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Abstract: Mobile robotics is a rapidly expanding technology
due to its potential for increased safety and lower costs. In
many applications, power is supplied to the robot through
sliding contacts and a powered floor. Deciding the posi-
tions of the contacts on the robot is a difficult task: for
any position/orientation of the robot, at least one contact
has to touch a positive strip and at least one a negative
strip. In this work, we tackle the problem using Differential
Evolution (DE). We formally define problem-specific con-
straints and objectives and then describe how to use DE
for evolving contact positions that satisfy those constraints
and maximize those objectives. We validate experimentally
our proposal by applying it to three real robots and by
studying the impact of the main problem parameters on the
effectiveness of the evolved designs for the sliding contacts.
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1 Introduction and related work

Mobile robots are playing a role of increasing importance
in current society. They are and will be aiding humans in
performing tasks which may be dangerous, fatiguing, or
boring due to repetitiveness. Examples range from persons
transportation and goods delivering to surveillance.

One significant challenge in the field of mobile robots
is how to provide power to the robots. The most common
solution is to use batteries, which have, however, the ap-
parent limitation that have to be recharged, causing a stop
in the robot operations. A viable alternative consists in de-
livering power to the robot by electrifying the environment
where it moves: this solution builds on the long-established
experience on supplying powers to mobile machines, the
most notable examples being in transportation systems,
e.g., trains [12] and trams [9]. Another large family of solu-
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tions is based on wireless power delivery, often realized by
means of resonating coils [16, 18]. Finally, delivering power
directly via conductors is often achieved through umbilical
cables [11, 10].

In this paper, we focus on powered floors: the surface
on which the robot moves is covered with conductive strips,
interleaved by narrow non-conductive strips, alternatively
connected to positive and negative poles of a power source;
the robots receive the power from the strips using a number
of sliding contacts positioned on the bottom of their bodies.
This solution fits well the scenario of lab experimentation
with Swarm Robotics [1] or Evolutionary Robotics [8]. In
these settings, small prototypical robots have to run for
long time, without obstacles to their movements (as, e.g.,
wires for power supply), in a physically constrained envi-
ronment which has to be easily observable and accessible
to researcher, for experiment “debugging” purposes. The
latter condition may be not met if, e.g., robots get the
power from the floor and the ceiling. Indeed, powered floors
have already been used in similar settings [17] and also
inspired the design of robotic platforms tailored purposely
to experimentation [6].

Designing a working powered floor system (i.e., robots
and floor) requires to decide the width of the strips and
the positions of the sliding contacts on the robot. While
the first task is not subjected to many constraints, for the
positions of the contacts one has to take in to account
the shape of the robot and the presence of moving parts,
parts which should not be covered (e.g., sensors), or parts
which are too far from or too close to the floor. Moreover,
the fundamental requirement is that the contacts should
be positioned in a way that guarantees that at least one
contact is on a positive strip and one on a negative strip
for any rotation and position of the robot. A fixed contacts
design which aims at satisfying this condition, consisting
of four contacts, has been already proposed in the 50s by
Claude Shannon [14, p. 678], but it might be unsuitable for
some robots due to the constraints described above.

We here propose to use a form of evolutionary opti-
mization, called Differential Evolution (DE) [15], for finding
automatically the positions of the sliding contacts, given a
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description of the region of the robot which is suitable for
hosting them, which guarantee that the robot can receive
power from the floor in any rotation and position. DE is an
Evolutionary Algorithm (EA) for continuous optimization
which can be used for solving single- or multi-objective
problems.

We formally define the condition for the robot to be
always powered, given the positions of its contacts We in-
troduce, based on the formal definition, two representations
for the solution to be optimized (i.e., the positions of the
contacts), one capable of exploting the symmetries in the
shape of the robot, and four quantitative objectives suitable
for driving the search with DE.

We experimentally assess the ability of our proposed
solution to find the contact positions for three real robotic
platforms (Thymio II, mBot, and Elisa-3) and investigate
how the solution representation and the objective impact
on the effectiveness and efficiency of the optimization. Then,
we explore the design space of the powered floor system
problem: we focus on the two most relevant problem param-
eters, the width of the conductive strips and the maximum
number of sliding contacts. The experimental evaluation
suggests that our proposed solution based on DE is capable
of designing automatically the salient part of a powered
floor system, i.e., the positions of the contacts, in many
different settings. The experiments also show that the quan-
titative objectives that we adopted for driving the search
are indeed effective and that exploiting the symmetry, using
an appropriate solution representation, better solutions can
be obtained faster.

The present work is based in part on a preliminary
study by the same authors [7]. We here extend the cited
paper along many lines: (i) we propose a new solution
representation that can exploit existing symmetries in the
robot shape and validate on three real robotic platforms
(Thymio II, mBot, and Elisa-3); (ii) we describe a new
quantitative objective that measures to which degree the
contact positions result in a balanced power delivery be-
tween positive and negative poles; (iii) we conduct a more
detailed discussion of the experimental results, including
a deeper comparison of the different design choices; and
(iv) we present a prototype implementation of a powered
floor system based on one of the commercial robots used in
the method experimentation.

2 Powered floor system

We consider a scenario in which a mobile robotic platform (a
robot) moves on a powered floor, that is, on a floor composed

of strips of conductive material interleaved by strips of
non-conductive, insulating material (see Figure 9b). The
conductive strips are alternatively connected to the positive
and negative poles of a constant power source. The robot
may move, by translating and rotating, on the powered
floor without any constraint.

In order to get powered, the robot is equipped with
an array of sliding contacts, whose positions are fixed with
respect to the geometry of the robot. Each of the contacts
of the robot is always in physical contact with the floor. The
robot is in a powered condition if there is at least one contact
on a positive conductive strip and at least one contact on
a negative conductive strip. We call the contacts which
enable this condition the powered contacts. There are no
constraints on which contact is on which polarity: a simple
rectifier circuit can be used to obtain a constant power
source out of the powered contacts—we briefly describe an
example of a rectifier circuit in Section 4.

In this work we are concerned with the problem of
optimizing the contact positions so as to ensure that the
robot is always in the powered condition irrespective of its
position on the powered floor. This optimization problem
must be solved subject to any constraints introduced by the
geometry of the robot. Accordingly, we define the problem as
follows. Given (a) a maximum number 𝑛 of sliding contacts
and (b) a description of a feasible region for the position
of the sliding contacts with respect to the geometry of the
robot, find a design of the array of up to 𝑛 sliding contacts
which (a) are in the feasible region and (b) allow the robot
to be in a powered condition for any possible position, i.e.,
any possible combination of translation and rotation. We
call a powered array an array of contacts which satisfies
the two previous conditions, i.e., an array which guarantees
that the robot is always in the powered condition.

We make several assumptions for ease of modelling and
without loss of generality. The powered floor consists of
infinite strips of infinite length, all of them parallel with
the 𝑦-axis. All the conductive strips have the same width
(denoted 𝑤) and all the non-conductive strips have the same
width (denoted 𝑣). The first strip is a conductive strip and
is connected to the positive pole—this strip thus starts at
𝑥 = 0 and ends at 𝑥 = 𝑤. Finally, we assume that each of
the contacts of the robot is point-like (i.e., its size is zero
along every axis).

We denote by 𝑥 the position of the a reference point
of the robot, by 𝜔 the rotation of the robot, and by
𝐴 = {(𝑟1, 𝜑1), . . . , (𝑟𝑛, 𝜑𝑛)} the array, i.e., the list of the 𝑛

positions (𝑟𝑖, 𝜑𝑖), expressed in polar coordinates, of each
𝑖-th contact with respect to the reference point of the robot.
Figure 1 shows a schematic representation of the considered
scenario and the corresponding notation.
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Fig. 1: A schematic representation of the considered scenario.
The conductive strips are colored in gray, whereas the non-
conductive strips are not colored; the robot reference point is
in (𝑥, ·) (the 𝑦 coordinate is irrelevant) and its rotation is 𝜔;
there is a single sliding contact (𝑟𝑖, 𝜑𝑖).

We assume that the description of the feasible region for
the contacts is provided as a function 𝑝 : [0,+∞]×[−𝜋, 𝜋[→
{0, 1}. A position (𝑟, 𝜑), expressed in polar coordinates, is
in the feasible region if and only if 𝑝(𝑟, 𝜑) = 1.

A sliding contact (𝑟𝑖, 𝜑𝑖) is over a positive strip if and
only if:

∃𝑘 ∈ N : 2𝑘(𝑤+𝑣) ≤ 𝑥+𝑟𝑖 cos(𝜑𝑖+𝜔) ≤ (2𝑘+1)(𝑤+𝑣)−𝑣
(1)

The same condition can also be expressed in terms of re-
mainder of the division, which allows to remove 𝑘:

(𝑥+ 𝑟𝑖 cos(𝜑𝑖 + 𝜔)) mod (2𝑤 + 2𝑣) ≤ 𝑤 (2)

We define a function 𝑓+𝑐 which is 1 if the condition is met
and 0 otherwise:

𝑓+𝑐 (𝑟, 𝜑, 𝑥, 𝜔) =

⎧⎪⎪⎨⎪⎪⎩
1 if

(𝑥+ 𝑟𝑖 cos(𝜑𝑖 + 𝜔))

mod(2𝑤 + 2𝑣) ≤ 𝑤

0 otherwise

(3)

Similarly, we define the function 𝑓−𝑐 for negative strips:

𝑓−𝑐 (𝑟, 𝜑, 𝑥, 𝜔) =

⎧⎪⎪⎨⎪⎪⎩
1 if

𝑤 + 𝑣 ≤ (𝑥+ 𝑟𝑖 cos(𝜑𝑖 + 𝜔))

mod(2𝑤 + 2𝑣) ≤ 2𝑤 + 𝑣

0 otherwise
(4)

The powered condition of a robot in position 𝑥 and rotation
𝜔 is hence met when both of the following hold:

𝑓+ (𝐴, 𝑥, 𝜔) =

𝑖=𝑛∑︁
𝑖=1

𝑓+𝑐 (𝑟𝑖, 𝜑𝑖, 𝑥, 𝜔)𝑝(𝑟𝑖, 𝜑𝑖) ≥ 1 (5)

𝑓− (𝐴, 𝑥, 𝜔) =

𝑖=𝑛∑︁
𝑖=1

𝑓−𝑐 (𝑟𝑖, 𝜑𝑖, 𝑥, 𝜔)𝑝(𝑟𝑖, 𝜑𝑖) ≥ 1 (6)

where the factor 𝑝(𝑟𝑖, 𝜑𝑖) means that only contacts which
are in the feasible region can be taken into account. The
powered condition can also be written as:

𝑓± (𝐴, 𝑥, 𝜔) = min
(︁
𝑓+ (𝐴, 𝑥, 𝜔) , 𝑓− (𝐴, 𝑥, 𝜔)

)︁
≥ 1 (7)

where 𝑓± is the number of powered contacts with the robot
in position 𝑥 and rotation 𝜔. Finally, the condition that
the robot is in a powered condition in any position 𝑥 and
rotation 𝜔, i.e., the condition for 𝐴 being a powered array,
can be written as:

𝑓 (𝐴) = min
𝑥∈[0,2(𝑤+𝑣)[

𝜔∈[0,2𝜋[

𝑓± (𝐴, 𝑥, 𝜔) ≥ 1 (8)

The problem of finding a powered array may be hence
solved by finding an 𝐴 for which 𝑓 (𝐴) ≥ 1, which can be
done by optimizing 𝐴 with the goal of maximizing 𝑓 (𝐴),
whose upper bound is

⌊︀
𝑛
2

⌋︀
. Note that the larger 𝑓(𝐴), the

better the positions of the contacts of the array, since the
larger the number of powered contacts in the worst position
and rotation of the robots.

2.1 Secondary objectives

It can be seen that, due to the presence of min and mod

operators and of the binary co-domain of the function 𝑝,
𝑓 may be extremely non-smooth. Figure 2 shows how 𝑓±

varies with the position 𝑥 (top) and rotation 𝜔 (bottom) of
a robot with 5 sliding contacts equally spaced on a circle
of radius 𝑟0 = 20mm centered in the reference point—i.e.,
(𝑟𝑖, 𝜑𝑖) =

(︀
𝑟0, (𝑖− 1)2𝜋5

)︀
with 𝑖 ∈ {1, . . . , 5}—which moves

on a powered floor with 𝑤 = 9mm and 𝑣 = 1mm: for this
specific contacts array 𝐴, 𝑓 (𝐴) is 0, which means that there
are positions and rotations for which the powered condition
is not met, as visible in Figure 2 for, e.g., 𝑥 = 11 cm or
𝜔 = 2.5 rad.

The non-smoothness of 𝑓 may negatively affect the
effectiveness and efficiency of the optimization for a pow-
ered array. In order to address this problem, we consider a
function 𝑓 which is the average value of 𝑓±, instead of the
min value, as in Equation (8):

𝑓 (𝐴) =
1

4𝜋(𝑤 + 𝑣)

∫︁∫︁
𝑥∈[0,2(𝑤+𝑣)[

𝜔∈[0,2𝜋[

𝑓± (𝐴, 𝑥, 𝜔) d𝑥d𝜔 (9)

Instead of measuring the number of powered contacts in
the worst condition as 𝑓 , 𝑓 measures the average number
of powered contacts across all the possible conditions. It
is worth to note, however, that while 𝑓 ≥ 1 implies the
the robot is always (i.e., for any 𝑥 and 𝜔) in a powered
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Fig. 2: Values of the function 𝑓±(𝐴, 𝑥, 𝜔) for a simple array of
5 contacts

(︀
𝑟0, (𝑖− 1) 2𝜋

5

)︀
(equally spaced on a circle of radius

𝑟0 = 20mm centered in the robot reference point) for different
positions (𝑥, top) and rotations (𝜔, bottom) of the robot, with
𝑤 = 9mm and 𝑣 = 1mm.

condition, 𝑓 ≥ 1 does not. That is, 𝑓 (𝐴) ≥ 1 does not
guarantee that an array 𝐴 is a powered array. In the next
sections, we will show how we used 𝑓 and 𝑓 together to
drive the search for a powered array.

2.1.1 Distance among contacts

The function 𝑓 does not explicitly take into account the
relative positions of the sliding contacts. In particular, it
does not penalize designs of the contacts array where the
sliding contacts are too close to each other: those design
might be harder to be realized in practice. To take into
account this aspect, we introduce a third objective function
𝑑 which measures the average distance of the contacts to
their closest contact:

𝑑(𝐴) =
1

𝑛

∑︁
𝑖∈𝑉

min
𝑗∈𝑃,𝑗 ̸=𝑖

√︁
𝑟2𝑖 + 𝑟2𝑗 − 2𝑟𝑖𝑟𝑗 cos(𝜑𝑖 − 𝜑𝑗) (10)

where 𝑃 = {1 ≤ 𝑖 ≤ 𝑛 : 𝑝(𝑟𝑖, 𝜑𝑖) = 1} is the set of the
indexes of the contacts which are in the feasible region—i.e.,
as for 𝑓 and 𝑓 , sliding contacts which are not in the feasible
region are not taken into account by 𝑑.

2.1.2 Contact array balance

The function 𝑓± of Equation (7) allows to express the pow-
ered condition for an array 𝐴 in position 𝑥 and rotation 𝜔 as
𝑓±(𝐴, 𝑥, 𝜔) ≥ 1. The condition is met if at least one contact
is connected to the positive strip, i.e., if 𝑓+(𝐴, 𝑥, 𝜔) ≥ 1,
and at least one contact touches the negative strip, i.e., if
𝑓+(𝐴, 𝑥, 𝜔) ≥ 1. The difference in the number of contacts
connected with the two polarities is therefore not taken into
account by 𝑓±, and hence by 𝑓 and 𝑓 . An array minimiz-
ing that difference corresponds to a more balanced contact
configuration, a feature being in general desirable; if we
consider the total number of contacts fixed, a balanced
configuration would mean more redundancy. For example,
if 10 is the number of total contacts, a 6 positive/4 negative
distribution is more redundant than an unbalanced 9/1 dis-
tribution, meaning that 3 negative poles could be removed,
or fail to actually touch the floor for mechanical reasons,
without power transmission failure.

In order to pursue this goal, we introduce another
objective function which measures the average balance of
the array. We first consider the balance of an array 𝐴 in
position 𝑥 and rotation 𝜔:

𝑏′(𝐴, 𝑥, 𝜔) = −
⃒⃒⃒
𝑓+(𝐴, 𝑥, 𝜔)− 𝑓−(𝐴, 𝑥, 𝜔)

⃒⃒⃒
(11)

where 𝑓+(𝐴, 𝑥, 𝜔) and 𝑓−(𝐴, 𝑥, 𝜔) measure, respectively,
the number of contacts connecting with positive and neg-
ative strips (see Equations (5) and (6)). The minus sign
outside the absolute value of the difference is inserted to
make 𝑏′ consistent with the semantics it should convey:
great values (at most 0) mean good balance, i.e., small dif-
ference in the number of contacts, lower values mean poor
balance, i.e., large difference. Then, we define the average
balance by considering all possible positions and rotations
of the robot (similarly to 𝑓 ′ in Equation (9)):

𝑏 (𝐴) =
1

4𝜋(𝑤 + 𝑣)

∫︁∫︁
𝑥∈[0,2(𝑤+𝑣)[

𝜔∈[0,2𝜋[

𝑏′ (𝐴, 𝑥, 𝜔) d𝑥d𝜔 (12)

2.2 Evolutionary optimization

We resort to Differential Evolution (DE) [15] for solving the
problem of the design of contacts array. DE is an EA which
can be used for optimization in continuous (real-valued)
search space both for single- and multi-objective problems
and hence fits the scenario of this study. There exist many
variants of DE which are commonly identified with the
DE/a/b/c naming scheme [3], where a represents the base
vector to be perturbed, b represents the number of difference
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vectors considered for perturbation, and c stands for the
type of crossover being used, if any. In this work, we used the
DE/rand/1, i.e., a variant without the crossover operator
which selects the individual to be mutated randomly.

In brief, DE/rand/1 evolves a population of 𝑛pop vec-
tors 𝑥 ∈ R𝑛𝑠 as shown in Algorithm 1. The population
is first initialized (lines 1–8) by randomly setting vectors
elements. Then, the following steps are repeated until a
termination criterion is met: (i) three different individuals
(i.e., vectors) 𝑥,𝑦,𝑧 are randomly selected in the population
(with uniform probability); (ii) a new solution 𝑥′ is built
in which each element 𝑥′𝑗 is set either to 𝑥𝑗 (with a proba-
bility 1 − 𝑐𝑟) or to a linear combination 𝑥𝑗 + 𝑑𝑤(𝑦𝑗 − 𝑧𝑗)

of the corresponding elements of the selected individuals
(with a probability 𝑐𝑟); (iii) if 𝑥′ is fitter than 𝑥, then 𝑥′

replaces 𝑥 in the population, otherwise it is discarded. A
usual termination criterion consists in having performed
𝑛ev iterations, which correspond to 𝑛ev fitness evaluations.

1 𝑃 ← ∅
2 foreach 𝑖 ∈ {1, . . . , 𝑛pop} do
3 𝑥← 0

4 foreach 𝑗 ∈ {1, . . . , 𝑛𝑠} do
5 𝑥𝑗 ← 𝑈(0, 1)

6 end
7 𝑃 ← 𝑃 ∪ {𝑥}
8 end
9 foreach 𝑖 ∈ {1, . . . , 𝑛ev} do

10 𝑥,𝑦,𝑧 ← PickRandomly(𝑃, 3)
11 𝑥′ ← 𝑥

12 foreach 𝑗 ∈ {1, . . . , 𝑛𝑠} do
13 if 𝑈(0, 1) < 𝑐𝑟 then
14 𝑥′𝑗 ← 𝑥𝑗 + 𝑑𝑤(𝑦𝑗 − 𝑧𝑗)

15 end
16 end
17 if 𝑥′ ≻ 𝑥 then
18 𝑃 ← 𝑃 ∖ {𝑥}
19 𝑃 ← 𝑃 ∪ {𝑥′}
20 end
21 end

Algorithm 1: DE/rand/1 as used in this work.

In a multi-objective problem, the comparison between
two individuals 𝑥,𝑥′ for determining the fittest one can be
done in several ways. In this work, we use lexicographical
ordering. Let 𝑓(𝑥) ∈ R𝑚 be the 𝑚-dimensional fitness
vector of the solution 𝑥 and let assume, without loss of
generality, that we want to maximize fitness objectives. We
say that 𝑥′ is fitter than 𝑥, denoted by 𝑥′ ≻ 𝑥, if and only

if ∃𝑘 ≤ 𝑚 : (∀𝑖 < 𝑘 : 𝑓𝑖(𝑥
′) = 𝑓𝑖(𝑥)) ∧ (𝑓𝑘(𝑥

′) > 𝑓𝑘(𝑥)).
That is, if 𝑥 and 𝑥′ are equivalent according to the first
objective, than the second objective is compared, and so
on.

2.2.1 Solution representation

We considered two different solution representations, i.e.,
ways of encoding the positions of the contact array 𝐴 in a
numerical vector suitable to be optimized using DE.

In the first representation, we encode 𝐴 by means of a
function 𝑒 : (R+ × [0, 2𝜋])𝑛 → R2𝑛 as follows:

𝑥 = 𝑒(𝐴) =

(︂
𝑟1
𝑟*

,
𝜑1

2𝜋
, . . . ,

𝑟𝑛
𝑟*

,
𝜑𝑛

2𝜋

)︂
(13)

where 𝑛 is the maximum number of sliding contacts and 𝑟*

is the maximum value of 𝑟 for which 𝑝(𝑟, 𝜑) = 1, i.e., the
distance of the farthest point of the feasible region from the
reference point. This way, the initialization procedure of
the population, which sets the elements of 𝑥 by sampling
𝑈(0, 1) (see Algorithm 1) is appropriate for the domains of
𝑟𝑖, 𝜑𝑖.

We also consider a variant of the representation in which
a form of symmetry in the positions of the contacts is im-
posed. Imposing symmetry might be beneficial in two ways.
First, it might result in arrays with improved feasibility,
since the symmetry of the array can be set to be consistent
with the symmetry of the robot. Second, it might result in
a more efficient optimization (i.e., faster), since a search
space of lower dimension is used for the same maximum
number of contacts with respect to the case of free (i.e.,
without imposed symmetry) contact positions.

In principle, any kind of symmetry may be imposed by
a proper solution representation. In this study we deal with
three robots which exhibit three different symmetries (see
Section 3): central, along one axis, along two orthogonal
axes. For the sake of clarity and to allow comparisons among
the three cases, we actually considered the symmetry along
one axis (namely the 𝑦-axis), which is common among the
three considered robots. In this case the solution is encoded
using 𝑒sym : (R+ × [0, 2𝜋])𝑛 → R𝑛 as follows:

𝑥 = 𝑒sym(𝐴) =

(︂
𝑟1
𝑟*

,
𝜑1

2𝜋
, . . . ,

𝑟𝑛
2

𝑟*
,
𝜑𝑛

2

2𝜋
, . . . ,

𝑟1
𝑟*

,
−𝜑1

2𝜋
, . . . ,

𝑟𝑛
2

𝑟*
,
−𝜑𝑛

2

2𝜋

)︂
(14)

where the symmetry is reflected by the fact that for every
contact 𝑟𝑖, 𝜑𝑖 there is a contact in 𝑟𝑖,−𝜑𝑖.
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2.2.2 Fitness

We explored different options for driving the search, i.e.,
different 𝑓 based on 𝑓 , 𝑓 , 𝑑 and 𝑏 functions (see Section 2.1).

Concerning 𝑓 , 𝑓 , adn 𝑏, the actual global minimum
or average value for 𝑥 ∈ [0, 2(𝑤 + 𝑣)[ and 𝜔 ∈ [0, 2𝜋[ (see
Equations (8), (9) and (12)) cannot, in general, be obtained.
Instead, a numerical approximation can be computed. We
compute the values of the functions in the 𝑛2

points (𝑥, 𝜔)

pairs resulting from evenly sampling the two corresponding
domains and take the minimum (for 𝑓) or average (for 𝑓

and 𝑏) of those values.
The four different options we considered are:

𝑓M(𝑥) = (𝑓(𝑥′))

𝑓MD(𝑥) = (𝑓(𝑥′), 𝑑(𝑥′))

𝑓MAD(𝑥) = (𝑓(𝑥′), 𝑓(𝑥′), 𝑑(𝑥′))

𝑓MABD(𝑥) = (𝑓(𝑥′), 𝑓(𝑥′), 𝑏(𝑥′), 𝑑(𝑥′))

where 𝑥′ = 𝑒−1(𝑥) or 𝑥′ = 𝑒−1
sym(𝑥) depending on which

representation is used and 𝑒−1 is the inverse of the function
𝑒. Using 𝑓M corresponds to driving the search with only the
function 𝑓 , i.e., a single-objective optimization, whereas the
other cases correpsond to a multi-objective optimization.

3 Experiments and results

We aimed at gaining insights about our proposed solution
from the point of view of the evolutionary optimization—
which representations and objectives lead to a more ef-
fective and efficient optimization—and of the considered
application—how do the main problem parameters impact
on the optimized arrays.

To this end, we conducted several experiments apply-
ing the proposed method to three different robots: Thymio
II1, mBot2, and Elisa-33. The three robots, shown in Fig-
ure 3, have similar size and were designed to ease learning
and experimenting, in particular for children. They are
also suitable (and have been actually used [4, 5, 13]) for
experimenting with Evolutionary Robotics [8].

The feasible regions for the three robots are determined
by the respective shapes and positions of the wheels and
other parts which are designed to be in contact with the
floor.

1 https://www.thymio.org/en:thymio
2 https://www.makeblock.com/steam-kits/mbot
3 http://www.gctronic.com/doc/index.php/Elisa-3

Fig. 3: Thymio II (left), mBot (center), and Elisa-3 (right)
robots.

The feasible region for the Thymio II is defined as:

𝑝(𝑟, 𝜑) =

⎧⎪⎪⎨⎪⎪⎩
1 if − 50mm ≤ 𝑟 sin𝜑 ≤ 0 ∧ |𝑟 cos𝜑| ≤ 75mm

1 if 0 ≤ 𝑟 sin𝜑 ≤ 30mm ∧ |𝑟 cos𝜑| ≤ 110mm

0 otherwise
(15)

The feasible region for the mBot is defined as:

𝑝(𝑟, 𝜑) =

{︃
1 if |𝑟 cos𝜑| ≤ 45mm ∧ |𝑟 sin𝜑| ≤ 45mm

0 otherwise
(16)

Finally, the feasible region for the Elisa-3 is defined as:

𝑝(𝑟, 𝜑) =

{︃
1 if 25mm ≤ 𝑟 ≤ 30mm

0 otherwise
(17)

A graphical representation of the feasible regions is
shown in Figure 4.

Concerning the parameters of the EA (population size
𝑛pop, crossover rate 𝑐𝑟, and differential weight 𝑑𝑤), it should
be noted that setting appropriate values when using DE
is not trivial [2]. Based on some preliminary experiments
and previous knowledge, we set 𝑛pop = 100, 𝑐𝑟 = 0.8,
and 𝑑𝑤 = 0.5. We verified that small variations of those
parameters do not substantially alter the qualitative findings
of the experimental evaluation.

For each experiment, we performed 30 independent
runs by varying the initial random seed: we present mean
and standard deviation computed across the runs for the
salient indexes. We set 𝑛ev = 10 000 and 𝑛points = 100. We
performed the experiments on a machine equipped with an
Intel(R) Core(TM) i5-3470 CPU at 3.20GHz with 8GB of
RAM: one run took, on average, ≈ 80 s to be performed.

https://www.thymio.org/en:thymio
https://www.makeblock.com/steam-kits/mbot
http://www.gctronic.com/doc/index.php/Elisa-3
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𝑥

𝑦

(a) Thymio II.

𝑥

𝑦

(b) mBot.

𝑥

𝑦

(c) Elisa-3.

Fig. 4: Graphical representation of the feasible regions for the three robots, using Cartesian coordinates 𝑥, 𝑦, rather than polar coordi-
nates 𝑟, 𝜑: regions whose points are such that 𝑝(𝑟, 𝜑) = 1, with 𝑟 =

√︀
𝑥2 + 𝑦2 and 𝜑 = tan−1 𝑦

𝑥
, are plotted in green. The scale is the

same for the three plots.

Tab. 1: Final value (mean and standard deviation) of 𝑓 for the
three robots and the four search variants with 𝑤 = 25mm,
𝑣 = 3mm, and 𝑛 = 10.

Robot MABD MAD MD M

Thymio II 2 ±0 2 ±0 0.2±0.44 0.8±0.38

mBot 2 ±0 2.0±0.19 2 ±0 2 ±0

Elisa-3 2 ±0 2 ±0 1.5±0.51 1.8±0.44

3.1 Results and discussion

3.1.1 How to drive the search

Table 1 shows the value of 𝑓 obtained at the end of the
evolutionary search for the three robots with the four fitness
variants with 𝑤 = 25mm, 𝑣 = 3mm, and 𝑛 = 10.

It can be seen from the figures in Table 1 that there are
differences among the robots and among the fitness variants.
With the simplest fitness variant M, our proposed solution
is able to obtain, on average, a final 𝑓 of 1.76 for Elisa-3, 2
for mBot, and 0.83 for Thymio II. We recall that an array of
contacts is a powered array (i.e., with that array the robot
is in a powered condition in any position and rotation) when
𝑓 ≥ 1 (see Equation (8)): hence, our proposed solution with
the M variant is able to design a powered array for two of
the three robots. For the Thymio II robot, the M variant
is not able to design a powered array, neither is the MD
variant. With the MAD and MABD variants, instead, our
solution always designs a powered array for each robot in
almost all the runs (see the standard deviation values in
Table 1)—alls for Elisa-3 and mBot. We hypothesize that
the reason for which the search struggles for the Thymio

II robot is because its feasible region has a more complex
shape than those of the other robots.

By analyzing the raw results, we verified that MAD and
MABD outperform M and MD because, when the evolution
stagnates on a value of 𝑓 , improvements in the value of
𝑓 allow to gradually improve the array design. In other
words, thanks to its better smoothness, 𝑓 can drive the
search when 𝑓 cannot. The 𝑑 function—which, we recall,
measures the average distance among contacts in the feasible
region (see Equation (10))—does not seem to be able to
drive the search better than 𝑓 : the MD variant, in facts,
obtains worse results than the M variant. This difference
between 𝑓 and 𝑑 is not surprising, however. On one hand,
we introduced 𝑓 with the precise goal of mitigating the
poor smoothness of 𝑓 , hence as a helper for driving the
search together with 𝑓 . On the other hand, 𝑑 represents
a different goal, i.e., designing a contact array which, by
avoiding contacts which are too close, is easier to be realized.
From a different point of view, 𝑓 and 𝑓 are not competitive
objectives, whereas 𝑓 and 𝑑 are: in the extreme case, 𝑑

pushes the search towards removing contacts (i.e., moving
them away from the feasible region), because this increases
the average distance; a counter-effect of removing a contact
is that 𝑓 may become lower. Note, however, that since
we use lexicographical ordering of objectives for designs
comparison (see Section 2.2), a change in a design which
negatively affects 𝑓 will never be kept during the search,
regardless of the fact that it improves 𝑑.

Table 1 also shows that the difference between MAD
and MABD, in terms of the value of 𝑓 at the end of the opti-
mization process, is negligible. By examining the results, we
found that the search does not improve in efficiency (faster
reach of the final value), nor in effectiveness (greater final
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value): see also Section 3.1.2. Interestingly, in particular,
the value of 𝑏 is not significantly better when using MABD
instead of MAD. We interpret this fact as a sort of redun-
dancy of 𝑏 and 𝑓 from the point of view of their ability to
drive the search.

Figure 5 shows the average values of 𝑓 during the
search for the three robots (plots) and the four variants
(line colors).
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Fig. 5: Value of 𝑓 during the evolution for the three robots
(plots) with the four fitness variants (line color) with 𝑤 = 25mm,
𝑣 = 3mm, and 𝑛 = 10.

The figure makes apparent the fact that, for two on
three robots (Elisa-3 and Thymio II), the MAD and MABD
variants are more effective and more efficient than M and
MD; that is, the final value of 𝑓 is greater and it is reached
in fewer iterations. For the mBot the differences among M,
MD, and MAD variants are negligible: we motivate this
finding with the fact that the feasible region for mBot is
easier than for Elisa-3 and Thymio II. In particular, it is
more regular than the one of the latter and much larger
than the one of the former (see Figure 4).

3.1.2 Secondary objectives

In order to better understand how the optimization leads
to the final solution, we analyzed in detail the values of
the four indexes (𝑓 , 𝑓 , 𝑑, and 𝑏) for the two best fitness
variants: MAD and MABD. Figure 6 show the results, i.e.,
the mean value across the 30 runs during the evolution.

It can be seen that the relations among the indexes
are well represented by the respective lines. In particular, 𝑓
and 𝑓 show similar trends, but 𝑓 is smoother and assume
greater values: this is consistent with the fact that 𝑓 is
the minimum (across robot position and rotation) number
of contacts touching the stripes, whereas 𝑓 is based the
average.

Concerning 𝑑, it can be seen that it has a different
trend than 𝑓 and 𝑓 : indeed, there is a trade-off between the
objective of maximizing the distance among contacts and
the one of obtaining a powered array. This trade-off, how-
ever, is apparent only after the first stage of the evolution,
i.e., when the solution is becoming promising.

Finally, Figure 6 shows that 𝑏 exhibits a trend similar
to 𝑓 and 𝑓 , confirming the observation that it is not suitable
for improving the optimization. Interestingly, however, 𝑏
highlights the differences among the three robots: obtaining
a balanced contact is easier with mBot than with Thymio-II.

3.1.3 Position of contacts

Figure 7 shows, for each robot, the outcomes of the appli-
cation of our method obtained with 𝑤 = 25mm, 𝑣 = 3mm,
and 𝑛 = 10. For space constraints, we include here only
four on 30 arrays that we randomly selected: we visually in-
spected the other arrays and they do not alter the following
considerations.

As expected, since they are the result of an optimiza-
tion process that employs some degree of randomness, no
significant patterns emerge in contact positions. Interest-
ingly, the figure confirms the fact that the Thymio-II robot
is the one for which the method struggles more: the position
of the contacts in the shown arrays appear to not exploit
the full feasible region.

3.1.4 Symmetry

We here compare the two solution representations, the latter
one exploiting the symmetry along the 𝑦-axis of the feasible
region of the three considered robots. Table 2 shows the
final value (mean and standard deviation across the 30 runs)
of the four indexes with the two representations 𝑒 and 𝑒sym.
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Fig. 7: Graphical representation of four solutions for each robot obtained with the MAD fitness variant and 𝑤 = 25mm, 𝑣 = 3mm,
𝑛 = 10: each dot corresponds to a contact of the array.
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Tab. 2: Final value (mean and standard deviation) of the four
indexes using the two solution representations with 𝑤 = 25mm,
𝑣 = 3mm, and 𝑛 = 10.

Rep. Robot 𝑓 𝑓 𝑑 𝑏

𝑒sym

Elisa-3 2 ±0 3.5±0.04 12.1±1.3 −2 ±0.1

mBot 2.2±0.41 4.1±0.07 13.3±2.8 −0.8±0.1

Thymio II 2.1±0.26 4.1±0.06 13.1±2.4 −0.8±0.1

𝑒

Elisa-3 2 ±0 3.3±0.06 13.6±0.7 −2.4±0.1

mBot 2 ±0 4 ±0.04 15.7±2 −1 ±0.1

Thymio II 2 ±0 3.7±0.17 17.7±1.9 −1.5±0.2

3.1.5 Impact of main parameters

We considered only the best performing variant of our pro-
posed solution (MAD) and performed a set of experiments
by varying the value for 𝑤 ∈ {15, 20, 25, 30, 35}mm and for
𝑛 ∈ {4, 5, 6, 8, 10, 12, 15}, i.e., the width of the conductive
strips and the maximum number of contacts in the array,
respectively. Figure 8 presents the average final values of
𝑓, 𝑓, 𝑑 for each robot (color line) and each one of the two
parameters (𝑤 and 𝑛, row of plots)—as for the previous
experimental campaign, we performed 30 runs for each
combination of parameters.

The dependency between the three objectives and 𝑛,
visible in Figure 8, looks as expected. The greater the
(maximum) number of contacts 𝑛, the greater the values of
𝑓 and 𝑓 and the smaller the value of 𝑑. Concerning 𝑓, 𝑓 , we
observe that increasing 𝑛 results, obviously, in more contacts
in the array, and hence an opportunity for more powered
contacts. Concerning the average distance among contacts
𝑑, the finding is sound: if more contacts are spread on the
same feasible region, they are in general closer. Interestingly,
the two leftmost plots in the top row of plots of Figure 8
also constitute an evidence of the better smoothness of 𝑓
with respect to 𝑓 : the lines for the former are essentially
straight lines, whereas in the lines for 𝑓 sort of steps can
be spotted in the plot.

From the bottom row of plots of Figure 8 it can be
seen that the relation between 𝑤 and the objectives is more
complex than the one between 𝑛 and the objectives. For
example, the final 𝑓 for the Elisa-3 robot has a minimum
for 𝑤 = 20mm, i.e., greater 𝑓 values are obtained for both
𝑤 = 15mm and 𝑤 = 25mm. More in general, it can be
seen from these three plots that the relation between the
objective and the parameter 𝑤 varies across objectives
and across robots. From a very high level point of view,
these plots suggest that the larger the conductive strips, the
better: we motivate this finding by observing that increasing
𝑤 while keeping 𝑣 (width of non-conductive strips) constant

corresponds, basically, to increasing the ratio of the floor
area which is actually powered. Concerning the average
contacts distance 𝑑, Figure 8 suggests that the wider the
conductive strips, the larger the distance among contacts.

4 Prototype of a power system

We present in the following a preliminary implementation of
the contact array applied to the Elisa-3 robot. The purpose
is to briefly discuss the other issues of the design of the
powered floor systems different than the one of determining
the position of the contacts.

The prototype is illustrated in Figure 9. Specifically,
Figure 9a shows the arrangement of the strips, which are
interdigitated according to a negative, isolated, positive,
isolated pattern.

In order to operate, the contact array system must be
act as a rectifier, between the contacts and the power supply
unit of the robot. This is necessary since the contacts receive
indifferently a positive or negative voltage, but the circuitry
on board the robot require a stable polarized source. In
fact, the PCB visible on top of the robot in Figure 9b is a
8-pole rectifier circuit. The diagram for this can be seen in
Figure 9c.

For the contact elements we used, in this preliminary
embodiment, M1.5 screws with a round head. The chassis
for the contact array was fabricated using an Ultimaker 2+
3D printer; the material used was the polymer PLA. Thanks
to this approach, we were able to provide a certain elasticity
to the contact elements, which helped to increase adherence
to the powered floor, hence improving conductivity and the
overall robustness of the system.

5 Concluding remarks

In this paper, we focused on powered floor systems for de-
livering power to mobile robots. We considered the problem
of automatically finding the positions of the sliding contacts
which guarantee that the robot actually receives power from
the floor in any position and rotation, the positions being
constrained in a given feasible region defined depending on
the robot shape and equipment. We introduced a formal
formulation for the problem including four objectives to be
maximized and two representations for the solutions, one of
which allows to exploit possible symmetries in the robot. We
tackled the resulting multi-objective optimization problem
with Differential Evolution (DE).



REFERENCES 11

5 10 15
0

2

4

𝑛

𝑓

5 10 15

2

4

6

𝑛

𝑓

5 10 15

10

20

30

𝑛

𝑑

20 30
1

1.5

2

2.5

𝑤 [mm]

𝑓

20 30

3

3.5

4

𝑤 [mm]

𝑓

20 30

12
14
16
18
20

𝑤 [mm]

𝑑

Elisa-3 mBot Thymio II

Fig. 8: Final values, averaged across the 30 runs, for the indexes 𝑓 , 𝑓 , and 𝑑 for different values for the maximum number 𝑛 of con-
tacts (top row of plots, with 𝑤 = 25mm) and different values for the width 𝑤 of the conductive strips (bottom row of plots, with
𝑛 = 10) and with 𝑣 = 3mm.

We experimentally verified that our proposed solution
was indeed able to design effective arrays of sliding contacts
for three real robots (Thymio II, mBot, Elisa-3). We inves-
tigated about the ability of the three objectives to drive
the search with DE. We also experimentally explored the
impact of the two most important problem parameters (the
width of the conductive strips and the maximum number
of sliding contacts) on the effectiveness of the contact ar-
rays designed automatically with DE. The experimental
results suggest that our solution may be useful in practice
for assisting the design of powered floor systems.

Finally, we described a preliminary implementation of
a powered floor system for an Elisa-3 mobile robot and
briefly discussed issues of the its design different than the
one concerning the positioning of the contacts.
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