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Abstract: Composites and porous scaffolds produced with biodegradable natural polymers are very 
promising constructs which show high biocompatibility and suitable mechanical properties, with 
the possibility to be functionalized with growth factors involved in bone formation. For this 
purpose, alginate/hydroxyapatite (Alg/HAp) composite scaffolds using a novel production design 
were successfully developed and tested for their biocompatibility and osteoconductive properties 
in vitro. Redox homeostasis is crucial for dental pulp stem cell (DPSC) differentiation and 
mineralized matrix deposition, and interleukin-6 (IL-6) was found to be involved not only in 
immunomodulation but also in cell proliferation and differentiation. In the present study, we 
evaluated molecular pathways underlying the intracellular balance between redox homeostasis and 
extracellular matrix mineralization of DPSCs in the presence of composite scaffolds made of alginate 
and nano-hydroxyapatite (Alg/HAp). Prostaglandin-2 (PGE2) and IL-6 secretion was monitored by 
ELISA assays, and protein expression levels were quantified by Western blotting. This work aims 
to demonstrate a relationship between DPSC capacity to secrete a mineralized matrix in the presence 
of Alg/HAp scaffolds and their immunomodulatory properties. The variation of the molecular axis 
Nrf2 (nuclear factor erythroid 2-related factor 2)/PGE2/IL-6 suggests a tight intracellular balance 
between oxidative stress responses and DPSC differentiation in the presence of Alg/HAp scaffolds. 
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1. Introduction 

Bone and dentin are nanostructured composites containing mineralized collagenous tissues 
owning mechanical properties uniquely adapted to their function [1]. During the early stages of 
odontogenesis, mesenchymal stem cells (MSCs) originating from the neural crest migrate toward the 
para-axial mesenchyme, taking up differentiation stimuli and releasing collagen fibers which form a 
mineralized matrix [2]. Adult stem cells are excellent resources for cell therapy and regenerative 
medicine. MSCs are adult pluripotent cells from the connective tissue, and they originate from the 
mesoderm [3]. Among these, dental pulp stem cells (DPSCs) were the first identified human MSCs 
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capable of differentiating into odontoblastic, osteoblastic, neurogenic, adipogenic, myogenic, 
chondrogenic, and melanocytic lineages in vitro, and capable of forming a mineralized matrix similar 
to dentin or bone when transplanted into immunocompromised mice [4]. In addition to self-renewal 
and multilineage differentiation capacity, DPSCs also possess an immunomodulatory function, 
capable of secreting molecular signals and cytokines which can reduce inflammation and induce the 
regeneration of periodontal tissue [5]. 

Interleukin-6 (IL-6) acts as a pleiotropic cytokine in several cell processes such as immune 
regulation, hematopoiesis, and tissue regeneration in vivo. MSCs from the bone marrow (BM-MSCs) 
both secrete and respond to IL-6. Indeed, it was reported that autocrine/paracrine IL-6 is involved in 
the chondrogenic differentiation of BM-MSCs. However, the effect of IL-6 in the osteogenic 
differentiation of BM-MSCs is still controversial [6]. Xie and colleagues [7] found that BM-MSCs 
continuously secreted IL-6 under osteogenic induction. Evidence suggests that bone mass is affected 
by IL-6, which is capable of modulating osteocyte communication toward osteoclasts. However, the 
mechanism via which IL-6 enhances osteocyte-mediated osteoclastogenesis is unclear. It was shown 
that IL-6, TNF-α (tumor necrosis factor α), and IL-1β (interleukin-1β) contribute to bone remodeling 
in the early stages of fracture healing, and, after fracture surgery, they are involved in bone 
remodeling activation [8]. Additionally, bone resorption can be induced under IL-6 stimulation, and 
it can directly increase osteoclast formation in periodontal disease and rheumatoid arthritis. Wu et 
al. reported that bone remodeling is stimulated through IL-6 secretion in osteocyte and osteoclast 
precursors, speculating that it may be one of the fundamental mechanisms accelerating tooth 
movement by orthodontic surgery [9]. 

Annually, more than 900 million reconstructive surgeries are performed in response to bone and 
oral defects [10]. During the past few decades, several synthetic porous scaffolds were developed to 
replace autografts and allografts. Scaffolds are one of the key components in bone tissue-engineering 
strategies designed to regenerate damaged tissue [11]. Composite constructs made of biodegradable 
natural polymers were shown to be very promising, with excellent biocompatibility and suitable 
mechanical properties. For this purpose, we successfully developed alginate/hydroxyapatite 
(Alg/HAp) composite scaffolds using a novel production design [12]. The biocompatibility of these 
novel constructs was afterward evaluated in an in vitro cell system showing that DPSC osteogenic 
differentiation and mineralized matrix deposition are driven by the modulation of the antioxidant 
enzyme catalase. These findings suggested that DPSC osteogenic differentiation is tightly related to 
redox homeostasis, and that it is controlled by the activation of catalase which, as an enzymatic 
antioxidant, enhances cell survival in the presence of scaffolds [13]. It was well demonstrated that 
cell responses toward oxidative stress are driven by the transcription factor Nrf2 in different cell type 
[14,15]. Moreover, many diseases including bone disorders can be linked to oxidative stress. Changes 
in redox homeostasis are also related to the bone remodeling process, which implies constant bone 
regeneration through bone cell coordination. [16]. It was recently reported that a pharmacological 
induction of Nrf2 is involved in cytoprotection through a dose-dependent downregulation of pro-
inflammatory cytokines, including prostaglandin-2 (PGE2) and IL-6 [17]. The metabolism of bone, as 
well as damage and disease processes, is strongly associated with the interplay between 
inflammation-related pathways (PGE2 in particular) and osteogenesis. Indeed, it was demonstrated 
that pro-inflammatory pathways of prostaglandins and bone morphogenic proteins are intertwined 
[18]. 

In this light, the present study was designed in order to evaluate the molecular pathways 
underlying the intracellular balance between redox homeostasis and extracellular matrix 
mineralization. Based on the above observations and reports, we investigated whether Alg/HAp 
scaffolds could be beneficial in the regulation of this molecular equilibrium in terms of protein 
expression related to antioxidant responses and cytokines secretion involved in osteogenic 
differentiation and inflammation. 

2. Materials and Methods 

2.1. Preparation and Characterization of Alginate/HAp Composites (Alg/HAp Scaffolds) 
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Alg/HAp composite scaffolds were prepared by mixing alginate 2% (w/v) and HAp 3% (w/w) in 
water using the calcium release method as previously described [12]. HAp powder was 
homogeneously dispersed into a stirred solution of alginate in water, followed by the addition of 
hydrolyzing D-gluconic acid δ-lactone 60 mM (GDL) to release calcium ions from HAp. Aliquots of 
this gelling solution were then cured in 24-well tissue culture plates (h = 18 mm, Ø = 16 mm, Costar, 
Cambridge, MA) for 24 h at room temperature to allow complete gelification. The hydrogels in the 
tissue-culture plate were then stepwise cooled by immersion in a liquid cryostat. Ethylene glycol in 
water (3:1) was used as a refrigerant fluid. Temperature was decreased stepwise from 20 °C to −20 °C 
by 5 °C steps with 30-min intervals for equilibration; the samples were then freeze-dried for 24 h to 
obtain isotropic network porous scaffolds [12]. 

2.2. Cell Culture of DPSCs on Alg/HAp Scaffolds 

This project received the approval of the Local Ethical Committee of the University of Chieti-
Pescara (approval number 1173, date of approval 31 March 2016) according to the Declaration of 
Helsinki. Obtained DPSCs from digested dental pulps were handled, cultivated, and characterized 
by their immunophenotype as previously described [19]. DPSCs were cultured and expanded in 
Minimun Essential Media (MEM)-α medium supplemented with 10% fetal bovine serum (FBS) and 
1% penicillin/streptomycin (all purchased from EuroClone, Milan, Italy) up to the sixth passage. 

2.3. Alg/HAp Scaffold Preparation for Cell Culture and Cell Seeding 

Alg/HAp scaffolds underwent two cycles of sterilization under an ultraviolet (UV) light (15 W) 
for 1 h each, and they were rehydrated and conditioned in complete MEM-α overnight as previously 
reported [13]. After being expanded up to the sixth passage, DPSCs were trypsinized (trypsin/EDTA 
1×, EuroClone, Milan, Italy) and collected by centrifugation (1200 rpm for 10 min at room 
temperature). DPSCs were then counted, and 5 × 104 cells were resuspended in 130 μL of complete 
medium and afterward used for seeding drop by drop on each scaffold. Samples were immediately 
placed at 37 °C and 5% CO2 for 3 h to allow cell adhesion and interpolation onto/into scaffolds. Next, 
complete medium or differentiation medium (DM) was added to each sample (named in figures as 
Alg/HAp and Alg/HAp DM, respectively). Complete DM was supplemented as reported previously 
[13], with 100 μM ascorbic acid, 10 nM dexamethasone, 5 mM β-glycerol phosphate disodium salt 
pentahydrate (all purchased from Sigma Aldrich, MI, USA), and 1.8 mM potassium phosphate (Alfa 
Aesar Chemicals, Haverhill, MA, USA). DPSCs onto Alg/HAp scaffolds with or without DM were 
incubated for 1, 3, 7, 14, 21, and 28 days, and medium was refreshed every three days. 

2.4. Protein Extraction and Quantification 

After discarding cell supernatants, pellets from DPSC growth onto Alg/HAp scaffolds were 
obtained as previously reported [13]. In brief, scaffolds were dissolved in a sodium citrate buffer 
solution made from 50 mM sodium citrate tribasic dehydrate, 100 mM sodium chloride, and 10 mM 
sucrose (all purchased from Sigma Aldrich, MI, USA) and collected by centrifugation. After that, 0.5 
mL of lysis buffer enriched with a protein inhibitor cocktail (PBS, 1% IGEPAL CA-630, 0.5% sodium 
deoxycholate, 0.1% SDS, 10 mg/mL PMSF, 1 mg/mL aprotinin, 100 mM sodium orthovanadate, and 
50 μg/mL leupeptin, all purchased from Sigma-Aldrich, MI, USA) was added, and samples were kept 
on ice for 30 min. Then, pellets were resuspended in the enriched lysis buffer and kept on ice for an 
additional 30 min. Following centrifugation for 15 min at 20,000× g, the supernatant was collected as 
the whole-cell fraction. Protein concentration in the whole-cell lysate was determined using a 
bicinchoninic acid assay (QuantiPro™ BCA Assay Kit for 0.5–30 μg/mL protein, Sigma-Aldrich, 
Milan, Italy) following the manufacturer’s instructions. The absorbance at 562 nm was recorded in a 
spectrophotometer (Multiskan GO, Thermo Scientific, MA, USA), and the protein concentration 
(μg/mL) was determined by comparison to a standard curve using the Prism5 software (GraphPad, 
San Diego, CA, USA). 

2.5. Immunoblot Analysis 
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Obtained quantified cell lysates (15 μg/sample) were electrophoresed and transferred to 
nitrocellulose membranes as reported in our previous work [13]. Membranes were afterward probed 
for mouse anti-β-actin monoclonal antibody (Sigma-Aldrich, St. Louis, MO, USA) (primary antibody 
dilution 1:10,000), rabbit anti- COX2, anti-PARP-1, and anti-Nrf2 polyclonal antibodies (all purchased 
from Santa Cruz Biotechnology, Dallas, TX, USA) (primary antibody dilutions 1:200, 1:500, and 1:750, 
respectively), as well as rabbit anti-p44/42 MAPK and anti-phosho-p44/42 MAPK (Erk 1/2 and p-Erk 
1/2) monoclonal antibodies (all purchased from Cell Signaling Technology, Danvers, MA, USA) 
(primary antibody dilutions 1:1,000). Next, specific horseradish peroxidase-conjugated antibodies 
were added and immunoreactive bands were identified using the Enhanced Chemiluminescence 
(ECL) detection system (LiteAblot Extend Chemiluminescent substrate, EuroClone, Milan, Italy) and 
analyzed by densitometry through the ChemiDoc XRS System and the Quantity-One analysis 
software (Bio-Rad, Hercules, CA, USA). Protein band integrated optical intensities were normalized 
to that of β-actin (loading control). 

2.6. Cytokine Assays 

DPSCs (5 × 104 cells) were resuspended in 130 μL of complete medium and seeded onto Alg/HAp 
scaffolds as previously described. Cell culture supernatants were collected after 1, 3, 7, 14, 21, and 28 
days and analyzed for cytokine release. The amounts (pg/mL) of prostaglandin-2 (PGE2) and 
interleukin-6 (IL-6) were quantified using commercial ELISA kits (Enzo Life Sciences Inc, Lausen, 
Switzerland) following the manufacturer’s instructions. Absorbance was read at 405 nm for PGE-2 
and at 450 nm for IL-6 by means of a spectrophotometer (Multiskan GO, Thermo Scientific, MA, 
USA). Cytokine concentration was determined by comparison to a standard curve using the Prism5 
software (GraphPad, San Diego, CA, USA) according to the recommended calculation of results. Each 
of these values was normalized to the protein content (μg of protein/sample) measured by the BCA 
assay. 

2.7. Statistical Analysis 

Individual data from independent experiments were summarized as means ± standard error of 
the mean (SEM). Data were handled using Prism5 software (GraphPad, San Diego, CA, USA) using 
analysis of variance (one-way ANOVA). Significant differences between mean values were calculated 
using the t-test. Values of p < 0.05 were considered statistically significant. 

3. Results 

3.1. Cyclooxygenase-2 and PGE2 Modulation in DPSC Growth onto Alg/HAp Scaffolds 

The expression of COX2 and PGE2 release was quantified as an evaluation of inflammation 
occurrence in DPSCs cultured in the presence of Alg/HAp scaffolds. When cells were cultivated 
without DM, levels of COX2 increase in a time-dependent manner from one day to three days (1.24 
fold of β-actin) up to seven days, where a peak was assessed at 2.26-fold more than the marker control 
β-actin (Figure 1a). After that, COX2 was found to be downregulated, reaching the lowest value 
registered at 28 days (0.34-fold of β-actin). The presence of DM increased protein levels after one and 
three days of culture with respect to normal growth medium, but clearly moderated COX2 
downregulation (0.77-fold of β-actin). After 14 and 28 days, there was only a slight protein expression 
increase with respect to DPSCs cultured without DM. 
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Figure 1. Cyclooxygenase-2/prostaglandin 2 COX2/PGE2 pathway modulation in dental pulp stem 
cells (DPSC) growth onto alginate/hydroxyapatite (Alg/HAp) scaffolds. (a) Typical results of COX2 
protein expression by Western blotting of three independent experiments. β-actin was used as a 
protein content marker. The bar graph shows densitometric values expressed as the mean percentage 
± Standard Error of the Mean (SEM) (n = 3) of integrated optical densities of protein bands normalized 
to β-actin. * p < 0.05 between Alg/HAp at 14 days and Alg/HAp at one day; *** p < 0.005 between 
Alg/HAp with or without differentiation medium (DM) at seven and 28 days and Alg/HAp at one 
day; **** p < 0.001 between Alg/HAp with or without DM at three days and Alg/HAp at one day; # p 
< 0.05 between Alg/HAp with and without DM at 14 days; ### p < 0.005 between Alg/HAp with and 
without DM at one day; #### p < 0.001 between Alg/HAp with and without DM at three, seven, and 
28 days. (b) The bar graph displays the quantification of PGE2 released in pg/mL normalized to the 
protein content (μg/sample). Values are expressed as means ± SEM (n = 3). * p < 0.05 between Alg/HAp 
at 14, 21, and 28 days and Alg/HAp at one day; *p < 0.05 between Alg/HAp with DM at 21 days and 
Alg/HAp at one day; # p < 0.05 between Alg/HAp with and without DM at three, seven, and 21 days; 
### p < 0.005 between Alg/HAp with and without DM at one day. 

In accordance with COX2 expression, PGE2 release was dramatically enhanced after one, three, 
and seven days of culture from DPSC growth onto scaffolds without DM (Figure 1b), with no 
difference across the three experimental times (42.36 pg/mL, 42.67 pg/mL, and 43.29 pg/mL, 
respectively). As for 14, 21, and 28 days of culture, PGE2 secretion was significantly decreased, 
assessed at 27.99, 32.03, and 23.82 pg/mL, respectively. In the presence of differentiating agents, PGE2 
released from DPSCs was substantially lower starting from early culture times. In detail, the pro-
inflammatory cytokine concentration in samples with DM was 2.5-, 1.8-, and 3.5-fold lower compared 
to that with only MEM-α after one, three, and seven days of culture. After seven days, this ratio was 
slightly decreased due to the reduction of PGE2 released from DPSCs grown onto scaffolds without 
DM, but it was still registered (Figure 1b). 

3.2. Erk 1/2 Phosphorylation and PARP-1 Cleavage in the DPSC/Scaffold Model 

In order to investigate whether the modulation of pro-inflammatory proteins activates the 
regulation of repairing pathways related to inflammation and cell survival, Erk 1/2 activation and 
PARP-1 expression or cleavage were investigated in the DPSC/Alg/HAp scaffold model. As for Erk 
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1/2 activation, the increase in protein phosphorylation was clearly time-dependent up to 14 days, and 
it was enhanced by DM (Figure 2a). Circumstantially, after seven and 14 days of culture onto 
Alg/HAp scaffolds, levels of p-Erk 1/2 were respectively 0.66- and 0.96-fold of the total protein 
without DM and 0.56- and 1.30-fold in the presence of DM. After that, there was a fall in the 
expression of activated Erk 1/2, with values of phosphorylated protein at 28 days assessed at 0.41-
fold without DM and 0.63-fold in the presence of differentiation agents (Figure 2a). 

. 
Figure 2. Extracellular signal-regulated kinases (Erk 1/2) phosphorylation and cleavage of Poly [ADP-
ribose] polymerase-1 (PARP-1) and in DPSCs growth onto Alg/HAp scaffolds. Typical results of Erk 
1/2 and PARP-1 protein expression by Western blotting of three independent experiments. β-actin 
was used as a protein content marker. The bar graphs show densitometric values expressed as the 
mean percentage ± SEM (n = 3) of integrated optical densities of protein bands normalized on β-actin. 
(a) *** p < 0.005 between Alg/HAp at 28 days with or without DM and Alg/HAp at one day; **** p < 
0.0005 between Alg/HAp at seven, 14, and 21 days with or without DM and Alg/HAp at one day; # p 
< 0.05 between Alg/HAp with and without DM at one day; #### p < 0.0005 between Alg/HAp with 
and without DM at three, seven, 14, and 28 days. (b) * p < 0.05 between Alg/HAp at 14 days and 
Alg/HAp at one day; * p < 0.05 between Alg/HAp with DM at 21 and 28 days and Alg/HAp at one 
day; *** p < 0.005 between Alg/HAp at seven days and Alg/HAp at one day; # p < 0.05 between 
Alg/HAp with and without DM at 28 days; ### p < 0.005 between Alg/HAp with and without DM at 
three and seven days; #### p < 0.001 between Alg/HAp with and without DM at 14 days. 

In general, the amount of cleaved PARP-1 was not higher than 0.5-fold of PARP-1, due to the 
large amount of the full-length protein (Figure 2b). Outstandingly, the presence of differentiation 
agents in culture enhanced PARP-1 cleavage mainly at 14 days (0.47-fold of the full length). After 21 
and 28 days, levels of cleavage were comparable or even lower than the first day of culture. 
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3.3. Nrf2 Early Activation in DPSCs in the Presence of Alg/HAp Scaffolds 

Since changes in redox homeostasis are linked to bone remodeling [16] and Nrf2 is a master 
regulator of cell responses toward oxidative stress [14], expression levels of this transcription factor 
were analyzed and quantified by immunoblotting. Nrf2 was only slightly expressed after one day in 
DPSC seeded on scaffolds (0.34-fold), but levels of expression were quite enhanced by differentiation 
agents at the same experimental time (0.79-fold) (Figure 3). After three days of culture, Nrf2 levels 
were even more increased, sensitive to the presence of differentiation medium (1.37- and 1.71-fold of 
β-actin, respectively). Furthermore, Nrf2 expression was significantly increased after seven days of 
culture, mainly when DPSCs were grown in the presence of normal medium (1.52- and 1.44-fold of 
β-actin). Compared to these levels, a dramatic fall was registered after 14 days of culture without DM 
(0.38-fold of β-actin), while Nrf2 expression levels remained quite high in the presence of 
differentiation agents (0.97-fold). Then, after 21 days of culture, Nrf2 levels were enhanced mainly by 
DM (1.40-fold of β-actin). Finally, Nrf2 expression was comparable to that at 21 days when DPSCs 
were grown on scaffolds for 28 days, with the protein relative expression assessed at 0.81-fold. 

 

Figure 3. Nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels in DPSC growth onto 
Alg/HAp scaffolds. Typical results of Nrf2 protein expression by Western blotting of three 
independent experiments. β-actin was used as a protein content marker. The bar graph shows 
densitometric values expressed as the mean percentage ± SEM (n = 3) of integrated optical densities 
of protein bands normalized on β-actin. *** p < 0.005 between Alg/HAp at three days and Alg/HAp at 
one day; *** p < 0.005 between Alg/HAp with DM at three days and Alg/HAp at one day; **** p < 0.001 
between Alg/HAp at seven, 21, and 28 days and Alg/HAp at one day; **** p < 0.001 between Alg/HAp 
with DM at seven, 21, and 28 days and Alg/HAp at one day; ### p < 0.005 between Alg/HAp with and 
without DM at three and 21 days; #### p < 0.001 between Alg/HAp with and without DM at 14 days. 

3.4. Influence of Alg/HAp Scaffolds on IL-6 Released from DPSCs 

To verify whether IL-6 secretion could be involved in DPSC osteogenic differentiation, we 
investigated the modulation of the cytokine secretion in the Alg/HAp/DPSC model by means of an 
ELISA assay. Initially and up to seven days of culture, amounts of IL-6 secreted in supernatants were 
hardly detectable in the DPSC/scaffold model, and they were even significantly decreased after three 
days with respect to one day of culture (Figure 4). Moreover, the amount of cytokine released was 
independent of the presence of DM. After 14 days of culture, the IL-6 concentration dramatically 
raised, secreted 8.5-fold more than that after one day of culture from DPSCs grown onto Alg/HAp 
scaffolds without DM (14.57 pg/mL and 1.77 pg/mL, respectively). In parallel, IL-6 released in the 
presence of DM was lower, assessed at 3.94 pg/mL at the same experimental time. After 21 days of 
culture, IL-6 amounts were significantly decreased, mainly in DPSCs grown in the presence of DM 
(0.41 pg/mL). Contrariwise and comparably to 14 days of culture, IL-6 was remarkably released after 
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28 days with and without DM (7.05 pg/mL and 17.03 pg/mL, respectively). Notably IL-6 
concentration in cell supernatants in the absence of DM was doubled compared to DPSCs cultured 
onto scaffolds and DM (Figure 4). 

 
Figure 4. Interleukin-6 (IL-6) released from DPSC growth onto Alg/HAp scaffolds. The bar graph 
displays the quantification of IL-6 released in pg/mL normalized to the protein content (μg/sample). 
Values are expressed as means ± SEM (n = 3). ** p < 0.01 between Alg/HAp at three days and Alg/HAp 
at one day; ** p < 0.01 between Alg/HAp with DM at three and 14 days and Alg/HAp at one day; *** 
p < 0.005 between Alg/HAp at 14 and 28 days and Alg/HAp at one day; *** p < 0.005 between Alg/HAp 
with DM at 28 days and Alg/HAp at one day; ## p < 0.01 between Alg/HAp with and without DM at 
14 days; ### p < 0.005 between Alg/HAp with and without DM at 28 days. 

4. Discussion 

Conservative therapies based on filling materials, fixed dental bridges, or removable dentures 
and dental implants are used to replace tooth structure or missing teeth [20]. Biomechanical overload, 
osseointegration failure, infections, and inflammation are common complications of surgical 
procedures [21], as well as failed cell adhesion on the material surface due to bacterial interference or 
ineffective coating [22]. Transforming growth factor beta (TGF-β), interleukin-6 (IL-6), interleukin-10 
(IL-10), hepatocyte growth factor (HGF), prostaglandin E2 (PGE2), and human leukocyte antigen G 
(HLA-G) are secreted by DPSCs as anti-inflammatory cytokines. We previously reported that the 
inducible cyclooxygenase (COX2) is involved in the modulation of inflammation events in the 
presence of collagen membranes for periodontal bone and peri-implant defect treatments [23], and 
that PGE2 production can be involved in many differentiation processes, including osteogenic and 
angiogenic differentiation in the presence of biomaterials [19,24]. However, the anti-inflammatory 
effects of DPSCs during biomaterial integration after implantation are still poorly understood, and 
there is growing interest in studying the immunomodulatory effectiveness of DPSCs [25]. In the 
Alg/HAp scaffold/DPSC model, the expression of COX2 gradually and significantly increased up to 
seven days of culture mainly when only growth medium was present, and this trend was in 
alignment with PGE2 secretion (Figure 1). After seven days, inflammation was dramatically reduced, 
as well as cytokine production, but not to the same extent. This finding was consistent with our 
previous results on biocompatibility of Alg/HAp scaffolds, where the amount of LDH enzyme 
secreted after one day was 11-fold higher than that released from DPSCs alone and, after this peak, 
the percentage of LDH released gradually decreased up to 28 days of culture [13]. In the present work 
we, therefore, investigated the molecular mechanisms underlying the promising biocompatibility 
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data on Alg/HAp scaffolds and whether they are interconnected with DPSC commitment to the 
odontogenic lineage. 

Mitogen-activated protein kinases (MAPKs) are involved in physiological responses such as cell 
proliferation and differentiation. It was observed that biocomposite scaffolds containing diosmin 
exerted an osteostimulatory effect driven by the integrin/FAK/Erk signaling pathway in mouse 
mesenchymal stem cells [26]. In the presence of Alg/HAp scaffolds, expression levels of 
phosphorylated Erk 1/2 revealed a peak after 14 days, indicating that cells may avoid inflammation 
through this molecular pathway. In detail, Erk 1/2 activation was more evident in the presence of 
DM, while COX2 expression and PGE2 secretion were more increased with scaffolds in normal 
growth medium. It is plausible to assume that signaling through the Erk pathway is enhanced in the 
presence of DM, confirming our previous LDH data when the LDH percentage was higher with 
respect to DPSCs and scaffold alone at 14 days of culture [13]. 

Poly (ADP-ribose) polymerase 1 (PARP11) participates in processes such as transcription and 
DNA repair through the regulation of chromatin structure. Recently, it was revealed that PARP-1 
activation is driven by other mechanisms not involving its binding to DNA strand breaks. PARP-1 
becomes activated downstream in the MAP kinase phosphorylation cascade by binding to 
phosphorylated Erk 1/2 [27]. In our experimental model, PARP-1 was increased after 14 days of 
culture in the presence of Alg/HAp scaffolds and DM in alignment with the phosphorylation of Erk 
1/2, and this observation was concurrent with the decrease in COX2 expression levels after seven 
days of culture. Lin and colleagues [28] identified PARP-1 as one of the transcription factors binding 
to the repressor element in the promoter region of COX2. It is plausible to assume that, in our 
experimental model, the presence of Alg/HAp biocomposites decreased inflammation mediator 
release and, in parallel, increased the expression of proteins related to cell survival and proliferation. 
This process enhanced cell escape from necrotic cell death and DPSC commitment toward the 
odontogenic lineage and mineralization, as demonstrated in our previous study [13]. 

In a clinical situation, cytokine release is the result of the inflammation of the dental pulp tissue 
after surgical practice, and this cell response triggers the synthesis of regulatory proteins activated 
by stressors. Adaptive cell responses to inflammation are associated with oxidative and nitrosative 
stress, and it was largely demonstrated that redox homeostasis perturbance in the presence of 
biomaterials is driven by the activation of the redox-sensitive transcription factor Nrf2 and Nrf2-
related proteins [29]. We previously reported a relationship between cell escape from necrotic cell 
death and the increase in catalase activity in the presence of Alg/HAp scaffolds [13]. Since a redox 
homeostasis is crucial for osteogenic commitment and differentiation [30] and Nrf2 is a fine regulator 
of the antioxidant enzyme catalase, we monitored here expression levels of this transcription 
regulator. 

In the Alg/HAp scaffold/DPSC system, there was a peak in the expression of Nrf2 after early 
exposure periods to scaffolds, with the expression doubled with respect to one day of culture. After 
seven days, this expression was maintained high and significant with no difference between DM and 
growth medium. This could be related to our previous data on catalase activity when, at seven days 
of culture onto scaffolds, the absolute highest value of catalase activity was registered [13]. In the 
present study, there was a decrease in Nrf2 expression after 14 days of culture, mainly in the normal 
growth medium. After that, Nrf2 expression showed a significant increase in the presence of scaffolds 
and DM, and it decreased after 28 days. We previously reported that bone sialoprotein II (BSP II) is 
notably expressed after 21 and 28 days, and we observed two positive pulses with regard to gene 
expression of RUNX2 after 21 days and SP7 after 28 days when scaffolds and DM were present, 
suggesting differentiation of DPSCs [13]. There is growing evidence that the overexpression of Nrf2 
is a possible target protein involved in stem-cell marker expression and in the enhancement of 
osteoblastic differentiation [31]. Alg/HAp scaffolds are, therefore, suitable materials for bone 
ingrowth not only because of their physical properties and composition resembling the native bone 
structure, but also because they facilitate the expression of key molecules involved in redox 
homeostasis and differentiation, decreasing cytokine release and inflammation. 
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Among cytokines, IL-6 with its receptor plays an important role in tissue regeneration in vivo, 
especially hard tissue metabolism [7]. In our experimental model, IL-6 secretion was not consistent 
up to seven days of culture in both experimental situations, i.e., in the presence of Alg/HAp scaffolds 
with or without DM (Figure 4). After that, there was a dramatic peak in the presence of normal 
growth medium, whereas, in the presence of DM, the increase was lower but still consistent at 14 
days. This was in alignment with our previous data on gene expression of differentiation markers. 
Indeed, a significant positive peak of BMP2 expression levels was shown in our previous 
investigation after seven days of culture without DM [13]. Expression of BMP2 is recognized to 
stimulate osteogenic commitment of DPSCs, considered as the most osteogenic bone morphogenetic 
protein [32]. It is, therefore, plausible to speculate that the peak of IL-6 is triggered by BMP2 
expression as a stimulus for DPSC differentiation. In addition, it was reported that MSCs both secrete 
and respond to IL-6 [7], and it was reported that the modulation of IL-6 is important in the extension 
of the osteoblastic stage of primary human osteoblasts [33]. In this view, it is not surprising that, after 
this peak, there was a significant fall of IL-6 secretion, possibly as a consequence of a negative 
feedback mechanism. In parallel, an increase of protein levels related to the molecular pathway 
involved in inflammation was likely because of the increase in Nrf2 after 21 days of culture. Likewise, 
we showed a decrease in Nrf2 expression levels in parallel with an increase in IL-6 secretion at 28 
days. 

5. Conclusions 

Taken together, our results partly present the molecular mechanisms underlying the biological 
processes of DPSC differentiation in parallel with the escape from oxidative stress. In the present 
work, we reported a relationship between DPSC capacity to secrete a mineralized matrix in the 
presence of Alg/HAp scaffolds and their immunomodulatory properties. The modulation of the 
Nrf2/PGE2/IL-6 molecular axis suggests a tight intracellular balance between oxidative stress 
responses and DPSC differentiation in the presence of Alg/HAp scaffolds. The present study lays the 
groundwork for further molecular investigations using pharmacological modulators and/or knock-
down techniques, in an effort to further demonstrate the interplay between pro-inflammatory 
pathways and bone remodeling in the presence of nanomaterials designed for tissue-engineering 
purposes. 
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