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Combining amplicon sequencing 
and metabolomics in cirrhotic 
patients highlights distinctive 
microbiota features involved in 
bacterial translocation, systemic 
inflammation and hepatic 
encephalopathy
Valerio Iebba1, Francesca Guerrieri2, Vincenza Di Gregorio3, Massimo Levrero2,4, 
Antonella Gagliardi5, Floriana Santangelo5, Anatoly P. Sobolev6,7, Simone Circi6,  
Valerio Giannelli3, Luisa Mannina6,7, Serena Schippa5 & Manuela Merli3

In liver cirrhosis (LC), impaired intestinal functions lead to dysbiosis and possible bacterial translocation 
(BT). Bacteria or their byproducts within the bloodstream can thus play a role in systemic inflammation 
and hepatic encephalopathy (HE). We combined 16S sequencing, NMR metabolomics and network 
analysis to describe the interrelationships of members of the microbiota in LC biopsies, faeces, 
peripheral/portal blood and faecal metabolites with clinical parameters. LC faeces and biopsies showed 
marked dysbiosis with a heightened proportion of Enterobacteriaceae. Our approach showed impaired 
faecal bacterial metabolism of short-chain fatty acids (SCFAs) and carbon/methane sources in LC, along 
with an enhanced stress-related response. Sixteen species, mainly belonging to the Proteobacteria 
phylum, were shared between LC peripheral and portal blood and were functionally linked to iron 
metabolism. Faecal Enterobacteriaceae and trimethylamine were positively correlated with blood 
proinflammatory cytokines, while Ruminococcaceae and SCFAs played a protective role. Within the 
peripheral blood and faeces, certain species (Stenotrophomonas pavanii, Methylobacterium extorquens) 
and metabolites (methanol, threonine) were positively related to HE. Cirrhotic patients thus harbour 
a ‘functional dysbiosis’ in the faeces and peripheral/portal blood, with specific keystone species and 
metabolites related to clinical markers of systemic inflammation and HE.

Compositional shifts in the gut microbiota are linked with liver disease1,2. In liver cirrhosis (LC), the alteration 
in gut microbiota is characterized by an overgrowth of potentially pathogenic bacteria and a decrease in benefi-
cial commensal species3. The portal system accounts for 75% of the blood reaching the hepatic parenchyma and 
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connects the gut directly to the liver. Bacteria, bacterial fragments and byproducts reach the liver through the 
portal system and contribute to a condition of chronic inflammation that is involved in the development of many 
complications in cirrhotic patients4,5. The close relationship between complications in patients with liver cirrhosis 
and a dysbiotic gut microbiota have raised much attention in the last few years. In fact, the physiopathological 
mechanism involved in complications such as hepatic encephalopathy (HE) and infections4, including spontane-
ous bacterial peritonitis (SBP), is strictly linked to the translocation of enteric bacteria or their products into the 
systemic circulation, called bacterial translocation (BT)6,7. Decreased gut motility, small intestinal bacterial over-
growth (SIBO), impaired intestinal permeability and deficiencies in the local host immune defences are the major 
mechanisms implicated in the promotion of pathological BT in cirrhosis8,9. It was first proposed by Scheline that 
the gut microbiota has a metabolic potential comparable to the liver10,11, and thus, a relevant study addressing 
the complex liver/gut interconnection could be useful for the prevention and therapy of gut dysbiosis, amelio-
rating many complications in LC. The pioneering work of Li12 introduced the term ‘functional metagenomics’, 
intended as a multivariate statistical tool to discover functional relationships among bacterial species and metab-
olites derived from bacteria/host cometabolism: very few studies have attempted such an integrated approach in 
clinical research13–15. In LC, the combination of metagenomics (or 16S-targeted sequencing) and metabolomics 
would give insights into the yet unknown role of bacterial species involved in BT and liver functionality, especially 
when considering portal blood as the main route for the gut-liver axis16,6,17. The influence of the gut microbiota 
on host health is an increasingly concept progressively accepted, but the connection between gut microbiota BT 
and LC remains to be investigated. To outline the impact of the gut microbiota on LC and its physiopathological 
implications, we used the integration of omics platforms18 to describe the microbial compositional shifts in caecal 
biopsies, faeces, and peripheral and portal blood from LC patients, relating them to clinical parameters.

Results
Microbiota characterization of biopsies, faeces, and blood samples.  We used 16S rRNA V3-V4 
targeted sequencing to characterize the microbiota composition of 89 samples from cirrhotic patients (17 caecum, 
35 faeces, 30 peripheral blood, 7 portal blood) and 20 samples from controls (6 caecum, 14 faeces). We obtained 
a total of 9209053 filter-quality reads (84487 per sample on average), which were clustered into a total of 1990 
OTUs (see Supplementary Fig. S1, Supplementary Table S2) and classified with the NCBI database. Estimates 
of the richness (observed OTUs) and biodiversity (Shannon) evidenced a marked dysbiotic status in cirrhotic 
faeces, with an α diversity similar to that of blood samples (Fig. 1A,B). PCoA analysis (for β diversity) computed 
on the relative abundances of OTUs showed a significant separation among the samples classified by their origin 
(biopsies, faeces, blood) (AMOVA P < 0.001, HOMOVA P < 0.001, Bonferroni pair-wise error rate: 0.0033, RF 
error rate: 0.266) (Fig. 1C). No significant separation of samples was obtained after classification by aetiology or 
drug usage (Supplementary Figs S2, S3 and S4). In particular, cirrhotic patients’ faecal microbiota structure was 
different from that of the controls (P < 0.001) and also had a higher within-group Bray-Curtis distance (Fig. 1D) 
(0.75 ± 0.006 vs 0.69 ± 0.01, P = 5.14*10−5). Pairwise statistical analyses (Fig. 1E, see supplementary file) showed, 
at the phylum level, a greater proportion of Verrucomicrobia (+4.1-fold, P = 0.013) and Fusobacteria (P = 0.005) 
in cirrhotic faeces and a greater proportion of Proteobacteria in cirrhotic biopsies, although the latter was not 
significant (+1.5-fold, P = 0.074) (see Supplementary Table S3). Surprisingly, Proteobacteria were predominant 
in both peripheral and portal blood (81.2% vs 65.1%, P = 0.43) and present in a higher proportion in the portal 
blood of extremophiles or uncultured phyla. Pairwise analysis also revealed 52 and 107 species with significant 
differences between cirrhotic patients and controls in the biopsies and faeces, respectively, while 71 species dif-
fered significantly between the peripheral and portal blood of cirrhotic patients (Fig. 1E, see Supplementary 
Table S4, supplementary file). To facilitate the analysis, the Lefse algorithm was implemented to determine all dis-
criminant bacterial species having an LDA score higher than 3.5 (Fig. 1F): the most significant were Escherichia 
fergusonii for biop_cirr, Barnesiella viscericola for biop_ctrl, Bacteroides vulgatus for feces_cirr, Bacteroides uni-
formis for feces_ctrl, Pseudomonas fluorescens for periph_cirr and Sphingomonas paucimobilis for portal_cirr. 
Overall, these results revealed a marked dysbiotic status in cirrhotic patients’ faeces and biopsies: at the same 
time, they highlighted the importance of Proteobacteria in cirrhotic patients’ peripheral and portal blood.

Cirrhotic patients show faecal alterations mainly in SCFA, carbon and methane metabo-
lism.  Upon finding a dysbiotic faecal microbiota composition in cirrhotic patients, we sought to investigate 
putative differences in faecal metabolite profiles. The NMR profiles of cirrhotic patients were significantly differ-
ent from those of the controls (χ2 = 10.41, P = 0.0013), exhibiting altered levels of amino acids, SCFAs, methanol, 
cadaverine and α-glucose (Fig. 2A). To assess the metabolic potential of faecal microbial communities, PICRUSt 
analysis was implemented on the faecal 16S data to infer gene KEGG orthologue (KOrth) abundances, pathways 
involved (ko), and phylum/genus contributions (see Supplementary Fig. S5). Upon comparing the faeces of cir-
rhotic patients and controls, we retrieved 432 significantly different KOrths in a total of 6909, while 8 pathways 
were underrepresented and two overrepresented in cirrhotic patients (Fig. 2B). Cirrhotic patients showed 10 
enhanced KOrths, regarding sugar-related transport (fructose, ascorbate), DNA repair, and defence against oxi-
dative stress and toxins (Fig. 2B, see Supplementary Table S5). Taking into account the significant NMR metabo-
lites retrieved by pairwise statistics, we found 31 KOrths reduced in cirrhotic patients (Fig. 2B, see Supplementary 
Table S6), especially those for SCFA (ko00650 butanoate, ko00640 propanoate), carbon (ko01200) and methane 
(ko00680) metabolism. While the overrepresented pathways were more heterogeneous, the underrepresented 
pathways were strongly dominated by carbon metabolism (17/31 KOrths, ~55%) and methane metabolism (11/31 
KOrths, ~35.5%), with some KOrths involved in other pathways (e.g., ko00010 glycolysis/gluconeogenesis).

Functional metagenomic networks (FMNs) reveal a ‘functional dysbiosis’ in cirrhotic patients.  
After finding that dysbiosis in cirrhotic patients faeces was accompanied by alterations in metabolites, we 
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combined 16S sequencing, NMR metabolomics and network analysis, resulting in functional metagenomics net-
works (FMNs). The control network showed a discrete clustering of bacterial species or metabolites, showing five 
definite functional metagenomics communities (FMCs), while the cirrhotic network was sparser, with only two 
FMCs (Fig. 2C,D, Supplementary Table S7). Gemmiger formicilis, Oscillibacter ruminantium, Roseburia faecis and 
Faecalibacterium prausnitzii were keystone species within the control network (Fig. 2C, Table 1). These species, all 
members of the Firmicutes phylum, are significantly higher in the controls than in cirrhotic patients (Gemmiger 
formicilis, 2.23% vs 0.82% P = 0.0082; Oscillibacter ruminantium, 2.95% vs 0.72% P = 2.6*10−5; Roseburia faecis, 
1.73% vs 0.81% P = 0.0081; Faecalibacterium prausnitzii, 5.47% vs 1.76% P = 0.0047, see supplementary file), 
and Lefse analysis showed their importance in the controls (Fig. 1F). Due to their involvement in the produc-
tion of SCFAs (especially butyrate), they could exert a homeostatic role within the intestine of the controls19,20: 

Figure 1.  Microbiota compositional analysis. Average rarefaction curves (with 95% confidence interval) 
(panel A) and box plots (panel B) of α-diversity richness (observed OTUs) and biodiversity (Shannon index) 
estimators are reported for each dataset. The PCoA analysis (for β diversity) was based on the Yue & Clayton 
measure of dissimilarity (panel C), while the within-group Bray-Curtis average distance is reported in (panel 
D). Pairwise comparisons (panel E) were performed on the average relative abundances at the phylum, family 
(only ≥ 0.5%) and species (only ≥ 0.5%) levels for all six datasets (biop_cirr, biop_ctrl, feces_cirr, feces_ctrl, 
periph_cirr, portal_cirr) and reported as pie charts. All families or species whose mean relative abundance 
is < 0.5% collectively fall within the ‘Other’ group. Lefse analysis (panel F) was performed on all bacterial 
species, reporting the most discriminant ones (LDA score > 3.5) in decreasing order for each dataset. P values: 
*≤0.05, **≤0.01, ***≤0.001.
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here, Gemmiger formicilis is the most important keystone species21. The cirrhotic FMN had different properties 
from the controls: i) a lower number of edges; ii) a lower percentage of synergistic interactions (blue edges); iii) 
a lower synergistic/competitive ratio; and iv) lower density and modularity (Table 1). Notably, threonine had the 
highest importance within the cirrhotic network (was a keystone metabolite), having the highest betweenness 
centrality (Table 1, Fig. 2D). Threonine was positively linked (blue edges) with Escherichia fergusonii (Otu4) and 

Figure 2.  Faecal metabolomics and network analysis. The Mann-Whitney U test was employed to assess 
putative differences among faecal metabolites (from NMR) of cirrhotic patients (red) and controls (green) 
(panel A). Scaled values on the y-axis are arbitrary units referring to peak area. P values: *≤0.05, **≤0.01. 
PICRUSt analysis (panel B) was employed to predict metagenomes from the 16S data and to infer differences 
in mean proportions (expressed as %) among cirrhotic patients (red) and controls (green), for the first 20 Kegg 
Orthologues (KOrths) ordered by decreasing effect size (η2). The specific mean contributions of bacterial phyla 
and genera to the 10 KOrths overrepresented and to the 8 KOrths underrepresented in cirrhotic patients were 
calculated with PICRUSt (see supplementary Fig. S4). Co-occurrence network analysis was performed on 
faecal 16S and NMR merged datasets for both controls (panel C) and cirrhotic patients (panel D). The Pearson 
coefficient (r), ranging from positive (blue) to negative (red) values, is reported (edges with −0.7 > r > 0.7), 
based on correlation heatmaps (see supplementary Fig. S5). The edge thickness is proportional to the number 
of co-occurrences found between two nodes (species or metabolites) linked by the edge itself. Bacterial 
species having a mean relative abundance ≥0.5% were reported with their OTU number (squared brackets) 
and represented as circles, while metabolites were represented as squares within networks. Node size is 
proportional to the number of edges departing from the node, indicating its degree of interaction. Node name 
size is proportional to the betweenness centrality, meaning the bridging/key importance of that node within 
the network. Nodes are coloured by modularity class (community detection algorithm) to identify different 
functional metagenomic communities (FMCs) for the controls (5 FMCs) and cirrhotic patients (2 FMCs).
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Enterobacter cloacae (Otu13) but negatively related (red edges) to Bacteroides vulgatus (Otu1) and Bacteroides 
uniformis (Otu8). Thus, an increase in Otu4 or Otu13 or a decrease in Otu1 or Otu8 was expected to increase 
threonine levels, as observed in the NMR results (Fig. 2A). Interestingly, the levels of Escherichia fergusonii and 
Enterobacter cloacae were higher in cirrhotic patients than in the controls (6.63% vs 0.04% P = 0.003, and 1.56% 
vs 0.00% P = 0.003, respectively), while the level of Bacteroides vulgatus was lower (8.57% vs 16.98% P = 0.048) 
(see Supplementary Table S4, supplementary file). Overall, the FMN results highlighted a ‘functional dysbiosis’ in 
cirrhotic faeces compared to control faeces, with specific keystone features.

Proteobacteria and iron metabolism are functionally linked within cirrhotic patients’ blood 
microbiota.  In cirrhotic patients, we observed differences between the peripheral and portal blood micro-
biota (Fig. 1, see supplementary file). Then, network analysis was employed to infer functional inter- and 
intra-relationships. As found with pairwise analysis (Fig. 1E), the ‘liquid biopsy’ showed a great prevalence of 
Proteobacteria members in both environments: 10/14 (71.4%) and 8/26 (30.8%) nodes in the peripheral and 
portal blood networks, respectively, belonged to this phylum, (Fig. 3A,B). Sixteen species (with mean relative 
abundance ≥0.1%), mainly belonging to the Proteobacteria phylum (10/16, 62.5%), were found to be common to 
the peripheral and portal blood (Fig. 3), suggesting their possible role as hepatic barrier crossers in liver cirrhosis. 
Via correlation analysis, we found a total of 27 significant interrelationships: 3/27 (11.1%) were positive, while 
24/27 (88.9%) were negative (intercompetition) (Fig. 3C). All Proteobacteria members had the highest degree 
of interaction (intrarelationships) within both networks (represented by node size), and in the peripheral blood, 
they also acted as keystones species (Pseudomonas fluorescens, Stenotrophomonas pavanii, Acinetobacter guil-
louiae) (Table 2), indicating a functional role within this blood environment. In this view, the peripheral network 
was more compact (density close to 1, modularity close to zero), with competitive interactions outnumbering 
synergistic ones (Table 2). Thus, it seems that a stable and definite peripheral blood microbiota was present in 
cirrhotic patients. The peripheral network also had the lowest syn/com ratio (P = 0.003, χ2 = 8.85), with the 
majority of retrieved Proteobacteria species showing only negative edges among themselves (intracompetition). 
Interestingly, most of these species are strong producers of iron chelators (siderophores)22–24, and PICRUSt anal-
ysis showed that both the peripheral blood and the portal blood of cirrhotic patients were significantly enriched 
in bacterial KO genes linked to active iron transport (Fig. 3D). After normalization for gene copies and number 
of samples, PICRUSt showed great contributions of the Pseudomonas, Sphingomonas, Acinetobacter and Delftia 
genera in the peripheral and portal blood to iron-related KOrths (K02014, K07165, K03832) (Fig. 3E), while only 
Pseudomonas contributed greatly to the same KOrths in cirrhotic biopsies or faeces. Hence, even if intra- and 
intercompetitive interactions (red edges) dominated within Proteobacteria, the higher diversity in KOrth con-
tributions seen within the peripheral blood could be an advantage enabling iron-demanding species to thrive in 
this harsh environment22,25.

Bacterial species, genes and metabolites related to hepatic encephalopathy.  After assessing the 
compositional shifts of faeces and blood in cirrhotic patients, we sought to find species, genes and metabolites 
eventually involved in HE. Among the bacterial species able to translocate across the hepatic barrier (Fig. 3), we 
found that Stenotrophomonas pavanii (rel.abund. = 0.53%, a keystone species, see Table 2) and Methylobacterium 
extorquens (rel.abund. = 1.13%) in the peripheral blood raised the risk of HE by 135% and 142%, respectively, 
while Clostridium indolis lowered it by 10%, thus performing a protective role (Table 3). Within the faeces, 
Bacteroides coprocola (+131%) and Bifidobacterium longum (+113%) enhanced the risk of HE, while Bacteroides 
faecis and Bacteroides coprophilus lowered it by 43% and 34% (Table 3). The gene msrP/K07147 (a methionine 
sulfoxide reductase) within the peripheral blood was uniquely related to a higher risk of HE (+37%), while within 
the faeces, the genes pdhD/K00382 (+38%), sugE/K11741 (+36%), and ssb/K03111 (+45%) were related to a 

Parameter FMN Controls (n = 14) FMN Cirrhotic Patients (n = 35)

Nodes 63 62

Edges 263 112

Synergistic interactions (%) 223 (84.8) 88 (78.6)

Competitive interactions (%) 40 (15.2) 24 (21.4)

Syn/Com ratio 5.58 3.67

Density 0.135 0.059

Modularity 0.589 0.401

Keystone species (BC, FMC, [Otu], Rel.abund.%)

G. formicilis (442.4, I, [33], 2.23)
O. ruminantium (289.4, II, [26], 2.95)
F. prausnitzii (231.1, V, [9], 5.47)
A. onderdonkii (204.8, II, [42], 0.72)
R. faecis (194.9, III, [22], 1.73)

B. vulgatus (277.1, I, [1], 16.98)
B. stercoris (264.7, II, [29], 1.18)
F. prausnitzii (209.6, II, [9], 1.76)
V. dispar (174.4, I, [7], 9.68)
B. uniformis (171.2, I, [8], 2.06)

Keystone metabolites (BC, FMC)

acetate (279.3, II)
serine (162.0, IV)
β-arabinose (158.3, V)
lysine (147.4, III)
histidine (121.7, V)

threonine (332.5, I)
n-butyrate (256.2, II)
histidine (242.9, II)
methanol (197.7, II)
proline (176.8, II)

Table 1.  Descriptive parameters of faecal functional metagenomics networks (FMNs). BC = betweenness 
centrality value. FMC = functional metagenomics community (in Roman numbers). Otu = operational 
Taxonomical Unit. Rel.abund. = relative abundance (%).
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higher risk of HE (Table 3). Interestingly, the gene tonB/K03832 (a periplasmic protein involved in iron metab-
olism) within the faeces was protective against HE (−29%). Three keystone faecal metabolites (see Table 1) were 
related to HE: methanol (+71%) and threonine (+38%) heightened the risk, while n-butyrate (−23%) lowered it. 
Peripheral blood IL6 was also positively related to HE (+28%).

Figure 3.  Network and PICRUSt analysis of peripheral and portal blood microbiota in cirrhotic patients. 
Network analysis was performed on portal (panel A) and peripheral (panel B) blood, taking into account 
OTUs (within square brackets) with mean relative abundance ≥0.5%. Network properties as in Fig. 2. The 
crosscorrelation heatmap (panel C) depicts interrelationships and was built using Pearson coefficients, with a 
white star indicating a significant correlation (P < 0.05 after FDR correction). PICRUSt analysis (panel D) shows 
differences, among the four cirrhotic patient datasets, in the sequence numbers (expressed as % of the total) 
relative to three KOrths involved in bacterial iron transport: the peripheral and portal blood are significantly 
enriched in these three genes (Kruskal-Wallis test, Benjamini-Hochberg FDR q-value). Within boxes, stars 
represent the mean, while horizontal bars represent the median. Species percentage contributions to the three 
iron-related KOrths (panel E) were computed with PICRUSt and are reported as ‘normalized KO mean relative 
abundance (%)’ on the y-axis: normalization was performed according to the total number of sequences and 
number of samples for each cohort (biop_cirr, feces_cirr, periph_cirr, portal_cirr).
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Correlation of clinical parameters with bacterial species and metabolites in cirrhotic patients.  
We measured three proinflammatory cytokines (IL6, IL1β, TNFα) in peripheral and portal blood samples 
(Fig. 4A). TNFα was significantly higher in the portal blood than in the peripheral blood (29.1 ± 14.4 pg/
mL vs 10.5 ± 3.6 pg/mL, P = 0.048), and through Pearson correlation, we found portal TNFα to be positively 
related to specific bacterial consortia within the portal, peripheral, faecal, and intestinal habitats (Fig. 4). 
Delftia tsuruhatensis, one of the 16 species shared between peripheral and portal blood, was positively linked 
to portal TNFα and cardiac frequency when present within both portal (rel.abund. = 3.04%, r = 0.86/P = 0.013, 
r = 0.80/P = 0.029) and peripheral blood (rel.abund. = 1.37%, r = 0.39/P = 0.035, r = 0.39/P = 0.034) (Figs. 4C,D). 
Interestingly, the high-HE-risk consortium Methylobacterium extorquens/Stenotrophomonas pavanii in the 
peripheral blood was positively correlated with the MELD score (rmean = 0.48/Pmean = 9.6*10−3) and portal 
proinflammatory cytokines (TNFα r = 0.40/P = 0.03; IL1β r = 0.49/P = 0.007) (Fig. 4C). The high-HE-risky 
consortium Bacteroides coprocola/Bifidobacterium longum in the faeces was strongly correlated with periph-
eral IL6 (rmean = 0.81/Pmean = 3.5*10−8) (Fig. 4D). Within cirrhotic patients’ faeces (Fig. 4D), Enterobacter clo-
acae (rel.abund. = 1.56%) was positively correlated with five parameters (rmean = 0.49/Pmean = 0.019): GPT, 
cardiac frequency, platelets, WBC, and CRP. Escherichia fergusonii, another Proteobacteria member that is closer 
(blue edge) to Enterobacter cloacae within cirrhotic FMC1 (Fig. 2D), gave a significant result only with CRP 
(r = 0.46/P = 0.006), although its correlation pattern is similar to that of E. cloacae. Five faecal species, Gemmiger 
formicilis, Roseburia faecis, Ruminococcus gnavus, Bacteroides ovatus and Bacteroides faecis, were negatively cor-
related with cardiac frequency (rmean = −0.37/Pmean = 0.031). Two faecal Bacteroidetes members, Bacteroides fra-
gilis and Parabacteroides merdae, showed a positive correlation with portal blood proinflammatory cytokines 
(IL6, TNFα, IL1β) (rmean = 0.59/Pmean = 0.004). Another Bacteroides member, Prevotella copri, had a significantly 

Parameter Peripheral (n = 30) Portal (n = 7)

Nodes 14 26

Edges 73 108

Synergistic interactions (%) 36 (49.3) 78 (72.2)

Competitive interactions (%) 37 (50.7) 30 (27.8)

Syn/Com ratio 0.97 2.60

Density 0.802 0.332

Modularity 0.033 0.319

Keystone species (BC, Otu, Rel.abund.)
P. fluorescens (8.94, [2], 31.97)
S. pavanii (3.00, [160], 0.53)
A. guillouiae (0.94, [3], 25.91)

C. tructae (46.2, [179], 0.51)
E. fergusonii (42.5, [4], 1.28)
S. epidermidis (37.1, [167], 0.88)

Table 2.  Descriptive parameters of peripheral and portal networks. BC = betweenness centrality value. 
Otu = operational taxonomical unit. Rel.abund. = relative abundance (%).

Species, KOrths, Metabolites
Logistic 
Reg. Coeff.

Odds Ratio 
(OR)

Randomized Lasso 
Coeff. (RLC)

Elastic Net 
Coeff. (ENC)

SGDC 
Coeff.

Peripheral blood

Clostridium indolis −0.151 0.90 0.530 −0.049 −0.316

Methylobacterium extorquens 1.275 2.42 0.445 0.042 0.642

Stenotrophomonas pavanii 1.231 2.35 0.555 0.082 0.665

K07147 0.450 1.37 0.205 0.033 0.562

IL6 0.355 1.28 0.800 0.057 0.319

Faeces

Bacteroides coprocola 1.210 2.31 0.745 0.051 0.738

Bacteroides coprophilus −0.609 0.66 0.890 −0.005 −0.371

Bacteroides faecis −0.804 0.57 0.785 −0.033 −0.465

Bifidobacterium longum 1.092 2.13 0.790 0.096 0.728

K00382 0.466 1.38 0.305 0.046 0.729

K11741 0.446 1.36 0.190 0.020 0.695

K03111 0.540 1.45 0.175 0.023 0.664

K03832 −0.496 0.71 0.100 −0.012 −0.663

methanol 0.772 1.71 0.260 0.136 0.697

threonine 0.466 1.38 0.005 0.007 0.500

n-butyrate −0.371 0.77 0.005 −0.018 −0.340

Table 3.  Microbiota features related to hepatic encephalopathy (HE) in cirrhotic patients. K07147: methionine 
sulfoxide reductase catalytic subunit msrP [EC:1.8.-.-]. K00382: dihydrolipoamide dehydrogenase pdhD 
[EC:1.8.1.4]. K11741: quaternary ammonium compound-resistance protein sugE. K03111: single-strand DNA-
binding protein ssb. K03832: periplasmic protein tonB.
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higher relative abundance in portal blood than in peripheral blood (P = 0.0308) and was positively correlated 
with peripheral TNFα (Fig. 4B). Regarding faecal metabolites (Fig. 4E), the harmful trimethylamine26 had a 
strong positive correlation with the portal blood proinflammatory cytokines IL6, TNFα and IL1β (rmean = 0.92
/Pmean = 3.7*10−6), while two SCFAs, acetate and n-heptanoate, were negatively correlated with these cytokines 
(rmean = −0.46/Pmean = 0.037), thus performing a protective role. Threonine (a key metabolite within cirrhotic 
FMN, Fig. 2D, Table 1), α-galactose and β-glucose were positively correlated with WBC, PCR and platelets counts 
(rmean = 0.64/Pmean = 0.009). Overall, we showed that some of the sixteen species shared among portal and periph-
eral blood were significantly correlated with systemic inflammation, HE and worsening of clinical and biochem-
ical parameters in cirrhotic patients.

Discussion
The hepatic portal system, collecting gut microbiota metabolites and byproducts, could act as a highway for bac-
terial translocation, leading to physiopathological complications in liver cirrhosis, such as hepatic encephalopa-
thy. A combination of 16S targeted sequencing and metabolomics was employed on LC biopsies, faeces and 

Figure 4.  Cross-correlation of metagenomics/metabolomics datasets with clinical parameters in cirrhotic 
patients. ELISA tests for proinflammatory cytokines were performed on peripheral and portal blood (panel A). 
The Pearson coefficient (r), ranging from positive (blue) and negative (red) values, was used to cross-correlate 
bacterial species (within portal/peripheral blood, biopsies, faeces) and clinical parameters (ELISA included) 
for cirrhotic patients (see Supplementary Table S1) (panels B–F). A white star indicates a significant correlation 
(P ≤ 0.05 after FDR correction). Rectangles denote harmful (yellow), protective (green), or high-HE-risk 
(purple) consortia/metabolites.
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portal/peripheral blood to extrapolate species, genes (KEGG Orthologues, KOrths) and faecal metabolites able to 
impact liver functionality in a feedback loop through the bloodstream. We found that cirrhotic patients’ portal 
blood had a bacterial community composition similar to that of the colonic mucosa, but not to that of the faeces. 
These findings suggest that BT derives primarily from mucosa-associated species, rather than luminal ones, as 
previously suggested6,27. As previously reported28, the blood microbiota could be completely derived from a leaky 
intestinal barrier27,29, strengthening the importance of mucosa-associated microbiota in BT. A reduced secretion 
of bile acid production in cirrhosis has been reported, favouring the overgrowth of pathogenic and proinflamma-
tory members of the microbiome including Porphyromonadaceae and Enterobacteriaceae30,31. The relative scar-
city of secondary biliary acids significantly correlates with the reduction in the Clostridium cluster XIVa group; 
this correlation is probably due to the high proportion of 7α-dehydroxylating bacteria within this cluster. In 
animal models, the production of secondary bile acids by this group of bacteria causes positive regulation of bile 
acid synthesis in the liver. In fact, a higher concentration of secondary bile acids in the ileum implies a lower 
concentration of tauro-β-muricholic acid, which is an inhibitor of hepatic bile acid synthesis (via the inhibition of 
FXR signalling)32. In this “liver-gut axis perspective”, as the severity of cirrhosis progresses, lower amounts of 
secondary bile acids reach the large bowel: in particular, deoxycholic acid (DCA) is the one that displays the most 
potent antimicrobial activity33. Thus, the consequence of its reduced concentration is a higher risk of bacterial 
overgrowth in the small bowel, often characterized by reduced biodiversity34. The interplay among intestinal 
permeability, compositional shifts in mucosa-associated microbiota and BT is thus of great importance in dis-
eases affecting the liver, such cirrhosis, NAFLD, NASH, and, ultimately, liver cancer27. We found sixteen species 
shared between the portal and peripheral blood in cirrhotic patients (Fig. 3). A caveat of our study would be the 
use of bacterial DNA (bDNA) as a BT marker, which raises the question of the role of resident bacteria in both 
portal and peripheral blood35. Even if a fraction of bDNA could derive from the recently proposed ‘relic DNA’36, 
it is debatable whether it would affect biodiversity measures37, especially within the blood habitat, where bacterial 
species usually survive at low levels due to iron depletion25,38. It seems that Proteobacteria members are the major 
constituent in the peripheral blood, especially in a diseased state39, which highlights their role in bacterial trans-
location and suggests that elevated LPS and bDNA loads could exacerbate a systemic immune activation40. Our 
network analysis showed that the main bacterial translocators were Pseudomonas and other Proteobacteria mem-
bers (mainly αβγ-proteobacteriaceae). These keystones and shared species (Fig.  3) are potential or 
well-recognized pathogens living in competition with each other and with the host for scarce resources such as 
iron availability. Interestingly, PICRUSt analysis showed that both the peripheral blood and the portal blood of 
cirrhotic patients were significantly enriched in bacterial KOrth genes linked to active iron transport (Fig. 3D). 
Ultimately, all these Proteobacteria species are strong producers of siderophores23–25 and are able to outcompete 
vertebrates in iron scavenging25,38. Due to the higher abundance of iron transport-related bacterial genes in the 
peripheral and portal blood, iron supplementation could allow Proteobacteriaceae members, which usually har-
bour genotoxins, to flourish24,41. Excessive iron has well-recognized hepatotoxic activity and is able to interfere 
with interferon therapy and to induce oxidative stress (free radicals)42. Moreover, excessive iron is linked to liver 
fibrosis, DNA damage, enhanced predisposition to gut/liver cancer43, and especially the overgrowth and virulence 
of bacterial pathogens24. In IBD, it was found that iron supplementation was related to colitis severity44, while 
replacement therapy was related to a diminution of beneficial Clostridiales and lesser biodiversity45. We revealed 
a link between the worsening of clinical parameters in LC and species able to translocate through the gut barrier, 
especially gram-negative members of the Proteobacteria phylum. Gram-negative-derived LPS interacts with mac-
rophages, releasing proinflammatory cytokines such as TNF-alpha, IL-6, and IL-1b46. We found higher levels of 
TNFα within the portal blood, which could support the role of the portal blood microbiota in inducing a 
“cytokine storm”, exacerbating liver failure and clinical symptoms46,47. Interestingly, we found specific bacterial 
consortia and metabolites to be involved in worsening systemic inflammation. Within the Bacteroides phylum, 
the species Prevotella copri, previously linked to rheumatoid arthritis48 and stage 4-HCV patients49,50, was posi-
tively correlated with higher levels of peripheral TNFα when present in the portal blood. Prevotella copri was 
higher in cirrhotic patients’ biopsies and faeces, though not significantly, and this abundance could be explained 
by its role as an enterotype linked to carbohydrate metabolism49, which we found to be altered in LC. In this 
respect, our results are in accordance with two recently published papers51,52, although some differences exist in 
the levels of SCFAs (especially butyrate), perhaps due to geographical constraints or cohort size. The presence of 
Proteobacteria members within the portal and peripheral blood was positively linked to IL6, IL1β, TNFα, GPT 
and cardiac frequency. Faecal trimethylamine (TMA) had a strong positive correlation with portal blood proin-
flammatory cytokines IL6, TNFα and IL1β. High levels of TMA in the faeces are generated by the gut microbi-
ota53, probably leading to altered levels of the toxic compound trimethylamine N-oxide (TMAO) within the liver 
and affecting its functionality26. Thus, higher levels of TMAO and TNFa/IL6/IL1b levels could lead to a synergis-
tic feedback loop in liver failure. Faecal acetate and n-heptanoate were negatively related to portal blood proin-
flammatory cytokines, indicating a protective role. Eight out of 46 cirrhotic patients in our series had HE at 
hospitalization (see Supplementary Table S1), and the HE risk was raised by Methylobacterium extorquens and 
Stenotrophomonas pavanii in the peripheral blood. Interestingly, these two species were positively correlated with 
one another (Fig. 3B, blue edge) and with the MELD score (Fig. 4C), emphasizing their interplay with severe liver 
failure and HE. The species most strongly related to HE (OR = 2.42, RLC = 0.445) was Methylobacterium 
extorquens, an opportunistic pathogen able to i) oxidize methanol to formaldehyde (a compound responsible for 
chronic solvent-induced encephalopathy - CSE)54 and ii) live in the peripheral blood, thus possibly causing sys-
temic disease55. Interestingly, faecal methanol (a keystone metabolite) was positively related to HE (Table 3) and 
was significantly higher in LC (Fig. 2A), suggesting a possible reservoir for Methylobacterium extorquens toxic 
activity within the peripheral blood. Peripheral IL6 was positively related to HE risk (Table 3) and to the faecal 
Bacteroides coprocola/Bifidobacterium longum consortium (Fig. 4D): importantly, these two species also enhanced 
HE risk (Table 3). Our results confirmed the predictive role of IL6 in HE56 but, surprisingly, are contrary to 
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previous observations on Bifidobacterium longum. In fact, this species has been utilized to treat minimal hepatic 
encephalopathy (MHE)57; thus, its increased risk for HE (OR = 2.13, RLC = 0.79) warrants more clinical and 
molecular studies on its use as a psychobiotic58. Interestingly, n-butyrate was protective against HE; thus, provid-
ing LC subjects with a strong butyrate producer such as Faecalibacterium prausnitzii (a keystone species, Table 1) 
would probably ameliorate their conditions, although this hypothesis deserves further evidence. Despite some 
potential improvements in patient number and NGS approach (shotgun), this study represents one of the first 
attempts at integrating metagenomic and metabolomic datasets to obtain a clinical meaning. We aimed to 
improve our knowledge of the gut-liver axis and to advance our ability to correct or prevent liver-related pathol-
ogies. Intervention by prebiotics/probiotics/synbiotics, diet or faecal microbiota transplant (FMT)59, along with 
cautious iron supplementation, could support the development of new customized treatments for LC patients 
with systemic inflammation and/or HE.

Methods
Subjects enrolled.  All methods were carried out in accordance with relevant guidelines and regulations. 
Forty-six patients with liver cirrhosis (aged 60.3 ± 11.5 years, sex ratio M/F 32/13) hospitalized at the Department 
of Gastroenterology, University Hospital Policlinico Umberto I, were included in the study (see Supplementary 
Table S1). The diagnosis of cirrhosis was proven through liver biopsy or based on clinical, biochemical and ultra-
sonographic signs. The exclusion criteria were as follows: diagnosis of infection (based on fever, leukocytosis, ele-
vated C Reactive protein (CRP), erythrosedimentation rate (ESR), procalcitonin, clinical symptoms, and positive 
microbiological cultures when present), use of systemic antibiotics in the last 3 months, variceal bleeding within 
the last 4 weeks, or alcohol or illicit drug intake within the last 3 months. Lactulose or rifaximin therapy was not 
considered cause for exclusion. No patient took other drugs that could potentially affect the microbiota (such 
as metformin). Patients with any type of immunodeficiency (HIV, immunosuppression) or with a diagnosis of 
hepatocellular carcinoma without Milano criteria were excluded. All the patients were followed throughout the 
time of hospitalization. Fourteen healthy age-matched individuals (aged 53.8 ± 7.8 years, sex ratio M/F 7/6) were 
recruited among their neighbours to serve as controls. Among this group, individuals who were taking, or had 
taken in the last 3 months, medications that could potentially modify the gut microbiota (antibiotics, probiotics) 
were excluded. The origin of cirrhosis, past and current complications of the disease, and laboratory findings 
(hemogram, serum electrolyte levels, renal and liver function tests, inflammatory parameters) were collected. The 
severity of liver disease was evaluated by the Child-Turcotte-Pugh (CTP) and model for end stage liver disease 
(MELD) scores. The chronic use of beta-blockers, lactulose, proton pump inhibitors (PPI) and other drugs with 
the potential to influence the gut microbiota was recorded. The patients included in the study and the healthy 
controls gave a fresh stool sample that was promptly stored at −80 °C. The cirrhotic patients also underwent 
serum collection of peripheral vein blood samples (2 mL) for cytokine titration (TNF-α, IL1β, IL6) and blood 
microbiota assessment. Portal blood (2 mL) was taken from seven cirrhotic patients admitted for TIPS proce-
dures and was subjected to the same analyses as the peripheral blood. Both peripheral and portal blood samples 
were frozen at −80 °C immediately upon collection. For patients and controls undergoing a colonoscopy for the 
prevention of colorectal carcinoma, as indicated by clinical guidelines, or due to a general work up before being 
admitted to the liver transplant list, a mucosal biopsy (caecum) was obtained to assess the intestinal microbiota 
adhering to the mucosa. This biopsy was also immediately stored at −80 °C. All retrieved demographic and clini-
cal parameters were anonymously used to build a matrix employed for subsequent multivariate statistical analysis.

Ethical Statements.  Both patients and controls signed an informed consent form, and the experimental 
protocol was approved by the Hospital ‘Umberto I – Policlinico di Roma’ Ethics Committee during the inter-
nal audit held on the 24th of September 2015 (Protocol Number 2515/15, Rif. 3696) under the title ‘Microbiota 
composition in patients with hepatic cirrhosis’. The Ethics Committee operates under the standards of good clin-
ical practice (GCP-ICH) and following the clinical duties of the Italian Ministry (D.M. 15/7/97, D.M. 18/3/98, 
D.Lgs. 24/6/2003, D.M. 12/5/2006, D.M. 21/12/2007, D.M. 8/2/2013). At enrolment, a general physical examina-
tion and vital signs were recorded. All methods were carried out in accordance with the relevant guidelines and 
regulations.

ELISA.  The peripheral and portal blood levels of the cytokines IL-6, TNF-α, and IL1-β were evaluated by 
enzyme-linked immunosorbent assay (ELISA). Briefly, 2 ml of peripheral or portal blood was collected as speci-
fied above in a test tube with anticoagulant and centrifuged at 3000 rpm for 10 minutes. One hundred microliters 
of supernatant was used to evaluate the cytokine levels via enzyme immunoassays carried out with commercial 
kits (Human ELISA Ready-SET-Go!, cat# 88-7066-22 for IL-6, cat# 88-7346-22 for TNF-α, cat# 88-7261-22 for 
IL1-β, eBioscience, San Diego, CA, United States), and assays were performed in triplicate following the manu-
facturer’s instructions. Plates (96-well ELISA plate, Corning Costar 9018, included in the kit) were read at 450 nm 
(subtracting the 570 nm readings as a baseline), and the intensity measurements were analysed with online soft-
ware (http://www.elisaanalysis.com/) to retrieve values expressed in pg/mL (a four-parameter logistics curve 
was used for standard curve interpolation). A matrix of ELISA data was generated for subsequent multivariate 
statistical analysis. The Mann-Whitney U test was used to assess significant comparisons (P ≤ 0.05).

Microbiota characterization of biopsies and of blood and stool samples.  The biopsies underwent 
a first wash (30S mid-speed vortex) with 0.016% dithioerythritol (DTT, cat#D0632, Sigma-Aldrich, Milan, Italy) 
in phosphate-buffered saline (PBS, cat#AU-L0615-500, Aurogene, Rome, Italy) to remove mucus and were then 
washed three more times with PBS. The total DNA from stool samples (200 mg each), from biopsies (15 mg each) 
and from peripheral/portal blood (200 μl each) was automatically extracted with a Maxwell® RSC Instrument 

http://www.elisaanalysis.com/
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(Promega, Wisconsin, USA, kit #AS1400). For all three sample types, the manufacturer’s protocol was modified 
by incubating the samples with proteinase K at 56 °C, followed by a 4 hour incubation at 37 °C with 2 mg/ml (final 
concentration) lysozyme (cat# L6876, Sigma-Aldrich, Milan, Italy) to ensure a proper disruption of gram-positive 
bacterial species. Next-generation sequencing (NGS) of 16S rRNA V3-V4 regions amplicons was thus carried 
out on a total of 109 samples divided as follows: i) caecum samples (17 HC, 6 controls); ii) stool samples (35 
HC, 14 controls); and iii) blood samples (30 HC peripheral, 7 HC portal). The samples were subjected to robotic 
PCR execution, library preparation and sequencing according to the Illumina 16S metagenomics standardized 
operational workflow (16S Metagenomic Sequencing Library Preparation, Part # 15044223 Rev. B). Appropriate 
blanks (negative controls) and mock communities (positive control) were employed to assess bacterial contam-
ination throughout the NGS workflow and sequencing error rate. Each 16S library was checked for size with an 
Agilent 2200 Tapestation (Agilent Technologies, Santa Clara, CA, United States) and quantified with a Qubit 2.0 
fluorometer using the Qubit dsDNA HS Assay Kit (cat# Q32851, Thermo Fisher Scientific, MA, United States). 
Sequencing was performed at the Italian Institute of Technology (https://www.iit.it/it/centers/clns-sapienza) with 
an Illumina MiSeq platform, Reagent Kit v3 (cat# MS-102-3003, Illumina, San Diego, CA, United States), 2 × 300 
paired ends, and 600 cycles. The raw FASTQ files were analysed with Mothur pipeline v.1.38.160 for the quality 
check and filtering (sequencing errors, chimaerae) on a Workstation CELSIUS R940 (Fujitsu, Minato-ku Tokyo, 
Japan). Filtered reads (9209053 in total, 84487 per sample on average, see Supplementary Table S3) were clus-
tered into operational taxonomical units (OTUs), after the elimination of singletons and doubletons, by de novo 
OTU picking at 97% pairwise identity using standardized parameters and the SILVA rDNA Database v.1.1961 
for alignment. In all, 1990 OTUs were identified. Given the high heterogeneity of the six datasets (biop_cirr, 
biop_ctrl, feces_cirr, feces_ctrl, periph_blood, portal_blood) in terms of OTUs and filtered quality read numbers, 
all samples were normalized to the number of reads present in the least rich sample (3101 reads for a portal blood 
sample). Sample coverage was computed with Mothur and found to be equal to 99% on average for all samples 
(mean ±SDM, 99.1% ± 0.5%), indicating that the normalization procedure was suitable for subsequent analyses. 
The analysis of molecular variance62 (AMOVA, which represents the difference in datasets’ centroids), homoge-
neity of molecular variance (HOMOVA, representing the difference in datasets’ standard deviations), parsimony 
test, LEfSe63, and random forest (RF) error rate were computed with Mothur v.1.38.1.

OTU species assignment and multivariate statistical analyses.  Bioinformatic and statistical anal-
yses on recognized OTUs were performed with Python v.2.7.11. The most representative and abundant read 
within each OTU (as shown in the previous step with Mothur v.1.38.1) was subjected to a nucleotide Blast using 
the National Center for Biotechnology Information (NCBI) Blast software (ncbi-blast-2.3.0) and the latest NCBI 
16S Microbial Database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/). The retrieved species (first 500 OTUs) had the fol-
lowing Blast parameters values (mean ±SDM) (see supplementary file): E-value (1.82*10–85 ± 3.59*10−85), total 
score (703.5 ± 103.6), percentage identity (94.9 ± 4.0) and mismatches (21.2 ± 16.3). A matrix of bacterial rela-
tive abundances was built at each taxon level (phylum, class, order, family, genus, species, OTUs) for subsequent 
multivariate statistical analyses. Measurements of α diversity (within sample diversity) such as observed_otus 
and the Shannon index were calculated at the OTU level using the SciKit-learn package v.0.4.1. Exploratory anal-
ysis of β-diversity (between-sample diversity) was calculated using the Yue & Clayton measure of dissimilarity 
(θ) calculated with Mothur and represented in Principal Coordinate Analyses (PCoA), while ‘Bray-Curtis’ met-
rics and the ‘complete linkage’ method were used for hierarchical clusterization analysis (HCA) by implement-
ing in-house scripts (Python v.2.7.11). To compare the microbiota taxa (at a mean relative abundance ≥ 0.5%) 
with demographic/clinical, NMR metabolomics, and ELISA datasets, a multivariate statistical Pearson correla-
tion analysis (with related P values) was performed with in-house Python scripts. Pearson correlation matrices 
(metric = Bray-Curtis, method = complete linkage) were also generated for intra- and interdataset (biop_cirr, 
biop_ctrl, feces_cirr, feces_ctrl, periph_blood, portal_blood, NMR metabolomics) cluster generation and the 
discovery of positive/negative correlation coefficients. The Mann-Whitney U and Kruskal-Wallis tests were 
employed to assess significance for pairwise or multiple comparisons, respectively, considering a P value less than 
or equal to 0.05 to be significant. Cross-correlation Pearson matrices for network analysis (metric = Bray-Curtis, 
method = complete linkage) were generated with in-house scripts (Python v.2.7.11) and visualized with Gephi 
v.0.9.164, considering OTUs having a mean relative abundance ≥ 0.5% and Pearson correlation coefficients 
−0.7 > r > 0.7, as previously reported12. A network analysis was performed on each dataset (biop_cirr, biop_ctrl, 
feces_cirr, feces_ctrl, periph_cirr, portal_cirr, NMR metabolomics, and merged 16S/NMR) using co-occurrences 
and visual representation as proposed by current guidelines65–69. The degree value, measuring the in/out number 
of edges linked to a node, and the betweenness centrality, measuring how often a node appears on the shortest 
paths between pairs of nodes in a network, were computed with Gephi v.0.9.1. Intranetwork communities (even 
for functional metagenomics communities, or FMCs) were retrieved using the Blondel community detection 
algorithm70 by means of randomized composition and edge weights, with a resolution equal to 171. Clustering 
validation (K-means++72, Birch73, affinity propagation74) and performance measures (Silhouette score75, 
Calinski-Harabasz score76) were employed to confirm intranetwork clustering into communities. To find corre-
lations among bacterial species, genes (KOrth, effect size ≥ 0.47), faecal metabolites and the presence/absence of 
hepatic encephalopathy (HE), we used logistic regression (−∞ < β < ∞), randomized lasso (0 < β < 1), elastic net 
(−∞ < β < ∞), and SGD classifier (−∞ < β < ∞) within the Python SciKit learn module77,78 on mean-centred 
and unit-variance dataframes. Odds ratios (ORs) were computed from logistic regression coefficients (β) with the 
formula OR = 2β79.

Metagenome prediction and pathway analysis.  A Biom file was generated with Mothur v.1.38.1 using 
the Greengenes database (v. 13_5_99) and used with PICRUSt 1.0.0 (Phylogenetic Investigation of Communities 
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by Reconstruction of Unobserved States)80 with default parameters, in order to predict the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) orthologues (KOrths) from 16S V3-V4 amplicon data. Specific KOrths related 
to significant NMR metabolites were bioinformatically assigned to each sample by means of the KEGG online 
website (http://www.genome.jp/kegg/ko.html) and Integrated Database Retrieval System (http://www.genome.
jp/dbget/), taking into account the Orthology and Reactions databases for a refined search. STAMP81 was then 
utilized, employing the two-sided Welch’s t-test and η2 (effect size), to detect specific KOrths with discriminant 
power (P ≤ 0.05) and functional relationships to the NMR data on the cirrhotic/control faecal samples. The mean 
relative KOrth abundances, normalized by sample number, were computed with in-house Python scripts, and 
those lower than a definite threshold (2*10−6% for phylum, 5*10−6% for genus) were excluded from the KOrth 
contribution graphical analysis. For peripheral and portal blood functional analysis, STAMP was used with the 
Kruskal-Wallis H test, Tukey-Kramer post hoc test (0.95), and Benjamini-Hochberg FDR.

Nuclear Magnetic Resonance (NMR).  Faecal samples from the controls and the cirrhotic patients were 
investigated using NMR spectroscopy to solve the spectra of complex mixtures and to recognize and quantify 
each component without chemical separation82. Briefly, NMR spectra of faecal samples were recorded at 27 °C on 
a Bruker AVANCE 600 spectrometer operating at a proton frequency of 600.13 MHz and equipped with a Bruker 
multinuclear z-gradient inverse probehead capable of producing gradients in the z-directions with a strength of 
55 G/cm. The 1H spectra were referenced to the methyl group signals of TSP (δ = 0.00 ppm) and were acquired 
by co-adding 64 transients with a recycle delay of 7S. The residual HDO signal was suppressed using a presatu-
ration. The experiment was carried out by using a 90° pulse of 11.75 μs and 32 K data points. PICRUSt spectra 
were transformed with 0.5 Hz line broadening and zero filling, size 65 K, manually phased, calibrated on the 
methyl group signals of TSP (δ = 0.00 ppm), and baseline corrected using the TOPSPIN v1.3 software. The spectra 
were prepared for statistical analysis by dividing the entire spectrum into small regions (0.02 ppm width), called 
“buckets”. Regions containing only background noise, water resonance, and the extreme regions of spectra were 
excluded from the buckets. The total integral (as the sum of all 418 buckets) for each spectrum was normalized 
to 1000. Moreover, 2D NMR experiments, namely, 1H-1H total correlation spectroscopy (TOCSY), and 1H-13C 
heteronuclear single quantum coherence (HSQC) were performed using the same experimental conditions previ-
ously reported82. The mixing time for 1H-1H TOCSY was 80 ms. The HSQC experiments were performed using a 
coupling constant 1JC-H of 150 Hz. A diffusion ordered spectroscopy (DOSY) experiment was performed using a 
bipolar LED sequence with a sine-shaped gradient of different intensities. The gradient strength was incremented 
in 32 steps from 2 to 95% of the maximum gradient strength (55 G/cm). The following experimental settings were 
used: diffusion time (Δ), 100 ms; gradient duration (δ/2), 1.1 ms, longitudinal eddy current delay, 25 ms, and gra-
dient pulse recovery time, 100 µs. After Fourier transformation and baseline correction, the diffusion dimension 
was processed by means of the Bruker TOPSPIN software (version 1.3). NMR spectra were bioinformatically ana-
lysed by in-house scripts written with Python v.2.7.11, employing probabilistic quotient normalization (PQN)83,84, 
baseline removal (rolling-ball) and peak shifting (binning) correction. A matrix of normalized and corrected 
NMR peak areas was generated for subsequent multivariate statistical analyses.

Data Availability.  All raw data are available at the SRA database under the accession code PRJNA471972.
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