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Abstract

In this paper, the state estimation problem of linear continuous-time systems is dealt with by a non-asymptotic state observer,
which allows the state estimation error to decay within an arbitrarily-small finite time without resorting to high-gain injection.
By processing the measured input and output signals through modulation integrals, a number of auxiliary signals not affected
by the initial conditions are obtained, from which the system state can be computed by simple algebra. The problem of internal
instability of modulation integrals is addressed by resorting to a periodic rescaling mechanism that prevents error accumulation
and singularities. We show that the combination of modulation integrals with periodic rescaling can be implemented as a
jump-linear system. The robustness of the devised method with respect to additive measurement perturbations on the system’s
input/output is characterized by Input-to-State Stability arguments.

1 Introduction

The problem of dynamic state estimation is very impor-
tant, both for monitoring hidden variables not acces-
sible by instrumentation and for output feedback con-
trol systems design. Standard state observers for lin-
ear time invariant systems are usually characterized by
asymptotic convergence properties (see [1,2]). However,
in some applications, such as fault isolation or change-
point detection, the state estimates are often required
to converge in a neighborhood of the true values within
a pre-determined finite (and possibly very small) time.
This behavior is referred to as deadbeat convergence. Sev-
eral approaches for deadbeat state estimation are al-
ready available in the literature. Among them, the Slid-
ing Mode (SM) observer appears as one of the most used
techniques due to its ease of implementation. Notably,
the SM conventional observer suffers from a discontinu-
ous high-gain output injection (chattering), which may
prevent its applicability in a noisy environment. More-
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over, these observers can only guarantee the semi-global
stability of the estimation-error dynamics. The chatter-
ing phenomenon can be mitigated by the use of higher-
order SM approaches (see [3–6]) that, in addition, can
be proven to achieve global convergence at the cost of in-
creased complexity. Very recently, the homogeneity con-
cept has been used to design high-gain observers that
are able to converge in finite-time [7,8].

Several methods alternative to the SM observer have
been conceived to address the problem of deadbeat state
estimation in order to the remove the need for high-
gain output injection. For instance, the delay-based fil-
ters have been originally proposed in [10] and further
developed in [11]. Clearly the use of delay operators calls
for large memory storage at the implementation stage
and this point represents a major obstacle for the prac-
tical application. Another alternative is the impulsive
observer (IO) that is based on impulsive innovation up-
dates [12]. While the original formulation of the method
is non-minimal, the IO has been subsequently modified
to reduce the dimensionality of the observer at the price
of non-instantaneous convergence [13]; indeed, the dead-
beat performance is achieved in a finite number of im-
pulsive updates. Another class of deadbeat state estima-
tors is represented by the moving-horizon and convolu-
tional observers, that are described respectively in [14]
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and [15] and are characterized by need to solve repeated
dynamic optimization problems on-line. In a recent pa-
per [16], a finite-time observer is designed for linear sys-
tem via the implicit Lyapunov function approach [17,9].
This observer has an advantageous feature of being able
to converge after a fixed-time interval defined a priori.

In the present brief, a finite-time observer for continuous-
time linear systems is proposed by resorting to modula-
tion integrals. The concept originally stems from the ker-
nel based observer initially proposed by the authors in
[18]. However, the complexity is significantly reduced by
replacing the bivariate kernels of [18] with the newly de-
signed univariate modulating functions (MFs) whereas
comparable performance is achieved. Compared to the
work presented in [21] that is also based on univari-
ate MFs, the proposed MFs are characterized by one-
sided boundary conditions. The internal variables of the
modulation integral observer are periodically rescaled
to avoid error accumulation in noisy environments. In
contrast to the approach proposed in [20] that requires
periodic resetting to avoid numerical issues due to inter-
nal instability, the proposed rescaling strategy does not
completely discard old data, but acts as a sort of for-
getting factor which allows to maintain most of the old
information.

The paper is organized as follows: the problem is formu-
lated in Section 2 and in Section 3, the modulation inte-
gral observer is introduced. Then, Section 4 illustrates a
rescalingmechanism introduced to avoid divergence phe-
nomena in the integral operators and Section 5 provides
a thorough theoretical robustness analysis in which the
rescaling technique is exploited. Furthermore, Section 6
provides insight on the choice of MFs. Extensive sim-
ulation results are provided in Section 7 and Section 8
draws some concluding remarks. Throughout the paper,
R, R≥0 and R>0 will denote the real, the non-negative
real and the strict positive real sets of numbers, respec-
tively. Similarly, Z, Z≥0 and Z>0 will denote respectively
the integer, the non-negative integer and the strict pos-
itive integer sets of numbers. Moreover, we denote by
w(i) the i-th order derivative signal of w(t) ∈ R, ∀t ≥ 0,
which is assumed to be i-th order differentiable.

2 Problem Statement and Preliminaries

Consider the following single-input single-output (SISO)
continuous-time linear system

{

ẋ(t) = Ax(t) + bu(t)

y(t) = c⊤x(t)
(1)

where x ∈ R
n, u ∈ R, y ∈ R. The pair u(t), y(t) is as-

sumed to be measurable at any time t ≥ 0, while their
time-derivatives are not assumed to be available. The
matricesA, b, c⊤ are known constant matrices, and the

pair (A, c⊤) is fully observable. Our objective consists in
providing a non-asymptotic (fast) estimate of the state
x(t) of system (1), by suitably processing the input and
output signals u(t) and y(t), in such a way that the un-
known value of the initial conditions x0 does not affect
the transient behavior of the estimator.

Owing to the observability of (1), there exists a linear
change of coordinates z(t) = Tx(t) with z ∈ R

n, such
that the dynamics of z(t) is governed by the following
state-space realization:







ż(t) = Az z(t) + bz u(t),

y(t) = c⊤z z(t), t ∈ R≥0
(2)

where z(t) , [z0(t) z1(t) · · · zr(t) · · · zn−1(t)]
⊤ ∈ R

n

is the system’ state vector, while bz = Tb, c⊤z = c⊤T−1

and Az = TAT−1 ∈ R
n×n are given by

Az=















an−1 1 0 · · · 0
...

...
. . .

. . . 0

a1 0 · · · 0 1

a0 0 · · · 0 0















, bz=























0
...

bm−1

...

b0























, cz=















1

0
...

0















(3)
withm ∈ Z>0, n ∈ Z>0, m ≤ n. Thanks to the transfor-
mation given in (2) and (3), the estimation of x(t) can
be addressed by estimating z(t) in the canonical system.
For the sake of further discussion, it is worth to intro-
duce the I/O differential model of (2):

Su→y :























y(n)(t) =
n−1
∑

i=0

aiy
(i)(t) +

m−1
∑

k=0

bku
(k)(t)

y(i)(0) = y
(i)
0 , i ∈ {0, . . . , n− 1};

u(k)(0) = u
(k)
0 , k ∈ {0, . . . ,m− 1}

(4)

The state-variables of the observer canonical realization
zr(t), r∈{0, · · · , n−1} can be expressed as a linear com-
bination of the input-output derivatives:

zr(t)=y(r)(t)−

r−1
∑

j=0

an−r+j y
(j)(t)−

r−1+m−n
∑

j=0

bn−r+j u
(j)(t) (5)

wherewe have used the convention
∑k

j=0{·}=0, ∀k < 0.
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3 The Modulation Integral Observer

The modulation integral over the time interval
[t0, t], 0 ≤ t0 ≤ t is defined as follows:

[Vφw] (t|t0) ,

∫ t

t0

φ(τ − t0)w(τ)dτ, t ∈ R≥t0 ,

where φ(·) ∈ C i, ∀t ∈ R≥0 is the MF. A compact version
is also defined for the case when t0 = 0

[Vφw] (t) ,

∫ t

0

φ(τ)w(τ)dτ, t ∈ R≥0.

Lemma 3.1 (Modulated signal’s derivative) For a
given i ≥ 0, consider a signal w(·) ∈ L 2(R≥0) that ad-
mits an i-th order derivative in R≥0 and a function
φ(·) ∈ C i, ∀t ∈ R≥0. Then, for all t ∈ R≥0, it holds that:

[

Vφw
(i)
]

(t) =

i−1
∑

j=0

(−1)i−j−1w(j)(t)φ(i−j−1)(t)

+

i−1
∑

j=0

(−1)i−jw(j)(0)φ(i−j−1)(0) + (−1)i
[

Vφ(i) w
]

(t)

(6)
that is,

[

Vφw
(i)
]

(·) can be expressed as a function of w(·)

and its first (i-1)-th derivatives w(1)(·), . . . , w(i−1)(·). �

Proof. Integrating by parts, we have:

[

Vφw
(i)
]

(t) =

∫ t

0

φ(τ)w(i)(τ)dτ = w(i−1)(t)φ(t)

− u(i−1)(0)φ(0)−

∫ t

0

φ(1)(τ)w(i−1)(τ)dτ . (7)

The integral operator on the right-hand side of (7) can
be further split by parts:

−

∫ t

0

φ(1)(τ)w(i−1)(τ)dτ = −w(i−2)(t)φ(1)(t)

+ w(i−2)(0)φ(1)(0) +

∫ t

0

φ(2)(τ)w(i−2)(τ)dτ .

Proceeding by induction we obtain

∫ t

0

φ(τ)w(i)(τ)dτ =

i
∑

j=1

(−1)j+1w(i−j)(t)φ(j−1)(t)+

i
∑

j=1

(−1)jw(i−j)(0)φ(j−1)(0)+ (−1)i
∫ t

0

φ(i)(τ)w(τ)dτ

(8)

that is, the function obtained by applying the modu-
lation integral to the i-th derivative depends on lower-
order signal derivatives. The identity (6) can be verified
by rearranging indexing of the summation in (8).

The following definition characterizes the MFs for which
the transformed signal

[

Vφw
(i)
]

(t) in (6) is independent
from the initial values of the signal and its derivatives.

Definition 3.1 (i-th order modulating function)
Consider a function φ(·) ∈ C i; if for a given i ≥ 1, φ(·)
and its derivatives verify the vanishing conditions

φ(j)(0) = 0 , ∀j ∈ {0, . . . , i−1}, (9)

then φ(·) it is called an i-th order MF. Some examples of
admissible MFs will be given later in Section 6. �

Assuming that φ1(·) is an n-th order MF, by changing
the integrand w(i) in (6) with y(i) and u(k) we respec-
tively get:

[

Vφ
1
y(i)
]

(t) =

i−1
∑

j=0

(−1)i−1−jy(j)(t)φ
(i−j−1)
1 (t)

+ (−1)i[V
φ
(i)
1

y](t), i ∈ {1, . . . , n− 1}. (10)

and

[

Vφ1
u(k)

]

(t) =

k−1
∑

j=0

(−1)k−1−ju(j)(t)φ
(k−j−1)
1 (t)

+ (−1)k[V
φ
(k)
1

u](t), k ∈ {1, . . . ,m− 1}. (11)

Considering the case i = 1 in (10), changing the MF

φ1 with φ
(j)
1 , ∀j ∈ {1, . . . , n− 1}, and then performing

the substitution of y(n−1) for y we have that also the
following integral equation holds

[

V
φ
(1)
1

y(n−1)
]

(t) = y(n−1)(t)φ1(t)−
[

Vφ1 y
(n)
]

(t). (12)

By introducing the differential constraint (4) in (12) and
by exploiting the linearity of modulation integrals, we
obtain the intermediate expression

[

V
φ
(1)
1

y(n−1)
]

(t) = y(n−1)(t)φ1(t)

−

n−1
∑

i=0

ai

[

Vφ1y
(i)
]

(t)−

m−1
∑

k=0

bk

[

Vφ1u
(k)
]

(t). (13)

Substituting (10) and (11) in (13), after some cumber-
some algebra the expression (13) can be rearranged as
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follows:

(−1)n−1[V
φ
(n)
1

y](t) +
n−1
∑

i=0

ai(−1)i[V
φ
(i)
1

y](t)

+

m−1
∑

k=0

bk(−1)k[V
φ
(k)
1

u](t) =

n−1
∑

r=0

γφ1,r(t) zr(t) (14)

where γφ1,0(t), . . . , γφ1,r(t), . . . , γφ1,n−1(t) are known
functions of time depending on the MF φ1(·) and its
derivatives:

γφ1,r(t) = φ
(n−r−1)
1 (t)(−1)n−r−1, r∈{0, . . . , n−1}.

(15)
Observing that all the terms on the left-hand side of (14)
can be obtained by processing the signals y and u by
modulation integrals, it is convenient to define the signal

vφ1(t) , (−1)n−1[V
φ
(n)
1

y](t) +

n−1
∑

i=0

ai(−1)i[V
φ
(i)
1

y](t)

+
m−1
∑

k=0

bk(−1)k[V
φ
(k)
1

u](t)

=

∫ t

0

n
∑

i=0

φ
(i)
1 (τ)(ǎiy(τ) + b̌iu(τ))dτ (16)

where ǎi=(−1)iai, ∀i ∈ {0, . . . , n− 1}, ǎi=(−1)n−1, i =
n, and b̌i = (−1)ibi, ∀i ∈ {0, . . . ,m − 1}, b̌i = 0, ∀i ∈
{m, . . . , n}. As such, (14) can be rewritten in a compact
form, as follows

vφ1(t) =
n−1
∑

r=0

γφ1,r(t) zr(t). (17)

Note that the n states z0(t), . . . , zr(t), . . . , zn−1(t) ap-
pear linearly in equation (17). On the other side, (17)
cannot be directly inverted with respect to the unknown
state variables, being rank-deficient. To solve this is-
sue, it is possible to augment the number of constraints,
forming a well posed system invertible with respect to
the unknowns, by introducing further (n− 1) equations
analogous to (17) constructed with different-uniqueMFs
(see Definition 3.1), denoted by φ2, ..., φn in the sequel.
Accordingly, we obtain the following time-varying alge-
braic linear system

Γ(t)z(t) = v(t) (18)

where v(t) , [vφ1(t) · · · vφh
(t) · · · vφn

(t)]⊤ ∈ R
n is a

vector of known signals (obtainable by processing the
input-output signals through modulation integrals (16))
andΓ(t) ∈ R

n×n is a square time-varying matrix formed

by MF dependent functions γφ1,r(t) (see (15)):

Γ(t) ,























γφ1,0(t) · · · γφ1,r(t) · · · γφ1,n−1(t)
...

...
...

γφh,0(t) · · · γφh,r(t) · · · γφh,n−1(t)
...

...
...

γφn,0(t) · · · γφn,r(t) · · · γφn,n−1(t)























In view of the linear relation (18) one can be tempted to
obtain the full state vector by:

z(t) = (Γ(t))
−1

v(t), ∀t > tǫ (19)

where tǫ is a small time instant, provided that Γ(t) is in-
vertible for any t > tǫ, so as to circumvent the singular-
ity Γ(0) = 0 due to (9). Although Γ(t) can be made non-
singular by a proper choice of the MFs {φh}h∈{1,...,n},
we will show in the following lines that the simple inver-
sion (19) formula will not work without further provi-
sions, being prone to diverge due to error accumulation,
in particular when the estimator is run in a noisy envi-
ronment. Indeed, recall (16) and assume that the out-
put y(t) is corrupted by a norm-bounded additive noise
dy(t): |dy(t)| ≤ d̄y. We denote by

ŷ(t) = y(t) + dy(t) (20)

the perturbed output signal and by v̂φh
(t) the noisy

counterpart of the signal v̌φh
(t) defined in (16):

v̂φh
(t)=

∫ t

0

n
∑

i=0

φ
(i)
h (τ)

(

ǎi(y(τ)+dy(τ))+ b̌iu(τ)
)

dτ

(21)
and the error signal ṽφh

(t) = v̂φh
(t)− vφh

(t), which can
be expressed by

ṽφh
(t) =

∫ t

0

dy(τ)

n
∑

i=0

ǎiφ
(i)
h (τ)dτ. (22)

Unless the disturbance dy(τ) is zero mean on [0, t], and

dy(τ) and
∑n

i=0ǎiφ
(i)
h (τ) are uncorrelated, the integral

tends to diverge (for example, when dy is a deterministic
perturbation like an offset in the measurement). This
issue can be circumvented by using a strategy that we
have called Periodic Rescaling, which is discussed the
next Section 4 and analyzed in 5.

4 Periodic Rescaling

Let us now extend the notation in order to address the
more generic case in which the modulation operators are
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allowed to begin integrating at a time instant t0 different
from 0. Denoting by

v(t|t0), [vφ1(t|t0) · · · vφh
(t|t0) · · · vφn

(t|t0)]
⊤∈R

n ,

the vector of time-shifted modulation integrals with:

vφh
(t|t0),

∫ t

t0

n
∑

i=0

φ
(i)
h (τ − t0)(ǎiy(τ) + b̌iu(τ))dτ, (23)

then a time-shifted version of (18) can be written as:

Γ(t− t0)z(t) = v(t|t0), ∀t ≥ t0 . (24)

In order to proceed with the further analysis, we let
Tr and T∆ be two positive scalars and then define the
discrete-time sequence ti = T∆ + i Tr, ∀i ∈ Z≥0. Not-
ing that (24) holds for a generic t0, then the following two
equations hold together, for all t > tk − T∆, k ∈ Z>0:

Γ(t− (tk−T∆))z(t) = v(t|tk−T∆),

Γ(t− (tk−1−T∆))z(t) = v(t|tk−1−T∆).
(25)

It is worth to point out that the vector v(t|tk−T∆)
contains the information collected in the time-window
[tk−T∆, t] (stored by integration), while the vector
v(t|tk−1−T∆) contains information collected in the
longer time-window [tk−1−T∆, t]. By using the con-
straint (25), it is possible to establish an algebraic re-
lation between v(t|tk−T∆) and v(t|tk−1−T∆) that per-
mits to discard old information carried by the data pro-
cessed in the interval [tk−1−T∆, tk−T∆] (see the scheme
in Fig. 1). For t = tk, in view of (25), we can write:

v(tk|tk−T∆)

= Γ(T∆) (Γ(tk− tk−1+T∆))
−1

v(tk|tk−1−T∆)

= Γ(T∆) (Γ(Tr+T∆))
−1

v(tk|tk−1−T∆)

(26)

that is, we can compute the vector v(tk|tk−T∆) from the
vector v(tk|tk−1−T∆) through a simple algebraic rescal-
ing. According to the above discussion, then Tr is the
time between two rescaling events, while T∆ represents
the length of the equivalent integration window after a
each operation. In order to avoid error accumulation and
windup of integrators, a condition for the design of Tr

and T∆ is determined in the next section (see Theorem
5.1) on the basis of an ISS analysis of the observer sub-
jected to periodic rescaling. In order to carry out the ISS
analysis, we need to express the rescaling action in a for-
mal way, modeling the observer with periodic rescaling
as a jump-linear system.

In the sequel, for the sake of brevity, we let

ξh(t) , vφh
(t|tk−1−T∆), h ∈ {1, . . . , n}, (27)

Fig. 1. The periodically rescaling scheme.

for all t ∈ [tk−1, tk], k ∈ Z>0, then it turns out that

v(t|tk−1−T∆)=
[

ξ1(t) · · · ξh(t) · · · ξn(t)
]

. (28)

and

ξh(t)=
∫ t

tk−1−T∆

n
∑

i=0

φ
(i)
h (τ − tk−1 + T∆)(ǎiy(τ) + b̌iu(τ))dτ.

In view of (26), the state undergoes a jump-transition
at time tk satisfying the following constraint

ξh(t
+
k ) = e⊤hΓ(T∆) (Γ(Tr+T∆))

−1
v(tk|tk−1−T∆)

where we denote by eh ∈ R
n the h-th canonical basis

vector. In the subsequent time-window t ∈ (tk, tk+1] the
state variables will also verify the following equation:

ξh(t)=

∫ t

tk−T∆

n
∑

i=0

φ
(i)
h (τ−tk+T∆)(ǎiy(τ)+ b̌iu(τ))dτ.

As such, the auxiliary variable ξh evolves according to
the following hybrid dynamics (jump-linear system):







































ξ̇h(t)=

n
∑

i=0

φ
(i)
h (t)

(

ǎiy(t)+ b̌iu(t)
)

, 0≤ t≤ t1;

ξ̇h(t)=

n
∑

i=0

φ
(i)
h (t−tk+T∆)

(

ǎiy(t)+ b̌iu(t)
)

, tk<t≤ tk+1;

ξh(t
+
k )=e⊤hΓ(T∆)Γ(Tr+T∆)

−1
v(tk|tk−1−T∆), t = tk.

(29)
with ξh(0) = 0. Finally, the state estimate of the canon-
ical system (2) is given by (19), ∀t ∈ (0, t1], and for all
t : tk<t≤ tk+1, k ∈ Z>0, it follows

z(t)=(Γ(t−tk+T∆))
−1

v(t|tk−T∆) (30)
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5 Robustness Analysis

In this section, we address the stability properties of
the rescaling scheme in the presence of both input and
output disturbances. Let us denote by û(t) = u(t)+du(t)
the available input with bounded noise du(t): |du(t)| ≤
d̄u, while the perturbed output ŷ(t) is defined (20). By

introducing the state estimation error : z̃(t) , ẑ(t) −

z(t) and the so-called inner state error : ξ̃h(t) , ξ̂h(t) −
ξh(t), h = 1, · · · , n, we derive from (29) the inner error
dynamics with rescaling











































˙̃
ξh(t) =

n
∑

i=0

φ
(i)
h (t)(ǎidy(t) + b̌idu(t)), 0 ≤ t ≤ t0

˙̃
ξh(t) =

n
∑

i=0

φ
(i)
h (t− tk + T∆)(ǎidy(t) + b̌idu(t)),

tk < t ≤ tk+1

˙̃
ξh(t

+
k ) = e⊤hΓ(T∆)Γ(Tr+T∆)

−1
ṽ(tk|tk−1−T∆), t=tk

(31)

where ṽ(tk|tk−1−T∆) =
[

ξ̃1(tk) · · · ξ̃h(tk) · · · ξ̃n(tk)
]

.

The state estimation error z̃(t) can be obtained from the

inner state error ξ̃(t) by projecting ṽ through the linear
map Γ−1 as done in (30). The following result enables
us to guarantee the stability of the state observer in the
presence of the disturbances du(t) and dy(t).

Theorem 5.1 Given the SISO system (1), assume the
positive constants Tr and T∆ are designed, such that the
following inequality is verified:

∣

∣

∣

(

Γ(T∆) (Γ(Tr+T∆))
−1
)
∣

∣

∣

2

e2Tr < 1 (32)

Then, the state estimation error z̃(t) produced by the ob-
server (29), (19) and (30) is ISS with respect to bounded
perturbations du(t), dy(t): |du(t)| ≤ du, |dy(t)| ≤ dy,

with arbitrary and finite du ∈ R≥0, dy ∈ R≥0.

Proof. Let us introduce first the auxiliary functions:
Vh(t) = ξ̃h(t)

2, ∀h = 1, · · · , n, that will be used later to
define a Lyapunov function for the error system. Then
the derivative of Vh along the inner state error trajectory
in the interval tk < t ≤ tk+1 satisfies,

V̇h(t) ≤ 2

n
∑

i=0

|φ
(i)
h (t− tk + T∆)||ξ̃h(t)|

(

|ǎi|d̄y + |b̌i|d̄u
)

≤ 2|ξ̃h(t)|
2 +

(

n
∑

i=0

|φ
(i)
h (t− tk + T∆)||ǎi|

)2

d̄2y

+

(

n
∑

i=0

|φ
(i)
h (t− tk + T∆)||b̌i|

)2

d̄2u

= 2Vh(t) + σh(d̄u, d̄y), tk < t ≤ tk + 1

where

σh(d̄u, d̄y) ,

(

n
∑

i=0

sup
0<τ≤Tr+T∆

|φ
(i)
h (τ)||ǎi|

)2

d̄2y

+

(

n
∑

i=0

sup
0<τ≤Tr+T∆

|φ
(i)
h (τ)||b̌i|

)2

d̄2u.

By the Gronwall-Bellman Lemma, each function Vh(t)
can be bounded as follows:

Vh(t) ≤ Vh(t
+
k )e

2(t−tk) +
1

2
(e2(t−tk) − 1)σh(d̄u, d̄y)

∀t ∈ (tk, tk+1], ∀k ∈ Z>0 (33)

Substituting tk+1 for t in (33), we can establish the
bound at tk+1

Vh(tk+1) ≤ Vh(t
+
k )e

2Tr + e2Trσh(d̄u, d̄y) (34)

Due to the hybrid dynamics of the inner state error (see
(31)), then also the function Vh undergoes a jump tran-

sition at time tk+1: Vh(t
+
k+1) = ξ̃h(t

+
k+1)

2. In order to

determine the value of Vh(t
+
k+1), let us first study the

bound of ṽ(t+k+1|tk−1−T∆), which is the vector collect-

ing all ξ̃h(t
+
k+1), ∀h = 1, 2, · · · , n:

|ṽ(t+k+1|tk−1−T∆)| ≤ |Γ(T∆)Γ(Tr+T∆)
−1|

× |ṽ(tk+1|tk−T∆)|, k ∈ Z>0 (35)

where

|ṽ(tk+1|tk−T∆)| =

√

√

√

√

n
∑

h=1

ξ̃h(tk+1)
2 =

√

√

√

√

n
∑

h=1

Vh(tk+1) .

(36)
In view of (34), we have that

|ṽ(tk+1|tk−T∆)| ≤

√

√

√

√e2Tr

n
∑

h=1

(

Vh(t
+
k ) + σh(d̄u, d̄y)

)

,

thus resulting in a further bound on |ṽ(t+k+1|tk−T∆)| :

|ṽ(t+k+1|tk−1−T∆)| ≤ κ

√

√

√

√e2Tr

n
∑

h=1

(

Vh(t
+
k )+σh(d̄u, d̄y)

)

=⇒

√

√

√

√

n
∑

h=1

Vh(t
+
k+1) ≤ κ

√

√

√

√e2Tr

n
∑

h=1

(

Vh(t
+
k )+σh(d̄u, d̄y)

)

where, for the sake of brevity, we have posed
κ , |Γ(T∆)Γ(Tr+T∆)

−1|.
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Finally, let V (t) =
∑n

h=1 Vh(t) be the Lyapunov func-
tion candidate for the inner state error dynamics. Then
we can guarantee the following difference bound on the
discrete Lyapunov function sequence, sampled just after
each state jump:

V (t+k+1) ≤ κ2e2TrV (t+k ) + κ2e2Tr

n
∑

h=1

σh(d̄u, d̄y)

which can be rearranged in the following compact form

V (t+k+1)−V (t+k )≤−(1−κ2e2Tr)V (t+k )+κ2e2Trσ(d̄u, d̄y)
(37)

with σ(d̄u, d̄y) , nmaxh=1,··· ,n{σh(d̄u, d̄y)}.

Thanks to (32), the designed Tr and T∆ enforce κ2e2Tr <
1, which implies that V is a discrete ISS Lyapunov func-
tion for the sampled inner state error system. There-
fore, ξ̃h(t) is ISS with respect to d̄u and d̄y. Finally, it is
straightforward to show that the state estimation error
subsumes the bound

|x̃(t)| ≤ |T−1| sup
0<τ≤Tr+T∆

|Γ(τ)−1|

n
∑

h=1

|ξ̃h(t)|,

6 Instances of Admissible Modulating Func-
tions

In this section, we propose two instances of MFs (that
fulfill the requirements (9)), which are employed later on
in the simulations. Moreover, the influence of the MFs’
coefficients on the invertibility of Γ(t) is investigated to
get more insight into the proper setting of design param-
eters. To this end, we will analyse the condition num-
ber 1 of the Γ(t) matrix for different types of MFs.

1) Exponential modulating function:

φh(t) =
(

1− e−ρht
)n

, h ∈ {1, . . . , n} (38)

which is parametrized by a set of constants ρh ∈ R>0

with a constraint ρi 6= ρj , for i 6= j.

Now, let us focus on the case n = 2 and consider two
exponential MFs φh(t), h = 1, 2, which gives rise to

Γ(t) =

[

−2ρ1e
−ρ1t(1− e−ρ1t) (1 − e−ρ1t)2

−2ρ2e
−ρ2t(1− e−ρ2t) (1 − e−ρ2t)2

]

.

1 Let
∣

∣

∣

λmax(Γ(t))
λmin(Γ(t))

∣

∣

∣
denote the instantaneous condition num-

ber of Γ(t) with λmin(Γ(t)), λmax(Γ(t)) the minimum and
maximum eigenvalue of matrix Γ(t), respectively.

The invertibility of Γ(t) is implied by

det(Γ(t))=2(1−e−ρ1t)(1−e−ρ2t)
[

(1− e−ρ1t)ρ2e
−ρ2t

−(1− e−ρ2t)ρ1e
−ρ1t

]

6= 0 ,

which holds if the following condition is verified

(1− e−ρ1t)ρ2e
−ρ2t 6= (1− e−ρ2t)ρ1e

−ρ1t. (39)

Indeed, by applying the ln(·) operator on both sides
of (39), we obtain ρ2t 6= ρ1t → (ρ1 − ρ2)t 6= 0 . For
any designed Tr, T∆, ρ1, ρ2, this condition is verified as
ρi 6= ρj , for i 6= j, and therefore it implies det(Γ(t)) 6=
0 , ∀t ∈ (0, Tr + T∆]. In Fig. 2, the condition numbers of
Γ(t), ∀t ≥ 0.3 are shown for three pairs of ρ1, ρ2.

0 1 2 3

0

200

400

0 1 2 3

0

500

1000

1500

Fig. 2. Time behavior of the condition numbers of Γ(t)
formed by exponential (left) and time-monomial (right)MFs.

2) Time-monomial modulating function:

φh(t) =
ρh t2n−h

(2n− h)!
, h ∈ {1, . . . , n} (40)

with ρh ∈ R>0 arbitrary (uniqueness does not apply
here). Although φh(t) and its derivatives are monotoni-
cally increasing functions with respect to t, they are only
computed over the time interval [0, Tr + T∆] due to the
periodic rescaling, thus circumventing the issue of nu-
merical overflow. Following the same steps taken above,
we obtain

det(Γ(t)) = −
ρ1ρ2t

4

12
6= 0

under the scenario that n = 2. Thus verifying the invert-
ibility of Γ(t) over a time interval (0, Tr + T∆] for any
positive parameters Tr, T∆, ρ1, ρ2.

As can be noticed from Fig. 2, the matrix Γ(t) has a
large condition number at the very beginning. In this
respect, the parameters ρh, h = 1, 2, · · · , nmust be cho-
sen to minimize the condition number, in order to ren-
der feasible the practical inversion of Γ(t) in the interval
[tǫ, T∆+Tr]. Note that the inverse matrix Γ(t)−1 can be
computed analytically once the MFs have been chosen
and the inverse can be implemented directly, to avoid
online matrix inversion.

7 Simulation Results

Example 1 In this example, we compare the proposed
method with the impulsive observer reported in [13].
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Consider a spring mass system used in [13], which is
described by the state-space realization (1) with

A=















0 0 1 0

0 0 0 1

−2 1 −1 0

2 −2 0 −2















, b=















0

0

1

0















, c=















1

0

0

0















,

u(t) = sin(t) and x0 = [5 − 2 3 4]⊤. The method [13] is
tuned by the same parameters shown in [13], while we
set: ρ1 = 1, ρ2 = 2, ρ3 = 3, Tr = T∆ = 1s for the pro-
posed observer with respect to time-monomial MFs. The
convergence time is chosen as 1s (i.e., tǫ = 1s), identi-
cal to the value given in [13]. The simulation results are
shown in Fig. 3, where both observers succeed in estimat-
ing the three inaccessible states (x0(t) is available from
the measurable output y(t)) within a predetermined fi-
nite time.

Fig. 3. Comparison between the proposed modulation inte-
gral observer (MIO) and the impulsive observer (IO) [13] in
the noise-free (first row) and noisy (second row) conditions.

Next, the behavior of both observers in the presence
output disturbance is examined by assuming an out-
put measurement disturbance d(t) that is formulated as
a uniformly distributed random signal in the interval
[−0.1, 0.1]. It can be observed from Fig. 3 that the impul-
sive observer [13] is susceptible to the measured noise,
while the proposed method offers strong attenuation of
high-frequency noise, and yields accurate estimates in
the noisy environment.

Example 2 The present example is aimed at compar-
ing the proposed modulation integral observer with its
reduced order counterpart [19]. Consider the canonical
third-order system taken from [19]:

{

z(1)(t) = Az z(t) + bz (u(t) + d(t)),

y(t) = c⊤z z(t) + d(t), t ∈ R≥0

(41)

with

Az=









−0.21 1 0

−9.012 0 1

−0.0901 0 0









, bz=









0

1

1









, cz=









1

0

0









,

where z(0) = [1 − 10 1]. The nominal input is u(t) =
10 sin10t + sin 2t, however, y(t) and u(t) are both cor-
rupted by a disturbance d(t) that is subject to uni-
formly distribution within the interval [−0.2, 0.2]. The
proposed observer is designed by using exponential MFs
with ρ1 = 1, ρ2 = 2, ρ3 = 3. Both methods are acti-
vated at 0.5s with Tr = T∆ = 1s.

Fig. 4. Comparison between the proposed modulation inte-
gral observer (MIO) and the reduced order modulation in-
tegral observer (RMIO) [19] in the noisy condition.

It follows from Fig. 4 that in the presence of disturbances
the transient and steady state accuracy are significantly
improved by the proposed algorithm at the cost of one
more dynamic order.

Example 3 This example aims at comparing the pro-
posed method with the recent finite-time observer pre-
sented in [16] by using the system (41). The observer [16]
is tuned to converge at t = 1s. From the results reported
in Fig. 5, the convergence of the observed state to the
real state of the linear system is guaranteed in a finite
and fixed time. Compared to the behavior of the pro-
posed method shown in Fig. 4, the approach designed in
[16] is slightly more sensitive to the additive noise. Next,
we further reduce the pre-determined converge time of
[16] to 0.5s, identical to the value set for the proposed
method in the previous example (see Fig. 4). As it can
be seen, the converge speed is increased at the price of
higher noise-sensitivity and larger overshoots. Such a
trade-off does not arise in the methodology presented in
the paper.

8 Concluding Remarks

The present paper is concerned with the design of a
deadbeat state observer for SISO linear systems without
high gain injection and with lower complexity compared
to the kernel-based observer proposed by the authors in
[18]. The method consists in processing the input and
output measurements by modulation integrals with pe-
riodic rescaling, which aims to discard old information

8



Fig. 5. State estimation of [16] in the noisy condition with
different convergence time: tǫ = 0.5s and tǫ = 1s.

at pre-determined discrete-time instants. The resulting
observer is ISS with respect to bounded additive mea-
surement perturbations.
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