SEIK
error q q̃ at q at q̃

0.05 0.054 9 0.097 0.096
0.10 0.139 7 0.269 0.257
0.15 0.219 7 0.549 0.519
0.20 0.267 3 1.007 0.950
0.25 0.293 8 1.341 1.329

Table 6.6: Model error estimation experiments using the standard SEIK. Model
error q: the true model error. Estimated q̃: the estimated model error. Iterations:
number of iteration needed to obtain the estimation; one iteration involves the
assimilation of the entire dataset. SEIK at q: RMSD skill (low is better) of the
SEIK method set with the true parameter q. SEIK at q̃: RMSD skill (low is better)
of the SEIK method set with the estimated parameter q̃.

Modified SEIK experiments
Model Estimation Iterations Modified Modified
error q q̃ SEIK at q SEIK at q̃

0.05 0.054 6 0.096 0.095
0.10 0.103 4 0.269 0.268
0.15 0.156 6 0.551 0.550
0.20 0.212 5 1.007 0.994
0.25 0.285 9 1.382 1.347

Table 6.7: Model error estimation experiments using the modified SEIK. Model
error q: the true model error. Estimation q̃: the estimated model error. Iterations:
number of iteration needed to obtain the estimation; one iteration involves the
assimilation of the entire dataset. Modified SEIK at q: RMSD skill (low is better)
of the modified SEIK method set with the true parameter q. Modified SEIK at q̃:
RMSD skill (low is better) of the modified SEIK method set with the estimated
parameter q̃.
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Figure 6.12: Comparison of SEIK and modified SEIK model error estimations.

SEIK vs Modified SEIK model error estimation
Model SEIK Estimation Modif. SEIK Estimation
error q Estimation error (%) Estimation error(%)

0.05 0.054 8% 0.054 8%
0.10 0.139 39% 0.103 3%
0.15 0.219 46% 0.156 4%
0.20 0.267 33% 0.212 6%
0.25 0.293 17% 0.285 14%

Table 6.8: SEIK vs Modified SEIK model error estimation. Model error: the
true q model error value. SEIK Estimation: the model error estimated using the
SEIK filter. Estimation error (%): the percentage error of the estimation with
respect to the true value. Modified SEIK estimation: the model error estimated
using the modified SEIK filter.
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with the true value of q, but Chapter 5 modifications lead to much more
precise results (i.e. values of the estimation q̃ much closer to the model error
q). In fact, this procedure applied to the modified SEIK takes advantage
of the higher order of convergence of the assimilation scheme and, by fully
taking into account the model error, it achieves a better estimation of the
likelihood probability. As a consequence, the estimation of the model error
obtained with the modified SEIK is always better compared to standard
SEIK and up to one order of magnitude better in 2 out of 5 cases (see in
particular the comparison between the “Estimation error (%)” columns in
Table 6.8 and Figure 6.12).
It is interesting to observe that, in all tests, the RMSD skill of the Data
Assimilation is slightly better when launched with the estimated model error
values than using the true exact value.



Chapter 7

The smoother

The theoretical considerations presented in Chapter 5 that led to the mod-
ified SEIK scheme, can be further expanded in order to complete the novel
filter with its own smoother.
Instead of focusing on the estimation of the present state only (namely the
analysis state), a smoother is a filtering-like procedure going backward in
time, in order to correct past analysis states, propagating the information
brought by data not available at the time of the analysis. The new estima-
tion of a past state is called reanalysis.
In this chapter, the smoother is derived theoretically and tested with a twin-
experiment.
While, in literature, it is less common then filtering, taking advantage from
the smoothing procedure is often advisable, because, as in this case, it can
significantly improve the skill of the data assimilation in a certain time win-
dow, with a very limited computational effort.

7.1 Derivation

The derivation will follow the same notations used in the previous chapters.
In particular, as in Chapter 3, the reanalysis probability pri at the time ti is
defined as

pri (xi) := p (xi|y0:K) (7.1)

and, by the Law of total probability (Theorem 3),

pri (xi) =

∫
RN
p (xi|xi+1, y0:K) p (xi+1|y0:K) dxi+1. (7.2)

By Bayes Theorem (Corollary 2),

p (xi|xi+1, y0:K) ∝ p
(
y(i+1):K |xi, xi+1, y0:i

)
p (xi|xi+1, y0:i)

92
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and then
p (xi|xi+1, y0:K) = p (xi|xi+1, y0:i) (7.3)

because p
(
y(i+1):K |xi, xi+1, y0:i

)
does not depend from xi.

In fact, by Law of total probability,

p
(
y(i+1):K |xi:(i+1), y0:i

)
=

=

∫
(RN )K−i−1

p
(
y(i+1):K |xi:K , y0:i

)
p
(
x(i+2):K |xi:(i+1), y0:i

)
dx(i+2):K

=

∫
(RN )K−i−1

p (yi+1|xi:K , y0:i) · · · p
(
yK |xi:K , y0:(K−1)

)
·

· p
(
xi+2|xi:(i+1), y0:i

)
· · · p

(
xK |xi:(K−1), y0:i

)
dx(i+2):K

=

∫
(RN )K−i−1

pHi+1(xi+1) (yi+1) · · · pHK(xK) (yK) ·

· pMi+2(xi+1) (xi+2) · · · pMK(xK−1) (xK) dx(i+2):K ,

where the last equality comes from hypothesis (3.1) and (3.2).
Using Bayes Theorem in equation (7.3), and by hypothesis (3.1) and (3.2),

p (xi|xi+1, y0:K) =
p (xi+1|xi, y0:n) p (xi|y0:n)

p (xi+1|y0:n)
=
pMi+1(xi) (xi+1) pai (xi)

pfi+1 (xi+1)
. (7.4)

Substituting pai with the generic notation pbi and by Kalman-Filter’s equation
(3.36), equation (7.4) can be approximated

p (xi|xi+1, y0:K) = ppi (xi) , (7.5)

where, writing equations (3.35) and (3.37) using Section 5.2 formalism,

ppi (xi) := N (xi;x
p
i , P

p
i ) , (7.6)

P p
i := LiΓ

b
iA

p
i

(
LiΓ

b
i

)T
, (7.7)

Api :=
(
Li+1

TQ−1
i+1Li+1 +

(
T TW−1T

)−1
)−1

, (7.8)

xpi := xbi + LiΓ
b
iA

p
iLi+1

TQ−1
i+1

(
xi+1 − xfi+1

)
(7.9)

and Γbi is the change of variable in equation (5.53), transforming Li into XbT ,
i.e.

Γbi = CbΩb
rU

bTV −1T.
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By definition (7.1) and equations (7.2) and (7.5),

pri (xi) =

∫
RN
ppi (xi) p

r
i+1 (xi+1) dxi+1. (7.10)

Equation (7.10) defines a recursive relation, that can be computed sequen-
tially from the last time step to the first.
Noting that analysis and reanalysis probabilities must be the same in the
last time step (see definitions (3.4) and (7.1)), then, by equation (5.55),

prK = N (xK ;xrK , P
r
K) ,

where
xrK = xaK ,

P r
K = LKA

r
KLK

T

and
ArK = AaK .

Now, by induction over i, pri is a Gaussian such that

pri = N (xi;x
r
i , P

r
i ) , (7.11)

where
xri = xbi + LiΓ

b
iA

p
iLi+1

TQ−1
i+1

(
xri+1 − x

f
i+1

)
,

P r
i = LiA

r
iLi

T

and

Ari = Γbi
(
Api + ApiLi+1

TQ−1
i+1Li+1A

r
i+1Li+1

TQ−1
i+1Li+1A

p
i

)
Γbi

T
. (7.12)

In fact, using the changes of variables

xi =
(
xbi + LiΓ

b
iA

p
iLi+1

TQ−1
i+1

(
xri+1 − x

f
i+1

))
+ Lizi

and
xi+1 = xri+1 + Li+1zi+1,

the integrated term in equation (7.10) becomes, by equations (7.6), (7.7),
(7.8), and (7.9),

ppi (xi) p
r
i+1 (xi+1) =

= N
(
zi; ΓbiA

p
iLi+1

TQ−1
i+1Li+1zi+1,Γ

b
iA

p
iΓ

b
i

T
)
N
(
zi+1; 0, Ari+1

)
. (7.13)
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Ensemble size = 3 Modified SEIK Smoother
Small model error 0.081 0.056

Chl-a 0.064 0.051
Others 0.084 0.057

Medium model error 0.202 0.169
Chl-a 0.160 0.152
Others 0.208 0.172

Large model error 0.321 0.292
Chl-a 0.263 0.253
Others 0.330 0.298

Table 7.1: Modified SEIK – Smoother with 3 ensemble members: RMSD com-
parison by model error magnitude. In each group, the RMSD of the observed
variable and other variables is reported.

Using Theorem 5 in equation (7.13) and integrating equation (7.10), it holds
that

pri (xi) = N (zi; 0, Ari ) ,

where Ari is defined in equation (7.12).
Finally, equation (7.11) is obtained changing variable back, and the induction
is proved.
It is interesting to note that this procedure is computationally very cheap,
it involves only products of small dimension matrices, and do not need any
evaluation of the model operator mi.

7.2 Tests

For testing purpose, the same twin experiment presented in Chapter 6 has
been used in order to assess the skill of the smoother, compared to the filter.
The smoothing procedure sensibly improves the overall skill of the method,
as can be seen in Tables 7.1, 7.2 and 7.3, leading to a global RMSD improve-
ment between 10% and 30%. All variables take advantage of the smoothing,
observed and not observed ones.
As noted in Section 7.1, analysis and reanalysis have different values only
in past times, while they are the same in the present time, thus the added
precision is not useful to forecasting purpose. Figure 7.1 gives an example of
the smoother effect by time.
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Ensemble size = 7 Modified SEIK Smoother
Small model error 0.079 0.055

Chl-a 0.064 0.050
Others 0.096 0.056

Medium model error 0.197 0.170
Chl-a 0.160 0.150
Others 0.202 0.173

Large model error 0.321 0.301
Chl-a 0.261 0.251
Others 0.330 0.308

Table 7.2: Modified SEIK – Smoother with 7 ensemble members: RMSD com-
parison by model error magnitude. In each group, the RMSD of the observed
variable and other variables is reported.

Ensemble size = 13 Modified SEIK Smoother
Small model error 0.080 0.055

Chl-a 0.063 0.050
Others 0.082 0.56

Medium model error 0.202 0.169
Chl-a 0.159 0.150
Others 0.208 0.172

Large model error 0.330 0.291
Chl-a 0.260 0.250
Others 0.340 0.297

Table 7.3: Modified SEIK – Smoother with 13 ensemble members: RMSD com-
parison by model error magnitude. In each group, the RMSD of the observed
variable and other variables is reported.
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Figure 7.1: Smoother effect example. Red is for modified SEIK, green is for the
smoother



Chapter 8

3D realistic implementation

This chapter shows an implementation of the modified SEIK algorithm in
a realistic 3D marine model, namely the OGSTM-BFM, which is responsi-
ble of forecasting the biogeochemical state of the Mediterranean Sea in the
Copernicus Marine Environment Monitoring Service (CMEMS).
The main goal is to demonstrate the feasibility of such an implementation,
showing an example of assimilation of real satellite observations of surface
chlorophyll.
Furthermore, Section 8.4 presents the parallelization strategies used to rise
efficiency.

8.1 The OGSTM-BFM model

The OGSTM-BFM system is a physical 3D transport model coupled with a
biogeochemical 1D model.
In particular, OGSTM simulates tracers transport in the Mediterranean Sea
due to advection-diffusion processes, while BFM computes the reactions in
the water column, taking into account 51 biogeochemical variables (includ-
ing various kinds of phytoplankton, zooplankton, bacterioplankton, nutrients
and organic matter), as overviewed by Figure 8.1.
Due to the complexity of the system, a detailed description is not included
in this work, but an interested reader can find it in literature (for example
[1], [45], [28] etc).

8.2 Data Assimilation

The assimilation experiment covers a 1 year period, from 1 January to 31
December 2013.
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Figure 8.1: BFM variables
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The surface chlorophyll concentration used in the assimilation scheme is a
product of the CMEMS Ocean Colour Thematic Assembly Centre (OC-TAC)
service obtained using remote sensing reflectance (Rrs) spectra.
The system has been tuned accordingly with [45], except that the resolution
used is 1

4

o
. The model error Q = q2IN on the logarithm of concentrations

has been set at q = 0.3, corresponding to around 35% percentage error, and
the ensemble size has been fixed at 13 members.
The observation operator h measures the superficial chlorophyll summing the
concentrations of the 4 chlorophyll variables (P1l, P2l, P3l, P4l) in the top
cell of the water column.
Thus, if xi,j,k,c is a coordinate of the system state representing the concen-
tration of tracer c in the cell with coordinates i, j, k, then

h : RN −→ Rn

h


...

xi,j,k,c
...

 =


...

h̃ (xi,j,1,P1l, xi,j,1,P2l, xi,j,1,P3l, xi,j,1,P4l)
...

 ,

where
h̃ : R4 −→ R

h̃ (c1, c2, c3, c4) = ln (c1 + c2 + c3 + c4) .

In order to use the improvements in Section 5.2, an estimation of yQ and RQ

(as defined in that section, with the time index here omitted) must be pro-
vided. This can be accomplished by noting that a third order exact sampling
procedure can be reduced to a few simple calculations if U and v have the
form

U =



1√
2
IN

− 1√
2
IN


and

v =
1√
2N

 1
...
1

 .
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In fact, any exact sampling member member differs from any other by at
most one coordinate. Thus, the action of h on the whole ensemble can be
computed by exactly only 9n evaluations of the the scalar function h̃.
After all simplifications,

yQ =
A1 + . . .+ A4 + a1 + . . .+ a4 + (2N − 8) b

2N
,

where A1, . . . , A4, a1, . . . , a4, b ∈ Rn such that

A1 =


...

h̃
(
xi,j,1,P1l exp

(√
Nq
)
, xi,j,1,P2l, xi,j,1,P3l, xi,j,1,P4l

)
...

 ,

...

A4 =


...

h̃
(
xi,j,1,P1l, xi,j,1,P2l, xi,j,1,P3l, xi,j,1,P4l exp

(√
Nq
))

...

 ,

a1 =


...

h̃
(
xi,j,1,P1l exp

(
−
√
Nq
)
, xi,j,1,P2l, xi,j,1,P3l, xi,j,1,P4l

)
...

 ,

...

a4 =


...

h̃
(
xi,j,1,P1l, xi,j,1,P2l, xi,j,1,P3l, xi,j,1,P4l exp

(
−
√
Nq
))

...

 ,

b =


...

h̃ (xi,j,1,P1l, xi,j,1,P2l, xi,j,1,P3l, xi,j,1,P4l)
...

 .

In order to compute RQ, the residuals Ã1, . . . , Ã4, ã1, . . . , ã4, b̃ ∈ Rn are ob-
tained by subtracting yQ to the above corresponding vectors. Then, the
variance, i.e. the diagonal of the RQ matrix, can be written as

diag
(
RQ
)

=
Ã2

1 + . . .+ Ã2
4 + ã2

1 + . . .+ ã2
4 + (2n− 8) b̃2

2N
, (8.1)
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where squares are computed coordinate by coordinate.
The covariance, intended as the non-diagonal elements of RQ, is

nondiag
(
RQ
)

= nondiag

(
1

2N

[
b̃B̃T + B̃b̃T + (2N− 16) b̃b̃T

])
, (8.2)

with
B̃ = Ã1 + . . .+ Ã4 + ã1 + . . .+ ã4.

Then, putting together equations (8.1) and (8.2),

RQ = D + LR
[

1

2N

(
2N − 16 1

1 0

)]
LR

T
,

where

LR =

 b̃ B̃


and D is a diagonal matrix such that

diag (D) =
Ã2

1 + . . .+ Ã2
4 + ã2

1 + . . .+ ã2
4 + 8b̃2 − 2

(
b̃ ∗ B̃

)
2N

,

with ∗ to indicate the product coordinate by coordinate.

8.3 Assimilation results

As shown on Figure 8.2, the system reproduces the seasonal dynamics of
surface chlorophyll concentration, with a maximum during winter and a min-
imum during summer.
The Data Assimilation scheme provides a closer evolution to the satellite if
compared with the control run without assimilation.
The skill of the method is assessed in terms of RMSD of the difference be-
tween satellite data and forecast. Figure 8.3 shows the RMSD evolution in
time.
Finally, Figures 8.5 and 8.4 show that the SEIK does not degenerate the other
variable, in particular nitrate and phosphate. The implemented method be-
haves as expected, leading to a better estimation of the state of the system.
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Figure 8.2: Surface chlorophyll concentration. Black: modified SEIK, red: con-
trol run, blue: satellite

Figure 8.3: Evolution of RMSD. Black: modified SEIK, red: control run
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Figure 8.4: Evolution of phosphate at surface. Black: modified SEIK, red:
control run

Figure 8.5: Evolution of nitrate at surface. Black: modified SEIK, red: control
run
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8.4 Parallelization

The OGSTM-BFM is coded in fortran, using MPI for the parallelization. At
a resolution of 1

4

o
when running with 102 cores, it simulates 1 year in around

40 minutes plus 5 minutes of initialization.
Each process is responsible for an area of the Mediterranean Sea, and com-
municates with its neighbours to exchange information at boundaries.
In order to implement the Data Assimilation scheme, new layers of processes
has been added, one for each ensemble member. Each process became re-
sponsible for one area in one ensemble member, and communicates with its
neighbours, as well with other ensemble members processes operating in the
same area.
Figure 8.6 pictures the parallelization structure. There are no connections
along the diagonals, in fact due to the structure of the SEIK equations, it
is possible to leave the matrices distributed along the processes (each one
in its area), and use vertical connections to solve the computations area by
area. This property is very useful to reduce communication time and rise the
efficiency.
The equations in Section 5.2 are probably the most difficult to implement
without using diagonal connections. The result has been achieved by trans-
forming equation (5.54), i.e.

Rl
i = Ri +RQ

i − Ŷ fWŶ fT + ŷfi ŷ
fT
i + ŷfi y

′
i
T

+ y′iŷ
fT
i −

(
yfi y

′
i
T

+ y′iy
f
i

T
)
,

by splitting it in a diagonal part and a low rank part, namely

Rl
i = Λ + CΓCT ,

where Λ is a diagonal matrix,

Λ = Ri +D,

and Γ is a small matrix computed knowing that

C =

 Y f ŷfi yfi y′i b̃ B̃

 .

In this way, finally, the inverse is calculated accordingly to the formula

Rl
i

−1
= Λ−1 − Λ−1

(
CTΛC + Γ

)
Λ−1.

The computation has been done using 1326 cores, and has been completed
in around 70 minutes, plus 40 of initialization.
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Figure 8.6: Parallel structure of implementation



Chapter 9

Conclusions and future work

Data Assimilation is a field in fast expansion, in particular when referred to
geosciences. In the context of marine biogeochemistry, this work aimed to
two objectives.
The first one was the comparison between two Data Assimilation methods,
namely 3D-VAR and SEIK, the former using a variational approach, the lat-
ter based on the Kalman-Filter.
Using a Bayesian framework, Chapter 3 has shown that the two approaches
have various similarities, like the fact that both derive from the same Gaus-
sian model and observation error hypothesis. The main differences instead
are:

• the choice of the state estimator, that is the mode for the variational
method and the mean for the Kalman-filter,

• Kalman-filter’s capability to transfer covariance from one time step to
the next one, while 3D-VAR simply neglects it,

• Kalman-filter’s necessity of linear operators.

The first difference is not necessary a 3D-VAR weakness but it is at least a
debatable choice.
The second one instead has clearly a huge impact on the estimation, and
represents one of the main strength points of the Kalman-Filter approach.
The third one seems a very limiting Kalman-Filter weakness, but the prob-
lem is completely resolved in Chapter 4 with the introduction of the SEIK
filter.
This means that, under a theoretical point of view, the SEIK filter is superior
to the 3D-VAR (that, on the other hand, is cheaper in terms of computa-
tional cost).
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The experiment in Chapter 6 empirically confirms the theoretical results. In
fact, the 3D-VAR algorithm, applied to a Fasham-like biogeochemical model
coupled to a physical transport model, produced errors one order of magni-
tude higher than SEIK, in terms of RMSD.
The second objective of this thesis was the development of a novel filter based
on SEIK, suited for biogeochemical marine systems, with a specific focus on
the effects and the estimation of the model error.
At this purpose, the SEIK algorithm has been generalised (Section 4.5) and
modified (Chapter 5). In particular, in Sections 5.1, a new sampling tech-
nique has been added, which is able to match higher orders approximations
of the operators, obtaining more precise numerical calculations of the mean
and covariance. Furthermore, the full model error has been taken into ac-
count (Section 5.2), by splitting it into two components. The first one is
interpreted as model uncertainty, the other one is considered as an added
measurement error induced by a noise-like effect. In Section 5.3, a maximum
likelihood strategy has been proposed for the estimation of the model error
covariance. Lastly, an ad hoc smoother has been developed and presented in
Section 7.1, with the remarkable feature of a very low computational cost.
Chapter 6 tests proved that SEIK’s modified version has the same skill as
standard SEIK when the model error is small or the ensemble size is big
enough. On the contrary, in the case of large model error and small ensem-
ble size, the modified SEIK provides an up to 10% better RMSD compared
to the standard SEIK, showing an improved resilience to divergences induced
by model errors.
The tests on the maximum likelihood algorithm obtained estimations com-
parable to the true values, with the tendency to overestimate in both filters.
However, as discussed in Section 6.8, the results obtained with the modified
version of the SEIK algorithm were much more accurate (even up to one or-
der of magnitude) than the standard SEIK’s results. It is interesting to note
that, in all the tested cases, the RMSD error of the filter was slightly better
if the estimated model error was used in place of the true value. A possible
explanation is that the true model error value is actually an underestimation,
in fact it does not account for the Data Assimilation scheme internal errors
and approximations.
The tests on the smoother, in Section 7.2, show a clear improvement in the
quality of the estimation of the state of the system, sensibly augmenting the
performance of the assimilation, with even better results on large model error
experiments.
Finally, Chapter 8 demonstrates the feasibility of the implementation of the
novel Data Assimilation scheme for a realistic 3D biogeochemical marine
model. Further, the chapter provides an efficient computational solution to
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face the parallelization issue (Section 8.4). Even if the results are not exten-
sively discussed in Section 8.3, the 1-year 3D test clearly shows a behavior
that respects the seasonal dynamics without degenerating the not assimilated
variables. The 3D implementation highlighted the importance of a tuning
phase of some elements of the scheme settings before the biogeochemical
results can be discussed into details. For example, the logarithm of the con-
centrations of very diluted tracers can grow too fast, producing instabilities,
and a careful setting of cutting thresholds is necessary.
To fully exploit the potentiality of the novelty of the thesis some future works
are foreseen.
Firstly, tuning and refinement of the 3D realistic implementation will allow
a punctual analysis of the biogeochemical results in the Mediterranean Sea.
Moreover, it would be interesting to reproduce, on other Kalman-based fil-
ters, the same improvement strategies used for SEIK. In particular, the high
order exact sampling (Section 5.1) is very general in its development, and
can probably lead to good results in various ensemble-based filters.
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