SoftwareX 10 (2019) 100313

Contents lists available at ScienceDirect

SoftwareX JRa% ¢

1
0101

00001100

&

journal homepage: www.elsevier.com/locate/softx 0 '

Original software publication

GSGP-C++2.0: A geometric semantic genetic programming framework R

Mauro Castelli **, Luca Manzoni "

Check for
updates

2 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisboa, Portugal

b Dipartimento di Matematica e Geoscienze, University of Trieste, 34127 Trieste, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 6 May 2019

Received in revised form 2 July 2019
Accepted 29 August 2019

Keywords:

Genetic programming
Semantics

Machine learning

Geometric semantic operators (GSOs) for Genetic Programming have been widely investigated in recent
years, producing competitive results with respect to standard syntax based operator as well as other
well-known machine learning techniques. The usage of GSOs has been facilitated by a C++ framework
that implements these operators in a very efficient manner. This work presents a description of the
system and focuses on a recently implemented feature that allows the user to store the information
related to the best individual and to evaluate new data in a time that is linear with respect to the
number of generations used to find the optimal individual. The paper presents the main features of
the system and provides a step by step guide for interested users or developers.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

2.0

https://github.com/ElsevierSoftwareX/SOFTX_2019_170
https://doi.org/10.24433/C0.5881521.v1

GNU General Public License (GPL)

none

C++

The source code can be compiled under Linux, Windows and Cygwin.
http://gsgp.sourceforge.net/?page_id=51

mcastelli@novaims.unl.pt

1. Motivation and significance

Recent years have seen a growing interest in the definition of
semantic methods in Genetic Programming (GP) [1]. While the
definition of semantics is not unique, it commonly refers to the
vector of outputs produced by the evaluation of a GP individual
on a set of training cases. Initial attempts to include the concept of
semantics in GP focused on indirect methods (i.e., where standard
syntax-based genetic operators are used and semantic criteria
are considered to accept or reject newly created individuals).
While these methods provide some beneficial effects on GP per-
formance, they require a non-negligible computational effort due

* Corresponding author.
E-mail addresses: mcastelli@novaims.unl.pt (M. Castelli), Imanzoni@units.it
(L. Manzoni).

https://doi.org/10.1016/j.s0ftx.2019.100313

to the evaluation of a vast number of useless individuals (the
ones that are not accepted based on the semantic criterion).
This problem has been overcome with the definition of direct
methods, that are able to include the concept of semantics in GP
by defining particular genetic operators that, differently from the
standard ones, have a direct effect on the semantics of the indi-
viduals [2]. While these operators have important properties [2]
that make them particularly useful in regression and classification
problems, they present important drawbacks: first of all, indi-
viduals generated by geometric semantic operators (GSOs) are
characterized by a bigger size (i.e., number of nodes) with respect
to the size of their parents. Individuals that grow exponentially
with the number of generations (when crossover is applied) are
an important limitation that must be taken into account when
semantic operators are used to address complex problems, where
hundreds of generations are necessary to generate a good quality

2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2019.100313
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100313&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_170
https://doi.org/10.24433/CO.5881521.v1
http://gsgp.sourceforge.net/?page_id=51
mailto:mcastelli@novaims.unl.pt
mailto:mcastelli@novaims.unl.pt
mailto:lmanzoni@units.it
https://doi.org/10.1016/j.softx.2019.100313
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 M. Castelli and L. Manzoni / SoftwareX 10 (2019) 100313

solution. In fact, the evaluation of such individuals makes the GP
process unbearably slow. Thanks to the software presented in
this paper, GSOs gained popularity in recent years, and it was
possible to use them to address complex real-world problems
which imply processing a vast amount of data [3]. The software,
called GSGP-C++ (Geometric Semantic Genetic Programming in
C++) is nowadays a reference in the GP community.

With the new version of the software, it is now possible to
save the best model returned at the end of the evolution using it
in a production scenario. This paper describes the new version
of the software that makes it possible to save the information
needed to reconstruct the optimal individual and to apply this
individual to test data, i.e., data which has not been previously
used for evolving the GP population. While reconstructing the full
individual is a time-consuming task, it is possible to store all the
components of the best solution in such a way that evaluating
new instances will require a time that is linear with respect to
the number of generations used to evolve the final solution.

2. Description of the software

The GSGP-C++ framework implements the GSOs outlined in [2]
for symbolic regression that are defined as follows:

Geometric Semantic Crossover. Given two parent functions
T:, T, : R" — R, the geometric semantic crossover returns the
real function Txo = (Ty - Tg) + ((1 — Tg) - T2), where T is a ran-
dom real function whose output values range in the interval
[0, 1].

Geometric Semantic Mutation. Given a parent function T : R"
— R, the geometric semantic mutation with mutation step ms
returns the real function Ty = T + ms - (Tg; — T2), Where Tg; and
Tk, are random real functions whose output values range in the
interval [0, 1].

The main idea that made it possible to implement these oper-
ators is that, given the parents and the random trees to be used,
there is only one possible way to apply the geometric semantic
operators. Therefore, there is no reason to store the whole tree
structure of the offspring. For instance, for crossover, given the
parents T; and T, and the random tree Tg, we can simply store
a tuple (crossover, &Ty, &T,, &Tg) where, for each individual 7,
& is a memory reference (or pointer) to 7. Analogously, there is
no reason for calculating the fitness of the offspring based on its
tree structure. Fitness is simply a distance between the semantic
vector and the target one. So, all we need to calculate fitness is the
semantic vector, which can be easily obtained from the semantic
vectors of Ty, T, and Ty by applying the definition of geometric
semantic crossover. Completely analogous reasoning can be done
for geometric semantic mutation. Being able to calculate fitness
simply by calculating a distance between vectors of numbers,
instead of having to evaluate tree structures, is the main reason
for the efficiency of the proposed implementation. The cost, in
terms of time and space, for evolving a population of n individuals
for g generations is O(ng) (the reader is referred to [4] for the
details).

2.1. Reconstructing the best solution

In order to use the model returned by a GP run, the system
stores the following information:

e the file called “individuals.txt” stores the individuals used
in the GP run as mathematical expressions. The first part
of the file contains the individuals that form the initial
population, while the remaining part of the file stores the
random individuals. These parameters can be specified in
the configuration file of the system (the reader is referred

to the documentation available at http://gsgp.sourceforge.
net/.) All the individuals are stored in Infix notation, with the
operators written in-between their operands (i.e., the usual
way we write expressions). Brackets are used to make the
precedence between operators explicit. An example, with
the first lines of the file “individuals.txt”, is reported in Fig. 1.

e the file “trace.txt” contains the information needed to re-
construct the optimal individual. In detail, each line of the
file stores the data related to each crossover, reproduction
and mutation event as a 6 —tuple that contains the following
information:

- if a crossover event happened, the 6 — tuple contains
the index of the first parent, the index of the second
parent, the index of the random tree, a 0 indicating a
crossover event, the index of the offspring and, finally,
a dummy value (the dummy value allows the system
to use the same data structure for mutation, crossover
and reproduction events).

- if a mutation event happened, the 6—tuple contains the
index of the first random tree, the index of the second
random tree, the index of the parent (i.e., the individual
that is mutated), a 1 indicating a mutation event, the
index of the offspring and, finally, the mutation step.

- if areproduction event happened, the 6—tuple contains
the index of the parent, three dummy values, the index
of the offspring and, finally, a dummy value.

This information is used to evaluate the optimal model on
unseen data following the procedure depicted in Fig. 2.
For instance, the 6 — tuple

260 —& 278 —& 186 —& 1 —& 83 —& 0.695687

indicates that individual 83 of the new population is ob-
tained by performing the mutation of individual 186 of the
current population. This semantic mutation must use the
random trees 260 and 278 with a mutation step of 0.695687.

To optimize the performance of the system, the file “trace.txt”
contains only the mutation, crossover and reproduction events
that have been performed to build the optimal individual. This is
obtained by the marking procedure depicted at the beginning of
Fig. 2. The procedure performs an exploration of a directed acyclic
graph starting from the node representing the best individual
(i.e., the one at the last generation). This implementation requires
a time that is linear with respect to the number of nodes of the
graph which is, at most, n - g, where n is the population size and
g the number of generations.

Considering that the evaluation procedure has a complexity
of O(ng), the global procedure (i.e., marking all the nodes reach-
able from the best individual and evaluating the resulting graph)
retains the same complexity.

3. Using the system

This section briefly explains how to use the system.

The first step for using the library requires the definition of
the fitness function, the functional and terminal symbols, and a
set of parameters. The default fitness function is the root mean
squared error between target and predicted values. Additionally,
the software already provides an implementation of the mathe-
matical operator and uses all the dependent variables as terminal
symbols. It is possible to specify a range of constant values to be
used as terminal symbols. In the documentation of the library, the
user can find what functionalities should be modified in order to
adapt the library to a specific problem. A configuration file (called
configuration.ini, included in the downloadable package) allows

http://gsgp.sourceforge.net/
http://gsgp.sourceforge.net/
http://gsgp.sourceforge.net/

M. Castelli and L. Manzoni / SoftwareX 10 (2019) 100313 3

Elndvdoaste & |
1 ((%16 - ((%2 * x13) + (x5 * x11))) * ((x3 + (x17 + x17)) / (x11 - (x1 + x15))))
(%3 / (((%9 - x12) — x12) - ((%8 — x17) + (x3 * x7))))
(((x5 —-x0) - ((%8 - x15) - x16)) * (x3 - x2))
((%2 *x7) + ((%0 + (x5 - x16)) + x6))
(x11 * (x3 - x2))
(x12 / ((x4 - ((x3 *x6)) * (x1 + (x9 * x15))))
(x6 + (x8 * (x10 * x15)))
(((x6 *x7) / (6 * (x12 / %2))) - (((x11 * x14) + (x6 — x0)) * x6))
(x12 * (X7 + (%6 = (%2 * x5))))
((((x13 * x16) - (%6 - x10)) + ((x10 / x4) - (x4 * x8))) / x15)
Fig. 1. Solutions stored in Infix notation in the file “individuals.txt”.
. Let us assume that the best individual is T3. We mark the
T1 T2 T3 T4 generation 2 individuals needed to calculate its semantics (i.e., its output)

mark[last gen] [T3]=True

for i=last gen downto 1

for j=1 to pop size

if mark([i][j] then
mark([i-1] [left child[j
mark[i-1] [right child[

1] = True

.]
T5 T6 T7 T8 generation 1 311 = True

To calculate the value of the tree,we follow a bottom-up

approach, starting with the leaves of the tree (i.e., the
\ 4 marked individuals at generation 0)

T9 T10 | T11 | T12 | generation0 for j=1 to pop_size
if mark[0][j] then
compute value(j)
for i=1 to last _gen
for j=1 to pop size
if mark([i][j] then
In this way we only evaluate the trees used compute value (left child[]
to build the optimal solution. Notice that the right child[
bottom-up evaluation has a complexity that
is linear with respect to the number of
generations used to generate the solution.

]l
il

Step 1 Step 2 Step 3
T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4
\ 4 \4 \ 4
T5 T6 T7 T8 T5 T6 T7 T8 T5 T6 T7 T8
T9 | T10 | T11 | T12 T9 | T10 | T11 | T12 T9 | T10 | T11 | T12

Fig. 2. Evaluation of the optimal individual. The top of the figure depicts the marking procedure, while the bottom part of the plot shows the evaluation procedure.
Each block represents an individual and each row is a population. Arrows represent the application of GSOs. White blocks are the ones that are not considered by
the marking procedure, hence they are not involved in the process of building the optimal solution. On the other hand, orange blocks are the ones marked by the
marking procedure and are the ones that must be evaluated to extract the semantics of the optimal individual.

the user to specify the appropriate parameters described in the the system will create the individual by using one of the

documentation. initialization methods that can be specified by using the
The file “configuration.ini” has important parameters to be parameter “init_type”.

specified for reconstructing the best model: 3. USE_TEST_SET: a value of 1 indicates that the system

is used to apply the optimal solution to a set of unseen
instances. A value different from 1 tells the system to
perform the standard evolutionary process.

1. random_tree: this parameter specifies the cardinality of
the pool of random trees used by the system.

2. expression_file: a value of 1 for this parameter indi-
cates to the system to use the individuals contained in the A typical use of the system to tackle a user-defined problem
file “individuals.txt”. A value different from 1 implies that consists of the following steps:

4 M. Castelli and L. Manzoni / SoftwareX 10 (2019) 100313

e use the system in learning mode (i.e., by executing the stan-
dard evolutionary process). In this phase, set the parameters
USE_TEST_SET to 0 and expression_file to 1 (if you
want to run the system by using the individuals contained
in the file “individuals.txt”) or to 0 (if you want to randomly
initialize the GP population);

e apply the best model obtained in the previous step to un-
seen data. In this phase, set both the parameters USE_TEST _
SET and expression_file to 1. The output of the model
is stored in the file “evaluation_on_unseen_data.txt”

To compile the file GP.cc containing the GP algorithm that uses
the proposed library, just execute the following command:

g++ -Wall -00 -g GP.cc —o GP

Running the program to perform the standard learning process
requires the execution of the command:

./GP -train_file train.txt -test_file test.txt

while to apply a solution to a set of unseen instances the user
must run the following command:

./GP -test_file test.txt

In this case, train.txt and test.txt are the files containing train-
ing and test instances.

When the system is executed with the value of USE_TEST_SET
equal to 1, the file containing the test instances does not need
to contain the target values. This is carefully explained in the
documentation of the system. Moreover, differently from the
training and test files specified in learning mode, the test file must
not contain on its second line the number of instances it stores.

The C++ source code can be compiled under Linux or Windows
with Cygwin. The project is self-contained and only depends on
standard libraries. Documentation is provided, including a user’s
manual and a description of the functions and data structures
used.

4. Impact

The system described in this paper will allow GP practitioners
to use the final model in a production environment, something
that represents a fundamental contribution in the field of GP and,
in particular, semantics-based methods. The system is nowadays
the fastest-running GP system, allowing a speedup that is at least
20 times the one that characterizes a syntax-based GP system. We
believe that this new implementation will make even popular the
use of the semantics-based method and genetic programming:
in particular, the system is scalable, allowing to solve problems
characterized by a vast amount of data.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by national funds through FCT (Fun-
dacdo para a Ciéncia e a Tecnologia), Portugal under project
DSAIPA/DS/0022/2018 (GADEET). Mauro Castelli acknowledges
the financial support from the Slovenian Research Agency, Slove-
nia (research core funding No. P5-0410).

References

[1] Vanneschi L, Castelli M, Silva S. A survey of semantic methods in genetic
programming. Genetic Program Evolvable Mach 2014;15(2):195-214.

[2] Moraglio A, Krawiec K, Johnson CG. Geometric semantic genetic program-
ming. In: Coello CAC, Cutello V, Deb K, Forrest S, Nicosia G, Pavone M,
editors. Parallel problem solving from nature - PPSN XII: 12th international
conference, Taormina, Italy, September 1-5, 2012, proceedings, part L. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2012, p. 21-31.

[3] Vanneschi L, Silva S, Castelli M, Manzoni L. Geometric semantic genetic
programming for real life applications. In: Genetic programming theory and
practice Xi. Springer; 2014, p. 191-209.

[4] Castelli M, Silva S, Vanneschi L. A C++ framework for geometric semantic
genetic programming. Genetic Program Evolvable Mach 2015;16(1):73-81.

http://refhub.elsevier.com/S2352-7110(19)30173-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30173-6/sb4

	GSGP-C++ 2.0: A geometric semantic genetic programming framework
	Motivation and significance
	Description of the software
	Reconstructing the best solution

	Using the system
	Impact
	Declaration of competing interest
	Acknowledgments
	References

