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Recursive approach for non-Markovian time-convolutionless master equations
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We consider a general open system dynamics and we provide a recursive method to derive the associated
non-Markovian master equation in a perturbative series. The approach relies on a momenta expansion of the open
system evolution. Unlike previous perturbative approaches of this kind, the method presented in this paper provides
a recursive definition of each perturbative term. Furthermore, we give an intuitive diagrammatic description of
each term of the series, which provides a useful analytical tool to build them and to derive their structure in terms
of commutators and anticommutators. We eventually apply our formalism to the evolution of the observables of
the reduced system, by showing how the method can be applied to the adjoint master equation, and by developing
a diagrammatic description of the associated series.
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I. INTRODUCTION

The investigation of open systems dynamics in quantum
physics has constantly grown in recent years, pushed by the
interest in developing new quantum technologies [1]. Open
quantum systems are generally described by non-Markovian
dynamics, which account for the memory of the interaction
between the system and the environment surrounding it.
Unlike approximated Markovian dynamics that are always
described by a master equation of the Lindblad type [2],
non-Markovian dynamics in general cannot be recast in a
unique explicit structure. There is a vast literature on the
formal investigation of non-Markovian dynamics [3–8], in this
paper we are interested in investigating those dynamics that
are derived from underlying physical models, i.e., obtained
by tracing out the degrees of freedom of a physical environ-
ment, provided that the initial state is factorized. Recently,
a microscopic derivation has been provided for a specific
class of non-Markovian maps [9], namely those describing
a system interacting with a bosonic bath that is completely
characterized by its two-point correlation function. Notorious
examples that fall in this category are, e.g., the non-Markovian
Brownian motion [10,11] and the spin-boson model [12,13].
Moreover, it has been shown that if one considers a system
described by a bosonic quadratic Hamiltonian, it is possible
to derive analytically the family of Gaussian, non-Markovian,
completely positive master equations [14]. However, there
are many physical systems that do not fall into the Gaussian
ansatz. Interesting examples are state transfer in quantum
information [15], Brownian motion with nonlinear coupling
[16], the donor-acceptor model [17], widely used in quantum
biology, driven spin chains [18] that cover a crucial role in
condensed matter, and coupled cavities in cQED [19].
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General non-Markovian dynamics can be formally encoded
in the Nakajima-Zwanzig master equation [20,21] that displays
an integral term accounting for memory effects. This class
of master equation has been thoroughly investigated [5,22],
and only recently, a characterization of physically admissible
integrodifferential master equations has been provided, based
on a generalization of classical semi-Markov processes [7].
Since integrodifferential equations are hard to treat, a more
handful tool to investigate open quantum systems are time-
convolutionless (TCL) master equations [20]. We underline
that the solution of a TCL master equation always satisfies
a Nakajima-Zwanzig master equation [4]. Closed expressions
for TCL master equations have been obtained for few ana-
lytically solvable models [10,23,24] whose dynamics fall into
the family of Gaussian non-Markovian maps [9,14]. In order
to derive TCL master equations in more general frameworks,
a number of perturbative approaches have been developed.
Among these we mention the functional integral formalism
[25], the methods by Kubo and van Kampen [26–28] (orig-
inally developed in the context linear stochastic differential
equations), projection operator techniques [29], hierarchical
equations of motion [30], effective modes [31], stochastic
Liouville–von Neumann [32], and multiple-time correlation
functions [33] (for a review on the topic see [8]). These
approaches allowed us to improve the theoretical description of
non-Markovian dynamics, but they all suffer two drawbacks.
First, in order to obtain the series up to the nth perturbative
order, one has to apply repeatedly the whole formalism. This
makes the derivation of higher order terms unwieldy. Second,
these methods do not make clear evidence of the mathematical
structure of the perturbative series in terms of commutators
and anticommutators.

In this paper we tackle these issues by providing a pertur-
bative technique that allows us to derive the master equation
of a general open system in terms of a perturbative series, with
the only assumption that the system and the bath are initially
uncorrelated. Unlike all perturbative approaches present in the
literature, our method allows us to characterize the structure
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of each expansion term through an explicit recursive formula.
Such an iterative structure makes their derivation simpler. We
further provide an intuitive diagrammatic description of each
term of the series, which provides a useful analytical tool to
build them and to infer their structure in terms of commutators
and anticommutators.

We eventually apply our formalism to the evolution of the
observables of the reduced system. We show how the method
can be applied to the adjoint master equation, and we develop
a diagrammatic description of the associated series.

II. NON-MARKOVIAN MAP AND MASTER EQUATION

We consider a system (S) interacting with a generic envi-
ronment (E). The evolution of the open system density matrix
ρ̂SE in the interaction picture is described by the von Neumann
equation (h̄ = 1)

i
∂ρ̂SE (t)

∂t
= [V̂t ,ρ̂SE (t)], (1)

where V̂t is a generic interaction Hamiltonian between the sys-
tem and the environment. In order to simplify the calculations
to come, we assume V̂t to be factorized, i.e.,

V̂t = Ât φ̂t , (2)

where Ât and φ̂t , respectively, are Hermitian system and
environment operators. We however stress that the formalism
presented holds for the most general V̂t = ∑

i Â
i
t φ̂

i
t . It is

convenient to introduce the left-right formalism denoting by
a subscript L (R) the operators acting on ρ̂ from the left (right)
[34]. The dynamical map �t for the open system is obtained
by formally solving Eq. (1):

�tρ̂SE = T
(
e−i

∫ t

0 dτ (V̂τL−V̂τR )
)
ρ̂SE , (3)

where T (·) denotes the time ordering operator. Since we are
interested on the effective evolution of the systemS , we aim for
the reduced dynamical map Mt that evolves the initial state of
the system ρ̂S to the state ρ̂S (t) at time t [ρ̂S (t) ≡ Mt ρ̂S ]. This
is obtained by tracing out the environmental degrees of freedom
from �t . In order to do so, we assume that the open system
initial state is factorized: ρ̂SE = ρ̂S ⊗ ρ̂E . The dynamical map
Mt (·) is then given by

Mt ρ̂S = TrE
[
T

(
e−i

∫ t

0 dτV −
τ

)
ρ̂S⊗ρ̂E

]
, (4)

where TrE denotes the partial trace over the environment, and
we have defined

V −
τ ≡ (V̂τL − V̂τR) (5)

(for convenience superoperators are not denoted by a hat).
We observe that Eq. (4) guarantees the complete positivity of
the map, since it can be understood as the Kraus-Stinespring
decomposition of Mt [35]. When the environment is com-
pletely characterized by its two-point correlation function
TrE [φ̂i

t φ̂
j
s ρ̂E ], the trace can be performed exactly and one

obtains a closed Gaussian form for Mt [9]. If in addition the
Hamiltonian is at most quadratic and the system operators obey
linear Heisenberg equations of motion, one can exploit Wick’s
theorem and derive the exact master equation [14]. Unluckily,
in the general case we are considering, such techniques cannot

be exploited, and one needs to tackle the problem from another
perspective.

The formalism we use is based on an expansion over the map
momenta that is close to the cumulant expansion introduced
by van Kampen [27]. The advantage of our formalism is that
it allows us to construct recursively the master equation, while
this is not possible with the van Kampen approach [36]. Since
the derivation is rather involved, we refer the reader to the
Appendixes for mathematical details. We start by expanding
Eq. (4) in Dyson’s series, obtaining

Mt = 1 +
∞∑

n=1

(−i)nμn,t , (6)

where μn,t are the integrated momenta

μn,t ρ̂S = 1

n!
TrE

[
T

(∫ t

0
dτV −

τ

)n

ρ̂S⊗ρ̂E

]
. (7)

We observe that the subscript n of μ denotes the power of
the superoperator V −, i.e., the number of operators Â and
φ̂ displayed by momentum. The subscript t , denoting time
dependence, will be dropped in the remainder of this paper for
compactness of notation. Doing so, we implicitly assume that
the momenta are evaluated at time t , unless otherwise explicitly
stated. In order to make this formula more transparent, we need
to make explicit the dependence of μn over the system oper-
ators Â and on the environment n-point correlation functions.
It is convenient to introduce a new pair of superoperators:
A+ ≡ ÂL + ÂR and A− ≡ ÂL − ÂR (analogous definitions
hold for environment operators φ̂). This notation is particularly
convenient because one can associate to A+ an anticommutator
and to A− a commutator. It will then be immediately evident
how these building blocks contribute to the structure of the
master equation. We consider the definition (7) of μn and we
replace Eqs. (2) and (5) in it. The result in terms of A± and φ±
is

μnρ̂S = 1

n! 2n
TrE

[
T

( ∫ t

0
dτ (A+

τ φ−
τ + A−

τ φ+
τ )

)n

ρ̂S⊗ρ̂E

]
.

(8)

It is important to observe that a + superoperator for the systems
is always associated to a − superoperator for the environment,
and vice versa. We will shortly show that this “sign conserva-
tion rule” covers a crucial role for trace preservation of the map.
We now exploit the binomial theorem, and we make explicit the
time ordering simply by conditioning the time integrals. After
some manipulation one finds that the result of this procedure
is the mixing of the ± superoperators (see Appendix A):

μn =
∫ t

0
dτ̄n

n∑
j=1

∑
Pj

A−
τ1

· · ·Akn

τn
D+···k̄n

τ1···τn
, (9)

where
∫ t

0 dτ̄n = ∏n
i=1

∫ t

0 dτi , and Pj denotes all the permuta-
tions of the indexes ki ∈ {+,−}, with k1 = − and such that
there is a j number of minus superoperators. We have also
introduced the bath “ordered correlation functions,” defined
by

D+···k̄n

τ1···τn
≡ 1

2n
TrE

[
φ+

τ1
θτ1τ2φ

k̄2
τ2

· · · θτn−1τn
φk̄n

τn
ρ̂E

]
, (10)
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where θτiτj
is one for τi > τj , zero otherwise, and provides the

ordering both of the operators φ̂ in D, of the operators Â in
Eq. (9), by conditioning the integrals limits. The 2n prefactor
represents the number of permutations of the operators φ̂ con-
tained in D (provided by commutators φ− and anticommuta-
tors φ+). Moreover, k̄i ≡ −ki guarantees the sign conservation
rule. We now exploit the cyclicity property of the trace that
implies TrE [φ−Ôρ̂E ] = 0 for any operator Ô. According to the
sign conservation rule, the contributions where A+ is the first
superoperator on the left are suppressed. As a consequence,
the first system superoperator on the left of μn is always A−.
This is an important feature because it guarantees that the map
is trace preserving (indeed TrS [A−Ô ρ̂S ] = 0).

Equation (9) shows that the momenta μn are composed
by the sum of all the permutations of the products of n

superoperators A±, where the first term on the left is A−, and
the associated environment correlation function is obtained by
the sign conservation rule. By replacing Eq. (9) in Eq. (6)
we obtain the explicit expression for the perturbative series
of the map Mt . We observe that, unlike the Gaussian case
[9], one cannot sum the series and is left with the formal
expression (6). However, if we consider a Gaussian bath, we
can decompose higher order correlation functions in (9) by
means of the Isserlis’ theorem [37], and recover known results.

The dependence of the momenta on the system operators
and the environment correlation function is not only important
for the map structure, but plays also a relevant role for the
derivation of the master equation. We look for a time local
master equation of the type

∂t ρ̂S (t) = Lt ρ̂S (t), (11)

where the generator Lt can be formally written as follows:

Lt = ∂t (Mt )M−1
t . (12)

Exploiting the identity (1 + x)−1 = ∑∞
n=0(−)nxn (under the

assumption that ||Mt − 1|| < 1) one can invert Eq. (6) ob-
taining

M−1
t =

∞∑
n=0

(−i)nMn, (13)

where the superoperators Mn are recursively defined as fol-
lows:

Mn = −
n∑

k=1

μkMn−k0, (14)

with M0 = 1 (see Appendix B). One then sees that Mn is the
sum of μn plus the products of momenta with order lower
than n. Accordingly, Mn and μn contain the same number n

of operators, while they differ for how the bath operators are
clustered by TrE (and ordered byT ). Indeed, inμn the operators
φ̂ are grouped together under the trace in Eq. (10), while in Mn

one needs to consider all possible clusterings of n elements.
This fact can be seen by replacing Eq. (9) in Eq. (14). For
example, for n = 2 one finds

μ2 =
∫ t

0
dτ̄2 A−

τ1
A−

τ2
D++

τ1τ2
+ A−

τ1
A+

τ2
D+−

τ1τ2
,

M2 =
∫ t

0
dτ̄2 A−

τ1
A−

τ2

(
D+

τ1
D+

τ2
− D++

τ1τ2

) − A−
τ1
A+

τ2
D+−

τ1τ2
.

According to Eq. (10), while in μ2 both bath operators φ are
clustered together (e.g., in D++

τ1τ2
), M2 displays a term with a

different clustering (D+
τ1
D+

τ2
).

Replacing Eqs. (6) and (13) in Eq. (12), and after some
calculations one can find (see Appendix C)

Lt =
∞∑

n=1

(−i)nLn, (15)

with

Ln = μ̇n −
n−1∑
k=1

Ln−kμk, (16)

and L0 = 0, where we denoted the derivative with respect
to time t with a dot. Equation (16) is the recursive law that
allows us to build iteratively of each term of the expansion
(15). Each Ln is the sum of all the possible combinations
of A± (provided that the first on the left is always A−),
suitably ordered and clustered. These terms are associated with
peculiar combinations of ordered correlation functions, whose
construction is elegantly described by the recursion (16). The
first two terms of the series (15) can be easily obtained starting
from the definition of the momenta (9):

L1 = A−
t D+

t , (17)

L2 = A−
t

∫ t

0
dτ1

[
A+

τ1
D+−

t τ1
+ A−

τ1

(
D++

t τ1
− D+

t D+
τ1

)]
. (18)

However, the structure of the third term is already quite
complicated, and higher order terms are rather involved to
compute. In order to ease the computation of the generic Ln,
we provide here an intuitive diagrammatic description of how
they can be built.

III. DIAGRAMMATICS

We introduce the following notation:

(19)

and we represent the trace over the environmental degrees of
freedom as linking the circles in the following way:

(20)

where denotes that in any position one can put either
or , and D is the bath ordered correlation function defined
in Eq. (10). We call the left-hand side of Eq. (20) “nth
order connected diagram,” while a “nth order nonconnected
diagram” is obtained by removing at least one connection (line
connecting circles) from the respective connected diagram.
Note that when we trace only a single symbol (19), this simply
results in dropping the side lines, i.e., the first-order diagram
reads

(21)
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We stress that the role of the bath ordered correlation functions
D is to link together the circles, clustering and ordering them
in a specific way. Accordingly, one has that, e.g.,

(22)

differs from

(23)

for how the bath operators are clustered in D. Moreover,
we observe that with this notation, the fact that the first
superoperator on the left is always A− is rephrased as follows:
the diagrams whose first circle on the left is white are null, i.e.,

(24)

Having introduced the basic elements of our diagrammatics,
we can move to its application. We start from the map Mt (6),
which is defined in terms of the momenta μn of Eq. (9). With
the diagrams introduced above, one finds that the momentum
μn is the sum of all possible nth order connected diagrams,
i.e.,

(25)

where now Pj denotes all permutations of black and white
circles, such that there is a j number of black ones.

In order to build the term Ln of the generator, we denote the
derivative with respect to t with a dot over a circle. With this
notation, one finds that the diagrammatic version of Eqs. (17)
and (18) reads

(26)

(27)

The procedure to build Eq. (16) for a generic n with this
diagrammatics is the following (we show the case n = 3 as
explicit example):

(1) Write the nth order connected diagram composed by n

black circles and put a dot on the first circle:

. (28)

(2) Remove a number p � n − 1 of connections from the
previous connected diagram, in all possible ways. Multiply the
diagrams obtained at each step by (−1)p. Repeat for all p, until
all n − 1 connections are removed, i.e., until all black circles
are disconnected:

. (29)

(3) Turn a number p � n − 1 of black circles of the
diagrams obtained so far into white, in all possible ways, and
remembering the rule (24). Repeat for all p, until all circles

(but the first) are white:

(30)

(4) Exploit Eqs. (20) and (21) to translate the diagram
obtained in operatorial form. Equation (30) reads

L3 =
∫ t

0
dτ̄2

[
A−

t A−
τ1
A−

τ2

(
D+++

t τ1τ2
− D+

t D++
τ1τ2

− D++
t τ1

D+
τ2

+ D+
t D+

τ1
D+

τ2

)
+ A−

t A−
τ1
A+

τ2

(
D++−

t τ1τ2
− D+

t D+−
τ1τ2

)
+ A−

t A+
τ1
A−

τ2

(
D+−+

t τ1τ2
− D+−

t τ1
D+

τ2

)
+ A−

t A+
τ1
A+

τ2
D+−−

t τ1τ2

]
, (31)

where the first two lines correspond to the first line of
Eq. (30).
Equation (31) clearly provides insight on the mathematical
structure of the master equation: Ln is the sum of all possible
combinations of commutators (A−) and anticommutators (A+)
of operators Â, multiplied by suitable combinations of bath
ordered correlation functions D that encode the environment
influence over the system. If one considers a Gaussian bath,
one can decompose any even ordered correlation function (odd
ones are zero) in terms of the two-point correlation function.
Moreover, if the system Hamiltonian is bosonic and quadratic,
one can exploit the operators algebra and reduce combinations
of n nested (anti-)commutators to double (anti-)commutators,
recovering the results of [14].

IV. ADJOINT MASTER EQUATION

We derive the adjoint master equation for the system
observables that is a useful tool to investigate the evolution
of physical quantities.

We define the adjoint interaction picture as the picture
where the statistical operator ρ̂SE evolves according to the
free dynamics, and a generic operator Ô evolves with the
interaction Hamiltonian, i.e.,

Ôt = �∗
t Ô,

ρ̂SE (t) = e−i(H−
S +H−

E )t ρ̂SE , (32)

where H−
S and H−

E , respectively, are the generators of the free
dynamics of the system and of the environment [defined like
in Eq. (5)], and �∗ is the adjoint dynamical map defined by

�∗
t ≡ T

(
ei

∫ t

0 dτV −
τ

)
. (33)

Since we are interested in the effective evolution of the system
S , we restrict our attention to operators of the type Ô = ÔS ⊗
1̂E . Under this assumption, we obtain the reduced dynamical
map M∗

t by tracing out the environmental degrees of freedom
from �∗

t . Under the further assumption that the initial state is
factorized, the map M∗

t is given by

M∗
t ÔS = TrE

[
ρ̂E (t)T

(
ei

∫ t

0 dτV −
τ

)]
ÔS . (34)
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Retracing the steps that we have done deriving the master
equation (11), we expand Eq. (34) in Dyson series, obtaining

M∗
t = 1 +

∞∑
n=1

inμ̃n, (35)

where μ̃n are the “adjoint integrated momenta”

μ̃n =
∫ t

0
dτ̄n

n∑
j=1

∑
Pj

Ak1
τ1

· · ·A−
τn

D̃k̄1···+
τ1···τn

, (36)

and the “adjoint ordered correlation function” is defined by

D̃k̄1···+
τ1···τn

≡ 1

2n
TrE

[
ρ̂E (t)φk̄1

τ1
θτ1τ2φ

k̄2
τ2

· · · θτn−1τn
φ+

τn

]
. (37)

The adjoint momenta defined in Eq. (36) differ from the
momenta in Eq. (9) only for the environmental contribution
D̃. We now look for an adjoint master equation of the type

∂t ÔS,t = L∗
t ÔS,t . (38)

The similarities between Eqs. (6) and (35) allow us to compute
the generatorL∗

t of the adjoint master equation that is described
by the series

L∗
t =

∞∑
n=1

inL̃n, (39)

with

L̃n = ˙̃μn −
n−1∑
k=1

L̃n−kμ̃k (40)

and L̃0 = 0. Because of the time dependence of the envi-
ronmental state ρ̂E , we cannot directly implement the dia-
grammatic scheme developed for the master equation (11).
However, if we restrict our analysis to the steady states of
the free evolution (H−

E ρ̂E = 0), the environmental state ρ̂E
will drop its time dependence. This allows us to define a
diagrammatic expression for the adjoint master equation by
exploiting the scheme previously developed, where rule (20)
is replaced by

(41)

and rule (24) is replaced by

(42)

V. CONCLUSIONS

We have provided an iterative method that allows us to de-
rive in a perturbative series the non-Markovian master equation
for the density matrix, and its adjoint for the observables, of
a generic open quantum system. The merit of our formalism
is that the expansion terms are defined recursively, making
their derivation easier compared to previous perturbative tech-
niques. We have further given a diagrammatic description
of the expansion terms that provides an intuitive analytical
tool to build the perturbative series. Such a diagrammatics
gives clear evidence of the mathematical structure of each
term of the series, and explicitly shows that the environmental

effects on the dynamics are encoded on the action of a series
of commutators and anticommutators of system operators,
connected by the n-point environmental correlation functions.
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APPENDIX A: EXPLICIT DERIVATION
OF THE EFFECTIVE MAP

In this Appendix we derive the explicit expression (9) for
the ordered momenta μn. We consider Eq. (8) and exploiting
the binomial theorem we rewrite the momentum μn as follows:

μn ρ̂S = 1

2nn!

n∑
k=0

n!

(n − k)!k!
TrE

[
T

(∫ t

0
dτA+

τ φ−
τ

)k

×
(∫ t

0
dτA−

τ φ+
τ

)n−k

ρ̂S ⊗ ρ̂E

]
. (A1)

In order to make the time ordering explicit, we adopt the follow-
ing strategy: we first resolve the time ordering for the couples
A+φ− and A−φ+ independently, by conditioning the integrals
with unit step functions θ :

μn ρ̂S = 1

2nn!

n∑
k=0

n!

(n − k)!k!
TrE

⎡
⎣T

⎡
⎣T

⎛
⎝ n∏

j=k+1

A+
τj

φ−
τk

⎞
⎠

× T
(

k∏
i=1

A−
τi
φ+

τi

)]
ρ̂S ⊗ ρ̂E

]

= 1

2n

n∑
k=0

TrE

⎡
⎢⎣T

n−k
⇀∏

j=1

∫ t

0
dτj (A+

τj
φ−

τj
)θτj−1,τj

×
k
⇀∏
i=1

∫ t

0
dτi(A

−
τi
φ+

τi
)θτi−1,τi

ρ̂S ⊗ ρ̂E

⎤
⎥⎦, (A2)

where τ0 = 0, and the arrow above the product denotes that the
superoperators are ordered from the left to the right. One can
see that this partial time ordering removes the factorial terms in
the equation and orders in two independent blocks the integrals
associated with the two couples of operators. The second step
of our derivation is to order globally the two “pre-ordered”
blocks. The result of this further ordering is the mixing of plus
and minus superoperators in all the possible permutations, and
the ordering of all integrals:

μn ρ̂S = 1

2n

∫ t

0
dτ̄n

n∑
j=1

∑
Pj

Ak1
τ1

· · ·Akn

τn

× TrE
[
φk̄1

τ1
θτ1τ2φ

k̄2
τ2

· · · θτn−1τn
φk̄n

τn
ρ̂E

]
ρ̂S , (A3)

where dτ̄n = ∏n
i=1 dτi , and Pj denotes all the permutations

of the indexes ki ∈ {+,−} such that there is a j number of
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minus superoperators and k̄i = −ki . Defining the environment
ordered correlation function as

Dk̄1···k̄n

τ1···τn
≡ 1

2n
TrE

[
φk̄1

τ1
θτ1τ2φ

k̄2
τ2

· · · θτn−1τn
φk̄n

τn
ρ̂E

]
, (A4)

we recover Eq. (9):

μn =
∫ t

0
dτ̄n

n∑
j=1

∑
Pj

Ak1
τ1

· · · Akn

τn
Dk̄1···k̄n

τ1···τn
. (A5)

APPENDIX B: RECURSIVE SERIES FOR THE
INVERSE MAP M−1

t

The aim of this Appendix is to explicitly derive Eqs. (13) and
(14), i.e., to express M−1

t as a power series of the interaction
Hamiltonian V̂t of Eq. (2). We consider Eq. (7) and we formally
invert it, in such a way thatM−1

t (when it exists) can be written
as

M−1
t =

(
1 +

∞∑
n=1

(−i)nμn

)−1

. (B1)

We define
∑∞

n=1(−i)nμn ≡ x and, assuming that | x| � 1, we
exploit the identity (1 + x)−1 = ∑∞

n=0(−)nxn obtaining

M−1
t =

∞∑
n=0

(
−

∞∑
k=1

(−i)kμk

)n

. (B2)

This equation can be rearranged by making explicit the power
n:

M−1
t =

∞∑
n=0

(−)n
n∏

j=1

⎛
⎝ ∞∑

kj =1

(−i)kj μkj

⎞
⎠. (B3)

From this expression it is clear that each term of the first series
on the left is the product of series of momenta. Accordingly,
such a series is not a power series of the interaction Hamiltonian
V̂t because each of its terms contains all powers of momenta
(and hence of the interaction V̂t ). We rearrange Eq. (B3) by
exploiting the Cauchy product of two series recursively (over
the product of n series). The result is

M−1
t =

∞∑
n=0

(−i)nMn, (B4)

with

Mn =
n∑

q=0

(−)q
∑

k1+···+kq=n

μk1 · · · μkq
. (B5)

Equation (B4) is the correct series in power of the interaction
we were looking for, as n denotes the power of the interaction
Hamiltonian V̂t . The index q in Eq. (B5) instead denotes
the number of partitions in which the operators are clustered
(by the momenta μk). Since this expression for Mn is rather
involved, we rewrite the terms for n � 1 as follows:

Mn =
n∑

k=1

μk

n−k∑
q=0

(−)q+1
∑

k1+···+kq=n−k

μk1 · · · μkq
. (B6)

One can easily check that the second series in this equation
is simply Eq. (B5) for Mn−k . This leads us to the recursive
formula of Eq. (14):

Mn =
n∑

k=1

μk(−Mn−k), with M0 = 1. (B7)

APPENDIX C: RECURSIVE FORMULA FOR THE
TIME LOCAL GENERATOR

In this Appendix we provide the technical details for the
derivation of Eq. (16). We start from Eq. (12) and we substitute
in it Eqs. (6) and (13), obtaining

Lt =
∞∑

n=1

μ̇n

∞∑
k=0

(−i)n+kMk. (C1)

Similarly to the previous Appendix, this one is also not a series
in powers of the interaction Hamiltonian V̂t . In order to reach
this goal, we exploit again the Cauchy product of two series,
and we rearrange Eq. (C1) as follows:

Lt =
∞∑

n=1

(−i)nLn, (C2)

with

Ln =
n∑

k=1

μ̇k Mn−k, (C3)

and Mn is determined by the recursive formula (B5). Equation
(C3) is a useful expression of Ln for performing a numerical
analysis. However, it is more elegant to derive a recursive
relation that involves only Ln and the momenta μ. We do
so by adopting the same strategy exploited in the previous
Appendix. We first replace Eq. (B5) to obtain the following
explicit expression:

Ln =
n∑

q=0

(−)q
∑

k0+···+kq=n

μ̇k0μk1 · · ·μkq
. (C4)

We then rearrange this sum as follows:

Ln = μ̇n −
n−1∑
k=1

⎛
⎝n−k∑

q=0

(−)q
∑

k0+···+kq=n−k

μ̇k0μk1 · · · μkq

⎞
⎠μk.

(C5)

Comparing this expression for Ln with Eq. (C4), one finds the
desired recursive formula:

Ln = μ̇n −
n−1∑
k=1

Ln−kμk, with L0 = 0. (C6)

APPENDIX D: VAN KAMPEN VS RECURSIVE EXPANSION

In this Appendix we compare the cost of our formalism
to van Kampen formalism. We build both of the perturbative
series up to the fourth term (L4) of the expansions.
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Exploiting van Kampen formalism, one finds that the
generator Lt can be described by the series in Eq. (15) with

Ln =
∫ t

0
dτ1 · · ·

∫ τn−1

0
dτn

〈
V −

t V −
τ1

· · · V −
τn

〉
oc, (D1)

where〈
V −

t V −
τ1

· · ·V −
τn

〉
oc ≡

∑
(−1)q−1〈V −

t · · · V −
τi

〉〈
V −

τj
· · · V −

τk

〉
× 〈

V −
τl

· · · V −
τm

〉〈· · ·〉. (D2)

While 〈· · ·〉 = TrE [· · ·ρ̂E ] and we have introduced the new
notation 〈V −

t V −
τ1

· · ·V −
τn

〉oc, where the subscript oc stands for
“ordered cumulants.” These are defined by the following rules:

write a string composed by the product of n V −
τpi

superoperators
in between the parentheses. Partition the string into an arbitrary
number of q substrings with 1 < q < n by inserting angular
brackets in between the V − of the original string. Multiply
the resulting expression by the factor (−1)q−1. Concerning the
time arguments τj , they are organized as follows: The first
factor of the string is always V −

t . The remaining V −
τi

display
all the permutations of the time arguments τ1,τ2, . . . ,τn−1 such
that in each substring they are chronologically ordered. For
example, in Eq. (D2) one has t � · · · ti , tj � · · · � tk , and
tl � · · · � tm (see [27] for further details).

Following this prescription, we write the first four terms of
the van Kampen expansion:

L1 = 〈V −
t 〉oc = 〈V −

t 〉,

L2 =
∫ t

0
dτ1

〈
V −

t V −
τ1

〉
oc =

∫ t

0
dτ1

(〈
V −

t V −
τ1

〉 − 〈V −
t 〉〈V −

τ1

〉)
, (D3)

L3 =
∫ t

0
dτ1

∫ τ1

0
dτ2

〈
V −

t V −
τ1

V −
τ2

〉
oc

=
∫ t

0
dτ1

∫ τ1

0
dτ2

(〈
V −

t V −
τ1

V −
τ2

〉 − 〈
V −

t V −
τ1

〉〈
V −

τ2

〉 − 〈
V −

t V −
τ2

〉〈
V −

τ1

〉 − 〈V −
t 〉〈V −

τ1
V −

τ2

〉 + 〈V −
t 〉〈V −

τ1

〉〈
V −

τ2

〉 + 〈V −
t 〉〈V −

τ2

〉〈
V −

τ1

〉)
, (D4)

L4 =
∫ t

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

〈
V −

t V −
τ1

V −
τ2

V −
τ3

〉
oc

=
∫ t

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3

(〈
V −

t V −
τ1

V −
τ2

V −
τ3

〉 − 〈
V −

t V −
τ1

V −
τ2

〉〈
V −

τ3

〉 − 〈
V −

t V −
τ1

V −
τ3

〉〈
V −

τ2

〉 − 〈
V −

t V −
τ2

V −
τ3

〉〈
V −

τ1

〉
− 〈

V −
t V −

τ1

〉〈
V −

τ2
V −

τ3

〉 − 〈
V −

t V −
τ2

〉〈
V −

τ1
V −

τ3

〉 − 〈
V −

t V −
τ3

〉〈
V −

τ1
V −

τ2

〉 − 〈V −
t 〉〈V −

τ1
V −

τ2
V −

τ3

〉
+ 〈

V −
t V −

τ1

〉〈
V −

τ2

〉〈
V −

τ3

〉 + 〈
V −

t V −
τ1

〉〈
V −

τ3

〉〈
V −

τ2

〉 + 〈
V −

t V −
τ2

〉〈
V −

τ1

〉〈
V −

τ3

〉 + 〈
V −

t V −
τ2

〉〈
V −

τ3

〉〈
V −

τ1

〉
+ 〈

V −
t V −

τ3

〉〈
V −

τ1

〉〈
V −

τ2

〉 + 〈
V −

t V −
τ3

〉〈
V −

τ2

〉〈
V −

τ1

〉 − 〈V −
t 〉〈V −

τ1

〉〈
V −

τ2

〉〈
V −

τ3

〉 − 〈V −
t 〉〈V −

τ1

〉〈
V −

τ3

〉〈
V −

τ2

〉
− 〈V −

t 〉〈V −
τ2

〉〈
V −

τ1

〉〈
V −

τ3

〉 − 〈V −
t 〉〈V −

τ2

〉〈
V −

τ3

〉〈
V −

τ1

〉 − 〈V −
t 〉〈V −

τ3

〉〈
V −

τ1

〉〈
V −

τ2

〉 − 〈V −
t 〉〈V −

τ3

〉〈
V −

τ2

〉〈
V −

τ1

〉)
. (D5)

These explicit expressions show that the complexity of the expansions terms grows very quickly with the expansion order.
Moreover, it is not possible to obtain a recursive law, forcing one to repeatedly apply the cumbersome prescription described
above to derive any expansion terms. In order to ease the comparison, we now write the same terms exploiting Eq. (C4):

L1 = 〈V −
t 〉, L2 =

∫ t

0
dτ1

(〈
V −

t V −
τ1

〉 − 〈V −
t 〉〈V −

τ1

〉)
,

L3 =
∫ t

0
dτ1

∫ t

0
dτ2

(〈
V −

t V −
τ1

V −
τ2

〉
θτ1τ2 − 〈

V −
t V −

τ1

〉〈
V −

τ2

〉 − 〈V −
t 〉〈V −

τ1
V −

τ2

〉
θτ1τ2 + 〈V −

t 〉〈V −
τ1

〉〈
V −

τ2

〉)
,

L4 =
∫ t

0
dτ1

∫ t

0
dτ2

∫ t

0
dτ3

(〈
V −

t V −
τ1

V −
τ2

V −
τ3

〉
θτ1τ2τ3τ4 − 〈

V −
t V −

τ1
V −

τ2

〉〈
V −

τ3

〉
θτ1τ2 − 〈

V −
t V −

τ1

〉〈
V −

τ2
V −

τ3

〉
θτ1τ2θτ3τ4

− 〈V −
t 〉〈V −

τ1
V −

τ2
V −

τ3

〉
θτ1τ2τ3 + 〈

V −
t V −

τ1

〉〈
V −

τ2

〉〈
V −

τ3

〉 + 〈V −
t 〉〈V −

τ1
V −

τ2

〉〈
V −

τ3

〉
θτ1τ2

+ 〈V −
t 〉〈V −

τ1

〉〈
V −

τ2
V −

τ3

〉
θτ2τ3 − 〈V −

t 〉〈V −
τ3

〉〈
V −

τ2

〉〈
V −

τ1

〉)
, (D6)

where θτ1···τn
is one for τ1 > · · · > τn, zero otherwise. Here we has used the following expression for the momenta:

μn =
∫ t

0
dτ̄n

〈
V −

t V −
τ1

· · ·V −
τn

〉
θτ1···τn

, (D7)

which is equivalent to Eq. (9) of the main text, as one can easily check by resolving the time ordering in Eq. (7). By comparing
Eqs. (D3)–(D4) it is evident that when the order of the expansion grows, our method requires the computation of a lower number
of terms: 4 against 6 for L3, and 8 against 20 for L4. What is even more important is that the expressions above allow for a
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recursive writing [see Eq. (16)]:

L1 = μ̇1,

L2 = μ̇2 + L1μ1,

L3 = μ̇3 − L2μ1 − L1μ2,

L4 = μ̇4 − L3μ1 − L2μ2 − L1μ3. (D8)

This recursion reduces even further the number of terms that need to be computed at each order, and allows for a diagrammatic
description that eases their construction.
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