SUPPLEMENTARY MATERIAL

Table S1. A) Summary of culling effort. Noting that the hours of culling efforts refers only to the dive time associated directly to sea urchin removal, thus excluding the time spent to set up systematic culling transects. B) ANOVAs testing the effect of culling on sea urchin density (n° individuals m^{-2}) across time.

A)

Cull location	Days	Number of divers	Number of urchins removed	Hours of culling effort	Cull rate (urchins/diver/min)
1	1	5	8756	7.5	19.46
	2	8	13122	12	18.23
	3	7	12568	10.5	19.95
	4	8	13898	12	19.30
2	5	6	9112	9	16.87
	6	6	9823	9	18.19
	7	8	13114	12	18.21
	8	8	12125	12	16.84
Tota	ls	56	92518	84	Mean = 18.38

B)

Source of variation	df	MS	F	Р
Time = Ti	4	77.41	15.51	0.0008
Treatment = Tr	1	391.68	1120.69	0.0009
Si = Si(Tr)	2	0.35	0.12	0.8844
$Ti \times Tr$	4	12.86	2.58	0.1185
$Ti \times Si(Tr)$	8	4.99	1.76	0.1144
Residuals	40	2.84		
Total	59			

Table S2. List of taxa found in the study. The aggregations adopted for univariate analyses were also reported. Abbreviations used in canonical analysis of principal coordinates (CAP) are also reported. * Taxa not considered in univariate analyses.

TURF FORMING ALGAE	Abbr.	INVERTEBRATES	Abbr.
Acetabularia acetabulum		Actinia sp.	Act
Amphiroa rigida	Amp	Aiptasia mutabilis	Aip
Anadyomene stellata	Ana	Aplysina aerophoba	
Articulated Corallines	AC	Ascidia mentula	Asc
Caulerpa cylindracea	Cau	Balanophyllia europea	Beur
Dark Filamentous Algae	DFA	Botryllus sp.	
Dasycladus vermicularis	Dver	Calcareus Tube Worms	CTW
Dumontiaceae		Caryophyllia smithii	Cary
Green Filamentous Algae	GFA	Cereus pedunculatus	
Liagora viscida	Lvis	Chondrilla nucula	
Stypocaulaceae		Chondrosia reniformis	
Tricleocarpa fragilis	Tfra	Cladocora caespitosa	
Valonia macrophysa		Cliona spp.	
		Didemnidae	Did
ERECT MACROALGAE		Encrusting Bryozoans	EB
Codium bursa	Cod	Encrusting Red Sponges	ERS
Cystoseira compressa	Cys	Halocinthya papillosa	
Dictyotales	Dic	Hemimycale columella	Hem
Flabellia petiolata	Fla	Hydroids	Hyd
Halimeda tuna		Ircinia variabilis	
Laurencia complex	Lau	Lithophaga lithophaga	
Padina pavonica	Pad	Massive Dark Sponges	MDS
Sphaerococcus coronopifolius		Petrosia ficiformis	
Wrangelia penicillata	Wra	Phorbas tenacior	
		Rocellaria dubia	
ENCRUSTING ALGAE*		Terpios fugax	
Encrusting Calcified Rhodophyceae	ECR	Thin Ramified Bryozoans	
Palmophyllum crassum		Vermetidae	Ver
Peyssonnelia spp.	Pey		

Table S3. Summary of PERMANOVA testing the effect of sea urchin culling on the compositional structure of benthic assemblages. Analyses were based on Jaccard dissimilarities (presence/absence data), and each test was performed using 4999 permutations of appropriate units. Results of pairwise tests for the significant term Ti \times Tr were reported below. G –: sea urchins culled; G +: reference conditions. Only test relevant to the hypotheses are reported.

Source of variation	df	MS	Pseudo-F	P(perm)
Time = Ti	4	36926	2.85	
Treatment = Tr	1	135570	7.00	0.0002
Site = Si(Tr)	2	19354	8.73	0.006
Transect = $Ts(Si(Tr))$	8	25675	2.52	
$Ti \times Tr$	4	2217	1.98	0.0384
$Ti \times Si(Tr)$	8	12966	4.53	0.0002
$Ti \times Ts(Si(Tr))$	32	2859	3.25	
Residuals	540	880		
Total	599			
Pair-wise test for term	Ti × Tr			
G+	G–			
T0=T1=T2=T3=T4	T0=T1=T2=T3=T4			
T 0 T 1			-	
T0 T1	T2	T3	T4	
$G^+ = G^ G^+ = G^-$ ($G^+ \neq G^-$	$G^+ \neq G^-$	$G + = G_{-}$	

Figure S1. Canonical analysis of principal coordinates (CAP) for the factor Ti \times Tr based on the distance matrix (Jaccard dissimilarity index, i.e., presence absence data) of areas of assemblages in the different sampling times (T0:T4). Numbers (from 0 to 4) indicate the sampling times. G+ = reference conditions; G- = manipulated conditions.

Figure S2. Final state of the rocky reefs characterizing reference (a) and culling (b) sites (i.e. after 3 years from the intervention).

