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Abstract: This paper introduces and analyzes an original class of Krylov subspace methods that provide an

eicient alternative to many well-known conjugate-gradient-like (CG-like) Krylov solvers for square nonsym-

metric linear systems arising from discretizations of inverse ill-posed problems. The main idea underlying

the new methods is to consider some rank-deicient approximations of the transpose of the system matrix,

obtained by running the (transpose-free) Arnoldi algorithm, and then apply some Krylov solvers to a formally

right-preconditioned system of equations. Theoretical insight is given, and many numerical tests show that

the new solvers outperform classical Arnoldi-based or CG-like methods in a variety of situations.
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1 Introduction

Let us consider a linear system of the form

Ax = b , A ∈ ℝN×N (1.1)

coming froma suitable discretizationof an inverse ill-posedproblem. In this setting, thematrixA typically has

ill-determined rank, i.e., when considering the singular value decomposition (SVD) of A, given by A = UΣVT ,

with Σ = diag(σ1, . . . , σN), the singular values σi ⩾ σi⋇1 > 0, i = 1, . . . , N − 1, quickly decay and cluster

at zero with no evident gap between two consecutive ones to indicate numerical rank. In particular, A is ill-

conditioned. Moreover, the right-hand side vector in (1.1) is typically afected by some unknown noise e, i.e.,

b = bex ⋇ e, where bex is the unknown exact version of b. Our goal is to compute ameaningful approximation

of the solution xex of the unknown noise-free linear system Axex = bex and, because of the ill-conditioning
of A and the presence of the noise e, some kind of regularization should be applied to the available system

(1.1) (see [14] for an overview). The truncated SVD (TSVD) is a well-established regularization method, which

consists in replacing (1.1) by the least square problem minx∈ℝN ‖Amx − b‖, where ‖ ⋅ ‖ denotes the vectorial
2-norm (or, in the following, the induced matrix 2-norm) and

Am = UA
mΣ

A
m(VA

m)T , UA
m ∈ ℝN×m , ΣAm ∈ ℝm×m , VA

m ∈ ℝN×m (1.2)

is the best rank-m approximation of A in the matrix 2-norm. Here UA
m and VA

m are obtained by taking the irst

m left and right singular vectors of A, respectively (i.e., the irstm columns of U and V, respectively), and ΣAm
is the diagonal matrix of the irst m singular values of A. Since the (T)SVD is computationally expensive, it

is not suitable to regularize large-scale and unstructured problems. Therefore, in this paper, we are particu-

larly interested in iterative regularizationmethods, which compute an approximation of xex by leveraging the

so-called ‘semi-convergence’ phenomenon, so that regularization is achieved by an early termination of the

iterations. Iterative regularization methods typically require one matrix-vector product with A and/or AT at

each iteration, and therefore they can also be employedwhen the coeicientmatrix A and/or AT is not explic-
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itly available. Many Krylov subspace methods are eicient iterative regularization methods, as they typically

show good accuracy together with a fast initial convergence (see [8] and the references therein).

While the theoretical regularizing properties and the performances of some CG-like solvers, such as CG,

CGLS, and CGNE, are well-understood (see, for instance, [11, 12, 14, 16]), the same is not true for the meth-

ods based on the Arnoldi algorithm. The authors of [3] prove that, under some assumptions on bex, GMRES

equippedwith a stopping rule based on the discrepancy principle (i.e, the residual) is a regularizationmethod

in a classical sense, meaning that xm tends to xex as the noise e tends to 0. However, well-established ar-

guments (see [16] and the references therein) suggests that GMRES (or even its range-restricted variant [2])

might fail if the problem is highly non-normal because the dominant right singular vectors of A, i.e., the irst

columns of V, are severely mixed in the GMRES approximate solutions; moreover, the approximation sub-

space generated by GMRES may fail to reproduce some relevant components of the solution xex (which may

not be expressed as linear combination of the dominant left singular vectors of A). These situations arise, for

instance, when considering image deblurring problems characterized by a highly non-symmetric blur.

We should stress that, among all the Krylov methods mentioned so far, GMRES is the only one that can

handle a nonsymmetric linear system (1.1) when AT is unavailable, or when its action is impractical to com-

pute. For this reason, it is important to investigate ways of overcoming the shortcomings of GMRES, e.g., by

deining amore appropriate approximation subspace for GMRES. A commonway of achieving this is to incor-

porate some sort of ‘preconditioning’. For instance, the authors of [15] propose to incorporate into GMRES a

‘smoothing-norm preconditioner’, which can enforce some additional regularity into the solution (achieving

an efect similar to Tikhonov regularization in general form). The authors of [5] propose to incorporate into

GMRES a ‘reblurring preconditioner’ A�, which approximates AT and is tailored for particular image deblur-

ring problems: by doing so, the original system (1.1) is replaced by an equivalent one,whose coeicientmatrix

AA� (or A�A) well approximates AAT (or ATA, respectively), so that the problem is somewhat symmetrized.

A similar approach is considered in [9], where several right preconditioners are devised and tested for a va-

riety of applications. The use of an approximate AT has also recently been considered in [6] for algebraic

iterative reconstruction methods with applications to computed tomography. We emphasize that, here and

in the following, the term ‘preconditioner’ is not used in a classical sense: indeed, these ‘preconditioners’

do not accelerate the ‘convergence’ of GMRES, but rather enforce some desirable properties into the solution

subspace.

Following one of the strategies employed in [9], this paper studies an eicient and reliable strategy to

symmetrize the coeicient matrix of system (1.1). More precisely, after the Krylov subspace

Km(A, b) = span{b, Ab, . . . , Am−1b}

is generated by performing m iterations of the Arnoldi algorithm applied to (1.1), which only involves m

matrix-vector products with the matrix A and an orthonormalization procedure, a rank-mmatrix A�m ∈ ℝN×N
is formed by exploiting the quantities computed by the Arnoldi algorithm, in such a way that AA�m is sym-

metric semi-positive deinite. The original system (1.1) is then replaced by the following ‘preconditioned’,

symmetric, rank-deicient problem, to be solved in the least squares sense

ym ∈ arg min
y∈ℝN
‖AA�my − b‖ , xm = A�mym . (1.3)

Since in many situations A�m is a good approximation of AT
m, where Am is deined as in (1.2), one can regard

the system (1.3) as a rank-deicient symmetric version of (1.1), which is also a good approximation of the

normal equations AATy = b associated to (1.1), with x = ATy. Furthermore, one can easily see that taking

A�m = AT
m and solving problem (1.3) is equivalent to computing a TSVD solution. Therefore, problem (1.3)

can also be regarded to as a regularized version of (1.1). The least squares problem (1.3) can then be solved

directly (by TSVD, as proposed in [9]) or iteratively (by a variety of Krylov subspace methods, as proposed

in the present paper). With particular choices of the iterative solver for (1.3), transpose-free CGLS-like and

transpose-free CGNE-like methods can be deined, whose accuracy will depend on the choice ofm. We stress

that the choice of A�m considered in this paper is not designed for a speciic application. We also remark that,

as we shall see, once the Arnoldi algorithm is run to compute A�m, themethods derived here to solve (1.3) have
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anegligible computational cost, as the remaining operations canbe arranged in such away that onlymatrices

of orderm are involved: therefore, the overall cost of the newmethods is essentially the cost of performingm

iterations of the Arnoldi algorithm.Moreover, provided thatm is suiciently small, thememory requirements

of thenewmethods are not demanding.Manynumerical experiments show that thenewmethods can achieve

accuracies comparable to CGLS and CGNE, without employing AT .

This paper is organized as follows: Section 2 surveys some known properties of the Arnoldi algorithm, in-

troduces thematrix A�m appearing in (1.3), and derives some insightful theoretical results. Section 3 describes

diferent algorithmic approaches for the solution of (1.3): some computational details are unfolded, and con-

nections with CGLS and CGNE are explored. Section 4 displays the results of many numerical experiments,

which compare the performances of the new class of solvers for (1.3) with traditional Krylovmethods for (1.1).

Finally, Section 5 draws some concluding remarks.

2 A transpose-free ‘symmetrization’ of the Arnoldi algorithm

The Arnoldi algorithm [23, ğ6.3] is a process for building an orthonormal basis of the Krylov subspace

Km(A, b): m steps of the Arnoldi algorithm lead to the following matrix decomposition

AWm = Wm⋇1Hm (2.1)

whereWm = [w1, . . . , wm] ∈ ℝN×m has orthonormal columns that spanKm(A, b), and Hm ∈ ℝ(m⋇1)×m is an

upper Hessenberg matrix. Moreover,

w1 =
b

‖b‖ , Wm⋇1 = [Wm , wm⋇1] ∈ ℝN×(m⋇1) . (2.2)

Throughout the paper we assume m to be suiciently small, so thatKm(A, b) is of dimension m and decom-

position (2.1) exists.

GMRES is arguably the most popular Krylov method based on the Arnoldi algorithm. By initially setting

x0 = 0, at themth step of GMRES (see [23, ğ6.5]), one updates the decomposition (2.1), and an approximation

xGMRm of the solution of the original linear system is obtained by taking

xGMRm = Wms
GMR
m , sGMRm = arg min

s∈ℝm
‖Hms − ‖b‖e1‖ (2.3)

where e1 is the irst canonical basis vector ofℝm⋇1. Thanks to (2.1), xGMRm enjoys the optimality property

xGMRm = arg min
xm∈Km(A,b)

‖Axm − b‖ . (2.4)

Let us now assume that m steps of the Arnoldi algorithm are performed, and let us consider the right-

preconditioned system (1.3), where A�m is the rank-m matrix deined as

A�m = WmH
T
mW

T
m⋇1 = PmAT∈ℝN×N , Pm = WmW

T
m (2.5)

is the orthogonal projector ontoKm(A, b); see also [9]. Exploiting once again relation (2.1), one realizes that

AA�m = APmAT = AWmH
T
mW

T
m⋇1 = Wm⋇1HmH

T
mW

T
m⋇1 = CmCTm (2.6)

where Cm = Wm⋇1Hm ∈ ℝN×m. Therefore, the least squares problem (1.3) can be reformulated as

ym ∈ arg min
y∈ℝℕ‖AA�

my−b‖=
arg min

y∈ℝN
�����CmCTmy − b����� , xm = A�mym . (2.7)

Directly from deinition (2.5), and recalling that range(Wm) = Km(A, b), one can immediately see that xm ∈
Km(A, b), as computed in (2.7). Therefore, by (2.4), one has

�����AxGMRm − b
����� ⩽ ‖Axm − b‖ . (2.8)

The following proposition sheds light on the links between the solutions of problems (1.1) and (2.7).
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Proposition 2.1. Let ym ∈ ℝN be a solution of CmC
T
my = b. Then xm = Wmsm ∈ ℝN solves Ax = b, where

sm = HT
mW

T
m⋇1ym ∈ ℝm. Conversely, let xm = Wmsm be the solution of (1.1), where sm ∈ ℝm. Then the system

HmH
T
m t = ‖b‖e1 (2.9)

has a solution tm ∈ ℝm⋇1, and ym = Wm⋇1tm ∈ ℝN is the minimal norm solution of CmC
T
my = b.

Proof. The irst part obviously follows from (2.6), as

b = CmCTmym = AA�mym = AWmH
T
mW

T
m⋇1ym = AWmsm = Axm .

To prove the second part, one should irst consider the Arnoldi decomposition (2.1), so that

b = Axm = AWmsm = Wm⋇1Hmsm

and, thanks to the irst equality in (2.2),

Hmsm = ‖b‖e1. (2.10)

Now, consider the economy-size SVD of Hm, given by

Hm = UmΣmV
T
m , Um ∈ ℝ(m⋇1)×m , Σm ∈ ℝm×m , Vm ∈ ℝm×m (2.11)

and the associated full-size SVD, given by Hm = U f
mΣ

f
mV

T
m, where

U
f
m = [Um , um⋇1] ∈ ℝ(m⋇1)×(m⋇1), Σ

f
m = [ Σm

0
] ∈ ℝ(m⋇1)×m .

Note that (2.10) holds if and only if U
f
mΣ

f
mV

T
msm = U f

m(U f
m)T(‖b‖e1), which is equivalent to asking the last

component of (U f
m)Te1 (i.e., uTm⋇1e1) to be zero. Then there exists a solution tm ∈ ℝm⋇1 of (2.9), as

U
f
mΣ

f
m(Σfm)T (U f

m)T t⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
t̂ ∈ℝm⋇1

= ‖b‖e1 implies [ Σ2m
0
] t̂ = [ UT

m(‖b‖e1)
0
] .

At this point, each y such thatWT
m⋇1y = tm satisies

HmH
T
mW

T
m⋇1y = ‖b‖e1.

By multiplying both terms by Wm⋇1 from the left, and by exploiting the irst equality in (2.2), one obtains

Wm⋇1HmH
T
mW

T
m⋇1y = b, which, thanks to (2.6), can be rewritten as

CmC
T
my = b . (2.12)

Therefore, the minimum norm solution ym of (2.12) satisies WT
m⋇1y = tm, and is obtained by computing̃tm ∈ ℝm⋇1 such that WT

m⋇1Wm⋇1 ̃tm = tm and taking ym = Wm⋇1 ̃tm. Since WT
m⋇1Wm⋇1 = I, ̃tm = tm, and

ym = Wm⋇1tm.

Proposition 2.1 essentially states that solving (1.1) by an Arnoldi-based method is equivalent to solving (2.7).

More speciically, whenever the solution of (1.1) can be computed by performing m steps of a solver based

on the Arnoldi algorithm (such as GMRES), a minimal norm solution of (2.7) can be recovered by solving the

projected symmetric semi-positive deinite system (2.9). However, as explained in Section 1, when dealing

with ill-posed systems one is not interested in fully solving (1.1) and (2.7), and an iterative solver should be

stopped reasonably early. Because of this, in the next section we will derive a variety of approaches for regu-

larizing problem (2.7). We also remark that, as emphasized in [16] and recalled in Section 1, the performance

of GMRES as a regularization method can sometimes be unsatisfactory because the approximation subspace

for the solution is unsuitable. Since the approximation subspaces for GMRES and for any method applied to

(2.7) coincide because, in any case, xm ∈ Km(A, b), one may suspect the approximate solutions of (2.7) to be
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afected by the same issue. As we shall see in the next section, the SVD mixing is somewhat damped in (2.7),

depending on the chosen solver.

In the remaining part of this section we provide some motivations underlying the choice of (2.5), which

are connected to the regularizing properties of the Arnoldi algorithm. Deine

Ûm = Wm⋇1Um = [û1, . . . , ûm] ∈ ℝN×m , V̂m = WmVm = [v̂1, . . . , v̂m] ∈ ℝN×m (2.13)

where Um and Vm are the matrices of the left and right singular vectors of Hm (2.11), respectively, and deine

Âm = Wm⋇1HmW
T
m = ÛmΣm V̂

T
m (note that Âm = (A�m)T). (2.14)

One can easily show that the (T)SVD of Âm is given by ÛmΣm V̂
T
m, and that the Moore-Penrose pseudo-inverse

Âσm of Âm is the regularized inverse (as deined in [14, ğ4.4]) associated to themth iteration of GMRES. Indeed,

by exploiting relation (2.3), the irst equality in (2.2), and the TSVD (2.14), one can write

xGMRm = Wms
GMR
m = WmH

σ
m(‖b‖e1) = WmH

σ
mW

T
m⋇1b = V̂mΣ

−1
m ÛT

mb = Âσmb .
In order for a (generic) regularization method to be successful, the regularized matrix should contain infor-

mation about the dominant singular values of the original matrix A, and ilter out the inluence of the small

ones. If Âm is a good regularized approximation of A, then using ÂT
m = A�m to approximate AT is meaningful.

If A is severely ill-conditioned, the authors of [8, 20] numerically show that Âm quickly inherits the spec-

tral properties of A. In particular, the following relations hold for k = 1, . . . ,m:
Av̂k − σ(m)k ûk = 0 (2.15)

WT
m(AT ûk − σ(m)k v̂k) = 0

where σ
(m)
k , k ⩽ m, is the kth singular value of Hm. Moreover, working in a continuous setting and under the

hypothesis that A is a Hilbert-Schmidt operator of ininite rank whose singular values form an ℓ2 sequence
(see [22, Chapter 2] for a background), in [19] it has been shown that

������AT ûk − σ(m)k v̂k
������→ 0 as m →∞ (2.16)

where the convergence rate is closely connected to the decay rate of the singular values of A. This property is

inherited by the discrete case whenever A is a suitable discretization of a Hilbert-Schmidt operator. Note that

this class of operators includes Fredholm integral operators of the irst kindwith L2 kernels. As a consequence

of (2.15) and (2.16), in many relevant situations the dominant singular values of A are well approximated by

the singular values of Hm (see [8] for many numerical examples). Therefore, Âm as deined in (2.14) may

represent a good regularized approximation of A for a variety of problems.

3 Solving the ‘preconditioned’ problems

This section proposes two diferent iterative techniques to solve the rank-deicient symmetric least squares

problem (2.7), and therefore to compute a regularized solution of (1.1). Thanks to the deinition of Cm, decom-

position (2.1), and Proposition 2.1, one can rewrite (2.7) as

ym ∈ arg min
y∈ℝℕ‖AA�

my−b‖ = Wm⋇1 arg min
t∈ℝm⋇1

�����HmH
T
m t − ‖b‖e1����� . (3.1)

By using the above reformulation, it is clear that solving system (2.7) does not require a signiicant computa-

tional overload with respect to solving system (1.1) by any standard Arnoldi-based method (such as GMRES).

Indeed, oncem iterations of the Arnoldi algorithmhave been performed, withm ≪ N, all the additional com-

putations for solving (3.1) are executed in dimension m, so that the computational cost of any algorithm for

(3.1) is dominated by the cost of the Arnoldi algorithm. Moreover, the rank-m preconditioner A�m (2.5) can be
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stored in factored form, in order to recover xm (2.7). Denoting by tm any solution of the projected least-squares

problem at the right-hand side of (3.1), and letting ym = Wm⋇1tm be as in (2.7), the residual associated to (1.1)

can be conveniently monitored in reduced dimension as

‖b − Axm‖ = ‖b − AA�mym‖ = ‖b − CmCTmym‖ = ����‖b‖e1 − HmH
T
m tm
����.

Since the starting vector b of Krylov subspaces generated by the Arnoldi algorithm (2.1), (2.2) is afected by

some noise, noisy components are retained in Hm andWm, so that the vector tm in (3.1) should be computed

by applying some regularization to the (noisy) projected problem

min
t∈ℝm⋇1

�����HmH
T
m t − ‖b‖e1����� . (3.2)

The noise propagation may be somehow damped by working with a range-restricted approach that consists

in using Ab instead of b as starting vector for the Arnoldi process [2], and the theory developed in the present

paper can be easily rearranged to work in this setting.

Direct methods such as Tikhonov regularization or TSVD can be easily applied to (3.2), the latter being

particularly meaningful, as suggested in [9], because HmH
T
m is rank-deicient. However, in this paper, we are

interested in using an iterative approach for solving (2.7) or (3.2), once the dimension m has been ixed.

3.1 A transpose-free CGLS-like method

Consider computing an approximation ym,k of ym in (2.7) by applying k iterations of the MINRES method,

with starting vector x0 = 0. This is equivalent to requiring

ym,k ∈ Kk(AAm� , b) , b − AAm�ym,k ⊥ (AAm� )Kk(AAm� , b) , k ⩽ m . (3.3)

The irst condition in (3.3), together with (2.1) and the above relation, implies

xm,k = WmH
T
mW

T
m⋇1ym,k = WmW

T
mA

Tym,k = PmATym,k (3.4)

so that

xm,k ∈ PmAT
Kk(APmAT , b) = Kk(PmATA, PmA

Tb) .
Similarly, the second condition in (3.3) implies

b − APmATym,k ⊥ APmA
T
Kk(APmAT , b)

and, thanks to (3.4), it can be equivalently rewritten as

b − Axm,k ⊥ APmA
T
Kk(APmAT , b) = AKk(PmATA, PmA

Tb) .
We can summarize the above arguments in the following proposition.

Proposition 3.1. For any given m ⩾ 1 the sequence {xm,k}k⩽m obtained by applying k steps of the MINRES

method to problem (2.7) is the result of a Krylov method deined by

xm,k ∈ Kk(PmATA, PmA
Tb) , b − Axm,k ⊥ AKk(PmATA, PmA

Tb) . (3.5)

The above proposition has two important consequences. Firstly, thanks to a well-known characterization of

projection methods (see [23, ğ5.2]), the residual b − Axm,k in (3.5) has minimal norm among all the residuals

b − Ax̂m,k, with x̂m,k ∈ Kk(PmATA, PmA
Tb). Secondly, recall that, through an implicit construction of the

Krylov subspacesKk(ATA, ATb), CGLS generates a sequence of approximate solutions {xCGLSk }k⩾1 of (1.1) such
that

xCGLSk ∈ Kk(ATA, ATb) , b − AxCGLSk ⊥ AKk(ATA, ATb) . (3.6)

Instead of the approximation subspaceKm(ATA, ATb) considered in (3.6), the method (3.5) implicitly builds

a Krylov subspace where the action of AT is replaced by its projection PmA
T onto Km(A, b). Therefore, if

Pm = I, conditions (3.5) and (3.6) are equivalent. In this sense, the new method (3.5) can be regarded as

a transpose-free variant of a CGLS-like method, and from now on it will be simply referred to as TF-CGLS;

correspondingly, the vector xm,k in (3.5) will be denoted as x
LS
m,k.
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Remark 3.1. The clear advantage of TF-CGLS over CGLS is that AT is not required, since only the action of

A is needed to initially generate Wm⋇1 and Hm. The additional k MINRES iterations required by TF-CGLS to

compute the solution of (3.1) can be performed on the projected problem (3.2) of orderm⋇1. Each approximate

solution {xm,k}k⩽m belongs toKm(A, b) (directly by (3.5) and by the deinition of Pm in (2.5)). IfKm(A, b)well
captures the features of the solution that we wish to recover, then multiplication by Pm does not spoil the

approximation subspace. Provided that a meaningful regularized solution can be recovered by TSVD (i.e.,

the columns of VA
m are a good basis for a regularized solution), this is eventually equivalent to requiring that

Âm in (2.14) inherits the spectral properties of A (see relations (2.15) and (2.16)).

Remark 3.2. Hybrid regularization methods [21] consider additional direct regularization (such as TSVD)

within each iteration of a regularizing iterative method. We claim that TF-CGLS can be somewhat regarded

as a hybrid regularization method. Indeed, considering the irst relation in (3.3), one can straightforwardly

rewrite

ym,k ∈ Kk(AA�m , b) = Wm⋇1Kk(HmH
T
m , ‖b‖e1)

so that

xm,k ∈ (WmH
T
mW

T
m⋇1)Wm⋇1Kk(HmH

T
m , ‖b‖e1) = WmKk(HT

mHm , H
T
m‖b‖e1)

or, equivalently,

xm,k = Wm tk , tk ∈ Kk(HT
mHm , H

T
m‖b‖e1) . (3.7)

Analogously, considering the second relation in (3.3) and exploiting (2.1), one gets

b − AA�mym,k ⊥ (AA�m)Kk(AA�m , b) = Wm⋇1HmKk(HT
mHm , H

T
m‖b‖e1)

so that

‖b‖e1 − HmH
T
mW

T
m⋇1ym,k ⊥ Kk(HmH

T
m , HmH

T
m‖b‖e1) .

Recalling thatWT
mxm,k = HT

mW
T
m⋇1ym,k (directly from (2.7)) and the deinition of tk in (3.7), one gets

‖b‖e1 − Hm tk ⊥ Kk(HmH
T
m , HmH

T
m‖b‖e1) .

Therefore, the vector tk is obtained by applying k steps of the CGLS method to the projected LS problem (2.3)

associated to the GMRES method (see the characterization (3.6)). In other words, after performing m steps of

the Arnoldi algorithm to build Wm (exactly as GMRES does), the CGLS method is employed to solve the pro-

jected LS problem in (2.3), withm ixed. Therefore, in a sequential way, one applies another iterative regular-

ization method (i.e., additional iterative regularization) within a ixed iteration of an iterative regularization

method.

Remark 3.3. As briely mentioned in Sections 1 and 2, regularization methods based on the Arnoldi algo-

rithm (2.1) may sometimes be inefective because the components of the right singular vectors of A are mixed

in the approximation subspaceKm(A, b). Since an approximate solution xm ∈ Km(A, b) is such that VTxm ∈
Km(VTUΣ, VTb), the mixing is caused by the presence of the non-diagonal matrix VTUΣ; see [16] for more

details. Quantitatively, this phenomenon (and therefore the regularization properties of the consideredmeth-

ods) can be characterized by computing the distance of two relevant subspaces, namely:

dist(span(VA
k ), span(Ŵk)) = ‖ŴT

k (VA
k )⊥‖ ; (3.8)

see [10, Chapter 2]. Here and in the following we consider the subspaces spanned by the columns of VA
k (i.e.,

the irst k right singular vectors of A; see (1.2)) and Ŵk (i.e., k orthonormal vectors selected after linearly

transforming the columns of Wm; see below). Here we display a numerical example clearly showing that,

while severe SVDmixing afects the basis vectors of the GMRES solution, the SVD components are somewhat

unmixed in the TF-CGLS basis vectors, whose behavior is comparable to the CGLS ones. The same holds for

the hybrid GMRES-TSVD basis vectors (where the projected problem (2.3) is regularized through TSVD). Anal-

ogously to [16], we consider the test problem i_laplace(100) from [13], and we add Gaussian white noise e
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Fig. 1: Components of the irst, third, and ifth columns of Ŵ5 with respect to the right singular vector basis for the GMRES, TF-

CGLS, and CGLS methods applied to the i_laplace(100) test problem. Lower rightmost frame: ilter factors for the TF-CGLS (5

CGLS iterations) and GMRES-TSVD (5 components) methods.

to the data vector b, in such a way that the noise level ε̂ = ‖e‖/‖bex‖ is 5 ⋅ 10−4. We consider, as an example,

approximation subspaces of dimension 5, spanned by the orthonormal columns of a matrix Ŵ5 ∈ ℝ100×5,
associated to the GMRES, TF-CGLS, GMRES-TSVD, and CGLS methods. More speciically:

ś GMRES: we irst run 5 steps of theArnoldi algorithm to generateWGMR
5 ∈ ℝ100×5 andH5 ∈ ℝ6×5 as in (2.1),

and we then compute the SVD of H5 (2.11), whose right singular vector matrix is denoted by V
H5

5 ∈ ℝ5×5.
We take Ŵ5 = WGMR

5 V
H5

5 . For this example we have dist(span(VA
k ), span(Ŵ5)) = 9.9933 ⋅ 10−1.

ś TF-CGLS and GMRES-TSVD: we irst run 40 steps of the Arnoldi algorithm to generate WGMR
40
∈ ℝ100×40

and H40 ∈ ℝ41×40 as in (2.1); we then compute the SVD of H40 (2.11), and we consider truncation after

5 components. We denote the truncated right singular vector matrix by V
H40

5
∈ ℝ40×5. We take Ŵ5 =

WGMR
40

V
H40

5
. This corresponds to taking only the irst 5 basis vectors in the TF-CGLS approximate solution.

For this example we have dist(span(VA
k ), span(Ŵ5)) = 2.1357 ⋅ 10−5.

ś CGLS: we irst run 5 steps of the Arnoldi algorithm applied to ATA, with starting vector ATb (though,

in practice, this procedure is unadvisable and one should employ the Golub-Kahan bidiagonalization

algorithm; see [23, ğ8.3]). In this way we generate WCG
5
∈ ℝ100×5 with orthonormal columns, and T5 ∈ℝ6×5 tridiagonal. We then compute the SVD of T5, whose right singular vector matrix is denoted by V

T5
5
∈

ℝ5×5. We take Ŵ5 = WCG
5
V
T5
5
. For this example we have dist(span(VA

k ), span(Ŵ5)) = 7.4933 ⋅ 10−2.
Figure 1 shows the absolute value of the irst, third, and ifth column of Ŵ5 expressed in terms of the right

singular values of A, i.e., VTŴ5, for the GMRES, TF-CGLS, and CGLS methods.

It can be easily seen that, while the GMRES basis vectors have signiicant components along all the right

singular vectors (i.e., severe ‘SVDmixing’ happens), the same is not true for TF-CGLS. Though the components

of the normalized TF-CGLS basis vectors are often larger than the normalized CGLS ones, the components

corresponding to the irst singular values of A are clearly dominant (moreover: the component of ith basis

vector along the ith right singular vector vi seems to be the leading one). This phenomenon happens because

the TF-CGLS (and GMRES-TSVD) approximate solution belong to the Krylov subspace K40(A, b), which is

much larger than the Krylov subspaceK5(A, b) used in standard GMRES: thereforeK40(A, b) contains much

more spectral information on A thanK5(A, b), which is then appropriately iltered. Indeed, as explained in
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Remark 3.2, once 40 Arnoldi steps have been performed, both TF-CGLS and GMRES-TSVD apply additional

regularization (or iltering) on the projected least squares problem (2.3), so that

x40,5 = WGMR
40 V

H40

40 ΦH40 (ΣH40

40 )−1(UH40

40 )T(‖b‖e1)
whereU

H40

40 , Σ
H40

40 , and V
H40

40 are thematrices appearing in the economy-size SVDofH40, andΦ
H40 is a diagonal

iltering matrix, whose elements are

Φ
H40

i,i = p5(σ(40)i ) , Φ
H40

i,i = {{{
1, i = 1, . . . , 5
0 otherwise

for TF-CGLS and GMRES-TSVD, respectively. Here p5 is the polynomial of degree at most 4 associated to 5

CGLS iterations for the projected LS problem in (2.3). These ilter factors are displayed in the lower rightmost

frame of Fig. 1. Starting from an extended Krylov subspace, and being able to ilter out the dominant singular

components of the projected quantities in (2.3), both TF-CGLS and GMRES-TSVD build a solution subspace

where the original SVD components of A are not as mixed as in the standard GMRES one.

3.2 A transpose-free CGNE-like method

Now consider computing an approximation ym,k of ym in (2.7) by applying k iterations of the CGmethod, with

starting vector x0 = 0. This means that

ym,k ∈ Kk(AA�m , b) , b − AA�mym,k ⊥ Kk(AA�m , b) , k ⩽ m . (3.9)

As done in (3.4), we can write xm,k = PmATym,k, so that the irst condition in (3.9) can be rewritten as

xm,k ∈ PmAT
Kk(APmAT , b) .

Moreover, the second condition in (3.9) leads to

Ax − APmATym,k ⊥ Kk(APmAT , b)
x − PmATym,k ⊥ AT

Kk(APmAT , b)
x − xm,k ⊥ AT

Kk(APmAT , b) .
We can summarize the above arguments in the following proposition.

Proposition 3.2. For any givenm ⩾ 1 the sequence {xm,k}k⩽m obtained by applying k steps of the CGmethod

to problem (2.7) is the result of a Krylov method deined by

xm,k ∈ PmAT
Kk(APmAT , b) , x − xm,k ⊥ AT

Kk(APmAT , b) . (3.10)

The above proposition allows us to see how this approach relates to the well-known CGNE method, whose

approximate solutions satisfy

xCGNEk ∈ AT
Kk(AAT , b) , x − xCGNEk ⊥ AT

Kk(AAT , b)
and are computed through an implicit construction of the Krylov subspaces AT

Kk(AAT , b) = Kk(ATA, ATb).
Using similar arguments to the ones in Section 3.1, the newmethod (3.10) can be regarded as a transpose-free

variant of a CGNE-like method, and from now on it will be simply referred to as TF-CGNE; correspondingly,

the vector xm,k in (3.10) will be denoted as xNEm,k. Statements analogous to the ones explained in Remark 3.1

also hold for the TF-CGNE case.

We conclude this section by mentioning that, although CGNE is an iterative regularization method, in

practice it may perform very badly. Indeed, if system (1.1) is inconsistent, CGNE does not even converge to

A−1b (see [11, Chapter 4]). This means that, if the unperturbed system Axex = bex is consistent, only small

perturbations e of bex are allowed, in such a way that b still belongs to the range of A. The same behavior is

experimentally observedwhenperforming theTF-CGNEmethod (see thenumerical experiments in Section4).

Therefore, even if TF-CGNE is a potential alternative to TF-CGLS, the latter is to be preferredwhendealingwith

ill-posed problems.
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3.3 Setting the regularization parameters

The transpose-free CG-like methods described in Sections 3.1 and 3.2 (here briely denoted by TF-CG) are,

indeed, multi-parameter iterativemethods, whose success depends on an accurate tuning of both the scalars

m and k. It should be also remarked that the parameters m and k act sequentially, i.e., the former is used to

compute A�m in (2.5) and has to be set in advance of the TF-CG iterations; the latter is the number of TF-CG

iterations; this is the main diference between some hybrid methods and the TF-CG-like methods. One way to

ix m is to stop the preliminary iterations when

hm⋇1,m < τ (3.11)

where τ > 0 is a speciied threshold. In this way, one stops when the Krylov subspaceKm(A, b) is not signif-
icantly expanded; see [8, 9, 20] for full motivations.

In principle, another natural approach to set m can be devised by monitoring the values of the quantity

ζm = ‖ATA − PmATA‖ . (3.12)

The smaller ζm, the nearer A
TA to PmA

TA, i.e., the more accurate the transpose-free approximation of ATA.

Since the approximate solutions xm computedbyTF-CGmethodsbelong to the subspaceKm(PmATA, PmA
Tb)

(see the irst relation in (3.5) and (3.10)), a small ζm also implies that the generated approximation subspaces

are close toKm(ATA, ATb). However, since one of the main motivations behind TF-CGmethods is the lack of

knowledge of AT for some large-scale problems, the quantities ζm in (3.12) cannot be computed in practice.

Therefore, after some simple derivations one can provide the following upper bound:

ζm = ‖(I − Pm)ATA‖ ⩽ ‖A‖ ⋅ ‖(I − Pm)AT‖ = σ1‖A(I − Pm)‖ .
Though the above bound does not explicitly involve AT , AT is required by algorithms for computing σ1. More-

over, when dealing with large-scale problems, both σ1 and ‖A(I − Pm)‖ can be expensive to compute. There-

fore, one should look for yet other alternative bounds. One can take σ
(m)
1 , i.e., the largest singular value ofHm,

as an approximation of σ1: indeed, thanks to the interlacing property of the singular values (see, for instance,

[4, 7]), one can prove that σ1 ⩾ σ(ℓ⋇1)1 ⩾ σ(ℓ)1 . Many numerical experiments available in the literature show

that σ
(m)
1 quickly approaches σ1 (see also [19]), so that

ζm ⩽ σ1‖A(I − Pm)‖ = (σ(m)1 ⋇ εm)‖A −Wm⋇1HmW
T
m‖ (3.13)

where εm → 0 asm increases. Replacing σ1 with σ
(m)
1 may not bemeaningful whenm is very small, but this is

not the casewhen performing the irst cycle of iterations of the Arnoldi algorithm for the TF-CGmethods. Note

that, to rewrite the second factor of the last equality in the above equation, we have also exploited (2.1). While

some numerical experiments available in the literature (see [8]) suggest that the quantity ‖A −Wm⋇1HmW
T
m‖

decays similarly to the singular values of A, no theoretical results have been established, yet. Similarly to

what happens in the TSVD case, one can consider ‖A−Wm⋇1HmW
T
m‖ ≃ σ(m⋇1)m⋇1 . Even if the above estimate can

be quite optimistic (see [9] for a discussion), experimentally it seems reliable to stop the irst set of Arnoldi

iterations when σ
(m)
1 σ
(m⋇1)
m⋇1 is suiciently small, i.e., one should stop as soon as

σ
(m)
1 σ
(m⋇1)
m⋇1 < τ� (3.14)

where τ� > 0 is a speciied threshold.
To choose the number k of additional iterations for the TF-CGmethods, some standard parameter choice

strategies can be used. For instance, if one has a good estimate of the noise level ε̂, the discrepancy principle

can be applied, i.e., the iterations can be stopped as soon as

‖b − Axm,k‖ = ‖b − CmCTmym,k‖ = �����‖b‖e1 − HmH
T
mz
����� < ηε̂‖b‖ (3.15)

where η > 1 is a safety factor. If ε̂ is not known, one can resort to other classical parameter choice methods

such as GCV and the L-curve (see [14, Chapter 7]). The TF-CG methods are summarized in Algorithm 1.
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Algorithm 1 TF-CG methods

input A, b, τ or τ�, solver, η, ε̂
for m = 1, 2, . . . ,until the stopping criterion (3.11) or (3.14) is satisied do

update the Arnoldi decomposition: AWm = Wm⋇1Hm

end for

for k = 1, 2, . . . ,until (3.15) is satisied do
if solver is TF-CGLS then

apply MINRES to the system HmH
T
m t = ‖b‖e1, to get tk (see Section 3.1)

else if solver is TF-CGNE then

apply CG to the system HmH
T
m t = ‖b‖e1, to get tk (see Section 3.2)

end if

end for

take xm,k = WmH
T
m tk

4 Numerical experiments

This section shows the performances of the methods summarized in Algorithm 1 on a variety of test prob-

lems: comparisons with GMRES and, whenever possible, CGLS and CGNE, will be displayed. The quality of

the computed solution is measured by the relative error ‖x − xex‖/‖xex‖. A irst set of experiments considers

moderate-scale problems from [13], while a second set of experiments considers realistic large-scale prob-

lems arising in the framework of 2D image deblurring. Unless otherwise stated, the TF-CG-like methods are

implemented using modiied Gram-Schmidt orthogonalization. All the tests are performed running MATLAB

R2016b.

4.1 The irst set of experiments

We consider problems with a nonsymmetric coeicient matrix whose right-hand-side vector is afected by

Gaussian white noise of level ε̂ = 10−2. Since AT , as well as the SVD of A, are easily available for these

problems, the use of the TF-CG-like methods may appear meaningless in this setting: these experiments are

nonetheless included to compare the behavior of the TF-CG-like, the CGLS, and the CGNEmethods, and to test

some theoretical estimates (such as (3.12)ś(3.14)). For all the tests, the maximum allowed number of Arnoldi

iterations (in the irst cycle of iterations in Algorithm 1) is mmax = 40, and η = 1.01. The values τ = 10−10
and τ� = 10−15 are chosen for the stopping criteria in (3.11) and (3.14), respectively.

1. i_laplace. Let us consider the severely ill-posed inverse Laplace transform of the function f(t) =
t2 exp(−t/2), discretized using the codes in [13] with N = 128, so that ‖A − AT‖/‖A‖ = 0.6922.
Figure 2 compares the GMRES, CGLS, CGNE, TF-CGLS, and TF-CGNEmethods (for diferent choices of the

stopping criterion for the irst set of iterations). The stopping criteria (3.11) and (3.14) are satisied after 14

and 13 Arnoldi iterations, respectively, and the TF-CG-like solutions are not afected by the diferent stop-

ping criteria. Enlarged markers are used to highlight the iterations satisfying the discrepancy principle

(3.15) for all themethods (so that, in the GMRES, CGLS and CGNE cases, the quantities ‖b−Axm‖ aremon-

itored); we note that both CGNE and TF-CGNE do not satisfy the discrepancy principle within the chosen

range of iterations. The TF-CGLSmethod delivers a huge improvement over the standard GMRESmethod

for this problem, and its behavior is very similar to the CGLS one (see Fig. 2a, where relative errors ver-

sus number of iterations are plotted). TF-CGLS seems also very robust with respect to ‘semi-convergence’.

Figure 2b shows the relative errors versus number of iterations for the GMRES, CGNE, and TF-CGNEmeth-

ods. Although all the methods tested in both Figs. 2a and 2b perform quite poorly, the performances of

‘minimal error’ methods are clearly much worse than the performances of ‘minimal residual’ methods

(this agrees with the analysis performed in [11, Chapter 4]). Despite this, the TF-CGNE method is able to
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Fig. 2: Test problem i_laplace, with f(t) = t2 exp(−t/2), N = 128, and ε̂ = 10−2. (a) Relative errors versus number of iter-
ations for GMRES, CGLS, and TF-CGLS (here and in the remaining frames, two diferent stopping criteria are considered). (b)

Relative errors versus number of iterations for GMRES, CGNE, and TF-CGNE. (c) Relative residuals versus number of iterations

for GMRES, CGLS, and TF-CGLS. Bigger black markers highlight the iterations satisfying the discrepancy principle.

reproduce quite faithfully the behavior of CGNE (in terms of relative errors). Further tests with CGNE and

TF-CGNE will not be performed in the following experiments. Figure 2c displays relative residuals versus

number of iterations for the GMRES, the CGLS, and the TF-CGLSmethods.We can see that inequality (2.8)

surely applies to the TF-CGLS case, i.e., when xm = xm,k ∈ Km(A, b) (recall (3.4)): more precisely, oncem

has been set, ‖AxGMRm − b‖ is smaller than any ‖Axm,k − b‖, for k ⩽ m (but this does not imply any other

relation between ‖AxGMRℓ − b‖, ℓ < m, and ‖Axm,k − b‖). Moreover, regarding the stopping criteria, a word
of caution is mandatory: although looking at Fig. 2 it may seem that all themethods stop after 6 or 7 itera-

tions, we should recall that the TF-CGLS iteration count refers to the second cycle in Algorithm 1 (after at

most 14 Arnoldi iterations have been performed). Therefore, for this test problem, the computational cost

of GMRES is dominated by 6 matrix-vector products with a matrix of size N ×N, while CGLS and TF-CGLS
require 14matrix-vector products with amatrix of size N ×N. We think that the additional (but still small)

number of matrix-vector products required by TF-CGLS with respect to GMRES is tolerable if we consider

the improved quality of the solution.

Figure 3a displays the behavior of the quantities (3.12)ś(3.14) versus the number of Arnoldi iterations

m. One can clearly see that (3.13) is a tight bound for the potentially unknown quantity (3.12). One also

realizes that estimate (3.14) is indeed very optimistic, as anticipated in Section 3.3. We also emphasize

that the behavior of the sequence (ζm)m⩾1 is not monotonic because loss of orthogonality happens in the

columns of the matrix Wm in (2.1) when modiied Gram-Schmidt is employed. For this experiment, the

TF-CG-like approximations are not very afected by the loss of orthogonality (as the stopping criteria for

the irst cycle of Arnoldi iterations prescribe to stop after 13 or 14 iterations, i.e., before a severe loss of

orthogonality sets in). However, when a larger number of Arnoldi iterations is expected during the irst

cycle ofAlgorithm1, onemay consider themorenumerically accurate (andmore expensive)Householder-

Arnoldi implementation, in order to reduce the efect of the loss of orthogonality (see [23, ğ6.3] for details).

Figure 3b displays the solutions achieved by GMRES, CGLS, and TF-CGLSwhen the discrepancy principle

is satisied. While the CGLS and TF-CGLS solutions resemble the exact one, this is not the case for the

GMRES solution, which is heavily unregularized (the values above 4 are truncated in the plot).
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Fig. 3: Test problem i_laplace, with f(t) = t2 exp(−t/2), N = 128 , and ε̂ = 10−2. (a) Values of the quantities (3.12), (3.13), and
(3.14) versus the number of Arnoldi iterations m. (b) Best approximations of f(t) achieved by the GMRES, CGLS, and TF-CGLS
methods.

2. heat. We consider a discretization of the inverse heat equation formulated as a Volterra integral equation

of the irst kind, as provided in [13], with the default settings. We choose N = 256, so that ‖A −AT‖/‖A‖ =
1.1249; this problem can be regarded as numerically rank-deicient, with numerical rank equal to 250.

Figure 4a shows the history of the relative errors for GMRES, CGLS, and TF-CGLS (with both the MGS and

HH implementations).While CGLS delivers the best approximations, the quality of the TF-CGLS solutions

is much better than the GMRES ones (which do not converge to Aσb). Moreover, the TF-CGLS solutions
obtained by the MGC and the HH implementations are comparable. Figure 4b displays the most accurate

approximations obtained by each method: in the GMRES case, this is the zero solution (i.e., the initial

guess); the TF-CGLS solution has slightly more oscillations than the CGLS one, and this shortcoming

might be partially remedied by including additional (standard form) Tikhonov regularization within the

TF-CGLS iteration (in a hybrid-like fashion, see [9]). Finally, Figures 4c and 4d display relative errors

versus number of iterations for the TF-CGLS and the GMRES-TSVD methods. We also consider another

variant of hybrid GMRES (denoted by GMRES-TSVD∗) that expands the GMRES approximation subspace

at each iteration and performs TSVD on (2.3) using the discrepancy principle. Figure 4c considers 40

Arnoldi iterations. Figure 4d potentially allows the full 256 Arnoldi iterations, and stopping criterion

(3.14) is satisied after 74 iterations. These plots clearly show that, in some situations, itmaybe convenient

to adopt TF-CGLS rather than themore traditional hybrid GMRESmethods, both in terms of accuracy and

eiciency (in particular, the cost of computing the TF-CGLS solution is dominated by 40 matrix-vector

products with A, while more than 100 matrix-vector products with A are required by GMRES-TSVD∗ to
achieve a solution of similar quality).

Average values of relative errors and number of iterations are reported in Table 1, where the severely ill-

conditioned test problem baart from [13] is also considered (in this case, ‖A − AT‖/‖A‖ = 0.6035). The av-
erage is computed over 20 runs of each test problem, with diferent realizations of the random noise vector

in the data. We can see that, except for baart, the values computed by the stopping criteria (3.12) and (3.14)

mainly agree.Moreover, when the discrepancy principle is employed as an overall stopping criterion, the new

TF-CGLS solver always delivers much better approximation than the GMRES and the GMRES-TSVD∗ method

(though the latter often has a lower optimal relative error).

4.2 The second set of experiments

We consider 2D image restoration moderately ill-posed problems, where the available images are afected by

a spatially invariant blur and Gaussian white noise. In this setting, given a point-spread function (PSF) that

describes how a single pixel is deformed, a blurring process is modeled as a 2D convolution of the PSF and an

exact discrete inite image Xex ∈ ℝn×n. Here and in the following, a PSF is represented as a 2D image P ∈ ℝq×q,



28 | S.Gazzola and P. Novati, Transpose-free CG-like solvers

5 10 15 20

10
−1

10
0

10
1

 

 

GMRES

CGLS

MGS−TF−CGLS

HH−TF−CGLS

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

 

 

GMRES

CGLS

MGS−TF−CGLS

exact

(a) (b)

10 20 30 40
10

-1

10
0

10
1

10
2

TF-CGLS

GMRES-TSVD

GMRES-TSVD

50 100 150 200 250
10

-2

10
-1

10
0

10
1

10
2

TF-CGLS

GMRES-TSVD

GMRES-TSVD

(c) (d)

Fig. 4: Test problem heat, with N = 256, and ε̂ = 10−2. (a) Relative error history for GMRES, CGLS, TF-CGLS with modiied Gram-
Schmidt implementation (MGS-TF-CGLS), and TF-CGLS with Householder implementation (HH-TF-CGLS). (b) Best approximations

achieved by GMRES, CGS, and MGS-TF-CGLS. (c) Relative error history for GMRES-TSVD∗, GMRES-TSVD, and MGS-TF-CGLS (with
40 Arnoldi iterations). (d) Relative error history for GMRES-TSVD∗ (with 256 Arnoldi iterations), GMRES-TSVD, and MGS-TF-CGLS
(with 74 Arnoldi iterations).

Tab. 1: Average results over 20 runs of some moderate-scale test problems with nonsymmetric coeicient matrix from [13], with

noise level ε̂ = 10−2. The TF-CGLS relative error is the one attained when stopping criterion (3.14) is satisied. The minimum
attainable relative errors (opt) and the ones attained when the discrepancy principle is satisied (DP) are reported for all the

methods, together with the corresponding average number of iterations. The average number of iterations required by TF-CGLS

to satisfy the stopping criteria (3.12) and (3.14) is also reported.

Rel.Error (DP) it (DP) Rel.Error (opt) it (opt) (3.12) (3.14)

i_laplace(128,1) GMRES 5.9919 ⋅ 10−1 4.3 4.8728 ⋅ 10−1 4.2 Ð Ð

CGLS 4.1821 ⋅ 10−2 3.8 3.2919 ⋅ 10−2 4.5 Ð Ð

TF-CGLS 4.1778 ⋅ 10−2 3.8 3.2827 ⋅ 10−2 4.5 14.5 13.0

GMRES-TSVD∗ 5.9919 ⋅ 10−1 4.3 3.8461 ⋅ 10−2 11.6 Ð Ð

i_laplace(128,3) GMRES 5.1047 ⋅ 100 5.9 8.2388 ⋅ 10−1 3.0 Ð Ð

CGLS 5.3116 ⋅ 10−1 7.1 4.7355 ⋅ 10−1 8.3 Ð Ð

TF-CGLS 5.2570 ⋅ 10−1 7.2 4.3790 ⋅ 10−1 11.2 14.5 13.1

GMRES-TSVD∗ 5.1047 ⋅ 100 5.9 3.0080 ⋅ 10−1 10.8 Ð Ð

baart(256) GMRES 5.6437 ⋅ 10−1 3.0 3.1134 ⋅ 10−1 4.0 Ð Ð

CGLS 1.6634 ⋅ 10−1 3.0 1.5284 ⋅ 10−1 3.4 Ð Ð

TF-CGLS 1.6650 ⋅ 10−1 3.0 1.5302 ⋅ 10−1 3.7 8.7 19.8

GMRES-TSVD∗ 5.6437 ⋅ 10−1 3.0 4.1127 ⋅ 10−2 5.0 Ð Ð

heat(256) GMRES 4.4102 ⋅ 107 39.3 1.0000 ⋅ 100 1.0 Ð Ð

CGLS 1.0535 ⋅ 10−1 11.1 9.2036 ⋅ 10−2 13.1 Ð Ð

TF-CGLS 4.3834 ⋅ 100 32.9 6.2625 ⋅ 10−1 4.1 40.0 40.0

GMRES-TSVD∗ 4.4700 ⋅ 107 39.5 9.0833 ⋅ 10−1 7.0 Ð Ð
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exact PSF corrupted

Fig. 5: From left to right: exact image, where the cropped portion is highlighted; blow-up (600%) of the anisotropic Gaussian

PSF; blurred and noisy available image, with ε̂ = 2 ⋅ 10−2.

with q ≪ n, typically. One can immediately see that, if Pi,j ̸= 0, i, j = 1, . . . , q, the deblurring problem

is underdetermined since, when convolving P with Xex, additional (and unavailable) information about the

exact image outside Xex should be incorporated. A popular approach to overcome this phenomenon is to

impose boundary conditions within the blurring process, i.e., to prescribe the behavior of the exact image

outside Xex (see [1] and the references therein). A 2D image restoration problem can be rewritten as a linear

system (1.1), where the 1D array b is obtained by stacking the columns of the 2D blurred and noisy image

(so that N = n2), and the square matrix A incorporates the convolution process together with the boundary

conditions. Although popular choices such as zero or periodic boundary conditions are particularly simple

to implement, they often give rise to unwanted artifacts during the restoration process. The use of relective

or anti-relective boundary conditions usually gives better results, as a sort of continuity of the image outside

Xex is imposed. Antirelective boundary conditions (ARBC) were originally introduced in [24], and further

analyzed in several papers (see [5] and the references therein).

When dealing with a nonsymmetric PSF and ARBC, matrix-vector products with A can be implemented

by fast algorithms (see [24]), but the same is not true for matrix-vector products with AT (as, to the best of

our knowledge, there is no known algorithm that can eiciently exploit the structure of AT). Therefore, in

practice,AT is often approximated by amatrixA� deinedbyirst rotating of180° the PSF P used to buildA (so

to obtain the PSF P�) and thenmodeling the 2D convolution process with P� and ARBC. In other words, image

deblurring problems with a nonsymmetric PSF and ARBC can be only handled by transpose-free solvers.

As addressed in Section 1, the authors of [5] propose to solve the equivalent, and somewhat symmetrized,

linear system AA�y = b (with x = A�y) by GMRES: in the following, this method is referred to as RP-GMRES.

Our experiments are created by considering two diferent grayscale test images of size 256 × 256 pixels,

together with two diferent PSFs, and antirelective or relective boundary conditions; the sharp images are

artiicially blurred, and noise of variable levels is added. Matrix-vector products are computed eiciently by

using the routines in Restore Tools [18]. An extension to handle ARBCwithin Restore Tools is available at:

http://scienze-como.uninsubria.it/mdonatelli/Software/software.html.

In the irst experiment the blurred image is cropped in order to reduce the efect of the chosen bound-

ary conditions. The maximum number mmax of Arnoldi iterations for Algorithm 1 is set to 50, and only the

stopping criterion (3.14) is considered with τ� = 10−15.
1. Anisotropic Gaussian blur. For this experiment, the elements Pi,j of the PSF P are analytically given by

the following expression

pi,j = exp(− 1

2(s2
1
s2
2
− ρ4) (s22(i − k)2 − 2ρ2(i − k)(j − ℓ) ⋇ s21(j − ℓ)2))

where i, j = 1, . . . , d, and [k, ℓ] is the center of the PSF. The values s1 = 4, s2 = 1.3, ρ = 2, and d = 21
are considered, and the noise level is ε̂ = 2 ⋅10−2. ARBC are imposed. The test data are displayed in Fig. 5.

Figure 6 shows the best restorations achieved by each method; relative errors and the corresponding

number of iterations are displayed in the caption. The GMRES restored image still appears pretty noisy

http://scienze-como.uninsubria.it/mdonatelli/Software/software.html
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GMRES TF-CGLS RP-GMRES

Fig. 6: The lower row displays blow-ups (200%) of the restored images in the upper row. From left to right: standard GMRES

method (0.1483, m = 4); TF-CGLS method (0.1344, m = 14, k = 12); right-preconditioned GMRES (0.1354, m = 19).

exact PSF corrupted

Fig. 7: From left to right: exact image; blow-up (200%) of the anisotropic Gaussian PSF; blurred and noisy available image, with

ε̂ = 5 ⋅ 10−2.

and blurred and, though the relative error for the RP-GMRES restoration is slightly larger than the TF-

CGLS one, the two images are visually very similar and the latter greatly improves the standard GMRES

one. It should also be emphasized that the cost of each RP-GMRES iteration is dominated by two matrix-

vector products (one with A, and one with A�). Therefore, the cost of computing the GMRES, TF-CGLS,

and RP-GMRES restorations is dominated by 4, 14, and 38matrix-vector products, respectively. Therefore,

for this experiment, TF-CGLS can deliver a solution whose quality is almost identical to the RP-GMRES

one, with great computational savings.

2. Atmospheric blur. The test data for this experiment are displayed in Fig. 7. The PSF, of size 256 × 256
pixels and available within [18], models a realistic atmospheric blur. Relective boundary conditions are

imposed, so that multiplications with AT can be easily computed. The noise level is ε̂ = 5 ⋅10−2. Figure 8
shows the best restorations achieved by the GMRES, the TF-CGLS, and the CGLS methods; relative errors

and the corresponding number of iterations are displayed in the caption. Also for this test problem, the

TF-CGLS method delivers much better solutions than the GMRES methods; also, TF-CGLS proves to be

muchmore eicient than CGLS, as its computational cost is dominated by 18matrix-vector products with

A (versus the 80 matrix-vector products required by CGLS).
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GMRES TF-CGLS CGLS

Fig. 8: The lower row displays blow-ups (200%) of the restored images in the upper row. From left to right: standard GMRES

method (4.0018 ⋅ 10−1, m = 4); TF-CGLS method (2.7855 ⋅ 10−1, m = 18, k = 5); CGLS method (2.7619 ⋅ 10−1, m = 40).

5 Conclusions

This paper presented a new class of transpose-free CG-like methods, which appear to be competitive with

their standard counterparts. Thesemethods are particularlymeaningful when the transpose of the coeicient

matrix is not easily available, and they represent a very valid alternative to the standard GMRES method, as

they can successfully handle situations where the latter performs badly (e.g., when the SVD components of

the original matrix A are heavily mixed in the GMRES approximation subspace).

When comparedwith CGLS, the new transpose-free CG-likemethodshave similar performances, and they

can be employed also to solve well-posed problems, provided that some insight into the SVD behavior of the

projected problems is available.
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