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ABSTRACT
We study the potential of the kinematic Sunyaev–Zel’dovich (kSZ) effect as a probe for
cosmology, focusing on the pairwise method. The main challenge is disentangling the cosmo-
logically interesting mean pairwise velocity from the cluster optical depth and the associated
uncertainties on the baryonic physics in clusters. Furthermore, the pairwise kSZ signal might
be affected by internal cluster motions or correlations between velocity and optical depth.
We investigate these effects using the Magneticum cosmological hydrodynamical simulations,
one of the largest simulations of this kind performed to date. We produce thermal SZ and kSZ
maps with an area of � 1600 deg2, and the corresponding cluster catalogues with M500c �
3 × 1013 h−1 M� and z � 2. From these data sets, we calibrate a scaling relation between the
average Compton-y parameter and optical depth. We show that this relation can be used to
recover an accurate estimate of the mean pairwise velocity from the kSZ effect, and that this
effect can be used as an important probe of cosmology. We discuss the impact of theoretical
and observational systematic effects, and find that further work on feedback models is required
to interpret future high-precision measurements of the kSZ effect.

Key words: galaxies: clusters: general – cosmic background radiation – large-scale structure
of Universe.

1 I N T RO D U C T I O N

When passing through a cluster of galaxies, a small fraction of
cosmic microwave background (CMB) photons are scattered off
electrons in the hot, ionized intracluster medium (ICM). This pro-
cess, known as the Sunyaev–Zel’dovich (SZ) effect, can give rise to
both a change in the CMB blackbody temperature as well as a spec-
tral distortion (Sunyaev & Zeldovich 1970, 1972, 1980; see also
Birkinshaw 1999; Carlstrom, Holder & Reese 2002 for reviews).
While the underlying physical process, the scattering of CMB pho-
tons off moving electrons, is the same, the SZ signal is usually
broken down into two separate contributions: the thermal (tSZ) and
kinematic SZ (kSZ) effects.

The tSZ signal is caused by the high random velocities of the
electrons in the hot ICM, giving rise to a characteristic spectral dis-
tortion to the CMB blackbody. Over the past decade, the tSZ effect
has become a well-established tool for blind cluster finding in CMB
surveys (e.g. Bleem et al. 2015; Hasselfield et al. 2013; Planck Col-
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laboration 2016d), as well as for determining the thermal properties
of the ICM in stacked observations (e.g. Afshordi et al. 2007; Diego
& Partridge 2010; Plagge et al. 2010; Planck Collaboration 2011,
2013a,b; Hajian et al. 2013; Soergel et al. 2017; Saro et al. 2017;
Erler et al. 2017).

On the other hand, the kSZ effect is a result of the bulk motion
of the entire cluster, leading to a Doppler shift in the CMB temper-
ature while preserving its blackbody spectrum. This signal offers
significant potential for constraints on both astrophysics and cos-
mology (e.g. Rephaeli & Lahav 1991; Haehnelt & Tegmark 1996;
Diaferio, Sunyaev & Nusser 2000; Aghanim, Górski & Puget 2001;
Bhattacharya & Kosowsky 2007). Because of its small amplitude
(the ratio of kSZ to tSZ is v/c × (kBT/mec2)−1 � 0.1 for typical
clusters) and the lack of a distinctive frequency signature, the kSZ
effect has been significantly harder to detect than its thermal coun-
terpart. None the less, it can be extracted using a differential statistic
probing the mean relative momentum of the cluster sample (Hand
et al. 2012). Applying this pairwise estimator to CMB data from the
Atacama Cosmology Telescope (ACT, Swetz et al. 2011) and spec-
troscopic galaxy data from the Baryon Oscillation Spectroscopic
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Survey (BOSS, Ahn et al. 2012), Hand et al. (2012) obtained the
first detection of the kSZ effect.

Subsequently, Planck Collaboration (2016a) reported a detection
obtained with the same estimator. Soergel et al. (2016) demonstrated
that this technique can also be used with photometric galaxy cluster
catalogues, leading to a detection using data from the Dark Energy
Survey (DES, The Dark Energy Survey Collaboration 2005; Dark
Energy Survey Collaboration 2016) and the South Pole Telescope
(SPT, Lueker et al. 2010). In De Bernardis et al. (2017), the original
analysis by Hand et al. (2012) was updated to include more recent
ACT and BOSS data; they also detected the expected imprint of
redshift-space distortions on the kSZ signal (Sugiyama, Okumura
& Spergel 2017b). Recently Calafut, Bean & Yu (2017) and Li et al.
(2017) reported further measurements (albeit at low significance)
by combining Planck data with various Sloan Digital Sky Survey-
based galaxy and cluster samples, and BOSS data, respectively.
Furthermore, Sugiyama, Okumura & Spergel (2017a) obtained a
detection from Planck and BOSS data using a Fourier-space version
of the pairwise estimator.

There are also alternative statistical approaches: on the one hand,
it is possible to correlate a CMB map with a reconstructed velocity
field (Li et al. 2014); this has led to detections from both Planck and
ACT data (Planck Collaboration 2016a; Schaan et al. 2016). The
measurements of the Planck analysis were used by Ma et al. (2017)
to simultaneously constrain optical depth and velocity bias of the
used galaxy sample. Hill et al. (2016) and Ferraro et al. (2016) mea-
sured the kSZ imprint on the cross-correlation of a squared CMB
map with a tracer of the projected density field. Planck Collabora-
tion (2017) reported a detection based on an increased variance in
the observed CMB temperature at the positions of clusters. Finally,
there have also been kSZ measurements with high-resolution mul-
tifrequency observations of individual clusters (e.g. Sayers et al.
2013).

All these analyses, both with the pairwise and alternative tech-
niques, are close to the detection threshold, with reported signifi-
cances in the � 2σ–4σ range. However, with ongoing and upcoming
CMB and large-scale structure surveys, detection significances will
increase dramatically (e.g. Keisler & Schmidt 2013; Flender et al.
2016; Alonso et al. 2016; Ferraro et al. 2016). Therefore, the kSZ
effect is expected to mature rapidly into a cosmological probe. In
this paper, we test whether the kSZ signal can be used as an accu-
rate probe of cosmology. We focus on the pairwise statistic because
it is a robust detection method with a well-studied astrophysical
and cosmological sensitivity. In particular, previous works (Soergel
et al. 2016; De Bernardis et al. 2017; Flender, Nagai & McDonald
2017) have assumed the simple relation

TpkSZ(r, z) � τ
TCMB

c
v12(r, z) (1)

between the pairwise kSZ signal TpkSZ and the average optical depth
τ and mean pairwise velocity v12 of the cluster sample. In a fixed
cosmology, and given a prescription for the halo bias, v12(r, z) can
be calculated (e.g. Sheth et al. 2001). Therefore, τ can be determined
with a simple template fit; its variation with aperture or filtering scale
is then a probe of the gas fraction and density profile of the clusters
(Hernández-Monteagudo et al. 2015; Soergel et al. 2016; Sugiyama
et al. 2017a).

If, on the other hand, we want to obtain cosmological constraints
from the pairwise kSZ measurement, this argument needs to be
turned around: we require a prediction for the optical depth to
reconstruct an estimate of the mean pairwise velocity (Dolag &
Sunyaev 2013; Battaglia 2016; Flender et al. 2017). This measure-

ment then constrains the parameter combination Hf σ8
2 (Keisler & 

Schmidt 2013; Sugiyama et al. 2017a), where H is the Hubble pa-
rameter, f is the linear growth rate of density perturbations, and σ 8 is 
their amplitude averaged over a sphere of 8h−1 Mpc.1 Therefore, the 
pairwise kSZ signal can be used to constrain various aspects of cos-
mology, including dark energy or modified gravity (Bhattacharya 
& Kosowsky 2007, 2008; Keisler & Schmidt 2013; Mueller et al. 
2015b) or massive neutrinos (Mueller et al. 2015a).

In this paper, we test whether the assumption of equation (1) 
in fact holds at the precision required to extract cosmology from 
the high-significance pairwise kSZ measurements that are expected 
from future surveys. Internal cluster motions, bulk rotation, or rela-
tive velocities between dark matter and gas can introduce significant 
scatter in the relation between halo peculiar velocity and observed 
kSZ signal (Cooray & Chen 2002; Chluba & Mannheim 2002; 
Nagai, Kravtsov & Kosowsky 2003; Diaferio et al. 2005). These 
effects could also cause a bias to the observed pairwise kSZ sig-
nal (Dolag & Sunyaev 2013), for example if internal motions are 
correlated with the environment or bulk motion of a cluster. The 
approximation of equation (1) could also breakdown if there is a 
non-negligible degree of correlation between velocity and optical 
depth of haloes. We show how these two potential biases propagate 
into the observed pairwise kSZ signal in Section 3.5 below.

Modelling these effects requires hydrodynamical simulations 
with sufficient resolution to resolve internal cluster dynamics. Fur-
thermore, simulations of the pairwise kSZ signal require a large box
size to capture the large-scale motions of clusters on � 100 Mpc 
scales. The combination of these two requirements has made these 
simulations prohibitively expensive until recently. In this work, we 
use the Magneticum simulation suite,2 which contains amongst oth-
ers one of the largest hydrodynamical simulations performed to 
date. This enables us to create simulated cluster catalogues and tSZ 
and kSZ maps that are well matched to upcoming CMB and large-
scale structure surveys, both in terms of sky coverage and mass and 
redshift range. With these, we are able to test the potential of the 
pairwise kSZ signal as a cosmological probe in detail.

Our paper is structured as follows: in Section 2, we briefly review 
the theory of both SZ effects and describe the simulation and the 
production of cluster catalogues and SZ maps. Our analysis meth-
ods for predicting the optical depth and measuring the pairwise kSZ 
signal are detailed in Section 3. In Section 4, we show the resulting 
measurement of the mean pairwise velocity and compare it to the 
true value obtained directly from the halo catalogue. We further dis-
cuss the implications for the pairwise kSZ signal as a cosmological 
probe, before concluding in Section 5.

2  T H E O RY  A N D  S I M U L AT I O N S

2.1 SZ effects

2.1.1 Kinematic SZ

The kSZ effect preserves the blackbody spectrum of the CMB, but 
imparts a Doppler shift given by (Sunyaev & Zeldovich 1980)

�TkSZ

TCMB
= −σT

∫
dl ne(r)

r̂ · ve(r)

c
� −τ

vlos

c
, (2)

1When redshift-space effects are included, there are additional correc-
tions, and the pairwise kSZ signal needs to be decomposed into multipoles
(Sugiyama et al. 2017a).
2http://www.magneticum.org/

2

http://www.magneticum.org/


where ne and ve are the number density and peculiar velocity of 
electrons in a cluster at direction r̂ and σ T is the Thomson cross-
section. If internal motions of the cluster gas are negligible (which 
might not be a good approximation; see above), the kSZ signal 
reduces to the product of cluster line-of-sight velocity and the optical 
depth

τ =
∫

dl ne(r)σT . (3)

2.1.2 Thermal SZ

The tSZ effect, on the other hand, induces a spectral distortion of
the microwave background. In the non-relativistic limit it is given
by (Sunyaev & Zeldovich 1970)

�TtSZ

TCMB
= yf (x) with f (x) = x coth(x/2) − 4 . (4)

Here x = hν/(kBTCMB) is a dimensionless frequency, and the
Compton-y parameter is given by

Table 1. Redshift slices used for the creation of the light-cone.

Redshift slice ztab Width (cMpc) Depth (cMpc)

0.00 < z < 0.07 0.001 101 288
0.07 < z < 0.21 0.138 406 585
0.21 < z < 0.38 0.294 826 615
0.38 < z < 0.57 0.472 1264 636
0.57 < z < 0.78 0.673 1713 645
0.78 < z < 1.04 0.903 2171 664
1.04 < z < 1.32 1.181 2631 652
1.32 < z < 1.59 1.480 3042 521
1.59 < z < 1.84 1.709 3375 429
1.84 < z < 2.15 1.983 3689 469

2016; Pollina et al. 2017), making it the largest cosmological hy-
drodynamical simulation performed to date. Such a large box size
is essential for our purposes as the pairwise kSZ signal only van-
ishes at scales r � 300 Mpc; furthermore large cluster samples are
required to analyse the kSZ signal.

We identify haloes using a friends-of-friends algorithm with link-
ing length b= 0.16. For the identified haloes, we then compute their
properties – like spherical overdensity masses – using the SUBFIND

algorithm (Springel et al. 2001; Dolag et al. 2009); see Bocquet et al.
(2016) and the discussion therein for the obtained halo mass func-
tion. We note that even the smallest haloes, we consider (M500c �
3 × 1013 h−1 M�) are still resolved by � 2000 dark matter particles
and the associated number of gas and star particles.

2.3 SZ maps

Ideally, one would create the SZ maps by placing an observer at one
corner of the simulation box. One would then solve the lightcone
equation for every particle, interpolating their positions between the
snapshots (as e.g. in Flender et al. 2016). Only gas particles within
the light-cone would then contribute to the SZ map. This approach
is, however, not feasible for hydrodynamical simulations, as the gas
properties cannot be interpolated safely between snapshots (one
would miss shocks, for example). Furthermore, this problem will
be exacerbated if the stored snapshots are relatively far apart, as it is
necessarily the case for such a large simulation as the one considered
here. Producing the maps on the fly without relying on snapshots,
on the other hand, would add significantly to the computational
complexity of the simulation.

We therefore approximate the full light-cone by a series of red-
shift slices with �z � 0.2, making use of the SMAC code (Dolag
et al. 2005).3 For every slice, we take a region of appropriate width
and depth from the simulation box at the corresponding redshift ztab

(see Table 1). We then calculate the kSZ and tSZ signal from the
slices via equations (2) and (5) by projecting along the z-axis of the
simulation box. The maps for the full light-cone are then simply
given by the co-addition of the signals from the individual slices.4

We show the final kSZ and tSZ maps in Fig. 1.
The map size in this approach is determined by the size of the sim-

ulation box and the highest desired redshift. For zmax � 2, this yields
a map size of �40 deg, corresponding to an area of �1600 deg2.5

3http://wwwmpa.mpa-garching.mpg.de/ kdolag/Smac/
4We have made the simulated SZ maps and the cluster light-cone data
available at http://magneticum.org/data.html#SZ.
5Larger sky coverages can, of course, be achieved if zmax is reduced. In
addition, one could project the box along different axes; the duplication of
structures caused by this approach would be minimal.

kBTe(r)

y = 
∫

dl ne(r) σT 2 . (5)mec

While relativistic corrections are non-negligible for massive clus-
ters with electron temperature kBTe � 10 keV (e.g. Carlstrom et al. 
2002), these objects are rare. The bulk of the pairwise kSZ signal is 
coming from much lower masses, so neglecting relativistic correc-
tions to the tSZ signal does not introduce a significant bias into our 
analysis.

2.2 Magneticum simulations

Here, we only describe the simulations briefly; for a more detailed 
description we refer to previous work using these simulations (e.g. 
Dolag, Komatsu & Sunyaev 2016; Bocquet et al. 2016; Gupta et al. 
2017). The Magneticum simulations are a set of state-of-the-art, 
cosmological hydrodynamical simulations of different cosmologi-
cal volumes with different resolutions performed with an improved 
version of GADGET3 (Springel 2005; Beck et al. 2016). They follow 
a standard � cold dark matter (�CDM) cosmology with parame-
ters close to the best-fitting values from WMAP7 (Komatsu et al. 
2011), i.e. a matter density �m = 0.272, baryon density �b= 0.046, 
and a Hubble constant of H0 = 70.4 km s−1 Mpc−1. The spectral 
index of the primordial power spectrum is ns = 0.963, whereas 
the normalization of the present-day power spectrum is given by 
σ 8 = 0.809.

These simulations follow a wide range of physical processes 
(see Hirschmann et al. 2014; Teklu et al. 2015 for details) which 
are important for studying the formation of active galactic nuclei 
(AGNs), galaxies, and galaxy clusters. The simulation set covers 
a huge dynamical range following the same underlying treatment 
of the physical processes controlling galaxy formation, thereby al-
lowing to reproduce the properties of the large-scale, intragalactic 
medium, and ICM (Dolag, Komatsu & Sunyaev 2016; Gupta et al. 
2017; Remus, Dolag & Hoffmann 2017a), as well as the detailed 
properties of galaxies including morphological classifications and 
internal properties (Teklu et al. 2015; Remus et al. 2017b; Teklu
et al. 2017). This also includes the distribution of different metal 
species within galaxies and galaxy clusters (Dolag, Mevius & Re-
mus 2017), and the properties of the AGN population within the 
simulations (Hirschmann et al. 2014; Steinborn et al. 2016).

Here, we focus on the largest box (‘Box0’) with size 
L = 2688 h−1 Mpc and 2 × 45363 particles (see also Bocquet et al.
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Figure 1. SZ maps from the Magneticum simulations: we show on the left the kSZ signal, where we have used an arcsinh(..) colour mapping to increase the
dynamic range, while at the same time preserving the sign of the kSZ. For the tSZ signal in the right-hand panel, we show the logarithm of the Compton-y
parameter.

Figure 2. SZ power spectra: we show here the kSZ and tSZ power spectra
from the Magneticum simulation, where the error bars are estimated by split-
ting the map into 5 × 5 rectangular sub-patches. For the tSZ component, we
compare to the power spectrum of the Planck y-map (Planck Collaboration
2016c), the best-fitting tSZ template from the Planck likelihood (Planck
Collaboration 2016b), and to measurements of the tSZ power at 	 = 3000
from ACT (Dunkley et al. 2013) and SPT (George et al. 2015). It is worth
noting that the latter two measurements used tSZ templates that differ in
shape from our simulation results. This will likely have an impact on the
level of agreement between ACT/SPT and the simulated SZ power spec-
trum (see also fig. 6 in Dolag et al. 2016). In all cases, we have scaled the
measurements to a frequency of 143 GHz.

We note that this is sufficiently large to match the sky coverage of
current and future analyses correlating high-resolution CMB and
large-scale structure data. For reference, the effective overlapping
sky area between DES Year 1 and SPT is around 1200deg2 (Soergel
et al. 2016).

As part of the validation of our map pipeline, we compute the
power spectrum of the kSZ and tSZ map in the range 	 = [100,
10 000] and show them in Fig. 2. Dolag et al. (2016) have previously
compared SZ power spectra from the second-largest Magneticum
box (‘Box1’, L = 896 h−1 Mpc) to observations. They found the
predicted tSZ power spectrum to be in good agreement with Planck
(	� 1000), but higher than measured by ACT (Dunkley et al. 2013)

and SPT (George et al. 2015) on smaller scales. Here, we observe
the same for the largest Magneticum box. The kSZ power spectrum
at multipoles below a few hundred qualitatively matches with the
contribution expected from longitudinal momentum modes at large
scales (e.g. Park et al. 2016). At smaller scales only perpendicular
modes contribute significantly to the kSZ power spectrum (e.g. Jaffe
& Kamionkowski 1998).

It is worth noting that especially the high-	 tSZ power spectrum is
sensitive to the sub-grid physics of the simulation, and particularly
to the strength of AGN feedback (e.g. McCarthy et al. 2014). The
same holds true for the kSZ power spectrum; see e.g. Park, Alvarez
& Bond (2017) for a recent study using the Illustris simulation.
Given that we are focusing on a single sub-grid model for the
feedback processes here, there is inevitably a systematic uncertainty
associated with our predictions; see Section 4.3 below for a further
discussion.

2.4 Mass and redshift selection

For the main analysis, we select clusters by imposing a lower mass
limit of M500c > 3 × 1013 h−1 M�, leaving around 65 000 clusters
in our sample. During the post-processing of the simulation data,
we have also calculated a variety of other observationally relevant
quantities, such as X-ray luminosity, stellar mass, and integrated
SZ signal. The distribution of these quantities (all within R500c), and
how they correlate with each other, is shown in Fig. 3. It would
also be possible to select clusters by various mass proxies, such
as LX, M∗, or YSZ. Therefore we can, in principle, create mock
catalogues for clusters selected in the X-ray, optical or via their SZ
signature; in this case, the scatter in the mass-observable relations
would cause a Malmquist-type bias in the selected catalogue (see
Fig. 3). A detailed mock-up of observational cluster selection with
all its subtleties is, however, beyond the scope of this paper.

We further divide the clusters in redshift bins which coincide
with the redshift limits of the slices used for the SZ map produc-
tion. This is to ensure that there is no bias to the pairwise kSZ
signal on large scales. Such a bias could arise because our way of
slicing the simulation box does not preserve the large-scale corre-
lations between adjacent slices. The typical comoving thickness of
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Figure 3. Selection of the cluster properties calculated during the simula-
tion post-processing: on the diagonals, we show the distribution of M500

(h−1 M�), the integrated Compton-y parameter Y500 (Mpc2), X-ray lu-
minosity LX, 500 (1044erg s−1), and stellar mass M∗, 500 (h−1 M�). The
off-diagonal panels show the correlations between the respective quantities.
The lower mass limit was set to M500c > 3 × 1013 h−1 M�.

a redshift slice is � 600 Mpc, whereas the largest scales at which
we probe the pairwise kSZ signal are 300 Mpc. Given that these
scales only differ by a factor of two, the pairwise kSZ signal at the
largest scales would be biased low because by construction we have
removed the correlation between cluster pairs from different slices.
By only considering the signal in the appropriate redshift bins, we
preclude such a bias.

We focus on the five redshift bins between z= 0.21 and 1.32.
The excluded two lowest redshift bins (z < 0.21) have few clus-
ters because of their small volume. Similarly, the three highest
bins (z > 1.32) would provide poor statistics because clusters are
rare objects at these high redshifts. The remaining redshift range
0.21 < z< 1.32 is a good match to cluster samples expected from
current and future surveys and contains around 54 000 clusters with
M500c > 3 × 1013 h−1 M�. We show the mass distribution in these
five bins in Fig. 4.

3 ANALYSIS METHODS

3.1 Scaling relations for the optical depth

The existence of a scaling relation between optical depth and tSZ
signal was first pointed out by Diaferio et al. (2000), who found that
y ∝ τ 2 was a good empirical fit to the results of their N-body simu-
lations and semi-analytic modelling. Nagai et al. (2003) suggested
reconstructing τ from the observed tSZ signal and mean electron
temperature. However, this would require the density-weighted av-
erage Te, which is not observable. Simulating one cluster at high
resolution, they found that when using the emission-weighted tem-
perature as measured from X-ray observations (TX) instead, this
leads to a significant bias (� 20 per cent) on the recovered opti-
cal depth and therefore the peculiar velocity. Using a sample of
� 100 massive clusters from a cosmological box, Diaferio et al.

Figure 4. Mass distribution in the five redshift bins. Note that we plot the
absolute number of clusters and not their comoving number density. The
crossing of the distributions is a result of the combination of cluster growth
and volume.

(2005) obtained similar conclusions, with estimated biases on the
peculiar velocity ranging between 20 and 50 per cent. These results
were confirmed by Dolag & Sunyaev (2013) using more modern
simulations. Furthermore, they found that this bias also propagates
into the pairwise measurement: in their case, the predicted τ -values
had to be reduced by � 30 per cent to match the pairwise kSZ sig-
nal as measured from the same simulation. They also noted that,
especially in massive systems, internal motions can contribute a
non-negligible extra kSZ signal.

Battaglia (2016, hereafter B16) used hydrodynamical simulations
to calibrate a scaling relation between the optical depth and the
Compton-y parameter measured within the same aperture. This has
the obvious advantage that no additional observational data are
required: the tSZ signal and therefore y can be measured from the
same CMB survey as the kSZ. B16 found a tight scaling relation
with α ≡ dln τ /dln y � 0.5 for clusters with M � 1014 M� when
averaged within fixed apertures between 1.3 and 3.9 arcmin. De
Bernardis et al. (2017) compared the optical depth predicted from
the B16 scaling relation to their result obtained with a pairwise
kSZ template fit, finding acceptable agreement within the large
uncertainties of their measurement. Alonso et al. (2016) derived an
analytic model for the y–τ relation. Based on the pressure profile of
Arnaud et al. (2010) and the assumption of hydrostatic equilibrium
they predict α � 0.4 when averaged within R500. However, this
approach does not take into account non-thermal pressure support,
which can make up a non-negligible part of the total pressure in
galaxy clusters (e.g. Battaglia et al. 2012; Nelson, Lau & Nagai
2014).

On the other hand, Flender et al. (2017) calibrated a semi-analytic
model for τ (M) on a compilation of high-resolution X-ray observa-
tions of in total � 160 clusters. Here, the advantage is that one does
not have to rely on hydrodynamical simulations with uncertain feed-
back models. However, the calibrated model for the optical depth is
only accurate if the clusters with high-resolution data are represen-
tative of the full population, both in terms of mass and redshift range
and further properties (e.g. cool-core versus non-cool-core clusters).
Furthermore, the cluster mass is not a direct observable. When ap-
plying the τ (M) relation to a real cluster sample, any uncertainty in
the mass–observable relation or in the estimate of hydrostatic mass
bias will directly propagate into the prediction for τ .

With these various options to predict the optical depth at hand,
the question arises whether we can indeed compress the complex
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baryonic physics in galaxy clusters into a single number and use it
to extract cosmology from future high-significance kSZ detections.
Here, we therefore investigate whether a scaling relation for the
optical depth can be used to recover an unbiased estimate of the
mean pairwise velocity from future high-significance measurements
of the pairwise kSZ signal. A flowchart summarizing the analysis
steps involved in this comparison is given in Fig. 10 below. We
focus on the y–τ relation, but we expect that similar conclusions
can be drawn for alternative ways of predicting the optical depth.
When calibrating the y–τ relation, we extend the work of B16
to significantly lower masses and higher redshifts, and also point
out some important subtleties in the calibration of this relation.
Throughout, the guiding principle is to produce a relation that can
readily be applied to measurements of the pairwise kSZ signal from
real data.

3.2 Map filtering

The observationally relevant quantities are the cylindrical Compton-
y parameter and optical depth integrated within an aperture θA. We
measure these directly from the tSZ and kSZ maps produced from
the simulation output as described in Section 2.3. To facilitate the
application of our scaling relation to real (beam-convolved) CMB
data, we have convolved our kSZ and tSZ maps with a Gaussian
beam with FWHM (full width at half-maximum) = 1.2 arcmin,
which is representative of high-resolution CMB experiments like
ACT and SPT. A more detailed discussion of the impact of the
instrumental beam on the calibration of the scaling relation is given
in Appendix A.

We then estimate the SZ signal of a cluster centred at position n̂0

as

Tfilt(n̂0) =
∫

d2n̂ T (n̂)W (|n̂ − n̂0|) , (6)

where T (n̂) is the tSZ or kSZ map, respectively. The simplest pos-
sible choice is an average within the given aperture θA, that is

Wavg(θ ) = 1

πθ2
A

×
{

1, if θ < θA

0, if θ > θA
. (7)

While this approach is sufficient for simulated tSZ- or kSZ-only
maps, it is not well suited for the application to real CMB data where
the primary anisotropies on larger scales dominate the signal. For
the main analysis, we therefore use an aperture photometry (AP)
filter given by

WAP(θ ) = 1

πθ2
A

×
⎧⎨
⎩

1, if θ < θA

−1, if θA < θ <
√

2θA

0, if θ >
√

2θA

. (8)

The normalization constant ensures that this filter returns the aver-
age tSZ (or kSZ) signal within the aperture θA, but corrected for
contributions from larger scales.6

The convolution of equation (6) can be rewritten as a Fourier-
space filtering with Tfilt(�) = W̃ (	θA)T (�). There are analytic ex-
pressions for the Fourier transforms of these filters given by

W̃avg(	θA) = 2
	θA

J1(	θA) (9)

W̃AP(	θA) = 2

	θA

[
2J1(	θA) −

√
2J1(

√
2	θA)

]
, (10)

6The AP filter also efficiently removes scatter caused by the large-scale
features in the kSZ map (see Fig. 1), which are caused by structures in the
low-redshift slices of the simulation.

Figure 5. Angular size of the clusters: we show the distribution of θvir

for the five redshift bins considered in the analysis. We have also indicated
the instrumental resolution of various experiments. Specifically, we show
σbeam = FWHM/

√
8 ln 2 and have used FWHM = 7.3 arcmin for Planck

(143 GHz) and FWHM = 1.2 arcmin for SPT/ACT.

respectively. Here, 	 is the modulus of the 2D wavenumber �, and Jn

denotes a Bessel function of the first kind. As a consistency check
for our pipeline, we have implemented and compared both the direct
integration in pixel space and the Fourier-space filtering. While the
Fourier-space filtering is efficient in the case of a fixed aperture, it
becomes computationally more expensive if an adaptive aperture is
used.

The typical cluster size in our sample varies from θ500 � 4 arcmin
at M500c � 4 × 1014h−1 M� and z � 0.3 to θ500 � 0.7 arcmin at M500c

� 4 × 1013h−1 M� and z � 1.3. A fixed angular aperture therefore
probes different fractions of the cluster for a high-mass/low-z object
than for a low-mass/high-z one. Furthermore, the kSZ and tSZ
signals have a different dependence on the angular distance from the
cluster centre: the kSZ measures

∫
dl ne, whereas the tSZ measures∫

dl neTe, causing the latter to fall-off more quickly towards the
outskirts.

For both of these reasons, we use an adaptive aperture in our
analysis. In particular, we use the projected virial radius of the
cluster, θvir ≡ Rvir/dA, where dA is the angular diameter distance.
The virial radius is given by

Rvir = R500

(
500Mvir

�vir(z)M500

)1/3

, (11)

with �vir(z) = 18π2 + 82x̃ − 39x̃2, x̃ = �(z) − 1, and
�(z) = �m(1 + z)3/E2(z) (Bryan & Norman 1998). This
choice largely, but not entirely, avoids subtracting part of the
signal from the outskirts in the AP filtering (see Section 3.3 and
Appendix B below for a more detailed discussion). Furthermore,
using the virial radius as an aperture minimizes the scatter in the
relation between kSZ signal and halo bulk velocity (Nagai et al.
2003). We show the distribution of angular radii for the five redshift
bins in Fig. 5, and compare it to the angular resolution of Planck
and ground-based high-resolution CMB experiments (SPT and
ACT). While most clusters at z � 0.4 would be unresolved at the
Planck resolution, they are well resolved with SPT and ACT.

For real data, θvir will of course not readily be available. The
average radius of a cluster at a certain redshift can, however, be
predicted given a mass–observable relation (e.g. Saro et al. 2015;
Simet et al. 2017; Melchior et al. 2017). We have verified that our
results do not change significantly if we bin our clusters by their
angular size and use the average radius within a bin as an aperture. In
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Figure 6. Y–M relation: we show here the Y lc
500 values obtained by applying

the average filter with θA = θ500 to the y-map. For comparison, we show in
red the scaling relation fit by Gupta et al. (2017) using a smaller Magneticum
box and clusters with M500 > 1014 M� (Y lc

500 ∝ M1.55
500 , redshift dependence

C = 0.24). The shallower slope of the Y –M relation compared to the self-
similar expectation (Y ∝ M5/3; Kaiser 1986) is caused by the light-cone
contribution to the observed signal, which affects low-mass haloes more
strongly (see Gupta et al. 2017 for details).

other words, as long as the mass–observable relation is on average
unbiased, we do not require knowledge of the true angular size for
every object.

To summarise, our AP filter returns a model-independent estimate
for the average tSZ (kSZ) signal of any given cluster. We note that
a matched filter (e.g. Haehnelt & Tegmark 1996) could slightly in-
crease the signal-to-noise ratio (S/N), but it would require assuming
a specific cluster profile. Furthermore, tSZ and kSZ have different
angular dependencies (see equations 2–5), so a single matched filter
would not be optimal for both signals relevant to our analysis. For
these reasons, we use the more model-independent AP approach.

3.3 y and τ estimates

3.3.1 Measuring y

The observed tSZ signal receives a light-cone contribution from
other objects along the same line of sight. This includes both cor-
related structure (the so-called two-halo term) as well as chance
associations along the line of sight. By measuring the signal from
the map (and not from the simulation particle data), we automat-
ically take both of these contributions into account. As a test for
our pipeline, we first measure the integrated cylindrical tSZ sig-
nal within θ500 including the light-cone contribution, and compare
to the results that Gupta et al. (2017) obtained from a smaller
(L = 896h−1 Mpc) box of the Magneticum suite and for clusters
with M500 > 1014 M�. For this purpose, we apply the average fil-
ter from equation (7) to the Compton-y map produced from the
simulations. The integrated signal is then given by

Y lc
500 = 〈y〉θ500 × π(θ500dA)2, (12)

where we denote the Compton-y parameter averaged within an
aperture A as 〈y〉A (not to be confused with the average over the
cluster sample denoted by y). We find excellent agreement between
the two estimates, as shown in Fig. 6. We further note that the Y–
M scaling relation extends to masses well below 1014 M� (down
to where it was fitted), albeit with increasing scatter towards low
masses.

Figure 7. Determination of the optical depth. Here, we show the tight re-
lation between the AP-filtered TkSZ and vlos for one redshift slice and mass
bin. The optical depth is determined from the slope of the relation using
equation (2). For illustration purposes, we also show the same procedure
using the average signal of every cluster (i.e. without background subtrac-
tion), which leads to significantly larger scatter and a slightly steeper slope
(see Appendix B).

We then proceed to measure the signal within the virial radius,
〈y〉vir, using the AP filter of equation (8). We reiterate that the
same AP procedure can be applied to observational data, as the AP
also efficiently removes any fluctuations on scales larger than the
aperture (such as the primary CMB). Therefore, we use 〈y〉vir when
calibrating the y–τ relation.

3.3.2 Measuring τ

In B16, the optical depth of individual clusters was measured by
projecting the electron density in the entire 165h−1Mpc simulation
box along one axis, and then averaging within a fixed aperture.
This approach works well enough for a small box, as the light-
cone contribution is relatively small. However, in our case, it would
lead to a significant bias of the measured optical depth from other
structures along the same line of sight.

The kSZ signal at the position of individual clusters also receives
a light-cone contribution, but when averaging over many clusters the
latter averages to zero because of the velocity weighting in equation
(2). Also, in the context of the pairwise kSZ measurement, we do
not require the optical depth of any individual cluster, but only the
mean τ as a function of mass and redshift.

We therefore measure τ from the kSZ map as follows: (1) for
every cluster, we apply the adaptive AP filter with θA = θvir to the
kSZ map to measure 〈TkSZ〉vir. (2) In every redshift slice, we bin
the clusters in 10 logarithmically spaced mass bins (here one could
equally well bin by a mass proxy, or use a different number of bins).
(3) In every mass bin, we fit a linear relation between 〈TkSZ〉vir and
the cluster line-of sight velocity vlos. From the slope of this relation,
we determine 〈τ 〉vir and its associated uncertainty via equation (2);
an example for one redshift and mass bin is shown in Fig. 7. This
procedure, which is inspired by the velocity correlation method for
kSZ detections, by construction yields the correct effective optical
depth of the cluster sample in the respective bin. We note, however,
that it is not a priori clear that this is also the correct quantity to use
in equation (1) for the pairwise kSZ measurement: as mentioned
in Introduction above, internal gas motions or correlations between
velocity and optical depth could cause a bias.
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In principle, it is also possible to calculate the optical depth di-
rectly from the simulation particle data, as τ is directly related to
the cylindrical gas mass (see Appendix B). There are, however, a
number of difficulties with this approach: (1) for the large simula-
tion box and cluster sample considered here, it is computationally
challenging to compute the cylindrical gas mass for every cluster.
(2) In addition, this calculation requires an arbitrary cut-off of the
integration volume along the line of sight. Using too large, a region
would cause a bias from correlated structures along the same line of
sight, whereas too small a region misses the outskirts of the cluster.
(3) Including the effect of the beam convolution and AP on the
measured optical depth (a non-negligible effect; see Appendix A),
would require computing the projected gas density distribution of
every cluster from the simulation data, which exacerbates the com-
putational complexity. In our approach described above, on the other
hand, inclusion of the beam is trivial.

None the less, we have computed the cylindrical gas mass directly
from the simulation particle data for a representatively selected
subset of clusters in a smaller simulation box (see Appendix B for
details). We find that our AP estimate of the gas mass is on average
� 25 per cent lower than the true Mcyl

gas within the virial radius. This
difference arises because clusters are not perfect circles in projection
and also do not have a sharp edge at θvir. The AP estimate subtracts
contributions from θvir < θ <

√
2θvir from the signal within θvir,

thus reducing the measured gas mass. As expected, the difference
disappears when using the simple average-filter without background
subtraction instead. Therefore, this comparison also serves as a
consistency check for our measurement of the optical depth.

3.4 y–τ scaling relation

Following B16, we model the y–τ relation as

ln τ = ln τ 0 + α ln
y

y0
, (13)

where we have set the normalization constant to y0 = 10−6. This is
a typical value for the aperture-averaged Compton-y parameter for
the clusters in our sample, so that τ 0 is also representative for the
typical aperture-averaged optical depth.7

Using the binned τ estimates and the y computed in the same
bins, we then fit for α and ln τ 0 using weighted orthogonal distance
regression.8 We repeat this procedure in every redshift slice, and
show an example for two slices in Fig. 8. The resulting fit parameters
are reported in Table 2. We have also included the off-diagonal el-
ement of the correlation matrix Corr(α, ln τ 0) = Cα,ln τ0/(σασln τ0 ),
where Cα,ln τ0 is the parameter covariance obtained from the fit.

We note that while there is little change in the normalization
ln τ 0, the slope evolves from α � 0.4 at low z to α � 0.6 at
high z. It is instructive to compare these values to the expec-
tation assuming self-similarity. In this case, one would expect
y ∝ Y/θ2

vir ∝ M5/3/M2/3 = M for the average Compton-y param-
eter, and similarly τ ∝ T /θ2

vir ∝ M/M2/3 = M1/3 (with Y and T
being the Compton-y parameter and optical depth integrated over the
aperture). The self-similar expectation would therefore be τ ∝ y1/3.
At low redshift, we measure an exponent that is relatively close to
this value, while at higher redshifts, we find a significantly steeper
relation.

7We will omit the 〈.〉vir unless there is a potential ambiguity.
8https://docs.scipy.org/doc/scipy/reference/odr.html

Figure 8. y-τ scaling relation. We show here the scaling relation for two
redshift slices as an example. The square points with error bars denote the
individual mass bins of the respective slice; and the solid line is the scaling
relation fit to them. The position of the asterisk shows the average ȳ across
all clusters in the slice, and the corresponding τ predicted from the scaling
relation.

We have also computed the power-law exponent of the Y –M and
T − M relations; here, we use the integrated quantities to avoid
an impact of the changing angular diameter distance on the scaling
relations. We obtain Y∝M1.72 ± 0.01 andT ∝ M1.09±0.03 in the lowest
redshift bin, which is again close to the self-similar expectation (Y
∝ M5/3, T ∝ M). Both scaling relations steepen towards higher
redshift, but the trend is stronger in the T − M relation, leading
to the observed steepening in the τ -y relation. A possible physical
explanation for these trends might be the impact of AGN feedback
breaking self-similarity at higher redshifts.9

Provided a measurement of the average tSZ signal of a cluster
sample, equation (13) can now be used to predict the optical depth
within the same aperture. We compute the predictions for τ sep-
arately for all redshift bins in our sample and also report them in
Table 2. We will later use these values to convert our pairwise kSZ
measurement into an estimate for the mean pairwise velocity. Propa-
gating the statistical uncertainty from the fit and the y measurement,
the relative error on the predicted τ is given by

στ

τ
=
[
σ 2

ln τ0
+2 ln

(
y

y0

)
Cα,ln τ0 +

(
ln

y

y0

)2

σ 2
α +α2

(
σy

y

)2
]1/2

.

(14)

In the case of a perfectly clean y-map, the fractional uncertainty
is only 1–2 per cent (see Table 2), well below the systematic un-
certainty introduced by the sub-grid feedback models used in the
simulation (see Section 4.3 below for a further discussion). Applied
to real data, the uncertainty of the y-measurement would propagate
into the prediction for τ .

3.5 Pairwise estimator

We use the estimator for the mean pairwise velocity derived by
Ferreira et al. (1999),

v̂12(r) =
∑

i<j,r (r̂i · vi − r̂j · vj) cij∑
i<j,r c2

ij

. (15)

9We note, however, that the subtraction of signal from the cluster outskirts
during the AP filtering (see Appendix B) could also have a small impact on
the exponent of these relations.
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Table 2. Parameters of the τ -y scaling relation. We show here the results from the fit together with the mean y and predicted τ in every redshift bin. While the
first and fourth redshift slices show a somewhat high χ2 when fitting the scaling relation, the overall χ2 is acceptable [χ2

all−z = 47 for 40 degrees of freedom,
probability to exceed (PTE) of 21 per cent].

Parameter 0.21 < z < 0.38 0.38 < z < 0.57 0.57 < z < 0.78 0.78 < z < 1.04 1.04 < z < 1.32

α 0.39 ± 0.03 0.40 ± 0.01 0.46 ± 0.01 0.53 ± 0.02 0.59 ± 0.02
lnτ 0 −7.98 ± 0.02 −7.94 ± 0.01 −7.98 ± 0.01 −8.04 ± 0.01 −8.13 ± 0.01
Corr(α, lnτ 0) 0.22 0.10 −0.01 0.00 0.07
χ2/dof 2.06 0.42 0.66 1.74 0.98
y 8.22 × 10−7 8.94 × 10−7 9.22 × 10−7 8.69 × 10−7 7.67 × 10−7

Predicted τ 3.17 × 10−4 3.42 × 10−4 3.30 × 10−4 2.99 × 10−4 2.52 × 10−4

στ /τ 2 per cent 1 per cent 1 per cent 1 per cent 2 per cent

Here, the weights are given by

cij = r̂ij · r̂i + r̂j

2
with rij ≡ ri − rj , |rij| = r . (16)

As the kSZ effect provides a proxy for the line-of-sight velocity (see
equation 2), the same estimator can be applied to kSZ temperature
maps (Hand et al. 2012):

T̂pkSZ(r) = −
∑

i<j,r

[
T (n̂i) − T (n̂j)

]
cij∑

i<j,r c2
ij

. (17)

Here, we use the same AP-filtered kSZ temperatures as before.
Comparing the estimators for v12 and TpkSZ ( equations15 and 17),

it becomes apparent why equation (1) is an approximation whose
accuracy needs to be tested. Schematically, we have

− 〈T1 − T2〉c � TCMB

c

〈
τ1v

los
1 − τ2v

los
2

〉
c

(18)

� TCMB

c
τ
〈
vlos

1 − vlos
2

〉
c
= τ

TCMB

c
v12 ,

where we have used the shorthand 〈...〉c for the estimator of equa-
tions (15) and (17). The first approximate equality assumes that
internal cluster motions do not introduce a bias to the signal. The
second step assumes that there is no strong correlation between
optical depth and velocity.

We follow previous studies (e.g. Hand et al. 2012; Planck Col-
laboration 2016a) and subtract the mean temperature as a function
of redshift from the kSZ temperature data, i.e.

T corr
i = Ti − T (zi) = Ti −

∑
j Tj G(zi, zj, z)∑

j G(zi, zj, z)
, (19)

where G(zi, zj, z) = exp
[−0.5(zi − zj)2/2

z

]
. We set z = 0.01

to obtain a smoothly varying mean temperature. Furthermore, we
apply the same correction to the line-of-sight velocities in the halo
catalogue. This is necessary because otherwise large-scale velocity
modes within a finite slice through the simulation can cause a bias
to the signal on large scales. We then apply this estimator in 20
separation bins linearly spaced between 0 and 300 Mpc.

We further estimate the uncertainties on the pairwise kSZ mea-
surement by bootstrap resampling from the cluster catalogue. Hav-
ing created NBS bootstrap realizations by drawing with replacement
from the catalogue, the covariance matrix is given by

ĈBS
ij = (NBS − 1)−1

NBS∑
α=1

(T̂ α
i − T̄i) (T̂ α

j − T̄j) . (20)

T

Figure 9. Correlation matrix of the pairwise kSZ measurement in the red-
shift bin 0.57 < z < 0.78 as estimated from bootstrap resampling from the
catalogue (equation 20).

resamples; our covariance is stable against a further increase.10

When using the inverse covariance matrix C−1, we include the cor-
rection factor by Hartlap, Simon & Schneider (2007) to account for
the fact that (CBS)−1 is a biased estimator of C−1.

For visualization purposes, we further define the correlation ma-
trix Rij = Cij/

√
CiiCjj (no sum over repeated indices) and show

an example for the central redshift slice in Fig. 9. For separations
r � 100 Mpc, there are significant correlations between adjacent
separation bins.

3.6 Pairwise velocity

We convert the pairwise kSZ signal into an estimate of the mean
pairwise velocity, vkSZ

12 , via equation (1). Its covariance matrix is
given by

C
v12
ij = CBS

ij

(
c

τTCMB

)2

+
(στ

τ

)2
vkSZ

12,i v
kSZ
12,j (21)

where the second term propagates the uncertainty in the estimate
of τ . Because we are comparing within the same simulation, we do

10We have also computed the covariance from jackknife resamples and
find good agreement between the two estimates. For further discussion of
covariance estimates for the pairwise kSZ measurement, see Soergel et al.
(2016) and De Bernardis et al. (2017).

Here, ˆ
i
α is the pairwise signal in separation bin i and bootstrap real-

ization α, and  T̄i is its mean over all realizations. We use NBS = 
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not include the systematic uncertainty due to the sub-grid feedback
models (see Section 4.3 below) into στ /τ here. It should, however,
be included when using the scaling relation on real data.

We finally assess how well we recover the true pairwise velocity
as measured directly from the halo catalogue. Given a measured
data vector ŝ with inverse covariance matrix C−1

s and a theoretical
model sth, we define

χ2
a ≡ (ŝ − asth)T C−1

s (ŝ − asth) . (22)

The best-fitting value of a, its uncertainty, and the statistical signif-
icance are then given by

a = ŝT C−1
s sth

sT
thC

−1
s sth

, σ 2
a = 1

sT
thC

−1
s sth

,
S

N
= a

σa
, (23)

respectively. We have defined the amplitude parameter such that
a = 1 indicates perfect agreement between model and measure-
ment. Using v12 measured directly from the halo catalogue as the
theoretical template, we quantify the agreement between recovered
and true mean pairwise velocity via equation (23).11

4 RESULTS AND DISCUSSION

4.1 Pairwise kSZ versus pairwise velocity

The underlying assumption of using the pairwise kSZ signal as a
probe of cosmology is the simple multiplicative relation given by
equation (1). Having established the τ–y scaling relation and the
pairwise kSZ estimate, we can now test whether this assumption
holds at the high precision required by future surveys.

We compare the estimate of v12 from the pairwise kSZ signal
(equation 17) and the τ–y scaling relation to the result obtained
directly from the halo catalogue (equation 15). An overview of
the various steps involved in this comparison is given in Fig. 10.
Its results are shown in Fig. 11, where we have also included the
amplitude fits and statistical significance as computed from equation
(23). We find that the pairwise kSZ signal combined with the τ–y
scaling relation yields an accurate estimate of the true mean pairwise
velocity.

The amplitude of the recovered signal is consistent with
unity within the statistical uncertainties in all redshift bins. The
significances range between 21σ in the highest redshift bin
(1.04 < z < 1.32) and 35σ in the central bin (0.57 < z < 0.78). As
we have assumed a perfect kSZ map and a catalogue containing ev-
ery cluster with M500c> 3 × 1013 h−1 M�, these numbers are higher
than more elaborate forecasts for future experiments (e.g. Flender
et al. 2016). They do, however, highlight that there is a very signif-
icant pairwise kSZ signal, especially when pushing down towards
lower mass limits.

We further show the ratio between v12 recovered from the pair-
wise kSZ and the true values in Fig 12. In all redshift bins, and
at all scales r � 150 Mpc, the differences between the recovered
and true v12 are well below 10 per cent. Finally, the difference be-
tween true and recovered signal is also well below the statistical
uncertainties of the pairwise kSZ measurements. This demonstrates

11If instead we want to be agnostic about the expected shape of the sig-
nal, we define χ2

null ≡ ŝT C−1
s ŝ. We then convert the associated PTE of the

χ2-distribution with 20 degrees of freedom to a significance in standard
deviations via the standard normal distribution. In the limit of high S/N (as
it is the case for our kSZ-only measurement) the two approaches yield very
similar answers.

Figure 10. Flowchart summarizing the calibration and validation procedure
used in this work.

that the simple scaling of equation (1) is indeed sufficient, and that
internal cluster motions and/or correlations between velocity and
optical depth do not have a strong impact on the pairwise kSZ sig-
nal. Furthermore, it shows that the y–τ scaling relation can be used
to predict the correct optical depth to be used in equation (1). Over-
all, our findings demonstrate that future detections of the pairwise
kSZ signal can indeed be used as a probe of cosmology.

4.2 Observational prospects

In the above, we have shown that under idealised circumstances
the pairwise kSZ signal combined with the y–τ scaling relation can
yield an unbiased estimate of the mean pairwise velocity. Here, we
now discuss whether the inevitable non-idealities of real data affect
this conclusion.

4.2.1 Measurements from realistic CMB data

For measuring the average Compton-y parameter and the pairwise
kSZ signal, we have used tSZ- and kSZ-only maps, which are of
course not readily available from a real CMB experiment. Thanks to
its characteristic multifrequency signature, however, the tSZ signal
can be extracted from multifrequency CMB data relatively eas-
ily: one can either construct a y-map through appropriate linear
combination of different bands (e.g. Hill & Spergel 2014; Planck
Collaboration 2016c), or combine measurements at multiple fre-
quencies to estimate the tSZ signal of every cluster from a fit to
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Figure 11. Mean pairwise velocity: we show here vkSZ
12 (obtained from

the pairwise kSZ signal and the y–τ scaling relation) compared to the true
values computed directly from the halo catalogue. The error bars on vkSZ

12

Figure 12. Fractional difference between the mean pairwise velocity re-
covered from the pairwise kSZ signal and the true values. For reference,
the grey shaded band shows the fractional statistical uncertainty on vkSZ

12 as
a function of scale (averaged over all five redshift bins). The increase in
fractional error towards large separations is a result of v12 going towards
zero at large r.

the halo mass function and the pairwise nature of our signal, this
has only a very small impact on the overall S/N. We are still able to
reconstruct an unbiased estimate of the mean pairwise velocity from
this combined kSZ+tSZ map, but the significance is roughly halved:
we find a= {1.01 ± 0.09, 1.03 ± 0.06, 0.97 ± 0.06, 1.03 ± 0.07,
1.09 ± 0.09} in the five redshift slices. Other potential strategies
for precluding bias from tSZ and mitigating this loss of S/N are
creating a tSZ-free CMB map by appropriate linear combination,
or alternatively working at 217 GHz where the tSZ does not con-
tribute. Which of these strategies is going to recover most of the
signal depends on the detailed properties of both the CMB data and
the cluster catalogue.

We have also computed the pairwise kSZ signal from a simu-
lated 150 GHz map including kSZ and a Gaussian realization of
primary CMB, foregrounds, and instrumental noise. In particular,
we compute the CMB power spectrum with CAMB (Lewis, Challinor
& Lasenby 2000), model radio, and infrared galaxies according to
the best-fitting power spectra from George et al. (2015), and assume
an instrumental noise level of 7 μK arcmin (representative of Ad-
vACTPol, Calabrese et al. 2014). Again, we recover an unbiased
estimate of the mean pairwise velocity, but at significantly reduced
S/N: we find S/N � {2, 4, 7, 3, 2} for the five redshift bins. The
estimated S/N is, however, based on only � 1600 deg2, or a sky
coverage of � 4 per cent. For an experiment with larger sky cover-
age, these numbers should be rescaled by a factor of � (fsky/0.04)1/2.
In the case of AdvActPol × DESI (Levi et al. 2013), we therefore
expect an approximately three times higher S/N.

It is worth noting that at these low noise levels the power on cluster
scales is already becoming dominated by foregrounds (as opposed
to instrumental noise for ACT and SPT-SZ). Some of these fore-
grounds, most notably emission from radio and infrared galaxies,
are correlated with the kSZ signal because a fraction of these galax-
ies resides in group- or cluster-sized haloes. At frequencies below
217 GHz (where the tSZ contribution is negative), they will addi-
tionally anticorrelate with the tSZ signal, so that the contributions
from these contaminants mix and partially cancel in a non-trivial
way. Modelling them as Gaussian random fields with their measured
power spectra is therefore clearly insufficient. Instead, a population
of radio and infrared galaxies has to be extracted from the simulation

include the statistical errors of the scaling relation, but not the systematic 
uncertainty due to sub-grid feedback models (see Sections 3.4 and 4.3). The 
individual panels show the signal in the different redshift bins. The number 
of clusters in every bin is given in the respective panel; we have also included 
the best-fitting amplitude and statistical significance (see Section 3.6).

the spectral energy distribution (e.g. Soergel et al. 2016). There-
fore, we do not expect any bias to the measurement of y when real 
data including primary CMB, noise, and foregrounds are consid-
ered. The kSZ signal, on the other hand, is lacking this distinctive 
frequency signature, so it cannot be extracted with multifrequency 
cleaning techniques. Therefore, we have to rely on the differential 
structure of the pairwise estimator to remove all contributions that 
do not depend on cluster pair separation; this includes tSZ, pri-
mary CMB, instrumental noise, and foregrounds such as radio and 
infrared galaxies.

We have repeated our estimate of the pairwise kSZ signal from 
a combined kSZ+tSZ map at 150 GHz. To preclude any biases 
from the large tSZ signal of high-mass clusters (e.g. Flender 
et al. 2016; Soergel et al. 2016), here we remove all clusters with 
M500c > 1014 h−1 M� from the sample. Thanks to the steepness of

11



(e.g. Davé et al. 2010; Fontanot & Somerville 2011; Hirschmann
et al. 2014).

4.2.2 Other observational effects

Cluster properties: we have assumed that the angular size of every
cluster is known, which is of course not the case for real data.
However, as argued above, a mass–observable relation provides an
estimate for the average radius of clusters of a given mass and
redshift. We have tested that binning clusters by their angular size
and repeating the AP procedure with an aperture given by the binned
radii does not change our results significantly.

Miscentring: a further potential source of systematic uncertainty
are offsets between the cluster centre and the peak of the SZ sig-
nal, which affect both the average y and the measured pairwise
kSZ signal. If they are of astrophysical origin, as in the case of
unrelaxed or merging clusters, their effects are captured in our hy-
drodynamical simulations and therefore in our scaling relation. If,
on the other hand, they are caused by imperfections in the cluster
finding algorithm (such as misidentification of the central galaxy in
optical cluster finders), they introduce an additional bias, which we
estimate here.

The effect of miscentring can be expressed as a convolution of the
true kSZ (tSZ) signal profile with a miscentring distribution (e.g.
Johnston et al. 2007; Saro et al. 2015). Miscentring therefore broad-
ens the average cluster profile, similarly to the instrumental beam
(see Appendix A). For concreteness, we use the model calibrated
by Saro et al. (2015) using DES clusters and SPT data. It describes
the 2D offset distribution as a mixture of two normal distributions, a
well-centred population (p0= 0.63 and σ 0 = 0.07 θ500), and a pop-
ulation with worse centring (p1= 0.37 and σ 1 = 0.25 θ500). Using
the model of Appendix A, we estimate that this level of miscentring
reduces the average optical depth by a few per cent, broadly con-
sistent with the findings of Flender et al. (2016) and Soergel et al.
(2016).

We note that the observational calibration by Saro et al. (2015)
captures both astrophysical offsets and potential misidentifications
of the rightest cluster galaxy. Gupta et al. (2017) calibrate the same
model on hydrodynamical simulations and find similar results, sug-
gesting that most of the miscentring is of astrophysical origin. As
these offsets are already included in the calibration of our scal-
ing relation, using the full miscentring model in our estimate is
a conservative choice. Also, while Saro et al. (2015) calibrate the
model using mostly more massive clusters, Gupta et al. (2017) ob-
tain comparable results and no strong trend in mass down to M500c

� 1014 h−1 M�. If, on the other hand, the observational centring
properties are significantly worse for low-mass clusters or groups,
miscentring would have a larger effect.12

4 .3 SYSTEMATIC UNCERTAINTIES FROM
SUB-GRID PHYSICS

Our simulation includes prescriptions for the relevant feedback pro-
cesses, which allow to properly reproduce various observational
properties of the ICM (see Section 2.2). There are, however, still
a number of uncertainties associated with these sub-grid models
and their implementation. As extreme examples, various authors in
the past compared ICM properties of simulations with and without

12See also Calafut et al. (2017) for a detailed observational study of the
impact of miscentring on the pairwise kSZ signal.

AGN feedback (e.g. Puchwein, Sijacki & Springel 2008; Planelles
et al. 2013, 2014, 2017, B16). In particular, B16 repeated the cal-
ibration of the y–τ scaling relation for a simulation run with and
without AGN feedback, finding 6–8 per cent difference at their de-
fault aperture of 1.3 arcmin and a decreasing trend towards larger
apertures. This should be taken as a very conservative upper bound
for the systematic uncertainty on the y-τ relation.

Recent simulations for the first time match various observed
ICM properties: they are able to reproduce cool- and non-cool-core
clusters (Rasia et al. 2015; Planelles et al. 2017), as well as match-
ing the observed chemical footprint (Biffi et al. 2017; Dolag et al.
2017). Changing sub-grid models without losing the current level
of agreement between simulations and observations is no longer a
simple task, and is even more complicated for the large simulation
boxes that we consider. Therefore, we adopt the values of B16 as
a conservative estimate of the systematic uncertainty in the scaling
relation. In reality, however, these errors will likely be smaller con-
sidering variations in current simulations. As already noted in B16,
this systematic uncertainty is none the less larger than the statistical
errors on the scaling relation. The calibration of the y–τ relation
on simulations is therefore currently limited by the unknown real
uncertainty on the feedback prescriptions.

It is worth noting that currently the pairwise kSZ signal has only
been detected at the 4σ level (Soergel et al. 2016; De Bernardis
et al. 2017). This number is expected to increase significantly with
data from the second- and third-generation receivers at ACT and
SPT (e.g. Flender et al. 2016), so that eventually the statistical
uncertainties are going to become comparable to the current sys-
tematic uncertainty on the scaling relation. However, we expect
that future data and/or more advanced analyses going beyond the
power spectrum are also going to help with further improving the
feedback models in the simulations. For example, measurements
of the bispectrum of secondary CMB anisotropies (e.g. Crawford
et al. 2014; Coulton et al. 2017) improve our ability to separate
the SZ signal from foregrounds, and might also provide additional
constraints on feedback processes. Combining future tSZ and kSZ
data also enables improved constraints on cluster thermodynamics
and feedback efficiencies (Battaglia et al. 2017).

Another possibility to reduce the dependency of the SZ signal on
baryonic physics would be to excise the core of the clusters, similar
to what is done in X-ray analyses. This would, however, require data
with significantly higher resolution. This could be achieved from
interferometric observations, which are, however, observationally
much more expensive.

4 . 4 I M P L I C AT I O N S F O R OT H E R K S Z
DETECTI ON TECHNI QUES

In the above, we have focused exclusively on the real-space pairwise
estimator, as it is a robust technique that has already led to several
kSZ detections from different experiments. Here, we now discuss
the implications of our findings for other techniques.

The Fourier-space version of the pairwise estimator derived by
Sugiyama et al. (2017b, 2017a) captures the effect of redshift-space
distortions on the pairwise kSZ signal by decomposing the signal
into multipoles, with the dipole approximately corresponding to
the standard real-space measurement. In principle, the different k-
dependence of the dipole and octopole would allow to marginalize
over the amplitude (which depends on the optical depth). In practice,
however, the S/N is completely dominated by the dipole: Sugiyama
et al. (2017b) forecast S/N � 30 for the dipole from a survey volume
of 1h−3Gpc3 and for CMB-S4 (Abazajian et al. 2016) noise levels,

12



we have predicted the corresponding average τ̄ , and have used it to
convert TpkSZ(r) into v12(r). These estimates are then compared to
the ‘true’ values computed from the halo catalogue. We have found
excellent agreement between the reconstructed and true mean pair-
wise velocity. In other words, we have demonstrated that the pair-
wise kSZ signal yields an unbiased estimate of the cosmologically
interesting mean pairwise velocity, and that the degeneracy between
velocity and optical depth can be overcome by using the τ–y scaling
relation. Therefore, the pairwise kSZ effect can indeed be used as a
probe of cosmology.

The largest systematic uncertainty associated with our scaling
relation are the remaining variations between the sub-grid feed-
back models implemented in hydrodynamical simulations. While
obtaining realistic estimates for the errors in the calibration of the
scaling relation based on large cosmological volumes will be a ma-
jor task for the next generation of simulation campaigns, we have
adopted the 6–8 per cent from B16 as a conservative estimate of
such systematic uncertainty. Although this is well below the statis-
tical uncertainty of current (and expected near-future) pairwise kSZ
detections, eventually the measurements will reach this systematic
floor. Therefore, further work on the calibration of feedback models
is required to realize the full potential of the pairwise kSZ signal as
a cosmological probe.

AC K N OW L E D G E M E N T S

The authors would like to thank Nick Battaglia, Lindsey Bleem, Jens
Chluba, Samuel Flender, Nikhel Gupta, and Ewald Puchwein for
helpful discussions, and the anonymous referee for helpful sugges-
tions. BS acknowledges support from an Isaac Newton Studentship
at the University of Cambridge and from the Science and Technol-
ogy Facilities Council. AS is supported by the ERC-StG ‘Cluster-
sXCosmo’, grant agreement 716762. KD acknowledges the support
of the DFG Cluster of Excellence ‘Origin and Structure of the Uni-
verse’ and the Transregio programme TR33 ‘The Dark Universe’.

The calculations were carried out at the Leibniz Supercomputer
Center (LRZ) under the project pr86re. We are especially grateful
for the support by M. Petkova through the Computational Center
for Particle and Astrophysics and the support by N. Hammer at
LRZ when carrying out the Box0 simulation within the Extreme
Scale-Out Phase on the new SuperMUC Haswell extension system.

BS further thanks the developers of the CYTHON programming
language (Dalcin et al. 2010, http://cython.org/), which was used
extensively during the work on this paper. Furthermore, the use
of the following software packages is acknowledged: ASTROPY, a
community-developed core PYTHON package for Astronomy (As-
tropy Collaboration 2013, http://www.astropy.org/); FLIPPER (Das,
Hajian & Spergel 2009, https://github.com/sudeepdas/flipper) and
COSMOLOPY (http://roban.github.io/CosmoloPy).

REFERENCES

Abazajian K. N. et al., 2016, preprint (arXiv:1610.02743)
Afshordi N., Lin Y.-T., Nagai D., Sanderson A. J. R., 2007, MNRAS, 378,

293
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A P P E N D I X  A :  I M PAC T  O F  T H E  
I N S T RU M E N TA L  B E A M

In this appendix, we discuss the impact of the instrumental beam on 
the AP estimates of the optical depth. Intuitively, the instrumental 
beam broadens the cluster profile, and therefore moves part of the 
signal from the inner AP disc to the outer ring. As the latter is used 
for the background subtraction, the beam broadening leads to part 
of the signal being subtracted as well. Here, we develop a simplistic 
model to estimate the magnitude of this effect.

If the projected electron density profile of a cluster is given by 
ne(θ ), its average optical depth after beam convolution and AP 
filtering scales as (Sugiyama et al. 2017a)

〈τ 〉A ∝
∫

d2�

(2π)2
W̃AP(	θA)n(�)B(�), (A1)

where n(�) and B(�) are the Fourier transforms of the projected
electron density and beam profile, respectively. The relative impact
of the instrumental beam on the estimate is then given by the ratio
〈τ 〉A/〈τ 〉no−beam

A , where for 〈τ 〉no−beam
A we simply set B(�) = 1 in

equation (A1).
For simplicity, we assume that ne(θ ) is given by a Gaussian profile

with σ = 0.5 × θvir. This choice predicts that around 15 per cent of
the gas mass are outside θvir, which is broadly in agreement with our
findings in Appendix B. As in our main analysis, we use an aperture
of θA = θvir, and assume an instrumental beam with FWHM = 1.2
arcmin (representative of high-resolution CMB experiments like
ACT and SPT). We note that in this simplistic picture the result
only depends on the ratio between beam FWHM and θvir.

Using θvir= 2 arcmin, which corresponds to the median projected
virial radius of our central redshift bin, we find

〈τ 〉A/〈τ 〉no−beam
A � 0.85. (A2)

We finally note that the same formalism can also be applied to
estimate the impact of miscentring (see Section 4.2.2). In this case,
an extra factor fmiscent(�) is included in the integral of equation (A1),
where fmiscent(�) is the Fourier transform of the miscentring distri-
bution. The ratio 〈τ 〉A/〈τ 〉no−miscent

A then gives the relative impact of
miscentring, where as before we set fmiscent(�) = 1 when computing
〈τ 〉no−miscent

A .

A P P E N D I X B : R E L AT I O N O F T H E O P T I C A L
D E P T H TO T H E T RU E G A S M A S S

In the main analysis, our discussion of the optical depth has focused
on using it in the context of pairwise kSZ measurements. Here, we
now investigate if the average optical depth can also be used as a
probe of the true gas mass of the clusters.

The average optical depth within an aperture θA relates to the
cylindrical gas mass as

M
cyl
gas,A =

∫
cyl

dV ρgas = d2
Aμemp

σT

∫
θA

d�

∫
dl neσT (B1)

= μemp

σT
π (θAdA)2 〈τ 〉A ,

where μe � 1.14 is the mean particle weight per electron (assuming
primordial abundances) and mp is the proton mass. This relation
provides us with a way of comparing our measurement of the op-
tical depth from the main analysis to the ‘true’ gas mass in the
simulations.

However, computing Mcyl
gas for all clusters in our large simulation

box and for various redshifts and apertures would be computation-
ally unfeasible. Therefore, we perform this comparison using the
second-largest Magneticum simulation box. This ‘Box1’ has a side
length of L = 896 h−1 Mpc and the same resolution as the larger
‘Box0’ that we used for the main analysis. Cluster catalogues and
SZ maps from this box were produced in the same way as for the
large box (albeit with thinner redshift slices), and have already been
presented in Saro et al. (2014), Dolag et al. (2016), and Gupta et al.
(2017).

To preclude any bias from the beam convolution (see Ap-
pendix A), we perform this comparison using the unconvolved
maps. Furthermore, we perform this comparison using a repre-

Figure B1. Estimates of the gas mass from the averaged optical depth. We
compare here M

cyl
gas as estimated from the average- and AP-filtered kSZ maps

to the ‘true’ value obtained directly from the simulation particle data. While
the main comparison is performed without convolving with the instrumental
beam, we also show the effect of including the beam for the AP filter (see
Appendix A).

If we use θvir= 1 arcmin (4 arcmin) instead, the resulting ratios are 
0.52 and 0.96, respectively. We therefore see that depending on the 
angular size of the cluster (and therefore the aperture) the impact of 
the beam on the AP estimate can be significant.

In Appendix B, below we convert our estimates of 〈τ 〉A into a gas 
mass and compare to the ‘true’ value measured from the simulation 
particle data. As part of this comparison, we also quantify the impact 
of the beam on the AP estimates directly from the simulations, see 
Fig. B1. Here, the beam convolution reduces the AP estimate by 
11 per cent (5 per cent) in the lowest (highest) mass bin with θvir � 2 
arcmin (4 arcmin), broadly in agreement with the simplistic model 
we derived above.

When estimating the average Compton-y parameter within an 
aperture we simply replace ne(θ ) in equation (A1) by ne(θ )T(θ ). 
Crucially, the angular dependences of tSZ and kSZ are different: 
the tSZ signal is more peaked towards the centre. Therefore, the 
relative effect of the beam on the two components as calculated 
above is different. This could therefore have an impact on the slope 
of the τ –y relation.

In our main analysis, we have convolved the SZ maps with an 
instrumental beam with FWHM = 1.2 arcmin before estimating the 
scaling relation. Repeating the calculation above with FWHM = 1 
and 1.4 arcmin, we have tested that a small mismatch between the 
assumed and real beam size only affects the results at the level of 
a few per cent, which is below the systematic uncertainty given by 
the sub-grid feedback models (see Section 4.3).
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sentatively chosen subset of clusters (15 mass bins and 5 redshift
bins, and 100 randomly chosen clusters per bin). For these objects,
we calculate Mcyl

gas for various apertures directly from the simulation
particle data, including particles with up to 10 h−1 Mpc line-of-sight
distance from the cluster centre. We then compare this direct integra-
tion to an estimate of the gas mass obtained from our measurements
of τ via equation (B1), both for the average and the AP filter.

We note that the AP filter subtracts contributions in an annulus
of θA < θ <

√
2θA from the signal within a disc with θ < θA. As

clusters are not perfect circles in projection and do not have a sharp
edge at any given radius, the AP filter will by construction yield an
estimate of the gas mass that is biased low. The level of bias will be
largest for small apertures (θA � θ500) and should decrease when
including more of the cluster outskirts (θA � θvir). On the other
hand, the gas mass derived from the average-filtered τ should be a
much better estimator of the true cylindrical gas mass.

We show in Fig. B1, an example of the comparison for z � 0.6
and θA = θvir. Here, we indeed observe that the AP-estimate of
Mcyl

gas is � 25 per cent lower than the true value, while the average
filter yields the correct estimate of Mcyl

gas. We have repeated this
test for various apertures between θ500 and 1.5 × θvir and obtained
the expected trend of decreasing bias of the AP estimate at larger
apertures. Furthermore, we have repeated these comparisons for the
other redshift bins and have obtained comparable results.

These comparisons also demonstrate that the way of measuring
τ that we describe in Section 3.3 above indeed yields the expected
results.
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