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Abstract
We continue the study of asynchrony immunity in cellular automata (CA), which can be considered as a generalization of

correlation immunity in the case of vectorial Boolean functions. The property could have applications as a countermeasure

for side-channel attacks in CA-based cryptographic primitives, such as S-boxes and pseudorandom number generators. We

first give some theoretical results on the properties that a CA rule must satisfy in order to meet asynchrony immunity, like

central permutivity. Next, we perform an exhaustive search of all asynchrony immune CA rules of neighborhood size up to

5, leveraging on the discovered theoretical properties to greatly reduce the size of the search space.

Keywords Cellular automata � Cryptography � Asynchrony immunity � Correlation immunity � Nonlinearity �
Side-channel attacks � Permutivity

1 Introduction

In the last years, research about cryptographic applications

of cellular automata (CA) focused on the properties of the

underlying local rules (Martin 2006; Leporati and Mariot

2014; Formenti et al. 2014). In fact, designing a CA-based

cryptographic primitive using local rules that are not highly

nonlinear and correlation immune could make certain

attacks more efficient.

The aim of this paper is to investigate a new property

related to asynchronous CA called asynchrony immunity

(AI), which could be of interest in the context of side-

channel attacks. This property can be described by a three-

move game between a user and an adversary. Let

‘; r;m 2 N, n ¼ m þ ‘þ r and t �m. The game works as

follows:

1. The user chooses a local rule f : F‘þrþ1
2 ! F2 of

memory ‘ and anticipation r.

2. The adversary chooses j� t cells of the CA in the range

f0; . . .;m � 1g.
3. The user evaluates the output distribution D of the CA

F : Fn
2 ! Fm

2 and the distribution ~D of the asyn-

chronous CA ~F : Fn
2 ! Fm

2 where the j cells selected

by the adversary are not updated.

4. Outcome: if both D and ~D equals the uniform

distribution, the user wins. Otherwise, the adversary

wins.

A cellular automaton rule f : F‘þrþ1
2 ! F2 is called (t, n)-

asynchrony immune if, for every subset I of at most t cells

both the asynchronous CA ~F : Fn
2 ! Fm

2 resulting from not

updating on the subset I of cells and the corresponding

synchronous CA F : Fn
2 ! Fm

2 are balanced, that is, the

cardinality of the counterimage of each m-bit configuration

equals 2‘þr. Thus, asynchrony immune CA rules represent

the winning strategies of the user in the game described

above.

Notice the difference between the asynchrony immunity

game and the t-resilient functions game (Chor et al. 1985):

in the latter, generic vectorial Boolean functions F : Fn
2 !
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Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy

3 Dipartimento di Informatica, Sistemistica e Comunicazione,
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Fm
2 are considered instead of cellular automata, and the

adversary selects both values and positions of the t input

variables.

The side-channel attack model motivating our work is

the following. Suppose that a CA of length n is used as an

S-box in a block cipher, and that an attacker is able to

inject clock faults by making t cells not updating. If the CA

is not (t, n)-AI, then the attacker could gain some infor-

mation on the internal state of the cipher by analyzing the

differences of the output distributions in the original CA

and the asynchronous CA. Similar fault attacks have

already been investigated on stream ciphers based on

clock-controlled Linear Feedback Shift Registers (LFSR),

such as LILI-128 (Dawson et al. 2000). For further infor-

mation on the topic, Hoch and Shamir (2004) provide more

references on clock fault attacks on stream ciphers.

This paper is an extended version of (Mariot 2016). In

particular, the new contribution is twofold: from the the-

oretical side, we formally prove the necessity of central

permutivity to have asynchrony immunity, which was

conjectured in (Mariot 2016) according to the experimental

results reported there. From the empirical point of view, we

employ this new theoretical result to consistently extend

the experimental search of asynchrony immune rules, by

considering larger neighborhood sizes.

In the remainder of this paper, we recall in Sect. 2 the

necessary basic notions about Boolean functions and

(asynchronous) CA, andwe formally introduce the definition

of asynchrony immunity in Sect. 3, giving some theoretical

results regarding this property. In particular, we show that AI

is invariant under the operations of reflection and comple-

ment and that, for high enough values of t (the maximum

number of blocked cells), central permutivity is a necessary

condition for asynchrony immunity. We then perform in

Sect. 4 an exhaustive search of asynchrony immune CA

having 8 output cells and neighborhood size up to 5, com-

puting also their nonlinearity and algebraic normal form.

Finally, we provide some possible ways to generalize the

notion of asynchrony immunity and how this property can be

linked to existing CA models in Sect. 5, as well as pointing

out other avenues for future research on the subject.

2 Basic notions

In this section, we cover all necessary background defini-

tions about one-dimensional CA, Boolean functions, and

vectorial Boolean functions. In particular, we refer the

reader to (Carlet 2010a, b) for an in-depth discussion of

(vectorial) Boolean functions.

Recall that a Boolean function is a mapping f : Fn
2 ! F2,

where F2 ¼ f0; 1g denotes the finite field of two elements.

Once an ordering of the n-bit input vectors has been fixed,

each Boolean function f can be uniquely represented by the

output column of its truth table, which is a vector Xf of 2
n

binary elements. Therefore, the set of all possible Boolean

functions of n variables, denoted by Bn, has cardinality 22
n

.

The interpretation of the vector Xf as a decimal number is

also called the Wolfram code of the function f. Another

common way of representing a Boolean function is through

its Algebraic Normal Form (ANF), that is, as a sum of

products over its input variables. More formally, given f :

Fn
2 ! F2 and x 2 Fn

2, the ANF will be of the form

Pf ðxÞ ¼ a
I22½n�aI

Y

i2I

xi

 !
; ð1Þ

where [n] is the initial segment of the natural numbers

determined by n 2 N, i.e., ½n� ¼ f0; . . .; n � 1g, and the set

I ¼ fi1; . . .; itg � ½n� is a subset of t indices and thus an

element of 2½n�, the power set of [n]. For all I 2 2½n� the
coefficient aI 2 F2 is determined through the Möbius

transform (Carlet 2010a). A function f is called affine if the

only non null coefficients aI are such that jIj � 1. In other

words, the ANF is composed only of monomials of degree

at most 1.

Boolean functions used in the design of symmetric

ciphers must satisfy a certain number of properties in order

to withstand particular cryptanalytic attacks. Two of the

most important properties are balancedness and nonlin-

earity. A Boolean function f : Fn
2 ! F2 is balanced if its

output vector Xf is composed of an equal number of zeros

and ones. Unbalanced Boolean functions produce a statis-

tical bias in the output of a symmetric cipher, which can be

exploited by an attacker.

The nonlinearity of f, on the other hand, is the minimum

Hamming distance of Xf from the set of all affine func-

tions. The value of nonlinearity of f can be computed as

Nlðf Þ ¼ 2�1ð2n � Wmaxðf ÞÞ, where Wmaxðf Þ is the maxi-

mum absolute value of the Walsh transform of f (Carlet

2010a). The nonlinearity of a Boolean function used in a

cipher should be as high as possible, in order to thwart

linear cryptanalysis attacks. Nonetheless, there exist upper

bounds on the nonlinearity achievable by a Boolean func-

tion with respect to the number of its input variables. In

particular, for n even it holds that Nlðf Þ� 2n�1 � 2
n
2�1.

Functions satisfying this bound with equality are called

bent. On the other hand, for n odd the upper bound when

n� 7 is Nlðf Þ� 2n�1 � 2
n�1
2 , which is achieved by quad-

ratic functions. For n[ 7, the exact bound is still not

known.

Let n;m 2 N. A vectorial Boolean function of n input

variables and m output variables (also called an (n, m)-

function) is a mapping F : Fn
2 ! Fm

2 . In particular, a (n, m)-
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function is defined by m Boolean functions of the form

fi : F
n
2 ! F2, called coordinate functions. Each 0� i\m,

each fi specifies the i-th output bit of F. That is, for each

x 2 Fn
2, we have FðxÞi ¼ fiðxÞ for 0� i\m.

A one-dimensional cellular automaton (CA) can be seen

as a particular case of vectorial Boolean function by lim-

iting the way the coordinate functions can be defined. Let

‘;m; r 2 N be non-negative integers and let n ¼ ‘þ m þ r.

Let f : F‘þrþ1
2 ! F2 be a Boolean function of ‘þ r þ 1

variables. A cellular automaton of length n with local rule

f, memory ‘ and anticipation r is the (n, m)-function F :

Fn
2 ! Fm

2 defined for all i 2 f0; . . .;m � 1g and for all x ¼
ðx�‘; . . .; xmþrÞ 2 Fn

2 as:

Fðx�‘; . . .; xmþr�1Þi ¼ f ðxi�‘; . . .; ciþrÞ: ð2Þ

Thus, a CA is the special case of a vector Boolean function

where all coordinate functions are defined uniformly.

A t-asynchronous CA, or t-ACA, induced by I is denoted

by ~FI and it is defined by the following global function
~FI : F

n
2 ! Fm

2 :

~FIðx�‘; . . .; xmþr�1Þi ¼
fiðxi�‘; . . .; xiþrÞ if i 62 I

xi if i 2 I:

�

We also recall that a local rule f : F‘þrþ1
2 ! F2 is said to be

center permutive when for each u 2 F‘2, v 2 Fr
2, and y 2 F2

there exists a unique x 2 F2 such that f ðuyvÞ ¼ x. In the

field F2, center permutivity can also be expressed in

another way. A local rule f : F‘þr
2 ! F2 is center permutive

if there exists a function g : F‘þr
2 ! F2 such that for all

x ¼ ðx0; . . .; x‘þrÞ 2 F‘þrþ1
2 we have that:

f ðx0; . . .; x‘þrÞ ¼ x‘ � gðx0; . . .; x‘�1; x‘þ1; . . .; x‘þrÞ :

3 Definition of asynchrony immunity

Recall that a CA F : Fn
2 ! Fm

2 with n ¼ ‘þ r þ m is said to

be balanced if for each y 2 Fm
2 , the preimages of y, i.e., all

x 2 Fn
2 such that FðxÞ ¼ y, denoted by F�1ðyÞ is such that

jF�1ðyÞj ¼ 2‘þr. Asynchrony immune CA can then be

defined as follows:

Definition 1 Let n;m; r; ‘; t 2 N be non-negative integers,

with n ¼ ‘þ m þ r, and F : Fn
2 ! Fm

2 a balanced CA

having local rule f : F‘þrþ1
2 ! F2.

The CA F is said to be (t, n)-asynchrony immune (for

short, (t, n)-AI) if for all sets I � ½m� with jIj � t the

resulting |I|-ACA ~FI is balanced.

Among all possible 22
‘þrþ1

rules of memory ‘ and

anticipation r, we are interested in finding local rules that

generates asynchrony immune CA satisfying additional

useful cryptographic properties, such as high nonlinearity.

As a consequence, proving necessary conditions for a rule

to generate a (t, n)-AI is useful in reducing the size of the

search space.

We start by proving that, for large enough CA and for

high enough values of t, a necessary condition of f is

central permutivity.

Theorem 1 Let F : Fn
2 ! Fm

2 be a (t, n)-AI CA with

memory ‘ and anticipation r. If t � ‘þ r and n� 2‘þ
2r þ 1 then the local rule f : F‘þrþ1

2 ! F2 is center

permutive.

Proof Suppose F to be (t, n)-AI with t and n as in the

hypothesis. Let y ¼ u1au2v 2 Fm
2 be a configuration with

u1 2 F‘2, a 2 F2, u2 2 Fr
2, and v 2 Fm�‘�r�1

2 . Let the set I 	
f0; . . .; ‘; ‘þ 2; . . .; rg be a set of indices to be blocked. It

then follows that each preimage of y can be expressed in

the form x ¼ w1u1bu2w2 with w1 2 F‘2, b 2 F2, and

w2 2 Fmþr�‘�1
2 . Notice that both u1 and u2 remain

unchanged when applying ~FI to x, since their indices are all

contained in I. This situation is illustrated in Fig. 1.

Since the value of the cells in w1 cannot influence any

cell in ~FIðxÞ (since all cells that can be influenced are

blocked), if x ¼ w1u1bu2w2 is a preimage of y, also x0 ¼
w0
1u1bu2w2 for every w0

1 2 F‘2 is a preimage of y. Hence, the

first ‘ cells of the automaton contribute a multiplicative

factor of 2‘ for the number of preimages.

We are now going to prove that the remaining factor of

2r for the number of preimages is entirely due to the last

m þ r � 1 cells (i.e., the part denoted by w2).

For the sake of argument, suppose that the multiplicative

factor contributed by the last m þ r � ‘� 1 cells (i.e., the

w1 u1 b u2 w2

u1 a u2 v

Fig. 1 The construction employed by the proof of Theorem 1. The

patterned background denotes the blocked cells. Here is it is possible

to see that the part labeled with w1 cannot influence any of the output

cells. The cell labeled b can influence only the cell labeled a in the

output, thus forcing the local rule to be center permutive
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part denoted by w2 in the preimages) is less than 2r, since

only a single other cell in the preimage can change (the one

denoted by b), it follows that, in that case the following two

configurations are preimages of y for some choice of w2:

x ¼ w1u10u2w2

x0 ¼ w1u11u2w2:

Notice that the value of a in y is either 0 or 1 and it is

influenced only by its own value and the value of u1 and u2.

Without loss of generality, suppose that a ¼ 0. Consider

now the preimages of y0 ¼ u11u2v. To obtain 1 in the

unblocked position between u1 and u2 then, it must be

f ðu10u2Þ ¼ 1 or f ðu11u2Þ ¼ 1, but by our previous

assumption, both f ðu10u2Þ and f ðu11u2Þ are equal to 0, and

y0 has no preimages. Hence, our hypothesis that the part

denote by w2 in the preimages contributes less than a factor

of 2r in the number or preimages is inconsistent with the

fact that ~FI must be balanced.

Therefore, the parts w1 and w2 contribute, respectively,

factors 2‘ and 2r in the number of preimages, for a total of

2‘þr preimages. It follows that, for each u1 2 F‘2, u2 2 Fr
2,

and a 2 F2 there should be only one value b 2 F2 such that

f ðu1bu2Þ ¼ a. This means that f is center permutive. h

The previous theorem can be generalized as follows:

Theorem 2 Let F : Fn
2 ! Fm

2 be a (t, n)-AI CA with

memory ‘ and anticipation r and k 2 N be a non-negative

integer. Then, if t � ‘þ r and n� 2‘þ 2r þ k, the function

Fu;v : F
k
2 ! Fk

2, which, for each u 2 F‘2 and v 2 Fr
2, is

defined as Fu;vðxÞ ¼ F0ðuxvÞ where F0 : Fkþ‘þr
2 ! Fk

2 is a

CA with the same local rule as F, is a bijection.

Proof The proof of this theorem follows the same rea-

soning of the proof of Theorem 1, as depicted in Fig. 2. Let

I be a set of indices to be blocked such that

I 	 f0; . . .; ‘� 1; ‘þ k; ‘þ k þ rg. Each element of Fm
2

can then be rewritten in the form y ¼ u1au2v with u1 2 F‘2,

u2 2 Fr
2, a 2 Fk

2, and v 2 Fm�‘�r�k
2 . Similarly, a preimage of

y can be expressed in the form x ¼ w1u1au2w2 with

w1 2 F‘2, w2 2 Fmþr�‘�k
2 , and a 2 Fk

2. Following the same

reasoning of the proof of Theorem 1, it can be shown that

the w1 part of the preimage contributes a factor 2‘ in the

number of preimages and that the w2 part contributes a

factor of 2r. Hence, the part denoted by b in y can have

only one preimage. Therefore, when restricted to the k cells

‘‘surrounded’’ by u1 and u2, the global function of the CA

is a bijection, as desired. h

Recall that the reverse of a vector x ¼ ðx0; . . .; xn�1Þ is
the vector xR ¼ ðxn�1; . . .; x0Þ with all components of

x appearing in reverse order. Also, the complement of x is

the vector xC ¼ ð1� x0; . . .; 1� xn�1Þ where all compo-

nents of x appear negated. Given a local rule f : F‘þrþ1
2 !

F2 it is possible to define its reverse f R : F‘þrþ1
2 ! F2 as

f RðxÞ ¼ f ðxRÞ and its complement f C : F‘þrþ1
2 ! F2 as

f CðxÞ ¼ 1� f ðxÞ for all x 2 F‘þrþ1
2 . The definition of

reverse and complement can also be extended to a CA

F : Fn
2 ! Fm

2 in the following way:

FRðxÞi ¼ ðFðxRÞRÞi ¼ f ðxiþr; . . .; xi�‘Þ
FCðxÞi ¼ 1� FðxÞi ¼ 1� f ðxi�‘; . . .; xiþrÞ

We can now show that, for a given (t, n)-AI CA it is

possible to obtain other (not necessarily distinct) (t, n)-AI

by taking either its reverse or its complement.

Proposition 1 Let F : Fn
2 ! Fm

2 be a (t, n)-AI CA for some

n;m; t 2 N with n ¼ m þ r þ ‘ and r ¼ ‘. Then its reverse

FR is also a (t, n)-AI CA.

Proof Starting with the reverse CA, by definition FRðxÞ is
FðxRÞR

. Hence, given a set of indices I with jIj � t, the

reflection of the |I|-ACA ~F
R

I is:

~F
R

I ðxÞi ¼ ð ~FJðxRÞRÞi ¼
f ðxiþr; . . .; xi�‘Þ if i 62 J

xi if i 2 J

�

ð3Þ

where J � f�‘; . . .;m þ r � 1g is defined as a ‘‘reverse’’

of the set I of indices, that is

J ¼ fm þ r � ‘� 1� i : i 2 Ig. Notice that J � ½m� in all

cases only if ‘ ¼ r. This means that for every set I of

indices for FR, the corresponding set J of indices in F is

still a valid one (i.e., a subset of [m]). Notice that since

f generates a (t, n)-AI CA and jJj ¼ jIj � t, the resulting

ACA is still (t, n)-AI. h

w1 u1 b u2 w2

u1 a u2 v

Fu,v

Fig. 2 The construction employed by the proof of Theorem 2. The patterned background denotes the blocked cells. For each value of u and v the

function Fu;v is a bijection from Fk
2 to Fk

2 where k is the length of b
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Notice that, in general, if a (t, n)-AI CA has memory ‘

and anticipation r with ‘ 6¼ r, its reverse might not be a

(t, n)-AI CA. In fact, since center permutivity of the local

rule is not preserved, this negates a condition for asyn-

chrony-immunity that, by Theorem 1, is necessary for

large enough values of t and n.

Proposition 2 Let F : Fn
2 ! Fm

2 be a (t, n)-AI CA for some

n;m; t 2 N. Then its complement FC is also a (t, n)-AI CA.

Proof Let y 2 Fm
2 be a configuration, I � ½m� with jIj � t,

and let ðFC
I Þ

�1ðyÞ be the set of preimages of y under the

function FC
I . By definition, for each x 2 Fn

2,

FCðxÞ ¼ 1� FðxÞ. Hence, the set ðFC
I Þ

�1ðyÞ is

fx : 1� FIðxÞ ¼ yg, which is fx : FIðxÞ ¼ 1� yg which

corresponds to F�1
I ð1� yÞ. Since F is a (t, n)-AI CA, and

all y ranges across all elements of Fm
2 (and thus 1� y does

the same), F�1
I is balanced and ðFC

I Þ
�1

is also balanced.

Since this holds for every set I of cardinality at most t, it

follows that FC is also a (t, n)-AI CA, as required. h

Upper bounds on the size of the search space could be

derived using techniques from Cattaneo et al. (1997) w.r.t.

to the set of transformations FR;FC;FRC; Id, where Id is

the identity transformation.

4 Search of AI rules up to 5 variables

In order to search for asynchrony immune rules having

additional cryptographic properties, by Theorem 1 and

Propositions 1 and 2 we only need to explore center-per-

mutive rules under the equivalence classes induced by

reflection and complement.

In our experiments, we fixed the number of output bits

in the CA to m ¼ 8. Since we are considering only center-

permutive rules, we tested only the smallest value of t sat-

isfying the hypothesis of Theorem 1. The reason why we

limited our analysis to these particular values is twofold.

First, checking for asynchrony immunity is a computa-

tionally cumbersome task, since it requires to determine the

output distribution of the t-ACA for all possible choices of

at most t blocked cells. Second, the sizes of vectorial

Boolean functions employed as nonlinear components in

several real-world cryptographic primitives is limited. A

concrete example is given by AES (NIST/ITL/CSD 2001),

which employs a S-box with 8 output bits.

Table 1 shows all CA parameters considered in our

experiments from 3 to 5 input variables of the local rules,

while keeping the value of output bits fixed to m ¼ 8.

Recall that, since we need to consider only center permu-

tive local rules, we do not need to explore the entire B‘þrþ1

space, but only the subset C‘þrþ1 having cardinality 22
‘þr

.

We started our investigation by performing an exhaus-

tive search among all CA rules with ‘ ¼ r ¼ 1 (that is,

rules of 3 variables), which are also known in the CA

literature as elementary rules. Up to reflection and com-

plement, and neglecting the identity rule that is trivially AI

for every length n and order t, out of the 22
3 ¼ 256 ele-

mentary rules we found that only rule 60 is (2, 10)-asyn-

chrony immune. However, rule 60 is not interesting from

the cryptographic standpoint, since it is linear (its ANF

being x2 � x3).

We thus extended the search by considering all local

rules of 4 and 5 input variables, according to the values of ‘

and r reported in Table 1.

For the case of 4 variables, the search returned a total of

18 rules satisfying (3, 11)-asynchrony immunity, among

which several of them were nonlinear. Table 2 reports the

Wolfram codes of the discovered rules, along with their

nonlinearity values and algebraic normal form. It can be

observed that 12 rules out of 18 are nonlinear, but none of

them is a bent function (since the nonlinearity value in this

case would be 6).

For 5 variables, Table 3 reports the list of (4, 12)-AI

CA. One can see that in this case most of the asynchrony

immune functions are nonlinear, and moreover two of them

achieve the maximum nonlinearity allowed by the quad-

ratic bound, which in this case is 12.

5 Open problems

There are many possible research directions for exploring

asynchrony immune CA, mainly related to generalizations

and relations with other models.

From the generalization point of view, we can relax the

assumption that an attacker can control the updating of at

most t cells on n cells CA. We can suppose that additional

‘‘anti-tamper’’ measures are present and, for example, that

the attacker can only take control of non-consecutive cells.

More in general, we can define ðF ; nÞ-asynchrony immune

CA where F � 2½m� is a family of subsets of

f0; . . .;m � 1g. The standard (t, n)-AI CA can be recov-

ered by taking F as the set of all subsets of [m] with

cardinality at most t. It would be interesting to understand

for what families of sets the theorems of this paper still

Table 1 CA parameters for m ¼ 8 output bits

n ‘ r t jB‘þrþ1j jC‘þrþ1j

10 1 1 2 256 16

11 1 2 3 65536 256

12 2 2 4 
 4:3� 109 65,536
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Table 2 List of (3, 11)-

asynchrony immune CA rules of

neighborhood size 4

Rule Nl(f) f ðx0; x1; x2; x3Þ Rule Nl(f) f ðx0; x1; x2; x3Þ

13107 0 1� x1 14028 2 x1 � x0x3 � x2x3 � x0x2x3

13116 4 x1 � x2 � x3 � x2x3 14643 2 1� x1 � x0x3 � x0x2x3

13155 2 1� x1 � x2 � x0x2 � x2x3 � x0x2x3 14796 2 x1 � x3 � x0x3 � x0x2x3

13164 2 x1 � x0x2 � x3 � x0x2x3 15411 4 1� x1 � x3 � x2x3

13203 2 1� x1 � x0x2 � x0x2x3 15420 0 x1 � x2

13212 2 x1 � x2 � x0x2 � x3 � x2x3 � x0x2x3 15555 0 1� x1 � x2 � x3

13251 4 1� x1 � x2 � x2x3 15564 4 x1 � x2x3

13260 0 x1 � x3 26214 0 x0 � x1

13875 2 1� x1 � x3 � x0x3 � x2x3 � x0x2x3 26265 0 1� x0 � x1 � x3

Table 3 List of (4, 12)-asynchrony immune CA rules of neighborhood size 5

Rule Nl(f) f ðx1; x2; x3; x4; x5Þ Rule Nl(f) f ðx1; x2; x3; x4; x5Þ

252691440 4 x3 � x4 � x2x4 � x5 � x4x5� 3031741620 8 x2 � x1x2 � x3

x2x4x5

252702960 0 x3 � x5 3035673780 6 x2 � x1x2 � x3 � x2x5 � x1x2x5�
x2x4x5 � x1x2x4x5

253678110 10 x1 � x2 � x1x2 � x3 � x2x4� 3537031890 8 x1 � x1x2 � x3

x4x5 � x1x4x5 � x1x2x4x5

255652080 4 x3 � x2x5 � x4x5 � x2x4x5 3537035730 8 x1 � x1x2 � x3 � x4 � x2x4�
x4x5 � x2x4x5

264499440 4 x3 � x5 � x2x5 � x2x4x5 3539005680 2 x3 � x1x4x5 � x1x2x4x5

267390960 0 x3 � x4 4027576500 6 x2 � x1x2 � x3 � x2x4 � x1x2x4�
x5 � x2x5 � x1x2x5 � x4x5�
x2x4x5 � x1x2x4x5

267448560 8 x3 � x4x5 4030525680 4 x3 � x2x5 � x2x4x5

505290270 8 x1 � x2 � x1x2 � x3 4031508720 6 x3 � x5 � x2x5 � x1x2x5 � x4x5�
x2x4x5 � x1x2x4x5

505336350 8 x1 � x2 � x1x2 � x3 � x2x4� 4038390000 2 x3 � x2x5 � x1x2x5 � x2x4x5�
x2x4x5 x1x2x4x5

509222490 4 x1 � x3 � x2x4 � x1x2x4 4039373040 4 x3 � x5 � x2x5 � x4x5 � x2x4x5

517136850 12 x1 � x1x2 � x3 � x4 � x2x4� 4040348370 6 x1 � x1x2 � x3 � x1x4x5 � x1x2x4x5

x4x5

756994590 12 x1 � x2 � x1x2 � x3 � x2x4� 4042268400 6 x3 � x1x4 � x2x4 � x1x2x4�
x4x5 x1x4x5 � x2x4x5 � x1x2x4x5

2018211960 8 x1x2 � x3 � x5 � x2x5� 4042276080 4 x3 � x2x4 � x2x4x5

x4x5 � x2x4x5

2018212080 10 x3 � x1x2x4 � x5 � x2x5� 4042310640 4 x3 � x4 � x2x4 � x4x5 � x2x4x5

x1x2x5 � x4x5 � x2x4x5�
x1x2x4x5

2526451350 0 x1 � x2 � x3 4042318320 2 x3 � x4 � x1x4 � x2x4 � x1x2x4�
x4x5 � x1x4x5 � x2x4x5 � x1x2x4x5

3023877300 6 x2 � x1x2 � x3 � x1x2x5� 4042322160 0 x3

x1x2x4x5

3027809460 8 x2 � x1x2 � x3 � x2x5�
x2x4x5
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hold. Also, what are some families that are ‘‘plausible’’

from a real-world point of view? This study will also

require to explore the different methods that can be

employed by an attacker to take control of some cells and

what physical limits restrict the patterns of blocked cells

that can be generated.

Another research direction is to find relations with

already existing CA models that can be used to implement

AI CA. Take, for example, the Multiple Updating Cycles

CA (MUCCA) (Manzoni et al. 2016), where each cell has a

speed 1/k for a positive k 2 N and a cell updates only if the

current time step is a multiple of k. This means that, at

different time steps, different cells might be active. If the

current time step is not known or if it is under the attacker’s

control, then a CA that is (t, n)-AI can withstand any sit-

uation in which the number of ‘‘slow’’ cells (i.e., with

speed less than 1) is bounded by t. More generally, in what

other models of ACA being asynchrony immune can pro-

tect from an attacker that controls some variables (like the

time step in MUCCA)?

Subsequently, we have found that for size n ¼ 11

there are no (11, 4)-AI CA rules reaching maximum

nonlinearity, that is, none of them is a bent function.

Hence, an interesting question would be if there exists at

least one bent AI CA rule of larger number of variables,

and if it is possible to design an infinite family of bent

AI CA.

Finally, from the cryptanalysis point of view, it would

be interesting to analyze the resistance to clock-fault

attacks of cryptographic primitives and ciphers based on

cellular automata, such as the stream cipher CAR30 (Das

and Chowdhury 2013), the v S-box employed in the Kec-

cak sponge construction (Bertoni et al. 2008), or the CA-

based S-boxes optimized through Genetic Programming

in (Picek et al. 2017; Mariot et al. 2019) and to verify if

plugging in their design one of the AI CA rules found here

decreases their possible vulnerability.
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