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Abstract. We prove existence and uniqueness of classical solutions of the anisotropic
prescribed mean curvature problem

−div

(
∇u/

√
1 + |∇u|2

)
= −au + b/

√
1 + |∇u|2, in B, u = 0, on ∂B,

where a, b > 0 are given parameters and B is a ball in RN . The solution we find is

positive, radially symmetric, radially decreasing and concave. This equation has been

proposed as a model of the corneal shape in the recent papers [13, 14, 15, 18, 17], where
however a linearized version of the equation has been investigated.

1. Introduction. This note is devoted to the study of the existence, the uniqueness and
the qualitative properties of classical solutions of the anisotropic prescribed mean curvature
problem  −div

(
∇u√

1 + |∇u|2

)
= −au+

b√
1 + |∇u|2

, in B,

u = 0, on ∂B,

(1)

where a > 0 and b > 0 are given constants and B = B(x0, R) is the open ball in RN of
center x0 and radius R. This problem has been recently proposed in [13, 14, 15, 18, 17] as
a mathematical model for the geometry of the human cornea: we refer to these articles for
further references on the subject. However, in all these papers a simplified version of (1)
has been investigated, where the curvature operator

div
(
∇u/

√
1 + |∇u|2

)
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has been replaced by its linearization ∆u around 0. In particular, it has been proved in [14]
that, if

b ∈
]
0,

3
√

3

2

√
aI0(
√
a)

I1(
√
a)(2I0(

√
a)− 1)

[
,

with In (n = 0, 1) the n-order modified Bessel functions of the first kind, and B is a unit
disk in R2, then the (physically relevant) problem −∆u = −au+

b√
1 + |∇u|2

, in B,

u = 0, on ∂B

has a unique radially symmetric solution which is the uniform limit of a sequence of succes-
sive approximations. We stress that, in the one-dimensional case, these limitations on the
parameters have later been removed in [18], where it has also been pointed out the interest
of studying the complete model (1).

Like in [6], dealing with the one-dimensional case, we tackle here the fully nonlinear
problem (1) and we prove the existence of a unique solution for the whole range of positive
parameters a, b and for any radius R. Precisely, we first prove a uniqueness result for a more
general problem −div

(
∇u√

1 + |∇u|2

)
= −au+

b√
1 + |∇u|2

, in Ω,

u = 0, on ∂Ω,

(2)

where the ball B is replaced by any bounded domain Ω in RN with a Lipschitz boundary
∂Ω. Then we establish the existence of a classical radially symmetric solution of (1), by
solving the problem −

(
rN−1 v′√

1 + v′2

)′
= rN−1

(
−av +

b√
1 + v′2

)
, in ]0, R[,

v′(0) = 0, v(R) = 0.

(3)

This radial solution is therefore the unique solution of (1). We also prove that it is positive,
radially decreasing and concave. Our result is stated in the following theorem.

Theorem 1.1. Let a > 0 and b > 0 be given and let B = B(x0, R) be the open ball in RN

of center x0 and radius R. Then there exists a unique solution u ∈ C2(B) of (1), which in
addition satisfies:

• there exists a function v ∈ C2([0, R]) such that u(x) = v(|x− x0|) for all x ∈ B;
• 0 < v(r) < b/a for all r ∈ [0, R[;
• v′(r) < 0 for all r ∈ ]0, R];
• v′′(r) < 0 for all r ∈ [0, R].

It is well-known that in general the study of mean curvature problems requires much
care because of the possible occurrence of derivative blow-up phenomena, even in the one-
dimensional case (see, e.g., [5, 12] and the references therein). However, in this case, we can
show that an a priori bound in C1 for a class of solutions of

−
(
rN−1v′√
1 + v′2

)′
= rN−1

(
−av +

b√
1 + v′2

)
(4)

can be obtained by an elementary argument which exploits the structure of the equation
and the qualitative properties – positivity, monotonicity and concavity – of the solutions
themselves. These estimates enable us to use a shooting method on a modification of
equation (4) in order to prove the existence of a solution of (3) and hence of a radially
symmetric solution of (1).



The proof of the uniqueness of solutions of (2) is instead based on converting, by a
suitable change of variable, the original problem into a variational inequality, for which the
uniqueness of solutions can be easily established by using a monotonicity argument.

The numerical solution of the quasilinear problem (3), but limited to the dimension
N = 1, has been considered in [6] and [16], by using different approximation techniques.

We wish to mention that part of our results extends to the N -dimensional problem in
a general domain: achieving this conclusion however requires a quite different approach,
apparently even in the “simple” case of an annulus. This topic is discussed in [7].

We finally recall that anisotropic prescribed mean curvature equations have been recently
considered, driven by different motivations, in [8, 9, 2, 10, 3, 1, 4, 11].

2. Existence, uniqueness and qualitative properties. The proof of Theorem 1.1 is
based on Proposition 2.1 and Proposition 2.2 below.

Proposition 2.1. Let a > 0 and b > 0 be given and let Ω be a bounded domain in RN with
a Lipschitz boundary ∂Ω. Then problem (2) has at most one solution u ∈ C2(Ω).

Proof. The proof consists of two steps.

Step 1. A variational inequality. We show that if u ∈ C2(Ω) is a solution of (2), then
v = exp(−bu) satisfies∫

Ω

√
w2 + b−2|∇w|2 dx−

∫
Ω

√
v2 + b−2|∇v|2 dx ≥ −

∫
Ω

ab−2 ln v (w − v) dx (5)

for all w ∈ C1(Ω) with minΩ w > 0 and w = 1 on ∂Ω. Indeed, it is easy to verify that, if

u ∈ C2(Ω) is a solution of (2), then v = exp(−bu) satisfies −div

(
∇v√

v2 + b−2|∇v|2

)
+

b2v√
v2 + b−2|∇v|2

= −a ln v, in Ω,

v = 1, on ∂Ω.

(6)

Pick any w ∈ C1(Ω), with minΩ w > 0 and w = 1 on ∂Ω, multiply the equation in (6) by

w − v and integrate by parts. The convexity and the differentiability in R+
0 × RN of the

map (s, ξ) 7→ b2
√
s2 + b−2|ξ|2 then yields

−
∫

Ω

a ln v (w − v) dx =

∫
Ω

∇v∇(w − v)√
v2 + b−2|∇v|2

dx+

∫
Ω

b2 v (w − v)√
v2 + b−2|∇v|2

dx

≤
∫

Ω

b2
√
w2 + b−2|∇w|2 dx−

∫
Ω

b2
√
v2 + b−2|∇v|2 dx.

Step 2. Uniqueness. Let us show that problem (2) has at most one solution u ∈ C2(Ω).
Suppose that u1, u2 ∈ C2(Ω) are solutions of (2). Then, as v1 = exp(−bu1), v2 = exp(−bu2)
satisfy (5), we have in particular∫

Ω

√
v2

2 + b−2|∇v2|2 dx−
∫

Ω

√
v2

1 + b−2|∇v1|2 dx ≥ −
∫

Ω

ab−2 ln v1 (v2 − v1) dx

and ∫
Ω

√
v2

1 + b−2|∇v1|2 dx−
∫

Ω

√
v2

2 + b−2|∇v2|2 dx ≥ −
∫

Ω

ab−2 ln v2 (v1 − v2) dx.

Summing up and rearranging we get

0 ≥
∫

Ω

ab−2(ln v2 − ln v1) (v2 − v1) dx.

The strict monotonicity of the logarithm function yields v1 = v2 and hence u1 = u2.



Remark 1. We point out that, essentially by the same proof, we can obtain the following
more general conclusion: if u1, u2 ∈W 1,1(Ω)∩L∞(Ω) satisfy u1|∂Ω = u2|∂Ω and, for i = 1, 2,∫

Ω

∇ui∇w√
1 + |∇ui|2

dx = −
∫

Ω

a ui w dx+

∫
Ω

bw√
1 + |∇ui|2

dx

for all w ∈W 1,1
0 (Ω) ∩ L∞(Ω), then u1 = u2. We refer to [7] for further details.

Proposition 2.2. For any given a, b > 0 and any R > 0, problem (3) has a solution
v ∈ C2([0, R]). In addition, the following conditions hold:

(i) 0 < v(r) < b/a for all r ∈ [0, R[;
(ii) v′(r) < 0 for all r ∈ ]0, R];

(iii) v′′(r) < 0 for all r ∈ [0, R].

Proof. The proof is divided into four steps.

Step 1. A modified problem. Set c =
√

exp(2b2/a)− 1 and define a function ϕ : R→ R by

ϕ(s) =


s√

1 + s2
, if |s| ≤ c,

s+ sgn(s) c3

(1 + c2)3/2
, if |s| > c.

Note that

ϕ′(s) =


1

(1 + s2)3/2
, if |s| ≤ c,

1

(1 + c2)3/2
, if |s| > c

is bounded, bounded away from 0 and satisfies, for all s ∈ R,

ϕ′(s) ≥ 1

(1 + s2)3/2
. (7)

Let us introduce the initial value problem −(rN−1ϕ(v′))′ = rN−1

(
− av +

b√
1 + v′2

)
,

v(0) = d, v′(0) = 0,

(8)

with d ∈ R. Clearly a function v ∈ C2([0, ω[), for some ω ∈ R+
0 ∪{+∞}, is a solution of (8)

if and only if it is a solution of v′′ =

(
av − b√

1 + v′2

)
1

ϕ′(v′)
− N − 1

r

ϕ(v′)

ϕ′(v′)
,

v(0) = d, v′(0) = 0.

(9)

In addition, as

lim
r→0

ϕ(v′(r))

r ϕ′(v′(r))
= v′′(0),

one has

v′′(0) =
ad− b
N

. (10)

Step 2. Global existence, uniqueness and continuous dependence. We are going to show
that, for any given d ∈ R, the initial value problem (8), or equivalently (9), has a unique
solution v ∈ C2([0, R]), which, moreover, depends continuously on the initial datum d and
satisfies (10).



The local existence and uniqueness of solutions of (8) can be proved as follows. One first
observes that, for any δ > 0 small enough, the operator S, defined by

(Sv)(r) = d+

∫ r

0

ϕ−1

(∫ s

0

(
t

s

)N−1(
av(t)− b√

1 + v′(t)2

)
dt

)
ds,

is a contraction in the space C1([0, δ]), endowed with the usual norm; here the global
Lipschitz continuity of ϕ−1 is in particular exploited. The C2-regularity up to 0 of the
fixed point is verified directly; thus it gives rise to a local solution of (8). The continuous
dependence of local solutions on the initial datum d is a consequence of the continuous
dependence of the fixed points of S on the parameter d.

Let us now denote by g : R+
0 × R× R→ R, defined by

g(r, s, ξ) =

(
as− b√

1 + ξ2

)
1

ϕ′(ξ)
− N − 1

r

ϕ(ξ)

ϕ′(ξ)
,

the function which appears at the right-hand side of the equation in (9). Since g is locally
Lipschitz continuous in [δ,R] × R × R and grows linearly in (s, ξ) ∈ R × R uniformly in
r ∈ [δ,R], any local solution of (9) can be uniquely continued to [0, R].

Finally, the continuous dependence of these global solutions on the initial datum d is a
standard consequence of the uniqueness.

Step 3. Qualitative properties. We shall show that, for any given d < b/a, the solution v of
(9), defined on [0, R], satisfies conditions (ii) and (iii).

Let us prove (ii). As v′(0) = 0 and v′′(0) < 0, there exists δ1 > 0 such that v′(r) < 0 in
]0, δ1[. Assume by contradiction that there exists r0 ∈ ]0, R] such that v′(r0) ≥ 0. We can
suppose that v′(r0) = 0 and v′(r) < 0 in ]0, r0[. This yields in particular v(r0) < b/a. As
from the equation in (9) we have

v′′(r0) = a v(r0)− b < 0,

there exists δ2 > 0 such that v′(r) > 0 in ]r0 − δ2, r0[, which is a contradiction.

Let us prove (iii). Assume by contradiction that there exists r ∈ ]0, R] such that v′′(r) ≥ 0.
As v′′(0) < 0, we can suppose that there exists r0 ∈ ]0, r[ such that v′′(r0) = 0 and v′′(r) < 0
in [0, r0[. Define, for r ∈ [0, R],

ψ(r) = v′′(r)ϕ′(v′(r)) = av(r)− b√
1 + v′(r)2

− N − 1

r
ϕ(v′(r)).

We have ψ(r0) = 0 and, by (ii),

ψ′(r0) = av′(r0) + b(1 + v′(r0)2)−3/2v′(r0)v′′(r0)

+
N − 1

r2
0

ϕ(v′(r0))− N − 1

r0
ϕ′(v′(r0))v′′(r0)

= av′(r0) +
N − 1

r2
0

ϕ(v′(r0)) < 0.

This implies the existence of δ3 > 0 such that ψ(r) > 0 on ]r0 − δ3, r0[ and in particular
v′′(r) > 0 in ]r0 − δ3, r0[, which is a contradiction.

Step 4. Solvability. The map T : [0, b/a] → R defined by T (d) = v(R), where v is the
solution of (9), is continuous and satisfies, according to condition (ii),

T (0) < 0 < b/a = T (b/a).

Then there exists d ∈ ]0, b/a[ such that T (d) = 0. The corresponding solution v ∈ C2([0, R])
satisfies v′(0) = 0 = v(R), as well as, by Step 3, conditions (i), (ii), (iii).



In order to show that v is the desired solution of (3), we prove that v also satisfies

‖v′‖∞ ≤
√

exp(2b2/a)− 1 = c,

or equivalently, by (iii),

v′(R) ≥ −c.
From the equation in (9) we easily get

v′′(r) ≥ −b
ϕ′(v′(r))

√
1 + v′(r)2

≥ −b(1 + v′(r)2),

and hence
v′(r) v′′(r)

1 + v′(r)2
≤ −b v′(r).

Integrating this inequality over [0, R], we obtain

1

2
ln(1 + v′(R)2) ≤ b v(0) <

b2

a
,

that is

|v′(R)| <
√

exp(2b2/a)− 1 = c.

This concludes the proof.

Proof of Theorem 1.1. Proposition 2.1 guarantees that problem (1) has at most one solution
u ∈ C2(B). Proposition 2.2 ensures that problem (3) has a solution v ∈ C2([0, R]). Setting
u(x) = v(|x − x0|) for all x ∈ B, a simple calculation shows that u ∈ C2(B) is the unique
solution of (1) which satisfies the cited conditions. Thus Theorem 1.1 follows.
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