

BESTEST[®]: a new diagnostic opportunity for bone structure evaluation in oncology

S. Saracchini¹*, A. Del Conte¹, L. Foltran¹, S. Corsetti¹, F. Cosmi². ¹Oncologia, IRCCS CRO Aviano and Pordenone, Aviano, Italy, ²Department of Engineering and Architecture, University of Trieste, TRIESTE, Italy

Goals: The incidence of fractures in patients undergoing hormone treatment for breast cancer is highly increased [1]. Most fractures occur in patients whose T-score falls outside the osteoporosis ranges [2].

An innovative diagnostic method, BESTEST[®], simulates by engineer-ing methods the structure elastic response to loads of a virtual biopsy of the patient obtained from radiograms in the proximal epiphysis of the hand. The results are summarized in the Bone Structure Index (BSI), BSI_T-score and BSI_Z-score, analogous in meaning, but not related to densitometry [3]. We assessed the bone alterations induced by oncological treatment by BESTEST[®] and DXA.

Methods: Oncological Population (*OP*): 100 Caucasian women, BESTEST[®] as follow-up during oncological treatment.

Control Population (CP): 200 women, BESTEST[®] in screening. Femoral neck DXA T-score availability (DXA) and self-reported osteoporotic fractures (Fr) as in Table 1.

Table 1.

Statistics: mean (min, max).

	Ν	Age	BSI_T-score	BSI_Z-score	DXA_T-score
OP OP-Fr subgroup OP (BSI+DXA) subgroup CO (BSI+ DXA) OP-Fr (BSI+DXA) subgroup	100 10 60 200 8	62 (35, 88) 67 (56, 82) 62 (35, 88) 68 (60, 82) 63 (32, 89)	-1.7 (-3.4, -0.0) -2.4 (-2.9, -1.3) -1.8 (-3.4, -0.1) -1.1 (-3.6, 2.9) -2.4 (-2.9, -1.3)	-1.3 (-2.6, 0.6) -1.8 (-2.6-0.1) -1.3 (-2.6, 0.6) -0.6 (-3.0, 2.9) -1.8 (-2.6, -0.1)	NA NA -1.6 (-3.2, 0.5) -1.9 (-3.7, 1) -1.5 (-2.9, 0.1)

Results: The BSI T-score in *OP-Fr* is lower than in *OP* (p < 0.0100). After correction for age, BSI Z-score in *OP-Fr* is lower than in *OP* (p = 0.0300).

The BESTEST[®] and DXA results are independent in *OP(BSI+DXA)* ($R^2 = 0.0917$)and in *CO(BSI+DXA)* ($R^2 = 0.0294$).

OP-Fr (*BSI+DXA*): BSI T-score is indicative of a compromised trabecular structure and lower than in *OP(BSI+DXA)* (p = 0.038). DXA T-score results span all possible outcomes and not statistically different from *OP(BSI+DXA)* (p = 0.674).

Conclusions: Statistical analyses show that BESTEST[®] can help assessing bone alterations due to oncological treatment, especially when associated with fractures.

Notwithstanding its limitations, this pilot study provides a background for further studies into the use of a new, rapid and safe technique for monitoring the effects of breast cancers therapies.

Conflict of Interest: FC is co-founder of M2TEST srl, the company that commercializes BESTEST[®].

References

- 1 Coleman RE et al. Lancet Oncol, 2007, 8(2), 119-127
- 2 Schuit SCE et al. Bone, 2004, 34, 195-202
- 3 Cosmi FC. MCB, 2015, 12(2), 87–105