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GENERAL SUMMARY 

Forests provide fundamental services to the humanity, contribute to climate regulation, water 

provision and represent one of the most important biodiversity reservoir on the Earth. Climate change 

due to anthropogenic greenhouse gases emission is altering forest ecosystem functioning and services 

through significant changes in the frequency and intensity of extreme events (i.e. drought, floods, 

fires, heatwaves).  

This thesis focuses on the role of tree species richness and functional diversity in supporting carbon 

sequestration and in mitigating the possible negative effects of extreme events, by increasing stand 

resistance and/or resilience. We also considered the long-term effects of atmospheric CO2 increase 

on growth and water-use efficiency in old-growth forests in the Balkans. To do this, we combined 

soil C stocks assessments and dendrochronological measurements with stable (C) isotope analysis 

and with the calculation of functional diversity indexes. 

We found a positive effect of tree species richness and functional diversity in enhancing soil C 

sequestration after land use change from croplands to tree plantations. On the contrary, we detected 

only a partial positive effect of tree richness on growth during extreme drought events. Finally, we 

found that the old-growth forests at the studied sites are still actively fixing CO2 and their efficiency 

in water use is increasing. However, our data support the idea that these positive trends might reach 

a maximum or even undergo a decline in the next future.   
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1. INTRODUCTION 

Atmospheric composition and, in particular, CO2 concentration was relatively stable over the last 

10,000 years, around 260-280 ppm (Köhler et al. 2017). After the second industrial revolution, CO2 

concentration has been raising up to the actual 408.53 ppm (data from Mauna Loa Observatory, 

October 2019, https://www.esrl.noaa.gov/gmd/ccgg/trends/). Moreover, according to the 

Intergovernmental Panel on Climate Change (IPCC), the anthropogenic greenhouse gases (GHGs) 

emissions have reached the highest levels in the last 800.000 years (49±4.5 GtCO2eq yr-1 in 2010; 

Figure 1.1). 

 

Figure 1.1 - CO2 and methane (CH4) concentration (ppm) trends since 1800. Source: 

sealevel.info. 

GHGs can modify the radiative climate forcing (i.e. the rate of energy change per unit area of the 

globe; Rockström et al. 2009), thus altering the energy balance of our planet with direct effects on 

the mean annual temperature (+0.87±0.12°C in period 2006-2015; IPCC 2018), on the distribution of 

total precipitation and on the frequency and intensity of extreme events worldwide (Herring et al. 

2015; Meehl et al. 2000; Parmesan et al. 2000; Rebetez et al. 2006). In particular, extreme droughts, 

heat waves, floods, forest fires, hurricanes have become more frequent and more violent, resulting in 

strong social impacts and economic losses. All these changes are altering natural ecosystems, their 

functioning and the services they can provide to the humanity.  

https://www.esrl.noaa.gov/gmd/ccgg/trends/
https://www.sealevel.info/
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Forests cover about 30% of the biosphere (FAO 2018), harbouring about 60% of all terrestrial plant 

species (Huang et al. 2018) and representing an important sink for atmospheric CO2 (Canadell and 

Raupach 2008; McMahon et al. 2010). They are experimenting, and are becoming more vulnerable, 

to extreme climatic events such as severe drought periods, heat waves and wildfires, which can cause 

changes in species composition, tree mortality rate, growth, ecosystem functioning, acclimation and 

adaptation processes (Anderegg et al. 2012; Lindner et al. 2014; Seidl et al. 2014). As a result, climate 

change is modifying the services forests can provide to the human society. Such services are usually 

grouped in four main categories: provisioning (e.g. wood production), regulating (e.g. carbon (C) 

sequestration, microclimate), supporting (e.g. biogeochemical cycling, water retention and 

redistribution) and cultural (e.g. recreational, human health) benefits (Grossiord et al. 2014c; Millar 

and Stephenson 2015; Thompson et al. 2011).  

Biodiversity in forests have a fundamental role in regulating ecosystem functioning and services. 

Indeed, several studies carried out both in natural ecosystems and in controlled experiments have 

found positive effects of biodiversity on productivity (Liang et al. 2016; Ouyang et al. 2019), on 

biogeochemical cycles (Li et al. 2019), on soil C sequestration enhancement (Lange et al. 2015), on 

resistance and resilience to climatic extremes (Isbell et al. 2015) and on both microbial and pedofauna 

communities (Chen et al. 2019; Dinnage et al. 2012; Ebeling et al. 2014). However, most of these 

studies are often affected by the lack of one or more of the following basic requirements (Baeten et 

al. 2013; Pretzsch et al. 2017): orthogonality, i.e. the detection and quantification of diversity effects 

against disturbing factors; representativeness, i.e. the proportion of variation in the studied population 

captured by the design; comprehensiveness, i.e. the spectrum of ecosystem functions and services 

considered in the study. 

Dendrochronology is one of the main tool used to address the impacts of climate change on forests 

as it allows a retrospective evaluation of tree growth patterns related to climatic variability and 

extreme events. Each tree-ring is the result of plant-intrinsic factors (i.e. photosynthetic rate, water 

potential regulation, hormonal regulation) and plant-external factors (climate, pathogens, stress 
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factors) that can modulate quantity (i.e. width) and quality of annual wood (De Micco et al. 2010; 

Deslauriers and Morin 2005; Lupi et al. 2010; Figure 1.2). For example, hot and dry vegetative 

seasons can lead plants to important hydraulic deficits coupled to drops in photosynthetic rate. As a 

result, annual tree-rings will be thinner than those formed during favourable seasons (Gao et al. 2018). 

 

Figure 1.2 - Example of tree-ring cores with relative ring-width variability in different years. 

Dendrochronology is often coupled with stable isotope analysis to get a deeper insight on the impact 

of climate change on tree growth and physiology. As far as C is concerned, there are about 15 different 

isotopes, but only two of them are stable: 12C (98.93% of total carbon) and 13C (1.07%). They can be 

found in different proportions in organic and inorganic compounds and this ratio can be measured 

using the δ13C (‰) notation, namely the ratio of the proportions of heavier and lighter isotope of a 

sample to a standard. The standard represents a specific material with an isotopic signature (δ13C) of 

0‰. For C isotopes, the standard is the marine limestone fossil Pee Dee Belemnite (PBD). Stable C 

isotope signature variation in organic and inorganic matter depends on fractionation processes, that 

is, the change from source to product in 13C/12C ratio after temporal, physical or chemical processes 

(Fry 2006). Tree response to climatic variability can be reflected in changes in the above mentioned 

fractionation processes and thus in the isotopic signature of the tree rings. For example, during hot 

and dry days, trees reduce stomatal conductance in order to avoid excessive water loss through 

transpiration. The consequence is a lower discrimination to the heavier C isotope (i.e. 13C) by 
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RUBISCO enzyme and an increase in δ13C in the produced organic matter. Thus, isotopic analyses 

represent a useful tool in natural ecosystems to disentangle complex dynamics.
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2. THESIS OUTLINE 

After this general introduction, the thesis is made up of three chapters representing three different 

research papers (one already published and two ready for submission). 

The first paper (Chapter 3) assesses the impact of tree species richness and functional diversity on 

soil C dynamics in six deciduous plantations in Friuli-Venezia Giulia plain (Italy) by using stable C 

isotope analysis. 

The second paper (Chapter 4) investigates the effects of species richness on tree response to extreme 

drought periods. The study was carried out in the same deciduous plantations of the first paper, 

coupling dendrochronological analyses with isotopic analyses. 

The third paper (Chapter 5) analyses the long-term effects of the increase in atmospheric CO2 

concentration on tree growth and water-use efficiency in three old-growth forests in the Balkans using 

dendrochronology and isotopic analysis.  

Finally, the overall conclusions are reported in Chapter 6.  
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3. TREE DERIVED SOIL CARBON IS ENHANCED BY TREE 

SPECIES RICHNESS AND FUNCTIONAL DIVERSITY1 

 

Summary 

We assessed the impact of tree species richness (SR) and functional diversity (FD) on soil carbon (C) 

accumulation in plantations. We selected six mixed plantations established in 1999 on continuous 

maize field soils. Plantations differed only in the number of species whereas climatic conditions, 

stand age, tree density and soil type were the same. In each plantation, four random plots of 400 m2 

each were identified. In each plot and in the nearby maize fields, we collected soil cores to quantify 

organic C content, soil bulk density and δ13C. We then calculated the proportion of new and old C by 

using a mass balance approach. Total soil C stock significantly increased 19 years after tree planting 

(+12%). Most of this increase was detected at 0-15 cm and, on average, almost half of the soil C 

derived from the trees. Both SR and FD had a positive and significant effect on the proportion of C 

derived from the current forest vegetation. Plantations with higher biodiversity, either in terms of SR 

or FD, enhance the proportion of C derived from trees.  

                                                           
1 Palandrani C, Alberti G (2020) Tree derived soil carbon is enhanced by tree species richness and functional diversity. 

Plant and Soil 446: 457–469. 
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3.1 Introduction 

The human alteration of the global environment has caused, and is still causing, widespread changes 

in the global distribution of species and habitats, with possible large impacts on biodiversity levels 

(Cardinale et al. 2012; Schmid et al. 2009). A long history of ecological experimentation and theories 

supports the idea that ecosystem functions (EFs) and services (ESs) are strongly related to 

biodiversity (Balvanera et al. 2006; Cardinale et al. 2002; Hooper et al. 2005; Isbell et al. 2011; 

Loreau et al. 2001; Mace et al. 2012; Nadrowski et al. 2010). In particular, several studies have shown 

that increasing species richness positively affects productivity (Liang et al. 2016; Brassard et al. 2011; 

Ouyang et al. 2019), biogeochemical cycles and soil carbon (C) sequestration (Lange et al. 2015; Li 

et al. 2019), resilience and resistance to climatic extremes (Isbell et al. 2015; Pretzsch et al. 2013), 

microbial biomass (Chen et al. 2019) and pedofauna diversity (Dinnage et al. 2012; Ebeling et al. 

2014; Haddad et al. 2001). However, most of the studies performed on forests are mainly represented 

by large-scale forest inventories (Gamfeldt et al. 2013; Vilà et al. 2013), long-term forest plots 

(Pretzsch et al. 2015) or worldwide meta-analysis (Chen et al. 2019; Paquette and Messier 2011; 

Piotto 2008; Zhang et al. 2012). Even though their main results highlight a positive effects of diversity 

on all the above-mentioned EFs and ESs, they are often affected by the lack of one or more of the 

following basic requirements (Baeten et al. 2013; Pretzsch et al. 2017): orthogonality, i.e. the 

detection and quantification of diversity effects against disturbing factors; representativeness, i.e. the 

proportion of variation in the studied population captured by the design; comprehensiveness, i.e. the 

spectrum of EFs and ESs considered in a study. Indeed, most of these studies are usually affected by 

climatic and environmental heterogeneity, low number of considered tree species, incomparable 

species identity and/or different stand ages. Ad hoc experiments, considering a wider spectra of tree 

species richness levels within defined climatic conditions and soil characteristics, have been only 

recently established  (Huang et al. 2018; Scherer-Lorenzen et al. 2007), but most of them have been 

mainly considering aboveground processes (i.e.  primary productivity), while little is still known 
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about the impact of tree diversity on below-ground processes and soil C sequestration in forest 

ecosystems (Li et al. 2019).  

Soil can store far more C than plants tissues and represents an important sink for atmospheric CO2 

(Jobbágy and Jackson 2000). Soil C stock results from a dynamic equilibrium between C inputs (i.e. 

aboveground litter, dead roots and root exudates) and outputs (i.e. microbial decomposition and 

leaching). Therefore, this balance may be affected by changes in soil physical and chemical 

properties, species composition, plant growth through litter production, persistence of recalcitrant 

compounds or assemblage of microbial community (Jastrow et al. 2007). As far as this last aspect is 

concerned, soil microbial biomass and activity show a significant response to changes in species 

richness and functional trait diversity (Alberti et al. 2017; Chen et al. 2019; Handa et al. 2014; Thakur 

et al. 2015; de Vries et al. 2012). In fact, different tree species mixtures influence litter decomposition 

directly through species-specific litter traits (i.e. nutrient content, physical traits) (Deveau et al. 2018; 

Santonja et al. 2017) and, indirectly, through distinct modifications of the local micro-environment 

(Joly et al. 2017). Thus, changes in litter decomposition may translate into significant changes in soil 

C stocks along a tree species richness or functional diversity gradient. However, detecting such 

responses is challenging, as C pools only change slowly (Lange et al. 2015; Smith 2004), soil 

heterogeneity is usually large (Schrumpf et al. 2011), and the processes involved are complex 

(Cotrufo et al. 2015; Manzoni et al. 2012). In this context, C stable isotopes may represent a useful 

tool to detect the expected little changes in soil C stocks along species richness gradients (Ehleringer 

et al. 2000), especially if mixed deciduous plantations (C3 plants) have been established on soil with 

a strong C4 signal (i.e. maize cultivated soil).  In fact, as 13C signal from C3 plants is significantly 

different from those in soil with C4 crops (ca. -28‰ and ca. -20‰, respectively), the relative 

contribution of new vs. old soil organic C (SOC) can be better quantified using the mass balance of 

stable isotope contents instead of looking at the overall soil C stock change (Del Galdo et al. 2003).  

In Friuli Venezia-Giulia plain (North Eastern Italy), mixed deciduous plantations with different 

mixture levels have been established on previously maize cultivated soil with a strong C4 isotopic C 
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signature in the last 20 years and offer a unique opportunity to study the impact of species richness 

on belowground processes and C sequestration. In addition, continuous maize fields were maintained 

in the surroundings (Del Galdo et al. 2003). Among these plantations, we selected stands differing 

only in the number of species (3, 4, 6, 7, 8 and 9) whereas climatic conditions, stand age (19 years), 

tree density and soil characteristics were exactly the same as well as we selected nearby maize fields 

as controls. The aim of our study was to quantify the impact of species richness and functional 

diversity on soil C accumulation after land use change by combining traditional assessment of soil C 

stocks and stable isotopes. We hypothesized that tree mixtures with higher biodiversity, either in 

terms of tree species richness or functional diversity, show an increase in soil C sequestration about 

20 years after land use change.  

 

3.2 Materials and methods  

3.2.1 Study area 

Six nearby deciduous plantations established 20 years ago (1999) in Friuli Venezia-Giulia plain (Italy; 

46°5’50’’N, 13°1’7’’E, 121 a.s.l.) on former arable lands (i.e. maize) were selected. The stands 

differed only for their surface area and number of tree species (3, 4, 6, 7, 8 and 9) whereas initial tree 

density ha-1 were the same. None irrigation, fertilization and pruning have been done since planting. 

Climatic conditions as well as soil characteristics were the same at all sites: mean annual temperature 

was 13.3°C, mean annual precipitation was 1500 mm and soil was an alluvial mesic Udifluvent (sand 

58%, loam 28%, clay 14%). 

The continuous maize cultivation in the surrounding croplands preserved the typical isotopic 

signature of C4 plants, here used as background value (Del Galdo et al. 2003). 

 

3.2.2 Sampling strategy 

In each plantation four random plots of 400 m2 each were identified. In each plot, tree species and 

abundance were assessed and tree diameter at 1.30 m (d.b.h.) and total height were measured. In 
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summer 2017 and summer 2018, three healthy and fully-developed leaves from three randomly 

chosen individuals for each species in each plot were sampled, sealed and stored together in cool-

bags in order to prevent weight loss, until measurements in laboratory.  

Five soil samples up to 15 cm were collected in each plot and in the respective nearby maize field 

with a manual soil auger (MSA samples). Moreover, one soil core per plot and four soil cores in the 

nearby maize field up to 60 cm depth were sampled using a petrol driven pneumatic auger (PPA 

samples; Eijkelkamp, the Netherlands) to quantify organic carbon (C) content, soil bulk density and 

isotopic signature of SOC at different depths (0-15; 15-30; 30-45; 45-60 cm).  

 

3.2.3 Leaf analysis 

Once in lab, leaves without petiole were fresh-weighted, dried for 48 hours at 60°C, dry-weighted, 

ball-milled and stored in plastic vials.  

Before drying, leaves were scanned and leaf area was measured by analysing each picture with ImageJ 

software (ImageJ 1.51j8, Wayne Rasband, National Institutes of Health, USA, 

http://imagej.nih.gov/ij, Java 1.8.0_112). Specific leaf area (SLA; cm2 g-1) was calculated as ratio 

between leaf surface and leaf dry weight. Such a variable is well-related with tree growth rate and, 

thus, with tree biomass contribution to soil C dynamics (Poorter and Remkes 1990).  

Leaf thickness (TH; mm) was computed as (Vile et al. 2005): 

 

TH ≈ 
1

𝑆𝐿𝐴 𝑥 𝐿𝐷𝑀𝐶
 

 

where LDMC is the leaf dry matter content. TH is another functional trait related with tree growth 

(Poorter 1990), productivity (White and Montes 2005) and ecological performance (Diaz et al. 2004). 

Finally, C and nitrogen (N) content, C to N ratio, C and N isotopic signature (δ13C and δ15N, 

respectively)  of each dry sample were measured using a CHNS Elemental Analyser (Vario 

http://imagej.nih.gov/ij
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Microcube, © Elementar) coupled to a stable isotope ratio mass spectrometer (IRMS; Isoprime 100, 

© Elementar).  

 

3.2.4 Soil sample analysis 

In the lab, MSA samples were air-dried, sieved at 2 mm, ball-milled and stored in plastic vials for 

chemical analysis. As said, soil cores (PPA samples) were divided in four different horizons, air-dried 

and sieved at 2 mm. Then, soil bulk density (kg m-3) was calculated for each layer as the ratio between 

the weight of sieved soil and sample total volume. Subsamples of sieved soil were taken, ball-milled 

and stored in plastic vials for the further chemical analysis. 

Before analysis, all soil samples were treated with HCl to eliminate carbonates (Nieuwenhuize et al. 

1994). Then, C and N content, C to N ratio and δ13C were measured as previously described for leaf 

samples. 

 

3.2.5 Data analysis 

Total leaf biomass (t ha-1) was computed from leaf area (m2 ha-1) derived using allometric 

relationships from literature (Table 3.1) and leaf mass per area (LMA [g cm-2] = SLA-1) measured on 

the sampled leaves.  

Species richness was expressed as the total number of tree species sampled in each single plot. 

Functional diversity can be mathematically expressed using several approaches and indices (Laliberté 

and Legendre 2010; Mason et al. 2005; Petchey and Gaston 2002, 2006; Villéger et al. 2008). In our 

study, we computed functional dispersion index (FDis), i.e. the mean distance in a multidimensional 

trait space of individual species to the centroid of all species, weighted by their relative abundances 

(Laliberté and Legendre 2010). Species distance was weighted by the basal area of each species within 

the mixture thus to take into account the different sizes that tree species reached after 19 years of 

growth. FDis was computed using the R-package FD (Laliberté et al. 2014).  
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Species a b Reference 

Acer campestre 0.446 1.799 (Burton et al. 1991) 

Acer 

pseudoplatanus 
0.446 1.799 (Burton et al. 1991) 

Carpinus betulus 2.655 1.091 (Shahrokhzadeh et al. 2015) 

Celtis australis 0.210 1.863 
Generic equation for broad-leaved species; (Forrester et 

al. 2017) 

Fraxinus excelsior 0.148 2.392 (Forrester et al. 2017) 

Fraxinus ornus 0.210 1.863 
Generic equation for broad-leaved species; (Forrester et 

al. 2017) 

Juglans nigra 1.900 1.422 (Zellers et al. 2012) 

Juglans regia 1.900 1.422 (Zellers et al. 2012) 

Morus alba 0.210 1.863 
Generic equation for broad-leaved species; (Forrester et 

al. 2017) 

Ostrya 

carpinifolia 
2.655 1.091 

Same equation used for Carpinus betulus; 

(Shahrokhzadeh et al. 2015) 

Prunus avium 0.089 1.420 (Forrester et al. 2017) 

Querscus robur 0.168 2.138 (Forrester et al. 2017) 

Tilia cordata 0.210 1.863 
Generic equation for broad-leaved species; (Forrester et 

al. 2017) 

Ulmus minor 0.210 1.863 
Generic equation for broad-leaved species; (Forrester et 

al. 2017) 

Table 3.1 - Coefficients used to estimate leaf area (LA; m2) according to the model LA = a x Db, where D is the 

diameter at breast height (cm). 

Soil carbon stock (Csoil; MgC ha-1) was calculated as: 

 

𝐶𝑠𝑜𝑖𝑙 =
𝑑 𝑥 10000 𝑥 𝜌 𝑥 𝐶𝑚

1000
 

 

where d is the horizon depth, ρ is the soil bulk density of fine soil particles (<2 mm) (kg m-3) and Cm 

is the mean C content (%). 

With respect to the adjacent maize field, the δ13C values of the soil organic matter (SOM) were used 

to calculate the proportion of new C (fnew, i.e. the C derived from the current forest vegetation) and 

of old C (fold=1−fnew, i.e. the C of the organic matter previous to afforestation), by using the mass 

balance equation (Del Galdo et al. 2003): 
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fnew =
𝛿𝑛𝑒𝑤 −  𝛿𝑜𝑙𝑑

𝛿𝑣𝑒𝑔 −  𝛿𝑜𝑙𝑑
 

 

where δnew is the δ13C of SOM of the afforested soil, δold is the δ13C of the cropped soil and δveg is the 

mean δ13C of tree leaves weighted for species mean basal area. Thus, knowing the f values for the old 

and new C, concentrations and amounts of old and new C were obtained.  

 

3.2.6 Statistical analysis 

All statistical analysis were performed using RStudio software (Version 1.0.136 – © 2009-2016 

RStudio, Inc.).  

Mean aboveground characteristics among the plantations, leaf functional traits across species, overall 

soil C stocks between land uses, δ13C values between leaves and soil were compared using one-way 

ANOVA. Soil C stocks at different soil depth in plantations and maize fields were compared using a 

two-way ANOVA. All data were eventually log-transformed before performing the statistical 

analysis to meet the requirements for parametric statistical tests using powerTransform and bcPower 

functions in car package. Post-hoc Tukey test was performed when a significant difference was 

detected. 

Linear models were used to describe correlations of both soil C stocks samples and fnew with species 

richness gradient or FDis. Shapiro-Wilk normality test was applied on models’ residuals in order to 

test their normal distribution.  

 

3.3 Results 

3.3.1 Stand characteristics 

Fraxinus excelsior, Juglans sp.p. and Prunus avium were the three common species across the 

selected plantations (Table 3.2).  
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Even though the planting density was the same (between 1905 and 2020 plants ha-1), a significant 

difference in the actual tree density was detected at the time of field survey, 19 years after planting 

(p<0.001; Table 3.3). On average, the selected plantations had a mean basal area (G) of 18.00±1.39 

m2 ha-1 (n=6) a mean tree diameter (davg) of 12.42±0.37 cm (n=6) and a mean height (H) of 10.37±0.17 

m (n=6) (Table 3.3). Both tree basal area (p=0.019) and leaf biomass (p=0.003) significantly 

decreased with increasing tree species richness (Figure 3.1).  

TREE SPECIES 
PLANTATION 

1 2 3 4 5 6 

Acer campestre   X X X X 

Acer pseudoplatanus  X   X X 

Carpinus betulus   X X  X 

Celtis australis     X X 

Fraxinus excelsior X X X X  X 

Fraxinus ornus   X X   

Juglans nigra X     X 

Juglans regia   X X X X 

Morus alba    X   

Ostrya carpinifolia     X  

Prunus avium X X X X X X 

Querscus robur     X  

Tilia cordata     X  

Ulmus minor  X    X 

TREE SPECIES RICHNESS 3 4 6 7 8 9 

Table 3.2 - Surveyed tree species by plantation and total species richness. 
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ID 
AREA 

(ha) 

SPECIES 

RICHNESS 

FUNCTIONAL 

DISPERSION 

(FDis) 

PLANNED 

STAND DENSITY 

(N ha-1) 

ACTUAL STAND 

DENSITY (N ha-1) 

davg 

(cm) 

G 

(m2 ha-1) 

Havg 

(m) 

LAI 

(m2 m-2) 

1 1.19 3 6.84±0.70 (a) 1905 1494±25 (ab) 
12.75±0.21 

(ab) 

21.02±0.52 

(ab) 
13.28±0.08 (d) 6.20±0.42 (b) 

2 1.00 4 6.61±0.49 (a) 1905 1479±56 (ab) 
13.75±0.19 

(a) 

23.09±0.83 

(a) 
10.31±0.05 (bc) 4.28±0.18 (ab) 

3 0.52 6 7.22±0.87 (a) 2020 1190±81 (a) 
12.42±0.36 

(ab) 

15.61±1.20 

(ab) 
9.75±0.11 (ab) 4.63±0.36 (ab) 

4 0.52 7 10.98±1.39 (ab) 1905 1252±53 (a) 
13.06±0.20 

(ab) 

17.98±0.76 

(ab) 
9.08±0.06 (a) 5.15±0.35 (ab) 

5 1.59 8 9.69±1.37 (ab) 1905 1736±59 (b) 
11.26±1.21 

(ab) 

15.79±4.14 

(ab) 
10.93±0.54 (c) 3.48±0.91 (a) 

6 0.58 9 15.92±3.05 (b) 1905 1321±72 (a) 
10.70±0.33 

(b) 

14.52±0.83 

(b) 
8.89±0.15 (a) 4.50±0.49 (ab) 

Table 3.3 - Mean characteristics of the selected plantations (ID). Davg = mean tree diameter (cm); G = tree basal area (m2 ha-1), Havg = mean tree height (m); LAI 

= leaf area index (m2 m-2). Mean ± standard error (n=4). Different letters in parenthesis indicate a significant difference among plantations (p<0.05).
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Figure 3.1 - Changes in tree basal area (a) and leaf biomass (a) with increasing tree species richness.  Each 

point represent a sampling plot (n=24). Red line represent the regression line, while blue lines represent the 95th 

confidence interval. 

3.3.2 Leaf traits and functional diversity 

Mean leaf traits per species are summarized in Table 3.4. All functional traits were significantly 

different among tree species with the exception of δ15N that differed significantly only between C. 

betulus and F. excelsion vs. J. nigra. U. minor differed from the majority of all the other species for 

all traits, with the exception of δ15N, followed by J. nigra and M. alba. On the contrary, Q. robur did 

not show any difference when compared to all the other species for all traits. T. cordata had the 

highest specific leaf area (255.29±8.09 cm2 g-1) and the highest N content (5.62±0.67%), U. minor 

has the highest leaf thickness (0.19±0.01 mm), O. carpinifolia had the highest leaf C content 

(48.75±0.27%), while A. campestre had the lowest δ13C (-30.04±0.14‰). 

The computed FDis vary from 6.61±0.49 to 15.92±3.05 in 4-species and in 9-species plantations, 

respectively (Table 3.3). 
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SPECIES N SLA TH N C C/N δ13C δ15N 

AC 15 189.64±6.02 (cde) 0.11±0.00 (abc) 2.67±0.26 (bcd) 46.96±0.31 (bc) 19.05±1.07 (bc) -30.04±0.14 (bc) -4.85±1.03 (ab) 

AP 10 211.09±12.54 (def) 0.13±0.01 (bcd) 3.09±0.33 (cd) 46.89±0.33 (cd) 16.2±1.11 (bcd) -28.97±0.24 (cd) -6.32±0.48 (ab) 

CA 6 115.9±6.87 (cbde) 0.17±0.01 (cd) 1.93±0.08 (bcd) 44.22±1.06 (bcd) 23.2±1.08 (bcd) -29.65±0.48 (bcd) -9.6±2.42 (ab) 

CB 12 200.8±11.69 (ef) 0.11±0.00 (cd) 2.31±0.11 (cd) 47.74±0.17 (cd) 21.12±0.93 (cd) -28.59±0.26 (cd) -2.08±0.46 (a) 

FE 20 135.58±3.45 (ab) 0.19±0 (bc) 2.17±0.06 (ab) 44.66±0.22 (ab) 20.9±0.54 (ab) -28.48±0.13 (b) -4.97±0.63 (a) 

FO 8 165.59±4.57 (bcde) 0.14±0.01 (abcd) 2.18±0.07 (bc) 46.32±0.58 (bc) 21.44±0.78 (abcd) -29.16±0.2 (bc) -3.53±0.46 (ab) 

JN 8 189.17±15.41 (f) 0.14±0.01 (d) 2.27±0.08 (d) 44.81±0.34 (d) 19.92±0.68 (d) -29.93±0.4 (d) -5.52±0.96 (b) 

JR 16 176.92±9.66 (bcd) 0.17±0.01 (bcd) 2.63±0.18 (bc) 46.1±0.34 (bc) 18.61±1.02 (abc) -29.41±0.2 (bc) -5.31±0.93 (ab) 

MA 4 215.07±15.74 (bce) 0.14±0.01 (abcd) 2.76±0.09 (bcd) 44.84±1.62 (abcd) 16.29±0.26 (abcd) -28.06±0.34 (abcd) -2.96±0.49 (ab) 

OC 4 218.17±21.75 (bce) 0.1±0.01 (abc) 4.1±0.39 (bcd) 48.75±0.27 (abcd) 12.29±1.34 (ab) -29.61±0.31 (abc) -7.45±1.52 (ab) 

PA 24 187.9±7.95 (bc) 0.13±0.00 (a) 2.51±0.18 (ab) 46±0.23 (ab) 19.67±0.87 (ab) -28.51±0.15 (ad) -6.16±0.69 (ab) 

QR 2 130.23±2.21 (abcdef) 0.16±0.01 (abcd) 3.46±0.23 (bcd) 48.54±0.01 (bcd) 14.14±0.88 (abcd) -26.77±0.15 (abcd) -7.81±0.34 (ab) 

TC 4 255.29±8.09 (def) 0.1±0.00 (abcd) 5.62±0.67 (cd) 47.27±0.3 (bcd) 8.89±1.25 (ab) -27.72±0.34 (bcd) -5.91±0.96 (ab) 

UM 8 131.11±6.31 (a) 0.19±0.01 (ab) 2.24±0.1 (a) 45.52±0.3 (a) 20.64±0.95 (a) -28.28±0.18 (a) -8.07±1.01 (ab) 

Table 3.4 - Mean values of leaf functional traits per species. AC = Acer campestre; AP = Acer pseudoplatanus; CA = Celtis australis; CB = Carpinus betulus; 

FE = Fraxinus excelsior; FO = Fraxinus ornus; JN = Juglans nigra; JR = Juglans regia; MA = Morus alba; OC = Ostrya carpinifolia; PA = Prunus avium; QR 

= Quercus robur; TC = Tilia cordata; UM = Ulmus minor.  N are the plots where the species have been found. SLA = Specific Leaf Area (cm2 g-1); TH = leaf 

thickness (mm); N = leaf nitrogen content (%); C = leaf carbon content (%); C/N = leaf carbon to nitrogen ratio; δ13C = stable carbon isotope ratio (‰); δ15N 

= stable nitrogen isotope ratio (‰). Mean ± standard error. Different letters in parenthesis indicate a significant difference among plantations (p<0.05).
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3.3.3 Variation in soil C among plantations 

A clear decrease in total soil C was detected with depth in both the plantations and the adjacent maize 

fields (plantations: p=0.005; maize: p=0.08; Figure 3.2a). Nineteen years after the land use change, 

the overall soil C stock (0-60 cm; PPA samples) was 12% higher in the forest stands (96.99±6.10 

MgC ha-1) than in the adjacent maize crops (85.68±8.26 MgC ha-1) and corresponded to an annual 

total C sequestration of +0.60 MgC ha-1 year-1. This increase in soil C was mainly due to the 

significant changes detected between 0 and 15 cm (+32%; p-value<0.001; Figure 3.2a). Such a 

difference at this depth was also confirmed by the intensive soil survey (SSA samples; p<0.001), even 

though any clear pattern with species richness level was evident (p=0.98, Figure 3.2b).  

 

Figure 3.2 - Total soil C stocks with soil depth as derived by PPA samples (a) and soil C stocks at 0-15 cm 

at different levels of species richness (b) as derived by MSA samples in plantations. Vertical bars indicate 

standard error (n=6 and n=4 for panel a and b, respectively). Different letters in panel a indicate a 

significant difference (p<0.05). Adjacent maize C stock is reported as reference in panel a. 

A significant difference in isotopic signature (δ13C) among tree leaves (-28.95±0.18‰; n=6), soil 

organic matter in the plantations (-24.74±0.18‰; n=6) and soil organic matter in the adjacent maize 

fields (-20.14±0.61‰; n=6) was detected (p<0.001; Figure 3.3), thus allowing the calculation of fnew
 

according to the equation proposed by Del Galdo et al. (2003).  

On average, fnew was equal to 0.49±0.02 and, assuming a mean total soil C stock at 0-15 cm of 

41.7±1.9 MgC ha-1 across all plantations (n=6; Figure 3.2a), we estimated an overall contribution of 

trees to soil C storage at this depth of 20.4±1.2 MgC ha-1. 
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Both species richness (Figure 3.4a) and FDis (Figure 3.4b) had a significant and positive effect on 

fnew following the land use change (species richness: R2=0.23; p=0.017; FDis: R2=0.18; p=0.039). 

 

Figure 3.3 - Mean δ13C of leaves, soil organic matter in plantation 

and in adjacent maize fields. Vertical bars indicate standard error 

(n=6). Different letters indicate a significant difference (p<0.05). 

 

Figure 3.4 - Proportion of new soil organic C (fnew) derived from the current forest vegetation with 

increasing species richness (A) and with increasing functional dispersion (FDis; B). Points represent the 

sampling plots (n=24). Red line represents the regression line, while blue lines represent the 95th 

confidence interval. 
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3.4 Discussion 

Nineteen years after planting we measured an overall increase in soil C stock (+12%; 0-60 cm; Figure 

3.2a). Most of this increase was detected in the upper soil layer (0-15 cm), being this layer the first to 

receive the organic C entering the soil. On the contrary, any significant decrease in total soil C with 

depth was detected in the control maize fields, probably because of tillage practices. Similarly to our 

results, Guo and Gifford (2002), in their meta-analysis on soil C stock and land use change, reported 

an overall mean increase in soil C stock of 18% 15-18 years after planting and Popleau and Don 

(2013) found about a 30% increase at 0-30 cm depth in soil C stocks after about 40 years in six 

European sites after cropland afforestation. Our results are also similar to those of Del Galdo et al. 

(2003) obtained in similar plantations. On the contrary, Nave et al. (2013) and Vesterdal et al. (2002) 

found that afforestation of agricultural land does not lead in soil C accumulation in less than 30-35 

years. They highlighted an increase in soil C stocks in shallow soil layers, offset by a huge decrease 

of soil C stocks in deeper layers after afforestation mainly due to low C accumulation in the younger 

stands and still higher decomposition rates of organic matter by soil microbial communities. 

However, forest ecosystems have far more complex C dynamics both above- and belowground and 

they require long-term experimentations to be disentangled and understood (Leuschner et al. 2009). 

Using stable isotopes (δ13C), we estimate that, on average, almost half of the total soil C at 0-15 cm 

in the selected plantations derived from the trees. Similarly, Del Galdo et al. (2003) reported that tree-

derived C contributed 43% and 31% to the total soil C storage at 0-10 and 10-30 cm depths, 

respectively. Comparing the old C stocks (calculated by difference between total and new C stocks) 

and soil C stocks from maize fields (can be considered approximatively the same value of pre-planting 

situation), we found that plantations lost approximately 23% of soil C derived from previous maize 

cultivation. Such loss can be attributed to the complex dynamic in both shallow and deep soil layers. 

For example, Li et al. (2019) performed SOC analysis on biodiversity-ecosystem functioning 

experiment in China, established on previous natural forest. They found, from 2010 to 2015 a 

significant decrease of SOC in the topsoil (0-10 cm), probably due to soil disturbance during site 
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preparation, and a significant increase of SOC in deeper layers (10-30 cm) attributed to downward 

transport processes of organic matter (Gleixner et al. 2009) or slower SOC turnover and consequent 

SOC accumulation (Jobbágy and Jackson 2000). On the other hand, Fontaine et al. (2007) showed 

how stable organic compounds in deep soil layers can be easily degraded when interacting with more 

recent and less stable soil organic matter, enhancing the process called “priming effect”. This process 

can alter the proportion of old C stocked in soil and the new one. Moreover, in shallow layers, plants 

can stimulate and modulate microbial activity via recalcitrant compounds release, root exudates and 

root turnover (De Deyn et al. 2008). Indeed, many studies highlighted the positive relationship 

between species richness or diversity and fine root productivity, thus, influencing belowground 

carbon dynamics (Brassard et al. 2013; Lei et al. 2012; Ma and Chen 2017). 

We did not observe any significant trend in total soil C stocks at 0-15 cm depth along our tree species 

richness gradient (Figure 3.2b). This can be related to the large soil heterogeneity under tree cover, 

which would have required a more intensive sampling  (Schrumpf et al. 2011, Smith 2004), and to 

the fact that the relative change along the species gradient is too small when compared to the overall 

soil C stock to be detected using soil C concentrations and soil bulk densities. However, using stable 

isotopes, we showed that both tree species richness and functional diversity had a positive and 

significant effect on the proportion of C derived from the current forest vegetation (fnew; Figure 3.4a 

and Figure 3.4b), thus indicating that higher biodiversity can locally enhance soil C sequestration. 

Such results are in agreement with Gamfeldt et al. (2013), who showed an increase of 11% of soil C 

storage passing from 1 to 5 species in Swedish forests plots.  

As far as mechanisms are concerned, plant diversity can act on microbial community and, 

consequently, on soil C accumulation through litter input into the soil (quantity and quality) and root 

dynamics. Several field studies in forest ecosystems have reported positive effects of tree species 

diversity on productivity (e.g. Chen et al. 2018; Huang et al. 2018; Liang et al. 2016; Paquette and 

Messier 2011; Zhang et al. 2012). Thus, higher tree productivity would also mean more litter 

production in broad-leaf stands (both above- and below-ground) and, thus, more C entering into the 
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soil compartment. However, there are also several other study showing none or even negative 

relationships between tree productivity and species richness (e.g. Chen and Klinka 2003; Jacob et al. 

2010; Vilà et al. 2003). In our study, we did not directly measure tree productivity, but, as it is 

positively linked to tree basal area (Bohn and Huth 2017), we use this last variable to infer the overall 

effect of tree species richness on tree productivity. According to our results, we found a significant 

decrease in total tree basal area with increasing the number of tree species (Figure 3.1a). This 

unexpected decrease can be related to the lower actual stand density than at planting (Table 3.3), 

mainly due to natural mortality following a high competition for resources. In fact we can expect 

higher competition as the number of species increases as the richest plantation (#6) had two couples 

of congeneric species (Acer sp. and Juglans sp.) and three couples of the same family (Acer sp. of 

Aceraceae, Juglans sp. of Juglandaceae and Celtis australis and Ulmus minor of Ulmaceae). Such a 

decrease in tree basal area also translated into a significant decrease in the leaf biomass (i.e. leaf 

productivity; Figure 3.1b) and, thus, in annual litter production.  

On the contrary, we detected significant differences in the measured leaf functional traits (Table 3.4) 

among the considered tree species, reflecting different qualities of the litter mixtures. Such differences 

may thus explain the measured increase in tree-derived soil C with increasing species richness and 

tree functional diversity. In fact, Dawud et al. (2017) highlighted that across the major European 

forest types soil C stocks are driven by tree species functional groups, while Ruiz-Jaen and Potvin 

(2011) in the tropics underlined a strong positive effect of species richness and functional diversity 

on soil C storage in plantations and in natural forest, respectively. It has also been shown that leaf N 

content, SLA and chlorophyll content per unit leaf area had positive effects on decomposition, 

explaining together 65–69% of the variation (Bakker et al. 2011). Litter with a high N concentration 

is easily mineralised, thus producing more microbial residues, which are then bound to the mineral 

soil matrix, leading to an increase of stable SOC content (Cotrufo et al. 2015; Faucon et al. 2017). In 

our case, species with higher leaf N content (>3%), higher SLA and lower C:N ratio were only present 

in the plantations with the highest tree species richness and functional diversity (Table 3.4), thus 
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contributing to higher tree-derived soil C values. Moreover, as N concentrations in leaves and 

absorptive roots are positively correlated (Wang et al. 2017), we can hypothesized that soil organic 

matter should be more stable where species with higher leaves N concentration are present (Angst et 

al. 2019). Our measured leaf trait values are coherent with those reported in literature. SLA is one of 

the most measured and easy to be measured trait (Cornelissen et al. 2003; Pérez-Harguindeguy et al. 

2013). Our SLA data (168.15±8.16 cm2 g-1, on average) are in agreement with those derived from 

specific leaf mass in (Poorter et al. 2009).  Looking at TH, N and C content and C to N ratio mean 

values, they laid in the range of data obtained from TRY-Plant Trait Database (Kattge et al. 2011). 

Similarly, our mean leaf δ13C values are in the range reported by Del Galdo et al. (2003). Craine et 

al. (2009) reported a global mean value of leaf δ15N of 0.9‰ with 95% of data ranging between -

7.8‰ and 8.7‰, confirming our data. However, leaf δ15N can be locally very variable due to several 

factors, that is, the signature of N deposition, the amount of N gained from symbiotic fixation or from 

mycorrhiza, the fractionation processes in soil and the signature of N lost from the ecosystem (Craine 

et al. 2015).  

 

3.5 Conclusions 

We found that both species richness and functional diversity have a positive effect on the proportion 

of tree derived C (0-15 cm) in forest plantations on ex-agricultural fields even though mean tree basal 

area and tree leaf biomass along the tree diversity gradient decreased. Therefore, litter quality can be 

more important than its quantity (i.e. annual production): higher leaf N content, coupled with higher 

SLA and lower C/N values can lead to higher mineralisation rates and higher soil C accumulation. 

Thus, more diverse forest stands can enhance and better modulate microbial community and, thus, 

soil C dynamics through more diverse litters.  
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4. INFLUENCE OF TREE SPECIES RICHNESS ON TREE 

GROWTH AND INTRINSIC WATER-USE EFFICIENCY 

AFTER EXTREME EVENTS IN TREE PLANTATIONS IN 

NORTH-EASTERN ITALY2 

 

Summary 

We investigated the effects of species richness on tree response to extreme drought periods. The study 

was carried out in the same deciduous plantations of the first paper, coupling dendrochronological 

analyses with isotopic analyses. We compared the differences in calculated normalised tree growth 

and intrinsic water-use efficiency in both a dry and a mild year along the species richness gradient. 

Tree species diversity had a positive effect on the response to drought, but only at lower levels of tree 

species richness, when facilitation and/or complementarity mechanisms prevailed.  Instead, negative 

responses were typical at higher levels of species richness, when competition was the dominant 

process within the stand.  

                                                           
2 Palandrani C, Battipaglia G, Alberti G (submitted) Influence of tree species richness on tree growth and intrinsic water-

use efficiency after extreme events in tree plantations in North-eastern Italy. European Journal of Forest Research. 
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4.1 Introduction 

In the last decades, anthropogenic impacts are threatening natural ecosystems worldwide and are 

exacerbating extreme climate events, which are increasing both in intensity and in frequency (IPCC 

2014; Trenberth et al. 2014; Williams et al. 2013). Consequently, forests are becoming more 

vulnerable to these events (i.e. windstorms, drought events, heatwaves or wildfires), which are 

causing increasingly loss of biodiversity and loss in several ecosystem functions (EFs) and services 

(ESs) (Allen et al. 2010; Scholze et al. 2006). Indeed, forests can adapt to this new disturbance 

regimes or stresses by adjusting tree physiological mechanisms, shifting in latitudinal and altitudinal 

distributions or changing species composition, but such changes are usually slow through space and 

time (Beckage et al. 2008; Christmas et al. 2016; Jump and Peñuelas 2005; Kremer et al. 2012; 

Parmesan 2006).  Thus, it has become important to understand the extreme events’ effects on forests 

in order to identify and adopt the best management and mitigation policies and practices in the 

short/medium term (Mori et al. 2017). 

In this perspective, studies about the role of species diversity in enhancing ecosystem resistance (i.e. 

the ability to withstand harsh events) and/or resilience (i.e. the ability to regain the pre-disturbance 

growth rates) (Merlin et al. 2015) to climatic extremes are spreading out (Baeten et al. 2013; 

Bruelheide et al. 2014; Verheyen et al. 2015) as biodiversity can sustain EFs and ESs through species 

complementarity, facilitation processes and/or niches partitioning, with a net increase in overall 

ecosystem performances (Cardinale et al. 2012; Hector et al. 2011; Morin et al. 2011). Several studies 

have highlighted that higher species richness can increase the resistance and/or the resilience to 

disturbances and stresses, especially to pests, pathogens and other diseases (Jactel and Brockerhoff 

2007; Zhu et al. 2000). However, the effects of tree species diversity on the response to climatic 

extreme events (i.e. drought and heatwaves) are still debated and the results are often contrasting (Yin 

and Bauerle 2017). For example, during drought events, plant’s physiological activity and growth can 

be seriously compromised: hydraulic failure and/or depletion of carbon (C) pools (i.e. C starvation), 

interacting with pests and other biotic attacks, are considered the main factors leading in reduced 
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growth or higher tree mortality (McDowell 2011). In some cases, different tree species, with different 

functional traits (e.g. including genetic diversity and physiological characteristics), both above- and 

belowground, have been seen to positively influence forest resistance to drought events with a better 

resource acquisition and/or use (Lebourgeois et al. 2013; Pretzsch et al. 2013). In others, species 

sharing the same ecological niches strongly compete for the same resources, thus leading in a reduced 

resistance or resilience to extreme events (Grossiord et al. 2014a; Grossiord et al. 2014b).  

Recent studies have used dendrochronological analyses to assess the impact of well- documented dry 

years on forests and targeted tree species (Lloret et al. 2011; Merlin et al. 2015; Vitali et al. 2017) as 

well as stable C isotope to compare dry and wet years and to better underline the effects of drought 

on tree physiological processes (Grossiord et al. 2014a). In fact, every tree-ring is the result of plant-

intrinsic factors (i.e. photosynthetic rate, water potential regulation, hormonal regulation) and plant-

external factors (i.e. climate, pathogens, stress factors), which can modulate the quantity (i.e. width) 

and the quality (i.e. isotopic signature) of annual wood production (Battipaglia et al. 2009; De Micco 

et al. 2010; Deslauriers and Morin 2005; Lupi et al. 2010). Hot and dry vegetative seasons can lead 

plants to important hydraulic deficits coupled to drops in photosynthetic rate and, as a result, annual 

tree-rings will be thinner than those formed during favourable seasons (Gao et al. 2018). On the other 

hand, the analysis of stable C isotopes in tree-rings gives additional information about the occurrence 

of drought events and on the amount of carbon assimilated as biomass per unit of water used by trees 

(i.e. intrinsic water-use efficiency; iWUE) (Farquhar et al. 1982). During drought events, plants can 

close stomata to avoid unnecessary water loss. Consequently, stomatal conductance to CO2 decreases 

and rubisco fixes more 13C than usual. The results are rings enriched in heavier isotope, which 

translates in less negative isotopic signatures (Francey and Farquhar 1982). Few studies (Li 1999; 

Walker et al. 2015) have specifically investigated, so far, the role of tree species richness on the tree 

growth’s response to drought by combining both dendrochronological indexes and C isotope in 

forests or in controlled experiments.  
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In Friuli-Venezia Giulia plain (North Eastern Italy), several deciduous plantations were established 

at the end of last century to sustain regional wood production, but also to increase C storage and/or 

biodiversity. Such plantations might be composed by target tree species only (i.e. commercial ones) 

or by target species consociated with accessory tree species. The same climate and soil conditions 

make these plantations a useful tree species richness gradient experiment in homogenous 

environmental conditions to assess the role of tree diversity in mitigating extreme event impacts on 

forest ecosystems. The aim of our study was to understand the role of the overall tree species richness 

in determining growth and iWUE patterns in the target tree species (i.e. Fraxinus excelsior, Juglans 

sp.p. and Prunus avium) during drought events, by coupling dendrochronology and C isotope 

analysis. We hypothesized that the higher is the number of consociated species (i.e. tree species’ 

diversity), the higher is the positive effect of tree growth and iWUE, in response to drought.  

 

4.2 Materials and methods 

4.2.1 Study area 

Six deciduous plantations were identified in Friuli-Venezia Giulia plain (Italy; 46°5’50’’N, 

13°1’7’’E, 121 a.s.l.). Climatic conditions and soil characteristics were the same across all sites: mean 

annual temperature was 13.3°C and mean annual precipitation was 1500 mm from 1995-2017 data 

recorded at Fagagna meteorological station (46°06’51’’N; 13°04’50’’E; www.osmer.fvg.it); soil was 

alluvial mesic Udifluvent (sand 58%, loam 28%, clay 14%). All plantations were established in 1999 

and stand planting density was between 1905 and 2020 plant ha-1. No fertilization, irrigation (with 

the exception of emergency irrigation during the first 4-5 years) and pruning have been performed at 

all sites. Plantations differed only for their total surface area and for tree species richness (3, 4, 6, 7, 

8, and 9). A detailed description of each selected stand (i.e. species composition and dendrometric 

characteristics) is reported in Chapter 3, tables 3.2 and 3.3.  
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4.2.2 Sampling strategy 

The study focused on the three commercial tree species (target species), which were present at all 

sites (i.e. Fraxinus excelsior, Juglans sp.p. and Prunus avium). In each plantation, 15 dominant trees 

for each target species (45 trees per site) were selected, avoiding individuals at the border of the stand. 

Two perpendicular wood cores at 30 cm height from the ground for each selected plant were taken 

using an increment borer, stored in cardboard and naturally dried. Once in the lab, samples were glued 

on woody supports and sanded with paper with 60, 120, 240, 320 and 600 grit to make tree rings more 

visible.  

 

4.2.3 Dendrochronological analysis 

Tree-ring width was estimated for each core using Dendrotab 2003 (© Walesch Electronic GmbH). 

Chronologies were visually and statistically cross-dated using TSAP (© TSAPWin Scientific, version 

4.81, 2002-2018, Frank Rinn / RINNTECH) and COFECHA (Grissino-Mayer 2001; Holmes 1983) 

softwares, respectively. Cross-dated chronologies were then normalized using the Hugershoff 

correction (Fang et al. 2010; Warren 1980; Warren and MacWilliam 1981) with the function detrend 

in dplR package in RStudio (© Rstudio, version 1.2.1335, ©2009-2019 Rstudio, inc.) in order to 

remove noises associated with age trends, which may be significant especially in young plants and 

during the first years of growth.  

 

4.2.4 Climate index 

The driest and the reference year (i.e. a year representing average climate conditions at the 

experimental sites, neither too warm and dry nor too cold and wet) since tree planting were identified 

by calculating the De Martonne Index (DMI; Maliva and Missimer 2012; Vitali et al. 2017): 

𝐷𝑀𝐼 = 𝑃 (𝑇 + 10)⁄  
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where P is the total rainfall (mm) and T is the mean temperature (°C) at the experiment sites, 

calculated yearly on the vegetative season (from April to October) from 1995-2017 data from 

Fagagna meteorological station, the nearest station to our selected sites (www.osmer.fvg.it). We 

considered the years below the 10th percentile of DMI distribution as the driest and the years between 

the 45th and the 55th percentile as the references (i.e. years representing mean climate conditions at 

the experimental sites). Using such an approach, 2006 and 2014 were identified as the driest and the 

reference year, respectively (Table 4.1). Even though 2003 resulted to be the driest year ever, we 

decided to not consider it as the selected plantation were 4 years-old, canopies were not completely 

closed and emergency irrigations were still performed according to local records.   

www.osmer.fvg.it
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YEAR Tavg (°C) P (mm) DMI 

1995 17.7 984.4 35.59 

1996 16.9 1219.2 45.29 

1997 17.4 656.2 23.99 

1998 17.7 1406.4 50.74 

1999 18.1 935 33.30 

2000 18.3 913 32.22 

2001 17.9 768.4 27.54 

2002 17.6 1169 42.36 

2003 19.3 458.4 15.66 

2004 17.3 882.8 32.38 

2005 17.6 1194.6 43.30 

2006 19.0 714.8 24.67 

2007 18.7 809.4 28.21 

2008 18.0 988.6 35.29 

2009 19.2 805.2 27.60 

2010 18.1 982.3 34.91 

2011 19.7 807.6 27.16 

2012 19.5 1082 36.73 

2013 18.4 1032.8 36.31 

2014 18.2 970.6 34.45 

2015 18.6 1009 35.32 

2016 18.3 775.9 27.39 

2017 18.2 696.4 24.68 

MEAN 18.2 924.4 / 
Table 1 - Yearly climatic parameters considered during the vegetative 

season (from April to October) for the De Martonne Index (DMI): 

Tavg=yearly mean temperature (°C); P=yearly cumulated 

precipitations (mm); DMI=De Martonne Index. DMI 10th 

percentile=24.67; DMI 45th percentile=32.36; DMI 55th 

percentile=34.50. Data from Fagagna meteorological station 

(www.osmer.fvg.it). 

 

4.2.5 Isotopes analysis and iWUE 

Three wood cores for each species in each plot were randomly selected. Rings corresponding to 2006 

and 2014 were accurately cut and stored in different plastic tubes. To avoid contamination, samples 

were washed with pure ethanol and dried at 40°C overnight. Then, samples were milled and weighted 

in tin capsules and δ13C was assessed using a CHNS Elemental Analyser (Vario Microcube, © 

Elementar) coupled to a stable isotope ratio mass spectrometer (IRMS; Isoprime 100, © Elementar). 

www.osmer.fvg.it
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We calculated iWUE (μmolCO2 molH2O
-1), defined as the ratio between photosynthesis and leaf 

transpiration, using δ13C values of the single tree ring according to the model of Farquhar et al. (1982): 

𝑖𝑊𝑈𝐸 =  
𝐴

𝑔𝐻2𝑂
=  𝑐𝑎 ∗  

(𝑏 −  𝛥13𝐶)

1.6 ∗ (𝑏 − 𝑎)
 

knowing that C isotopic discrimination is equal to (Farquhar et al. 1982): 

Δ13C =
𝛿13𝐶𝑎 −  𝛿13𝐶𝑝

1 −  𝛿13𝐶𝑝
 

where Ca (ppm) is mean annual atmospheric CO2 concentration, a is the fractionation during CO2 

diffusion (a = 4.4‰), b is the fractionation during carboxylation (b = 27‰), δ13Ca is the isotopic mean 

annual isotopic composition of atmosphere, and δ13Cp is the isotopic composition of tree-ring 

samples. Ca and δ13Ca were downloaded from Mauna Loa Observatory database 

(https://www.esrl.noaa.gov/gmd/). 

 

4.2.6 Data analysis 

We considered as control (ctrl) the plantation without any consociate species (plantation n. 1; Table 

3.2), while we expressed tree species diversity in the other plantations as the total number of 

consociated species. Then, we compared normalized tree-ring width and iWUE of the target species 

between the selected years (2006 and 2014), between species richness and years x species richness 

using a two-way ANOVA. All data were eventually transformed before doing the statistical analysis 

to meet the requirements for parametric statistical tests using powerTransform and bcPower functions 

in car package. Post-hoc Tukey test was done when a significant difference was detected. All 

statistical analysis were applied using RStudio software (Rstudio, version 1.2.1335, ©2009-2019 

Rstudio, inc.). 

 

 

 

https://www.esrl.noaa.gov/gmd/
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4.3 Results 

The annual growth rates of the three target tree species were similar, on average, across all the 

considered plantations both considering raw and normalized tree-ring width (Figures 4.1a and 4.1b): 

all target species showed peaks in tree-ring width in 2002 and in 2004 followed by a constant decrease 

during the last 8-9 years. Similarly, they showed a significant drop in the growth rate in 2003, 2006 

and 2015, while synchronous increases were recorded in 2007, 2014 and 2016. 

 

Figure 4.1 - Average (mm yr-1; a) and normalized tree-ring width (b) of the three commercial species (Fraxinus 

excelsior, Juglans sp.p. and Prunus avium) across all the studied plantations . 

When normalized ring width is considered across all plantations, Fraxinus excelsior, Juglans sp.p. 

and Prunus avium grew 36%, 47%, 30% less in the driest (2006) and in the reference year (2014), 

respectively (p<0.001; Figure 4.2). Such a difference in ring width between those two years is also 

confirmed when each single plantation (i.e. increasing the number of associated species) is considered 

(p<0.05; Figure 4.3). However, while in the driest year (2006) increasing the number of consociated 

species had a positive influence on the ring width of the target species (+14% when compared to 

control; p=0.001), in the reference year (2014) such a difference was not significant (-8%; p>0.05; 

Figure 4.3). Moreover, in 2006 the major difference (+23%, p<0.001) was detected in the plantation 

with only one consociated species, while lower differences were found at higher levels (+3% and 

p=0.30 when consociated species = 6). In 2014 (reference year), significant differences were only 

found between plantations with five and six consociated species (p=0.002). 
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Figure 4.2 - Mean normalized tree-ring width in 2006 and 2014 for the three 

commercial tree species across all the plantations. Vertical bars indicate 

standard errors (n=5 for Fraxinus excelsior and Juglans sp.p.; n=6 for Prunus 

avium) and different letters indicate a significant difference (p<0.05). 

 

Figure 4.3 - Normalized tree-ring growth with the increase of associated tree 

species in the different plantations. “ctrl” represents the reference plantation (i.e. 

the three commercial species, only). Black triangles indicate mean values for each 

boxplot. Asterisks in “Year” box indicate significant differences between 2006 

(dry year) and 2014 (reference year) inside the same plantation (p<0.05). 

Different lowercase letters in “Ass. Sp.” box indicate significant differences 

among treatments in 2006 (p<0.05), while different capital letters in the same box 

indicate significant differences among plantations in 2014 (p<0.05). 
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As far as C isotopic signature is concerned, δ13C values ranged from -26.45±0.65‰ and -

26.54±0.84‰ in 2006 and 2014, respectively, reflecting typical ranges of C3 plants. We measured a 

significant lower mean iWUE across all plantations (-6%; p<0.001; Figure 4.4) in the driest year 

(2006) than in the reference year (2014). Increasing the number of consociated species (Figure 4.5) 

caused a significant difference in iWUE in direst year, only (p=0.02). In particular, major and 

significant differences with control were detected when five consociated tree species were present 

(+11%; p=0.02), while minor and non-significant differences were found when six consociated 

species were present (+4%; p=0.84). 

 

Figure 4.4 - Mean intrinsic water-use efficiency (iWUE; μmol CO2 mol H2O-1) in 2006 

and 2014 across all plantations. Vertical bars indicate standard errors (n=48) and 

different letters indicate a significant difference (p<0.05). 
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Figure 4.5 - Intrinsic water-use efficiency (iWUE μmol CO2 mol H2O-1) with increasing the 

number of associated species. “ctrl” represents the reference plantation (i.e. the three 

commercial species, only). Black triangles indicate mean values for each boxplot. Asterisks 

in “Year” box indicate significant differences between 2006 (dry year) and 2014 (reference 

year) inside the same plantation (p<0.05). Different lowercase letters in “Ass. Sp.” box 

indicate significant differences among treatments in 2006 (p<0.05), while different capital 

letters in the same box indicate significant differences among plantations in 2014 (p<0.05). 

 

4.4 Discussion 

Tree species respond differently to drought events depending on the intensity and the frequency of 

these lasts, on their occurrence during the vegetative season (i.e. spring or summer droughts) (Merlin 

et al. 2015), on tree age, site characteristics and forest management (Sohn et al. 2016). 

In our study, we observed a strong age-related trend in tree ring width for each of the considered 

commercial species (Figure 4.1a): major widths were recorded between 2001 and 2005, followed by 

a subsequent and constant decline. Such a growth pattern reflects the typical growth behaviour in 

young trees (Fang et al. 2010), thus confirming our choice to use a normalizing function to eliminate 

these age-related trends (Figure 4.1b). Each of the target tree species showed a significant drop in tree 



40 
 

ring width values during 2003, which was recorded as one of the driest and hottest years in Europe 

since the beginning of XX century (De Bono et al. 2004; Rebetez et al. 2006; Schär and Jendritzky 

2004). Other growth declines were also observed in 2006 and in 2015, which have been reported as 

exceptionally hot and dry years at regional scale (www.osmer.fvg.it), as confirmed also by our DMI 

index analysis (Table 4.1). On the contrary, increases in the ring width values were measured in 2004 

and 2014, years with vegetative seasons characterised by mild temperatures and relatively abundant 

precipitations (www.osmer.fvg.it).  

Looking at normalized tree ring widths, the three target species responded differently during the 

selected dry (2006) or the reference year (2014), with a 37% decrease in the first compared to the 

latter (Figure 4.2). Such a difference was consistently maintained throughout the tree species richness 

gradient, even though with different intensities (from 48% in the reference to 23% in the plantation 

with one consociated tree species; Figure 4.3). Moreover, comparing the control plantation to all the 

other stands, the difference in the normalized ring width values was more evident in the driest year 

than in the reference year (Figure 4.3). Our results support the idea that plantations with less than five 

consociated tree species may enhance tree growth in the target commercial tree species through niche 

complementarity and/or facilitation processes (Pacala and Tilman 1994; Petchey 2003; Schoener 

1974), while higher numbers of consociated species (≥5) may decrease growth during the harshest 

seasons because of competition for resources (Lang et al. 2010; Wagner and Radosevich 1998). Such 

a behaviour has been already observed in literature, even though the majority of the studies have been 

performed on forest species as fir, pine, beech and spruce. Metz et al. (2016) found that European 

beech performed better (higher tree growth) when associated with pine compared to pure beech stands 

as tree ecophysiology, canopy structure and sunlight tolerance different between these two species. 

Nevertheless, at higher tree-species richness levels, a stronger competition for water was recorded 

and a reduced tree-ring growth in beech was measured (Metz et al. 2016). Moreover, Pretzsch and 

Dieler (2012) highlighted facilitative effects of oak on beech when conditions are less favourable, for 

example during drought periods. Del Rio et al. (2014) report that when environmental conditions are 

www.osmer.fvg.it
www.osmer.fvg.it
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favourable, a strong competition between beech and other species and, consequently, a decrease in 

tree growth, is detected while when condition are less favourable (i.e. drought year) the opposite 

occurs (the so called “stress-gradient hypothesis”, as defined by Bertness and Callaway 1994). These 

results were also confirmed by Grossiord et al. (2014a) and, in a wider study across Europe, by Jucker 

et al. (2016).  Thus, competitive and facilitative mechanisms can interact simultaneously inside the 

same community, depending on the local climatic conditions, producing a wide spectrum of positive 

or negative effects on tree growth (Callaway 1998; Callaway and Walker 1997).  Moreover, the 

absence of both complementarity and competition or an equilibrium between these two mechanisms 

when environmental conditions are not limiting growth might bring to no effect of tree species 

richness on tree growth (Pretzsch et al. 2013), as we found at our experimental sites in 2014. 

We also measured a significant decrease in iWUE between 2006 and 2014 (Figure 4.4). The highest 

values were found in the plantation with five consociated species, whereas the lowest values were 

measured in the plantations with four and six consociated species. However, such differences were 

significant in 2006 only (Figure 4.5), confirming again that tree species richness has a positive effect 

on tree growth only when environmental conditions are harsher. Similar patterns in iWUE with 

species diversity have been also observed in boreal forests by Grossiord et al. (2014a) and by Gebauer 

et al. (2012). 

 

4.5 Conclusions 

Our results partially confirmed our working hypothesis that the higher is the number of consociated 

species (i.e. tree species’ diversity), the less the target commercial tree species are impacted by a 

drought event. In fact, a positive species richness effect on tree growth and iWUE was found only 

when less than five consociated species are present and only when environmental conditions are 

harsher (2006). For higher tree-species richness levels, competition for resources prevails thus leading 

to a decrease in radial tree growth and iWUE. Similarly, our data support the ‘stress gradient 

hypothesis’: the absence of both complementarity and competition or an equilibrium between these 



42 
 

two mechanisms when environmental conditions are not limiting growth (2014) bring to no effect of 

tree species richness on tree growth.



43 
 

5. EVIDENCE FOR A LONG-TERM INCREASE IN TREE 

GROWTH AND INTRINSIC WATER-USE EFFICIENCY IN 

THREE OLD-GROWTH FORESTS IN BOSNIA-

HERZEGOVINA AND MONTENEGRO3 

 

Summary 

We analysed the long-term patterns of tree growth and intrinsic water use efficiency (iWUE) in three 

old-growth forests in the Balkans (Bosnia-Herzegovina and Montenegro) using dendrochronology 

and isotopic analysis. Tree cores have been sampled from dominant silver fir (Abies alba Mill.) trees 

in each forest. Tree-ring widths were measured and basal area increments (BAI) was assessed for 

each sampled tree and, from the six longest chronologies, five decades were chosen for cellulose 

extraction, isotopic analysis (δ13C) and iWUE determination. 

We observed a continuous increase in iWUE from 1800 to 2010 in all the old-growth forests, implying 

a continuous increase in the ratio between assimilation rates and stomatal conductance. Our results, 

coupled with the positive increment in BAI over all the studied period, support the idea that the global 

rise in atmospheric CO2 has positively influenced tree growth. However, a stabilization of BAI was 

detected in the last few decades suggesting that a maximum, or even a decline, in the growth rate will 

be reached in the near future. This could translate in an overall decrease in the net C sequestration in 

these old-growth forests, thus limiting their role in terrestrial C sink capacity. 

  

                                                           
3 Palandrani C, Motta R, Cherubini P, Čurović M, Dukić V, Tonon G, Alberti G (submitted) Evidence for a long-term 

increase in tree growth and intrinsic water-use efficiency in three old-growth forests in Bosnia-Herzegovina and 

Montenegro. Plant, Cell and Environment. 
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5.1 Introduction 

Human activities have caused approximately 1.0°C of global warming above values recorded in pre-

industrial times, with important changes in the intensity and the frequency of some climate and 

weather extremes (IPCC 2018). Warming caused by anthropogenic greenhouse gases emissions 

(GHGs) will persist for centuries to millennia (Matthews and Caldeira 2008; Solomon et al. 2009) 

and will continue to cause further long-term changes either in the climate system or in the biosphere. 

In particular, atmospheric CO2 concentration has been constantly rising in the last centuries because 

of human activities, reaching in the 2000s the highest levels over the last 160.000 years (IPCC 2014). 

In forest ecosystems, climate change is altering productivity, species distribution, tree physiology and 

pest disease severity and frequency, with widespread tree mortality phenomena (Allen et al. 2010; 

Anderegg et al. 2012; Lindner et al. 2014; Seidl et al. 2014, 2018). However, increase in CO2 

atmospheric concentration, coupled with the increase in nitrogen (N) deposition, can stimulate tree 

growth and can change forest dynamics (Ciais et al. 2008; Magnani et al. 2007; Lewis et al. 2009; 

Pretzsch et al. 2014). Indeed, elevated CO2 concentrations can stimulate tree growth due to enhanced 

photosynthesis (Ainsworth and Long 2005): higher atmospheric CO2 levels (Ca) usually lead to 

stomata closure, thus decreasing transpiration rates and increasing assimilation rates (Tognetti et al. 

1999), with an improvement in the intrinsic water-use efficiency (iWUE), defined as the carbon (C) 

gained per unit water vapour lost at leaf level (Saurer et al. 2004). Consequently, higher iWUE values, 

coupled with faster tree growth measured by tree-ring width converted into basal area increment 

(BAI), have been previously reported (Feng 1999; Liu et al. 2007; Saurer et al. 2014). However, this 

relationship has been not always confirmed (Marshall and Monserud 1996; van der Sleen et al. 2015; 

Waterhouse et al. 2004). In fact, an increase in iWUE alone may not directly translate into higher 

BAI as other factors (e.g., high temperature, recurrent drought, nutrient limitation) may negatively 

influence tree growth (Tognetti et al. 2014). 

Tree rings offer insight into lifetime growth patterns, allowing climate impacts on trees to be 

evaluated (Fritts 1976). On the other hand, stable C isotopes represent a useful tool to better 
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understand changes in tree growth and productivity related to climate conditions through time. The 

variability of the C isotopic signature (δ13C) in wood gives information about the plant’s sensitivity 

to different climatic and environmental conditions (McCarroll and Loader 2006). C isotope 

discrimination (Δ13C) can be related to CO2 flux through stomata and to changes in Ca to intercellular 

CO2 concentration (Ci) gradient and, by consequence, to iWUE (Farquhar et al. 1989; Francey and 

Farquhar 1982). However, the extent to which rising Ca has affected long-term iWUE, and whether 

climate could explain deviations from expected Ca-induced growth enhancement, is still poorly 

understood (Tognetti et al. 2014). 

Old-growth stands have developed for a long period of time without relevant human impact and/or 

stand replacing or major natural disturbances and have three main structural characteristics: old and 

large trees, abundant coarse woody debris in different decay stages and a multilayered vertical 

structure (Spies 2004). Old-growth have an important role in maintaining animal and plant diversity, 

are important C reservoirs and are privileged sites to study long-term forest dynamics and climate 

change impact on forest ecosystems (Motta et al. 2011). Several studies have highlighted how old-

living trees undergo age-related declines with higher transpiration rates, hydraulic limitations and 

reduction in photosynthesis (Ryan and Yoder 1997; Ryan et al. 2006; Yoder et al. 1994), mainly 

because of higher susceptibility to climatic and environmental stress (Carrer and Urbinati 2004). On 

the other hand, recent works have suggested that such a decline is not always observed (Luyssaert et 

al. 2008; Yu et al. 2008) and that old-growth forests are still accumulating C (Luyssaert et al. 2008; 

Phillips et al. 2008; Zhou et al. 2006), thus contrasting the traditional “carbon neutrality hypothesis” 

according to which net ecosystem production (NEP) in these ecosystems is equal to zero (Odum 

1969). 

In this contest, we studied silver fir (Abies alba Mill.), one of the most widespread and long-lived 

species in southern European forests. Fir woody rings in European old-growth forests represent an 

important climatic archive to better understand the relationship between growth dynamics, 

atmospheric CO2 concentration increase and climate conditions through time. The present study 
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quantifies silver fir tree growth patterns and iWUE changes during the last two centuries in three 

mixed old-growth forests across the Balkans. We measured tree-ring width and δ13C to calculate 

iWUE and Ci to check whether tree growth have been increasing during the last 200 years and whether 

there is any relationship with iWUE. Our hypotheses were: 1) silver fir in all the three old-growth 

forests is still growing at a remarkable rate and actively sequestrating C from the atmosphere in woody 

tissues and 2) increasing atmospheric CO2 concentrations have increased iWUE in the last 200 years. 

 

5.2 Materials and methods 

5.2.1 Study area 

Three study sites were selected in three different old-growth forests, along a 100 km transect from 

North-west to South-east, in the Balkans, in South-eastern Europe. All of the three sites are in the 

montane belt and are mixed with silver fir (Abies alba Mill.), Norway spruce (Picea abies Karst), and 

European beech (Fagus sylvatica L.). 

The first site (LOM) is located in the Lom forest reserve (44°27’N, 16°28’E, 1250–1500 m a.s.l.) in 

the Dinaric Alps in Bosnia and Herzegovina. Climate is continental with maritime airstream 

influences. Mean annual precipitation is about 1600 mm and mean annual temperature is 7.6°C 

(Bottero et al. 2011).  

The second site (PER) is located in the Perućica forest reserve (43°30’N, 18°70’E, 600-2800 m a.s.l.), 

inside the Sutjeska National Park in the southern Dinaric Mountains, Bosnia and Herzegovina. 

Climate is a mix of Mediterranean and continental, with mean annual precipitation of 1400 mm and 

mean annual temperature of 11.3°C (Nagel and Svodoba 2008). 

The third site (BIO) is located in the National Park of Biogradska Gora (42°53’N, 19°36’E, 830-2100 

m a.s.l.)  in the north-eastern part of Bjelasica mountain range, Montenegro (Motta et al. 2014). 
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5.2.2 Tree sampling and dendrochronological analysis 

At each site (in 2014, 2016 and 2017 in PER, LOM and BIO sites, respectively), 30 to 40 circular 

plots were identified, tree species were assessed and tree mean diameter at 1.30 m (d.b.h.) was 

measured. Then, in the inner part of the forest, one sampling area of about 1 ha per site was identified 

and tree cores were taken from the dominant individuals of silver fir using an increment borer. Cores 

were stored in cardboard and, once in laboratory, samples were glued on woody supports and sanded 

with paper with 60, 120, 240, 320 and 600 grit to better highlight tree rings. 

Tree-ring widths were measured for each core using a LINTABTM (Frank Rinn, Heidelberg, 

Germany) and then were visually cross-dated using TSAP software (© TSAPWin Scientific, version 

4.81, 2002-2018, Frank Rinn / RINNTECH). COFECHA software (Grissino-Mayer 2001; Holmes 

1983) was used for the statistical cross-date and to check chronologies quality (Castagneri et al. 

2014). 

 

5.2.3 Isotopes analysis 

From all the samples at each site, the six longest chronologies were selected. Then, tree rings for each 

core were grouped using 10-year intervals, cut and separately milled using an ultra-centrifugal mill 

with a sieve of 0.5 mm (ZM 100, Retsch Tecnology, Haan; Germany). In order to have enough 

replications at each plot, we considered only five consecutive time-intervals along each time-series 

for the further analysis (2010-2000; 1960-1950; 1910-1900; 1860-1850; 1810-1800). Wood powder 

was treated with a two-step digestion to extract cellulose according to Green (1963). Briefly, samples 

were sealed in Teflon bags and at first treated two times with NaOH 5% solution for 2 hours at 60°C. 

Then, samples were treated with NaClO2 7% solution, adjusting the pH to 4-5 with acetic acid, for 

10 hours at 60°C. Depending on sample weight and its cellulose content, this phase was repeated for 

three or four times until samples totally bleached, thus indicating that all fibres but cellulose were 

completely digested. Dried samples were finally weighted and put in tin capsules for δ13C analysis 
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using a CHNS elemental analyser (Vario Microcube, © Elementar) coupled with a stable isotope ratio 

mass spectrometer (IRMS; Isoprime 100, © Elementar). 

 

5.2.4 Data analysis 

Yearly basal area increment (BAI, cm2 yr-1) was assessed using tree-ring width. δ13C measurements 

were used to calculate the C isotopic discrimination (Δ13C) (Farquhar et al. 1982): 

Δ13C =
𝛿13𝐶𝑎 −  𝛿13𝐶𝑝

1 −  𝛿13𝐶𝑝
 

where δ13Ca is the isotopic signature of atmosphere and δ13Cp is the isotopic signature of the sample. 

Our δ13Cp values represent an average value for 10-year intervals so δ13Ca were calculated as the 

mean value for the same temporal interval of the relative δ13Cp measurements using published values 

in McCarroll and Loader (2006) and those from Mauna Loa Observatory from 2003 

(https://www.esrl.noaa.gov/gmd/). 

Then, we used the fractionation model equation proposed by Farquhar et al. (1982) and Francey and 

Farquhar (1982) to compute intercellular CO2 concentration (Ci, ppm) knowing Δ13C and atmospheric 

CO2 concentration (Ca, ppm; data from Mauna Loa Observatory, https://www.esrl.noaa.gov/gmd/): 

Δ13C = 𝑎 + (𝑏 − 𝑎) ∗ 
𝐶𝑖

𝐶𝑎
 

𝐶𝑖 =  𝐶𝑎 ∗  
(𝛿13𝐶𝑝 −  𝛿13𝐶𝑎 + 𝑎)

(𝑎 − 𝑏)
 

where a is isotope discrimination during CO2 diffusion through stomata (a = 4.4‰), b is isotopes 

discrimination during carboxylation processes (b = 27‰). 

According to the Fick’s law, net photosynthesis (A) is: 

𝐴 =  𝑔𝐶𝑂2
∗ (𝐶𝑎 −  𝐶𝑖) 

where gCO2 is leaf conductance to CO2. Knowing that leaf conductance to water vapour (gH2O) is equal 

to 1.6gCO2, we can calculate iWUE (μmolCO2 molH2O
-1) (Farquhar et al. 1982), expressed as the 

https://www.esrl.noaa.gov/gmd/
https://www.esrl.noaa.gov/gmd/
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ratio between photosynthesis and stomatal conductance to H2O (A/gH2O) combining all the previous 

equations: 

𝑖𝑊𝑈𝐸 =  
𝐴

𝑔𝐻2𝑂
=  𝑐𝑎 ∗  

(𝑏 −  𝛥13𝐶)

1.6 ∗ (𝑏 − 𝑎)
 

 

5.2.5 Statistical analysis 

All statistical analysis were performed using RStudio software (Rstudio, version 1.2.1335, ©2009-

2019 Rstudio, inc.). We compare iWUE and basal area increment in the different decades by using a 

One-way ANOVA, with Tukey’s post-hoc test when significant differences were detected. All data 

were eventually log-transformed before performing the statistical analysis to meet the requirements 

for parametric statistical tests using powerTransform and bcPower functions in car package. We 

further correlate Ci to selected 10-year intervals and iWUE to basal area increment through simple 

linear regressions, using Shapiro-Wilk normality test to check the normal distribution of model’s 

residuals. All data throughout the text and in tables and figures are reported as mean ± standard error. 

 

5.3 Results 

The mean stand characteristics at each experimental site are reported in Table 5.1. Total stem density 

ranged from 412±22 to 489±19 trees ha-1 at BIO and LOM, respectively, but total basal area followed 

an opposite trend being the highest at LOM and the lowest at BIO (60.1±4.4 and 47.1±1.8 m2 ha-1, 

respectively).  European beech was the dominant species in terms of stem density (n ha-1) at all the 

three sites, but silver fir was always dominant in terms of basal area (m2 ha-1). The oldest fir trees 

were 306, 267 and 273-year-old in LOM, PER and BIO, respectively. Mean age of the sampled trees 

at LOM was significantly different from that at PER but not from that at BIO (236±52, 157±51 and 

191±63 years, respectively; p<0.001).  
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SITE 

STAND 

DENSITY 

(n ha-1) 

MEAN 

DIAMETER 

(cm) 

TOTAL 

BASAL 

AREA  

(m2 ha-1) 

TOTAL SPECIES 

DENSITY  

(n ha-1) 

SPECIES BASAL AREA 

(m2 ha-1)  

NUMBER OF 

SAMPLED 

TREES  

(Fir) 

MAX 

TREE 

AGE 

(yrs) 

MEAN 

TREE 

AGE 

(yrs) 

MIN 

TREE 

AGE 

(yrs) Fir Beech Spruce Fir Beech Spruce 

LOM 489±19 (a) 35.4±0.8 (a) 47.1±1.8 (a) 
122±9 

(a) 

296±13 

(a) 

69±9  

(a) 

22.2±1.6 

(a) 

14.3±0.7 

(a) 

10.4±1.5 

(a) 
28 306 

236 ± 52 

(a) 
129 

PER 432±21 (ab) 41.7±1.6 (b) 59.1±4.5 (b) 
90±13 

(a) 

337±20 

(a) 

6±2  

(b) 

39.5±4.7 

(b)  

17.0±1.5 

(a) 

2.6±1.2 

(b) 
43 267 

157 ± 51 

(b) 
71 

BIO 412±22 (b) 43.2±1.8 (b) 60.1±4.4 (b) 
92±11 

(a) 

298±21 

(a) 

10±3 

(b) 

34.1±4.7 

(ab) 

18.7±2.1 

(a) 

5.6±2.0 

(b) 
7 273 

191 ± 63 

(ab) 
114 

Table 5.1 - Mean stand characteristics at each experimental site (LOM = Lom; PER = Perucica; BIO = Biogradska Gora). Mean ± standard error. 
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Fir trees showed a constant and significant increase in tree basal area increment with time (cm2 tree-

1 yr-1; Figure 5.1) at all the three experimental sites (LOM: R2=0.62, p<0.001; PER: R2=0.47, 

p<0.001; BIO: R2=0.56, p<0.001), especially after the beginning of the 19th century. BIO had 

generally the highest growth rate even though it showed a slight decline in radial increment in the last 

two decades, while fir at PER had generally the lowest growth, but did not show any decrease in 

growth with time.  When mean decadal values are considered, such trends are even more clear (Figure 

5.2): tree growth was always the lowest during the first two decades (1800-1810 and 1850-1860) than 

at the end of the period (2000-2010) at all the three forests (p<0.05). At BIO, the decade 1900-1910 

was also significantly different from the decade 2000-2010. 

 

 

Figure 5.1 - Mean basal area increment (BAI, cm2 tree-1 yr-1) of the sampled silver fir 

trees per decade (PER = Perucica; LOM = Lom; BIO = Biogradska Gora). 

 

Ci significantly increased through time at all sites (LOM: p<0.001; PER: p<0.001; BIO: p=0.01; 

Figure 5.3), with an average increase of +13%, +24% and +18%, in LOM, PER and BIO, respectively, 



52 
 

from 1800 to 2010. We observed also a significant decrease in the ratio Ci/Ca in the last two centuries 

(LOM: R2=0.62, p<0.001; PER: R2=0.30, p=0.003; BIO: R2=0.30, p=0.005; data not shown). Trees 

showed an increase in iWUE, with significant higher values at the end of the studied period than at 

the beginning (Figure 5.4): from 1800-1810 to 2000-2010, iWUE increased, on average, of +45%, 

+30% and +40% at LOM (p<0.001), PER (p<0.001) and BIO (p<0.001), respectively. Using linear 

regressions, we found that iWUE and BAI were positively and significantly correlated at all sites 

(LOM: R2=0.93, p=0.008; PER: R2=0.91 p=0.013; BIO: R2=0.97, p=0.002, Figure 5.5).
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Figure 5.2 - Mean basal area increment (BAI, cm2 tree-1 yr-1) comparison between the consecutive selected 10-years intervals at the three experimental sites 

(PER = Perucica; LOM = Lom; BIO = Biogradska Gora). Mean ± standard error. Different letters indicate significant differences among periods (p<0.05). 

 
Figure 5.3 - Intercellular CO2 concentration (Ci, ppm) in the selected 10-years intervals at the three old-growth forests (PER = Perucica; LOM = Lom; BIO 

= Biogradska Gora). Mean ± standard error. Different letters indicate significant differences among periods (p<0.05). 
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Figure 5.4 - Intrinsic water-use efficiency (iWUE, μmol CO2 mol H2O-1) in the three old-growth forests for the selected 10-years intervals (PER = 

Perucica; LOM = Lom; BIO = Biogradska Gora). Mean ± standard error. Different letters indicate significant differences among periods (p<0.05). 

 
Figure 5.5 - Basal area increment (BAI, cm2 tree-1 yr-1) with increasing intrinsic water-use efficiency (iWUE μmol CO2 mol H2O-1). Each point represents 

a selected 10-years interval for each sampled tree. Red line represents the regression line and blue lines represent 95th confidence interval.
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5.4 Discussion 

Over the last two centuries, we found a constant increase in silver fir BAI at all the three old-growth 

forest sites in the Balkans. Such an increase has been more evident since 1850, especially at BIO, 

where BAI exceeded 25 cm2 yr-1, followed by LOM and PER. From 1850-1860 to 2000-2010, we 

measured a mean increase in BAI of +85%, +81% and +71% at LOM, PER and BIO, respectively 

(Figure 5.2). Similar trends have been already observed for Abies alba (Bert et al. 1997), Pinus 

uncinata (Granda et al. 2017) and Abies georgei var. smithii (Huang et al. 2017), even though 

opposite trends have been also reported for similar or other species (Andreau-Hayles et al. 2011; 

Peñuelas et al. 2011; Rezaie et al. 2018; Saurer et al. 2004). In our study, iWUE showed a significant 

increase of +45%, +30% and +40% in the last two centuries at LOM, PER and BIO, respectively 

(Figure 5.4). These trends are similar to those measured in a wide range of ecosystems (Frank et al. 

2015; Peñuelas et al. 2011; Silva and Anand 2013), either in temperate (Saurer and Siegwolf 2007; 

Waterhouse et al. 2004) or tropical/sub-tropical forests (Wils et al. 2016; Wu et al. 2015), as well as 

at single experimental sites (Battipaglia et al. 2013), but none of these studies considered either old-

growth forests or period of time longer than 100 years. 

The increase in atmospheric CO2 concentration affects plants photosynthetic rates by increasing 

carboxylation rate of RUBISCO enzymatic system (Ainsworth and Long 2005; Drake et al. 1997; 

Huang et al. 2007), thus positively influencing tree growth rate by improving the production of non-

structural C for sink activity (Linares et al. 2009; Streit et al. 2013). Moreover, increasing Ca induces 

stomata closure and, by reducing water loss by transpiration, plants may improve iWUE (Farquhar et 

al. 1989; McCarroll and Loader 2004). Variations in both photosynthetic rates and stomatal 

conductance influence the gradient of Ca to Ci, determining the discrimination intensity against 13C 

and consequent δ13C signature in tree rings (Ehleringer and Cerling 1995). According to Saurer et al. 

(2004): i) Ci may stay constant, Ci/Ca decreases, Δ decreases and iWUE strongly increases; ii) Ci may 

increase proportionally to Ca so that Ci/Ca is constant, Δ does not change and iWUE still increases; 

iii) Ci may increase at the same rate of Ca (Ca-Ci is kept constant), Ci/Ca increases, Δ increases, there 
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is a weak stomatal response and iWUE is not improved. At all our study sites, Ci and iWUE increased 

with time (Figure 5.3 and Figure 5.4, respectively), while both Δ and Ci/Ca decreased (data not 

shown). Thus, trees at our study sites behaved according to Saurer et al. (2004) hypothesis i), even 

though a significant increase in Ci was detected during the last considered decade (2000-2010; Figure 

5.3). Such a measured increase in Ci indicates that trees are still actively responding to increasing 

atmospheric CO2 concentrations (McCarroll and Loader 2004). However, when all decades are 

considered (Figure 5.1), a stabilization of BAI was detected, especially at BIO, as also observed by 

Rezaie et al. (2018) as well as by Peñuelas et al. (2008) in beech forests. Such a decrease in BAI can 

be related to a complex of interacting factors such as a decrease in nutrient availability (nitrogen and 

phosphorous), different allocation patterns between above- and below-ground, diversion to secondary 

metabolites (Tognetti et al. 2000).  

Peñuelas et al. (2011) in their global analysis found no significant BAI increases in response to 

increases in iWUE. On the contrary, we found a strong positive correlation between BAI and iWUE 

at all our three old-growth forest sites (Figure 5.5), linking positive CO2 fertilization effect on tree 

growth and decrease in plant water use. 

 

5.5 Conclusions 

In the last two centuries, we observed a continuous increase in iWUE in silver fir at all the three old-

growth forest sites in the Balkans. This implies a continuous increase in the ratio between assimilation 

rates and stomatal conductance. Thus, our results support the idea that the global rise in atmospheric 

CO2 and changing climate have positively influenced the gas exchange of these old-growth forests 

and might have decreased plant water use. Moreover, the observed positive increment in BAI across 

all the studied period further supports the fertilization effect of the atmospheric CO2 increase over 

time. However, a stabilization of BAI was detected in the last few decades, especially at BIO, 

suggesting that a maximum, or even a decline, in the growth rate will be reached in the near future. 
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This could translate in an overall decrease in the net C sequestration in these old-growth forests, thus 

limiting their role in terrestrial C sink capacity.  
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6. OVERALL CONCLUSIONS 

This thesis has focused on the role of tree species richness and functional diversity in supporting soil 

C sequestration and in mitigating the possible negative effects of extreme events, by increasing stand 

resistance and/or resilience. In the last part of this work, we have also quantified the long-term effects 

of atmospheric CO2 increase on growth and water-use efficiency in some old-growth forests in the 

Balkans.  

As far as the first aspect is concerned (i.e. soil C sequestration), our results showed that both species 

richness and functional diversity have a positive effect on the proportion of tree derived C in forest 

plantations, underlying the fact that more diverse stands can enhance and better modulate microbial 

community and, thus, soil C dynamics through more diverse litters.  

Our second study showed that tree species diversity has an overall positive effect on the response to 

drought, but only at the lower levels of tree species richness, when facilitation and/or 

complementarity mechanisms prevail.  Instead, negative responses are typical at higher levels of 

species richness, when competition is the dominant process within the stand.  

Finally, our last study on the old-growth forests in the Balkans supports the idea that the global rise 

of atmospheric CO2 and changing climate have positively influenced the gas exchange in the studied 

old-growth forests and might have decreased plant water use. In particular, the observed positive 

increment in BAI across all the studied period further supports the fertilization effect of the 

atmospheric CO2 increase over time. However, a stabilization of BAI was detected in the last few 

decades, suggesting that a maximum, or even a decline, in the growth rate will be reached in the near 

future. This, could translate in an overall decrease in the net C sequestration in these old-growth 

forests, thus limiting their role in terrestrial C sink capacity.  
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8. ANSWER TO REVIEWERS’ COMMENTS 

Per prima cosa desidero ringraziare i revisori di questa tesi per i commenti costruttivi e gli spunti 

per una ulteriore rifinitura di questo scritto. Le risposte ai commenti sono state riportate per i due 

revisori separatamente e sono stati riportati i singoli commenti con le mie risposte a seguire.  

 

REVISORE: Daniele Ascoli 

Cambiare "De Miccio" in "De Micco" in tutto il testo. 

Cambiato. 

 

LN456: cambiare "enhanced" in "enhance" 

Cambiato. 

 

 

REVISORE: Tommaso Anfodillo 

Introduzione piuttosto generica: invece del grafico della CO2 in atmosfera (che non è 

collegata direttamente agli esperimenti effettuati, anche se nel Cap 5 è riportata come 

causa di aumento della produttività) mi sarei aspettato di vedere citati molti più lavori 

sulla relazione biodiversità-funzionalità (relazione trattata solo nelle righe 36-42). 

Espanderei questa parte. 

Questa parte è stata ampliata. Tuttavia, poiché ogni capitolo/articolo presenta una sua 

introduzione specifica con relativi riferimenti bibliografici, si è ritenuto di non entrare 

eccessivamente nel dettaglio nell’introduzione generale al fine di non appesantire la tesi o ripetere 

concetti sviluppati dopo in modo più ampio. 
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Nell'esperimento del CAP 3 (e anche per il 4) la struttura delle piantagioni è molto diversa 

non solo per numero di specie ma anche per LAI, altezza e G. Forse sarebbe stato meglio 

scegliere qualcosa di più omogeneo. Inoltre nelle discussioni si giustifica il maggiore fnew 

nel suolo con una possibile maggiore produttività delle piantagioni con tante specie ma la 

biodiversità è inversamente correlata alla G (fig. 3.1). La discussione sulla mortalità 

maggiore nelle piantagioni con tante specie non è convincente (L. 331-337). Se la mortalità 

è maggiore allora gli individui rimanenti dovrebbero crescere di più (hanno più risorse 

ciascuno). Ma l'altezza media è minore nella piantagione con 9 specie. Non saprei aiutare a 

riguardo ma i processi non sono chiari. L'affermazione che due specie dello stesso genere 

dovrebbero esprimere una maggiore competizione interspecifica non mi pare plausibile. 

Forse bisognerebbe portare qualche evidenza sperimentale a riguardo.  

Gli impianti sono stati scelti omogenei tra loro per quanto riguarda le condizioni iniziali di 

impianto (unico dato a disposizione per la scelta). Negli anni i diversi impianti sono andati 

incontro a fenomeni di mortalità naturale (avendo un sesto di impianto regolare si potevano 

osservare chiaramente i punti con le piante mancanti), che probabilmente hanno influito sulla 

stima della biomassa e del LAI. Numerosi lavori (alcuni anche riportati) osservano un aumento 

della produttività o del carbonio accumulato nel suolo correlato ad un aumento della diversità. 

Avendo trovato una relazione positiva tra ricchezza specifica e stock di carbonio (utilizzando gli 

isotopi) ma negativa tra ricchezza specifica e produttività, possiamo ipotizzare che la qualità della 

lettiera (anche se in quantità minori) ha avuto un ruolo preponderante nel determinare gli stock di 

carbonio nel suolo. 

 

Ho qualche dubbio (ma non sono dendroecologo) sulle elaborazioni e discussioni delle 

misure degli anelli legnosi è riportata come "tree growth" (capitolo 4). Prima cosa: la 

detrendizzazione dell'età non mi pare efficace: è rimasto un trend significativo (forse è 

"reale" ma da verificare). Seconda cosa: lo spessore dell'anello non puo' essere 
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rappresentativo della crescita. La crescita annuale non puo' mai diminuire con la 

dimensione della pianta (infatti vi sono sempre più foglie, come si vede bene nella fig. 5.1 

per errore 4.1). Meglio esprimere la crescita come incremento di area basimetrica BAI come 

nel capitolo 5 (perchè non si segue lo stesso approccio?). Penso che il grafico cambi 

completamente. Capisco che i confronti sono relativi rispetto all'anno di riferimento ma 

comunque il termine tree growth è errato. Meglio ring width. Suggerirei di cambiare. Nelle 

righe 528-532 si parla di detrendizzazione. Forse allora non è stato messo il grafico delle 

curve detrendizzate? 

Ho modificato le figure riportando la dicitura “tree-ring width”. La figura 4.1 rappresentava 

solamente il trend nelle tre specie dello spessore degli anelli. Adesso la figura 4.1 comprende 

anche le curve di crescita detrendizzate. Il passaggio di detrendizzazione, legato al confronto fra 

crescite in anni differenti viene applicato alle crescite degli anelli e non al BAI (si veda Vitali et 

al. 2017). La crescita annuale può essere inferiore rispetto l’anno precedente, se le condizioni non 

sono state ottimali, sia che venga espressa come “tree-ring width” che come BAI. Infatti, in figura 

5.1 ci sono notevoli oscillazioni tra le decadi e in numerosi lavori eseguiti su foreste vetuste sono 

stati osservati stati di declino con trend negativi del BAI. 

 

Forse il General summary si poteva espandere un po'. Sono riportati solo gli obiettivi ma 

non sono minimamente citati né i principali metodi né i risultati fondamentali né qualche 

conclusione. Penso vada sempra mantenuta la struttura IMRaD. 

Ho modificato il General summary seguendo la struttura IMRaD. 

 

Discussione del Cap. 4 (risposta allo stress idrico-diversità): non è facile da piegare perché 

solo fino a 4 specie la crescita delle singole specie aumenti ed oltre no. Che dire delle foreste 

triopicali con 50-60 specie diverse? Se fosse cosi allora tutte le foreste avrebbero al massimo 

4 specie. Penso che sia una visione tipica dei forestali delle zone temperate ma che sarebbe 
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difficilmente condivisa da coloro che lavorano nei tropici. Siccome il tema è molto generale 

(funzionalità-biodiversità) e quindi si dovrebbe applicare a tutte le foreste queste discussioni 

non mi convincono tanto.  

cap 5. penso ci sia un errore di fondo. In tutte le piante BAI aumenta con dimensione (si 

veda Sillet et al 2010 nelle piante più grandi al mondo). Quindi non si deve cercare una 

spiegazione "particolare" (alta CO2) ch puo' essere utilizzata solo per spiegare l'aumento 

di iWUE . 

Il mio studio ha considerato tre specie target e l’effetto dell’aumento della ricchezza specifica 

sulla loro resistenza ad eventi siccitosi estremi. Non ho quantificato la resistenza complessiva 

dell’ecosistema e, sicuramente, cambiando specie target l’effetto potrebbe essere diverso. Per 

quanto riguarda le foreste tropicali, quelle con maggiore ricchezza specifica si trovano in ambienti 

dove, comunque, l’acqua non è un fattore limitante e quindi i confronti non sarebbero appropriati.  

Come in una precedente risposta, il BAI non è detto che aumenti con le dimensioni, considerato 

che si riferisce alla superficie della corona circolare corrispondente all’anello di crescita di un 

dato anno. Sillet et al., come anche altri lavori, hanno osservato un trend negativo del BAI in 

piante senescenti, malate o comunque, molto vecchie.  


