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Abstract. We follow our study of non-Kähler complex structures on R4 that we de-
fined in our previous paper. We prove that these complex surfaces do not admit any
smooth complex compactification. Moreover, we give an explicit description of their
meromorphic functions. We also prove that the Picard groups of these complex surfaces
are uncountable, and give an explicit description of the canonical bundle. Finally, we
show that any connected non-compact oriented 4-manifold admits complex structures
without Kähler metrics.

1. Introduction

In [5] we constructed a two-parameters family of pairwise not biholomorphic complex
structures J(ρ1, ρ2) on R4, where 1 < ρ2 < ρ−11 . It is remarkable that these complex
surfaces cannot be tamed by any symplectic structure. In particular, they have no com-
patible Kähler metrics. In addition, there is a surjective map f : R4 → CP1, which is
holomorphic with respect to any J(ρ1, ρ2). We denote by E(ρ1, ρ2) the complex surface
(R4, J(ρ1, ρ2)). By following [5], we give the following definition.

Definition 1.1. A complex manifold M is said to be of Calabi-Eckmann type if there is
a holomorphic immersion k : X → M , with X a compact complex manifold of positive
dimension, such that k is null-homotopic as a continuous map. Such a compact complex
immersed submanifold is said to be homotopically trivial.

Notice that if M is of Calabi-Eckmann type, then it cannot be tamed by a symplectic
form, and hence M cannot be endowed with a Kähler metric.

The motivation for this definition is that Calabi and Eckmann in [2] constructed such
complex structures on R2n, for n ≥ 3, arising as open subsets of certain compact complex
n-manifolds (which are diffeomorphic to the product of two odd-dimensional spheres).

On the other hand, the manifolds E(ρ1, ρ2) are the first examples of Calabi-Eckmann
type complex surfaces [5]. However, as the following main theorem states, our surfaces
cannot be realised as analytic subsets of any compact complex non-singular surface.

Theorem 1.2. E(ρ1, ρ2) cannot be holomorphically embedded in any compact complex
surface.

For a complex manifold X, let M(X) denote the field of meromorphic functions of X.
Moreover, we denote by Pic(X) the Picard group of X, and by ωX the canonical line
bundle of X.

Let OCP1(k) be the holomorphic line bundle on CP1 with first Chern number k ∈ Z,
and consider the induced holomorphic line bundle Lk = f ∗(OCP1(k)) on E(ρ1, ρ2). By
abusing notation, we denote by f ∗ also the pullback homomorphisms determined by f
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between the groups that we consider in the next theorem. This shall not be misleading,
being the exact meaning of the symbol f ∗ clear from the context.

Theorem 1.3. The following properties hold:

(1) f ∗ : M(CP1)→M(E(ρ1, ρ2)) is an isomorphism.
(2) f ∗ : Pic(CP1) ∼= Z → Pic(E(ρ1, ρ2)) is injective and maps OCP1(−2) to ωE(ρ1,ρ2),

namely ωE(ρ1,ρ2) = L−2.
(3) Pic(E(ρ1, ρ2)) is uncountable.

Theorem 1.4. The total space of a holomorphic vector bundle of rank n over E(ρ1, ρ2)
determines a Calabi-Eckmann type complex structure on R2n+4. Moreover, the total spaces
of the Whitney sums Lk1 ⊕ Lk2 ⊕ · · · ⊕ Lkn, with k1 ≤ k2 ≤ · · · ≤ kn, are pairwise
not biholomorphic to each other for all choices of the parameters 1 < ρ2 < ρ−11 and
(k1, k2, · · · , kn) ∈ Zn.

Remark 1.5. The complex structures on R2n that arise as in the statement of The-
orem 1.4 are not biholomorphic to those constructed by Calabi and Eckmann in [2].
Indeed, by our construction, R2n admits an immersed rational curve with one node, while
the only compact curves in the Calabi and Eckmann examples are smooth elliptic curves.

Finally, we give a general result for Calabi-Eckmann type complex surfaces.

Theorem 1.6. Any non-compact connected oriented smooth 4-manifold M admits a com-
plex structure of Calabi-Eckmann type, which is compatible with the given orientation.

The paper is organized as follows. In Section 2 we recall the construction of the complex
manifolds E(ρ1, ρ2) as it is given in [5], and we also fix the notations. In Section 3, we
recall some classification results for compact complex surfaces that are needed in the proof
of Theorem 1.2. In Section 4 we prove Theorems 1.2 and 1.3. Finally, in Section 5 we
prove Theorems 1.4 and 1.6.

2. Non-Kähler complex structures on R4

Consider the complex annulus ∆(r0, r1) = {z ∈ C | r0 < |z| < r1} and the disk ∆(r) =
{z ∈ C | |z| < r}. Fix positive numbers ρ0, ρ1 and ρ2 such that 1 < ρ2 < ρ−11 < ρ−10 .

Let f1 : W1 → ∆(ρ1) be a relatively minimal elliptic holomorphic Lefschetz fibration
with one singular fiber. In other words, W1 is a fibered tubular neighborhood of a singular
fiber of type I1 in an elliptic complex surface by Kodaira results [12, 14].

Following Kodaira [13], we can represent f1 as follows. First, we consider the quotient
W ′

1 = (C∗×∆(0, ρ1))/Z, where the action is given by n ·(z, w) = (zwn, w). The projection
on the second factor W ′

1 → ∆(0, ρ1) is a holomorphic elliptic fibration that is equivalent
to f1 restricted over ∆(0, ρ1). Therefore, we can consider W ′

1 as an open subset of W1

(precisely, as the complement of the singular fiber).
Let W2 = ∆(1, ρ2) × ∆(ρ−10 ) be endowed with the product complex structure, and

let f2 : W2 → ∆(ρ−10 ) be the canonical projection. Consider also the open subset V2 =
∆(1, ρ2)×∆(ρ−11 , ρ−10 ) ⊂ W2.

Now, consider the multi-valued holomorphic function ϕ : ∆(ρ0, ρ1)→ C∗ defined by

ϕ(w) = exp

(
1

4πi
(logw)2 − 1

2
logw

)
.

As it can be easily checked, the image of the map Φ: ∆(1, ρ2)×∆(ρ0, ρ1)→ C∗×∆(0, ρ1)
defined by Φ(z, w) = (zϕ(w), w), is invariant under the above Z-action. Therefore, the
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composition of Φ with the projection map π : C∗ ×∆(0, ρ1) → W ′
1 ⊂ W1 determined by

the Z-action, is a single-valued holomorphic embedding, and let V1 ⊂ W1 be the image of
π ◦Φ. Notice that π ◦Φ gives an identification of V1 with the product ∆(1, ρ2)×∆(ρ0, ρ1).

We are now ready to glue W1 and W2 together by identifying V1 and V2 via the biholo-
morphism j : V1 = ∆(1, ρ2)×∆(ρ0, ρ1)→ V2 defined by j(z, w) = (z, w−1). We obtain the
complex manifold E(ρ1, ρ2) = W1 ∪j W2. The result does not depend on the parameter
ρ0 up to biholomorphisms, since ρ0 determines only the size of the gluing region.

Moreover, we can define a surjective holomorphic map f : E(ρ1, ρ2)→ CP1 by putting
f(x) = f1(x) if x ∈ W1 and f(x) = f2(x) if x ∈ W2, where CP1 is regarded as the Riemann
sphere resulting from the gluing ∆(ρ1)∪h∆(ρ−10 ), with h : ∆(ρ0, ρ1)→ ∆(ρ−11 , ρ−10 ) defined
by h(w) = w−1.

It can be proved that E(ρ1, ρ2) is diffeomorphic to R4 essentially by means of the
Kirby calculus applied to Lefschetz fibrations, see Gompf and Kirby [9] and Apostolakis,
Piergallini and Zuddas [1]. In [5] this has been done by relating the decomposition of
E(ρ1, ρ2) given in its definition with a decomposition of R4 ⊂ S4 determined by the
Matsumoto-Fukaya fibration, which is a genus-one achiral Lefschetz fibration S4 → S2

[18]. Actually, the map f above coincides with the restriction of this fibration on R4 ⊂ S4.
It follows that the fibers of W1 have null-homotopic inclusion map in the contractible

space E(ρ1, ρ2), namely they are homotopically trivial. Then, the complex manifold E(ρ1,
ρ2) ∼= R4 is of Calabi-Eckmann type by Definition 1.1.

Moreover, the only compact holomorphic curves in E(ρ1, ρ2) are the compact fibers of
f , see [5, Proposition 5].

We point out that our construction cannot be modified to have embedded or immersed
compact holomorphic curves of genus > 1. This was observed for an arbitrary almost
complex structure on R4 by Di Scala and Vezzoni [6] and also by Di Scala, Kasuya and
Zuddas [4] from a different viewpoint.

3. The classification of compact complex surfaces

According to Kodaira [17, Theorem 55] (see also [12, 16]), compact complex surfaces
are classified into the following seven classes, up to blow ups and blow downs.

(I) CP2 or CP1-bundles over a compact complex curve;
(II) K3 surfaces;

(III) complex tori;
(IV) Kähler elliptic surfaces;
(V) algebraic surfaces of general type;

(VI) elliptic surfaces whose first Betti number b1 is odd and greater than 1;
(VII) surfaces with b1 = 1.

Surfaces of class I to V are Kähler, while surfaces of classes VI and VII are non-Kähler,
because of the following theorem.

Theorem 3.1 (Miyaoka [19] and Siu [21]). A compact complex surface is Kähler if and
only if the first Betti number is even.

We recall also the following theorem.

Theorem 3.2 (Chow and Kodaira [3] and Kodaira [12]). A compact complex surface is
algebraic if the algebraic dimension is two, and it is elliptic if the algebraic dimension is
one.
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Thus, the algebraic dimension of a non-Kähler surface is 0 or 1. Hence it is 1 for
class VI. On the other hand, class VII is divided into the two cases where the algebraic
dimension is 0 or 1. If it is 0, then X has at most finitely many compact holomorphic
curves by Kodaira [12]. Otherwise, X is an elliptic surface. Such elliptic surfaces are
further classified according as if they are minimal or not minimal. If X is a minimal
elliptic surface of class VII, then X is obtained from the product CP1×E by a finite
sequence of logarithmic transformations, where E is a smooth elliptic curve [15]. If X is
not minimal, then it is obtained from a minimal one by blow ups.

4. The proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. The proof is by contradiction. So, suppose that E(ρ1, ρ2) is em-
bedded as a domain in a compact complex surface X, and let i : E(ρ1, ρ2) → X be a
holomorphic embedding.

Recall that E(ρ1, ρ2) is not Kähler. Hence, X cannot be Kähler, and so it is of class
VI or VII. Moreover, the algebraic dimension is 0 or 1. If it is 0, then X contains at
most finitely many compact holomorphic curves, while E(ρ1, ρ2) does contain infinitely
many, which is impossible. Hence, the algebraic dimension must be 1. Therefore, X has
an elliptic fibration g : X → Σ over a compact complex curve.

Notice that any compact fiber F of f : E(ρ1, ρ2) → CP1 is homotopically trivial in
E(ρ1, ρ2), because E(ρ1, ρ2) is contractible. Then (g ◦ i)|F : F → Σ is holomorphic and
null-homotopic as a continuous map, and so it is of zero degree, implying that g ◦ i is
constant on F . Indeed, a holomorphic non-constant map between compact Riemann
surfaces is open (hence surjective), and it has positive degree because it is orientation-
preserving at the regular points.

Therefore, by compactness, i(F ) is a fiber of g. In other words, i is fiber-preserving in
the elliptic part of E(ρ1, ρ2).

It follows that g ◦ i is constant on any fiber of f , even in the non-compact ones, because
the vertical derivative of g◦i, that is the tangent map restricted to the kernel of Tf , is null
in the elliptic part of E(ρ1, ρ2), which is an open subset of E(ρ1, ρ2), and so, by analyticity,
it must be null everywhere. Therefore, i : E(ρ1, ρ2) → X is a fiberwise embedding. This
also implies that Σ must be CP1, and we can regard f : E(ρ1, ρ2)→ CP1 as a restriction
of the fibration g : X → CP1 by identifying E(ρ1, ρ2) with its image i(E(ρ1, ρ2)) ⊂ X.

Now, we first consider the case when X is of class VI. In this case, X is an elliptic
surface over CP1 such that b1(X) ≥ 3. Since π1(T

2) = Z2 and CP1 is simply connected,
the first Betti number b1(X) must be smaller than 3. This is a contradiction.

Next, we consider X of class VII. Suppose that X is a minimal elliptic surface. Such
surfaces are classified as in Section 3. There is an elliptic fibration π : X → CP1 having
only finitely many multiple fibers that are smooth elliptic curves, and no singular fibers.

On the other hand, the fibration f : E(ρ1, ρ2) → CP1 has a singular fiber which is an
immersed sphere with one node, and by the above argument we have f = π ◦ i. Thus, π
has a singular fiber, which is a contradiction.

Finally, we consider the case where X is a non-minimal elliptic surface. Let C ⊂ X
be an exceptional curve of the first kind. Since the rational curve C cannot be a fiber
of π : X → CP1, it must be a branched multi-section of π. Then, C has a positive
intersection number with an elliptic fiber of f : E(ρ1, ρ2)→ CP1. This is a contradiction,
since E(ρ1, ρ2) is contractible. �
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Remark 4.1. Ichiro Enoki, in a private communication, told us that there is no compact
complex surface of Calabi-Eckmann type. It is proven as follows. If a compact complex
surface contains a compact holomorphic curve representing a homologically trivial 2-cycle,
then it must be a surface of Class VI, a Hopf surface, a parabolic Inoue surface, or an
Enoki surface [7]. In each case, the holomorphic curve contains a loop representing a
generator of the fundamental group of the surface. This fact leads to an alternative proof
of Theorem 1.2.

Proof of Theorem 1.3. We begin with statement (1). Let h be a meromorphic function
on E(ρ1, ρ2) and let (h) = (h)0 − (h)∞ be the associated divisor, see Griffiths and Harris
[10, pages 36, 131]. Then, (h)0 and (h)∞ are codimension-1 analytic subsets and the
indeterminacy set N = (h)0 ∩ (h)∞ is an analytic subset of codimension greater than 1,
implying that it is a finite set.

The restriction of the meromorphic function h to E(ρ1, ρ2)−N is a holomorphic map
h| : E(ρ1, ρ2) − N → CP1. All but finitely many compact fibers of f are contained in
E(ρ1, ρ2) − N , and they are also homotopically trivial (cf. the end of Section 2) in the
complement of N .

By the same argument in the proof of Theorem 1.2, we see that h is constant on the
compact fibers of f , and then it is constant on all fibers of f . Therefore, h is the pullback
of a meromorphic function s on CP1, implying that f ∗ : M(CP1) → M(E(ρ1, ρ2)) is
surjective. On the other hand, f ∗ is clearly injective, and this concludes the proof of (1).

Now, we prove the statement (2). As in the Introduction, let OCP1(k) denote the
holomorphic line bundle over CP1 with first Chern number k ∈ Z. It is well known that

OCP1(k) is holomorphically trivial if and only if k = 0.
Consider the decomposition E(ρ1, ρ2) = W1 ∪j W2 as in Section 2. So, W1 and W2 are

the preimages by f of two open disks ∆1 = ∆(ρ1) and ∆2 = ∆(ρ−10 ) whose union is CP1.
We have to show that if Lk = f ∗(OCP1(k)) is trivial, then k = 0.

Since OCP1(k) is holomorphically trivial over each of the disks ∆1 and ∆2, there are
nowhere vanishing holomorphic sections σi of OCP1(k) over ∆i, for i = 1, 2. Then, the
pullback section f ∗(σi) is a trivialization of Lk over Wi, i = 1, 2.

If Lk is holomorphically trivial, there is a nowhere vanishing global holomorphic section
τ . Hence, there are holomorphic functions τi ∈ O∗(Wi), i = 1, 2, such that

τ|Wi
= τif

∗(σi).

Now, we show that τ1 and τ2 are the pullbacks of holomorphic functions on ∆1 and ∆2.
On W1, the fibers of f are all compact holomorphic curves. Hence, τ1 is constant along
the fibers of f . Thus, τ1 is the pullback f ∗(u1) of some holomorphic function u1 on ∆1.
Then, on the intersection V = W1 ∩W2, we have

f ∗(u1σ1) = τ2f
∗(σ2).

Hence, τ2 is fiberwise constant on V . By analyticity, it is fiberwise constant over W2.
Hence, there is a holomorphic function u2 on ∆2 such that τ2 = f ∗(u2). Then, u1σ1 and
u2σ2 define a nowhere vanishing holomorphic global section of OCP1(k). Hence OCP1(k) is
trivial, and so k = 0.

Next, we prove that ωE(ρ1,ρ2) = L−2.
Set Y = E(ρ1, ρ2). The canonical line bundle ωY is by definition the determinant of

the contangent bundle T ∗Y , that is ωY = Λ2(T ∗Y ).
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Let (z, w) be the coordinates of C∗ × ∆(ρ1). An easy computation shows that the
holomorphic 2-form

σ =
dz ∧ dw

z
passes to quotient C∗ × ∆(0, ρ1)/Z, where, as above, the action is given by n · (z, w) =
(zwn, w).

Since σ is defined on C∗ ×∆(ρ1), it induces a regular holomorphic 2-form on

(C∗ ×∆(0, ρ1)/Z) ∪ C∗ = W1 − {q},
where q is the nodal singularity of the singular elliptic fiber. By Hartog’s theorem, it can
be extended over the point q. Hence, σ determines a regular holomorphic 2-form on the
whole elliptic fibration W1.

Let (u, t) be the coordinates of ∆(1, ρ2) ×∆(ρ0, ρ1). By the above identification of V
with ∆(1, ρ2)×∆(ρ0, ρ1) we see that:

σ =
du ∧ dt

u

on ∆(1, ρ2)×∆(ρ0, ρ1). By means of the biholomorphism j we get that

σ = −dz

z
∧ ds

s2

where here (z, s) are coordinates of ∆(1, ρ2)×∆(ρ−10 ).
Thus, σ gives rise to a meromorphic section of the canonical bundle of Y . The polar

set of σ is 2F2, where F2 is an annulus fiber of the map f . Hence we obtain that

ωY = f ∗(OCP1(−2)).

Finally, we prove statement (3). For a complex manifold Y , it is well known that the
exponential function gives rise to the following short exact sequence of sheaves:

0→ Z→ OY → O∗Y → 0.

For Y = E(ρ1, ρ2), being diffeomorphic to R4, we obtain the following isomorphism
from the associated long exact sequence of cohomology groups

Pic(Y ) = H1(Y,O∗Y ) ∼= H1(Y,OY ).

By definition, H1(Y,OY ) is a complex vector space. Hence, Pic(E(ρ1, ρ2)) is isomor-
phic to the additive group of a complex vector space. We have already proved that
Pic(E(ρ1, ρ2)) is not trivial. Therefore, it is uncountable. �

5. The proofs of Theorems 1.4 and 1.6

Proof of Theorem 1.4. The first sentence of the statement is straightforward, because the
Calabi-Eckamnn type surface E(ρ1, ρ2) is holomorphically embedded in the total space as
the zero section of the bundle. We prove the second sentence.

Let Qn+2(ρ1, ρ2, k) ∼= R2n+4 be the total space of the holomorphic vector bundle Lk1 ⊕
· · · ⊕ Lkn , and let πk be its projection map, that is

πk : Qn+2(ρ1, ρ2, k)→ E(ρ1, ρ2),

with k = (k1, . . . , kn).
Put ξk = OCP1(k1)⊕ · · · ⊕ OCP1(kn). We have πk = f ∗(ξk). Then,

Qn+2(ρ1, ρ2, k) = {(x, y) ∈ E(ρ1, ρ2)× E(ξk) | f(x) = ξk(y)},
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where we denote by E(ξk) the total space of ξk. The map πk is the projection on the first

factor, and we denote by f̃ : Qn+2(ρ1, ρ2, k)→ E(ξk) the projection on the second factor,
as it is shown in the following commutative diagram.

Qn+2(ρ1, ρ2, k)

πk

��

f̃
// E(ξk)

ξk
��

E(ρ1, ρ2)
f

// CP1

Next, we classify compact connected holomorphic curves on Qn+2(ρ1, ρ2, k). Let S be
a compact Riemann surface and let ι : S → Qn+2(ρ1, ρ2, k) be a holomorphic immersion.

The holomorphic map ξk ◦ f̃ ◦ ι : S → CP1 is null-homotopic, because Qn+2(ρ1, ρ2, k) is
contractible, and hence it is constant (cf. the proof of Theorem 1.2 again).

Therefore, (f̃ ◦ ι)(S) is contained in a fiber of ξk, which is biholomorphic to Cn. This

implies that f̃ ◦ ι is constant. Hence, πk ◦ ι : S → E(ρ1, ρ2) must be a holomorphic
immersion. By the classification of compact holomorphic curves on E(ρ1, ρ2), (πk ◦ ι)(S)
is a compact fiber of f .

It follows that compact connected holomorphic curves in Qn+2(ρ1, ρ2, k) are of the form
Fp × {y} where Fp = f−1(p) is a compact fiber of f , and ξk(y) = p, for some p ∈ CP1.

Now, suppose that there exists a biholomorphism Φ : Qn+2(ρ1, ρ2, k)→ Qn+2(ρ′1, ρ
′
2, k
′),

where k′ = (k′1, . . . , k
′
n) ∈ Zn is another n-tuple with not decreasing components, and

1 < ρ′2 < (ρ′1)
−1. We are going to show that (ρ1, ρ2, k) = (ρ′1, ρ

′
2, k
′).

By keeping the above notation, we consider the map f ′ : E(ρ′1, ρ
′
2) → CP1 of the con-

struction in Section 2, the bundle πk′ , and the projection map f̃ ′ : Qn+2(ρ′1, ρ
′
2, k
′)→ E(ξk′)

such that ξk′ ◦ f̃ ′ = f ′ ◦ πk′ .
Let Fp × {y} be a compact connected holomorphic curve in Qn+2(ρ1, ρ2, k). Then,

Φ(Fp × {y}) = F ′p′ × {y′} for certain p′ ∈ CP1 and y′ ∈ E(ξk′) such that ξk′(y
′) = p′, with

F ′p′ = (f ′)−1(p′).
By the construction of Section 2, there is a biholomorphism Fp ∼= F ′p′ if and only if

p = p′ (by considering the moduli of elliptic fibers).
By analyticity, the equality Φ(Fp × {y}) = F ′p × {y′} must hold for all p ∈ CP1 and for

all y ∈ ξ−1k (p), where y′ ∈ ξ−1k′ (p) is uniquely determined by p and y. Therefore, there are
two biholomorphisms ϕ : E(ρ1, ρ2)→ E(ρ′1, ρ

′
2) and ψ : E(ξk)→ E(ξk′), such that

Φ(x, y) = (ϕ(x), ψ(y))

for all (x, y) ∈ Qn+2(ρ1, ρ2, k). An application of the main theorem of [5] yields (ρ1, ρ2) =
(ρ′1, ρ

′
2).

Note that ψ is a fiberwise biholomorphism (that is, ξk′ ◦ψ = ξk), but is not necessarily
a linear bundle isomorphism. So, we take the fiber derivative of ψ evaluated along the
zero section of ξk. By identifying the fibers of ξk and ξk′ with the corresponding tangent
spaces at a suitable point, we obtain a linear isomorphism ξk ∼= ξk′ of holomorphic vector
bundles. Then, the Birkhoff-Grothendieck theorem [11] tells us that k = k′. �

Proof of Theorem 1.6. Teichner and Vogt proved in an unpublished paper that any ori-
ented 4-manifold admits a spinc-structure (see Gompf and Stipsicz [9, Remark 5.7.5] for
a sketch of their proof). By Gompf [8], a spinc-structure is a homotopy class of complex
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structures over the 2-skeleton that are extendable over the 3-skeleton. Since M is non-
compact, it has the homotopy type of a 3-complex. It follows that M admits an almost
complex structure that is compatible with the given orientation.

There is a nowhere zero vector field on M , because M is non-compact. Thus, the
tangent bundle TM , regarded as a rank-two complex vector bundle, splits as the Whitney
sum of a complex line bundle ξ and a complex trivial line bundle ε1, that is TM = ξ⊕ ε1.

Let t : M → CP∞ be a classifying map for ξ, so that ξ is the pullback of the tautological
line bundle over CP∞. Up to homotopy we can assume that t takes values in the 3-skeleton
of CP∞, which is CP1.

Then, TM is isomorphic, as a real vector bundle, to a pullback of an oriented non-
trivial rank-four real vector bundle over S2. Since π1(SO(4)) = Z2, there is only one such

bundle up to isomorphisms, which is equivalent to the restriction to CP1 ⊂ CP2 − {pt}
of T (CP2 − {pt}).

Hence, there is a monomorphism of real vector bundles

G : TM → T (CP2 − {pt}).
By Phillips theorem [20], there is an orientation-preserving immersion

g : M → CP2 − {pt}.

Notice that CP2 − {pt} admits a Calabi-Eckmann type complex structure, obtained
by taking the blow up of E(ρ1, ρ2) at a point (cf. [5, Corollary 6]). Let us denote by

P (ρ1, ρ2) ∼= CP2 − {pt} such blow up. It is still true that any holomorphic torus in
P (ρ1, ρ2) away from the blow up point is contained in a 4-ball.

Now, take a 4-ball D ⊂ M where the restriction of g is an embedding. Up to isotopy
we can assume that g(D) contains a holomorphic torus of P (ρ1, ρ2). Then, the complex
structure on M induced by g is of Calabi-Eckmann type. �

Remark 5.1. The proof of Theorem 1.6 can be slightly modified to show that any non-
compact connected oriented 4-manifold M can be immersed into CP2, implying the known
fact that M admits a Kähler complex structure. With Theorem 1.6, we have shown
that any non-compact connected oriented 4-manifold admits both Kähler and non-Kähler
complex structures.
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