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Abstract: Noise magnitude in conventional attenuation X-ray tomography (CT) is strongly de-
pendent on the pixel size and/or the geometrical magnification, thereby limiting the possibility of
achieving high-resolution low-dose CT imaging. In this context, the use of Propagation-Based
Imaging (PBI) phase-contrast technique coupled with the application of a suitable Phase-Retrieval
(PhR) filter is a valuable tool to overcome such limitation. In fact, at fixed radiation dose, the
noise dependence on the effective pixel size when the PhR filter is applied is much shallower with
respect to conventional CT imaging. Making use of a theoretical framework developed by other
authors, this work demonstrates quantitatively the dependence of CT image noise on pixel size and
magnification in PBI. Calculations are compared with experimental images of a breast specimen
imaged at the SYRMEP beamline at the Elettra synchrotron facility (Trieste, Italy), with a CdTe
photon-counting detector in PBI configuration. The results, expressed in terms of Signal-to-Noise
Ratio (SNR) gain due to the PhR application, show a good agreement between predictions and ex-
perimental data at all pixel pitches and magnifications, quantitatively demonstrating the importance
of going towards detectors featuring smaller pixels (or higher spatial resolution) to fully exploit the
advantages of PBI and PhR. Specifically, SNR gain up to a factor of 20 is observed at the smallest
pixel pitch (60 µm) and largest magnification (1.40). At the same time, as predicted theoretically,
larger magnifications correspond to lower image noise (or higher SNR) when PhR is applied: this
trend is unparalleled in attenuation-based CT imaging where larger magnifications, hence smaller
effective pixel sizes, lead to a higher noise.
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1 Introduction

Noise magnitude in conventional attenuation-based X-ray tomographic (CT) imaging is strongly
dependent on the detector pixel size and/or the geometrical magnification. For this reason, when
constraints in terms of radiation dose or scan time are present, as in clinical or animal studies,
high-resolution CT imaging at acceptable noise levels is not feasible. This is especially true when
imaging light (low-Z) samples, as soft tissues, where the small attenuation contrast signal between
different features of the sample is easily buried under image noise.

In this context, the use of X-ray Phase-Contrast Imaging (XPCI) techniques is a powerful
tool to increase detail visibility within soft tissues. XPCI relies on the real decrement (δ) of the
refractive index (n), responsible for X-ray phase effects, whereas conventional imaging is based on
its imaginary part (β), proportional to the X-ray linear attenuation coefficient: for light materials in
the energy range of radiological interest (10-100 keV), δ is two to three orders of magnitude larger
β, thus phase effects are larger than attenuation [1].

Among XPCI techniques, Propagation-Based Imaging (PBI) is arguably the simplest to im-
plement as it only requires to introduce some (propagation) distance between sample and detector.
On the contrary, to effectively detect phase effects, PBI has strict requirements in terms of spatial
coherence of the X-rays incident onto the sample (X-ray source must be small or distant from the
sample). For this reason, the use of PBI has been mostly limited to Synchrotron Radiation (SR)
facilities or laboratory microfocal sources even if applications with conventional high-power X-ray
tubes exist [2, 3]. The main difference between a conventional attenuation and a PBI image is
the presence of a phase-contrast signal arising at the interfaces between different structures of the
sample in the form of dark/bright fringes [4]. This effect, referred to as edge-enhancement, can be
modelled as a high-spatial frequency boost in Fourier space hence, effectively, as an increase in the
spatial resolution [5]. In CT applications it is common to further process PBI projection images by
applying a Phase-Retrieval (PhR) algorithm: the most widely single-shot PhR method is based on
the Homogeneous Transport-of-Intensity Equation (TIE-Hom), assuming the imaged object to have
a constant (and known) δ/β ratio [6]. It has been shown, both theoretically and experimentally, that
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the application of TIE-Hom PhR on PBI images results in images whose content is proportional (up
to a logarithmic transformation) to conventional (attenuation-based) images but with a significant
noise reduction [5, 7, 8]. Intuitively, this can be understood considering that the PhR acts as a
low-pass filter exactly compensating for the high spatial frequency boost due to the propagation
but, at the same time, bringing to a major decrease in image noise or, equivalently, to an increase of
Signal-to-Noise Ratio (SNR). The effect of PhR on CT image noise has been mathematically de-
scribed by a thorough model proposed by Nesterets and collaborators including all the components
in the imaging chain, from the geometrical configuration of the setup and detector’s characteristics
to the tomographic reconstruction [9, 10]. Specifically, the model shows that the application of PhR
strongly mitigates the noise dependence on the (effective) pixel size. Moreover, smaller pixel sizes
and/or larger geometrical magnifications correspond to a larger noise reduction due to the PhR, thus
amplifying the difference between images reconstructed with or without PhR.

In addition to PBI, biomedical imaging can take advantage of high-Z direct-conversion photon-
counting detectors, which offer high efficiency and Poisson dominated noise [11]. Moreover,
unlike indirect-conversion devices where the intermediate conversion stage usually introduces some
blurring, the spatial response function of these detectors is usually dominated by the pixel size
(aperture). These features allow to make use of several simplifications in the aforementioned
model.

In this work PBI tomographic images of a surgical breast specimen are analyzed and compared
with the described theoretical model focusing on the effects of pixel size and geometrical magnifi-
cation. The measurements have been performed at the Italian synchrotron radiation facility Elettra
(Trieste, Italy), within the framework of the SYRMA-3D project, which aims at performing in-vivo
PBI breast CT at the SYRMEP beamline [12]. Images are obtained by using a large-area CdTe
photon-counting detector (Pixirad-8), featuring 60 µm pixel pitch and 650 µm sensor thickness,
thus ensuring a nearly total absorption efficiency at the selected beam energy (30 keV) [13]. In
addition to the native pixel spacing, the acquired projections have been rebinned to simulate pixel
pitches up to 240 µm and the sample has been imaged at three magnifications.

2 Materials and Methods

2.1 CT image noise model

By assuming a Poisson dominated detector noise, flat-fielded bi-dimensional projection images
(divided by nearly noise-free projections collected with no sample in the beam), stable source
intensity and imaging setup, and parallel beam tomographic reconstruction performed through the
Filtered-Back-Projection (FBP) algorithm, the variance (var) in a region of a CT image featuring
an homogeneous attenuation coefficient is [10]:

var =
f (A; d/h)Fobj

Np(h/M)4ΦDQE0Tgap
(2.1)

where Fobj accounts for X-rays attenuation in the object, Np is the number of projections in the
tomographic scan,Φ is the X-ray fluence at the object (in number of photons per square millimeter),
DQE0 is the detector quantum efficiency at zero spatial frequency, Tgap is the transmittance of the
gap (usually composed by air) between sample and detector, M is the geometrical magnification
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and h is the physical size of a detector pixel, which is assumed to be bi-dimensional with equal
width and height. The dimensionless function f (A; d/h) accounts for the tomographic process, the
detector response and the phase retrieval, and it is written as:

f (A; d/h) = 2π2
∫ 1

2

0
dUG2(U)Finterp(U)

∫ 1
2

− 1
2

dV
MTF2(U,V ; d/h)[
1 + A

(
U2 + V2) ]2 (2.2)

Here G(U) is the CT filter, Finterp(U) describes the effect on noise of the interpolation from polar
to Cartesian coordinates in the backprojection process, MTF(U,V ; d/h) is the detector modulation
transfer function parametrized through the dimensionless quantity d/h, where d is the Full Width
at Half Maximum (FWHM) of the detector’s Point Spread Function (PSF). Of note, the integration
variables U and V are dimensionless normalized frequencies expressing the fractions of twice
the maximum detected frequency (Nyquist frequency), hence the fractions of (h/M)−1. Finally,
the dimensionless parameter A depends on the refractive properties of the sample, on the setup
geometry and on the detector pixel size as

A = π
δ1 − δ2
β1 − β2

λR1M(M − 1)/h2 (2.3)

λ being the radiation wavelength and the subscripts 1, 2 in the δ and β terms refer to an interface
between two materials having given different refractive indices (two-materials PhR) [14].

Despite its rather complex formulation, the function f is key in understanding the effect of phase
retrieval on image noise which is given by the denominator of the last term in equation (2.2). In
facts, when no PhR is applied A = 0 and, as a consequence, the function f does not explicitly depend
neither on the pixel size h nor on the magnification M: in this case, as reported in equation (2.1),
the image noise (σ =

√
var) is found to be proportional to M2/h2, which is a known result in the

context of conventional CT. This strong dependence of image noise on pixel size and magnification
quantitatively explains why low-dose high-resolution images with acceptable noise levels cannot
be obtained. On the contrary, if PhR is applied A > 0 and the denominator in equation (2.2) is
larger than 1, hence the function f gets smaller if compared with the case A = 0, bringing to
a reduction of image noise. More in detail, according to equation (2.3), a decrease in the pixel
size and/or an increase in geometrical magnification, bring to an increase of the parameter A that
determines a larger noise reduction due to PhR. In this perspective, PhR applied to PBI projections
strongly mitigates the pixel size and magnification dependence of image noise, opening up the
possibility of low-dose high-resolution CT imaging. Importantly, TIE-Hom PhR can be applied
to images acquired in the near-field propagation regime, corresponding to large Fresnel numbers
(NF = h2/(M2λR2) > 1), which means that the parameter A cannot become indefinitely large and,
therefore, the noise cannot be indefinitely small.

2.2 Experimental setup and data processing

To test themodel against experimental results, tomographic images of a singlemastectomy specimen
containing cancer (diameter of about 10 cm) has been reconstructed from 1200 projections evenly
spaced over 180 degrees acquired in continuous rotation mode resulting in an overall exposure
of 40 s. The Directive 2004/23/EC of the European Parliament and of the Council of 31 March
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Figure 1. Sketch of the propagation based imaging experimental setup. R1 is the source-to-sample distance,
R2 is the sample-to-detector distance,W is the sample dimension and D is the sample dimension projected on
the detector. From both D, W and R1, R2 the geometrical magnification M can be determined. The drawing
is not to scale.

2004 on setting standards of quality and safety for the donation, procurement, testing, processing,
preservation, storage and distribution of human tissues were followed. The scans were performed at
the SYRMEP beamline of the Elettra synchrotron facility, where the X-ray beam is produced by one
storage ring bendingmagnet and the energywas fixed to 30 keV bymeans of a Si(111) double-crystal
monochromator, providing an effective energy resolution of 0.1 %. Projection images are collected
with a large-area (246×24.8 mm2) CdTe photon-counting detector featuring a native pixel pitch of
60 µm ensuring a nearly total X-ray absorption efficiency up to 40 keV. The detector is operated in
dead-time-free mode with the maximum available frame rate of 30 Hz, and it is placed at a fixed
distance from the source R1+R2 = 31.6 m, as sketched in figure 1. Once acquired, projection images
are fed to a detector-specific pre-processing procedure and optionally phase-retrieved considering
a glandular/adipose interface corresponding to (δ1 − δ2)/(β1 − β2) = 795 [15]. CT images are
reconstructed via a GPU-based parallel-beam FBP with a Shepp-Logan filter, meaning that, in the
model introduced in the previous section, G(U) = U sinc(U) where sinc(U) = sin(πx)/(πx) is the
normalized sinc function. The backprojection algorithmmakes use of linear interpolation, therefore
Finterp(U) = [2 + cos(2πU)]/ 3. The detector MTF is modelled as a bi-dimensional sinc function
MTF(U,V ; 1) = sinc(U) sinc(V), which implies a bi-dimensional box-shaped PSF having a width
corresponding to the pixel size. The latter assumption, despite being an approximation, is rather
reasonable for photon-counting detectors as Pixirad-8, where the PSF width is dominated by the
physical pixel dimension, hence d/h ' 1. Moreover, this approximation allows to simulate different
physical pixel sizes simply by rebinning projection images without changing the functional form
of MTF in equation (2.2). Specifically, the acquired projections have been rebinned to yield a set
of pixel sizes h = [60 µm, 120 µm, 180 µm, 240 µm]. The sample has been scanned at 3 different
propagation distances corresponding to source-to-sample distances R1 = [30.0 m, 28.6 m, 22.6 m]
and magnification factors M = [1.05, 1.10, 1.40]. The photon fluence was tuned to deliver 25 mGy
of mean glandular dose at the patient support position (corresponding to R1 = 30 m, M =1.05) and
kept fixed to have constant statistics at the detector [7].

For each image, reconstructed bothwith andwithout applying PhR, the SNR has beenmeasured
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within an homogeneous fibroglandular region as

SNR =
〈I〉
σ

(2.4)

where 〈I〉 is the average gray level of a circular region-of-interest (ROI) and σ is the standard
deviation within the same ROI. Starting from the measured SNR values, for each pixel dimension
and magnification factor, the SNR gain factor (or noise decrease factor) has been computed as

SNRgain =
σnoPhR
σPhR

=
SNRPhR

SNRnoPhR
(2.5)

where the subscripts refer to images without (noPhR) and with (PhR) phase retrieval. Of note,
even if the delivered mean glandular dose is higher than the SYRMA-3D clinical target (5 mGy or
below) [12], the SNR gain factor does not depend from the absolute dose value as the fluence term
appearing in equation (2.1) cancels out when taking the ratio of image noise levels (or, equivalently,
of signal-to-noise ratios). Therefore, the experimental results expressed in terms of SNR gain in
the next section have a rather general validity, regardless the absolute dose value.

3 Results and discussion

Figure 2 shows a detail of the breast specimen sample enclosing a fibroglandular detail (bright
gray) embedded in an adipose background (dark gray) acquired at R1 = 22.6 m, M = 1.40, and
reconstructed with four different pixel sizes (by columns), without and with the PhR (by rows).
As expected, considering the images without PhR, the pixel size plays an important role in terms
of image noise and a dramatic noise increase is associated with the native pixel spacing (60µm)
when compared with the largest pixel size (240µm). At the same time the use of larger pixel sizes
obviously result in an increased image blurring (or loss of spatial resolution) which greatly reduces
the visibility of the edge-enhancement effect. Conversely, the image noise dependence on the pixel
size is way less pronounced in case of phase-retrieved images, as predicted by the aforementioned
model, whereas the most evident effect is the image blurring associated to larger pixel sizes.

The plots in figure 3 report, quantitatively, the model results and their comparison with the
experimental measurements. Specifically, panel (a) shows the predicted noise dependence on
the pixel size for all the geometrical configurations (R1, M) considering a fixed fluence level at the
sample, hence fixed dose. If no phase retrieval is applied (dashed lines), as in conventional imaging,
image noise is described by the power law σ ∝ h−2, and larger magnifications are associated to
higher image noise at all pixel sizes. This is partly because larger magnifications result in smaller
effective pixel sizes (h/M) and partly because large magnifications are related to large propagation
distances (R2) hence to a higher air attenuation between sample and detector. On the other hand,
when phase retrieval is applied (solid lines) image noise asymptotically converges to the values
predicted for non phase-retrieved images at large pixel sizes, as A ∝ h−2 becomes small, but show a
much shallower dependence on the pixel dimension. In particular, for smaller pixel sizes the noise
difference between phase retrieved and non-phase retrieved data dramatically increases or, in other
terms, the noise reduction factor due to phase retrieval largely increases. Of note, in the geometrical
configurations reported in this study, larger magnifications yield smaller image noise at smaller
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Figure 2. Crop of a reconstructed tomographic slice showing a fibroglandular detail embedded in adipose
background acquired at R1 = 22.6 m, M = 1.40. Each column refers to a given pixel size while each row
specifies whether the PhR is applied or not. All the images are windowed on the same gray level scale (inset
of the top-left image) to facilitate the comparison. The sharp interface between the two tissues is produced
by a surgical cut.

pixel sizes whereas, if the detector pixel size is large (& 300µm), smaller magnifications should be
preferred. This can be explained considering that for large pixel sizes phase retrieval does not affect
much image noise, which is therefore dominated by the term M2/h2 as in conventional (non-phase
retrieved) images.

In panel (b) the SNR gain predicted by the model (lines, resulting from the ratio of the curves
displayed in panel (a)) and measured from experimental images (points) is reported as a function
of the pixel size. From the plot it is clear that the model well describes experimental data for all
the geometrical configurations, therefore being a powerful tool for estimating the effect of phase
retrieval on image noise. Specifically, at the native pixel spacing of 60µm the SNR gain goes up
to a factor larger than 20 when considering the largest geometrical magnification. Conversely, as
expected, smaller SNR gain is found at larger pixel size and the curves converge asymptotically to
the value of 1 (no gain).

So far, mostly image noise and SNR dependence on detector pixel size have been discussed.
Anyway, the model can be of use in understanding and optimizing the geometrical configuration
of an experimental setup which includes a detector of a given pixel size. In figure 4 the predicted
image noise (color scale) for a detector with pixel size of 60 µm at constant sample fluence is plotted
as a function of the source-to-sample distance (R1) and magnification (M) in case of no PhR, panel
(a), and considering the PhR, panel (b). In the first case, representing conventional CT, the image
noise is strongly dependent and monotonically increasing with the magnification (∝ M2), whereas
source-to-sample distance plays a little role at low magnifications and it becomes more important at
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Figure 3. In (a) the predicted image noise as a function of the pixel size for both cases with (solid lines)
and without (dashed lines) PhR and all geometric configurations. In (b) the predicted (lines) and measured
(points) SNR gain due to the application of PhR in all geometrical configurations.

large magnifications due to photon attenuation (large R1 and M means large R2, hence lower photon
transmission between sample and detector). When PhR is applied the plot changes dramatically,
and the noise is found to decrease at larger magnification and source-to-sample distance. This
trend is unparalleled in conventional CT and it can be intuitively explained considering that large
propagation distances (R2), which are related to large values of R1 and M , lead to stronger phase-
effects and, in turn, to a more effective phase retrieval. As a general remark, since the model
hereby described holds in the ‘near-field’ approximation, noise cannot arbitrarily decreased and, as
a first line discrimination, only results corresponding to Fresnel numbers larger than 1 should be
considered.

4 Conclusions

Based on a theoretical model proposed by other authors, this work shows experimentally that
the use of detector featuring a small pixel size and pixel-aperture dominated response function
is key to take advantage of the noise reduction properties of the phase-retrieval algorithm. In
fact, the much shallower dependence of CT image noise on pixel size in phase-retrieved images
enables, by using the propagation-based phase-contrast configuration, high-resolution low-dose CT
imaging. Specifically, having included the realistic geometry of a synchrotron-based breast CT
clinical project and the detector response of the used photon-counting device, the model accurately
predicts the effect of phase retrieval on signal-to-noise-ratio for different pixel sizes and geometrical
magnifications. In this context, an extensive use of this model can be a powerful tool to design and
optimize any propagation-based imaging experiment where the noise performances are critical.
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Figure 4. Predicted image noise (color bar) as a function of source-to-sample distance (R1) andmagnification
(M) for images without (a) and with (b) PhR.
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