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TRIGONAL DEFORMATIONS OF RANK ONE AND JACOBIANS

VALENTINA BEORCHIA, GIAN PIETRO PIROLA AND FRANCESCO ZUCCONI

Abstract. In this paper we study the infinitesimal deformations of a trigonal curve that preserve the trigonal
series and such that the associate infinitesimal variation of Hodge structure (IVHS) is of rank 1. We show that
if g ≥ 8 or g = 6, 7 and the curve is Maroni general, this locus is zero dimensional. Moreover, we complete the
result [NP, Theorem 1.6]. We show in fact that if g ≥ 6, the hyperelliptic locus Hg is the only 2g−1-dimensional
sub-locus Y of the moduli space Mg of curves of genus g, such that for the general element [C] ∈ Y , its Jacobian

J(C) is dominated by a hyperelliptic Jacobian of genus g′ ≥ g.

Introduction

Let Tg be the locus in the moduli space Mg of smooth curves of genus g given by points [C] ∈ Mg such that
C is a trigonal curve, that is C admits a triple covering of P1 and C is not hyperelliptic.

In this paper we study infinitesimal deformations which come from families of trigonal curves and in particular
the ones having the associated infinitesimal variation of Hodge structure (IVHS) of rank 1.

Our main motivation was to complete the characterization of 2g − 1-dimensional families Y of curves with
Jacobian family dominated by a hyperelliptic Jacobian family. Indeed in [NP, Theorem 1.6] it is shown that if
Y is a 2g − 1-dimensional closed irreducible subvariety of Mg with g ≥ 5, such that the Jacobian of its generic
element is dominated by a hyperelliptic Jacobian, then Y ⊂ Hg, where Hg denotes the hyperelliptic locus, or
Y ⊂ Tg. In this paper we rule out the trigonal case. Our main result is the following:

Theorem 0.1. If g ≥ 6 then Hg is the unique closed irreducible subvariety Y ⊂ Mg of dimension 2g − 1 such
that for its generic element [C] ∈ Y there exists [D] ∈ Hg′ such that J(D) ։ J(C).

We point out that, in principle, we have to consider all the codimension-2 subvarieties of Tg. The argument
goes as follows. If C is smooth and trigonal the Babbage-Enriques-Petri theorem gives that the intersection
of all the quadric that contain the canonical image of C is a ruled surface S ⊂ Pg−1. This surface S can be
also embedded, by an extension κ2 : S → PH1(TC) of the bicanonical morphism of C, in the projective space
PH1(TC), where TC is the tangent sheaf of C. We identify H1(TC) with the tangent space of Mg at [C],
by possibly adding a level structure or by considering the moduli stack Mg, if [C] is a singular point of the
moduli space. By the work of Griffiths, the points of the surface κ2(S) correspond to the locus of infinitesimal
deformations with IVHS of rank one (see [Gri1]) and Lemma 3.2).

Now, in [NP, Proof of Theorem 1.6, p.13 ], it is shown that, under the conditions of theorem (0.1), if Y ⊂ Tg,
then for the generic [C] ∈ Y there must exist a non-degenerate rational curve Z ⊂ S ⊂ Pg−1 which corresponds
to a 1−dimensional component of the intersection Γ = κ2(S) ∩ P(TTg,[C]) ⊂ PH1(TC), where TTg,[C] is the
tangent space to the trigonal locus at [C]. We show that Γ cannot contain such a Z, by analysing the geometry
on the Hirzebruch surface Fn isomorphic to S. We recall that the integer n ≥ 0 is classically called the Maroni

invariant of C; we shall perform our study in terms of the Maroni degree k = (g−2−n)
2 for trigonal curves, that

is in terms of the degree of a non positive section in the extended canonical embedding in Pg−1, see subsection
2. We show:

Theorem 0.2. If g ≥ 8, or 6 ≤ g ≤ 7 and Maroni degree k = 2, or g = 6 and k 6= 1, then Γ has dimension 0.

The proof will follow from Proposition 3.12 and Proposition 3.14.
In the special cases g = 7, 6 and k = 1 we need to deepen our analysis. We consider the locus T 1

g ⊂ Tg of

trigonal curves with Maroni degree k = 1 and we define Γ1 ⊂ Γ the intersection Γ ∩ P(TT 1
g ,[C]). We show:
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Theorem 0.3. If g = 6 or g = 7 and Maroni degree k = 1 and C is generic, then Γ is irreducible and Γ1 has
dimension 0.

Moreover, if Γ is reducible, then Γ1 does not contain any rational curve Z1, such that κ−1
2 (Z1) ⊂ Pg−1 is

nondegenerate.

The result will be a consequence of Proposition 4.2 for g = 7 and Proposition 4.3 if g = 6.
From the two theorems we deduce that there are no non-degenerate rational curve Z ⊂ Γ, which implies our

main result.

Our point of view is also related to problems concerning the relative irregularity of families of curves, see for
instance [BGN],[FNP],[GST], and [Gon], since our result gives an infinitesimal version of a result of Xiao [X,
Corollary 4, page 462]. To shorten the paper we do not include this here as well as some partial computation
on genus 5 case, but we only finally remark that hopefully, this can shed some new light on the slope problem
as treated in [BZ1] and [BZ2].
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1. A Gaussian lemma

Let C be a smooth curve and let L be line bundle of degree d on C. Consider a base point free linear system
subspace V ⊂ H0(C,L). We can associate two objects with V , the Gaussian section and the Euler class, which
we recall.

Let f : C → P(V ∨) ≡ P
r be the projective morphism given by V and

(1) 0 → TC
df
→ f⋆(TPr) → Nf → 0

the exact sequence associated with its differential. We tensor it by the canonical sheaf ωC :

(2) 0 → OC → ωC ⊗ f⋆(TPr) → ωC ⊗Nf → 0

Then we can consider the section

ΩV ∈ H0(C, ωC ⊗ f⋆(TPr))

obtained as the image of 1 ∈ H0(C,OC), and represents the differential d f .

Definition 1.1. We call ΩV the Gaussian section of the morphism f : C → Pr.

We want to relate ΩV to the Euler class whose definition we briefly recall.
It is well known that H1(Pr,Ω1

Pr) = C and that the Euler sequence

0 → OPr → (OPr (1))⊕r+1 → TPr → 0

is given by a non trivial class ηeul ∈ H1(Pr,Ω1
Pr). The pull-back to C of the Euler sequence gives

(3) 0 → OC → V ⊗ L → f⋆(TPr) → 0.

The extension class of the sequence (3) determines an element ηV ∈ H1(C, f⋆(Ω1
Pr)): we call it the Euler

class of f : C → |V |∨.
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Following [?, Page 804], we recall that to a line bundle L on a smooth curve C we can associate a sheaf ΣL,
determined by the Chern class c1(L) ∈ H1(C, ωC) ∼= Ext1(TC ,OC). Let

(4) 0 → OC → ΣL
τ
→ TC → 0

be the extension determined by c1(L).
By taking into account the sequence (1), we get a commutative diagram

(5)

0 0
↓ ↓

0 → OC → ΣL
τ
→ TC → 0

|| ↓ ↓ ΩV

0 → OC → V ⊗ L → f⋆(TPr) → 0
↓ ↓
Nf = Nf

↓ ↓
0 0

and we observe that the differential df determines a map of complexes, and the image of the bottom extension
is the upper extension.

Lemma 1.2. (Gaussian Lemma) Consider the natural map given by the cup product and duality

H0(C, ωC ⊗ f⋆(TPr))×H1(C, f⋆(Ω1
Pr )) → H1(C, ωC).

Then we have

ΩV · ηV = c1(L) 6= 0

As a consequence, the Gaussian section ΩV does not belong to the image of the map

H0(C, V ⊗ ωC ⊗ L) → H0(C, f⋆(TPr)⊗ ωC).

Remark 1.3. We will use Lemma 1.2 in the case where L induces a g13 on C. We stress that if r = 1 then the
ramification scheme RV of f : C → P1 is the zero locus of the Gaussian section, which is a section

ΩV ∈ H0(C, ωC ⊗ L⊗2).

2. Trigonal curves and Gaussian sections

Let C ⊂ Pg−1 be a canonical trigonal curve of genus g ≥ 5 which has no g25 and let IC be its graded ideal. By
the Babbage-Enriques-Petri theorem the hyperquadrics containg C intersect in a smooth rational ruled surface
S of minimal degree g − 2 in Pg−1 and the trigonal series is cut on C by the ruling of S.

Let us fix some notations and recall some known results concerning the Hirzebruch surfaces Fn = P(OP1 ⊕
OP1(n)). The Picard group of Fn satisfies Pic(Fn) = [B]Z⊕[R]Z, where B is a section of minimal self-intersection
and R a fiber in the ruling of the projection π : Fn → P1. The basic intersection formulae are:

(6) B2 = −n, BR = 1, R2 = 0.

Definition 2.1. Let C be a trigonal curve of genus g ≥ 6 and let L be the line bundle of degree 3 computing
the unique trigonal series. We set V := H0(C,L). The Maroni degree k ∈ N of C can be characterized as the
unique number such that

h0(C,L⊗k+1) = k + 2, h0(C, ωC ⊗ L⊗k+2) > k + 3.

The following bounds on k have been established by Maroni [M] and are well known

(7)
g − 4

3
≤ k ≤

g − 2

2
.

It turns out that S is an embedding of the Hirzebruch surface Fg−2−2k via the linear system |H | = |B + (g −
2− k)R|. Moreover we have

(8) C ∈ |3B + (2g − 2− 3k)R|, KC = H|C .
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We recall that H0(Fn,OFn
(R)) ∼= H0(P1, π⋆OFn

(R)) ∼= H0(P1,OP1(1)). We recall that a class M = kB+ sR
is ample if and only if MR = k > 0 and MB = −nk+ s > 0, that is s > nk, and respectively nef if s ≥ nk ≥ 0.
Finally, if s ≥ nk > 0, then M is big and nef.

The following results will be useful in the sequel:

Lemma 2.2. If m ≥ 0 and s ≥ n(m+ 1) + 1, then the multiplication map

(9) µ : H0(Fn,OFn
(R))⊗H0(Fn,OFn

(mB + sR)) → H0(Fn,OFn
(mB + (s+ 1)R))

is surjective.

Proof. Set V := H0(Fn,OFn
(R)). We tensor the sequence

(10) 0 → OFn
(−R) → V ⊗OFn

→ OFn
(R) → 0

by OFn
(mB + sR) where m ≥ 0 and s ≥ n(m + 1) + 1. By the free pencil trick the cokernel of µ injects into

H1(Fn,OFn
(mB + (s − 1)R)) which is the dual of H1(Fn,OFn

(−(m + 2)B − (s + n − 1)R)) by Serre duality
and the fact that the canonical divisor is KFn

∼ −2B − (2 + n)R. By the hypotheses on m and s, the divisor
M := (m+ 2)B + (s+ n− 1)R is big and nef, therefore H1(Fn,OFn

(−M)) = 0. �

Proposition 2.3. The map µ : H0(S,H +R)⊗H0(S,R) → H0(S,H + 2R) is surjective.

Proof. As in the proof of Lemma (2.2) we only need to show that H1(S,OS(H)) = 0. By the remarks above we
have H ∼ KS + C. It is easy to show that C is 1-connected, |nC| gives a morphism to a surface. We conclude
by applying Ramanujam’s vanishing theorem[R]. �

Now consider the exact sequence:

0 → OS(H + 2R− C) → OS(H + 2R) → ωC(2L) → 0

and the restriction map
r : H0(S,OS(H + 2R)) → H0(C, ωC(2L)).

Now let us observe that in the trigonal case, the Gaussian section ΩV ∈ H0(C, ωC ⊗ L⊗2).

Corollary 2.4. The Gaussian section does not belong to the image of r.

Proof. By contradiction assume that ΩV = r(α). By Proposition 2.3 we have α = s1β1 + s2β2 which would
imply that ΩV belongs to the image of the multiplication map µ : H0(C,L)⊗H0(C, ωC⊗L) → H0(C, ωC ⊗2L).
This is in contradiction with the Gaussian Lemma 1.2. �

3. The locus of rank 1 infinitesimal deformations

Let I2 := IC(2) be the degree two part of the homogeneous ideal of a trigonal canonical curve C ⊂ Pg−1, and
let S be the ruled surface. By a simple computation we see that

(11) |2H | ∼= |2H|C | ∼= |2KC |.

If we consider the bicanonical map

C → |2KC |
∨ ∼= P(H1(C, TC)) = P

3g−4,

we observe that it extends to an embedding κ2 : S → P3g−4. Since C is not hyperelliptic, the multiplication
map

µ : Sym2H0(C, ωC) → H0(C, ω⊗2
C )

is surjective. By definition the kernel of µ is I2. By Serre duality we obtain:

(12) 0→H1(C, TC)
ι
→ Sym2(H1(C,OC)) → I∨2 → 0.

The inclusion ι : H1(C, TC) → Sym2(H1(C,OC)) is given by ξ
ι
7→ qξ where qξ is the quadric associated with the

co-boundary homomorphism
∂ξ : H

0(C, ωC) → H0(C, ωC)
∨ = H1(C,OC)

of the extension class ξ ∈ H1(C, TC) = Ext1OC
(ωC ,OC); see [Gri1].

Definition 3.1. We define the rank of ξ as the rank of its associated quadric qξ.
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By the standard properties of the Veronese embedding

ν2 : P(H
1(C,OC)) → P(Sym2(H1(C,OC)))

it follows that
κ2(S) = ν2(P(H

1(C,OC)) ∩ ι(P(H1(C, TC)) ⊂ P(Sym2(H1(C,OC))).

We have:

Lemma 3.2. The image of the embedding of κ2 : S → P3g−4 satisfies:

κ2(S) = {[ξ] ∈ PH1(C, TC) | ∂ξ : H
0(C, ωC) → H1(C,OC) has rank 1};

Proof. It follows from the sequence (12) and its dual. See also: [Gri1, p. 271]. �

3.1. Trigonal deformations of rank 1. In the present section we shall study the locus of S corresponding to
deformations which preserve the property of having a trigonal series.

As in the Introduction we denote by Tg the trigonal locus and let T k
g ⊂ Tg be the locus of trigonal curves

with Maroni degree k. We define

T k
C := TT k

g ,[C] ⊆ H1(C, TC), T := TTg,[C] ⊆ H1(C, TC).

the tangent spaces to respectively T k
g and Tg at [C].

Consider the natural homomorphism

H1(C, TC)⊗H0(C, ωC ⊗ L⊗2) → H1(C,L⊗2)

given by the cup-product ξ ⊗ σ 7→ ξ · σ. It holds:

Lemma 3.3. If [C] ∈ Tg then

(13) T = {ζ ∈ H1(C, TC) : ζ · ΩV = 0 ∈ H1(C, 2L)}.

Proof. Let Cξ → Spec(C[ǫ]/(ǫ2)) be the infinitesimal family associated with ξ. Since ξ ∈ T , the trigonal
morphism f : C → P1 lifts to Cξ. By standard arguments it follows that the Gaussian section lifts to Cξ. This
implies that the cup product ξ ·ΩV = 0. Since h1(C,L⊗2) = g−4 and since the cup product ·ΩV : H1(C, TC) →
H1(C,L⊗2) is easily seen to be surjective by dualizing the map, we have that

dimC{ζ ∈ H1(C, TC) : ζ · Ω = 0 ∈ H1(C, 2L)} = 2g + 1.

On the other hand dimCTg = 2g + 1. Then the claim follows. �

Remark 3.4. Dually, the annihilator of T in H1(C, TC)
∨ ∼= H0(C, ω⊗2

C ) is H0(C, ω⊗2
C (−RV )), where RV is

the ramification divisor.
By taking into account the isomorphisms in (11), such a space corresponds to the subspace

H0(S,OS(2H)⊗ IRV ,S),

where IRV ,S is the ideal sheaf of the subscheme RV ⊂ S.
We shall denote by

Λ := P(H0(S,OS(2H)⊗ IRV ,S)).

Next we would like to determine the intersection of P(T ) with the surface κ2(S).

Definition 3.5. The locus Γ = P(T ) ∩ κ2(S) is called the locus of trigonal deformation of rank 1.

3.2. Proof of Theorem 0.2. In what follows with k we shall always denote the Maroni degree. For the reader’s
convenience we fix the relations and classes in Pic(S) = Pic(Fg−2−2k), which we shall use:

• R is the ruling inducing the trigonal linear system on C;
• B is a section of minimal self-intersection of Fg−2−2k, and B2 = 2k + 2− g;
• A = B + (g − 2− 2k)R is the tautological divisor of Fg−2−2k;
• KS = −2B − (g − 2k)R;
• H = B+(g−2−k)R is the hyperplane divisor of the canonical embedding, H|C ∼ KC , and H2 = g−2;
• C ∈ |3B + (2g − 2− 3k)R|.

Recalling the bounds on k given in (7), we shall distinguish two cases: g = 2k + 2 or 2k+ < g ≤ 3k + 4.
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3.3. The case g = 2k+ 2 and k ≥ 2: curves of even genus with Maroni invariant zero. We shall show
that in this case the subscheme RV ⊂ S is a complete intersection of two divisors G1, G2 ∼ 2B+ (k+2)R, and
since h0(S,OS(2H −Gi)) 6= 0, they determine a pencil in Λ with base locus exactly RV ; as a consequence we
will obtain that the base locus Bs(Λ) of Λ satisfies Bs(Λ) = RV .

Let C be a trigonal curve of genus g = 2k + 2. In this case we have that

S ∼= P
1 × P

1, C ∈ |3B + (k + 2)R|, Λ ⊆ |2H | = |2B + 2kR|.

Proposition 3.6. If g = 2k + 2 with k ≥ 2, then the base locus of Λ satisfies dimBs(Λ) = 0 and Bs(Λ) = RV .

Proof. We observe that
h0(S,OS(2B + (k + 2)R)⊗ IRV ,S) 6= 0.

Indeed, we have
(2B + (k + 2)R)|C ∼ H|C + 2R|C +B|C ∼ RV +B|C ,

and since−C+2B+(k+2)R ∼ −B, we have h0(S,OS(−C+2B+(k+2)R)) = h1(S,OS(−C+2B+(k+2)R)) = 0,
so there is an isomorphism

(14) H0(OS(2B + (k + 2)R)) ∼= H0(OC(KC + 2L+B|C)).

We consider in particular the pencil RV + |B|C | in |KC + 2L + B|C , and the corresponding pencil |G| in
|2B + (k + 2)R| under the isomorphism (14). By construction we have the base locus Bs|G| ⊇ RV . We claim
that

Bs|G| = RV .

We first show that Bs|G| contains no divisors. If by contradiction it contains a divisor Γ in some linear system
|aB + bR| with

(15) 0 ≤ a ≤ 2, 0 ≤ b ≤ k + 2,

then we must have
Γ|C < Bs|KC + 2L+B|C −RV | = RV ,

hence

(16) Γ · C = 3b+ (k + 2)a ≤ deg RV = 2g + 4 = 4k + 8.

On the other hand, the base points of the moving part of the pencil must contain the residual part of RV , hence
we must have

Γ · C + (G− Γ)2 ≥ deg RV = 4k + 8.

This gives the inequality

(17) 3b+ (k + 2)a+ 2(2− a)(k + 2− b) ≥ 4k + 8.

We observe that if a = 0, then (17) gives b = 0.
If a = 1, then by (17) and (15) we get b = k+2; in this case we would have Γ ∼ H+2R and Γ|C = RV , but this

is not the case since by Corollary 2.4 the Gaussian section Ω 6∈ Image(H0(S,OS(H + 2R)) → H0(C, ωC(2L)).
Finally, observe that the case a = 2 can not occur, as by construction the moving part of the pencil RV +|B|C |

is not cut out by fibers R of the ruling.
Therefore dimBs(|G|) = 0. Since G2 = 4k + 8 = deg RV , we get the statement of the Proposition.

�

3.4. The case 2k + 2 < g ≤ 3k + 4, k ≥ 1 and g ≥ 6. The argument is similar to the one of the previous
section. We shall show that in this case the subscheme RV ⊂ S is a complete intersection of two divisors
QV ∼ 2B + (g − k)R and Q1 ∼ 2B + (2g − 3k − 2)R, and since H ∼ B + (g − 2 − k)R, the bounds (7) imply
h0(S,OS(2H −QV )) 6= 0 and with the additional hypothesis k ≥ 2 we have also

(18) h0(S,OS(2H −Q1)) 6= 0.

As a consequence we will obtain that the base locus of Λ is Bs(Λ) = RV .
Finally, we shall prove that in the remaining cases g = 6, g = 7 and k = 1, the linear system Λ has a one

dimensional fixed component.
Since we are assuming g > 2k + 2, the ruled surface S ∼= Fg−2k−2 admits a negative section B2 < 0.
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Lemma 3.7. There exists a unique divisor QV ∈ |2B + (g − k)R| containing RV . Moreover we have

QV |C = B|C +RV ,

and B is not a component of QV .

Proof. By observing that −C + 2B + (g − k)R ∼ −A one can easily see that the restriction morphism |2B +
(g − k)R| → |B|C +RV | is an isomorphism.

To prove the second claim, we note that −C+B = −(2B+(2g−2−3k)R). Since 2B+(2g−2−3k)R is big and
nef, then h1(S,OS(−C+B)) = 0. On the other hand we have h0(S,OS(B)) = 1, therefore h0(C,OC(B|C)) = 1,
which concludes the proof. �

Next we consider the linear system |2B + (2g − 3k − 2)R|.

Lemma 3.8. The restriction map |2B + (2g − 3k − 2)R| → |B|C +RV + (g − 2k − 2)L| is an isomorphism.

Proof. Note that 2B + (2g − 3k − 2)R− C = −B. The claim easily follows since B is an irreducible curve and
S is a regular surface. �

Next we note that the sublinear system RV + |B|C+(g−2k−2)L| of |RV +B|C+(g−2k−2)L| has dimension

(19) dim(RV + |B|C + (g − 2k − 2)L|) = g − 2k − 1.

Indeed, we have KC = H|C ∼ B|C + (g − 2− k)L. Hence

h1(C,OC(B|C + (g − 2k − 2)L)) = h0(C,OC(kL)) = k + 1.

By Riemann Roch for curves the claim follows.
Now we consider the sublinear system Λ′ < |2B + (2g − 3k− 2)R| on S which is isomorphic to the sublinear

system RV + |B|C + (g − 2k − 2)L| on C.

Corollary 3.9. There exists Q1 ∈ Λ′ such that

Λ′ = 〈QV + |(g − 2k − 2)R|, Q1〉.

Proof. Note that QV + |(g − 2k − 2)R| is a (g − 2k − 2)-dimensional sublinear system of Λ. Hence by (19) the
claim follows. �

Proposition 3.10. The divisors QV and Q1 have no common component.

Proof. Assume by contradiction that there exists a component Γ ∈ |aB + bR| such that Γ < QV and Γ < Q1

where g > 2k + 2 and k > 1.
We observe that Γ can not be a bisecant divisor on S. Indeed, we first note that we can’t have Γ = QV ,

since Q1 6= QV + (g − 2k − 2)R by Corollary 3.9.
Assume now that

(20) Γ ∼ 2B + bR, QV = Γ + (g − k − b)R, Q1 = Γ + (2g − 3k − 2− b)R

for some b ≤ g − k − 1. As RV is a subscheme of both QV and Q1 and as R2 = 0, it would follow that RV is
necessarily a subscheme of Γ.

On the other hand, we have QV |C = B|C + RV by construction, so the relations in (20) would imply that
the subscheme (g − k − b)R|C is contained in B|C , which is a contradiction.

Next we claim that we have the following bounds:

(1) if a = 0, then 2g − 4k − 4 ≥ b;
(2) if a = 1, then b > k + 2.

Indeed, as RV is the base locus of RV + |B|C + (g − 2k − 2)L|, we have in particular RV > Γ|C . Consider
the sublinear system

Λ′′ := 〈(QV − Γ) + |(g − 2k − 2)R|, (Q1 − Γ)〉.

The subscheme RV − Γ|C of C is contained in the base locus of Λ′′. Hence we have

Γ · C + (QV − Γ)2 ≥ 2g + 4.
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Assume now a = 0 and 2g − 4k − 4 ≥ b. In this case Γ ∈ |bR|. This would imply that there exists a fiber
R of S → P1 such that the subscheme RV of C contains the subscheme R|C , that is a divisor in the trigonal
series. This is impossible.

Finally, assume a = 1 and b > k+2. In this case QV = U +Γ where U ∈ |B+(g− k− b)R|. Since b > k+2,
then U = B + U ′ where U ′ ∈ |(g − k − b)R|. This implies that B < QV . Then RV = (QV − B)|C and this
contradicts Lemma 2.4.

�

Corollary 3.11. The subscheme RV is a complete intersection of QV and Q1.
As a consequence we have Bs(Λ) = RV .

Proof. We have (2B + (g − k)R) · (2B + (2g − 3k − 2)R) = 2g + 4. Since RV is a subscheme both of QV and
Q1 and it is of length 2g + 4, the claim follows.

Finally, as Λ′ can be embedded in Λ by multiplication of a base point free linear system we have the last
assertion. �

3.5. Proof of Theorem 0.3. In this section we shall treat the remaining cases k = 1 and g = 6, 7.

Proposition 3.12. If g = 7 and k = 1 then the base locus od Λ satisfies

Bs(Λ) = Γ ∼ 2B + 6R.

Proof. In this case we have S ∼= F3, H ∼ B + 4R and C ∼ 3B + 9R = 3A, where A ∼ B + 3R denotes the
tautological divisor of F3.

Note that deg RV = 2g + 4 = 18 = C · 2A. Since 2A|C ≡ KC + 2L, and H1(S,OS(−A)) = 0, by computing
the cohomology of 0 → OS(−A) → OS(2A) → OC(KC + 2L) → 0 it easily follows that it exists a unique
Γ ∈ |2A| such that Γ|C = RV . �

We can describe very explicitly the linear subspace T < H1(C, TC). Let 〈t0, t1〉 = H0(S,OS(R)) be a basis
of the pencil π : S → P1 and let X1 ∈ H0(S,OS(A)) be an irreducible section. If X∞ ∈ H0(S,OS(B)) then any
trigonal curve C can be written with an equation of the type

(21) C := (X3
1 + α3(t0, t1)X

2
1X∞ + α6(t0, t1)X1X

2
∞ + α9(t0, t1)X

3
∞ = 0)

where αj(t0, t1) ∈ C[t0, t1][j] are general homogeneous polynomials of degree j = 3, 6, 9, so that C is smooth. A
simple computation shows that

(22) Γ := (3X2
1 + 2α3(t0, t1)X1X∞ + α6(t0, t1)X

2
∞ = 0)

Remark 3.13. By Proposition 3.12 we can write:

T = 〈I2,C[t0, t1][2] · Γ〉
⊥.

Proposition 3.14. If g = 6 and k = 1 then we have

Bs Λ = Γ ∼ 2B + 5R.

Proof. In this case we have S ∼= F2, H ∼ B + 3R, C ∼ 3B + 7R. This case differs from the analogue case
where g = 7 because all quadrics vanishing on RV actually vanish also on a scheme of length 17 on C; note that
16 = degRV . We observe that the point B ∩C = {p} is a subscheme of Γ|C = p+RV . So we can conclude in a
similar way as in Proposition 3.12. �

Remark 3.15. Note that if g = 6 and k = 1, by Proposition 3.14 we can write:

T = 〈I2,C[t0, t1][1] · Γ〉
⊥.
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4. Hyperelliptic families and trigonal deformations

Let Y →֒ Mg be a closed irreducible subvariety where g ≥ 5 and dimY = 2g − 1. Assume that for a very
general [C] ∈ Y there exists a dominant morphism J(D) ։ J(C) where [D] belongs to the hyperelliptic locus
Hg′ , g′ ≥ g. By standard arguments we can assume the existence of a family of surjective maps of Jacobians:

(23)

JD J C

U

f

ρ ρ′

such that the moduli map Φ: U → Mg induces a generically finite dominant map U → Y. Moreover we can also
assume that fu : J(Du) ։ J(Cu) and [Du] ∈ Hg′ , for every u ∈ U . Let Wu < H0(Du, ωDu

) be the isomorphic
image of H0(Cu, ωCu

) via the codifferential of fu. In [NP, Proof of Theorem 1.6, p. 13] they show that if Cu

is not hyperelliptic there exists a rational dominant map Du 99K Z ⊆ |Wu|∗ = P(H1(Cu,OCu
)) where Z is a

curve contained in the locus of rank 1 trigonal deformations of Cu.

Proposition 4.1. If g ≥ 8 or g = 6, 7 and k > 1 then Hg is the unique closed irreducible subvariety Y ⊂ Mg

of dimension 2g − 1 such that for its generic element [C] ∈ Y there exists [D] ∈ Hg′ such that J(D) ։ J(C).

Proof. Assume that the general [C] ∈ Y is not hyperelliptic. By [NP, Theorem] it follows that C is trigonal. In
particular the curve Z recalled above is a curve contained inside the fix part of Λ. This contradicts Corollary
3.11. �

4.1. Rational curves of rank-1 trigonal deformations. If g = 6, 7 and k = 1 there can exist rational
curves in the locus of rank 1 trigonal deformations, but we claim that they cannot be non degenerate. By [NP,
Theorem] and by Proposition 4.1, to show our claim, we have to study the rational curves inside the schematic
intersection

Γ1 := Γ ∩ P(T 1
C)

where g = 6, 7. Note that Γ1 must be a proper subscheme of Γ.

Proposition 4.2. If g = 7, k = 1 and C is generic then Γ is smooth, irreducible and Γ1 is a finite scheme.
Moreover if Γ is reducible then Γ1 does not contain any non degenerate curve.

Proof. By Proposition 3.12 and the explicit equations (21) and (22) the first claim follows. Assume now that C
is smooth but non generic and that Γ is a union of at least two components. By Lemma 2.4, Γ cannot contain
B as one of its components. Hence Γ = D1 + D2 where D1, D2 ∈ |A| since R|C is not a subdivisor of RV .

This implies that both components of Γ are degenerate curves for the embedding φ|H| : S → P6. In particular

Γ1 = P(T k
C)|Γ does not contain non degenerate rational curves. �

Proposition 4.3. If g = 6, k = 1 then either Γ is irreducible or if it is reducible it does not contain any non
degenerate rational curve. In particular Γ1 does not contain any non degenerate rational curve.

Proof. The proof is similar to the one of Proposition 4.2 by using Proposition 3.14. �

4.2. The proof of the main Theorem 0.1. By Proposition 4.1 we have to consider only the cases where
k = 1, g = 6, 7. We consider the diagram (23). Note that Z is a nondegenerate curve since it is obtained by
projection of the canonical image of D which is a rational normal curve since D is hyperelliptic. On the other
hand we also have Z →֒ Γ1. By Proposition 4.2 and by Proposition 4.3 we see that such a non degenerate curve
Z cannot exist.
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