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9 Received: 26 October 2019 /Accepted: 4 June 2020
10 � Springer Nature B.V. 2020

11 Abstract Mapping the distribution of invasive

12 species under current and future climate conditions

13 is crucial to implement sustainable and effective

14 conservation strategies. Several studies showed how

15 invasive species may benefit from climate change

16 fostering their invasion rate and, consequently, affect-

17 ing the native species community. In the Canary

18 Islands and on Tenerife in particular, previous

19 research mostly focused on climate change impacts

20 on the native communities, whereas less attention has

21been paid on alien species distribution under climate

22change scenarios. In this study, we modelled the

23habitat distribution of Pennisetum setaceum, one of

24the most invasive alien species on Tenerife. In

25addition, we described the species’ potential distribu-

26tion shift in the light of two climate change scenarios

27(RCP2.6, RCP8.5), highlighting the areas that should

28be prioritized during management and eradication

29programs. P. setaceum’s suitable areas are located in

30the coastal area, with higher habitat suitability near

31cities and below 800 m asl. In both future climate

32change scenarios, the geographic distribution of P.
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33 setaceum suitable areas is characterized by an eleva-

34 tional shift, which is more pronounced in the RCP8.5

35 scenario. Despite being drought resistant, water supply

36 is crucial for the species’ seed germination, thus

37 supporting future species’ shift to higher elevation and

38 in the north–north–west part of the island, where it

39 could benefit from the combined effect of orographic

40 precipitations and humidity carried by trade winds.

41 Keywords Habitat suitability models � Invasive

42 alien species � Canary Archipelago � Global warming

43 Introduction

44 Climate change is having strong ecological impacts on

45 biodiversity from the polar regions to the tropics, and

46 predicting the response of biodiversity to future

47 climate change scenarios has become a primary field

48 of research (Pereira et al. 2010; Bellard et al. 2012;

49 Matı́as and Jump 2013; Dyderski et al. 2018). Global

50 warming, along with the reduction in precipitation

51 during the growing season, may strongly alter species

52 distribution (Kleinbauer et al. 2010; Stocker 2014).

53 Furthermore, the increase in CO2 atmospheric con-

54 centration and Nitrogen deposition promotes the

55 presence of invasive species and enhances the risk of

56 biological invasions (Dukes and Mooney 1999). In

57 this context, special attention should be paid to island

58 systems: islands are, in fact, at the forefront against

59 global changes such as sea-level rise and biological

60 invasions (Bellard et al. 2014; Pyšek et al. 2017).

61 Islands are well known to host habitats rich in rare and

62 endemic species; hence, more than one third of

63 biodiversity hotspots in the world are entirely, or

64 largely, within islands (Bellard et al. 2014).

65 Biological invasions are dramatically threatening

66 island biodiversity and ecosystem integrity (Hulme

67 2009; Scalera et al. 2012) since invasive alien species

68 (hereafter IAS, see Pyšek et al. 2004 for comprehen-

69 sive definitions) may directly reduce local plant

70 species diversity (Tordoni et al. 2019). However, the

71 deleterious effect of plant invasion is not limited to

72 competition with native species, but it could affect the

73 whole ecosystem, especially enclosed and fragile ones

74 such as islands. Firstly, changes in carbon and nitrogen

75 soil dynamics, resulting from alien plants invasions

76 (Vilà and López-Darias 2006; Vilà et al. 2011; Qian

77and Ricklefs 2006), impact soil biotic community and

78potentially alter important processes, such as mutual-

79ism. In nutrient-enriched soils, for example, mycor-

80rhizal populations can become antagonistic to hosts

81(Toby Kiers et al. 2010). The balance in macroinver-

82tebrate communities can be disrupted (Gremmen et al.

831998), with potential effects on the whole ecosystems.

84Secondly, invasive alien plant species could promote

85alien insect presence (Morales and Aizen 2002), which

86has the potential to affect entire habitats and ultimately

87alter ecosystem functioning and services (Kenis et al.

882009). Finally, recent studies suggest that IAS may

89benefit from climate change (e.g. Kleinbauer et al.

902010; Brundu and Richardson 2016; Dyderski et al.

912018), which foster their invasion rate and, conse-

92quently, invasion-related risks.

93Due to the high rate of endemism (Whittaker and

94Fernández-Palacios 2007; Fernández-Palacios et al.

952016), the Canary archipelago represents an extremely

96vulnerable area for alien species invasions (Cour-

97champ et al. 2003; Millennium Ecosystem Assess-

98ment 2005; Kueffer et al. 2010; Bacaro et al. 2015).

99Particularly, the island of Tenerife hosts a total of 9325

100species, 1468 of them being vascular plants with 279

101local endemic plant species (Arechavaleta et al.

1022010). This island has been affected by an intense

103human activity that altered the natural ecosystems,

104causing fragmentation and the introduction of invasive

105species in protected areas (Delgado et al. 2004), such

106as fountain grass (Pennisetum setaceum (Forssk.)

107Chiov.).

108Pennisetum setaceum is a perennial, wind-dis-

109persed, apomictic, C4 bunch grass native to North

110Africa and the Middle East (Williams et al. 1995;

111Poulin et al. 2007). It was introduced in the Canary

112Islands as an ornamental plant and its presence has

113been reported since 1940s (Hansen et al. 1970; de Paz

114et al. 1999). Currently, it is considered one of the most

115invasive species on Tenerife (Arechavaleta et al.

1162010; Francisco-Ortega et al. 2009) as well as in

117other areas (e.g. California, Hawaii, South Africa;

118Williams et al. 1995; Poulin et al. 2007; Rahlao et al.

1192010), constantly expanding its range along roads,

120from urbanized areas toward natural ones (Martı́n Es-

121quivel et al. 1995; González-Rodrı́guez et al. 2010).

122Elevated phenotypic plasticity, characterised by vari-

123ation in functional trait value according to the

124environment, and its resilience, makes P. setaceum

125well adapted to different ecological conditions (Poulin

AQ1
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126 et al. 2007; González-Rodrı́guez et al. 2010). More-

127 over, it can establish symbiosis with different local

128 mycorrhizal fungi (AMF) communities, further pro-

129 moting a successful establishment and spread (Rodrı́-

130 guez-Caballero et al. 2018). It is an aggressive invader

131 of arid and semiarid coastal habitats such as thermo-

132 xerophilous grasslands and shrublands. Here, it estab-

133 lishes almost monospecific stands and causes long-

134 lasting ecological consequences (Cordell and Sand-

135 quist 2008; González-Rodrı́guez et al. 2010). The

136 species is known to have negative impacts on

137 resources acquisitions in the dry forest plant commu-

138 nities and it can interact with the soil bacterial

139 community, shifting its structure and composition,

140 which can result in severe alterations of the N cycle

141 (Rodrı́guez-Caballero et al. 2017). Moreover, it is a

142 fire promoting species that can cause dramatic envi-

143 ronmental changes, since fire is one of the most

144 important drivers of land use and atmospheric changes

145 globally (D’Antonio and Vitousek 1992). Finally, it

146 can promote the presence of the alien invasive

147 leafhopper Balclutha brevis (Bella et al. 2012). It

148 has been estimated that approximately 30% of all

149 protected areas of the Canary Islands have been

150 invaded by fountain grass (Martı́n Esquivel et al.

151 1995; González-Rodrı́guez et al. 2010). Considering

152 the dramatic effects that an uncontrolled increase in its

153 distribution could create on Tenerife, understanding P.

154 setaceum future habitat distribution is particularly

155 important both from a conservational and ecological

156 perspective, and it is a time-sensitive task.

157 Correlative models such as habitat suitability

158 models (HSMs) have extensively been used so far to

159 estimate the geographic distribution of a species based

160 on an index of environmental similarity (Kearney

161 2006; Peterson et al. 2011; Guisan et al. 2017) which,

162 in turn, is estimated starting from its occurrences in

163 relation to its environmental determinants (Thuiller

164 2007; Steiner et al. 2008; Jiménez-Valverde et al.

165 2011). HSMs became a central tool in invasion

166 biology, providing both interesting insight on species’

167 ecology and practical suggestions for eradication

168 management. For invasive species, the correct projec-

169 tion in space and time of HSMs estimates depends on

170 different assumptions, which are defined by the

171 research questions. It is fundamental to consider niche

172 conservatism among native and invasive range when

173 the research objective is to project the suitability index

174 estimated in the native range into the invasive one.

175When using the species invaded range to train a HSM,

176the invasive species must be at quasi-equilibrium with

177the environment in which it occurs (Guisan and

178Thuiller 2005; Gallien et al. 2012). However, these

179assumptions are not always met, since the naturalized

180climatic niche of invasive species may differ from the

181natives climatic niches (e.g. Medley 2010; Early and

182Sax 2014) and since an invasive species is not at

183equilibrium with its environment until the latest stage

184of invasion (Barbet-Massin et al. 2018). Both cases

185result in a likely underestimate on the species

186predicted habitat suitability distribution. However,

187in situations where assumptions cannot be met for

188practical reasons (e.g. impossibility to compare native

189and invasive niche), HSMs may still provide predic-

190tions which are useful for invasive species manage-

191ment, such as highlighting the areas of likely

192expansion in the near future, which should be targeted

193and prioritized by conservation efforts (West et al.

1942016).

195Considering the importance of predictive tools to

196halt the loss of biodiversity, especially in relation to

197the spread of IAS fostered by climate change, here we

198aimed at (i) estimating P. setaceum’s current habitat

199distribution through HSM, across its’ invaded range in

200Tenerife, and (ii) assessing the effect of climate

201change in shaping P. setaceum’s habitat distribution

202under two climate change scenarios (RCP2.6,

203RCP8.5). We hypothesize that P. setaceum may

204benefit from climate warming, increasing its current

205habitat distribution by spreading toward more humid

206zone of the island (e.g. at higher elevation), hence

207potentially increasing its impact on native habitats.

208Final goal of this study is to disclose a clearer image of

209those portions of Tenerife which will be more prone to

210the invasion process and therefore in urgent need of

211eradication and control activities.

212Materials and methods

213Study area

214The study was carried out in Tenerife (27�–29�N, 13�–

21518�W; Fig. 1), the largest island of the Canary

216archipelago and the one with the highest elevation

217within Macaronesia (Mount Teide, 3718 m asl).

218Strong variations in elevation and aspect define local

219mesoclimatic zones and land uses that are primary
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220 factors in structuring both native and alien plant

221 communities on the Canary Islands (Whittaker and

222 Fernández-Palacios 2007). Mesoclimate is affected by

223 the trade winds that create a contrast between the

224 northern or windward aspect (more humid and

225 cloudier) and the southern or leeward aspect (more

226 arid and cloudless).

227 Response variable

228 Data of P. setaceum occurrences were obtained from

229 ATLANTIS (Gobierno de Canarias 2015), a regional

230 database containing IAS occurrences within a grid of

231 500 9 500 m square cells covering the entire

232archipelago. Species records spanned in time from

2331970 to 2017 but only those from 2005 to 2014 were

234considered for the analysis in order to maintain data

235consistency with the climatic data available. Only the

236grid cells covering Tenerife landmass were selected

237from the grid covering the whole Canary archipelago

238(5515 selected out of 8519 total cells). This dataset

239was complemented with records obtained by the Teno

240Rural park internal database (Suppl. Mat.).

241
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Fig. 1 Pennisetum setaceum thinned occurrences distribution on Tenerife
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242 Predictors

243 Three abiotic variables were selected to predict

244 species’ habitat distribution based on previous knowl-

245 edge on the ecology and biology of P. setaceum.

246 Mean winter precipitation and mean spring precip-

247 itation were chosen since the period October–March

248 concentrates the 87.3 % of Canary Islands’ annual

249 precipitation (Sánchez-Benı́tez et al. 2017). More-

250 over, it has been reported that in Mediterranean-type

251 climate areas, P. setaceum germination occurs pri-

252 marily in the Winter–Spring period (especially in

253 December–January), followed by a constant decline

254 towards the Summer due to moisture reduction

255 (Hernandez and Sandquist 2011). Mean spring tem-

256 perature was also selected, since it is known to be a

257 limiting factor for alien species colonization along an

258 elevational gradient, being usually correlated to ele-

259 vation (Barni et al. 2012; Bacaro et al. 2015; Stein-

260 bauer et al. 2017) and because the species has a

261 maximum growth in warmer conditions (Sweet and

262 Holt 2015).

263 Finally, road kernel density was selected as a proxy

264 of propagule pressure and species dispersion, espe-

265 cially for P. setaceum (Foxcroft et al. 2019). Indeed

266 anthropogenic activities enhance alien species’ spread

267 (Pyšek et al. 2010; Tordoni et al. 2017), and roads are

268 known to be primary introduction pathways. Particu-

269 larly, roadside may serve as invasion epicentres for

270 annual species with high reproductive rates (Pauchard

271 and Alaback 2004; Bacaro et al. 2015; Da Re et al.

272 2019).

273 Monthly precipitation of October–March periods

274 and monthly temperature of March–May periods,

275 spanning from 2005 to 2014, were obtained from

276 Agencia Estatal de Meteorologı́a (AEMET, accessed

277 on April 2016). The methodology presented in Da Re

278 et al. (2019) was used for filtering and the processing

279 of the meteorological data in order to obtain contin-

280 uous climatic interpolated surfaces through a co-

281 Kriging procedure, using elevation as covariate (My-

282 ers 1984; Garzón-Machado et al. 2014; Wilson and

283 Silander 2014) and the R-package ‘‘geoR’’ (Ribeir-

284 o et al. 2001). Road kernel density, calculated on the

285 road network using 10 km regularly distributed sample

286 points, was used here as a proxy of human disturbance

287 and as a source of propagule pressure (Bacaro et al.

288 2015; Da Re et al. 2019). The digital elevation model

289 (DEM, 10 m of spatial resolution) and road network of

290Tenerife Island were downloaded from Cartográfica

291de Canarias S.A. (GRAFCAN, https://www.grafcan.

292es/, accessed on March 2016), all the derived variables

293were calculated using the grid spatial resolution as for

294the IAS occurrences (500 m) (Table 1).

295Climate change predictions

296Temperature time series analysis of the Canary Islands

297reported a temperature increase tendency, showing the

298greatest increases on island summit (above 2000 m

299asl) and above the cloud layer of windward mid-

300altitude areas (Martı́n et al. 2012; Luque et al. 2014).

301With regard to precipitation, there is no clear and

302significant change (Garcı́a-Herrera et al. 2003; Crop-

303per and Hanna 2014).

304Cropper (2013) estimates an increase in surface air

305temperature of 1 �C and a decrease in water availabil-

306ity of 15–20% due to more than 30% reduction in

307precipitation (Giorgi 2006; Somot et al. 2008). In

308order to get a reliable estimate of climate change

309effects on the climatic variables considered (though

310deemed approximate), we apply a constant correction

311on interpolated climatic surfaces. Specifically, we

312considered the two Representative Concentration

313Pathways (RCPs), namely RCP2.6 and RCP8.5, as

314described by the 5th Intergovernmental Panel on

315Climate Chage (IPCC) report representing possible

316ranges of radiative forcing values in the year 2100

317relative to pre-industrial values (? 2.6 and ? 8.5 W/

318m2, respectively). Winter and Spring precipitations

319were corrected by - 10.6% and - 36.7% (RCP2.6

320and RCP8.5) according to Winter (December–Jan-

321uary–February, DJF) precipitation reduction prevision

322made by Cropper (2013), while for Spring, tempera-

323ture values 0.96 �C (RCP2.6) and 2.68 �C (RCP8.5)

324were added.

325Habitat suitability modelling

326HSMs were performed using Maxent v3.4.1 (Phillips

327et al. 2017) through the R-package ‘‘dismo’’ (Hijmans

328et al. 2017). Maxent estimates the relationship

329between species occurrences and various environmen-

330tal predictors, identifying areas with suitable environ-

331mental conditions for the species, given a background

332uniform probability of 0.5 (Elith et al. 2011). To

333reduce the effects of sampling bias and thus avoiding a

334possible source of model inaccuracy (Phillips et al.
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335 2006, 2009; Syfert et al. 2013), spatial filtering with a

336 thinning distance of 2 km was applied to the P.

337 setaceum occurrence dataset using the R-package

338 ‘‘spThin’’ (Aiello-Lammens et al. 2015). The thinned

339 occurrence data were then randomly divided into a

340 training set and testing dataset applying a spatial block

341 approach (Guevara et al. 2018; Roberts et al. 2017).

342 Models with different combinations of feature classes

343 (FC: Linear; Quadratic; Linear and Quadratic; Hinge;

344 Linear, Quadratic, and Hinge) and beta regularization

345 multipliers (RM: 0.5–5.0 with 0.5 intervals) were

346 computed in order to avoid overfitting and to approx-

347 imate optimal levels of complexity. The best model

348 was then chosen based on Akaike Information Crite-

349 rion corrected for small sample sizes (AICc, Warren

350 and Seifert 2011; Muscarella et al. 2014). Following

351 Guevara et al. (2018), we used all 8134-island pixel as

352 background point to ensure a full representation of

353 environments available for the species. The optimal

354 settings obtained from above were used to train the

355 final models using maxent.jar software. Model outputs

356 were set as logistic response of the predicted distri-

357 bution. The logistic output was then interpreted

358 conservatively as a suitability index rather than as a

359 probability (Merow et al. 2013) and it was evaluated

360 using both the area under the curve (AUC) provided

361 for the test data (Phillips et al. 2006), and the Boyce’s

362 Index (Hirzel et al. 2006). The Boyce’s Index, com-

363 puted through the ‘‘ecospat’’ R-package (Di Cola

364 et al. 2017), ranges between - 1 (the model predict

365 areas where presences are more frequent as being

366 highly suitable for the species) and ? 1 (the model

367 predictions are consistent with the distribution of

368 presences in the evaluation dataset), and values close

369 to zero mean that the model is not different from

370 random expectations (Hirzel et al. 2006). Finally, the

371model was projected onto current, RCP2.6, and

372RCP8.5 climatic scenarios using unconstrained

373extrapolation (Guevara et al. 2018). The R codes used

374are available in the gitLab repository presented in the

375Supplementary Materials.

376Results

377Pennisetum setaceum is mainly present in coastal

378areas, especially on the North-Western side of the

379island and near the largest cities (Santa Cruz de

380Tenerife, San Cristobal de La Laguna and Güı́mar on

381the N–E coast; Bajamar, Punta del Hidalgo, and Puerto

382de La Cruz on the N–W coast, Los Gigantes and Las

383Americas on the south; Fig. 2 and 2a).

38448 occurrences (out of the original 227) were

385produced using the spatial thinning approach and then

386these were used to train the model. Model selection

387based on the AICc criteria pointed out that the most

388appropriate model was the one having linear, quadratic

389and product features and a beta regularization multi-

390plier equal to 0.5 (Table 2). For this model, both

391Boyce’s Index and AUC suggested good performance

392in predicting species’ environmental suitability (AUC

393= 0.757; Boyce’s Index = 0.855, respectively). Tem-

394perature was the most important variable (88.6% of

395variable importance) followed by precipitation and

396roads density (8.7 and 2.7% of variable importance,

397respectively). Current suitable areas for P. setaceum

398mirrored occurrences’ distribution appearing preva-

399lently below 800 m (Fig. 2). Model prediction based

400on the RCP2.6 scenario substantially confirmed as

401highly suitable areas, the current suitable ones, though

402a shift to higher values of habitat suitability can also be

403observed at higher elevation (Fig. 2b). An elevational

Table 1 Predictors summary statistics at the occurrences locations

Mean SD Median Min Max

October–March mean monthly precipitation 266.48 87.42 263.22 140.47 460.07

Mean spring temperature 18.00 1.00 18.24 15.54 19.93

Road kernel density 0.06 0.07 0.04 0.00 0.40

RCP2.6 October–March mean monthly precipitation 223.85 73.43 221.10 118.00 386.46

RCP2.6 mean spring temperature 18.96 1.00 19.20 16.50 20.89

RCP8.5 October–March mean monthly precipitation 168.68 55.33 166.62 88.92 291.22

RCP8.5 mean spring temperature 20.68 1.00 20.92 18.22 22.61
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404shift is emphasized by the model prediction based on

405the RCP8.5 scenario (Fig. 2c), where P. setaceum

406seems to climb up along elevation (especially in the

407northern part of the island on the Anaga mountains).

408In warmer and drier climatic conditions, P.

409setaceum is likely to shift from lower to higher

410elevations, increasing the total area occupied by the

411species (Fig. 3). Indeed, estimates of habitat suitabil-

412ity indicate the preference of the species for climatic

413conditions with a mean spring temperature higher than

41410 �C (Fig. 4).

415Discussion

416We investigated here the present and future spread of

417the invasive P. setaceum under different climatic

418scenarios, highlighting the current suitability of areas

419below 800 m asl (mirroring its current distribution;

420Supplementary Material Fig. 5), and predicting an

421increase in habitat suitability at higher elevations

422(* 1000 m asl) for both future scenarios considered.

423Specifically, the predicted increase resulted particu-

424larly pronounced for the RCP8.5 scenario. Our

425predictions are quite alarming, considering that 800

426m asl represents the current upper distribution limit of

427P. setaceum in Tenerife (Hobi 2008). P. setaceum is

428one of the most invasive species in Tenerife and it is

429currently spreading around the Mediterraean basin

430(Devesa Alcaraz et al. 2006; Pasta et al. 2010; Saave-

431dra and Alcántara 2017). Our work is therefore

432particularly valuable to halt its spread via an effective

433monitoring of these areas that are under high invasion

434risk in the future.

435Invaded habitats

436Pennisetum setaceum spread below 800 m asl is likely

437to be enhanced by anthropic disturbance (e.g. land-

438cover change and consequent habitat fragmentation),

439rather than global warming. However, due to the year-

440by-year increase in anthropic disturbance and temper-

441ature at higher elevations, its present distribution is

442still expanding above 800 m asl (see for instance

443Kalwij et al. 2015). It has also been observed that P.

444setaceum can reach up to 2000 m asl in other islands

445contexts such as Hawaii (Williams et al. 1995).

446Moreover, P. setaceum has been recently observed at

447altitudes of 1500m in the Barranco Risco Liso, locatedF
ig
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448within the Caldera de Taburiente in La Palma island

449(Walentowitz et al. 2019). Around Tenerife island, P.

450setaceum has rapidly colonized mainly areas that were

451already experiencing anthropic disturbance, such as

452agricultural and rural areas, spreading at higher

453altitudinal belts using the road network as the main

454propagation pathway like other IAS (Arteaga et al.

4552009; Arévalo et al. 2010; Benedetti and Morelli

4562017; Follak et al. 2018). In fact, in the area near

457Arafo, which has a long land-use history for agricul-

458ture, the species has climbed up approximately 100 m

459in elevation in three years (from 655 to 740 m asl,

460personal observation of DDR and ZNP in April 2019).

461P. setaceum established firstly along the roadside, and

462then it spread deeper into the surrounding landscapes,

463confirming that roads remain a crucial dispersion

464pathway for this species and could promote its spread

465into protected areas (Foxcroft et al. 2019; Walentow-

466itz et al. 2019). However, its ability to compete and

467outstand native plant communities could be ques-

468tioned in areas characterized by a high degree of biotic

469resistence and where the native community has

470sufficient propagule pressure for new colonization

471(Schuster et al. 2018).

472Pennisetum setaceum also spread into many ravines

473within the lowlands in the South of Tenerife as well as

474into the lower parts of the National Park Caldera de

475Taburiente (Barranco de las Angustias), settling in

476semi natural communities (personal observations of

477RO). In ravines, called barrancos in Tenerife, tempo-

478rary water flow during the rainy season facilitates the

479spread of seeds downriver, improving also the water

480supply in semiarid areas. However, in the southern-

481most part of Tenerife, P. setaceum probably is still

482limited by soil water conditions and at the highest sites

483of its distribution (currently at about 1000 m asl) low

484temperature might limit its growth. A still unanswered

485question is if P. setaceum will be able to grow and

486spread in open Canary pine forests growing above 800

487to 1000 m asl, which might have serious consequences

488for natural regeneration and fire dynamics. However,

489according to Walentowitz et al. (2019), the dense

490canopy of forest ecosystems should prevent P.

491setaceum spread due to its heliophilous nature.
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492 Limiting factors, functional traits, and competitive

493 advantages

494 Generally, rainfall and temperature patterns are among

495 the most important limiting factors determining plant

496 distribution and abundance (Stephenson 1990), affect-

497 ing reproduction and other life-history traits. Temper-

498 ature is a strong limiting factor for the species, which

499 usually prefers areas with temperature higher than

500 10 �C (Fig. 4). Under the current conditions, these

501 areas are located under 1000 m asl, but they are

502 expected to rise under both the climate change

503 scenarios analysed (RCP2.6 and RCP8.5). The geo-

504 graphic distribution of the species in both scenarios

505 showed an elevation shift, particularly pronounced in

506 the RCP8.5 scenario. The species could move to

507 higher elevation probably benefitting from the effect

508 of orographic precipitations, and it could migrate in

509 the north-western part of the island, where the trade

510 winds enhance water availability (Figs. 2, 3). The

511 ecophysiological traits of P. setaceum support its large

512 size, extensive canopy, shorter leaf senescence period,

513and the capacity to buffer seasonal and local water

514shortages (González-Rodrı́guez et al. 2010). Indeed,

515they confer considerable competitive advantages to

516the invader, and this can partially explain its invasion

517success in the Canary archipelago, considering local

518environmental and climatic conditions. On the other

519hand, seedlings’ growth could be a limiting factor of P.

520setaceum invasion success: despite their relatively

521broad germination requirements, seedling cannot cope

522with low soil moisture or drought conditions (Adkins

523et al. 2011; Goergen and Daehler 2002), and it has

524been suggested that they do not tolerate more than one

525month of drought (Rahlao et al. 2010). Interestingly,

526once the seedlings are established, the amount of water

527does not seem to affect their performance, even under

528higher temperature regimes. When favourable condi-

529tions occur, P. setaceum can quickly thrive (already

530under sub-optimal ecological conditions) and over-

531come native coexisting species through rapid exploita-

532tion of available resources (such as water and

533nutrients), thanks to its broad ecological tolerance

534and high phenotypic plasticity (Williams and Black
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Fig. 3 Relationships between P. setaceum HSM predictions and elevation: blue dots and line, current climatic conditions; orange dots

and line, RCP2.6 climatic conditions; red dots and line, RCP8.5 climatic conditions
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535 1993; Poulin et al. 2007; Rahlao et al. 2010). Further-

536 more, under drought or limited resources availability,

537 the alteration of biomass allocation patterns in favour

538 of roots seems to be a conservative strategy (Williams

539 et al. 1995; Rahlao et al. 2010). This may explain why

540 P. setaceum is an excellent invader of habitats

541 characterized by fluctuating resources, frequently

542 disturbed or with an irregular rainfall pattern, in

543 agreement with Davis’ theory of community invasi-

544 bility (Davis et al. 2000). Compared to native species,

545 the higher nitrogen and water use efficiency (Gonzá-

546 lez-Rodrı́guez et al. 2010) allow P. setaceum to

547 compete effectively in warmer, drier areas, conferring

548 it a considerable competitive advantage (Tordoni

549 et al. 2020). Recently, Rodrı́guez-Caballero et al.

550 (2017, 2018) have shown how P. setaceum could

551 establish symbiosis with different mycorrhizal fungi

552 and act as a transformer (Pyšek et al. 2004) modifying

553 the soil bacterial community related to N cycle. As a

554 consequence, it also tends to increase the risk of

555 intense wildfires (to which it is well adapted), thus

556posing a further threat to resident native communities

557(Tunison 1992).

558Other studies on P. setaceum ecophysiology have

559confirmed the broad ecological tolerance of the

560species in other environments. Specifically, Jacobi

561and Warshauer (1992) reported that in the Hawaiian

562Islands, P. setaceum has a relatively wide elevation

563range (500–2900 m) but is limited to areas with

564median annual rainfall less than 1250 mm, hence only

565dry and mesic habitats are colonized by this species. In

566southern California, Sweet and Holt (2015) reported

567that P. setaceum might benefit from dampened

568temperatures and additional moisture through fog

569drip, becoming competitive in the cooler season due to

570phenotypic plasticity in response to temperature and

571water. Finally, since P. setaceum is endowed of C4

572metabolism, it is likely that climate change may have

573positive effects on its performance, further promoting

574its invasion success, as already observed for other C4

575invaders (e.g. Chuine et al. 2012 for Setaria parvi-

576flora). Indeed, C4 plants are intrinsically adapted to

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Temperature (°C)

H
a

b
it
a

t 
s
u

it
a

b
ili

ty

Scenarios Current RCP26 RCP85

Fig. 4 Relationships between P. setaceum HSM predictions and temperatures: blue dots, current climatic conditions; orange dots,

RCP2.6 climatic conditions; red dots, RCP8.5 climatic conditions
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577 elevated temperatures and to tolerate heat stress (Sage

578 and Kubien 2003) thanks to higher effective quantum

579 yield of CO2 fixation, which increases photosynthetic

580 rates, especially at higher temperatures (Ehleringer

581 and Björkman 1977; Sage and Kubien 2003).

582 For the sake of clarity, we would like to highlight

583 that a possible drawback of our predictions is the

584 violation of the equilibrium assumption. In fact, it was

585 not possible to consider the whole climatic range of the

586 species and train the model including also occurrences

587 present in native range: only 52 P. setaceum occur-

588 rences are available in an area covering mostly the

589 East Africa and the Arabian peninsula (Sudan,

590 Ethiopia, Eritrea, Kenya, Somalia, Saudi Arabia,

591 Yemen and Oman, GBIF accessed on 26th May

592 2020). Considering, however, the invasion pressure

593 that the delicate ecosystem of Tenerife is undergoing,

594 predicting the areas that are more prone to invasion in

595 the near future is more valuable (from a conservation

596 and management perspective and under the precau-

597 tionary principle; West et al. 2016) than modelling the

598 full potential invasive range of P. setaceum at

599 equilibrium. Nonetheless, considering the possible

600 violation of this assumption, care must be taken when

601 interpreting the model outputs.

602 Conclusions

603 Our model predictions highlight that the distribution

604 of P. setaceum in Tenerife will be strongly affected by

605 climate change and particularly by the predicted

606 increase in aridity on the island. Our model (partic-

607 ularly RCP8.5) foresees that the species would move

608 to higher elevation and to the north-western part of the

609 island, likely to benefit both from orographic precip-

610 itations and enhanced water availability promoted by

611 trade winds. Moreover, under the current socio-

612 economic perspectives, the RCP2.6 scenario is becom-

613 ing year after year less feasible (Davis and Socolow

614 2014), making the RCP8.5 one even more likely. The

615 species may consequently have negative impacts on

616 entire ecosystems, due to its strong competitive

617 capacities and being a driver of other invasive species.

618 Particularly, the predicted invasion of areas at higher

619 elevation poses the question of its ability to penetrate

620 the pine forests (especially the more xeric ones in the

621 southern part of the island). Its establishment could

622 drastically affect the dynamics of this unique

623ecosystem (e.g. natural regeneration, fire regime), if

624proper conservation plans will not be developed to

625support ecosystem health and diversity. However,

626even though our predictions are coherent with the

627auto-ecology of the species, climate change predic-

628tions are extremely simplified and should be therefore

629interpreted with care. More powerful outcomes may

630be obtained downscaling climatic data from global

631models such as Global Circulation Model (GCM), but

632to our knowledge spatially interpolated fine scale

633GCM projections for the Canary Islands are still

634lacking. Moreover, it has been showed that whereas

635global scale products are generally applicable at broad

636geographical scale, modelling climate surface on

637islands needs to consider fine scale spatial variation

638due to spatial variability and steep climatic gradient

639variation (Garzón-Machado et al. 2014; Khalyani

640et al. 2016). In a global warming scenario, a modelling

641approach as the one proposed here could play a key

642role in alien species monitoring, highlighting the

643portions of the territory that are more prone to

644biological invasions.

645To our knowledge, Walentowitz et al. (2019) and

646ours results are the first P. setaceum niche model

647outputs presented. Such cartographic products provide

648an immediate tool for understanding potential changes

649in species distributions, and they can be used to

650disseminate and increase the awareness of biological

651invasion outside the academia. Considering the dra-

652matic effects that an uncontrolled increase of P.

653setaceum may have on Tenerife, understanding its

654future potential habitat distribution is therefore crucial

655from a conservational perspective. Immediate control

656measures (e.g. manual and chemical species removal

657efforts) should be carried out from the border of P.

658setaceum current distribution, focusing especially

659along invasion pathways (Walentowitz et al. 2019).

660Furthermore, prohibiting the commercial use of P.

661setaceum propagules could be another tool to control

662the species further spread. In fact, Potgieter et al.

663(2019) showed that ornamental plants are still per-

664ceived as having aesthetic benefits when confined to

665private gardens; however, shifts in perceptions may

666occur when they become widespread in the wild,

667leading to economic and environmental costs. Finally,

668specific Citizen Science projects have been shown to

669be effective to raise the awareness about biological

670invasions and to engage both public administrations

671and citizens in monitoring and controlling invasive

AQ2
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672 species and therefore could be a valuable tool to help

673 controlling the species invasion and its deleterious

674 effect on Canary Islands (e.g. Sladonja and Poljuha

675 2018).
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1002(2017) Striking alterations in the soil bacterial community
1003structure and functioning of the biological N cycle induced
1004by Pennisetum setaceum invasion in a semiarid environ-
1005ment. Soil Biol Biochem 109:176–187
1006Rodrı́guez-Caballero G, Caravaca F, Roldán A (2018) The
1007unspecificity of the relationships between the invasive
1008Pennisetum setaceum and mycorrhizal fungi may provide
1009advantages during its establishment at semiarid mediter-
1010ranean sites. Sci Total Environ 630:1464–1471
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1039 Hernández-Hernández R, Hopfenmüller S, Kidane YM,
1040 Jentsch A, Beierkuhnlein C (2017) Plant invasion and
1041 speciation along elevational gradients on the oceanic island
1042 La Palma, Canary Islands. Ecol Evol 7(2):771–779
1043 Steiner FM, Schlick-Steiner BC, VanDerWal J, Reuther KD,
1044 Christian E, Stauffer C, Suarez AV, Williams SE, Crozier
1045 RH (2008) Combined modelling of distribution and niche
1046 in invasion biology: a case study of two invasive
1047 tetramorium ant species. Divers Distrib 14(2008):538–545
1048 Stephenson NL (1990) Climatic control of vegetation distribu-
1049 tion: the role of the water balance. AmNat 135(5):649–670
1050 Stocker T (2014) Climate change 2013: the physical science
1051 basis: working group I contribution to the fifth assessment
1052 report of the intergovernmental panel on climate change.
1053 Cambridge University Press, Cambridge
1054 Sweet LC, Holt JS (2015) Establishment stage competition
1055 between exotic Crimson fountaingrass (Pennisetum seta-

1056 ceum, C4) and native Purple Needlegrass (Stipa pulchra,
1057 C3). Invasive Plant Sci Manag 8(2):139–150
1058 Syfert MM, Smith MJ, Coomes DA (2013) The effects of
1059 sampling bias and model complexity on the predictive
1060 performance of maxent species distribution models. PLoS
1061 ONE 8(2):e55158
1062 Thuiller W (2007) Biodiversity: climate change and the ecolo-
1063 gist. Nature 448:550–552
1064 Toby Kiers E, Palmer TM, Ives AR, Bruno JF, Bronstein JL
1065 (2010) Mutualisms in a changing world: an evolutionary
1066 perspective. Ecol Lett 13(12):1459–1474
1067 Tordoni E, Napolitano R, Nimis P, Castello M, Altobelli A, Da
1068 ReD, Zago S, Chines A,Martellos S,Maccherini S, Bacaro
1069 G (2017) Diversity patterns of alien and native plant spe-
1070 cies in trieste port area: exploring the role of urban habitats
1071 in biodiversity conservation. Urban Ecosyst
1072 20(5):1151–1160
1073 Tordoni E, Petruzzellis F, Nardini A, Savi T, Bacaro G (2019)
1074 Make it simpler: alien species decrease functional diversity
1075 of coastal plant communities. J Veg Sci 30(3):498–509

1076Tordoni E, Petruzzellis F, Nardini A, Bacaro G (2020) Func-
1077tional divergence drives invasibility of plant communities
1078at the edges of a resource availability gradient. Diversity
107912(4):148
1080Tunison JT (1992) Fountain grass control in Hawaii Volcanoes
1081National Park: management considerations and strategies.
1082Alien plant invasions in native ecosystems of Hawaii:
1083management and research. Cooperative National Parks
1084Resources Studies Unitn, University of Hawai’i at Manoa,
1085Honolulu, pp 376–393
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